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Abstract

The hippocampal code - Towards understanding neural representations underlying spatial
navigation

by

Archit Gupta

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Science

University of California, Berkeley

Professor David Foster, Co-chair

Professor José Carmena, Co-chair

Navigation is central to the survival of species. From a systems neuroscience perspective, the
Hippocampus is one of the principal regions that enables mammalian navigation. Academic
and medical literature have also implicated this part of the archicortex in the long-term
storage of memories. The ability to record from hundreds of neurons at sub-millisecond
time-scale from the hippocampus now provides a unique window into its inner workings,
allowing us to test broader computational theories about the brain. In this dissertation,
we explore the representation of space in the brain from multiple perspectives. First, we
study oscillatory interactions in the brain - we combine a novel opto-genetic experimental
paradigm with in-vivo electrophysiology to study inter-connected regions in the rodent brain.
We then use cross-frequency analyses to study how two of the most prominent oscillations in
the hippocampus, theta and gamma, interact. We show that the latter, gamma oscillations,
are synchronized across a large extent of anatomical tissue and that this synchrony is driven
by the CA3 sub-region of the Hippocampus. We then discuss functional representations of
space in the brain that constitute a cognitive map. We demonstrate tools and algorithms
that were developed as a part of our projects to perform Bayesian inference of neural activity
in real time, as well as to detect known oscillatory phenomenon called Sharp-Wave Ripples
(SWR) that have been associated with consolidation of memories in literature. We lay out
experimental work to test the role of SWR in online spatial learning. Our work has been
released as a publicly available open-sourced tool called ActiveLink. We discuss technological
challenges in real-time inference of neural activity and offer a machine-learning solution based
on neural networks to outperform existing methods for spatial inference.
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Chapter 1

Introduction

The ability to navigate space is fundamental to the survival of individuals. Virtually all
species possess exceptional navigational skills. Some of the most remarkable examples of
navigational capabilities are found in migratory birds. The Arctic tern, for an instance,
covers 22, 000 miles in its migratory pattern [109]. One of the early studies regarding the
homing behavior of birds [158] found that they could home in to Key Island on Florida when
released up to 1000 miles away.

Understanding the various mental facilities that enable intelligent navigation has drawn
interest in psychology and neuroscience alike. Early research in psychology, including the
work of Tolman [148], laid the foundation for navigational principles which can drive intel-
ligent behavior. Very broadly, these navigational faculties can be divided into two groups -
taxon navigation, or navigation using an egocentric perspective, and locale navigation, nav-
igation from an allocentric perspective. Theories of taxon navigation are based on the idea
that Stimulus-Response associations can be used to perform navigation. Locale navigation,
on the other hand, presumes that animals have an inherent capability of forming a model of
the world. Such a model, or a spatial map can then be inferred to perform intelligent nav-
igation. Early evidence for locale navigation was presented in [148] where rats were placed
in a maze comprised of a series of binary decisions, ultimately leading to an empty room.
Later, when reward was introduced in the maze, animals who had previously experienced the
environment in the absence of reward outperformed naïve animals suggesting some form of
latent learning even in the absence of a reward which would lead to direct stimulus-response
pairing.

Around the same time when cognitive theories of navigation were being debated, a land-
mark study [131] showed that patients with bilateral hippocampal lesions suffered from
severe retrograde amnesia. While much of their reasoning ability and cognition had been
spared, some of the patients had completely lost the ability to create new memories. These
patients did not suffer deficits in recalling precise memories from before the surgical proce-
dures. Subsequent studies in non-human primates [175] and humans [174] confirmed that
Hippocampus was essential for forming new memories. Subsequent development of in-vivo
electrophysiology in the last century offered a window into the working of the brain at the
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resolution of individual neurons. More evidence for a cognitive map arose in [107, 106] when
cells in the hippocampus were discovered to be tuned to space. We also received evidence
for taxon navigation, with processing streams in Entorhinal Cortex (EC) depicting objects
[33] and environmental boundaries [139] which could support a stimulus-response model of
navigation in addition to the cognitive map which can co-exist in the same brain region [56].
In this dissertation, we primarily focus on the internal representation of space that is believed
to constitute a cognitive map.

In this work, we delve into the structure and function of the Hippocampus in the context
of navigating space. While early studies [99, 142, 111] have pointed out that Hippocampus is
necessary for execution of spatial navigation, the precise neural phenomenon that enable spa-
tial learning and planning are not very well understood. There is accumulating evidence that
suggests that sequential structure of activity in the brain is vital for navigation. However, we
do not understand how such sequences are constructed and utilized in navigation. Local Field
Potential (LFP) is fundamental to this understanding, and a potential substrate for clini-
cal diagnosis and therapies, using, for example, non-invasive Electroencephelogram (EEG)
signals. We explore the structure and mutual-interaction of these signals in the brain and
study their origin.

While in-vivo recordings were limited to a handful of single units in the early days of neu-
roscience, we are now able to record from hundreds [123], and in some cases thousands [124]
of cells from the brain simultaneously. The increasing rate of information being extracted
from the brain requires scale-able tools and algorithms for information processing. The sta-
tistical modeling paradigms from machine learning [78] provide ideas that can be borrowed
into systems neuroscience to advance our capability to information neural signals at scale
and with high fidelity.

The work in this dissertation explores three different directions to elevate our under-
standing of spatial navigation. 1) In Chapter 2, I assess the interaction between theta and
gamma oscillations within the Hippocampus. This work was done in collaboration with Dr.
Heydar Davoudi who collected the data involving opto-genetic suppression of CA3 input to
CA1 and Althea Cavanaugh who collected simultaneous electrophysiological recordings from
the dorsal and the intermediate CA1. 2) In Chapter 3, I describe an open-sourced tool to
aid the study of spatial navigation in closed-loop experiments. I also discuss the application
of the tool to an online spatial learning task for studying the effects of SWR disruption on
learning. This work was done collaboration with Dr. Caitlin Mallory and William Croughan.
3) In Chapter 4, I describe machine-learning methods to improve our ability to infer the in-
creasingly complex neural data being recorded today. The rest of this chapter is dedicated
to the discussion of academic research that has shaped our understanding of how space is
represented in the brain. Given the vast scope of the subject at hand, this review inevitably
must be selective.
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a. b.

Figure 1.1: Spatially tuned single units in the Hippocampus. (a.) Animals trajectory
(blue) over the course of a 40min exploratory session in a 2m × 2m open arena. Animal’s
physical location at time when action potentials were observed from a single cell have been
marked in red. (b.) Spatial tuning curve constructed from (a.) by binning spikes and
position into 4cm bins and calculating normalized firing rate in each position bin as described
in Eq. (1.1).

1.1 Hippocampus and Space
Early electrophysiology [107, 106] in the hippocampus showed that putative pyramidal cells
are tuned to space. Fig. 1.1 illustrates the activity of a single cell recorded from the CA1
region of the hippocampus as the animal navigated a maze in search of reward delivered
at one of thirty-six reward wells arranged in 6 × 6 grid (see [123] for details on the task).
The blue trace in Fig. 1.1a. shows the animal’s running trajectory during the session. The
animal’s location in the environment during every action potential emitted by the cell is
reported in red circles. A firing rate map (Fig. 1.1b.) was constructed from the activity of
the cell as

f (x) = s (x) + ε

o (x) + ε
, (1.1)

where f (x) is the firing rate map, s (x) is the number of spikes or action potentials observed
at the location x and o (x) is the amount of time spent by the animal at the location. A
corrective parameter ε was used to for numerical reasons. This firing rate map is shown in
Fig. 1.1b. and suggests that the firing of this cell is high selectivity to a specific region of
the environment. Such cells in the hippocampus, which are tuned to space, have been called
place cells.

Anatomically, the Hippocampus consists of well differentiated sub-regions, namely CA1,
CA2, CA3 and Dentate Gyrus (DG) [3] and receives converging inputs from the visual
stream via Entorhinal Cortex (EC). Place cells have been reported in all the sub-fields of
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the hippocampus [69, 82]. The inherent recurrent connectivity of CA3 results in a robust
spatial representation that shows higher invariance to local changes in the environment [80]
while simultaneously driving place cell responses in CA1 [30].

Cells tuned to head direction have also been reported in the post-subiculum in freely
moving rats [147]. Medial Entorhinal Cortex (MEC) is one of the principal inputs of the
Hippocampus and receives converging inputs from the visual stream. Within the population
of neuron in the MEC, it has been shown that a sub-population is tuned to an animal’s
running speed [76]. A study [56] found a population of cells in the MEC which is active
in a triangular grid-like pattern during spatial navigation. Theoretical models suggest that
a preconfigured attractor network [159] which receives inputs from cells tuned to the ani-
mal’s velocity could produce a grid-like activation in the cell population. Further, combining
inputs from grid cells could result in spatial tuning similar to what is observed in the hip-
pocampus [138]. This is supported by experimental evidence suggesting that grid-properties
of these ‘grid cells’ affects the size and stability of place cells in the Hippocampus [86]. A
more functional view of place cells suggests that the slowness principle [162] when applied
to the field-of-view results in tuning to space [48].

Experience-dependent changes
The hippocampal representation, interestingly, has also shown to be uniquely reconfigured for
each different environment an animal is exposed to [104]. In the aforementioned experiment,
for example, when animals were exposed to two different cylindrical environments, of the cells
that we active in both the environments, 52% showed significantly different firing patterns.
Furthermore, when changing the geometry of the environment (from circular to rectangular),
the relative preferred firing locations of pairs of cells in one geometry could not be used
to predict their relationship in the other. Rotating a single prominent visual cue in the
environment often leads to a rotation of the firing rate maps by a consistent angle [11].

While place fields were typically viewed as aggregate activation, or long-term average
spatial tuning curves of individual cells, [93] demonstrated that these fields change over the
course of exploration in a novel environment. Over individual laps on a linear track, it was
observed that the size of the place field increased with experience, and at the same time,
directional fields shifted towards the running direction of the animal that the fields are tuned
to. It has been hypothesized that this results from plasticity in CA1 - the order in which
cells fire in a given running direction strengthens the synaptic connections following Hebbian
learning, thereby pulling the fields towards the animal’s running direction. A subsequent
study [94] made similar findings in regard to the skewness of place fields over time. [133]
made an interesting observation in mice that were exposed to multiple short (3-minute)
trials on a linear track. They observed that multiple stable maps could co-exist for the
same environment for over long periods of time. However, there is insufficient behavioral
evidence to confirm if the animals identify the correspondence of multiple maps to the same
environment.
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Lesion Studies
Following a lesion of a majority of the medial temporal lobe, a group of patients reported se-
vere impairments in episodic memory [174]. Subsequent studies in rodents and primates [175]
suggested a prominent role for the Hippocampus in the formation of long-term episodic
memories. While there was evidence for memory subsystems in the brain, the anatomical
distribution and function of these memory systems has not been very well understood. A
series of studies in the last century explored memory subsystems using electrolytic, radio-
frequency or neurotoxic lesions to name a few of the experimental methods. Briefly, one of
the brain regions believed to be responsible to creating, storing or retrieving memories was
lesioned using the aforementioned methods. As a control, in some cases, a sham-surgery
was performed wherein the procedure was performed at the same stereo-taxic coordinates
but the pharmacological substance was not introduced, or replaced by another which didn’t
cause damage to the neural tissue. As an alternative to sham-surgery, in some cases another
part of the brain which was similar in size to the one being investigated was damaged in a
group of animals as a control.

Water Maze

After the discovery of place cells in the Hippocampus [107, 106], investigations of Hippocam-
pus as the principal region involved in spatial navigation accelerated. In the early 1980s, a
task called the “Water Maze” was developed to test spatial navigation [103]. A pool of water,
made opaque by the addition of powdered milk consisted of an escape platform submerged
under the surface of water. Rats were lowered into the water maze and swam until they were
able to locate the escape platform. This process was repeated daily for a period of 8 days.
Within each learning session, after the discovery of the platform, animals were taken out of
the maze. The location of the platform was held constant across repeated exposures of the
environment.

One of the experiment consisted of 4 groups of animals - no surgery (n = 4 animals),
animals with superficial cortical surgery (n = 13 animals), sham surgery (n = 4 animals)
and animals with the entire dorsal-ventral hippocampus lesioned [99]. Groups with either
superficial cortical lesions or sham surgery had a stable latency at the end of learning (< 8s).
Animals with hippocampal lesions, however, had profound difficulties in locating the hidden
platform. After the specified period of training, the hidden platform was raised over the
surface of the water and served as a visual cue. In this phase, all groups (including the animals
with hippocampal lesions) were able to successfully escape the maze using the visible platform
suggesting that they did not suffer from obvious motor or motivational deficits. However,
when the platform was submerged once again, this time at the same location where it had
previously been visible, the group with Hippocampal lesions had difficulty navigating to it.

Finally, the platform was removed altogether from the maze and animals were reintro-
duced. On measuring the amount of time the animals spent searching where the platform
had previously been, it was found that the control groups spent significantly more time in
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the correct quadrant of the maze where the platform had previously been. Animals with
hippocampal lesions, on the other hand, did not show such a preference.

Multiple memory subsystems

While the water maze study established the hippocampus to be necessary for navigating
space, the nature of this memory was not very well understood. [116] presented a double
dissociation between the Hippocampus (using Fornix lesions) and the Caudate Nucleus using
a variant of the water maze task. Similar to [99], the authors observed that animals with
Fornix lesions performed poorly on the spatial water-maze task. However, animals with
lesions of the Caudate Nucleus did not have difficulties in performing the task when compared
to controls. In a visual discrimination variant of the task, where the water maze consisted
of two visible cues, only one of which marked the location of a viable escape platform, they
found that animals with Fornix lesions had no difficulty in the visual discrimination. Animals
with lesions of Caudate Nucleus, however, had significantly worse performance than controls.

An extensive study of over 300 animals [90] attempted to further separate these memory
subsystems by looking at 3 different kinds of memory tasks. Three principal regions - the
Hippocampus, Lateral Amygdala and Dorsal Striatum were examined in this study. As
opposed to the water maze used in previous studies, a radial 8-arm maze was used in this
study.

Win-Shift (spatial) In the first of these experiments, all eight arms of the maze were
baited with reward. A rat selected one of the eight arms and after exploring it, was forced to
wait in the center of the maze for a period of 10 minutes. The trial ended when the animal
had consumed the reward at all eight locations. Re-entering an arm that the animal had
previously visited constituted an error. Among the three groups, animals with Fornix lesions
performed significantly worse than controls. Animals with lesions to Lateral Amygdala or
the Dorsal Striatum did not have significantly different performance from controls.

Conditioned Cue Preference in this version of the task, all but two arms of the maze
were blocked. One of the arms was cued with a light source while the other one was kept
dark. Animals spent 30 minutes in either of the two arms either with (paired) or without
(unpaired) food. At the end of the session, animals were allowed to spend 20 minutes in the
maze and their place-preference was measured as the total amount of time spent in the arm
they were previously exposed to. The control animals spent significantly more time in the
arm they were exposed to if it was paired with food. Animals with lesions to the Fornix or
Dorsal Striatum showed a similar preference. However, animals with lesions to the Lateral
Amygdala failed to develop a preference to the conditioning cue.

Win-Stay (Stimulus-Response) This followed a similar approach to the previous
study [116] where a simple stimulus was paired with an immediate appetitive reward. Four
of the eight arms in the maze were cued with a light signal. All the eight arms were baited
with a reward. Entering any of the lit arms continued the experiment, wherein the arm
was baited with a reward once again. However, if the animal entered one of the unlit
arms, all lights were turned off and no more reward was introduced in the maze. In this
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paradigm, the authors found that animals with Fornix lesions, in fact, performed better
than controls. Animals with lesions to the Lateral Amygdala did not show a significantly
different performance from controls. Animals with lesions to the Dorsal Striatum, however,
had significantly worse performance in forming the simple stimulus-response association.

In a subsequent study [92], using the water-maze as the experimental substrate, another
interesting finding was made. While animals with lesions to the dorsal striatum could indeed
perform the water maze task, if the location of a visible platform was changed, animals
with lesions to the dorsal striatum still preferentially checked the previous location where
the visual platform had been. Combining the evidence presented in previous studies, the
authors concluded that these animals, instead of learning the visual cue-escape relationship,
had instead learnt a place-escape relationship.

Pharmacological Blockade of NMDA receptors
While lesion studies were highly informative about the role of hippocampus in spatial naviga-
tion, the neural mechanisms underlying this learning remained unclear. In order to shed light
in the role of Long-Term Potentiation (LTP) mediated by N-Methyl-D-Aspartate (NMDA)
receptors, multiple experiments were conducted in the presence of an NMDA receptor
antagonist (AnimoPhosponovaleric Acid (AP5), (6)-3-(2-Carboxypiperazin-4-yl) Propyl-1-
Phosponic Acid (CPP), MK-805 etc.) which prevented the induction of LTP.

[101, 100] studied learning in the water maze in the presence of AP5 which is known to
prevent induction of LTP in the hippocampus. Naïve animals were implanted with micro-
pumps for chronic intra-ventricular infusion of D/L AP5. Training started 4 days after
the infusion surgery. One each training day, 3 trails, separated by a 4-hour Inter-Trial
Interval (ITI) were provided. Animals with D/L AP5 infusions showed a degradation in
their learning curves over the next 5 training days when compared to controls. Note that
the degradation in performance was less severe than what had previously been observed in
lesion studies [100]. These animals did not show a deterioration in a visual discrimination
task involving a similar experimental setup. Importantly, if AP5 infusion was performed
after the location of a fixed platform had learnt, animals did not show a loss in retention
of the spatial information. These findings suggested that LTP in the hippocampus plays a
significant role in the acquisition of the spatial information. Recent literature has challenged
this view and several factors have gained prominence in assessing how spatial information is
acquired and retained for navigation.

[15] presented the idea that the temporal requirements of a memory determined the
need for LTP in accessing it. [142] addressed how time factors into spatial learning by
systematically varying the ITI between consecutive trails in the water-maze experiment.
Here, D-AP5 (the active enantiomer which inhibits LTP as opposed to the racemic D/L
mixture previously used in [100]) was selectively infused in the Hippocampus of rats. On
each training day, animals learnt a novel escape location in the water maze over 4 learning
trials. The ITI between trials 1 and 2 was selected to be 15s, 20 minutes, or 2 house. All
animal groups were pre-trained on the task and showed 1-trial learning of the novel escape
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location. One of the animal groups had hippocampal lesions to compare the relative effects
on spatial performance. Trials 3 and 4 were performed at a 15s ITI. When compared to
animals with sham lesions, animals with Hippocampal lesions exhibited difficulty in learning
the escape platform location irrespective of the T1− T2 ITI. Interestingly, the performance
of animals with D-AP5 infusion exhibited a dependence on the ITI. For short (15s) ITI,
animals showed learning of the goal location in the previous trial as measured by savings in
the escape latency. At a longer latency (20 minutes, 2 hours) however, the savings reduced
significantly. These findings indicated that spatial information could be retained with an LTP
independent mechanism for short duration. However, over longer time periods, the retention
of information required LTP supported by NMDA receptors. In either of these scenarios,
however, the Hippocampus was necessary for the acquisition of spatial information.

In [91], rats navigated a water maze with a fixed goal location (Phase 1). After 8 days
of training on the ‘original’ platform location, animals were trained rapidly over the course
of a single day to learn a new escape location in the maze (Phase 2). Prior to starting
Phase 2, animals received CPP either directly into the hippocampus, or through system
injections. In the control group, Artificial CerebroSpinal Fluid (ACSF) or saline was injected.
Remarkably, animals were able to learn the location of a new goal location in the presence
of systemic, as well as local NMDA antagonist. Animals were subsequently test 24 or 48
hours after this learning experience. During the recall experiment, the platform was moved
back to its ‘original’ location. Animals who had CPP delivered to them either at the start
or immediately after Phase 2 went directly to the original goal location, showing no memory
of the second experience. The control animals, however, lingered at the ‘new’ goal location
before heading to the original platform location.

[70] addressed three key questions regarding the stability and development of place maps
in the absence of NMDA receptor activity. Using systemic CPP injections in rats, it was
found that the representation of a familiar environment remained largely unaffected in the
absence of NMDA activity, i.e., place cells retained stable fields across days interspersed
with NMDA inactivation. New spatial maps (remapping) was also observed in the same
set of animals under NMDA inactivation, and remarkably, these maps remained stable over
the course of hours as animals even when the spatial contexts changed between subsequent
exposures. However, spatial maps developed under CPP were not stable over a longer-term.
When animals were tested on the day following NMDA inactivation, the spatial representa-
tion for the newly experienced environment had changed significantly when compared to a
familiar environment.

A recent study combined these ideas, assessing spatial learning in a task while also
recording from place cells [37]. The spatial task comprised of a circular arena (120cm in
diameter) with 177 reward wells. In any given learning session, 3 new reward wells were
chosen and baited with food. Animals began a learning trial in a start-box and explored
the arena until all the rewards were consumed. All three wells were baited and trials was
repeated. One of the animals groups was administered intraperitoneal (R)-CPP injections.
Both the control and CPP administered group acquired the new well locations over learning
trials. On a subsequent (> 25 minutes after the learning session), animals were reintroduced
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to the arena for a probe session during which, no food was delivered. It was observed that the
control animals spent significantly more time near the rewarded locations from the learning
session when compared to the CPP group. These findings also reinforce the idea that LTP
is not necessarily required for short-term spatial learning, but plays an important role in the
consolidation of spatial memories.

1.2 Oscillations in the Hippocampus
The Local Field Potential (LFP) recorded from the Hippocampus has been known to reflect
a wide variety of cognitive and behavioral processes. In the early days of electrophysiol-
ogy [152], it was already known that macroscopic electrical signals from the Hippocampus
reflected states of arousal, such as walking, rearing, grasping etc. It has been hypothe-
sized that oscillatory activity is reflective of synchronization processes in the brain [136].
As pointed out succinctly in [20], understanding the hippocampal LFP has two key merits.
First, an understanding of these signals in the archicortex lays the foundation for a bet-
ter understanding the structure and function of neocortical EEG. Second, understanding the
structure of macroscopic activity in pathological models can translate to clinical applications
using intra-cranial Electroencephelogram (EEG) as well as scalp EEG. This, for an instance
today is being applied to understand human EEG for clinical diagnosis of brain anomalies
like seizures [150] and stroke [67].

Theta oscillations
In rodents, theta oscillations (6−10 Hz) are primarily observed during alert behavioral states
(running, rearing etc.) and Rapid Eye Movements (REM) sleep. Origin of theta oscillations
lies in cholinergic inputs from the medial septum [5, 121, 6, 36]. Pyramidal neurons in
hippocampal CA1 fire at progressively earlier theta phase over consecutive theta cycles [110].
More recently, it has also been shown that within a single theta cycle, neural activity is
structured [46] sweeping from behind the animal (retrospective encoding) to locations further
in front of the animal (prospective encoding) [154]. These ‘theta-sequences’ can be learnt
rapidly in a novel environment [41]. From a functional prospective, theta sequences have
been shown to reflect current and future choices in behavioral paradigms [160, 55]. Theta
interactions of downstream regions have been implicated in learning in both spatial [134]
and non-spatial [73] contexts.

A systematic anatomical study of theta phase across the longitudinal extent revealed
that theta oscillations in fact travel along the the longitudinal (dorsoventral) axis of the
hippocampus [85]. While it had originally been hypothesized that theta phase changes by
360◦ between the dorsal and ventral poles, recording along the entire longitudinal extent of
the hippocampus revealed this phase spread to be 180◦ [119]. More recently, the traveling
wave nature of theta has also been identified in humans [168]. It is interesting to known that
theta oscillations are not universal to all species. In the Egyptian fruit bat, for an instance,
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while the neurons exhibit place and grid responses similar to rodents, theta oscillations do
not exist [165].

Gamma oscillations
Gamma oscillations (25 − 150 Hz) have long been studied in neocortex [157]. Recent stud-
ies [28, 97, 130, 42, 43] have identified 3 functionally and anatomically segregated sub-bands
within the gamma frequency range. While we do not have a consensus of the exact fre-
quency ranges, these sub-bands are typically defined as - slow gamma (30 − 60 Hz), mid
gamma (60 − 90 Hz) and fast gamma (90 − 150 Hz). In [12], following bilateral lesions of
Entorhinal Cortex (EC), slow-gamma (25− 50 Hz) were observed in the CA1-CA3 network.
Current Source Density (CSD) analysis suggested that there are two independent generators
of gamma rhythms in the Hippocampus [29], namely CA3 and Dentate Gyrus (DG). A
correlation study involving gamma oscillations [28] suggested that CA3 drives slow gamma
oscillations in CA1 and Medial Entorhinal Cortex (MEC) drives fast gamma activity via
DG.

A study of gamma oscillations during periods of restfulness suggested that increased
gamma synchrony between CA1 and CA3 could result in more coherent spatial representation
of space during Sharp-Wave Ripples (SWR) events [21]. In a recent study [43], it was shown
that there is a differential task-specific increase in gamma synchrony between EC and DG.
During a task with high spatial demand, it was shown that there is a selective increase
in fast gamma synchrony between MEC and DG. On the other hand, during an object
recognition task, within the same group of animals, there was an increased slow gamma
synchrony between Lateral Entorhinal Cortex (LEC) and DG. Further, suppression of MEC
and LEC led to behavioral deficits in the spatial and object-recognition tasks respectively.

Theta-Gamma interaction
[28, 27] noted that gamma power in slow and fast gamma bands was significantly modulated
by theta phase. This further led to the discovery that during slow gamma events, the activity
of CA1 and CA3 are highly synchronized. During fast gamma events, on the other hand,
the activity of CA1 and MEC was highly synchronized. Combining this evidence with prior
lesion studies [29] suggested CA3 to be the driver of slow gamma in CA1 and MEC to be the
driver of fast gamma. Further, the phase-segregated oscillations provided distinct temporal
windows to selectively drive the activity in CA1. Theoretical models of working memory [83,
84] suggest that the embedding of gamma oscillations with theta could serve as a general
mechanism for sequence learning. This is supported further by phase-phase coupling between
theta and gamma oscillations in the hippocampus [129].
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1.3 Sharp-Wave Ripples
Within the Local Field Potential (LFP) recorded from the Hippocampus, periods of awake-
rest and Slow-Wave Sleep (SWS) are characterized by fast (150− 250Hz) oscillations called
ripples riding on a slow oscillatory envelope called the sharp-wave (see Fig. 1.2). Sharp-Wave
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Figure 1.2: Illustration of a Sharp-Wave Ripple complex detected in the rodent hippocam-
pus.

Ripples (SWR) complexes arise from the excitatory recurrent system in the hippocampal
CA3 [167, 16].

Early studies looking at memory [131, 175] had established that the hippocampus is
essential for long-term storage of memories. Since SWR primarily occur during “offline”
states, they have long been hypothesized to enable this long-term storage. Early studies
showed temporally compressed reactivation of behavioral neural patterns accompanied with
SWR events during sleep following behavioral experiences [161, 79]. We now know that this
reactivation can be vivid in the extent to which it captures behavioral experiences [47, 123]
and will be discussed in more detail in Section 1.4. The temporally compressed reactivation
of neurons during SWR events reinforced the hypothesis of them mediating long-term storage
of episodic memories. Simply put, a single experience can be remembered because the SWR
event would compress time to a scale where synaptic plasticity induced changes can cement
the experience in memory.

Further evidence comes from correlation studies measuring memory as a function of SWR
events. In [7], human patients were implanted with macro-electrodes in the hippocampus
and the rhinal cortex. Over two sessions, separated by a 60 minute sleep, patients were
shown 80 images each. Subsequently, they were shown a mix of new and previously seen
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images and asked to identify if they had previously seen an image. It was found that the
performance on this task was highly correlated with the rate of ripples detected during the
intermediate sleep in the rhinal cortex. In another study [4], involving reward modulation,
animals ran trials on a linear track to receive equal amounts of reward on both ends. After a
while, the reward on one of the ends was discrete increased to 4× the reward on the other. It
was found that the rate of SWR events increased dramatically on the end where the reward
was increased. Interestingly, while the study of SWR events has largely been restricted to
the offline or quiescent periods, in [37], it was found that exploratory-SWR were highly
correlated with performance on a spatial navigation task.

In the context of SWR events, the dorsal-ventral axis of the hippocampus doesn’t always
undergo simultaneous oscillatory activity [118]. It has been hypothesized that these events
are generated locally and then travel along the dorsal-ventral extent of the hippocampus. The
functional role of this phenomenon has also been explored recently in a study [140], where it
was found that dorsal and ventral SWR events can differentially activate downstream neurons
(in this case in the Nucleus Accumbens (NAc)). Furthermore, [140] found that SWR in the
dorsal hippocampus selectively activate NAc neurons encoding spatial trajectories.

1.4 Hippocampal Replay
It was first observed during Slow-Wave Sleep (SWS) that Sharp-Wave Ripples (SWR) were
accompanied with pairwise reactivation of cells in an order that was consistent with cell
activation during traversals of the environment [79]. It was observed that SWR during
awake-rest are also accompanied with reactivation of cells in a manner consistent with the
environment that the animal was currently experiencing [47]. These events have now been
termed as “replay” events. However, the time scale at which the spatial trajectories were
replayed was compressed, typically lasting 100 − 200ms to replay an environment that the
animal would physically traverse over several seconds. It was found that in a linear environ-
ment, the two principal running directions are represented using different maps and replays
could either involve cells activated in the same sequence that they were during traversal,
called forward replays, or in the reverse order of activation during behavior, labelled reverse
replays [34]. Forward and Reverse replays have been proposed to serve different functional
roles in cognition. It has been reported that an unexpected increase in reward contingen-
cies uniquely modulates the rate of reverse replay events [4], suggesting a role in reward
prediction [61].

In [123], animal’s alternated between a fixed ‘home’ well and a randomly selected ‘away’
well over alternate trails. Analysis of replay trajectories suggested that during stationary
periods before animals navigated back to the fixed goal, the replay trajectories were more
predictive of the upcoming or future paths that the animal’s past path. The specificity
of future-predictive replay trajectories during goal-oriented navigation suggested a role for
replay in spatial planning. One such future-predictive replay trajectory is shown in Fig. 1.4.
Here, the animal is currently at the location marked by the red-diamond. While the animal is
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Figure 1.3: Directional place fields recording during linear track traversal.

at this location, the posterior probability for a 200ms decoded trajectory is shown using the
heat-map. Golden dots mark the Center of Mass (CoM) of the decoded posterior probability.
The animal’s subsequent physical trajectory is shown in red - notice the alignment between
the trajectory being mentally replayed and the subsequent path taken by the animal to
a remembered goal location in the task. [164] made similar observations on a radial eight
arm-maze, finding directional forward-replays to be predictive of future decisions and reverse-
replays to be reflective of past choices.

Mechanistic models
The diversity of within and across region connectivity, combined with the heterogeneity of
neural population in the Hippocampus has led to interest in computational and mechanistic
modeling of its single unit activity. [122] suggests that the spatial representation exhibits
auto-associative dynamics, in that the spatial representation, instead of representing space
continuously, hovers at and discretely jumps between spatial representations. Fig. 1.5 illus-
trates replay dynamics on a linear track during stationary periods from a single recording
session. In Fig. 1.5a., the posterior probability is shown for a single replay event as the ani-
mal consumed reward at x = 0 cm. Observe how the decoded location of the animal during
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Figure 1.4: Replay (heatmap) in a 2m × 2m open environment depicting a future path
(red trace) to known goal location. Animal’s past trajectory is shown in black.

the 200ms replay events hovers at distinct locations before jumping to the next (decoded
using a Naïve Bayes decoder using 50ms windows shifted by 5cm). In Fig. 1.5b. we sum
the posterior over all replay events and observe regions with high concentration of posterior
probability.
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Figure 1.5: Illustration of replay events suggestive of auto-associative dynamics (a.) A
single replay event showing discrete locations where the replay event hovers before jump
discretely. (b.) Total posterior over all replay events detected within a single session.

It has been also hypothesized that replays could arise from pre-configured cell assemblies
in the Hippocampus [35]. However, these findings have been contradicted on statistical
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grounds in subsequent studies [135]. [135] also establishes a role of N-Methyl-D-Aspartate
(NMDA) receptors in enabling replay events, demonstrating that NMDA inactivation in
a novel environment using (6)-3-(2-Carboxypiperazin-4-yl) Propyl-1-Phosponic Acid (CPP)
prevents the recent environment from being replayed in subsequent sleep. It is important to
note that only a small fraction of SWR events are coherent spatial trajectories in the animal’s
current environment. One of the mechanistic views of replays, based on the diffusivity of
spatial representation observed during stationary periods, suggests that Brownian motion in
an abstract energy landscape [144] could lead to replay like observations.

1.5 Closed loop experiments
The advancements in recording and manipulation technology now allow us to infer neural
activity in real-time and deliver closed-loop stimulation to make causal inferences for the
underlying phenomenon. [50] applied this approach to study the role of Sharp-Wave Ripples
(SWR) in spatial memory. Animals performed a spatial reference memory task on an radial
eight-arm maze. Three of the eight arms were baited with reward and the animals were
allowed 3 trials separated by 3 × 3 minute breaks in between. Following the behavioral
task, animal spent 1−hour in a sleep box. During this period, they were subjected to
online-detection and electrical disruption of SWR. In the control group, the stimulation was
delivered after a random delay of 80−120ms. It was observed that over a periods of 15 days,
the SWR-disrupted group exhibited a significantly worse learning curve than the groups
that experienced no-stimulation, or the aforementioned delayed stimulation. A subsequent
study [38] also found that behavioral performance over long-term learning of a spatial task
deteriorated in animals who had SWR events disrupted in sleep.

More recently, awake ripples were also shown to play an important role in spatial learning.
Naïve animals learnt to alternate between the exterior arms of a ‘W’-shaped maze. Over
the course of learning, it was observed that disrupting SWR events significantly deteriorated
the outbound performance which required recalling the previous arm that the animal had
visited [64]. Further, selective disruption of replay events corresponding to an environment
in sleep led to degradation of spatial environment in that environment when compared to a
control environment for which a delayed stimulation was delivered for replay events [53].

We discussed how the modulation of SWR is intertwined with behavioral and cognitive
performance in Section 1.3, in [49], the after-effects for disruption of SWR events was studied
as a function of cognitive load. Animals either performed a spatial reference-memory task
in an eight-arm radial maze, or spent time in their home cage. After either of these sessions,
animals were subjected to SWR disruption in a subsequent sleep session. It was observed
that there was an overall increase in SWR events (as compared to a delayed stimulation
control) for the animals who had previously performed a spatial task. The same increase
was not observed in animals who had previously explored their home cages, suggesting a
dependence of SWR events on cognitive demand. In [44], it has also been shown that opto-
genetic activation of CA1 cells can prolong existing SWR complexes. Additionally, in the
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same task as [64], the authors found that prolonging the duration of SWR events improved
performance in the outbound runs. In line with previous findings suggesting modulation of
SWR events and associated replays with reward, [95] found that disruption of SWR events
had differential effects on spatial learning for locations with different reward amounts, in
that the performance deteriorated more for a highly rewarded location.
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Chapter 2

Gamma Oscillations are synchronized
in the Hippocampus1

The hippocampus is one the principal brain regions involved in spatial navigation [109, 102,
98, 123]. It is well known that hippocampal activity constitutes a cognitive map [109],
allowing an animal’s position to be decoded from its neural activity [13]. Hippocampal
Local Field Potential (LFP) has long been studied to better understand circuit mechanisms
that underlie the cognitive map [108, 18]. It is known that the hippocampus employs both
rate and phase codes for memory and planning in the context of navigating space [108,
83, 137]. Theta oscillations (6-10 Hz) are strongest during ambulatory behavior and Rapid
Eye Movements (REM) sleep. Single unit activity in the hippocampus is structured by
theta phase such that each cell’s spikes occur at progressively earlier theta phase as the
animal runs through the cell’s place field [137, 89]. There is a related, although dissociable
progression at the ensemble level within theta cycles [41], in that the places decoded from
the hippocampal population sweep from behind the animal towards future locations [46],
also reflecting current and future choices [160, 55].

Gamma oscillations (25 − 150 Hz) are also prominent in the hippocampus in a variety
of behavioral states [12, 29, 27]. In recent literature, gamma frequency oscillations have
been classified into three overlapping frequency bands. Slow (25− 60 Hz), mid (60− 90 Hz)
and fast (90 − 150 Hz) gamma frequency bands are locked to theta frequency, and occur
at distinct phases of theta [28, 9, 42]. The theta phase-segregation of gamma frequency
bands provides distinct windows for other brain areas to drive activity in CA1 [28, 97, 42],
as well as for local circuit computations within the pyramidal cell layer [130]. Correlation
studies have shown that during slow gamma events, CA1 activity is synchronized with CA3,
and CA1 spiking during slow gamma events exhibits a functionally distinct representation
of the animal’s future locations [171]. Suppression of CA3 in a transgenic mouse [96] leads
to disruption of gamma-associated temporal coding in CA1. In a recent study [30], acute
silencing of CA3 demonstrated a vital role of CA3 in shaping place fields and SWR in CA1.

1In collaboration with Dr. Heydar Davoudi and Althea Cavanaugh.
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In this study, we aimed to examine the acute and causal contribution of CA3 input to slow
and fast gamma oscillations in CA1.

It was recently observed that theta is not synchronized across CA1, but rather travels
along the dorsoventral (longitudinal) axis, changing its polarity completely (a 180◦ phase
shift) between the dorsal and ventral poles [85, 119]. The differential connectivity of the
dorsal and ventral hippocampus suggests a functional role of the traveling wave [24]. It
remains unknown whether gamma exhibits a similar anatomical profile, and how gamma
and theta relate to each other at different anatomical positions along the dorsoventral axis.

Here we address the anatomical relationship between gamma and theta using (i) multi-
tetrode recordings within dorsal CA1, (ii) simultaneous multi-tetrode recordings in both
dorsal and intermediate CA1, and (iii) opto-genetic suppression of CA3 input to CA1. Our
data suggest that, in contrast to the traveling wave of theta, both slow and fast gamma are
synchronized in the hippocampus. We measure this synchrony first in the dorsal CA1 and
then confirm that it is maintained as we move further along the dorsoventral axis into the
intermediate hippocampus. Using optogenetics, we acutely and selectively suppressed CA3
input to CA1, in order to make a causal test of the role of CA3 with respect to gamma. We
show that the suppression of CA3 input leads to de-synchronization of both slow and fast
gamma events in dorsal CA1.

2.1 Materials and Methods
Part of the data that was used in this study was previously published in [30].

Experimental Procedures
Animals and Surgery

Procedures for studying the dorsal hippocampus were approved by Johns Hopkins Animal
Care and Use Committee and followed US National Institutes of Health animal use guide-
lines. Prior to surgical procedures, animals were trained to run on a linear track for liquid
chocolate reward while under a food restricted diet which allowed them to maintain over
90% of their free-feeding body weight. For viral injections and micro-drive implant, animals
were anesthetized under 1 − 5% isoflurane in O2. Six male Long-Evans rats were used for
studying dorsal CA1 and the effects of opto-genetic suppression of CA3 input to CA1. First,
AAV 5 − CamKIIa − eArch3.0 − EY FP (EXP) or AAV 5 − CamKIIa − EY FP (CON)
were injected at 6 different sites – Anterior-Posterior (AP), Medial-Lateral (ML), and Dorsal-
Ventral (DV) coordinates (in mm) relative to Bregma: (−3.1,±3.5,−3.5), (−4.0,±4.3,−4),
and (−4.7,±4.8,−4.8). 4 weeks after the viral injection, custom made micro-drive carrying
up to 40 tetrode bundles and 2 fiber optic cables (one fiber per hemisphere) were implanted
with fiber bundles situated at −4.0mm AP from Bregma and ML ±2.85mm.

Simultaneous recordings of the dorsal and intermediate hippocampus were performed
under guidelines approved by Institutional Animal Care and Use Committee (IACUC) at
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University of California, Berkeley. Custom micro-drives carrying 64 tetrode bundles were
implanted into three male Long-Evans rats. Implants consisted of 2 cannulas, centered at
−3.7mm AP and 2.3mm ML from Bregma for the dorsal site and −5.7mm AP and 5mm ML
from Bregma for the intermediate site. Extremities of surgical coordinates for the implant
cannula spanned 0.9mmML, −3.0mmAP to 6.4mmML, −6.6mmAP. Animals were allowed
to rest and recover from the surgery for 1-3 weeks. During this period, tetrode bundles
were gradually adjusted to target the hippocampal CA1. After clear Sharp-Wave Ripples
(SWR) could be observed on a tetrode, small adjustments were made to target the pyramidal
cell layer, characterized by bursts of high amplitude action potentials accompanying SWR.
Tetrodes that had clear SWR during awake-rest (running speed v < 5cm/s) were selected
for analysis.

Recording and Manipulation

For the dorsal hippocampus recordings, rats ran back and forth on a familiar 165cm long
linear track for liquid chocolate reward. Raw electrode data was digitized at 32,000Hz and
recorded using a Digital Lynx data acquisition system (Neuralynx). During traversals of
the linear track, on alternate laps (starting at one end of the track and ending when the
animal returned to it - the end at which stimulation started was randomized over recording
sessions), green light (532nm, NI USB-6341) was delivered at 3.25mW.

For simultaneous recordings of the dorsal and intermediate hippocampus, animals ran
either on a long (10m) linear track or a short (1m) linear track. Red and Green LED
arrays were attached to the micro-drives to track the animal’s position. Raw electrode data
was digitized at 30,000Hz and recorded wirelessly using SpikeGadgets LLC data acquisition
system and open-sourced recording software (Trodes). Camera stream was sampled at 29Hz.
Animal’s position was obtained by applying a threshold on the green and red color maps in
the camera stream.

Data Analysis
LFP extraction and analysis

Local Field Potential (LFP) was extracted from one electrode from each tetrode bundle
selected by visual inspection of the signal. For recordings from the dorsal hippocampus,
the raw voltage data was sub-sampled to 3200 Hz and for the simultaneous dorsal and
intermediate hippocampus recordings, voltage data was sub-sampled to 1500Hz. Theta was
extracted from the LFP using a bandpass Butterworth filter of order 3 with frequency limits
5-10Hz. Slow and fast gamma power envelopes were similarly calculated using 25-55Hz and
90-140Hz frequency bands. Instantaneous theta phase was extracted by applying Hilbert
transform to the extracted theta waveform. Theta cycle boundaries were marked as time
points where a phase roll-over could be seen in the Hilbert transform (corresponding to the
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peaks in the waveform of a pure sinusoid). Consecutive theta boundaries that were within a
theta period (100-200ms) were accepted.

Spectrogram analysis

A spectrogram was constructed for LFP data collected from each run segment (running speed
> 20cm/s) using MATLAB’s signal processing toolbox. We used a Hamming window of 320
samples (100ms) and a shift of 6 samples (1.875ms) between consecutive windows. Slow
or fast gamma power within a theta cycle was calculated by averaging over all frequencies
within the corresponding frequency band. Theta cycles with slow or fast gamma power
2 standard deviations over the mean were labelled as cycles with significant slow or fast
gamma power respectively. For each gamma event (threshold crossing described above), the
current theta cycle, later half of the previous cycle and first half of the next theta cycle were
extracted. Because of the variability in theta period, the amplitude of the spectrogram was
interpolated to fit a uniform sampling over two theta cycles (phase range [−π, 3π]) with 400
sample points corresponding to a period of 125ms.

Anatomical analysis of theta and gamma

Anatomical locations of recording electrodes within the dorsal CA1 were estimated using
the implant designs. The implant cannulas were imaged. Within a hemisphere, the relative
coordinates of all the recording sites were estimated with respect to the boundary of the
implant. Comparisons were not made across hemispheres because of the variability in implant
locations across hemispheres. For any pair of electrodes within the same hemisphere, the
relative AP and ML coordinates were measured. Power envelopes were constructed by first
filtering the raw LFP in the slow or fast gamma frequency band. The filtered signal was
then squared and smoothed using a Gaussian filter with a 20ms standard deviation to obtain
the power envelope. For each unique pair of electrodes, cross-correlograms were constructed
for theta filtered LFP, slow gamma power envelope and fast gamma power envelope. The
absolute value of lag at which a cross-correlogram attained its peak value was used for
anatomical analysis. For a pair of electrodes to be included in the anatomical analysis, we
required a peak theta-correlation cutoff of 0.6 and a peak correlation cutoff of 0.2 for both
slow and fast gamma.

SWR detection

LFP signal was filtered in the SWR frequency band (150− 250Hz). Ripple power envelope
was obtained by smoothing the average power in the ripple band with either a 50ms mov-
ing average filter, or a Gaussian smoothing window with a 12.5ms standard deviation. 5
standard-deviation crossings over the mean ripple power were designated as ripple events.
SWR suppression index was defined as

(
ON−OFF
ON+OFF

)
, where ON and OFF represent the SWR

rates in the light on and light off conditions respectively.
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Gamma event detection and suppression

Gamma events were defined as threshold crossings of the averaged gamma power spectro-
gram. Within the Phase-Frequency Response (PFR) measure, we first averaged power within
gamma frequency band, then smoothed the resulting power envelope with a smoothing win-
dow of 20ms. Whenever the power envelope crossed 2 standard deviations over its mean
value, the peak power time was denoted as a gamma event. The theta phase and absolute
time at the event peak were recorded. A Mean Resultant Vector (MRV) was constructed
with all the gamma events detected on a recording site for statistical comparison across light
conditions and group data as follows

V =
n∑
k=1

pke
ιφk .

Here V is the resultant vector, pk is the power of the kth gamma event and φk is the theta
phase of the kth gamma event. This is a complex number with a magnitude which corresponds
to the length of the MRV and a preferred theta phase.

Synchrony measurement
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For any signal (LFP theta, slow or fast gamma power envelope), first, a cross-correlogram
was constructed for lags ranging from −60ms to 60ms for all the periods with running speed
> 20cm/s with a reference site r and a measurement site m. The peak value of the cross-
correlogram and the lag at which this peak was detected were noted for the recording site
pair. Let us call the peak P (r,m) and absolute value of lag L(r,m) for this pair of sites.
For any reference r, the peak and lag were measured for all the other recording sites and the
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average peak and average lag were reported as synchrony measures. Let’s call these P̂ (r)
and L̂(r) respectively. These were defined as:

P̂ (r) =
∑
m6=r

P (r,m), and

L̂(r) =
∑
m6=r

L(r,m).

Statistical Analysis

Statistical tests were used to validate the differences in group data. One-tailed tests were used
for signed comparisons between data groups (for example group A has a significantly smaller
median than group B). Unless specified otherwise, non-parametric tests like Wilcoxon rank-
sum test for testing difference in median values and Wilcoxon sign-rank test for testing if the
median of a data group was significantly different from 0 were used. Pearson’s correlation
measure was used for testing if two continuous variables depended on each other. Further, in
order to compare correlation coefficients, a Fisher z-transform was applied to the correlation
coefficients and the resulting z-scores were compared for statistical significance. We used
the circular statistics toolbox in MATLAB for testing dependence of variables on theta
phase [10].

2.2 Theta-gamma interactions in the Hippocampus
In order to examine the gamma-theta relationship in CA1 and the contribution of CA3
to CA1 gamma activity, we bilaterally implanted six male Long-Evans rats with custom
micro-drives each carrying 20−40 independently adjustable tetrode bundles and two optical
fibers [30]. 4− 6 weeks prior to the micro-drive implant surgery, the dorsal and intermediate
CA3 sub-regions of four rats were bilaterally injected with light-activated proton pump
AA5 − CamKIIa − eArch3.0 − EY FP (EXP) [166, 52]. Two rats were injected with
AAV 5− CamKIIa−EY FP (CON).S Fiber-optic cables were located at the center of the
implant cannula to target the pyramidal cell layer in CA1, so that light power could reach
Stratum Radiatum (SR) below. Tetrodes were gradually lowered to the cell layer starting
the day after the surgery and over a period of 2 − 4 weeks. Animals were maintained on
a food-restricted diet to keep them over 90% of their free-feeding body weight. Prior to
recording, animals received 5 − 7 consecutive days of pre-training where they ran 30 − 40
laps on a linear track for liquid chocolate reward. On each recording day, animals ran a single
15 − 30min long session on a highly familiar, 165cm long linear track for liquid chocolate
reward (0.2ml, Carnation). Periods when the animals ran over 20cm/s were separated and
used for subsequent analysis.
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Figure 2.1: Gamma events are embedded within theta oscillations. (a.) Fast gamma
event embedded within theta oscillations. (b.) Phase-Frequency Response (PFR) for a
single recording site illustration theta phase locking for slow and fast gamma oscillations.
(c.) Slow gamma event embedded within theta oscillations. (d.) Time-interval between
consecutive fast-gamma events (n = 147 tetrodes with significant power in slow or fast
gamma band, mean peak-lag 192ms). (e.) Time-interval between consecutive slow-gamma
events (n = 147 tetrodes with significant power in slow or fast gamma band, mean peak-lag
171ms).

a. b.

Figure 2.2: Statistics of slow and fast gamma events. (a.) Breakdown of theta cycles,
nT = 273 tetrodes, recorded nC = 744 ± 147 (mean±std.) theta cycles from individual
tetrodes. (b.) Breakdown of recorded electrodes with significant theta locking (nT = 279
tetrodes, nS = 178 tetrodes have significant slow-gamma locking to theta, and nF = 201
tetrodes have significant fast gamma locking to theta.)
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Slow and fast gamma events were detected on recording electrodes (Figs. 2.1a. and 2.1c.).
As reported previously [28], we found that both slow and fast gamma oscillations were locked
to theta (Figs. 2.1d., 2.1e. and 2.2). As shown in Fig. 2.2a., roughly 25 − 30% of all theta
cycles had prominent slow or fast gamma events. Of all the recording electrodes, a majority
had significant gamma power-theta phase locking in the context of both slow and fast gamma
oscillations (Fig. 2.2b.)2. In over 40% of the recording electrodes, the distribution of slow
and fast gamma events over theta phase had statistically significant distributions.

Moreover, slow gamma events occurred on the falling edge Fig. 2.1c. and fast gamma
oscillations on the rising edge Fig. 2.1a. of theta waveform. We computed a spectrogram of
the Local Field Potential (LFP) in the gamma frequency bands of interest. The spectrogram
was clipped and averaged over two theta cycles. The measure PFR shown in Fig. 2.1b.
also suggested that peaks in the gamma power envelope were synchronized with theta as
previously suggested.

2.3 Gamma oscillations are synchronized

100 ms

EEG Gamma Power Theta Peak

Theta Gamma Power Peak

Figure 2.3: Illustrating synchronized slow gamma events recorded from the Hippocampus.

Simultaneous recording from sites distributed over 2mm in the dorsal CA1 revealed that
there was a measurable spread in theta phase over the sites, consistent with spatially dis-
tributed samples from a traveling wave [85, 119]. Gamma events, in contrast, occurred
synchronously. Fig. 2.3 illustrates simultaneous recordings from 4 electrodes in the dorsal
CA1, highlighting the contrast between peaks in theta waveform (black traces, squares mark

2Rayleigh test for circular non-uniformity, p < 0.05
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peaks) and gamma power envelopes (blue traces, circles mark peaks). A similar observation
for fast gamma events is shown later in Fig. 2.7a..

We found that both slow and fast gamma power envelopes had a smaller distribution
of lags when compared to theta as shown in Fig. 2.4 (One-tailed two-sample F-test, slow-
gamma vs. theta p = 7.8×10−39, fast-gamma vs. theta p = 7.3×10−4). In order to reconcile
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Figure 2.4: Distribution of theta and gamma lags for recording sites. Measured lags for (a.)
theta, (b.) slow and (c.) fast gamma. One-tailed, two-sample F-test statistics: slow gamma
vs. theta p = 7.8× 10−39, confidence interval (c.i.) for variance ratio c.i. = [4.26, 6.90], fast
gamma vs. theta p = 7.3× 10−4, c.i. = [1.19, 1.93].

the phase-amplitude relationship between theta and gamma previously established with the
synchronized gamma events illustrated here, we hypothesized that gamma events are locked
to a global theta phase definition which is coherent in the hippocampus. We compared the
locking of slow and fast gamma events to their local theta phase against a global theta phase
defined by selecting one of the recording electrodes with strong theta oscillations to define
theta phase. Fig. 2.5 illustrates the computation of the preferred theta phase and gamma-
theta synchronization strength at any electrode. First a reference electrode was used to
measure theta phase - this could be the same as the electrode on which gamma events
were measured. The gamma-amplitude theta-phase PFR was constructed using the method
previously described in Section 2.1 and shown here in Fig. 2.5a.. Averaging the PFR in the
appropriate frequency band resulted in the mean amplitude for every phase value (Fig. 2.5b.
- slow gamma, Fig. 2.5d. - fast gamma). Peaks detected on individual theta cycles were
aggregated in theta phase and reported in Figs. 2.5b. and 2.5e. for slow and fast gamma
respectively. These peaks have been referred to as gamma events in this study. Circular
mean for gamma response as well as events was computed as described in Section 2.1 and
referred to as the Mean Resultant Vector (MRV).

Fig. 2.6 shows the PFR measure for 4 sites recorded simultaneously from the hippocam-
pus. Figs. 2.6a. to 2.6d. report the PFR when theta phase was measured locally. Notice the
large variation in the phase at which peak slow and fast gamma power are observed. When
we used a fixed theta phase definition for all the electrodes Figs. 2.18e. to 2.18h., as evident
in the local theta waveform, the preferred theta phase of both slow and fast gamma power
was more consistent.
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Figure 2.5: Construction of Phase-Frequency Response (PFR) and calculation of gamma-
theta locking strength. (a.) Example phase frequency response from a one recording site
over a single run session from Rat K. (b.) Average power in slow gamma frequency band as a
function of theta phase. (c.) Slow gamma events extracted from the spectrogram (Rayleigh
test for circular non-uniformity: z = 28, p = 2.5×10−13). (d.) Average power in fast gamma
frequency band as a function of theta phase. (e.) Fast gamma events extracted from the
spectrogram (Rayleigh test for circular non-uniformity: z = 31, p = 1.2× 10−14).

Fig. 2.8 illustrates the locking strength of slow (blue) and fast (red) gamma events de-
tected on different recording sites to either their local theta phase (Fig. 2.8a.), or a global
theta phase (Fig. 2.8c.). The overall locking strength was measured by computing a MRV
over all the recording sites for slow and fast gamma as shown in Fig. 2.5. We found that
a global theta phase definition resulted in stronger locking that local theta phase defini-
tion for gamma events (Fig. 2.7b.). MRV measures for individual recording sessions are
shown in ??. To ensure that the heightened locking using a global theta phase definition
was not dependent on the electrode selected for phase definition, we defined theta phase
using every recording site and compared the distribution of MRVs thus obtained against the
corresponding MRV obtained using local theta phase from the same recording session, with
the same result (One-tailed Wilcoxon signed-rank test statistics comparing the difference
between global MRV score and local MRV score against a null distribution centered at 0
for n = 279 electrodes: slow gamma, Fig. 2.8b., p = 3.7 × 10−44, fast gamma, Fig. 2.8d.,
p = 3.4× 10−13).

In order to verify that the shifts in theta we observed could be attributed to the traveling
wave and not variation in recording depth, we calculated the lag in theta between pairs
of recording sites and measured this lag against the anatomical distance between the sites.
Figs. 2.10a. to 2.10c. illustrate cross-correlograms measured for theta filtered Local Field
Potential (LFP), slow gamma power and fast gamma power envelopes at all the recording
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Local Reference

a. b. c. d.

Global Reference

e. f. g. h.

Figure 2.6: Local vs Global theta reference - comparing PFR produced by local and global
referencing for four different recording sites from one animal. (a.) T2 (Local reference), (b.)
T22 (Local reference), (c.) T26 (Local reference), and (d.) T27 (Local reference). (e.) T2
(Global reference), (f.) T22 (Global reference), (g.) T26 (Global reference), and (h.) T27
(Global reference).

sites relative to a single reference. These cross-correlograms were used to calculate the
aforementioned lag. For pairs of sites located within the same hemisphere, we found that
theta-lag and anatomical distance were significantly correlated (Fig. 2.10d., n = 223 electrode
pairs with peak cross-correlation above 0.6, r = 0.33, p = 4.5× 10−7). When comparing the
anatomical profile observed for theta against that for slow and fast gamma power envelopes,
we observed that such a relationship could not be seen for slow or fast gamma lags (Pearson
correlations: Slow gamma, Fig. 2.10e., r = −1.5 × 10−4, p=0.98. Fast gamma: Fig. 2.10f.,
r = 0.07, p = 0.33.). On comparing the correlation measures shown in Figs. 2.10d. to 2.10f.,
we found that the correlation for theta-lag with anatomical distance was significantly larger
than that for slow and fast gamma power envelopes (One-tailed comparison of Fisher z-
transformed correlation coefficients - theta vs. slow gamma p = 1.1 × 10−4, test-statistic
3.69, theta vs. fast gamma p = 2.7× 10−3, test-statistic 2.78).

Fig. 2.11 shows comparisons for theta and gamma lags paired by recording sites. While
there was no significant relationship between slow gamma lag and theta lag (Fig. 2.11a.) or
fast gamma lag and theta lag (Fig. 2.11b.), we observed a significant positive correlation
between peak slow gamma and peak theta correlation (Fig. 2.11c., r = 0.22, p = 5.3×10−37)
and peak fast gamma and peak theta correlation (Fig. 2.11d., r = 0.18, p = 1.2× 10−24).
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Figure 2.7: (a.) Illustration of synchronized fast gamma events from a recording session.
(b.) Comparing local and global MRV Lengths over discrete gamma events in individual ses-
sions (One-tailed, paired Wilcoxon sign-rank test comparing Local vs. Global MRV Lengths
over n = 13 sessions: Slow Gamma p = 0.02, Fast Gamma p = 0.01).

Our findings suggested that within the dorsal CA1, there is variability in theta phase
which can be attributed to the anatomical traveling wave nature of theta. In contrast, slow
and fast gamma power envelopes are synchronized. While slow and fast gamma events are
locked to theta frequency, they occur synchronously, and are locked to an abstract global
theta phase definition.

2.4 Measurements along the dorsoventral axis
Synchronized gamma events observed within dorsal CA1 led us to hypothesize that this
synchrony may be preserved along the dorsoventral (longitudinal) axis. In order to test
this hypothesis, we simultaneously recorded from the dorsal and intermediate hippocampus
while rats ran trials along a linear track. Hippocampal recordings spanned roughly half
of the dorsoventral axis of the hippocampus. Three male Long-Evans rats (9 recording
sessions) were unilaterally implanted with custom micro-drives carrying 64 independently
adjustable tetrode bundles as shown in Fig. 2.12. 32 tetrode bundles targeted the dorsal
CA1, whereas the remaining 32 tetrode bundles targeted the intermediate CA1. Tetrode
bundles were independently adjusted to target the pyramidal cell layer in the respective
regions. Subsequently, tetrodes that had clear Sharp-Wave Ripples (SWR) during awake-
rest on the track (running speed v < 5cm/s) were selected for analysis.

We observed that gamma events were synchronized across the recording sites in dorsal
and intermediate CA1. Fig. 2.13a. illustrates a synchronized slow gamma event across the
dorsal (blue) and intermediate (orange) CA1. Theta filtered Local Field Potential (LFP)
and both slow gamma power envelope for the same event are shown in Fig. 2.13b. In order
to quantify the synchrony of gamma events and measure it against theta, we categorized
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Figure 2.8: Gamma events are referenced to a global theta phase (a.) Preferred phase of
slow and fast gamma events referred to their local theta phase. (b.) Difference between
global and local MRV difference for slow gamma. (c.) Preferred phase of slow and fast
gamma events referred to a global theta phase definition. (d.) Difference between global and
local MRV difference for fast gamma.

any pair of electrodes into one of three categories - 1) both electrodes in the pair were in
the dorsal CA1, 2) both electrodes in the pair were in the intermediate CA1, and 3) one of
the electrodes was in the dorsal CA1 while the other was in intermediate CA1. We found
that for all three groups, the lag in theta was significantly larger than that for slow and fast
gamma power envelopes (Fig. 2.13c., Paired Wilcoxon signed-rank test statistics considering
electrode pairs with peak theta-correlation > 0.6 and peak gamma-correlation > 0.2: Within
the dorsal CA1, n = 324 electrode pairs - theta vs. slow gamma p = 2.5 × 10−50, theta vs.
fast gamma p = 4.3× 10−48. Within the intermediate CA1, n = 244 electrode pairs - theta
vs. slow gamma p = 8.1× 10−35, theta vs. fast gamma p = 2.2× 10−9).

If gamma events were synchronized across the regions but theta phase had a systematic
offset, we predicted a significantly larger difference between theta and gamma lags when
comparing across regions that when measured within an individual region. We compared
the differences of the paired lags in Fig. 2.13d. and found that when compared to slow and
fast gamma, the difference in theta lags was larger across the regions than within either
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Figure 2.9: Local vs. Global referencing for individual sessions. Showing MRV constructed
for slow (blue) and fast (red) gamma events for all the recorded sessions. For each session,
locally reference gamma event MRV (left) and the same global event MRV (right) are shown.
(a.) Rat I, S1, (b.) Rat I, S2, (c.) Rat I, S3, (d.) Rat K, S1, (e.) Rat K, S2, (f.) Rat K, S3,
(g.) Rat G, S1. (h.) Rat J, S1. (i.) Rat J, S2. (j.) Rat J, S3.
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Figure 2.10: Observed oscillation lags as a function of anatomical distance between pairs
of recording electrodes. (a.) Measured theta lag for all recording sites relative to a single
reference in a recording session. (b.) Measured slow gamma lag for all recording sites relative
to a single reference in a recording session. (c.) Measured fast gamma lag for all recording
sites relative to a single reference in a recording session. (d.) Theta lag vs. Anterior-
Posterior (AP) distance (Pearson’s correlation r = 0.33, p = 4.5× 10−7). (e.) Slow gamma
lag vs. AP distance (Pearson’s correlation r − 0.002, p = 0.98). (f.) Fast gamma lag vs AP
distance (Pearson’s correlation r = 0.07, p = 0.33).

individual region (Wilcoxon rank-sum test statistics: Theta - slow gamma lag, inter-region
vs. within dorsal CA1 p = 0.002, inter-region vs. within intermediate CA1 p = 1.9 × 10−7.
Theta - fast gamma lag, inter-region vs. within dorsal CA1 p = 9.4× 10−5, inter-region vs.
within intermediate CA1 p = 5.7× 10−11.).

These findings suggested that as the theta wave travels along the dorsoventral axis, it
creates a larger separation in the instantaneous theta phase between the dorsal and inter-
mediate CA1 than within any individual region. Slow and fast gamma do not match this
instantaneous phase separation, and instead, appear to have far smaller timing difference
across regions, consistent with being synchronized.

2.5 Role of CA3 in generating gamma oscillations
We next examined the role of CA3 in generating slow gamma events, as hypothesized in the
literature [29, 28]. In order to study the immediate role of CA3 in driving the gamma-theta
relationship in the hippocampus, we used selective opto-genetic suppression of CA3 input
onto CA1 during alternate laps of the linear track traversal. Fig. 2.14 illustrates a schematic
of the suppression protocol. After the proton-pump inhibitor eArch3.0 was expressed in the
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Figure 2.11: Relating lag and correlation between theta and gamma. Reporting paired
Gamma-Theta measurements across n = 3152 pairs of recording sites. (a.) Slow gamma lag
vs. Theta lag (Pearson’s correlation r = 0.005, p = 0.001). (b.) Fast gamma lag vs. Theta
lag (Pearson’s correlation r = 0.003, p = 0.85). (c.) Slow gamma correlation coefficient
vs. Theta correlation coefficient (Pearson’s correlation r = 0.22, p = 5.3 × 10−37). (d.)
Fast gamma correlation coefficient vs. Theta correlation coefficient (Pearson’s correlation
r = 0.18, p = 1.2× 10−24).

D
I

Figure 2.12: Schematic of simultaneous recordings from dorsal and intermediate hippocam-
pus.

cell bodies and axons of CA3 neurons, shining light in the CA1 region selectively suppressed
neurotransmitter release in CA1.

While prior literature suggested a dominant role of CA3 specifically in slow gamma
oscillations, we found that slow gamma oscillations largely persisted after CA3 input was
suppressed. We observed a differential effect of the suppression of CA3 input on overall
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Figure 2.13: Gamma synchrony is preserved along the longitudinal axis of the Hippocam-
pus. (a.) Schematic showing simultaneous recordings of dorsal and intermediate hippocam-
pus. (b.) Simultaneous recordings from electrodes shown in dorsal (blue) and intermediate
(orange) CA1 with a slow gamma event. Top: Raw LFP recorded on the electrodes with
highlighted gamma event. Bottom: Theta filtered LFP and slow gamma power envelope.
(c.) Measured lags for electrode pairs within dorsal hippocampus, within intermediate hip-
pocampus, and inter-regional pairs for theta filtered LFP, slow gamma power envelope and
fast gamma power envelope. Wilcoxon signed-rank test for paired theta-gamma lags: Dorsal
hippocampus, n = 324 electrode pairs, slow gamma statistic = 8.4×102, p = 2.5×10−50, fast
gamma statistic = 1.1× 103, p = 4.3× 10−48. Intermediate hippocampus, n = 244 electrode
pairs, slow gamma statistic = 8.2× 1−2, p = 8.1× 10−35, Fast gamma statistic = 2.5× 103,
p = 5.8 × 10−26. Inter-region lags: n = 51 electrode pairs, slow gamma statistic = 50,
p = 8.9 × 10−9, Fast gamma statistic = 4.5, p = 2.2 × 10−9. (d.) Statistical comparison
between theta lag and gamma lag within and across regions. Wilcoxon rank-sum test statis-
tics: Slow gamma (dorsal vs. inter-region lags) statistic = −3.0, p = 0.002, (intermediate
vs. inter-region lag) statistic = −5.2, p = 1.9 × 10−7. Fast gamma (dorsal vs. inter-region
lags) statistic = 3.9, p = 9.4 × 10−5, (intermediate vs. inter-region lags) statistic = −6.6,
5.7× 10−11.
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Figure 2.14: Schematic illustrating acute and selective opto-genetic suppression of CA3
input to CA1.

gamma power and the incidence of gamma events in dorsal CA1 (Figs. 2.15 and 2.16).
There was a significant decrease in fast gamma power during running periods in the EXP
animals across light conditions (Fig. 2.15c.). We did not observe significant changes in slow
gamma power in either groups across light conditions (Fig. 2.15a.). Within the experimental
group, the reduction in fast gamma power was significantly larger than that in slow gamma
power (One-tailedWilcoxon rank-sum test, p = 1.4×10−6). Furthermore, in the experimental
group, reduction in fast gamma power during running periods was correlated with a reduction
in SWR rate during periods of awake-rest which in turn has been shown to be correlated with
the efficacy of light delivery [30] (Fig. 2.15d., Pearson’s correlation r = 0.47, p = 3.8×10−7.)
We did not find such a correlation for slow gamma power (Fig. 2.15b., Pearson’s correlation
r = 0.11, p = 0.24).

We did not observe an overall decrease in the rate of slow (Fig. 2.16a.), or fast (Fig. 2.16c.)
gamma events. However, within the experimental group, there was a significantly higher
decrease in slow gamma events when compared to fast gamma events (One-tailed Wilcoxon
rank-sum test p = 0.03).

Since CA3 and CA1 Local Field Potential (LFP) are strongly correlated during slow
gamma events [28], and yet an acute suppression of CA3 activity did not result in suppression
of slow gamma events, we hypothesized that CA3 input is required for the precise locking of
slow gamma events to theta phase. Fig. 2.17 shows the Phase-Frequency Response (PFR)
for a recording site in the presence (Fig. 2.17 - left) and absence (Fig. 2.17 - right) of CA3
input.

Computing the theta phase for gamma events extracted from the PFR on the recording
site, we observed that in the presence of CA3 input, both slow (Fig. 2.19a.) and fast
(Fig. 2.19c.) gamma events were locked to theta phase (Rayleigh test statistics: Slow gamma
z = 6.2, p = 0.002, Fast gamma z = 1.1× 102, p = 1.8× 10−54). For the same recording site,
in the absence of CA3 input, slow gamma events (Fig. 2.19b.) were no longer locked to theta
phase, however, fast gamma events (Fig. 2.19d.) remained locked (Rayleigh test statistics:
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Figure 2.15: Suppressing CA3 input to CA1 - Changes in gamma power and events. (a.)
Comparing change in average power in slow gamma frequency band during run between
control and experimental groups (One-tailed Wilcoxon signed-rank test, nC = 32 tetrodes,
zC = −1.4, pC = 0.08, nE = 115 tetrodes, zE = 1.2, pE = 0.88, Wilcoxon rank-sum test
EXP vs. CON , z = −1.7, p = 0.09.). (b.) Measuring change in slow gamma power as a
function of Sharp-Wave Ripples (SWR) suppression index (Pearson’s correlation, r = 0.11,
p = 0.24) in the experimental group. (c.) Comparing average power in fast gamma frequency
band between control and experimental groups (One-tailed Wilcoxon signed-rank test, nC =
32 tetrodes,zC = −1.7, pC = 0.04, nE = 115 tetrodes, zE = −5.0, p = 3.1× 10−7, Wilcoxon
rank-sum test EXP vs. CON , z = −2.0, p = 0.05.). (d.) Measuring change in fast gamma
power as a function of SWR suppression index (r = 0.47, p = 3.8×10−7) in the experimental
group.

Slow gamma z = 0.2, p = 0.82, Fast gamma z = 90, p = 1.6× 10−45). In order to quantify
the locking of gamma events statistically, we computed an Mean Resultant Vector (MRV)
for gamma events detected on each recording site and evaluated if the strength of gamma-
theta locking, as measured by the MRV length degraded with suppression of CA3 input.
We found that there was a selective decrease in the MRV length for slow gamma events in
the EXP group (Fig. 2.20a. One-tailed Wilcoxon signed-rank test between light conditions
p = 0.001). Comparing the change in MRV for slow and fast gamma within the EXP
group, the MRV for slow gamma events showed more degradation than fast gamma events
(One-tailed Wilcoxon signed-rank test, p = 0.004). We also correlated the change in MRV
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Figure 2.16: Suppressing CA3 input to CA1 - Changes in gamma events. (a.) Comparing
the change in rate of slow gamam events between control and experimental groups (One-
tailed Wilcoxon signed-rank test, nC = 32 tetrodes, zC = −2.1, pC = 0.02, nE = 115
tetrodes, zE = −2.0, pE = 0.02, Wilcoxon rank-sum test EXP vs. CON , z = −0.88,
p = 0.38). (b.) Measuring change in rate of slow gamam events as a function of SWR
suppression index (Pearson’s correlation r = 0.36, p = 3.0×10−4) for the experimental group.
(c.) Comparing the change in rate of fast gamma events Across control and experimental
groups (One-tailed Wilcoxon signed-rank test, nC = 32 tetrodes, zC = −0.33, pC = 0.37,
nE = 115 tetrodes, zE = 1.3, pE = 0.90, Wilcoxon rank-sum test EXP vs. CON , z = −0.89,
p = 0.37), (d.) Measuring change in rate of fast gamma events as a function of SWR
suppression index (Pearson’s correlation r = 0.04, p = 0.70.) for the experimental group.
Comparing slow vs. fast gamma event incidence change within groups: CON , zC = −1.0,
pC = 0.32, EXP , zE = −2.2, pE = 0.03.

length for gamma events during run with the suppression of SWR events during awake rest.
Here we found that for slow gamma oscillations, there was a significant correlation between
the reduction in MRV length and SWR suppression (Fig. 2.20b. Pearson’s correlation:
r = 0.28, p = 1.9 × 10−3). The same relationship was not statistically significant for fast
gamma oscillations (Fig. 2.20d. Pearson’s correlation: r = −0.03, p = 0.76). A paired
comparison of correlation values suggested that the change in slow gamma MRV was more
strongly correlated with SWR suppression than the change in fast gamma MRV (One-tailed
comparison of Fisher z-transformed correlation coefficients - p = 3.0 × 10−4, test-statistic
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Figure 2.17: Changes in PFR resulting from suppression of CA3 input to CA1. (left) PFR
during running periods under Control condition (Light Off). (right) PFR during running
periods under suppression of CA3 input (Light ON).

3.53). While there were differences in the EXP and CON groups in theta phase offsets
for slow and fast gamma (Figs. 2.21a., 2.21b., 2.21d. and 2.21e.), we did not not find a
relationship between this phase offset and extent of CA3 suppression (Figs. 2.21c. and 2.21f.).

These findings suggested that the CA3 input modulates both slow and fast gamma os-
cillations in the hippocampus. The nature of these modulations is different for slow and fast
gamma frequency bands. For fast gamma, we observed a suppression dependent reduction
in overall power. On the other hand, for slow gamma, we observed that suppression of CA3
input degraded the precision of gamma-theta locking at a recording site and the extent of
this degradation was commensurate with the extent to which CA3 input to the site was
suppressed.
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Figure 2.18: Comparing PFR four different recording sites from one animal in the EXP
group across light conditions. (a.) T2 (Light OFF), (b.) T22 (Light OFF), (c.) T26 (Light
OFF), and (d.) T27 (Light OFF). (e.) T2 (Light ON), (f.) T22 (Light ON), (g.) T26 (Light
ON), and (h.) T27 (Light ON).

2.6 Role of CA3 in synchronizing gamma oscillations
Noting the dependence of gamma-theta locking on CA3 input, we hypothesized that the
synchrony of gamma events within CA1 should, in turn, exhibit a dependence on CA3 input.
We first defined measures of gamma synchrony in the dorsal CA1, and thereafter, studied
their response to suppression of CA3 input, which was quantified as previously by the degree
of Sharp-Wave Ripples (SWR) suppression during periods of awake-rest. Fig. 2.22 illustrates
two such measures of synchrony: (i) the mean absolute lag of a recording site from all other
sites; and (ii) the mean peak cross-correlation of a recording site with all the other sites. For
the sites that were synchronized, we expected a small mean lag and a large mean peak cross-
correlation. Furthermore, to the extent that this synchronization depended upon CA3 input,
we expected the mean lag to increase and the mean peak cross-correlation to decrease as
CA3 input was suppressed. For both slow and fast gamma oscillations, we observed that the
mean absolute lag increased in the experimental group when compared to controls. Paired
Wilcoxon signed-rank test statistics comparing light conditions - nE = 193 electrodes in the
experimental group and nC = 86 electrodes in the control group: (Fig. 2.24c.), slow gamma
, pE = 0.01, pC = 0.01, (Fig. 2.25c.) fast gamma pE = 0.08, pC = 0.01. Wilcoxon rank-sum
test comparing experimental and control groups: slow gamma ps = 7.7× 10−8, fast gamma
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Figure 2.19: Changes in theta phase preference of gamma events. (a.) Theta phase
distribution of slow gamma events during control (light off) condition. Rayleigh test statistics
z = 6.2, p = 0.002. (b.) Theta phase distribution of slow gamma events during experimental
(light on) condition. Rayleigh test statistics z = 0.2, p = 0.82. (c.) Theta phase distribution
of fast gamma events during control (light off) condition. Rayleigh test statistics z = 1.1×
102, p = 1.8×10−54. (d.) Theta phase distribution of fast gamma events during experimental
(light on) condition. Rayleigh test statistics z = 90, p = 1.6× 10−45.

pf = 1.1 × 10−5. Simultaneously, there was a significant decrease in the mean peak cross-
correlation across the groups for both slow and fast gamma. Paired Wilcoxon signed-rank
test statistics comparing light conditions - nE = 193 electrodes in the experimental group
and nC = 86 electrodes in the control group: (Fig. 2.24a.), slow gamma pE = 2.0 × 10−8,
pC = 6.7 × 10−7, (Fig. 2.25a.), fast gamma pE = 1.6 × 10−4, pC = 0.6. Wilcoxon rank-sum
test comparing experimental and control groups: slow gamma ps = 2.6× 10−16, fast gamma
pf = 1.0× 10−4.

We also tested if the loss of synchrony at a particular recording site, as measured by
the decrease in mean peak cross-correlation, depended on the extent to which CA3 input to
the site had been suppressed. By correlating mean peak cross-correlation change with SWR
suppression, we found a strong relationship between the desynchronization of a recording site
and the extent to which CA3 input to it had been suppressed for both slow and fast gamma -
Pearson’s correlation measures: Slow gamma (Fig. 2.24b.) r = 0.24, p = 0.001, Fast gamma
(Fig. 2.25b.) r = 0.36, p = 1.2×10−6. In the experimental group we found that the increase
in mean absolute lag was also correlation with SWR suppression. Pearson’s correlations:
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Figure 2.20: (a.) Change in MRV for slow gamma between control and experimental
groups. One-tailed paired Wilcoxon signed-rank test statistics: nC = 38 tetrodes, zC = −1.5,
pC = 0.06. nE = 133 tetrodes, zE = −3.0, pE = 0.001. Wilcoxon rank-sum test statistics
across groups: z = 0.03, p = 0.97. (b.) Correlating change in slow gamma MRV in
the experimental group as a function of SWR suppression during awake-rest (Pearson’s
Correlation: r = 0.34, p = 1.4 × 10−4). (c.) Change in MRV for fast gamma between
control and experimental groups. One-tailed paired Wilcoxon signed-rank test comparing
light conditions: nC = 38 tetrodes, zC = −0.09, pC = 0.46. nE = 133 tetrodes, zE = 0.59,
pE = 0.81. Wilcoxon rank-sum test statistics across groups z = 0.25, p = 0.80. (d.)
Correlating change in fast gamma MRV in the experimental group as a function of SWR
suppression during awake-rest (Pearson’s Correlation: r = −0.07, p = 0.42). One-tailed,
paired Wilcoxon signed-rank test comparing slow gamma vs. fast gamma within EXP
group: z = −2.6, p = 0.004.

Slow gamma (Fig. 2.24d.) r = −0.17, p = 0.02, fast gamma r = −0.19, p = 0.01.
In contrast, we found an opposite effect on the synchronization of theta. We did not see

a significant change in the mean lag measure for theta (Fig. 2.23c.). As opposed to slow and
fast gamma, when measuring mean peak cross-correlation, we observed an overall increase
in the synchrony of theta across recording sites when CA3 input was suppressed (Fig. 2.23a.,
Paired Wilcoxon signed-rank test, nE = 193 electrodes in experimental animals, pE = 0.06,
nC = 86 electrodes in control animals, pC = 1.3× 10−14. Wilcoxon rank-sum test comparing
groups: p = 8.1 × 10−8). We measured this increase in synchrony with the extent of CA3
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Figure 2.21: The role of CA3 in locking gamma events to theta. (a.) Change in preferred
phase of slow gamma events in control group. (b.) Change in preferred phase of slow
gamma events in experimental group. Two-tailed Wilcoxon rank-sum test comparing phase
shift between EXP and CON groups for slow gamma - nE = 131 tetrodes, nC = 39 tetrodes,
z = −1.8, p = 0.07. (c.) Measuring change in preferred phase of slow gamma events against
SWR suppression index for experimental group (Pearson’s correlation for nE = 131 tetrodes
with both slow and fast gamma coherence over 0.1: r = 0.1, p = 0.29). (d.) Change in
preferred phase of fast gamma events in control group. (e.) Change in preferred phase of
fast gamma events in experimental group. Two-tailed Wilcoxon rank-sum test comparing
phase shift between EXP and CON groups for slow gamma - nE = 131 tetrodes, nC = 39
tetrodes, z = −3.8, p = 1.5× 10−4. (f.) Measuring change in preferred phase of fast gamma
events against SWR suppression index for experimental group (Pearson’s correlation for
nE = 131 tetrodes with both slow and fast gamma coherence over 0.1: r = −0.02, p = 0.85).

suppression and found those to be negatively correlated (Fig. 2.23b., Pearson’s correlation
r = −0.15, p = 0.05).

The data recorded from dorsal CA1, thus, suggested that the synchrony of both slow
and fast gamma events is regulated by the instantaneous CA3 input. Suppression of CA3
input has a desynchronizing effect on gamma events that depends on the localized strength
of suppression.
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Figure 2.22: Schematic for calculation of a synchrony.

2.7 Conclusion
Our findings suggest that: 1) While theta travels along the septo-temporal axis of the hip-
pocampus, both slow and fast gamma are locked to theta frequency, slow and fast gamma
events occur synchronously across CA1. Furthermore, slow and fast gamma events are locked
to an abstract, global theta phase definition. 2) CA2 plays a dominant role in shaping slow
gamma events in the hippocampus. While slow gamma events persist even when CA3 input
to CA1 is suppressed, the locking of slow gamma events to global theta phase deteriorates
in the absence of CA3 input. 3) CA3 input to CA1 plays a role in synchronizing both slow
and fast gamma events in the hippocampus.

The Local Field Potential (LFP), arising due to the accumulation of synaptic discharges,
ionic conductance and other physiologic processes from multiple neurons [19], presents a
unique window into the macroscopic properties of a cellular network. Historically, oscilla-
tions in the LFP have been of interest because of their relation to behavioral and cognitive
processes. It has been hypothesized that oscillations in the LFP reflect synchronized pro-
cesses in the cellular networks [136]. Here, we have analyzed two major LFP oscillations –
theta and gamma. Theta oscillations exhibit large amplitudes and are associated with am-
bulatory behavior as well as Rapid Eye Movements (REM) sleep. Gamma oscillations, while
lower in amplitude when compared to theta and Sharp-Wave Ripples (SWR), have been ob-
served in a variety of behavioral states in both neocortical [157] and subcortical regions, in
particular, in the hippocampus [12]. Theoretical models have suggested that an embedding
of gamma cycles within theta could serve as a mechanism for sequence learning [83]. This
theory has gained experimental support from both human [58] and rodent studies [84]. There
is further evidence that the strength of theta phase-gamma amplitude locking is modulated
by learning both within the hippocampus [149, 125] as well as between the hippocampus
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Figure 2.23: Measuring theta oscillation synchrony while suppressing CA3 input to CA1.
(a.) Change in mean peak-correlation for LFP theta (Wilcoxon sign-rank test, OFF vs. ON:
nC = 86 electrodes, zC = 6.2, pC = 7.5× 10−10, nE = 193 electrodes, zE = −3.2 pE = 0.002,
Wilcoxon rank-sum test, EXP vs. CON z = 5.4, p = 8.1 × 10−8). (b.) Change in mean
lag for slow gamma (Wilcoxon sign-rank test, OFF vs. ON: nC=86 electrodes, zC = 3.3,
pC = 9.6× 10−4, nE = 193 electrodes, zE = −4.7, pE = 2.0× 10−6, Wilcoxon rank-sum test,
EXP vs. CON z = 5.4, p = 7.7× 10−8). (c.) Change in mean lag for LFP theta (Wilcoxon
sign-rank test OFF vs. ON: nC = 86 electrodes, zC = −0.99, pC = 0.32, nE=193 electrodes,
zE = 1.9, pE = 0.06, Wilcoxon rank-sum test, EXP vs. CON z = −1.9, p = 0.06). (d.)
Change in mean peak-correlation against SWR suppression for theta (Pearson’s r = −0.15,
p = 0.05).

and cortical areas [146]. Theta phase-gamma amplitude locking has been shown causally to
correct spatial memory deficits in a mouse model for Alzheimer’s disease [40]. In this study,
opto-genetic stimulation of the medial septum at slow gamma frequency rescued spatial
memory deficits.

In the context of theta-gamma locking the notion of theta phase, however, is ill-defined.
Since theta exhibits traveling wave nature, the instantaneous phase of theta as well as the
instantaneous local firing rate of cell populations is different for different parts of the hip-
pocampal cell layer [85, 119]. Downstream regions rely on LFP information to tune into the
spatial information contained in the firing of these cell populations [172]. In the absences
of a synchronized signal, it remains unclear how downstream regions can selectively list to
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Figure 2.24: Measuring slow gamma oscillation synchrony while suppressing CA3 input to
CA1. (a.) Change in mean peak-correlation for slow gamma (Wilcoxon sign-rank test, OFF
vs. ON: nC = 86 electrodes, zC = −5.6, pC = 1.6 × 10−8, nE = 193 electrodes, zE = 6.6,
pE = 4.2 × 10−11. Wilcoxon rank-sum test, EXP vs. CON z = −8.2, p = 2.6 × 10−16).
(b.) Change in mean peak correlation with SWR suppression for slow gamma (Pearson’s
correlation r = 0.24, p = 0.001). (c.) Change in mean lag for slow gamma. One-tailed,
paired Wilcoxon sign-rank test, OFF vs. ON , nC = 86 tetrodes, zC = 3.3, pC = 9.6× 10−4,
nE = 193 tetrodes, zE = −4.7, pE = 2.0 × 10−6. Wilcoxon rank-sum test comparing EXP
vs. CON , z = 5.4, p = 7.7× 10−8. (d.) Change in mean lag with SWR suppression for slow
gamma (Pearson’s correlation r = −0.17, p = 0.02.

animal’s local or non-local position represented, for example, during theta sequences [173,
154]. The synchronization of gamma oscillations offers a resolution towards a coherent LFP
signature that can be used by downstream areas to reliably interpret the spatial code in
the hippocampus. By matching the global theta frequency, gamma events offer an alternate
global reference which can be used to study theta-gamma locking.

In [85], the authors suggested that the spatial representation along the septo-temporal
axis of the hippocampus varies as a function of the theta phase. However, direct evidence
has not been established that different points along the dorsoventral axis of the hippocampus
show differences in encoding the animal’s position. While putative pyramidal cells increase
in place field size along the septo-temporal axis [72], large place fields do not necessarily
imply a coarser spatial code at the population level, nor is the population representation
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Figure 2.25: Measuring fast gamma oscillation synchrony while suppressing CA3 input
to CA1. (a.) Change in mean peak-correlation for fast gamma (Wilcoxon sign-rank test
OFF vs. ON: nC = 86 electrodes, zC = −0.68, pC = 0.5, nE = 193 electrodes, zE = 5.8,
pE = 5.9 × 10−9, Wilcoxon rank-sum test, EXP vs. CON z = −4.4, p = 1.0 × 10−5).
(b.) Change in mean peak-correlation against SWR suppression for fast gamma (Pearson’s
correlation r = 0.36, p = 1.2 × 10−6). (c.) Change in mean lag for fast gamma (Wilcoxon
sign-rank test between OFF vs. ON: nC = 86 electrodes, zC = 2.7, pC = 0.007, nE = 193
electrodes, zE = −3.9, pE = 9.7 × 10−5, Wilcoxon rank-sum test, EXP vs. CON z = 4.4,
p = 1.1×10−5). (d.) Change in mean lag against SWR suppression for fast gamma (Pearson’s
correlation r = −0.19, p = 0.01).

of position necessarily offset between septal and temporal hippocampal poles. The spatial
representation from different anatomical position in the hippocampus can be synchronized
using gamma oscillations as a reference which is coherent. Despite the differences in spatial
and temporal properties of cells along the septo-temporal axis, the emergence of a coherent
spatial representation mediated by gamma synchrony can be viewed as an instance of the
binding problem [127].

Slow gamma has previously been implied in synchronization of spatial representation in
the hippocampus. We have evidence that within SWR occurring during periods awake-rest
and quiescence, slow gamma coherence between CA1 and CA3 sub-regions results in a more
coherent reactivation of animal’s current or recently experienced environment [22]. This sug-
gests that slow gamma can indeed be a synchronizing signal, or a clocking mechanism which
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unifies the network state along the transverse (CA1-CA3) axis. This is further supported
by Bayesian decoding of replay events which exhibit auto-associative dynamics with discrete
jumps in the animal’s decoded position locked to peaks slow gamma [122]. Our findings
add to these ideas and suggest that gamma synchrony could be a generalized mechanism
for synchronizing spatial representation. These findings can be bound together into a single
notion – gamma events clock the hippocampus across behavioral states.

In our previous work [30], we studied the role of CA3 in shaping single unit responses and
associated LFP features including theta and SWR in CA1. We observed that suppression of
CA3 input to CA1 led to macroscopic changes in the CA1 activity across behavioral states
including sleep, ambulatory behavior on a linear track, as well as periods of awake-rest
accompanying reward consumption. In experimental animals, overall firing rates as well as
SWR rates were significantly suppressed. Place cell attributes, including firing rates, field
center of mass and field sizes were significantly affected by suppression of CA3 input. We also
found that the fidelity of awake hippocampal replay deteriorated in the experimental group.
In this paper, we expand on the role of CA3 in shaping CA1 activity at a mechanistic level
in the context of gamma synchrony. The lamellar routing of information via the different
gamma frequency bands in the hippocampus is an active area of research [130, 77, 42,
112]. Different gamma bands have been shown to have different physiological and functional
properties. It is believed that slow gamma reflects CA3 input to Stratum Radiatum (SR) [29].
Our work provides causal evidence for this hypothesis showing that while slow gamma events
persist in the absence of CA3 input (in agreement with prior work using a genetic mouse
line [96]), their relationship with theta is disrupted. Higher frequency gamma bands, on
the other hand, are believed to reflect converging input from Entorhinal Cortex (EC) [97],
as well as local computation in the pyramidal cell layer [130]. We find that CA3 input
also affects higher frequency bands. While the relationship of fast gamma events remained
largely unaffected by our perturbation of CA3 activity, we observed an overall decrease in
fast gamma power.

Finally, we bring together the two aspects of this study – synchronization of gamma
events and the mechanistic role of CA3 in shaping gamma events. The unique recurrent
connectivity of the CA3 sub-region [3] makes it an ideal candidate to synchronize these
events. On quantifying synchrony, we found that gamma events were desynchronized upon
suppressing CA3 input. We observed this desynchronization using two different measures.
On suppressing CA3 input, average lag or jitter in gamma increased across sites and at the
same time, the peak synchronization decreased. Furthermore, we observed this desynchro-
nization for both slow and fast gamma, further reinforcing the idea that the influence of
CA3 is not limited to the slow gamma frequency band. The synchronization of slow gamma
events, which could potentially make them a clocking mechanism throughout the hippocam-
pus, and the role of CA3 in mediating this synchronization, also suggest a role of CA3 in
clocking and gating information within CA1.
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Chapter 3

ActiveLink: An open-source tool for
neural targeting and closed-loop
stimulation1

High density electrophysiological recordings, offering high spatial and temporal resolution,
are key to understanding the structure and function of the brain. Over the last few decades,
we have packed more and more recording sites into probes allowing a large number of cells
to be simultaneously recorded from the brain [143]. The neural code is often sparse, and the
ability to record large populations of neurons is now revealing phenomenon at the ensemble
level that were not known before. For instance, sparse populations of hippocampal neurons
participate in replaying spatial trajectories that have been implicated in spatial planning
and navigation [47, 123].

Targeting cells in different brain regions is difficult, often requiring years of experience and
specificity for the region being studied and recording technique being employed. While high
density probes can potentially offer high yields, presently, cell targeting primarily employs
stereo-taxic coordinates and qualitative feedback from the recording stream. In Hippocam-
pus research, for an instance, individually adjustable tetrode bundles have been used to
target the thin sheet of pyramidal cells in the CA1 which contains place cells for over half a
century [107]. Targeting this cell layer in rodents and bats for example, takes 2−4 weeks for
experts with years of training. Additionally, upon reaching the target region with electrodes,
the instability results a consistent cell yield over 1−2 weeks in a typical experiment, making
the experimental procedure cumbersome. The current standard for estimating the relative
coordinate of electrode tips to the cell layer is auditory feedback received by playing the raw
signal on an speaker, and visual inspection of the putative action potentials. Low-latency
Application Processing Interface (API) are pervasively used to stream and process neural
data in real-time in many of these experiments, especially for closed-loop protocols. With
the advent of faster, custom hardware and software API for real-time processing of neural

1In collaboration with Dr. Caitlin Mallory and William Croughan.
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data, we have an opportunity to build an automated solution to the problem of navigat-
ing to neural targets. Moreover, publicly available open-source solutions do no exist for a
wide-variety of commonly used sub-tasks in such closed-loop experiments.

In this study, we describe an open source tool that quantifies neural measurements that
can aid targeting cells in different parts of the brain. We talk in depth about targeting cells
in the hippocampus, but the procedure can be easily adapted to other brain regions. We
attempt to provide a software architecture that can also be used for some of the common
pre-processing tasks such as LFP filtering, spike-sorting, and interfacing with peripheral
environmental and stimulation devices. We also introduce a novel spike-sorting algorithm
which can cluster streaming data in real-time, requiring as little as 60 seconds from the start
of a recording session, to produce cluster definitions which can be then used for real-time
processing of single unit activity. We demonstrate this ability using recordings from the
hippocampus as animals ran on a linear track for 15 minute long sessions.

We also demonstrate the implementation a real-time Bayesian inference algorithm in
which single-units clustered by hand are used to build place fields for cells in real-time and
compute a posterior distribution of the animal’s position from its neural activity. We show
that high-accuracy can be achieved for such tasks in a very short amount of time, opening up
the way for a large family of closed-loop experiments. Finally, we use our program in a closed-
loop experiment to study the role of SWR events in spatial-learning as well as reproduce
evidence for homeostatic changes to maintain SWR activity upon electrical manipulation in
this context [49].

3.1 Software Design

Figure 3.1: Software architecture for real-
time processing and close-loop feedback

In this section, we describe the soft-
ware architecture for our program in de-
tail. The program was written in Python
and the source-code has been provided
at https://github.com/architgupta93/
activelink. Fig. 3.1 details the overall ar-
chitecture of the program. Our program is
currently compatible with Trodes (Version
2.0), an open-sourced recording software
freely available from SpikeGadgets LLC.
The modular design of ActiveLink allows
easy adaptation for other recording schemes.
The developer can re-write the primary data
streams (spike, Local Field Potential (LFP)
and position) as needed and the rest of the

program will be able to interact with these streams.

https://github.com/architgupta93/activelink
https://github.com/architgupta93/activelink
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Streaming Data
Procuring data from the streaming software (Trodes) largely consists of waiting for the
producer stream to generate data packets and transmitting them to the receiving port.
This task is efficiently achieved by parallel processing threads which can be allocated to the
same processing core. ActiveLink executes three primary data fetching threads, LFPFetcher,
SpikeFetcher, and PositionEstimator. In the source code, these are supplied in individual
python files that contain the respective classes.

LFP
After LFP packets are received, they are filtered in the ripple frequency band (150 − 250
Hz) using a Butterworth filter of order 3, using cascaded Second-Order Sections (sos) filter
for numerical stability. Real-time, causal smoothing is applied using an implicit exponential
decay filter that implements

yi = λF (xi) + (1− λ) yi−1, (3.1)

where yi is the power computed at time-step i, xi is the raw input at time-step i, F is the
filter operation and λ is the smoothing factor. In practice, the data suffers from correlated
noise which is corrected by subtracting the ripple power on a baseline electrode positioned in
the white-matter. The raw ripple power computed in Eq. (3.1) is z-scored by computing the
running mean (m(y)) and standard deviation (s(y)) of the baseline-subtracted ripple power.
After receiving the nth data-point, these were updated over as follows:

m(yn) = m (yn−1) + (yn −m (yn−1))
n

(3.2)

s(yn) =
√

s(yn−1)2 + (yn −m(yn)) (yn −m(yn))
n

(3.3)

The computer code for detection of Sharp-Wave Ripples (SWR) events is supplied in Rip-
pleAnalysis.py and the parameters for detection are defined in RippleDefinitions.py.

Single Unit Activity
Voltage waveforms simultaneously recorded from multiple electrodes can be clustered to
identify the underlying single-unit activities. Several approaches have been described to
clustered voltage waveforms [26, 14]. While algorithmic approaches have also been described
for real-time spike sorting [151, 115], much of the literature is devoted to ‘offline’ clustering or
sorting of voltage waveforms. In this regard, we differentiate our approach to be an ‘online’
clustering algorithm. Consider a set of bundled recording sites – these could represent 4
recording tips in a tetrode bundle, or more generally n sites on a recording probe or array.
The recording software triggers when the raw voltage waveform crosses a fixed threshold (in
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this case 50µV ). A fixed window around the triggered time-point constitutes the voltage
waveform - Let’s call the waveform to be w.

First, estimate the Principal Components (PCs) from our sampled voltage waveforms
[w1,w2, . . . ,wp]. Projecting the voltage waveforms onto PCs has been shown to yield better
clustering results than in the space of peak-amplitudes on the individual channels, for ex-
amples, in [26]. We call the projection coefficients of the waveform vector w onto the major
PCs c. However, because of the prevalence of clustering visualization in the said ‘amplitude’
space, we visualize our clustering both in the amplitude space and in the space of projection
onto PCs. Following an initial phase of estimating the PCs, we built a decision tree for
clustering using the Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)
algorithm in python [170, 120]. BIRCH clustering resulting in fragmented clusters which were
merged in the amplitude space by back projecting from the Principal Component (PC) basis
to the original basis. Agglomerative clustering was using with an average-distance metric
between clusters to merge the sub-clusters [120]. Computer code for real-time spike-sorting
is provided in SpikeAnalysis.py as a Python class SpikeSorter.

Cluster Metrics

Quantitative metrics help ascertain the quality of a single-unit cluster [59, 26], allowing end
users a systematic approach to select clusters for subsequent processing. We have incorpo-
rated some of the commonly used metrics for single-unit clusters into ActiveLink, namely,
firing rate, number of spikes, inter-spike interval, cluster centroid, minimum and maximum
spike amplitudes. Clusters failing to meet used defined criteria on these metrics are labelled
‘noise’ clusters and not used for subsequent analysis. In the supplied computer code, cluster
metrics are defined in SpikeAnalysis.py using the python class ClusterMetrics.

Real-Time decoding
As an illustration of a real-time application of the analysis of LFP and single-unit activity
described thus far, in this section, we discuss real-time Bayesian decoding of spatial position.
A candidate action-potential detected on a set of electrodes is first passed through the
clustering pipeline to assign a cluster identity. Provided the cluster identity is not that of
a ‘noise’ cluster, the identity is received. Because of the asynchronous nature of real-time
processing, we maintain a First-In First-Out (FIFO) queue of all the time bins that are
currently being processed. Decoding bins are uniformly spaced making it easy to match the
incoming spike. When a spike is received past the current times in the FIFO queue, a new
decoding bin is initialized with the posterior P (x) corresponding to 0 spikes received from
each neuron currently being analyzed. This is computed as

P (x)
∣∣∣∣
t=0

= exp
(
W ·

N∑
i=1

fi(x)
)
. (3.4)
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Here, W is the size of the decoding window in seconds, fi(x) is the firing rate map of cell i
over either directional or euclidean position. Say a spike is received at time t from neuron
k, the posterior probability is updated as follows:

P (x)
∣∣∣∣
t=t

= P (x) ∗ fk(x). (3.5)

Here P (x) is the posterior for the time-bin corresponding to the spike. It will be com-
putationally efficient to maintain log-probabilities require addition operations instead of
multiplication used here. Computer code for real-time Bayesian inference is supplied in
PositionDecoding.py as a Python class BayesianEstimator.

3.2 Quantified targeting of Pyramidal cell layer in
CA1

Local Field Potential (LFP) features in the brain provide strong landmarks for targeting
different brain regions. In this study, we focus on targeting cells in the hippocampal CA1
sub-region. CA1 consists of a thin layer (∼ 100µm thick) of densely packed pyramidal
cells. It is marked by several strong LFP features including Sharp-Wave Ripples (SWR)
complexes (150− 250 Hz) during awake rest and Slow-Wave Sleep (SWS) states, 6− 10Hz
theta oscillations during ambulatory behavior (running, rearing, whisking) and Rapid Eye
Movements (REM) sleep, and also oscillations in the gamma band.
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Figure 3.2: SWR events occurring synchronously across multiple electrodes during a sleep
session from a rat.

Conventionally, recording electrodes start in the cortex after surgery. After confirming
that electrodes are in the cortex (with the help of cortical single units or spindles), elec-
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trodes are driven into white matter over 1− 2 weeks. Arrival at white matter is marked by
the lack of action potentials and high-frequency LFP activity. The primary marker for this
adjustment has historically been cortical spiking activity. Our findings, adjusting electrodes
in rodents suggest that quantitative measures like SWR envelope size can be effectively used
for navigating to white matter as well (See Sharp-Wave amplitude over time in Fig. 3.3f.).
As recording electrodes cross the white matter and enter the hippocampal formation, con-
ventionally, SWR complexes are heard and seen over the recording equipment and then
used to guide cell targeting until electrodes are very close to the cell layer. By quantifying
SWR complexes and detecting them in real time, not only were we able to quantify SWR
complexes in the hippocampal formation, we can also detect them much earlier, at smaller
amplitudes.
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Figure 3.3: Statistics of SWR electrode adjustment in the brain. (a.) Mean power in the
ripple frequency band. (b.) Standard-Deviation (over time) of power in the ripple frequency
band. (c.) Correlation in the ripple band power between a recording site and a fixed
reference. (d.) Average z-scored ripple power in a 500ms window surrounding SWR events
detected on a reference electrode. (e.) Correlation in the Sharp-Wave envelope between a
recording site and a fixed reference. (f.) Amplitude of the Sharp-Wave at a recording site.

Fig. 3.3 highlights the some of the SWR parameters that can be measured in real-time.
The first three parameters, shown in Figs. 3.3a. to 3.3c., measure bulk properties of activity
in the ripple frequency band across recording electrodes. In Fig. 3.3a., we report the mean
ripple power, or the mean power in the ripple frequency band during an extended period of
time over the course of electrode adjustment. Fig. 3.3b. reports the standard deviation of
ripple power from its mean value/ Fig. 3.3c. measures the correlation of the ripple power
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envelope between a recording electrode and a designated reference. The remainder of the
parameters, shown in Figs. 3.3d. to 3.3f. report measurements in a 250ms window sur-
rounding SWR events detected on the reference recording electrode. Fig. 3.3d. reports the
average z-scored power in the ripple frequency band in a 250ms window surrounding a ripple
event detected on a reference electrode. Fig. 3.3f. measures the amplitude of the sharp-wave
envelope, computed by filtering the raw voltage waveform in the sharp-wave frequency band
(10−50Hz) across the recording sites when accompanied with a ripple event. Fig. 3.3e. mea-
sures the correlation of the sharp-wave envelopes for different recording electrodes against a
reference on which ripple events were detected.

It is important to note that some of these features, the mean ripple power and sharp-wave
amplitude in particular, increase monotonically with recording depth, and as a corollary in
Fig. 3.3, the electrode adjustment time. These can also be used, therefore, as markers for
estimating the depth on an electrode relative to the hippocampal cell layer where ripple power
is known to be maximum, or Stratum Radiatum (SR), where the sharp-wave is known to have
the maximum amplitude. Fig. 3.2 illustrates an SWR event on six simultaneously recorded
electrodes (blue trace depicts raw LFP). Note that while power in the ripple frequency band
(orange trace) crosses the threshold for an SWR event on all electrodes, the amplitude and
polarity of Sharp-Wave is different for the electrodes. This measure is quantified by the
amplitude and correlation of the Sharp-Wave and can be used to target the cell layer. A
negative deflection (Fig. 3.2f. for an instance) is indicative of the electrode tip having passed
the the Pyramidal cell layer - This electrode can be moved backwards to reach the cell layer.
Similarly, a large positive deflection (Fig. 3.2a. for an instance) is indicative of the electrode
tip being in Stratum Oriens and can be used to move the electrode tip forward towards the
cell layer in CA1.

3.3 Online analyses of neural activity
Fig. 3.4 shows an SWR event detected in real-time using ActiveLink. In Fig. 3.5, we report
the efficacy of detecting SWR from a single session online. As shown in Fig. 3.5a., when
compared to offline Local Field Potential (LFP) processing, we were able to detect over 97%
of the ripples. The fairly large number of false positives result from an inclination towards
high sensitivity for the experimental requirements. Further, we were able to detect over 50%
of the SWR events in under 30ms as shown in Fig. 3.5b..

Real-time clustering of Single Unit Activity
Here, we present results combining the BIRCH clustering algorithm [170, 169] with hierarchi-
cal agglomerative clustering [120] to build clusters in real-time. Cluster centers are created
and updated for tetrode bundles as individual spikes are received. Having seen a preset
number of spikes, a cluster merge step is run which merges the leaf nodes of the BIRCH tree
using distance between the cluster centers in the peak amplitude space.
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Figure 3.4: Illustration of an Sharp-Wave Ripples (SWR) event detected online using
ActiveLink.
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Figure 3.5: (a.) Accuracy and (b.) Latency measures for detecting SWR events online.

In addition to LFP features, shape of the single unit waveform is typically employed
for identifying brain regions that a recording electrode is presently in. Fig. 3.6 shows the
clustering results for a single tetrode bundle while the animal ran trials on a linear-track for
chocolate reward on both ends. Fig. 3.6a. shoes clustering outcome when the electrode tips
were located in the neocortex above the Hippocampus. Contrast the shape of the clusters
with Fig. 3.6b. which shows real-time clustering results when the electrode tips were located
in the Hippocampal CA1 (marked by distinct SWR complexes). We also report decoding
accuracy during running periods (Fig. 3.8) and illustrate replay events decoded using real-
time clustering results (Fig. 3.9).
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a.

b.

Figure 3.6: Clustering outcome after 3 minutes on a single tetrode bundle while the
animals ran laps on a linear track. (a.) Electrode tips in neocortex, (b.) Electrode tips in
Hippocampal CA1.
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Real-time Bayesian inference

a. b.

c. d.

Figure 3.7: Real-time Bayesian Inference using 60ms decoding window with 20ms bin-
shift between consecutive windows in ActiveLink. (a.) Bayesian decoding early less than
1minute into the session using hand-clustered single units in Trodes. (b.) Bayesian decoding
∼ 5 minutes into the session using hand-clustered units. (c.) Illustration of a replay event
decoded in real-time. (d.) Median decoding error over laps.

Hippocampal activity is feature rich, providing a cognitive map of an animal’s environ-
ment [109]. It is possible to decode the animal’s current position using its neural activity in
the hippocampus [13]. Fig. 3.7 highlights the performance of the online Bayesian decoding
algorithm on a linear track environment. On a linear track, it is known that the running
directions are represented with different contextual maps [34] and as a result, in addition to
the animal’s position on the track, the contextual map being used to represent the animal’s
position can also be decoded. Here the two running directions, running up a track (position
increasing) is represented using the blue map and running down the track (position decreas-
ing) is represented using the red map. As early as 1 minute into the session, from place
fields for individual cells being constructed in real-time, both the animal’s contextual map
and position can be decoded with high-fidelity Fig. 3.7a.. The decoding accuracy improves
over time, both qualitatively as shown in Fig. 3.7b., and numerically Fig. 3.7d. when mea-
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sured as the error between the Center of Mass (CoM) of the posterior probability and the
animal’s true position. We also found that awake replay events, and the contextual map
being replayed in the event at a compressed time scale can be effectively decoded using the
real-time Bayesian inference algorithm Fig. 3.7c..

Figure 3.8: Decoding error over laps with online clustering.

Finally, we merged the online-clustering with real-time Bayesian inference to create an
end-to-end processing pipeline which can process raw action potentials to produce a posterior
probability distribution over space. Quantitative results for decoding accuracy with the end-
to-end pipeline implemented in ActiveLink are shown in Fig. 3.8. The accuracy is lower
than what we observed in Fig. 3.7d. with hand-clustered data and further quantification is
needed to isolate and improve on the sources of error. Further, we were also able to observe
replay event with the fully automated pipeline. Two such events, detected both with the
hand-clustered data (Figs. 3.9a. and 3.9c.) as well as data clustered in real-time (Figs. 3.9b.
and 3.9d.) are shown in Fig. 3.9. Note the agreement in both the directional map on the
linear track (determined by posterior color red vs. blue) and the replay direction across the
methods for the events shown here.

3.4 Application to closed-loop experiments
With the emergence of rapid recording and neural manipulation technologies, it is now
possible to manipulate neural activity in real-time [38, 64, 53]. Closed-loop feedback is
typically provided by triggering an external stimulus (laser, electrical pulse, reward delivery
etc.) contingent on neural or behavioral states. With ActiveLink, we provide a way to
trigger external stimuli based on such states. In this section, we discuss the application of
ActiveLink to the real-time detection and disruption of Sharp-Wave Ripples (SWR) ripples
in a novel spatial-learning task. The data in the subsequent study are derived from a single
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a. b.

c. d.

Figure 3.9: Illustrating replay events detected using hand-clustered data and real-time
online clusters built using ActiveLink (a.) Event 01, Hand-clustered, (b.) Event 01, clustered
online, (c.) Event 02, Hand-clustered, and (d.) Event 02, Clustered online.

Long-Evans rat. Two more male Long-Evans rat was used for the track data presented in
the previous sections.

Recording and Manipulation
All procedures and protocols were approved by the Institutional Animal Care and Use Com-
mittee (IACUC) at UC Berkeley. Animals were housed on a 12-hour non-inverted light
schedule. Custom micro-drives carrying 64 tetrode bundles were designed in-house using
SolidWorks and 3D printed using FormLabs2.0 and PreForm software. 32 tetrodes targeted
the left hippocampus (cannula center coordinates −2.3mm Medial-Lateral (ML) and 4.2mm
Anterior-Posterior (AP) from Bregma) while the remaining tetrodes targeted the right hip-
pocampus (cannula center coordinates 2.3mm ML and 4.2mm AP from Bregma). A con-
centric bipolar electrode (FHC Inc. CBAPC10) was located at 0.8mm ML and −1.3mm AP
from Bregma to target VHC. Surgical procedures were performed under 0.5− 2% isoflurane
in O2. Animals’ breathing rates were maintained at 60/min and body temperatures were
maintained in 35.9◦C − 37.5◦C using an electric heating pad. 0.2ml Lidocaine was injected
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Figure 3.10: Effect of Ventral Hippocampal Commisure (VHC) stimulation on the activity
of cells in CA1.

at the incision site, and following a sterilization using Betadiene and Ethanol, an incision
was made into the scalp. The skull was levelled, cleaned and dried. 6-8 titanium screws
were bolted to the skull and reinforced with dental cement. Two stainless steel screws were
bolted to the skull over the Cerebellum and anterior of Bregma, and served as the ground
connection. Three craniotomies were made in total, one in each hemisphere to target the
hippocampus and the third to target VHC. After lowering the implant, the craniotomies
were covered with sterile bone wax and the drive was secured using dental cement. Tetrodes
was lowered to a depth of 1mm from the bottom of the cannula into the brain during the
surgery. The stimulating electrode was adjusted to a depth of 3.6mm at the end of the
surgery.

Data acquisition and processing

Over the subsequent 2− 4 weeks, electrodes were adjusted to target the Hippocampal CA1
using the methods previously discussed in Section 3.2. Raw signal was pre-amplified using
SpikeGadgets LLC 256 channel head-stage and discretized at 30, 000Hz. All recordings were
done using Trodes2.0 Beta software with a real-time communication Application Processing
Interface (API). One tetrode was positioned in the white matter based on ripple metrics
described above in Section 3.2 in each hemisphere and used as a reference for Local Field
Potential (LFP). To get the LFP, one of the 4 channels of the tetrode was selected, the
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reference voltage from the electrode in the white matter in the same hemisphere was sub-
tracted and the signal was down-sampled to 1500Hz. Spikes were detected using a 50µV
threshold detection on any of the 4 channels on a tetrode. A 40 sample section (starting
12 time-samples before the threshold cross) was isolated on all the channels for waveform
analysis and clustering.

Electrical Stimulation

ActiveLink was used to calibrate the electrical stimulation delivered to VHC to silence neural
activity. Prior to starting an experiment, the animal was placed in a sleep box. Two different
protocols were used to select the amplitude of stimulation current. ActiveLink communicated
with an Arduino to trigger electrical stimulation at 0.2Hz. Each stimulation consisted of a
biphasic electrical pulse, 400µs long with a 50% duty cycle. The amplitude of the pulse was
started at 40µA and we checked for a visible depression in the neural activity. If no depression
was observed, the current amplitude was increased incrementally to 200µA. However, if none
of the current amplitudes produced a visible depression in neural activity, the stimulating
electrode was adjusted in depth, and the calibration process was repeated. The immediate
effect of electrical stimulation in the VHC is illustrated in Fig. 3.10, showing the activity of
a population of neurons in the Hippocampus. Here, immediately after electrical current was
delivered into the VHC (marked by black triangles at the top and bottom of the figure), no
spikes were observed from virtually all cells for ∼ 100ms.

Experiment design
Our experimental setup consists of a 180cm×180cm arena surrounded by 3ft high enclosure
as illustrated in Figs. 3.11 and 3.12. Animals were food-restricted to maintain over 85% of
their free-feeding body weight received extensive pre-training on the task. Early in training,
multiple reward ports were baited in each quadrant of the maze to encourage exploration.
The number of reward ports simultaneously baited was reduced to 1 over multiple days to
shape the behavior. An extended platform was used to transfer the animal in and out of the
maze. As a part of pre-training, the animal was placed on and rewarded with food pellets
on the platform.

Each experimental block consisted of 4 entries into the maze - for each of these entries,
a single reward port was baited with reward (see Fig. 3.11 - red circle marks the current
goal location). The rewarded port was held the same for all 4 trials within a block, and
a new port was pseudo-randomly selected for every new experimental block. An ITI of 20
minutes was enforced between Trial 1 (first exposure to a new reward location) and Trial
2 (subsequent re-discovery of the reward at the same location) based on delay-dependent
learning effects reported previously in the literature [142]. Trials 2, 3, and 4 were separated
by a 3 minute ITI. The starting location animal on each trial was pseudo-randomly selected
to be in one of the 3 quadrants that the reward port was not located in (Fig. 3.11 - green
squares mark the starting location for the trial within the block). During the ITI, the animal
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Figure 3.11: Block and trial structure for the learning task. Each training block consisted
of 4 learning trials separated by an Inter-Trial Interval (ITI) as shown. Consecutive blocks
were separated by 1−3 minutes. The maze and reward ports were wiped with a 70% Ethanol
solution to clear odor-cues that might mark the current goal.

was removed from the maze and placed on a sleep platform outside the maze. The maze
and currently selected reward port were cleaned with a 70% ethanol solution to discourage
the use of an odor-based strategy for navigating to the goal. Blocks were pseudo-randomly
chosen to be CON (no stimulation) or SWR (detection and disruption of SWR events). On
SWR disruption blocks, all SWR events were disrupted starting at the beginning of Trial
1 and until the animal was removed from the maze at the end of Trial 4. Since multiple
training blocks were performed on the same day, we also analyzed Trial 0 (last trial of the
preceding block, unless a block was the first in the day) and Probe (First trial on the next
block in the day, if any). The analysis of the probe block was limited to the first time that
the animal reached the goal location. Notably, on virtually all blocks, animals checked the
port that had been baited in the previous block even though there was no reward present.
Consecutive blocks were separated by a short (1− 3 minute) interval to clean the maze and
reconfigure the stimulation protocol.

Behavioral Results
Fig. 3.13 illustrates a typical experimental block in the aforementioned task. In the last trial
of the previous block (T0, Fig. 3.13a.), the animal received a reward at the location marked
by the red circle (top-left). Subsequently, the reward location was changed at the start of the
new block (Figs. 3.13b. to 3.13e.). Notice that on entering the maze, the animal qualitatively
spent a substantial amount of time searching near the previous goal location before finally
stumbling on the newly baited reward port. On subsequent trials (Trial 2 - Fig. 3.13c.,
Trial 3 - Fig. 3.13d., and Trial 4 - Fig. 3.13e.), the animal took more directed routes to the
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Figure 3.12: Configuration of the environment, reward locations and stimulation protocol
for disruption blocks.

goal location, exhibiting single trial learning. After Trial 4, the reward port was switched
again, and the animals was re-introduced into the maze at a pseudo-randomly chosen starting
location (Fig. 3.13f.). The time and path to the first approach to the previously rewarded
port were noted (as shown in Fig. 3.13f.).

In order to quantify the learning rate over trials, we measured the latency from the start
of the trial to reach the reward port for all trials. Fig. 3.14a. shows this latency over control
(nC = 12 blocks) and experimental (nE = 15 blocks) conditions. Using 2-way ANalysis Of
VAriance (ANOVA), we found a significant effect of Trial (F4 = 10.5, p = 2.4 × 10−7) on
latency to reward. There was no significant effect of the group on latency (F1 = 2.6× 10−4,
p = 0.99). The interaction between animal group and trial was also not significant (F4 = 0.36,
p = 0.84). Latency to the rewarded location on Trial 2 was not significantly different across
groups (Two-tailed Wilcoxon rank-sum test statistic = 208, p = 0.23). Prior literature has
also shown that latency saving, as paired difference between the latency in a trial compared
to trail 1 from the same learning block, is an effective marker of learning in spatial navigation
tasks [142]. We measured the savings in latency over our experimental blocks (Fig. 3.14b.).
2-way ANOVA revealed no significant effect of trial (F3 = 1.8 × 10−3, p = 0.99), group
(F1 = 0.14, p = 0.71) or interaction between the two (F3 = 0.14, p = 0.94). Two-tailed
Wilcoxon rank-sum test between latency savings on Trial 2 between control and experimental
groups show no significant difference (statistic = 225, p = 0.37).

Since raw latency to the goal did not reveal a significant effect of SWR disruption, in
order to better quantify behavior, we measured other metrics for performance on the task.
Animal’s running speed was measured over trials as shown in Fig. 3.15a. 2-Way ANOVA with
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Figure 3.13: Spatial trajectories for a single learning block. Blue: Trajectory to the first
approach to the goal location. Gray: Subsequent path taken after reaching the goal. Green
Circle: Start location. Red Circle: Goal in the learning block. (a.)Trajectory from previous
learning block. (b.)-(e.) Learning trajectories over 4 trials with the new goal location. (f.)
Learning trajectory over the next block with a new goal location. Goal from the previous
learning block has been marked in red.
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Figure 3.14: (a.) Latency to goal over trials in a learning block compared between groups.
(b.) Measuring savings in latency paired to Trial 1 of the same learning block.
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Figure 3.15: Measuring spatial trajectories taken by the animal over learning trials. (a.)
Average running speed during the time spent by the animal exploring the maze in search of
food. (b.) Total distance covered by the animal in a trial before reaching the reward. (c.)
Inefficiency in routing to the goal (total running distance normalized by the optimal path
from the starting location) (d.) Improvement in routing after Trial 1.

nC = 12 control blocks and nE = 15 experimental blocks showed no significant differences
in running speed between groups (F1 = 2.7× 10−2, p = 0.87). There was a trend in that the
running speed increased over trials, however the effect of trials on running speed was not
statistically significant (F4 = 2.0, p = 0.09). We did not observe a significant interaction
between group and trials (F4 = 1.7, p = 0.15).

The total path length has been shown in Fig. 3.15b.. Similar to the analysis of latency,
2-Way ANOVA showed a strong effect of trial on the total path length (F4 = 12.7, p =
1.1 × 10−8). However, the effect of group was not significant (F1 = 3.3 × 10−2, p = 0.86).
The interaction between group and trial was not significant either (F4 = 0.66, p = 0.62). We
did, however, observe a trend in the total path length to be higher in the experimental blocks
when compared to controls on Trial 2 (One-tailed Wilcoxon rank-sum test statistic = 178,
p = 7.4 × 10−2). This trend was not observed on Trial 1 when the animals had not learnt
the reward location (statistic = 240, p = 0.50), and on Trial 3 after the animals had been
re-exposed to reward well in Trial 2 (statistic = 280, p = 0.83).
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Figure 3.16: Behavioral measures when the reward location was marked with a visual cue.
(a.) Latency from start of a trial to the time the animal first reached the reward port when
the port was not marked with a visual cue (Control) or otherwise. (b.) Total path length
from the start of the to arrival at goal.

Because of the variability in the starting location, we computed the optimality of the
path taken by the animal as the ratio of the path length and the optimal path to the goal
from the animal’s starting location in any given trial. This measure of path optimality has
been reported in Fig. 3.15c.. Statistical measures of path-optimality were similar to those
observed for total path length. A 2-way ANOVA suggested a strong dependence of path-
optimality on trial (F4 = 8.3, p = 6.0 × 10−6). Group did not have a significant effect on
path-optimality (F1 = 7.1 × 10−2, p = 0.79), and the interaction between group and trials
was not significant (F4 = 0.46, p = 0.77). Statistical comparisons within trials showed a
trend in lower path-optimality in the experimental group when compared to controls for
Trial 2 (One-tailed Wilcoxon rank-sum test statistic = 176, p = 6.7× 10−2). Similar to the
statistical measures for total path length, we did not see this trend on Trial 1 (One-tailed
Wilcoxon rank-sum test statistic = 239, p = 0.50) and Trial 3 (One-tailed Wilcoxon rank-
sum test statistic = 205, p = 0.21). Within a block, the change in path optimality over trial
(Trial n compared to Trial 1) is reported in Fig. 3.15d. 2-Way ANOVA show no significant
effect of group (F1 = 0.17, p = 0.68) or Trials (F3 = 3.1× 10−2, p = 0.91). The interaction
between animal group and trial was not significant (F3 = 0.18, p = 0.91). On Trial 2,
the difference in optimality savings was not significant (One-tailed Wilcoxon rank-sum test
statistic = 219, p = 0.31).

In order to ensure that the animals did not employ a search strategy based on odor or
visual cues, we performed a visually cued version of the task described previously. In a cued
block, for all 4 learning trials, an glass bottle (15cm× 6cm× 6cm) filled with a fluorescent
fabric was placed next to the reward well. Behavioral measures for this version of the task
have been reported in Fig. 3.16. Fig. 3.16a. reports a comparison of latency to goal between
the control and cued versions of the task. Latency to goal was significantly shorter in Trial
1 for the cued task when compared to the control task (One-tailed Wilcoxon rank-sum test
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nC = 20 control trials, nU = 6 cued trials, statistic = 12, p = 0.002). Total path length
to goal on Trial 1 (Fig. 3.16b.) was also significantly lower in the cued version of the task
in Trial 1 (One-tailed Wilcoxon rank-sum test nC = 20 control trials, nU = 6 cues trials,
statistic = 100, p = 0.008).
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Figure 3.17: Measuring perseverance on the previous goal on Trial 1 of the subsequent
block as a function of experimental condition (CON vs. EXP) in the current and previous
block.

One of the observations in behavioral trajectories (Fig. 3.13) was that on Trial 1 of a
learning block, animals spent time searching near the previous goal location. In Fig. 3.17, we
measured this perseverance as a function of the experimental condition in the current and
previous block. Perseverance was measured as the percentage of total time in Trial 1 spent in
a 20cm radius around the previous goal location. A 2-Way ANOVA of this measure revealed
a significant effect of the previous block type (F1 = 4.6, p = 3.9× 10−2). The current block
type did not have a significant effect on perseverance (F1 = 0.77, p = 0.39). The interaction
between current and past block type was not significant (F1 = 0.13, p = 0.72).

We found trends in our data suggesting that online SWR events aid spatial learning.
While our findings pertaining online-learning were not statistically significant, the trend in
spatial behavior could be seen across multiple behavioral metrics (path length and path-
optimality). Furthermore, these trends were observed on Trial 2 which was the first time
the animal recalled the learnt location. The same trends were not seen on Trial 1 and
Trial 3. Significant differences in behavioral performance on a visually cued version of the
task suggested that the animals did not simply rely on a trivial visual strategy to solve the
task. We also found that on subsequent learning blocks, when the reward location had been
changed, animals spent significantly more time near the previously rewarded well if SWR
events were intact in the previous block. If SWR events were disrupted in the previous
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block, animals showed a weaker memory of being rewarded at the well by spend lesser time
near it. The significant effect on subsequent recall could also imply that perseverance is a
stronger behavioral measure of spatial memory when compared to latency or path length.
Behavior is complex and the animal may have employed intelligent strategies that do not
rely on SWR based mechanisms for learning the goal location. However, the observations
made here make a strong case for the necessity of online SWR events learning spatial goals
in a familiar environment.

SWR Rebound
It has previously been reported that the disruption of SWR events during sleep leads to an
overall elevation in the rate of these events selectively following a spatial task [49]. Here,
were disrupted SWR during spatial exploration as opposed to previous work [49, 38, 50, 53]
where SWR events were disrupted in subsequent or interleaved sleep. We hypothesized that
a disruption of SWR events during the task would also lead to a rebound effect, leading
to an overall higher ripple rate in the disrupted condition when compared to controls. It
is important to note that in previous studies, the increase was measured with respect to a
delayed stimulation control [49], which we did not perform. The control condition in our
results corresponds to no electrical stimulation.
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Figure 3.18: SWR rates during different behavioral states of the task. (a.) SWR rates
from the start of a trial until the animal discovered the currently rewarded well. (b.) SWR
rates during the time spent by the animal at the reward well. (c.) SWR rates during the
rest period in the home platform following a trial on the maze. T4 has been omitted since
stimulation was stopped before placing the animal on the platform after the last trial of the
block.

In Fig. 3.18 we report the SWR rates in the three different behavioral states in our
experiment. Fig. 3.18a. reports SWR rates during the exploratory phase of the task in
each trial - starting at maze entry and until the animal reached the reward port for nC =
16 control blocks and nE = 20 experimental blocks with SWR disruption. These could
potentially include exploratory SWR events that have previously been reported [37], SWR
events during grooming, stopping periods, and stimulation delivered on movement or chewing
artifacts. A 75ms cool-off period was imposed after each stimulation which successfully
avoided stimulation based on electrical artifacts resulting from current delivery. Using 2-Way
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ANOVA, we found a significant effect of experimental group on the SWR rates (F3 = 12.0,
p = 7.1 × 10−4). There was not effect of trial (F3 = 1.0, p = 0.37) and the interaction
between group and trials was not significant (F3 = 1.4, p = 0.24). Fig. 3.18b. reports the
SWR rates specifically during the times when the animal had stopped at the reward location
for nC = 16 control blocks and nE = 20 experimental blocks with SWR disruption. During
reward consumption, a 2-way ANOVA revealed a significant effect of group on the SWR
rates (F1 = 24.5, p = 2.0 × 10−6). While the effect of trial was not significant, we saw an
increase in SWR rates over trials (F3 = 2.3, p = 0.08). The interaction between group and
trial was not significant (F3 = 0.17, p = 0.91). Fig. 3.18c. reports the SWR rates during the
ITI when the animal was taken out of the maze and placed on a sleep platform for nC = 18
control blocks and nE = 20 experimental blocks with SWR disruption. Note that SWR
disruption was active during the ITI. Using a 2-way ANOVA we found a significant effect of
experimental group on the SWR rates (F1 = 50.7, p = 1.2× 10−10). The effect of trials was
not significant (F2 = 5.3× 10−2, p = 0.95) and the interaction between trial and group was
not significant (F2 = 0.58, p = 0.56).

Despite the modest behavioral effects observed in Section 3.4, we observed a robust
increase in the rate of SWR events on the disruption blocks across behavioral states. These
findings are in line with [49], where authors observed an overall increase in SWR rates
following disruption in a sleep session following spatial learning. We add to that by assessing
SWR rates following disruption during the course of navigation. We found that online SWR
rates also increased following disruption on the task. These findings point to the importance
of SWR events in navigation, wherein their disruption causes the underlying processes to
produce more ripples than the baseline rate potentially as a compensation for the lack of
spatial information.

3.5 Discussion and Future Work
Our findings in Section 3.4 did not suggest a significant degradation in behavioral measures
during the rewarded trials. We saw trends in the data suggesting a degradation in per-
formance but the results were not statistically significant. In contrast, when we measured
performance on the next learning block when the animals spent significantly longer amount
of time exploring the maze, the animal spent more time near the goal following a con-
trol block when compared to exploration following a Sharp-Wave Ripples (SWR) disruption
block. There could be multiple reasons for our observations - Multiple navigational systems
exist in the brain and are employed in varied strategies for navigation. Early parts of the
SWR events that were not disrupted by electrical stimulation could be sufficient for providing
spatial information over a short duration. However, it is possible that when the confidence
of the animal is tested over a longer period of time, the loss of spatial memory driven by
SWR disruption drives the differences in behavior. In Section 3.4, we found a strong effect
of SWR disruption on the rate of SWR events. Disruption of SWR events elevated their
overall rate, suggesting a fast time-scale compensatory mechanism which possibly preserves
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the replay of spatial trajectories in the Hippocampus associated with SWR events.

a.

S

b.

R

Figure 3.19: (a.) Experimental schematic for testing the role of replay in learning. (b.)
Experimental schematic for testing the role of replay in planning.

Our experimental procedures lay the foundation for ongoing and future research that
could delve deeper into specific role of replays in learning and planning. With the ability to
decode replay events in real-time using techniques described in Section 3.1, and also expanded
later in Section 4.3 using machine-learning methods, we can now design experiment where
selective SWR events are disrupted contingent on the underlying spatial trajectory being
replayed. Fig. 3.19 illustrates two such experimental ideas which can inform us about the role
of replay trajectories in spatial planning and learning. Either of these paradigms follow the
experimental approach described in Section 3.4. Briefly, in each session, a novel goal location
is baited with reward. Animals are provided 4 learning trials - each trial starts at a pseudo-
randomly selected location in the environment and after reward consumption, animals are
taken out of the maze to discourage a path-integration based strategy. In Fig. 3.19a., we
consider the situation when the animal is at a reward location (red circle) and replaying
trajectories in an environment separated into two segments by a barrier. We hypothesize
that replays propagate the value of the current goal specifically along the trajectory being
replayed and interfering with replays disrupts this value propagation2. In this experiment,
we aim to selectively disrupt replays that traverse the right half of the environment. We
hypothesize that when the animal starts a new trial at the location ‘S’, the animal will
have worse performance when navigating the right half of the maze to reach the goal when
compared to the left half of the maze. In contrast, in Fig. 3.19b., we describe an experiment
to test the role of replays in spatial planning. Supposing the animal is stationary at a location
‘R’ which is not the current goal, we will selectively disrupt replays that approach a region

2The ideas around value representation in spatial navigation using a place code have been discussed in
more detail in Section 5.3.
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around the goal. If replays are involved in spatial planning, we expect this manipulation to
degrade the animals’ ability to navigate to the goal location.
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Chapter 4

Neural-Network architectures for
spatial inference using neural activity

Modern machine learning methods have made significant advancements in domains like com-
puter vision, natural language processing, genomics etc. With the consistent growth in com-
pute power delivered by Moore’s law [128], we are witnessing previously unseen improvements
in non-linear classification [74] and regression tasks [78, 57]. Specialized architectures can
make use of the computation performed in large families of these models to accelerate per-
formance at scale [68]. Multiple open-sourced libraries [1, 120, 65, 117] now support a broad
range of machine-learning algorithms allowing users to deploy complex, optimized algorithms
and models using a handful of lines of computer code.

Understanding the structure and function of brain is one of the most challenging problems
in science. While much of neuroscience research in the last century focused on isolating
cognitive function to individual brain regions and subsequently circuits, there is a need
for complexity in our models of cognition [66, 87]. Fundamental to systems neuroscience,
and therefore our understanding of the brain, is the inference of behavioral correlates from
neural activity. In the field of Brain Machine Interfaces (BMI), for example, activity of
motor neurons is used to predict motor actions [132], and subsequently, the actions of these
motor neurons can be used to for manipulate objects in the external world. Research in
spatial navigation, especially involving Entorhinal Cortex (EC) and the hippocampus relies
on inferring spatial position from neural activity [13]. In [8], neural activity from the medial
PreFrontal Cortex (mPFC) was used to predict previous and future goal choices on a delayed
spatial alternation task. The problem of inferring abstract entities from the neural code is
ubiquitous and central to our understanding of the brain as a computational unit.

An extensive study [51] discussed the applications and advantages of applying modern
machine learning methods to neural decoding in different domains. Here, were narrow down
the application of machine learning to neural networks which outperformed all other methods
in the previous study. We propose an end-to-end training methodology which can make use of
neural network architectures to address questions pertaining neural decoding in Hippocam-
pal research. We show that the networks can be trained at different temporal resolutions
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and that training the network at different resolutions allows the models to capture different
physiological phenomenon previously not shown using neural network models. Lastly, we
show that at the time-scale of decoding behavioral correlates, neural networks significantly
outperform traditional Naïve Bayes model used for decoding spatial position from hippocam-
pal activity. Recently, neural networks have also been brought into the fold of hippocampal
research and used for detection of SWR events that were discussed in detail in Chapter 3.
In [126], authors propose using neural networks as a substrate understanding the function of
the brain. For example, training an hierarchical Artificial Neural Network (ANN) on a visual
discrimination task and using the activation of the individual layers to understand mecha-
nism of visual processing. While prior models exist along these lines ([114] for instance uses
a sparse coding model to explain coding in V1), neural networks offer an end-to-end model
that can be trained using behaviorally relevant objective functions. Incorporating Neural
Network (NN) models into neuroscience, therefore, has advantages that surpass that of a
computational black-box to ease transforming the neural code into a behavioral or cognitive
measure of interest.

Modern machine-learning architectures offer a host of advantages - better infrastructure,
robust performance, scalability, and the ability to interpret latent representations which are
difficult to get from a single model. Here, we explore some of these aspects in the context of
spatial representation in the Hippocampus and demonstrate the viability of neural network
architectures as a method for inferring neural activity. In Section 4.1 we define the network
architecture as well as the Naïve Bayes model traditionally used in the field. In Section 4.2,
we compare the performance of the NN models against the traditional model. Subsequently,
we show that these models, while having a superior decoding performance at a behavioral
time-scale, can also decode replay events. Finally we show that NN models outperform
the traditional Naïve Bayes model for a wide range of recording qualities as measured by
total number of simultaneously recorded single units. The flexibility offered by NN models
will allow us to expand on the current results and offers robust solutions to problems like
cluster-less decoding [32], or even decoding spatial position from mesoscopic Local Field
Potential (LFP).

4.1 Models
First we discuss Naïve Bayes, the most commonly used models in Hippocampal research for
spatial inference. Then, we describe the neural network architectures that perform spatial
inference and methods for training and optimizing these networks.

Naïve Bayes
The Naïve Bayes model for spatial inference as previously described in [13] has been illus-
trated for a linear environment in Fig. 4.1. For a linear track, the firing rate maps for a single
cell recorded from the hippocampus are computed for the two different running directions
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Figure 4.1: Bayesian inference of spatial position in a 1-dimensional environment. (a.)
Activity of a single place cell on a linear track. (b.) Posterior probability computed using a
Naïve Bayes decoder using a 50ms decoding window.

as shown in Fig. 4.1a.. We further assume that the number of action potentials emitted by a
neuron in a given window of time follow a Poisson distribution and the parameter λ i derived
from the firing rate maps previously computed. For cell i, the probability of observing ki
spikes from the cell, given the animal’s current position is given by

pi
(
ki
∣∣∣x) = λi(x)ke−λ(x)

ki!
. (4.1)

The function λ(x) in Eq. (4.1) is the cell’s firing rate map, an example of which is shown in
Fig. 4.1a.. Further for a population of n simultaneously recorded cells, assuming that the
firing distributions for the cells are independent, we can write

p
(
~k
∣∣∣x) =

n∏
i=1

pi
(
ki
∣∣∣x) , (4.2)

where ~k is the current population firing rate vector. In order to decode position from the
current firing rate vector, we apply the Bayes’ rule and evaluate

p
(
x
∣∣∣~k) =

p
(
~k
∣∣∣x) p(x)
p
(
~k
) . (4.3)

Combining Eqs. (4.1) to (4.3), we can build a Bayesian decoder for the animal’s position
from firing rates for simultaneously recorded cells.

p
(
x
∣∣∣~k) =

n∏
i=1

(
λi(x)keλ(x)

ki!

)
p(x)
p
(
~k
) . (4.4)
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In the modeling equation described in Eq. (4.4), p(x) is the prior on the probability dis-
tribution. We implemented this model in MATLAB with a uniform prior to estimate the
animal’s position from its population firing rate. Fig. 4.1b. shows the decoded posterior for
a single running bout in the recorded session using a 50ms decoding window1.

Neural Network Architecture
Neural Networks comprise of hierarchical layer of computation units (see Fig. 4.2b. for an
example). The hidden units perform a weighted summation of the inputs with a bias term.

z = Wx + b (4.5)

Each hidden layer is followed by a non-linear Rectified Linear Unit (ReLU).

a = ReLU (z) (4.6)
= max (z, 0) (4.7)

The dense layers are followed by dropout regularization [141] to enforce a robust repre-
sentation in the hidden layers. To avoid over-fitting, we incorporate weight-decay (L2-
regularization) [75] to the hidden layers of the network. The output layer computes a softmax
over the input variables.

s (ai) = eai∑
i eai

(4.8)

We trained the network to minimize the Kullback–Leible (KL) divergence loss between the
predicted and prescribed probabilities over space. The KL divergence loss is defined for
discrete probability distributions P and Q defined, in this case, over the space of position
bins ξ as

L (P|Q) =
∑
x∈ξ

P (x) (log (P(x))− log (Q(x))) . (4.9)

This represents the directed divergence between the two probability distributions P and Q.
Optimization over the loss function is performed using the Adam optimizer [71].

We implemented the neural network model in Python using TensorFlow2.0 [1] and
Keras [25]. Fig. 4.2 highlights the overall architecture of the neural network used for decod-
ing spatial position from neural activity. A typical 15 minute long recording session (typical
behavior from a session shown in Fig. 4.2a.) was divided up in 70% train, 20% validation and
10% test sets which were non-overlapping in time. Notably, because place fields of individual
cells are known to change over experience [93], later sections of the session were also used
for training (first 40% and last 30% of the data constituted the training set). Since neural
activity is known to represent non-local positions during periods of awake-rest [47, 123], time
periods when the animal ran over 10cm/s were considered for decoding analysis. The train,
test and validation sets were then split into 100 or 200ms time-bins for behavioral decoding.

1The firing rate map used to reconstruct this posterior omitted the decoded lap.
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Figure 4.2: Network architecture and data pre-processing. (a.) Illustration of a raw
position trace. The dataset was broken down in train (70%), test (10%), and validate
(20%) sets. (b.) Architecture of a 2-layer Neural Network used for directional decoding of
population firing vectors. A hidden layer comprised of 256 units and output layer comprised
of 114 directional place bins were used to decode animal’s position from 185 single units.
(c.) Sample training data (top) and labels (bottom) used for training the network.

Consecutive time-bins were offset by 25ms for data-augmentation. Note that overlapping
bins were expressly not split across train, test and validation sets by first splitting the raw
data into these set and subsequently binning the data into time bins. Firing rates were
z-scored to normalize aggregate firing rate differences across cells (Fig. 4.2c., top, illustrates
the z-scored firing rates of 185 simultaneously recorded cells in the session).

It is known that place cells exhibit directionality on a linear track [34]. In order to
capture this directional sensitivity in the model, the training labels capture the directional
position. Raw position was first binned into 2cm bins. For a 120cm track, this would
produce 60 position bins. Directionality was incorporated by first doubling the number of
position bins and allocating half of the bins for the ‘up’ running direction and the other
half for the ‘down’ running direction. Since place cells typically span a larger portion of the
environment than the position bin used here [107, 93], firing rates of cells, and in turn, the
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entire population, are correlated at nearby locations. We incorporated this aspect into the
model by smoothing training labels over position bins, finally training the model to compute
a probability distribution over the directional space as shown in Fig. 4.2c., bottom.

We trained fully-connected, 2-layer neural networks to predict a probability distribution
over space from the population firing rates as shown in Fig. 4.2b.2. The first hidden layer
consisted of 256 hidden units, which performed a weighted summation of the z-scored firing
rates at the input layer with bias followed by ReLU activation described in Eq. (4.7). Net-
works with more than 2-layers had a 20% reduction the number of hidden units with every
subsequent layer. The output layer’s size was determined by the total number of position bins
being decoded. This layer also performed a weighted summation of the previous layer’s acti-
vation with bias, and followed it with softmax activation described in Eq. (4.8). Each dense
layer was followed by a Dropout layer as a means for regularization [141] when training the
network. Further, the learnt weights in each layer were also subject to an L2-regularization
loss [75], a method also known as weight-decay in the literature.

Fig. 4.3 illustrates the metrics collected when training the model over a single recording
session. In Fig. 4.3a., the loss function has been illustrated on the training and validation
sets over the course of training the network on a single session over 30 epochs. Since the loss
function in this case doesn’t capture the accuracy in prediction animal’s position directly,
we calculate that as the MAE as follows:

MAE(t) =
∑
x∈ξ
|xQm(x)− xtrue|. (4.10)

Here, Qm(x) is the posterior probability distribution over the map m, which is chosen to the
the map with higher total posterior using

m = arg max
d

∑
x∈ξ

Qd(x), (4.11)

Therefore the map with a higher total probability is selected first, and then the Center
of Mass (CoM) is calculated over the probability distribution in that map as described in
Eq. (4.10) The MAE over network training is shown in Fig. 4.3b. Note that even though the
network is not optimizing the decoded location of the animal’s position directly, it decreases
monotonically over the course of training for both the training and validation sets. Finally,
we show the decoded probability averaged across the two maps in Fig. 4.3c. The probability
distribution calculated by the model in this case closely follows the animal’s true position.
We next quantify this accuracy and compare it against the accuracy of traditional Naïve
Bayes model.
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Figure 4.3: Training the network. (a.) KL Divergence loss for training and validation sets
over training epochs. (b.) Mean Absolute Error (MAE) measured for training and validation
sets over the course of training. (c.) Illustration of probability distribution over position
bins learned by the network on the test set.

4.2 Results
Fig. 4.4 shows decoding performance of the NN model (Fig. 4.4b. showing decoding for a
single run from one end of the track to the other, decoding window T = 200ms, window
slide w = 2ms) and compares it against Naïve Bayes (Fig. 4.4a. decoding for the same lap
as shown in Fig. 4.4b.). In both Figs. 4.4a. and 4.4b., the colorbar shows the posterior
probability. Qualitatively, the Naïve Bayes models is more confident and often incorrect
in predicting the animal’s position. The NN model on the other hand, effectively captures
the variability in the position because of the smoothed training labels. The point estimate
computed as the CoM for the NN model is show in Fig. 4.4c. The prediction error between
the CoM and average true position in the decoding bin is shown in Fig. 4.4d.. Comparing the
decoding error, we found it to be significantly lower for the NN model (One-tailed Wilcoxon
rank-sum test nB = 1269 decoded bins with Naïve Bayes, nN = 4962 decoded bins with the

2The neural-network sketch was adapted from https://tex.stackexchange.com/questions/365404/
tikz-neural-network-draw-notation.

https://tex.stackexchange.com/questions/365404/tikz-neural-network-draw-notation
https://tex.stackexchange.com/questions/365404/tikz-neural-network-draw-notation
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Figure 4.4: Comparing decoding accuracy of Neural Networks with traditional Naive
Bayes decoder. (a.) Decoding a single lap on a linear track using Naive Bayes decoder. (b.)
Decoding the same lap as in (a.), but using a Neural Network (NN) decoder. (c.) Calculated
Center of Mass (CoM) from posterior probability over the test set for NN decoder. (d.)
Statistical comparison between Naive Bayes (nB = 1269 decoded bins) and NN decoder
(nN = 4962 decoded bins, one-tailed Wilcoxon rank-sum test statistic = 2.7 × 106, p =
3.5× 10−15.

NN model, p = 3.5 × 10−15). The difference in number of decoded bins largely comes from
the way the data was split into train, test and validation sets.

In Fig. 4.5, we discuss the tuning of hyper-parameters for the network architecture. The
depth of the network (number of hidden layers with 256 units in the first hidden layer -
Figs. 4.5a. and 4.5b.) and the width of the network (number of hidden units in a 2-layer
NN - Figs. 4.5c. and 4.5d.) were assessed. The number of epochs were fixed to 25 epochs for
training the network on each session3. The validation set was used for measuring performance
for hyper-parameter tuning. Networks were pseudo-randomly initialized and trained 25 times
for each training session and aggregate performance was reported in Fig. 4.5. Note that the

3A more fair approach for measuring generalization accuracy would be to train the networks to the same
training loss, however, we opted to allow similar amounts of training time instead here.
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Figure 4.5: Hyper-parameter tuning and network optimization. (a.) Kullback–Leible (KL)
divergence loss for training and validation sets when varying the number of NN layers. (b.)
Mean Absolute Error (MAE) for training and validation sets when varying the number of
NN layers. (c.) KL divergence loss for training and validation sets when varying the width
of the hidden layer in a 2-layer NN. (d.) MAE for training and validation sets when varying
the width of the hidden layer in a 2-layer NN.

networks were trained to optimize the loss Figs. 4.5a. and 4.5c.. The improvement in MAE
was simply a measurement here and not used in the training procedure.

Introducing a hidden layer (2-layer vs. 1-layer network which performs multi-class logistic-
regression - Fig. 4.5d.) led to a significant reduction in the MAE for both the training set
(One-tailed Wilcoxon rank-sum test n = 125 samples, statistic = 3.2× 103, p = 1.2× 10−28)
and the validation set (One-tailed Wilcoxon rank-sum test n = 125 samples, statistic =
7.1×103, p = 1.8×10−8). Increasing the network depth further did not improve the network
performance. Allowing greater number of epochs for deeper networks lowered both the train-
ing and validation errors but has not been quantified. Tuning the number of hidden units
in a 2-layer NN model, we found a near-monotonic improvement in network performance as
more and more units were added to the hidden layer. However, the returns diminished after
∼ 128 hidden units for the population recorded in our data. These network sizes may vary
depending on the neural recordings that the networks are trained on.
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Figure 4.6: Hidden unit activation in the NN architecture.

Fig. 4.6 shows the activation of 16 hidden units on the validation data set from a single
session. We observed that the hidden units were highly tuned to the directional position
of the animal on the track. The spatial and directional selectivity of the hidden units seen
in Fig. 4.6 is qualitatively higher than what is observed for a typical place cells in the
Hippocampus. However, further quantification is required to understand what hidden units
in the network learn and how, if at all, it is different from place coding typically seen in
hippocampal cells.

4.3 Decoding Replays with Neural Networks
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Figure 4.7: Detection of replay event using Neural Network (NN) architecture with different
network depths (a.) 1-Layer NN, (b.) 3-Layer NN, (c.) 5-Layer NN.

Unlike traditional Bayesian inference for spatial decoding, where place fields constructed
at a behavioral time-scale can directly be used for decoding replay events by re-scaling the
firing rates to the appropriate decoding window, the neural-networks need to be re-trained
with the decoding window of interest. For decoding replays, the run-time data was binned
into 20ms decoding windows shifted by 2ms. Time periods designated as replays detected
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Figure 4.8: Detection of replay event using 2-layer NN architecture with different network
widths: (a.) 32 hidden units, (b.) 128 hidden units, (c.) 512 hidden units.

using the Naïve Bayes decoder were isolated and analyzed in the replay posterior4. Figs. 4.7
and 4.8 show a single replay event decoding using a wide range of hyper-parameters. While
there were qualitative changes in the posterior-probability, the event map and directionality
could be correctly identified across the board.

We measured the agreement between replays detected using the Naïve Bayes model and
the NN model. For both models, decoding was done using 50ms decoding windows shifted
by 5ms. Two metrics were used for comparing detection of replays using the models - (i) The
map with overall higher total posterior over the course of the replay (see Eq. (4.11)); and
(ii) Sign of weighted-correlation of the total posterior. Weighted correlation was calculated
as previously described in [163]:

m(x; w) =

M∑
i=1

N∑
j=1

wijxi

M∑
i=1

N∑
j=1

wij

, (4.12)

cov(x,y; w) =

M∑
i=1

N∑
j=1

wij (xi −m(x; w)) (yj −m(y; w))
M∑
i=1

N∑
j=1

wij

, (4.13)

corr(x,y; w) = cov (x,y; w)√
cov(x,x,w) · cov(y,y,w)

. (4.14)

In the computation of Weighted Correlation (WC) of a replay event described in Eq. (4.14),
xi is the ith time bin out of a total of M bins and yj is the jth position bin out of a total of
N position bins. wij is the posterior probability at the jth position bin at the ith time points
in the replay. A replay traversing the map in the ‘up’ direction (for example Fig. 4.8a.)
will have a positive WC, whereas a replay traversing a map in ‘down’ direction will have a
negative WC. Both the map being replayed and the sign of WC deduced from the replay

4Events were identified as peaks in Sharp-Wave Ripples (SWR) power and event end-points were de-
termined by identifying time points where ripple power fell to 1-STD over baseline on either sides of peak
power.
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Figure 4.9: Agreement on replay metrics between Naïve Bayes and NN models over the
six recorded sessions.

event showed high agreement between the NN model and Naïve Bayes as shown in Fig. 4.9
- Map accuracy (mean±std) 81± 11%, Sign accuracy 75± 7%.

4.4 Down-sampling Performance
In order to further stress the models, we down-sampled the cells simultaneously recorded
within a single session and used the down-sampled population for spatial inference. For each
of the recorded sessions and a down-sampled population target say p, p cells were randomly
selected from the population of recorded cells (ranging in 150 − 200 simultaneously cells in
individual sessions). The selected cells were used to build the place maps for the Naïve Bayes
decoder and to train the neural network for the Neural Network (NN) model. The held out
data (test-set) was used to measure decoding performance for either models. This procedure
was repeated 25 times and the aggregate performance measures were reported in Fig. 4.10.

Statistical tests comparing the performance of the two models have been reported in
Table 4.1. For cell counts as low as 50 (which amounts of ∼ 25% of the recorded population
for some sessions), the NN model outperformed Naïve Bayes. When the cell counts were
lowered to 25, the difference in performance between the two models was not statistically
significant. These findings suggest that NN models are more robust for decoding spatial
position from neural activity from place cells, and as the number of simultaneously recorded
cells increases, these models will continue to outperform the existing methods for analysis of
neural activity.
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Figure 4.10: Comparing performance of tradition Naïve Bayes model again Neural-
Networks with a down-sampled cell population. (a.) 50 Cells (b.) 75 Cells (c.) 100 Cells
(d.) 125 Cells

Cell Count Test-Statistic P-Value
25 1.1× 104 0.99
50 6.1× 103 1.5× 10−3

75 4.6× 103 1.5× 10−8

100 5.4× 103 9.2× 10−6

125 3.8× 103 7.4× 10−13

Table 4.1: One-tailed Mann-Whitney U test statistics comparing the performance of Naïve Bayes decoder
against neural network for different cell counts nC = 25 random cell population selection over nS = 5 sessions
for a total of n = 125 data-samples per comparison.

4.5 Discussion
Here, we have described a novel approach for designing and training neural networks for infer-
ring spatial position from neural data that was electrically recorded from rodents. At longer
decoding time-scales, we showed that Neural Network (NN) models outperform the tradi-
tional Naïve Bayes model used for spatial decoding. Further, we showed that on training the
network at a shorter time-scale on behavioral (run) data, it generalizes to time-compressed
replay events that occur during restfulness. Despite the time-compression of neural activity
during replay events, networks generalized to those representations that they had never been
trained or optimized for. We showed that these events can be effectively decoded for a wide
range of hyper-parameters, suggesting that fine grained network tuning is not required for the
adoption of neural networks into neural decoding in this context. Our findings suggest that
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neural network models have exciting potential for inferring high resolution recordings from
the brain, and that as the scale of neural recordings expands, modern machine learning mod-
els might excel at learning underlying representations in the data better than conventional
models that are presently used.

While it is possible that the improved performance of NN model for behavioral time-scale
decoding discussed here results from a difference in model size, models with fewer parameters
(Fig. 4.5) also showed good decoding performance. Moreover, there is a fundamental differ-
ence between the Naïve Bayes decoder and the NN decoder which could potentially account
for the difference in performance. It is well known that firing patterns of different cells in the
hippocampus vary in the nature of spatial information contained within them. For example,
there is a systematic variation in the spatial tuning curves along the longitudinal axis of
the hippocampus [69, 72]. Furthermore, electrical recordings can include both pyramidal
cells and inter-neurons. While inter-neuron firing contains spatial information that could be
useful for decoding, the firing patterns of inter-neurons are characteristically different from
Pyramidal cells [39]. Within the Naïve Bayes model, the Poisson distribution assumption is
highly sensitive to the baseline firing rate of a cell, allocating higher weights to cells with
higher firing rates. The model doesn’t have a way of allocating weights to individual cells
based on their ability to capture the animals’ position. The NN model on the other hand,
utilizes back-propagation to allocate different weights to different cell activities based on
their ability to predict the animal’s position.

Another fundamental question that remains to be answered pertains to the meaning of
a better decoder in the context of hippocampal replay. In the absence of a ground truth for
a replay, often arbitrary thresholds are used to enforce continuity and directionality among
other constraints to establish an event as a replay. Here, we have been able to ascertain
that there is an agreement between the Naïve Bayes decoder and the NN model on these
properties. However, if replay were to exist on a continuum of these properties, as illustrated
by analysis of all spatial trajectories observed during immobility periods [144], it is possible
that the flexibility offered by the NN model makes it a better decoder for studying replays.

Abstract models that do not rely on an explicit behavioral model of neural activity allow
analyses to expand into informative signals that are not well structured. While the rate
code is more commonly believed to be the way information is represented in brain, there is
evidence of oscillatory phase being recruited to represent information in the brain. Recently,
it was shown that unfolding the theta phase at different points in the hippocampus can
yield a spatial decoded that relies solely on the local oscillation phase [2]. It is possible
to borrow architectures from computer vision [74] and natural language processing [60] to
construct an architecture that can learn oscillatory features directly from the Local Field
Potential (LFP) signal. LFP-based decoding models also raise the possibility of learning
representation that can generalize across different sessions within the same animal because
of lower variability in the LFP, or also perhaps, across different animals if we can learn
general spectro-temporal patterns that generalize well across individuals. Neural networks
provide a more suitable framework for learning such patterns. Finally, they offer a structure
for a multi-modal decoder incorporating spiking, LFP, and imaging among a wide range of
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signals for decoding neural activity.
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Chapter 5

Conclusion

In this dissertation, we’ve touched on three different aspects of the representation of space in
brain. We first assessed the anatomical profile of theta and gamma oscillations in Chapter 2,
finding that gamma oscillations are synchronized in the hippocampus and can potentially act
as a synchronizing signal across different spatial scales of representation. Then, in Chapter 3,
we described the tools and methods that are necessary to collect data from large populations
of place cells in the Hippocampus. We built a pipeline from the ground up for processing and
visualizing neural data in real-time and delivering closed-loop stimulation. We applied the
closed-loop stimulation protocol to a novel spatial-learning task and found trends in learning
deficits. Finally, in Chapter 4, we proposed machine-learning solutions for inferring neural
activity at scale and showed that these methods outperform the techniques that are used
today while simultaneously generalizing to latent phenomenon that the models had never
been trained on.

5.1 Gamma Oscillations: A synchronized marker for
spatial representation

We showed that in our recordings, we could observe the anatomical traveling-wave nature of
theta within the dorsal hippocampus. While we observed that both slow and fast gamma os-
cillations were locked to theta frequency, across recording sites, there was a greater agreement
in gamma amplitude-theta phase locking if we defined an abstract global theta phase, than
when compared to the local theta phase which was used to compute the gamma amplitude.
This led us to believe that gamma events were globally synchronized in the Hippocampus
and the gamma power envelope did not exhibit traveling wave characteristics despite being
strongly modulated by, and locked to theta. We further tested our hypothesis by simulta-
neously recording from dorsal and intermediate hippocampus which spanned roughly half
of the dorsoventral extent of the hippocampus. We found our hypothesis to be true - theta
exhibited a much larger lag across the regions than both slow and fast gamma. Finally,
we suppressed CA3 input to CA1 to causally test the role of CA3 in driving gamma os-
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cillations in CA1. Contrary to the existing belief that CA3 selectively drives slow gamma
oscillations in CA1, we surprisingly found that both slow and fast gamma persisted in the
absence of CA3 input. Moreover, both oscillations saw graded changes when CA3 input was
suppressed commensurate with the extent of input suppression. Finally we also observed
that the global synchrony of both slow and fast gamma events degraded as CA3 input to
CA1 was suppressed.

These findings suggest interesting directions to advance the study of spatial representa-
tion in the Hippocampus. It is becoming increasingly clear that cross-frequency coupling is
a robust means of communication within and across brain regions. In this context, there is
prior evidence suggesting gamma synchrony during periods of awake-rest after important for
spatial memories [22, 122]. We reinforce and generalize this idea to the alert and ambulatory
periods and propose that gamma oscillations in the Hippocampus provide a coherent clock
that the spatial representations can be referenced to. This finding has deeper implications
about how spatial memories are inferred. While sequential activity is often studied in the
context of either theta oscillations or Sharp-Wave Ripples (SWR) events, neither of these
phenomena are synchronized across the hippocampus [119, 118]. In order to assess a sequen-
tial activation of spatial trajectory from the entire population of place cells in hippocampal
CA1, we propose the use of gamma events - both during active (theta sequences) and inac-
tive periods (replays). This brings us to the study of these sequential events in a closed-loop
experiment.

5.2 The micro-structure of neural activity
Static tuning curves have been pivotal in our understanding of how the brain forms repre-
sentations of the world. Tuning curves in the visual cortex [62], for an instance, have allowed
researchers to build a computational framework for the early layers of the visual cortex
relying on robust sparse codes [113]. Increasing evidence suggests that such static tuning
curves do not provide a complete picture of how information is represented in the brain.
Information, in fact, is often represented using dynamic codes or sequences of individual
cells or ensembles. This is not restricted to sequences in the Euclidean space that we delved
into earlier in this dissertation - In humans for examples, it was shown that memorization
of ordered word pairings depends on sequential codes [153]. The origin, structure and func-
tion of such sequential codes is not well understood and stands to deliver deep insights into
information processing in the brain.

Interestingly, these sequential codes are often accompanied with oscillations in the Local
Field Potential (LFP). Replay of word-pairing codes in the aforementioned study, for ex-
ample, were accompanied with Sharp-Wave Ripples (SWR) events. In rodents, this micro-
structure is seen both during restful periods as replays accompanied with SWR events [47],
and during running bouts as theta sequences [46]. Importantly, oscillations frequently do
not generalize across species. In bats, for example, theta oscillations are not observed [165].
SWR, on the other hand, appear invariant across species and have been reported in ro-
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dents [17, 47, 64, 30], non-human primates [81, 63] and humans [105]. Irrespective of the
species specific oscillatory traits, they have one major advantage over the direct study of
single-unit activity - Oscillatory activity is easier to acquire and assess. Designing closed-
loop experiments around oscillatory phenomena allows us to tap into the underlying sequen-
tial codes without having to explicitly record them. It also provides a rare opportunity to
translate our understanding into clinical applications. Our behavioral study in Chapter 3
suggests a role for SWR events in online spatial-learning. While some of our results were
not conclusive statistically, and the results came from a single animal, we observed trends in
the behavioral measures suggesting that SWR events are needed for learning a novel spatial
goal in a familiar environment. In the future, we propose combining our prior findings and
designing closed-loop experiments centered on gamma-activity to be better able to target
events that are synchronized across the entire hippocampus.

As our ability to gather information from the brain improves, we will reach the state where
intelligent algorithms for extracting information from neural recordings become a necessity.
Modern machine learning methods have had major success in previously arduous problems
like computer vision, natural language processing, and generative modeling to name a few [78,
57]. Within this context, neural networks have been particularly successful. Further, existing
open-source machine-learning frameworks are both efficient and scalable [1, 117, 65]. We have
shown that neural-networks can be deployed in neuroscience to improve the quantitative
performance of decoding models in Chapter 4. The ability of neural networks to learn
patterns from data open the gateway for models that take in raw data and produce behavioral
correlates needed for analytics and closed-loop processes like Brain Machine Interfaces (BMI).

5.3 A model for spatial navigation
Here we discuss a model-free Reinforcement Learning (RL) framework to understand how
place cells could be used for making decisions in the spatial tasks previously discussed in
Chapter 3. The model is principally based on learning a value representation in an environ-
ment based on reward contingencies. While this is discussed in detail in subsequent sections,
the key idea here is that spatial tuning curves of place cells can serve as basis functions,
which can then be weighed to learn a value function over space.

Value Learning
Consider a state-transition system with a set of states S. The value function is defined over
the state variables as the discounted, expected long-term reward for any state that the agent
is currently in. Mathematically, the value function at the current state s(t) is given by

V π(s) = r(s(t)) +
∞∑
i=0

(
γs(t+ 1) + . . . γis(t+ i)

)
. (5.1)
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Figure 5.1: Schematic of typical behavioral trajectories over the course of learning in a
spatial navigation task. (a.) Typical trajectory before the goal location has been learned.
(b.) Illustration of a behavrioal trajectory after the goal location has been learnt.

Here, γ is the discount factor and r(s) is the reward assigned to the state s. The state
transitions for the agent depend on the policy π that the agent applies. One of the popular
methods for learning the state-value function V π under the policy π is Temporal-Difference
(TD) Learning. Under TD Learning, the estimated state-value function V̂ π is updated in an
iterative manner using

V (s)← V (s) + α (r(s) + γV (s′)− V (s)) , (5.2)

assuming that as a result of the current action, the agent transitioned from state s to s′ and
earned a reward r(s). Within this framework, a learning-rate hyperparameter α is also used.

Q(st, at)← Q(st, at) + α
(
rt + γmax

a
Q(st+1, at)−Q(st, a)

)
(5.3)

As opposed to learning the value function defined in Section 5.3 explicitly, we instead work
with the q-learning framework. The policy (Q (st, at)), which is a function over state-action
pairs is learnt as the agent navigates the environment..

Actor-Critic Model
We now explore an actor-critic model for goal-oriented spatial navigation, originally de-
scribed in [45]. Computer code for this work is publicly available at https://github.com/
architgupta93/RL.Hippocampus. Our agent explores a 2-dimensional maze in search of a
single reward location as shown in Fig. 5.5a.. Synthetic place cells reflect the animal’s cur-
rent position using a firing rate map that follows a Gaussian distribution around a preferred

https://github.com/architgupta93/RL.Hippocampus
https://github.com/architgupta93/RL.Hippocampus
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Figure 5.2: (a.) Model definition for an actor with uses a weighted combination of place-
cell activity to produce directed movement in the maze. (b.) Model definition for a critic
which combines weighted place cell activity with reward information to update the animal’s
navigational policy.

firing location. Consider cell i with a preferred firing location pi. The instantaneous firing
rate of this cell at animal’s current location (or state) s is given by

fi (s) = mfr exp
(
‖s−pi‖

2

2σ2

)
. (5.4)

In Eq. (5.4), mfr represents the mean firing rate of a cell and was set to 0.5Hz, the variance σ
was set such that place fields covered ∼ 5% of the environment. The agent’s current location
fully defined its state s, and at any such state, the agent chose between 4 possible directional
actions, namely (N,S,E,W ) using a weighted combination of the firing rates as shown in
Fig. 5.2a..

aj (s) =
∑
i

zjifi (s) . (5.5)

Here aj represents the activation for the four directional actions (N, E, S, W), and zji repre-
sents the contribution of cell i to action j. In order to incorporate the observed momentum
in behavioral trajectories, the most recently selected action was up-weighted by a momentum
factor set in (1.1, 2.0). Actions were selected using a softmax function from the activation
aj such that the probability pj of selecting the action j is given by

pj = exp (2aj)∑
m

exp (2am) (5.6)

Near the edge of the maze, or an obstructing wall, the set of actions is restricted to the ones
that the agent can legally take. The critic model, shown in Fig. 5.2b., similarly computed
a weighted summation of the firing rates to estimate the value of the current state. Actor
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Figure 5.3: (a.) Trajectory for agent (blue circle marks start, red square marks trajectory
end and green circle marks the reward) on Trial 2 in the current configuration. (b.) Spatial
trajectory on the same configuration as in (a.), but for Trial 40. (c.) Value representation
learnt by the critic model using a weighted combination of the firing rate maps described in
Eq. (5.4).

and Critic were simultaneously learnt using a variation of TD learning described in detail
in [45]. The agent traded-off a greedy exploitation policy and an exploration policy using a
probabilistic selection of the actions weighed by the expected discounted long-term reward for
selecting the action. In Fig. 5.3 we illustrate how our agent learnt to traverse an environment
with barriers to a fixed goal location over learning trials. This was a square 6m × 6m
environment with two barriers bisecting the arena separated by a small opening. Fig. 5.3a.
illustrates the trajectory of the agent early in learning a novel goal configuration (Trial
2). Notice that the trajectory is not directed to the goal and similar to our experimental
observations in Section 3.4, the agent explored unrewarded parts of the environment before
reaching the goal location. Later in learning, as shown in Fig. 5.3b., from a similar starting
location, the agent traced a direct path to the goal. Fig. 5.3c. shows the value representation
learnt by the critic model inside the maze which captures both the the reward structure (high
value near the goal) as well as the environmental structure (low value near the barriers). In
order to further quantify the agent’s behavior and compare these data with the experimental
observations in Section 3.4, we measured the agent’s latency to goal in Fig. 5.4.

In Fig. 5.4a. we report the excess distance moved by the agent compared to an optimal
trajectory over the first 40 learning trials. After the learning trials have expired, the agent
was reintroduced to the maze with the same reward contingency, however, now the Q-
learning algorithm has stopped and the state-action values had been frozen. The navigational
performance in this phase is shown in Fig. 5.4b. where the agent consistently took near-
optimal routes to the previously learned goal location.

Fig. 5.5b. shows the value function learnt by the agent in another maze configuration
over the learning procedure. Here, reward structure is shown in Fig. 5.5a. and the value
representation learnt by the critic model is shown in Fig. 5.5b.. Again, we observe that the
learnt value function captures both the reward structure and environmental contingencies
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Figure 5.4: Distance moved by an agent simulating reward search in an open environment
using Value leaning. (a.) During learning trials. (b.) After learning.

a. b.

Figure 5.5: Reward structure and inferred value function in spatial learning in a maze. (a.)
Structure of reward information in the maze experienced by the learning agent. (b.) Value
function learned as a superposition of weighted place cell firing rates by the

by accounting for the distance the agent would have to travel from any initial location to
the reward.

While this models serves as a foundation for experimental design, a lot questions remained
to be answered about it biological plausibility as well as validity in explaining behavioral
data. Earlier, we discussed research demonstrating a unique modulation of Sharp-Wave
Ripples (SWR) events and in particular, reverse replays, by changing reward contingencies
which have been established to be linked to value representation and Reward Prediction Error
(RPE) [4]. While this models helps understand active navigation from an RL standpoint, it
remains unclear if, and how replays fit into this learning framework.

Theoretical models have explored extensions of RL models to explain the phenomenon
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of hippocampal replay. It is well known that replay trajectories aren’t simple recapitula-
tions of behavioral experiences [54], suggesting a mental simulation of spatial trajectories.
Modeling work suggests that multiple RL models can explain hippocampal replay in the
awake state [23], the simplest being a traversal of the value landscape. The Dyna family of
algorithms [145] are well suited for explaining replays because of the use of Bellman backups
for updating the policy Q in an offline state. [88] described a model incorporating the Dyna
algorithm to provide a detailed model of replay by chaining Bellman backups. One of the
key aspects of the model was selecting replay trajectories that would maximally improve the
expected return resulting from the policy of the agent following Bellman backups, called pri-
oritized replay. The authors decomposed the utility of accessing an experience, conditioned
on the target state st, into a gain term which measured the expected improvement in return
at the state st and a need term which measured the discounted expected number of visits to
the state st. The latter was computed using the successor representation [31]. It was shown
the using prioritized replays described above improved the rate of spatial learning. However,
in the absence of prioritization, or even replays altogether, similar levels of performance
could be reached by the agent, albeit at a slower rate. The interplay between the need and
gain terms helps explain several of the experimental observations. For example, forward
replays are prevalent at the start of a run, whereas, reverse replays are observed in larger
numbers at the end of a run [34]. The large gain term at the end of the run near reward
explains a prioritization of reverse replays, whereas, the dominance of the need term explains
the prominence of forward replays at the start of the run. The over-representation of goal
location (high gain) and local initiation bias of replays (high need) are similarly explained.
The model, however, falls short in explaining the biological computation of gain. Moreover,
how neural circuits within or outside the hippocampus drive these trajectories remains to be
answered.

The interplay between oscillatory phenomena and neural activity is similarly not well
understood. Recent research has also highlighted the advantages of oscillators as compu-
tational substrates [156, 155]. While oscillatory phenomenon have contributed vastly to a
mechanical understanding of computation and inter-regional communication in the brain, it
also remains unclear if and how brain employs oscillatory codes into computation. Finally, a
comprehensive theoretical model of phenomena like oscillatory interactions and replays will
allow us to design better experiments to probe their role in cognitive function.
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KL Kullback–Leible

c.i. confidence interval

RL Reinforcement Learning

TD Temporal-Difference

AP Anterior-Posterior

AP5 AnimoPhosponovaleric Acid

ML Medial-Lateral

NAc Nucleus Accumbens

PC Principal Component

PCs Principal Components

EC Entorhinal Cortex

DG Dentate Gyrus

DV Dorsal-Ventral

NN Neural Network

SR Stratum Radiatum

WC Weighted Correlation

CoM Center of Mass

BMI Brain Machine Interfaces

sos Second-Order Sections

MAE Mean Absolute Error
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CPP (6)-3-(2-Carboxypiperazin-4-yl) Propyl-1-Phosponic Acid

API Application Processing Interface

REM Rapid Eye Movements

RPE Reward Prediction Error

GFP Green Fluorescent Protein

EEG Electroencephelogram

PFR Phase-Frequency Response

CSD Current Source Density

VHC Ventral Hippocampal Commisure

LFP Local Field Potential

MRV Mean Resultant Vector

SWR Sharp-Wave Ripples

SWS Slow-Wave Sleep

ANN Artificial Neural Network

ITI Inter-Trial Interval

IEI Inter-Event Interval

MEC Medial Entorhinal Cortex

LEC Lateral Entorhinal Cortex

LTP Long-Term Potentiation

mPFC medial PreFrontal Cortex

ReLU Rectified Linear Unit

ACSF Artificial CerebroSpinal Fluid

NMDA N-Methyl-D-Aspartate

ANOVA ANalysis Of VAriance

NMDAR N-Methyl-D-Aspartate Receptor

BIRCH Balanced Iterative Reducing and Clustering using Hierarchies

FIFO First-In First-Out
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