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Abstract

We consider the stabilization of a discrete-time linear system in the presence of continuous multiplicative
observation noise. Previous work has explored time-varying periodic non-linear control approaches for this
problem. To understand the information-gathering role of control in this problem, this report explicitly
computes how the conditional density of the state of the system evolves given the observations.

The calculations suggest a novel control strategy that chooses the control equal to the maximum a-
posteriori estimate for the state. We show that as n ! 1 this control strategy does indeed drive the system
state to 0 almost surely.
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1 Introduction

1.1 Multiplicative noise control system

Throughout this work, we will consider a scalar system with state Xn 2 R at time n 2 Z�0, control Un,
observations Yn, and multiplicative noise Cn. The initial state X0 and the noises Cn are random variables
(r.v.s) with corresponding distributions DX and DC . The system is defined as follows in eq. (1).

(
Xn+1 = Xn + Un X0 ⇠ DX

Yn = CnXn Cn ⇠ DC i.i.d.
(1)

The control at a time n, Un, is chosen causally as a function of Y
n

0 := (Y0, Y1, . . . , Yn). DX and DC are
known to the controller. However, the controller does not have access to the realizations of the initial
state (X0 = x0) nor multiplicative noises (C0 = c0, C1 = c1, . . . , Cn = cn). We denote r.v. realizations in
lowercase. The objective of studying this system is to understand strategies for stabilizing the system, i.e.,
achieving limn!1 E

⇥
|Xn|2

⇤
= 0.

A secondary objective is to understand the maximal rate at which the state of the system in eq. (1) can
decay to zero. As discussed in [1, 2] this decay rate can be directly related to the maximum growth factor,
a, that can be tolerated by the system Xn+1 = aXn + Un , under the same observation model as eq. (1).

1.2 Related work

This work builds on ideas regarding the multiplicative noise control system discussed in [1]. In [1], the
significance of active estimation of Xn by leveraging controls, Un, is established. We elaborate more on this
point by examining how controls U0, U1, . . . , UN�1 alter the conditional density of the initial state given our
observations, i.e. f(X0|Y N

0 ).
It was noted in [1] that nonlinear control strategies outperform linear ones for stabilizing the system in

eq. (1).
In [2, 3] the problem of finding further control strategies that achieve better convergence rates was

addressed by training neural networks to stabilize eq. (1). Then functions were fit to the neural network
functions to see if such strategies were interpretable.

In [2] learning was useful for finding nonlinear strategies that achieved improved decay rates over the
first handcrafted proof of concept controller given in [1]. The controllers found in [2] were interpretable in
the sense of being expressible in the form of common functions. However, they were not interpretable in
precisely how they were stabilizing the system and gaining more knowledge of the state from observations
Yn. We explore this question of interpreting how the controllers in [2] are actively learning through exploring
the evolution of the maximum a-posteriori estimator of the state given observations.

2 Density Changes Under Control

2.1 Introduction

Our main goal in this section is to set up preliminaries that will allow us to show that the control strategy
based on MAP estimation of the state stabilizes the system in the next section. To do so, we examine the
qualitative e↵ects of controls, Un, on the information we have regarding our initial state, X0, or latest state
at some time N , i.e. XN , for the system in eq. (1). This information comes in the form of conditional
densities of X0 or XN given observations, Y

N

0 , from which we can derive guarantees that a MAP-based
control strategy stabilizes the system. We restrict our discussion to when X0 and Cn are drawn from a
uniform distribution on [�1, 1], i.e. DX = Unif[�1, 1] and DC = Unif[�1, 1]. The boundedness of the
densities of these distributions restricts the realizable values of X0 and XN upon conditioning. This makes
the behavior of control strategies interpretable. As we will shortly see, information regarding X0 as captured
by its joint density with observations, Y

N

0 , is equivalent to the information regarding XN conditioned on
Y

N

0 .

3



2.2 Derivation of System State Joint Densities and Conditional Densities

In this section, we derive expressions for the densities of (X0, Y
N

0 ), (XN , Y
N

0 ), Y
N

0 |X0, X0|Y N

0 , and XN |Y N

0

which will enable examining how control gives us further information through our observations. To do this,
we must first establish a lemma and some definitions.

Lemma 2.1. Let X
N

1 = (X1, . . . , XN ) and Y = g(XN

1 ) be r.v.s where g : RN ! R is a deterministic
function of X

N

1 . Then the distribution function of Y |XN

1 is:

P
�
Y  y|XN

1 = x
N

1

�
=

(
1 y � g(xN

1 )

0 y < g(xN

1 )
. (2)

Proof. Consider Y |XN

1 . Since Y = g(XN

1 ), upon conditioning on X
N

1 = x
N

1 , Y takes value g(xN

1 ) with
probability 1, i.e., P(Y = g(xN

1 )|XN

1 = x
N

1 ) = 1. Consider the distribution function for the case that
y � g(xN

1 ).

P
�
Y  y|XN

1 = x
N

1

�
= P

�
Y  g(xN

1 )|XN

1 = x
N

1

�
+ P

�
g(xN

1 ) < Y  y|XN

1 = x
N

1

�
(3)

P
�
Y  y|XN

1 = x
N

1

�
� P

�
Y  g(xN

1 )|XN

1 = x
N

1

�
(4)

P
�
Y  y|XN

1 = x
N

1

�
� P

�
Y = g(xN

1 )|XN

1 = x
N

1

�
+ P

�
Y < g(xN

1 )|XN

1 = x
N

1

�
(5)

P
�
Y  y|XN

1 = x
N

1

�
� P

�
Y = g(xN

1 )|XN

1 = x
N

1

�
(6)

P
�
Y  y|XN

1 = x
N

1

�
� 1 (7)

=) P
�
Y  y|XN

1 = x
N

1

�
= 1 (8)

Consider the distribution function for the case that y < g(xN

1 ).

1 = P
�
Y  y|XN

1 = x
N

1

�
+ P

�
Y > y|XN

1 = x
N

1

�
(9)

1 = P
�
Y  y|XN

1 = x
N

1

�
+ P

�
g(xN

1 ) > Y > y|XN

1 = x
N

1

�
+ P

�
Y  g(xN

1 )|XN

1 = x
N

1

�
(10)

1 � P
�
Y  y|XN

1 = x
N

1

�
+ P

�
Y  g(xN

1 )|XN

1 = x
N

1

�
(11)

1 � P
�
Y  y|XN

1 = x
N

1

�
+ P

�
Y = g(xN

1 )|XN

1 = x
N

1

�
+ P

�
Y < g(xN

1 )|XN

1 = x
N

1

�
(12)

1 � P
�
Y  y|XN

1 = x
N

1

�
+ P

�
Y = g(xN

1 )|XN

1 = x
N

1

�
(13)

1 � P
�
Y  y|XN

1 = x
N

1

�
+ 1 (14)

0 � P
�
Y  y|XN

1 = x
N

1

�
(15)

=) P
�
Y  y|XN

1 = x
N

1

�
= 0 (16)

Thus P
�
Y  y|XN

1 = x
N

1

�
=

(
1 y � g(xN

1 )

0 y < g(xN

1 )
.

Definition 2.1 (Controller with all available memory). For the system in eq. (1), we say that we are using
a controller with all available memory i↵ every control at time n, i.e. Un, is a deterministic function of
all available observations, i.e.,

8n : Un = gn(Y n

0 ), gn : Rn+1 ! R. (17)

Lemma 2.2 (Conditional density of Y
N

0 |X0). For the system in eq. (1), assume that X0 has density fX(x),
the Cn have density fC(c), and we use a controller with all available memory, un = gn(yn

0 ). Then, we have
the following f(Y N

0 |X0):

f(Y N

0 = y
N

0 |X0 = x) =
NY

n=0

fC

⇣
yn

x+
Pn�1

i=0 ui

⌘

|x +
P

n�1
i=0 ui|

=
NY

n=0

fC

⇣
yn

x+
Pn�1

i=0 gi(yi
0)

⌘

|x +
P

n�1
i=0 gi(yi

0)|
. (18)
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Proof. By Bayes rule, we have the following:

f(Y N

0 = y
N

0 |X0 = x) =

 
NY

n=1

f(Yn = yn|X0 = x, Y
n�1
0 = y

n�1
0 )

!
f(Y0 = y0|X0 = x). (19)

Consider some arbitrary observation Yn = Cn(X0 +
P

n�1
i=0 Ui) = Cn(X0 +

P
n�1
i=0 gi(Y i

0 )) at times n > 0, and
this observation under conditioning on the initial state and past observations: Yn|

�
X0 = x, Y

n�1
0 = y

n�1
0

 
.

Since the Ui, 0  i < n are functions of Y
i

0 we see that the only leftover randomness comes from Cn:

Yn|
�
X0 = x, Y

n�1
0 = y

n�1
0

 
=
⇣
x +

P
n�1
i=0 gi(yi

0)
⌘

· Cn. We have a similar result for Y0|{X0 = x} = x · C0.

Thus we have the following conditional densities:

f(Yn = yn|X0 = x, Y
n�1
0 = y

n�1
0 ) =

fC

⇣
yn

x+
Pn�1

i=0 gi(yi
0)

⌘

|x +
P

n�1
i=0 gi(yi

0)|
(20)

f(Y0 = y0|X0 = x) =
fC(y0

x
)

|x| . (21)

The above eqs. (20) and (21) follow from the fact that for some r.v. X with density fX(x), the r.v. Y = aX

with a 2 R has density fY (y) =
fX( y

a )
|a| . Substituting the RHS expressions of eqs. (20) and (21) into eq. (19)

yields the desired result.

Lemma 2.3 (Joint density of (X0, Y
N

0 )). For the system in eq. (1), assume that X0 has density fX(x), the
Cn have density fC(c), and we use a controller with all available memory, un = gn(yn

0 ). Then, we have the
following joint density for (X0, Y

N

0 ):

f(X0 = x, Y
N

0 = y
N

0 ) =

0

@
NY

n=0

fC

⇣
yn

x+
Pn�1

i=0 ui

⌘

|x +
P

n�1
i=0 ui|

1

AfX(x) =

0

@
NY

n=0

fC

⇣
yn

x+
Pn�1

i=0 gi(yi
0)

⌘

|x +
P

n�1
i=0 gi(yi

0)|

1

AfX(x) (22)

(Note: we take as convention for a sum S =
P

H

i=L
ai that if L > H, S = 0.)

Proof. By Bayes rule, we have the following:

f(X0 = x, Y
N

0 = y
N

0 ) = f(Y N

0 = y
N

0 |X0 = x)f(X0 = x) (23)

= f(Y N

0 = y
N

0 |X0 = x)fX(x) (24)

Substituting in the result of lemma 2.2, f(Y N

0 |X0), into eq. (24) yields the joint density.

Lemma 2.4 (Joint density of (XN , Y
N

0 )). For the system in eq. (1), assume that X0 has density fX(x), the
Cn have density fC(c), and we use a controller with all available memory, un = gn(yn

0 ). Then, we have the
following joint density for XN , Y

N

0 :

f(XN = x, Y
N

0 = y
N

0 ) =

0

@
NY

n=0

fC

⇣
yn

x�
PN�1

i=n ui

⌘

|x �
P

N�1
i=n

ui|

1

AfX

 
x �

N�1X

i=0

ui

!
(25)

=

0

@
NY

n=0

fC

⇣
yn

x�
PN�1

i=n gi(yi
0)

⌘

|x �
P

N�1
i=n

gi(yi

0)|

1

AfX

 
x �

N�1X

i=0

gi(y
i

0)

!
. (26)

(Note: we take as convention for a sum S =
P

H

i=L
ai that if L > H, S = 0.)

Proof. For a r.v. X, we use the calligraphic X to indicate the support of the density of X. Using Bayes rule
and the law of total probability, the joint density is as follows:

f
�
XN = x, Y

N

0 = y
N

0

�
=

Z

X0

f
�
XN = x, X0 = x

0
, Y

N

0 = y
N

0

�
dx

0 (27)

=

Z

X0

f
�
XN = x|X0 = x

0
, Y

N

0 = y
N

0

�
f
�
X0 = x

0
, Y

N

0 = y
N

0

�
dx

0
. (28)
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Since XN = X0 +
P

N�1
i=0 gi(Y i

0 ) and is thus a function of X0 and Y
N�1
0 , we can apply lemma 2.1 to state

that P
�
XN  x|X0 = x

0
, Y

N

0 = y
N

0

�
=

(
1 x � x

0 +
P

N�1
i=0 gi(yi

0)

0 x < x
0 +

P
N�1
i=0 gi(yi

0)
. The derivative of this probability is

f
�
XN = x|X0 = x

0
, Y

N

0 = y
N

0

�
in eq. (28), which will end up being a Dirac delta as seen below:

f
�
XN = x, Y

N

0 = y
N

0

�
=

Z

X0

✓
d

dx
P
�
XN  x|X0 = x

0
, Y

N

0 = y
N

0

�◆
f
�
X0 = x

0
, Y

N

0 = y
N

0

�
dx

0 (29)

=

Z

X0

�

 
x �

 
x
0 +

N�1X

i=0

gi(y
i

0)

!!
f
�
X0 = x

0
, Y

N

0 = y
N

0

�
dx

0 (30)

=

Z

X0

�

  
x �

N�1X

i=0

gi(y
i

0)

!
� x

0

!
f
�
X0 = x

0
, Y

N

0 = y
N

0

�
dx

0 (31)

=

Z

X0

�

 
x
0 �

 
x �

N�1X

i=0

gi(y
i

0)

!!
f
�
X0 = x

0
, Y

N

0 = y
N

0

�
dx

0 (32)

= f

 
X0 = x �

N�1X

i=0

gi(y
i

0), Y
N

0 = y
N

0

!
. (33)

Substituting in the result of lemma 2.3 we have the following joint density:

f
�
XN = x, Y

N

0 = y
N

0

�
=

0

@
NY

n=0

fC

⇣
yn

x�
PN�1

i=0 gi(yi
0)+

Pn�1
i=0 gi(yi

0)

⌘

|x �
P

N�1
i=0 gi(yi

0) +
P

n�1
i=0 gi(yi

0)|

1

AfX

 
x �

N�1X

i=0

gi(y
i

0)

!
(34)

=

0

@
NY

n=0

fC

⇣
yn

x�
PN�1

i=n gi(yi
0)

⌘

|x �
P

N�1
i=n

gi(yi

0)|

1

AfX

 
x �

N�1X

i=0

gi(y
i

0)

!
. (35)

Note that f(X0, Y
N

0 ) is equivalent f(XN , Y
N

0 ) up to a shift by
P

N�1
i=0 ui. Thus estimating XN from

observations Y
N

0 using f(XN , Y
N

0 ) is equivalent to estimating X0 from the Y
N

0 using f(X0, Y
N

0 ). However,
no such equivalency can be determined for the conditional distributions of Y

N

0 |X0 and Y
N

0 |XN , as the density
of Y

N

0 |XN will contain a density of XN term as the di↵erence from that of Y
N

0 |X0. There are thus three
strategies of interest to examine for driving the state to zero.

We can now express the conditional densities of X0|Y N

0 and XN |Y N

0 by utilizing Bayes rule.

Lemma 2.5 (Conditional density of X0|Y N

0 ). For the system in eq. (1), assume that X0 has density fX(x),
the Cn have density fC(c), and we use a controller with all available memory, un = gn(yn

0 ). Then f(X0|Y N

0 )
is given as:

f(X0 = x|Y N

0 = y
N

0 ) =
1

f(Y N

0 = y
N

0 )

0

@
NY

n=0

fC

⇣
yn

x+
Pn�1

i=0 ui

⌘

|x +
P

n�1
i=0 ui|

1

AfX(x) (36)

=
1

f(Y N

0 = y
N

0 )

0

@
NY

n=0

fC

⇣
yn

x+
Pn�1

i=0 gi(yi
0)

⌘

|x +
P

n�1
i=0 gi(yi

0)|

1

AfX(x). (37)

Proof. Apply Bayes rule to f(X0, Y
N

0 ).

f(X0 = x|Y N

0 = y
N

0 ) =
f(X0 = x, Y

N

0 = y
N

0 )

f(Y N

0 = y
N

0 )
. (38)

It su�ces to substitute in f(X0, Y
N

0 ) from lemma 2.3.
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Lemma 2.6 (Conditional density of XN |Y N

0 ). For the system in eq. (1), assume that X0 has density fX(x),
the Cn have density fC(c), and we use a controller with all available memory, un = gn(yn

0 ). Then, f(XN |Y N

0 )
is given as:

f(XN = x|Y N

0 = y
N

0 ) =
1

f(Y N

0 = y
N

0 )

0

@
NY

n=0

fC

⇣
yn

x�
PN�1

i=n ui

⌘

|x �
P

N�1
i=n

ui|

1

AfX

 
x �

N�1X

i=0

ui

!
(39)

=
1

f(Y N

0 = y
N

0 )

0

@
NY

n=0

fC

⇣
yn

x�
PN�1

i=n gi(yi
0)

⌘

|x �
P

N�1
i=n

gi(yi

0)|

1

AfX

 
x �

N�1X

i=0

gi(y
i

0)

!
. (40)

Proof. Apply Bayes rule to f(XN , Y
N

0 ).

f(XN = x|Y N

0 = y
N

0 ) =
f(XN = x, Y

N

0 = y
N

0 )

f(Y N

0 = y
N

0 )
. (41)

It su�ces to substitute in the f(XN , Y
N

0 ) from lemma 2.4.

2.3 Interpretation of Conditional Densities under Control

2.3.1 X0 Estimation Perspective

As is often done in control problems, we consider the problem of estimating the initial state X0 from
f(X0|Y N

0 ) to then use these estimates to control the system. We highlight the connection between estimation
and control for our system which helps us later understand how MAP estimation helps with control. First,
we make f(X0|Y N

0 ) explicit by defining the indicator function:

Definition 2.2 (Indicator Function). Let 1{x : P (x)} denote the indicator function, where P (x) is a propo-
sition regarding x. The domain and range are specified as 1{x : P (x)} : X ! {0, 1}. It takes on values as
follows:

1{x : P (x)} :=

(
1 P (x) is true

0 P (x) is false
. (42)

We can now write the densities of X0 and Cn, i.e. fX and fC . They are the same function and can be
written in terms of 1{·} as:

fX(x) =
1

2
1{x : |x|  1} (43)

fC(c) =
1

2
1{c : |c|  1}. (44)

Thus from lemma 2.5 f(X0|Y N

0 ) is a product of indicator functions:

f(X0 = x|Y N

0 = y
N

0 ) =
1

f(Y N

0 = y
N

0 )

0

@
NY

n=0

fC

⇣
yn

x+
Pn�1

i=0 ui

⌘

|x +
P

n�1
i=0 ui|

1

AfX(x) (45)

=
1

f(Y N

0 = y
N

0 )

0

@
NY

n=0

1
21
n

x :
��� yn

x+
Pn�1

i=0 ui

���  1
o

|x +
P

n�1
i=0 ui|

1

A
✓

1

2
1{x : |x|  1}

◆
. (46)

The e↵ect of the indicators in eq. (46) is to restrict the support of f(X0|Y N

0 ). We denote the support of
f(X0|Y N

0 ) as X0|N . To see how X0|N is restricted, we define the notion of an excision which comes from the

noise density terms of the form 1
n

x :
��� y

x�u

���  1
o

.

Definition 2.3 (Excision of a Function, E). The excision E of a function, g : R ! R, where g has support
X , is the interval E = R \ X . We also say that g excises E .
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Thus a function of the form 1
n

x :
��� y

x�u

���  1
o

= 1{x : |y|  |x � u|} with support X = R\(u�|y|, u+|y|)
excises E = (u � |y|, u + |y|). Note that in eq. (46), the excisions from each observation density factor are
centered at sums of the controls, i.e. �

P
n�1
i=0 ui, with excision interval widths of 2|yn|. We define these

excision centers to interpret them as estimates of X0.

Definition 2.4 (Excision Centers, eUn). For the system in eq. (1), assume that X0 ⇠ Unif[�1, 1] and
Cn ⇠ Unif[�1, 1] i.i.d. with control sequence U0, U1, . . . . We define the excision centers eUn as follows:

eUn := �
n�1X

i=0

Ui and eU0 = 0. (47)

Consider the evolution of the system state Xn over many iterations as below, where we write every Xn

in terms of X0 and all the controls:

X0 = X0 (48)

X1 = X0 + U0 (49)

X2 = X0 + U0 + U1 (50)

X3 = X0 + U0 + U1 + U2 (51)

=) Xn = X0 +
n�1X

i=0

Ui. (52)

Every state Xn is a sum of X0 and an accumulation of controls Ui for 0  i  n � 1. Utilizing the definition
of eUn above, we can write every Xn in the following way:

Xn = X0 � eUn. (53)

From eq. (53), we see that driving Xn ! 0 is equivalent to finding some choice of a sequence of eUn that best
estimates the value of X0. In doing so, each estimate of X0 removes intervals from the support of f(X0|Y N

0 )
of width 2|Yn| = 2|CnXn| = 2|Cn(X0 � eUn)|  2|X0 � eUn|. To make explicit the e↵ect of eUn on f(X0|Y N

0 ),
we write the support of f(X0|Y N

0 ) in terms of eUn in the following lemma.

Lemma 2.7 (Support of f(X0|Y N

0 )). For the system in eq. (1), assume that X0 ⇠ Unif[�1, 1] and Cn ⇠
Unif[�1, 1] i.i.d., and we use a controller with all available memory with realizations un = gn(yn

0 ). Then the
support of f(X0 = x|Y N

0 = y
n

0 ), i.e. X0|N is:

X0|N = [�1, 1] \
 

N[

n=0

(eun � |yn|, eun + |yn|)
!

. (54)

Proof. Consider first f(X0|Y N

0 ) as stated in eq. (46) with the uniform densities of X0 and Cn substituted
in:

f(X0 = x|Y N

0 = y
N

0 ) =
1

f(Y N

0 = y
N

0 )

0

@
NY

n=0

1
21
n

x :
��� yn

x+
Pn�1

i=0 ui

���  1
o

|x +
P

n�1
i=0 ui|

1

A1

2
1{x : |x|  1} (55)

=
1

f(Y N

0 = y
N

0 )

0

@
NY

n=0

1
21
n

x :
��� yn

x�eun

���  1
o

|x � eun|

1

A1

2
1{x : |x|  1}. (56)

In eq. (56) we used the definition of eUn to substitute expressions in terms of ui in terms of the realization
of eUn, i.e. eun. The support of f(X0|Y N

0 ) is determined by the support of 1{x : |x|  1} and excisions of

the 1
n

x :
��� yn

x�eun

���  1
o

terms. The interval [�1, 1] is the support of 1{x : |x|  1}. The 1
n

x :
��� yn

x�eun

���  1
o

terms have excisions En = (eun � |yn|, eun + |yn|). f(X0|Y N

0 ) will be zero on all of the En, and nonzero on

8



whatever part is leftover in [�1, 1] once we have removed the excisions. So the support X0|N of f(X0|Y N

0 )
is thus:

X0|N = [�1, 1] \
 

N[

n=0

(eun � |yn|, eun + |yn|)
!

. (57)

The lemma above summarizes that using estimates of X0 to query the system for more observations
excludes where X0 can be in the support of f(X0|Y N

0 ) exactly around our estimates. Thus di↵erent choices
of controls as functions of observations correspond to di↵erent estimation strategies for excluding where X0

can be. However, since f(X0|Y N

0 ) is not just its support, we next visualize these densities in the following
subsections.

2.3.2 Visualizing the density of X0|Y0 for X0 ⇠ Unif[�1, 1] and Cn ⇠ Unif[�1, 1] i.i.d.

Using lemma 2.3 and indicators, we write f(X0|Y0) explicitly:

f(X0 = x|Y0 = y) =
1

f(Y0 = y)

1

|x| · 1

2
1{x : |y|  |x|} · 1

2
1{x : |x|  1}. (58)

There are four terms in our conditional density: an indicator function coming from the prior on X0, an
indicator function coming from our noise density which is even in the observation realization y, an envelope
term ( 1

|x| ) which originates as a normalization term for f(Y0|X0), and lastly a Bayes rule density normaliza-
tion term for the conditioning on Y0. We plot the X0 = x dependent terms in fig. 1 below with a choice of
|y| = 1

2 .

�1.0�0.5 0.0 0.5 1.0
x

0.0

0.5

fX(x)

�1.0�0.5 0.0 0.5 1.0
x

0.0

0.5
2|y|

fC

�y
x

�
, |y| = 1

2

�1 0 1
x

0

1

2

1
|x|

Figure 1: Graphs of the components of f(X0|Y0 = 1
2 ) as functions of X0 = x.

By looking at fig. 1 and fig. 2, where in fig. 2 we see the product of the graphs in fig. 1, we can see
the significance of each of these terms. The 1{x : |x|  1} term, the indicator function originating from the

�1.00 �0.75 �0.50 �0.25 0.00 0.25 0.50 0.75 1.00
x

0.00

0.25

0.50 f(X0 = x, Y0 = ±1
2)

Figure 2: Graph of f(X0, Y0) when |Y0| = 1
2 , which is a product of the graphs in fig. 1.

density of X0, is important because it constrains the support of the conditional density to realizable values
of our initial state. The multiplicative observation has two contributions to the conditional density, the
1{x : |y|  |x|} and 1

|x| terms. The indicator function coming from the noise density, 1{x : |y|  |x|}, when

treated as a function of x has the support (�1, �|y|] [ [|y|, 1). If we observe Y0 = y, then this e↵ectively
excises (�|y|, |y|) from the support of f(X0|Y0 = y). This is true because |C0|  1: Y0 = C0X0 =) |Y0| =

9



|C0||X0|  |X0| =) |Y0|  |X0|. The last term, 1
|x| , we refer to as the envelope due to its modulation by

the indicator functions. In fig. 3 we see the components of f(X0|Y0) superposed to show the modulating
e↵ect of X0’s density and the excision from the observation on the envelope.

�1.00 �0.75 �0.50 �0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.5

1.0
1
4 · 1

|x|

1
�
x : 1

2  |x|
 

· 1{x : |x|  1}
f(X0 = x, Y0 = ±1

2)

Figure 3: Same graph as in fig. 2 of f(X0, Y0) when |Y0| = 1
2 , but with envelope and modulating indicator

functions superposed.

Since the normalization term f(Y0 = y) is not a function of x but is fixed once y is fixed, f(X0|Y0) will
have the same shape as f(X0, Y0) as a function of x. Thus we continue by examining just f(X0, Y0) as we
vary the realization of Y0. We can see the shape (up to scaling) of f(X0 = x|Y0 = y) as y varies in fig. 4
below. We will now shortly see that the decomposition of our conditional density into an envelope modulated

�1.00 �0.75 �0.50 �0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

2|y| = 1.0
2|y| = 1.5

f(X0 = x, Y0 = ±0.5)

f(X0 = x, Y0 = ±0.75)

Figure 4: Slices of f(X0, Y0) for di↵erent values of Y0 to highlight that the di↵erence in f(X0|Y0 = y) for
di↵erent values of y is di↵erent support excisions.

by excisions and the prior on X0 continues to hold for when we have access to more observations as we apply
control.

2.3.3 Visualizing the density of X0|Y0, Y1 for X0 ⇠ Unif[�1, 1] and Cn ⇠ Unif[�1, 1] i.i.d.

We now consider f(X0, Y0, Y1) when X0 ⇠ Unif[�1, 1] and Cn ⇠ Unif[�1, 1] i.i.d.. Additionally, there is
some control U0 which determines Y1 = C1X1 = C1(X0 + U0). The joint density is as follows from lemma
2.3 and substituting in indicators:

f(X0 = x, Y
1
0 = y

1
0) =

1
21
n

x :
��� y1

x+u0

���  1
o

|x + u0|

1
21
�
x :

��y0

x

��  1
 

|x| fX(x). (59)

We see that the only di↵erence of the f(X0, Y0, Y1) from f(X0, Y0) is an extra factor of f(Y1 = y1|X0 =

x, Y0 = y0) =
1
21

n
x:
��� y1
x+u0

���1
o

|x+u0| . This new factor has two e↵ects. The first is to change the envelope by

adding a 1
|x+u0| term, which has the same shape as 1

|x| , but is centered at x = �u0. This envelope change is

important as it redistributes probability mass. The second e↵ect is a new excision, (�u0 � |y1|, �u0 + |y1|).
We visualize the new envelope and new excision for choices of constant U0. Below is the first such plot of

10



f(X0 = x, Y0, Y1) as a function of x in fig. 5, where values of |y0| = 0.25, U0 = 0.75, and |y1| = 0.125, have
been selected.

�1.00 �0.75 �0.50 �0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.5

1.0

1.5

2.0

2|y0| = 0.5

2|y1| = 0.25
1
8 · 1

|x+0.75| · 1
|x|

1
���±0.125

x+0.75

��  1
 

· 1
���±0.25

x

��  1
 

· 1{|x|  1}
f(X0 = x, Y0 = ±0.25, Y1 = ±0.125), U0 = 0.75

Figure 5: Plot of f(X0, Y0, Y1) with |y0| = 0.25, U0 = 0.75, and |y1| = 0.125, with corresponding envelope
and support functions superposed. Excisions are indicated by the observation labeled arrow breadths.

As seen in fig. 5 above, we see the noted changes from f(X0 = x, Y0 = y0) coming from the f(Y1 =
y1|X0 = x, Y0 = y0) term. We see the new asymptote in the envelope located at x = �U0. We also see
the excisions located at x = 0 and x = �U0, with the excision sizes being governed by the observation
magnitudes. The combined e↵ect of the envelope and excisions is that the density has local maxima or
‘peaks’ occurring at excision edges.

We visualize now what happens as we maintain the input but vary the observation magnitudes: |y0| = 0.5,
U0 = 0.75, and |y1| = 0.25 in fig. 6 below. While we maintain the same envelope from fig. 5, the di↵erence of

�1.00 �0.75 �0.50 �0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.5

1.0

1.5

2.0

2|y0| = 1.02|y1| = 0.5

1
8 · 1

|x+0.75| · 1
|x|

1
��� ±0.25

x+0.75

��  1
 

· 1
���±0.5

x

��  1
 

· 1{|x|  1}
f(X0 = x, Y0 = ±0.5, Y1 = ±0.25), U0 = 0.75

Figure 6: Plot of f(X0, Y0, Y1) with |y0| = 0.5, U0 = 0.75, and |y1| = 0.25 with corresponding envelope and
support functions superposed. Excisions are indicated by the observation labeled arrow breadths.

fig. 6 from fig. 5 is what part of f(X0, Y0, Y1) is excised. We see that with the larger observations, we only
have the support of the density on the positive real line. Thus it is possible for our first choice of control
and observations up until time n = 1 to indicate the sign of X0. We now consider varying both U0 as well
as the observations Y0 and Y1 in fig. 7.

In fig. 7, we observe |y0| = 0.5, then the control U0 = �0.5 is applied, then we observe |y1| = 0.25.
Accordingly, the envelope di↵ers from that of fig. 5 and fig. 6 with an asymptote located at x = �U0 = 0.5,
as well as an excision there of size 2|y1| = 0.5. Excisions may have overlap, and in particular, this is explained
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�1.00 �0.75 �0.50 �0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.5

1.0

1.5

2.0

2|y0| = 1.0
2|y1| = 0.5

1
8 · 1

|x�0.5| · 1
|x|

1
���±0.25

x�0.5

��  1
 

· 1
���±0.5

x

��  1
 

· 1{|x|  1}
f(X0 = x, Y0 = ±0.5, Y1 = ±0.25), U0 = �0.5

Figure 7: Plot of f(X0, Y0, Y1) with |y0| = 0.5, U0 = �0.5, and |y1| = 0.25. Excisions are indicated by the
observation labeled arrow breadths.

for fig. 7 by the fact that U0 = �|y0| for this case. If we choose U0 = ±|Y0| we can center the second excision
on an edge of the support of the density of X0|Y0, and therefore ensure that the support that remains when
y1 is realized is still exactly at most two disjoint intervals. This is because the control determines where the
new excision in the density occurs, and thus choosing our control as a function of our first observation Y0

means placing the location of the new excision relative to that of the first excision.
We saw in this subsection that our first control, U0, will have two e↵ects: the modification of the envelope

and a yield of a new observation Y1 which determines another excision’s size. This pattern continues as we
will see in the next sections.

2.3.4 Visualizing the density of X0|Y N

0 for X0 ⇠ Unif[�1, 1] and Cn ⇠ Unif[�1, 1] i.i.d.

In this subsection, we visualize the shapes of f(X0|Y N

0 ) for N = 2, 3 (i.e., having more than one control
applied) with uniform initial state and noises to see that the pattern established in the previous subsections
continues.

We start by first examining for when the controls are U0 = �0.5 and U1 = �0.25, and vary the observation
realizations. With these controls, the excision centers are eU0 = 0, eU1 = �U0 = 0.5, and eU2 = �(U0 + U1) =
0.75, and thus we have three corresponding asymptotes in the envelope function. In fig. 8 we have observations
|y0| = 0.5, |y1| = 0.25, and |y2| = 0.2. In fig. 9 we have observations |y0| = 0.2, |y1| = 0.15, and |y2| = 0.2.

We can see the guaranteed excision centered at x = eU0 = 0 from the Y0 observation. Additionally, these
examples highlight that our choice of control functions Un = gn(Y n

0 ) decides whether we are guaranteed
overlap - choosing constant controls will not allow the placement of excisions relative to previous excisions.
If we wish to always have overlap and maintain a growing central excision, we should choose controls that
result in the excision centers following a pattern of excision edges. Inspired by the appearance of fig. 8,
choosing eU1 = |Y0| and eU2 = |Y0| + |Y1| guarantees this behavior.

We now change the controls to U0 = �0.5 and U1 = 1 but maintain the same observation realizations as
in fig. 9, |y0| = 0.2, |y1| = 0.15, and |y2| = 0.2 and plot the density shape in fig. 10. The excision centers are
now eU0 = 0, eU1 = 0.5, and eU2 = �0.5.

It is visible from figs. 8 to 10 that the number of disjoint intervals of support possible depends on the
overlap of excisions. When there is no overlap, it is possible to have N + 2 intervals, as each excision splits
an interval into two, and there are N + 1 excisions corresponding to each of the eUn and |Yn|.

Seeing these further examples of densities, there are a variety of strategies we can take to narrow down
where X0 lies. Possible strategies include excising inwards from the outside edges of f(X0|Y N

0 ) (x = ±1),
outwards from the very first excision edges coming from the first observation Y0 (x = ±|y0|), and some
specifications thereof as to which new location (left or right) we choose each time to excise from. The
suggested two strategies happen to maintain a minimum number of intervals, but other more complex
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�1.00 �0.75 �0.50 �0.25 0.00 0.25 0.50 0.75 1.00
x

0

2

4

6

2|y0| = 1.0
2|y1| = 0.5

2|y2| = 0.4

eu0 = 0
eu1 = 0.5

eu2 = 0.75

f(X0 = x, Y 2
0 = y2

0)

envelope

support

U1
0 = (�0.5, �0.25)

Figure 8: Plot of f(X0, Y
2
0 ) with |y0| = 0.5, |y1| = 0.25, and |y2| = 0.2. Excisions are indicated by the

observation labeled arrow breadths.

�1.00 �0.75 �0.50 �0.25 0.00 0.25 0.50 0.75 1.00
x

0

2

4

6

2|y0| = 0.4 2|y1| = 0.3

2|y2| = 0.4

eu0 = 0 eu1 = 0.5

eu2 = 0.75

f(X0 = x, Y 2
0 = y2

0)

envelope

support

U1
0 = (�0.5, �0.25)

Figure 9: Plot of f(X0, Y
2
0 ) with |y0| = 0.2, |y1| = 0.15, and |y2| = 0.2. Excisions are indicated by the

observation labeled arrow breadths.

strategies may hop around creating more intervals of support. Since the sign of X0 is unknown, another
possible strategy is to completely remove half of the support to determine the sign of X0, as this information
may be useful. It is also of interest to leverage the envelope information we have access to as well, where
new excisions can be placed at the highest peaks (i.e., excision edges of the density with maximum density
value). We consider such a strategy in the next section.

The qualitative observations about the plots of the conditional densities X0|Y N

0 have some bearing on
the interpretation of alternating strategies, i.e., strategies that are similar to Un = (�1)n|Yn|. To see this,
consider excision centers for up to time N = 2 when Un = (�1)n|Yn|. We have excision centers eU0 = 0,
eU1 = �|Y0|, and eU2 = �|Y0|+ |Y1|. We see that the excision centered at eU1 will be (�|y0|� |y1|, �|y0|+ |y1|).
However, we also have the excision (�|y0|, |y0|) at eU0 to consider. If the realizations of X0 and |Y1| are such
to allow that �|y0| + |y1| > |y0|, the union of the excisions at eU0 and eU1 result in an edge at �|y0| + |y1|,
which happens to be chosen as the next excision center, eU2, in the alternating strategy. Thus alternating
strategies are similar in behavior to strategies that remove probability mass or support from the center of
f(X0|Y N

0 )’s support by alternating new excisions on the left and right central excision edges, but they may
not do so ’greedily’ by choosing the exact excision edge as we see that it depends on the specific realization
of X0 and the observation magnitudes.
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Figure 10: Plot of f(X0, Y
2
0 ) with |y0| = 0.2, |y1| = 0.15, and |y2| = 0.2 with di↵erent controls from fig. 9.

Excisions are indicated by the observation labeled arrow breadths.

We can also better understand the need for nonlinearity in any control strategy and also that neural
network learned control functions in [2] appear to be similar to functions of |Yn|. Given that we lose sign
information of Xn from multiplicative noise with zero mean, using |Yn| or functions of |Yn| allows us to pin
new excisions relative to a choice of a specific sign of established excision edges.

In summary, we have seen more evidence for the general pattern of excisions centered at eUn with excision
widths dependent on |Yn|. It is now of interest to see if there are controls to guarantee e�cient estimation
for X0 and possibly even convergence to X0. There is a tradeo↵ to consider in that the more informative
controls in the sense of those that excise the most support are those which choose locations where X0 are
not, in that the excisions are allowed to be bigger: |Yn|  |X0 � eUn|.

3 MAP-based control

In this section, we investigate the generation of controls using the conditional densities of X0|Y n

0 and Xn|Y n

0 ,
and in particular using the maximizer of such densities. We first define the Maximum a-Posteriori (MAP)
estimate of the state in the following way.

Definition 3.1 (State MAP Estimate, bXMAP
m|n ). For the system in eq. (1), assume we have observation

realizations y
n

0 and control realizations u
n�1
0 . The MAP estimate of the state Xm as seen from time n � m,

denoted by bXMAP
m|n , is the optimizer of f(Xm|Y n

0 ) in the following way:

bXMAP
m|n (yn

0 ) := arg max
x

f(Xm = x|Y n

0 = y
n

0 ). (60)

We now define a control law using the MAP estimate of the state for all time:

Definition 3.2 (MAP Control Law). We call the controller with all available memory that is the sequence
of controls {Un = � bXMAP

n|n (Y n

0 )}n�0 the MAP control law.

Due to our earlier observation about the joint densities of (X0, Y
N

0 ) and (XN , Y
N

0 ) being identical up
to a shift of the sum of all controls in the state argument, it turns out that we can state a corresponding
relationship between the MAP estimate of the initial and current states as seen from time N , bXMAP

0|N and
bXMAP
N |N .

Lemma 3.1 (Recentering Lemma). For the system in eq. (1), assume that X0 has density fX(x), the Cn

have density fC(c), with observation realizations y
N

0 and control realizations un = gn(yn

0 ), 0  n  N � 1.
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Then at any time N ,

bXMAP
N |N (yN

0 ) = bXMAP
0|N (yN

0 ) +
N�1X

n=0

un. (61)

Proof. We begin from the definition of bXMAP
N |N .

bXMAP
N |N

�
y
N

0

�
= arg max

x

f
�
XN = x|Y N

0 = y
N

0

�
(62)

= arg max
x

f
�
XN = x, Y

N

0 = y
N

0

�

f
�
Y

N

0 = y
N

0

� (63)

= arg max
x

f

⇣
X0 = x �

P
N�1
n=0 un, Y

N

0 = y
N

0

⌘

f
�
Y

N

0 = y
N

0

� . (64)

We apply the relationship between the joint densities of (X0, Y
N

0 ) and (XN , Y
N

0 ) in eq. (64), as was originally

shown in eq. (33). Since we have a shift by the constant
P

N�1
n=0 un in the argument we are maximizing over,

we can pull this out of the maximization in the following way:

bXMAP
N |N

�
y
N

0

�
=

 
arg max

x0

f
�
X0 = x

0
, Y

N

0 = y
N

0

�

f
�
Y

N

0 = y
N

0

�
!

+
N�1X

n=0

un (65)

=
⇣
arg max

x0
f
�
X0 = x

0|Y N

0 = y
N

0

�⌘
+

N�1X

n=0

un (66)

bXMAP
N |N

�
y
N

0

�
= bXMAP

0|N
�
y
N

0

�
+

N�1X

n=0

un. (67)

The last step follows from the definition of bXMAP
0|N

�
y
N

0

�
.

Note that we call this the recentering lemma because the qualitative e↵ect of controls is to recenter
f(X0|Y N

0 ) to yield f(XN |Y N

0 ). Thus the locations of the maxima of these conditional densities also coincide
up to the same shift. We are now interested in seeing how the MAP control law does in terms of subsequent
estimates of the initial state with new information.

Theorem 3.2 (MAP Control is Successive Estimation of X0). For the system in eq. (1), assume that X0

has density fX(x), the Cn have density fC(c), and we use the MAP control law, with observation realizations
y
n

0 and control realizations un = � bXMAP
n|n (yn

0 ). Then for any time n with bXMAP
0|�1 := 0, the following two

relationships hold:

Xn+1 = X0 � bXMAP
0|n (yn

0 ) (68)

un = bXMAP
0|n�1

�
y
n�1
0

�
� bXMAP

0|n (yn

0 ). (69)

Proof. We examine Xn+1 under the MAP control law.

Xn+1 = Xn + un (70)

= Xn � bXMAP
n|n (yn

0 ). (71)

Apply the recentering lemma (lemma 3.1) and the fact that Xn = X0 +
P

n�1
i=0 ui.

Xn+1 =

 
X0 +

n�1X

i=0

ui

!
�
 
bXMAP
0|n (yn

0 ) +
n�1X

i=0

ui

!
(72)

Xn+1 = X0 � bXMAP
0|n (yn

0 ). (73)
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This finishes the proof of eq. (68). The proof of eq. (69) follows from eq. (68) in the following way:

un = Xn+1 � Xn (74)

=
⇣
X0 � bXMAP

0|n (yn

0 )
⌘

�
⇣
X0 � bXMAP

0|n�1

�
y
n�1
0

�⌘
(75)

= bXMAP
0|n�1

�
y
n�1
0

�
� bXMAP

0|n (yn

0 ). (76)

Let us verify the above concretely for n = 0.

u0
?
= bXMAP

0|�1 � bXMAP
0|0 (y0) = 0 � bXMAP

0|0 (y0) = � bXMAP
0|0 (y0). (77)

Since we assumed we were using the MAP control law, the above result is consistent with our assumptions.

We now interpret the behavior of the sequence of such controls upon the conditional distribution over
time in the following subsections, which helps give insight into both the structure of the estimates and later
controls, and intuition for how sample paths of the state evolve.

3.1 MAP Control at time n = 0 when X0 ⇠ Unif[�1, 1] and Cn ⇠ Unif[�1, 1] i.i.d.

From section 2.3.2, we saw that the first observation y0 leads to f(X0|Y0) with symmetry in X0 = x, a
support of X0 = [�1, �|y0|] [ [|y0|, 1], and peaks at ±|y0|.Thus we have that the first MAP estimate is
bXMAP
0|0 (y0) = ±|y0|. Then the first MAP control must be u0 = � bXMAP

0|0 (y0) = ⌥|y0|.
From the discussion in section 2.3.3 and the following sections, since the control is occurring at the edges

of the first excision boundary from observation Y0, the e↵ect of this specific control is to expand the already
excised support of the conditional density of X0 in such a way that we do not see more than 2 disjoint
intervals. This can be shown by examining f(X0|Y 1

0 = y
1
0). We choose U0 = �|Y0| = � bXMAP

0|0 .

Lemma 3.3. For the system in eq. (1), assume that X0 ⇠ Unif[�1, 1] and Cn ⇠ Unif[�1, 1] i.i.d. with
U0 = �|Y0|. Then the support of f(X0|Y 1

0 = y
1
0), X0, is:

X0 = [�1, min(�|y0|, |y0| � |y1|)] [ [|y0| + |y1|, 1]. (78)

We take as convention that for [a, b] if a > b then [a, b] = {}.

Proof. We can write f(X0|Y 1
0 ) with U0 = �|Y0| from lemma 2.5:

f(X0 = x|Y 1
0 = y

1
0) =

1

f(Y 1
0 = y

1
0)

fC

⇣
y1

x�|y0|

⌘

|x � |y0||
fC

�
y0

x

�

|x| fX(x). (79)

Since we have uniform distributions, the conditional density is:

f(X0 = x|Y 1
0 = y

1
0) =

1

f(Y 1
0 = y

1
0)

·
1
21{x : |y1|  |x � |y0||}

|x � |y0||
·

1
21{x : |y0|  |x|}

|x| · 1

2
1{x : |x|  1} (80)

The support of the last factor on the RHS of eq. (80) is X = [�1, 1]. We then have the excision of
E0 = (�|y0|, |y0|) from the third factor, and finally, the excision of E1 = (|y0| � |y1|, |y0| + |y1|) from the
second factor. It is always the case that |y0| + |y1| � |y0|, so that when considering X0 = X � (E0 [ E1), we
have that E0 [ E1 = (min(�|y0|, |y0| � |y1|), |y0| + |y1|). This will also be a singular interval because E1 is
centered on |y0|, which is one of the edges of E0. Thus,

X0 = [�1, 1] � (min(�|y0|, |y0| � |y1|), |y0| + |y1|) (81)

= [�1, min(�|y0|, |y0| � |y1|)] [ [|y0| + |y1|, 1] (82)
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We can now glean some qualitative characteristics of our new f(X0|Y 1
0 ) under our first MAP control. If

we look at eq. (80), we see that the signs of the y
1
0 do not matter as all observation realizations have absolute

values. In particular, this symmetry also applies to the prior on the observations, f(Y 1
0 = y

1
0), which is

simply the joint expression to the right with absolute values with X0 integrated out. This means that our
next estimate bXMAP

0|1 (y1
0), which is a result of optimizing over the conditional density, is, therefore, symmetric

in y0 and y1, i.e., it su�ces to look at bXMAP
0|1 (y1

0) over the first quadrant in y
1
0 . Additionally, if |y0|+ |y1| � 1,

we have excision of the entirety of the positive support (up to measurability). This suggests that we have
some non-zero probability, P(|Y0| + |Y1| � 1|U0 = �|Y0|), that the sign is made known for certain with the
first two observations given our first MAP control. We compute this probability below.

Lemma 3.4. Consider the system in eq. (1) with U0 = � bXMAP
0|0 = �|Y0|. Then sgn(X0) = �1 is known for

certain with probability P(|Y0| + |Y1| � 1|U0 = �|Y0|) ⇡ 0.1038.

Proof. We wish to compute P(|Y0| + |Y1| � 1|U0 = �|Y0|). It is from f(X0, Y0, Y1) as follows:

P(|Y0| + |Y1| � 1|U0 = �|Y0|) = 4P(Y0 + Y1 � 1|U0 = �|Y0|) (83)

= 4

Z 1

�1

Z 1

0

Z 1+y0

1�y0

fC

⇣
y1

x�|y0|

⌘

|x � |y0||
fC

�
y0

x

�

|x| fX(x)dy1dy0dx (84)

= 4

Z 1

�1

Z 1

0

fC

�
y0

x

�

|x||x � |y0||
fX(x)

Z 1+y0

1�y0

fC

✓
y1

x � |y0|

◆
dy1dy0dx. (85)

We simplify the probability to 4P(Y0 + Y1 � 1|U0 = �|Y0|) in the first step due to the aforementioned sym-
metry with the absolute values on y

1
0 in the f(X0, Y0, Y1) and due to the evenness of fC(c). The upper

bound on y1 also comes from the fact that |y1|  1 + |y0|, which reduces to y1  1 + y0 when y0, y1 � 0.

As a function of y1, fC

⇣
y1

x�|y0|

⌘
takes value 1

2 on support [�|x � |y0||, |x � |y0||]. We have the following

possibilities:

Z 1+y0

1�y0

fC

✓
y1

x � |y0|

◆
dy1 =

8
><

>:

0 1 � y0 � |x � |y0||
1
2 (|x � |y0|| � (1 � y0)) 1 � y0 < |x � |y0||, 1 + y0 � |x � |y0||
y0 1 + y0 < |x � |y0||

. (86)

Due to the value of 0 of the above sub-integral, we can modify the bounds on x and y0 to exclude the
non-contributing region, as well as split the integral based on the latter two cases. We plot the regions below
in fig. 11.

�1.0 �0.5 0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y 0

y0
=

1
2
(1 + x)

1 � y0 < |x � |y0||, 1 + y0 � |x � |y0||

1 � y0 � |x � |y0||

Figure 11: Plots of the regions of eq. (86) within {(x, y0) 2 [�1, 1] ⇥ [0, 1]}. The relevant support of the
result is in red.

Plotting the regions specified by the cases indicate that the region specified by the last case, {(x, y0)|1 +
y0 < |x � |y0||}, has no intersection with {(x, y0)|(x, y0) 2 [�1, 1] ⇥ [0, 1]}, and the region specified by the
second condition, {(x, y0)|1 � y0 < |x � |y0||, 1 + y0 � |x � |y0||}, has an intersection with {(x, y0)|(x, y0) 2
[�1, 1] ⇥ [0, 1]} that is writable as {(x, y0)| 12 (1 + x) < y0  1, �1  x  1}. Thus the probability we wish to
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compute becomes:

P(|Y0| + |Y1| � 1) = 4

Z 1

�1

Z 1

1
2 (1+x)

fC

�
y0

x

�

|x||x � |y0||
fX(x) · 1

2
(|x � |y0|| � (1 � y0))dy0dx (87)

= 2

Z 1

�1

Z 1

1
2 (1+x)

fC

�
y0

x

�

|x| fX(x)

✓
1 � 1 � y0

|x � |y0||

◆
dy0dx (88)

= 2

Z 1

�1

Z 1

1
2 (1+x)

fC

�
y0

x

�

|x|
1

2

✓
1 � 1 � y0

|x � |y0||

◆
dy0dx (89)

=

Z 1

�1

Z 1

1
2 (1+x)

fC

�
y0

x

�

|x|

✓
1 � 1 � y0

|x � |y0||

◆
dy0dx. (90)

We modify the bounds again by using that the support of fC

�
y0

x

�
as a function of y0 is [�|x|, |x|]. Since

|x|  1, we must modify the upper bound of y0. We have the support of the integrand where the lower
bound of integration on y0 remains below the upper bound of the support of fC

�
y0

x

�
, i.e. 1

2 (1 + x) < |x|.
We have that either 1

2 (1 + x) < x or 1
2 (1 + x) < �x, which imply x > 1 or x < � 1

3 . The integrand support
region of eq. (90) appears as in fig. 12. Thus the probability is now:
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Figure 12: Support of the integral in eq. (90) with restrictions coming from fC

�
y0

x

�
within {(x, y0) 2

[�1, 1] ⇥ [0, 1]}.

P(|Y0| + |Y1| � 1) =
1

2

Z � 1
3

�1

Z |x|

1
2 (1+x)

1

|x|

✓
1 � 1 � y0

|x � |y0||

◆
dy0dx (91)

=
1

2

Z � 1
3

�1

Z �x

1
2 (1+x)

1

�x

✓
1 � 1 � y0

y0 � x

◆
dy0dx (92)

=
1

2

Z � 1
3

�1

Z �x

1
2 (1+x)

1

x

✓
1 � x + x � y0

y0 � x
� 1

◆
dy0dx (93)

=
1

2

Z � 1
3

�1

Z �x

1
2 (1+x)

1

x

✓
1 � x

y0 � x
� 2

◆
dy0dx (94)

=
1

2

Z � 1
3

�1

1 � x

x

Z �x

1
2 (1+x)

1

y0 � x
dy0dx �

Z � 1
3

�1

1

x

Z �x

1
2 (1+x)

dy0dx (95)

=
1

2

Z � 1
3

�1

1 � x

x

Z �x

1
2 (1+x)

1

y0 � x
dy0dx +

Z � 1
3

�1

1 + 3x

2x
dx (96)

=
1

2

Z � 1
3

�1

1 � x

x
log

����
�2x

1
2 (1 � x)

����dx +
1

2
log

✓
1

3

◆
+ 1 (97)

= 1 � 1

3
log(3) +

1

2

Z � 1
3

�1

1 � x

x
log

✓
4x

x � 1

◆
dx (98)

⇡ 0.1038 (99)
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We do not have an exact expression as the last summand above is not analytically integrable.

Next, we consider the behavior of the next MAP control, U1 = � bXMAP
1|1

�
Y

1
0

�
= � bXMAP

0|1
�
Y

1
0

�
+ bXMAP

0|0 (Y0).

3.2 MAP Control at time n = 1 when X0 ⇠ Unif[�1, 1] and Cn ⇠ Unif[�1, 1] i.i.d.

We start by considering the realizable values of Y
1
0 that come from the first MAP Control, U0 = � bXMAP

0|0 (Y0) =

�|Y0|. Since Y1 = C1(X0 � |Y0|), we know that |Y1|  1 + |Y0|. This upper bound on |Y1| is the maximum
magnitude that X1 = X0 � |Y0| can take. Thus the next MAP Control, U1 = � bXMAP

1|1 (Y 1
0 ) varies over the

region {(y1, y0) : 0  |y0|  1, 0  |y1|  1 + |y0|} for which we plot just the first quadrant below in fig. 13
due to aforementioned symmetry.
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given u0 = �|y0|
Inaccessible
(|y1|, |y0|)

Figure 13: Region of definition for the MAP control u1 = � bXMAP
1|1 (y1

0).

Lemma 3.5. Consider the function f(x) = 1
|x||x�a| where a � 0 with support (�1, 0) [ (a, 1). Then for

x1 2 (�1, 0) and x2 2 (a, 1) we have that:

arg min
x2{x1,x2}

���
a

2
� x

��� = arg max
x2{x1,x2}

f(x). (100)

The interpretation of the lemma above is that the minimizer of the distance from an axis of symmetry
coincides with the maximizer of function as the function has decaying tails. This lemma is useful for
computing the time n = 1 MAP control because our f(X0|Y 1

0 ) has an envelope that is proportional to the
function f(x) above.

Proof. First, we show that f(x) is symmetric about x = a

2 .

g(x) = f

⇣
x +

a

2

⌘
=

1��x + a

2

����x � a

2

�� = g(�x) (101)

Then, we show that f(x) is decreasing on (a, 1).

f(x) =
1

x(x � a)
, x > a (102)

=
1

x2 � ax
(103)

d

dx
f(x) = � 1

(x2 � ax)2
· (2x � a) (104)

Since the above derivative is strictly negative for x > a, we have that our function is decreasing on (a, 1).
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WLOG consider the following inequality:

f(x2) > f(x1) (105)

f(x2) > f

⇣
a

2
+

a

2
� x1

⌘
(106)

x2 < a � x1 (107)

x2 � a

2
<

a

2
� x1 (108)

���x2 � a

2

��� <

���
a

2
� x1

��� (109)
���
a

2
� x2

��� <

���
a

2
� x1

���. (110)

eq. (106) follows from symmetry, and eq. (107) follows from that f(x) is decreasing on (a, 1) with x1 2
(�1, 0) () a � x1 2 (a, 1).

We now compute U1 = � bXMAP
1|1 = bXMAP

0|0 � bXMAP
0|1 , by deriving bXMAP

0|1 using lemmas 3.5 and 3.3.

Theorem 3.6. For the system in eq. (1), assume that X0 ⇠ Unif[�1, 1] and Cn ⇠ Unif[�1, 1] i.i.d. with
U0 = �|Y0| with observation realizations y

1
0. If |y0| + |y1| > 1, then bXMAP

0|1 = min(�|y0|, |y0| � |y1|), i.e. the

sign changes: bXMAP
0|0 = |y0| � 0 =) bXMAP

0|1 = min(�|y0|, |y0| � |y1|)  0.

The insight for this case comes from the intuition that a complete excision of the positive support of
f(X0|Y 1

0 ) only leaves a negative value to be considered.

Proof. The hypotheses of lemma 3.3 are satisfied. So the support of f(X0 = x|Y 1
0 = y

1
0) is as follows:

X0 = [�1, min(�|y0|, |y0| � |y1|)] [ [|y0| + |y1|, 1] (111)

= [�1, min(�|y0|, |y0| � |y1|)] [ {} (112)

= [�1, min(�|y0|, |y0| � |y1|)]. (113)

Since we have f(X0 = x|Y0 = y
1
0) / 1

|x||x�|y0|| , by lemma 3.5 the maximizer must be bXMAP
0|1 = min(�|y0|, |y0|�

|y1|) as this is the closest value to the axis of symmetry x = |y0|
2 on the remaining negative support.

Theorem 3.7. For the system in eq. (1), assume that X0 ⇠ Unif[�1, 1] and Cn ⇠ Unif[�1, 1] i.i.d. with
U0 = �|Y0| with observation realizations y

1
0. If |y0| + |y1| < 1 and |y0| > |y1|, then bXMAP

0|1 = |y0| + |y1|

Proof. The hypotheses of lemma 3.3 are satisfied. So the support of f(X0 = x|Y 1
0 = y

1
0) is as follows:

X0 = [�1, min(�|y0|, |y0| � |y1|)] [ [|y0| + |y1|, 1]. (114)

In particular, because |y0|+ |y1| < 1, we do not excise the positive support. By lemma 3.5 it su�ces to check
which of min(�|y0|, |y0|� |y1|) and |y0|+ |y1| maximizes f(X0 = x|Y0 = y

1
0) / 1

|x||x�|y0|| . We can resolve the
minimum expression by using our assumption:

|y0| > |y1| (115)

|y0| >
1

2
|y1| (116)

2|y0| > |y1| (117)

�2|y0| < �|y1| (118)

�|y0| < |y0| � |y1|. (119)
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We apply lemma 3.5 and compare the distances of now �|y0| and |y0| + |y1| to |y0|
2 :

����
|y0|
2

� (�|y0|)
����

?
<

����
|y0|
2

� (|y0| + |y1|)
���� (120)

����|y0| +
|y0|
2

����
?
<

����|y1| +
|y0|
2

���� (121)

|y0|
?
< |y1|. (122)

Since our assumption |y0| > |y1| resolves the inequality above, we know that |y0| + |y1| is closer to |y0|
2 than

�|y0|, meaning that the maximizer of f(X0|Y 1
0 ) is bXMAP

0|1 = |y0| + |y1|.

It is of note that U1 = � bXMAP
1|1 (Y 1

0 ) is discontinuous along |y1| = |y0|, |y0| + |y1|  1. This is because

the state estimate is not a function as a result of an optimization (multiple maximizers may exist), with the
core insight being that the excision edge peaks of f(X0|Y 1

0 ) may indicate the same maximal density for an
estimate of either sign. Thus the MAP control strategy cannot be learned with standard ReLU feedforward
networks which are piece-wise linear continuous functions.

3.3 Interpreting MAP-based control with all available memory

In this section, we prove that the MAP control strategy of Un = � bXMAP
n|n leads to bXMAP

0|n converging to
X0 almost surely and Xn converging to 0 almost surely. We use the intuition gained from the previous
subsections of an outward growing excision from the center of f(X0|Y N

0 ). We first define the candidates for
the argument of f(X0|Y N

0 ) that maximize f(X0|Y N

0 ) which correspond to the edges of the central excision.

Definition 3.3 (Positive and Negative Maxima Candidates, bX+
0|n, bX�

0|n). For the system in eq. (1), assume

that X0 ⇠ Unif[�1, 1] and Cn ⇠ Unif[�1, 1] i.i.d. with Un = � bXMAP
n|n . We define the positive maximum

candidate, bX+
0|n, and the negative maximum candidate, bX�

0|n, iteratively in the following way:

bX+
0|n := max

⇣
bXMAP
0|n�1 + |Yn|, bX+

0|n�1

⌘
(123)

bX�
0|n := min

⇣
bXMAP
0|n�1 � |Yn|, bX�

0|n�1

⌘
. (124)

Theorem 3.8 ( bXMAP
0|n ! X0 almost surely). For the system in eq. (1), assume that X0 ⇠ Unif[�1, 1] and

Cn ⇠ Unif[�1, 1] i.i.d. with Un = � bXMAP
n|n . Then bXMAP

0|n ! X0 almost surely, and Xn ! 0 almost surely.

Proof. We first prove that bXMAP
0|n ! X0 almost surely. Without loss of generality, consider when X0 > 0.

First, we note that bX+
0|n is increasing by its definition:

bX+
0|n = max

⇣
bXMAP
0|n�1 + |Yn|, bX+

0|n�1

⌘
� bX+

0|n�1. (125)

Next, we note that bX�
0|n is decreasing by its definition:

bX�
0|n = min

⇣
bXMAP
0|n�1 � |Yn|, bX�

0|n�1

⌘
 bX�

0|n�1. (126)

Let us show by induction that X0 > 0 is an upper bound to both the above sequences, i.e., 8n, X0 � bX+
0|n

and X0 � bX�
0|n. We have that the base case holds:

bX+
0|0 = |Y0| = |C0X0| = |C0|X0  X0 (127)

bX�
0|0 = �|Y0| = �|C0X0|  0  X0 (128)
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Now, assume the inductive hypothesis that X0 � bX+
0|n�1 and X0 � bX�

0|n�1. Since bX�
0|n�1 is decreasing, the

next term bX�
0|n is upper bounded by X0, i.e. bX�

0|n  bX�
0|n�1  X0. Now, we have to verify that bX+

0|n  X0.

When bXMAP
0|n�1 + |Yn| > bX+

0|n�1:

bX+
0|n = max

⇣
bXMAP
0|n�1 + |Yn|, bX+

0|n�1

⌘
(129)

= bXMAP
0|n�1 + |Yn| (130)

= bXMAP
0|n�1 +

���Cn

⇣
X0 � bXMAP

0|n�1

⌘��� (131)

= bXMAP
0|n�1 + |Cn|

⇣
X0 � bXMAP

0|n�1

⌘
(132)

= (1 � |Cn|) bXMAP
0|n�1 + |Cn|X0 (133)

 (1 � |Cn|)X0 + |Cn|X0 (134)

= X0 (135)

=) bX+
0|n  X0. (136)

Note that we can apply the inequality bX+
0|n�1  X0 or bX�

0|n�1  X0 to get eq. (134) as bXMAP
0|n�1 = bX+

0|n�1 or

bXMAP
0|n�1 = bX�

0|n�1 and we have a convex combination of X0 and bXMAP
0|n�1 as 0  |Cn|  1.

We consider the other case on bX+
0|n, when bXMAP

0|n�1 + |Yn|  bX+
0|n�1:

bX+
0|n = max

⇣
bXMAP
0|n�1 + |Yn|, bX+

0|n�1

⌘
(137)

= bX+
0|n�1 (138)

 X0 (139)

=) bX+
0|n  X0. (140)

Thus we have shown that 8n, X0 � bX+
0|n and X0 � bX�

0|n.

The strategy for the rest of the proof is as follows: we wish to establish that bXMAP
0|n converges to bX+

0|n

almost surely, and that bX+
0|n converges to X0 almost surely. We first show the former, then show the latter

by the monotone convergence theorem by proving that X0 is the least upper bound of bX+
0|n with probability

1.
We will now show that bXMAP

0|n converges to bX+
0|n almost surely. To do this, it su�ces to show that

bXMAP
0|n = bX�

0|n only finitely many times.
Thus, we wish to show the following equality holds:

P
⇣

lim
n!1

bXMAP
0|n = bX+

0|n|X0 > 0
⌘

= P
⇣
bXMAP
0|n = bX�

0|n finitely many times|X0 > 0
⌘

= 1. (141)

We proceed by using a proof by contradiction. If possible, let bXMAP
0|n = bX�

0|n infinitely often with probability

1. Consider such a sample path where bXMAP
0|n = bX�

0|n infinitely often. This sample path will have a sequence

of strictly increasing time indices, k1, k2, . . . , at which bXMAP
0|ki

= bX�
0|ki

. For the transition from time ki to
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ki + 1:

bX�
0|ki+1 = min

⇣
bXMAP
0|ki

� |Yki+1|, bX�
0|ki

⌘
(142)

= min
⇣
bX�
0|ki

� |Yki+1|, bX�
0|ki

⌘
(143)

= bX�
0|ki

� |Yki+1| (144)

= bX�
0|ki

�
���Cki+1

⇣
X0 � bXMAP

0|ki

⌘��� (145)

= bX�
0|ki

�
���Cki+1

⇣
X0 � bX�

0|ki

⌘��� (146)

= bX�
0|ki

� |Cki+1|
⇣
X0 � bX�

0|ki

⌘
(147)

= (1 + |Cki+1|) bX�
0|ki

� |Cki+1|X0. (148)

Since the ki are strictly increasing (k{i+1} � ki + 1) and bX�
0|n is decreasing, we have from eq. (148) that:

bX�
0|k{i+1}

 bX�
0|ki+1 = (1 + |Cki+1|) bX�

0|ki
� |Cki+1|X0. (149)

Thus, we can chain these lower bounds starting from k1 to obtain the following inequality:

8i � 1 : bX�
0|ki



0

@
i�1Y

j=1

�
1 + |Ckj+1|

�
1

A bX�
0|k1

� X0

i�1X

j=1

0

@|Ckj+1|
i�1Y

l=j+1

(1 + |Ckl+1|)

1

A. (150)

The chaining involves multiplying eq. (149) by 1 + |Cki+1| � 1, and then adding �|Cki+1|X0 to both sides
to apply each bX�

0|ki
lower bound. Since we assumed that X0 > 0, we have that bX�

0|k1
< 0 with probability 1

due to the following chain of inequalities and the fact that P(C0 = 0) = 0:

bX�
0|k1

 bX�
0|0 = �|Y0| = �|C0|X0  0. (151)

Additionally, 8kj : 1+ |Ckj+1| > 1 with probability 1 as P
�
Ckj+1 = 0

�
= 0. Thus bX�

0|ki
should grow without

bound with probability 1. There exists some first k
? such that bX�

0|k? < �1. Then, the support of f(X0|Y k
?

0 )

has had the interval [�1, 0] excised so that thereafter 8n � k
? : bXMAP

0|n = bX+
0|n, which is a contradiction.

Thus we have bXMAP
0|n ! bX+

0|n almost surely.

We now want to show that X0 is the least upper bound on bX+
0|n with probability 1 to apply the monotone

convergence theorem. X0 is not the least upper bound i↵ bX+
0|n stops strictly increasing prematurely, i.e. the

case bX+
0|n = bXMAP

0|n�1 + |Yn| > bX+
0|n�1 occurs finitely many times and bX+

0|n < X0 with probability 1.

We proceed by using a proof by contradiction. If possible, let X0 not be the least upper bound on bX+
0|n

with probability 1. It follows that bX+
0|n = bXMAP

0|n�1 + |Yn| > bX+
0|n�1 only finitely many times with probability

1. Then, there is a time Nstop such that 8n � Nstop : bX+
0|n < X0 and 8n � Nstop : bXMAP

0|n�1 + |Yn|  bX+
0|n�1.

By our proof that bXMAP
0|n ! bX+

0|n almost surely, we know there is a time N+ such that 8n � N+ :

bXMAP
0|n = bX+

0|n.
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Consider times n � max(Nstop, N+). 8n � max(Nstop, N+), we have that:

bXMAP
0|n + |Yn+1|  bX+

0|n (152)

bX+
0|n + |Yn+1|  bX+

0|n (153)

|Yn+1|  0 (154)

|Cn+1Xn+1|  0 (155)

|Cn+1(X0 � bXMAP
0|n+1)|  0 (156)

|Cn+1(X0 � bX+
0|n+1)|  0 (157)

|Cn+1|(X0 � bX+
0|n+1)  0 (158)

|Cn+1|  0 (159)

|Cn+1| = 0 (160)

Note that eqs. (153) and (157) apply because we have that n � N+, and that eq. (158) applies because
n � Nstop so that X0 > bX+

0|n+1. However, |Cn+1| = 0 occurring 8n � max(Nstop, N+) is a zero probability

event. This contradicts our starting assumption that we had a probability 1 event (of X0 not being a least
upper bound on bXMAP

0|n ).

Thus X0 is the least upper bound on bX+
0|n with probability 1, and so by the monotone convergence

theorem ( bX+
0|n is increasing, bX+

0|n has least upper bound X0), we can conclude that bX+
0|n converges to X0

almost surely when X0 > 0. Finally, since bXMAP
0|n converges to bX+

0|n almost surely, then bXMAP
0|n must also

converge to X0 almost surely when X0 > 0, i.e. P
⇣
limn!1 bXMAP

0|n = X0|X0 > 0
⌘

= 1.

We now revisit our assumption that X0 > 0. We can for X0 < 0 work through a nearly identical
argument, except with bX+

0|n and bX�
0|n swapped in considerations ( bXMAP

0|n ! bX�
0|n ! X0 almost surely). So

we should see that P
⇣

lim
n!1

bXMAP
0|n = X0|X0 < 0

⌘
= 1 as well. By the law of total probability:

P
⇣

lim
n!1

bXMAP
0|n = X0

⌘
=

1

2
P
⇣

lim
n!1

bXMAP
0|n = X0|X0 > 0

⌘
+

1

2
P
⇣

lim
n!1

bXMAP
0|n = X0|X0 < 0

⌘
= 1. (161)

Note we omit conditioning on X0 = 0 as this is a zero probability event. Since Xn = X0 � bXMAP
0|n�1 by

theorem 3.2, Xn ! 0 almost surely as well.

Theorem 3.9 (Second Moment Convergence Rate of MAP Control). For the system in eq. (1), assume that
X0 ⇠ Unif[�1, 1] and Cn ⇠ Unif[�1, 1] i.i.d. with Un = � bXMAP

n|n . Then there exists a r.v. time NMAP after

which we stabilize Xn with second moment rate 1
3 , i.e.:

E
⇥
X

2
n+2|n � NMAP

⇤

E
⇥
X

2
n+1|n � NMAP

⇤ =
1

3
. (162)

Proof. Without loss of generality, consider the case that X0 > 0 and thus bX+
0|n ! X0, surely from below by

the previous proof of theorem 3.8. Under this condition, we know there exists almost surely some time N+

such that 8n � N+, we have bXMAP
0|n = bX+

0|n. We wish to consider such a trajectory of bXMAP
0|n for n � N+.

We consider the iteration step in terms of bX+
0|n first for some n � N+:

bX+
0|n+1 = max

⇣
bXMAP
0|n + |Yn+1|, bX+

0|n

⌘
(163)

bXMAP
0|n+1 = max

⇣
bXMAP
0|n + |Yn+1|, bXMAP

0|n

⌘
(164)
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We can change the bX+
0|n+1 and bX+

0|n terms to bXMAP
0|n+1 and bXMAP

0|n in eq. (164) because we are at or have

exceeded the time N+, and 8n � N+ : bXMAP
0|n = bX+

0|n.

bX+
0|n+1 = bXMAP

0|n + |Yn+1| (165)

= bXMAP
0|n + |Cn+1Xn+1| (166)

� bXMAP
0|n+1 = � bXMAP

0|n � |Cn+1|Xn+1 (167)

X0 � bXMAP
0|n+1 = X0 � bXMAP

0|n � |Cn+1|Xn+1 (168)

Xn+2 = Xn+1 � |Cn+1|Xn+1 (169)

= (1 � |Cn+1|)Xn+1. (170)

Note that Xn+1 = X0 � bXMAP
0|n = X0 � bX+

0|n � 0 in eq. (166). Thus we have shown that for n � N+, that

Xn+2 = (1 � |Cn+1|)Xn+1. We may now compute a second moment rate of the state Xn for n � N+:

E
⇥
X

2
n+2|n � N+

⇤

E
⇥
X

2
n+1|n � N+

⇤ =
E
h
(1 � |Cn+1|)2X2

n+1|n � N+

i

E
⇥
X

2
n+1|n � N+

⇤ (171)

=
E
h
(1 � |Cn+1|)2

i
E
⇥
X

2
n+1|n � N+

⇤

E
⇥
X

2
n+1|n � N+

⇤ (172)

= E
h
(1 � |Cn+1|)2

i
=

1

3
. (173)

Note that Cn+1 is independent of Xn+1, and also does not depend on N+. The last equality comes from

1 � |Cn+1| ⇠ Unif[0, 1] which has second moment 12+1·0+02

3 = 1
3 . For the case X0 < 0, we can consider a

time N� such that for n � N�, we have bXMAP
0|n = bX�

0|n. Finally, define NMAP:

NMAP :=

8
><

>:

N+ if X0 > 0

N� if X0 < 0

0 if X0 = 0

. (174)

The above theorem informs us that we have a decent second moment convergence rate of bXMAP
n|0 to X0

once our controller is confident regarding the sign of X0. However, this says nothing about how quickly the
MAP control resolves the sign of X0 which must be characterized by the statistics of NMAP. Simulation of
the MAP strategy indicates that this rate is achieved fairly quickly. We can thus conjecture that E[NMAP]
is small (e.g.thatE[NMAP] < 10) and that its tail decays quickly.

4 Conclusion

In this report we have given a proof of a method that utilizes f(X0|Y N

0 ) to generate a MAP estimate of
the initial state, bXMAP

0|N , to control the system in eq. (1). On the way, we have gained insights that allow
us to interpret the results of prior related work. As future steps, we wish to also leverage the insights
gained from density changes of f(X0|Y N

0 ) to make controllers based on using the other densities f(Y N

0 |X0)
and f(Y N

0 |XN ), as well as seeing if the MAP strategy is similarly interpretable and provably stabilizing for
Gaussian distributions of X0 and Cn.
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