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Abstract

Neural Prosthetic with In-sensor Shared Control

by

Alisha Menon

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Jan M. Rabaey, Chair

With the explosive growth of wearable devices across a wide range of medical applications,
the ability to monitor a broad range of biosignals becomes increasingly viable. However,
these sensors face limitations in hardware resources and battery life. Low-power in-sensor
intelligence can replace costly transmission of raw data streams to improve battery life. For
a neural prosthetic, for example, various biosensors can be used to intelligently map the
user’s intended movements into prosthetic actuation. Achieving this locally can extend the
lifetime of the device and reduce latency, significantly improving the user experience. This
thesis leverages the emerging brain-inspired hyperdimensional computing (HDC) paradigm,
which uses an inherently simple binary representation, to address this need.

The first section of this thesis explores the energy efficiency of HDC for machine learning,
including a comparison against traditional ML algorithms, through design and post-layout
simulation of biosignal classification ASICs. With on-the-fly generation instead of memory
storage, and vector folding, the proposed architecture achieves 39.1 nJ/prediction; a 4.9x
improvement over the state-of-the-art HDC processor and 9.5x over an optimized SVM
processor, paving the way for it to become the paradigm of choice for in-sensor classification.

The second section of this thesis explores the use of the paradigm for robotics including the
development of a novel reactive robotics algorithm with a weighted heterogeneous sensor
encoding scheme that intelligently prioritizes successful behaviors, boosting the success rate
in a 2-D navigation task by over 30%, even when integrated into a neural network.

The final section of this thesis pulls together the prior elements for the realization of a
user-adaptive neural prosthetic with shared control. The controller recognizes the user’s
behaviors, predicts their next action based on habitual sequences, and determines prosthetic
actuation through intelligent deliberation between the user’s goal and sensor feedback-driven
autonomy. With each layer designed for hardware-efficiency to enable in-sensor implemen-
tation, the system achieves an overall accuracy of 93%.
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Chapter 1

Introduction

With the explosive growth of wearable devices across a wide range of medical applications, the
ability to monitor a broad range of biosignals becomes increasingly viable. Wireless sensor
networks can be formed with these distributed, heterogeneous biosensor nodes that monitor
and communicate data wirelessly. In traditional sensor networks, all data is transmitted to a
hub for processing, thus the radio is the largest consumer of power [3]. In-sensor intelligence
can be used to aggregate data locally to reduce the amount of communication. By only
transmitting classes or events, costly transmission of raw data streams are eliminated. The
lack of consistent data streaming also provides increased data security/privacy. However,
aggregation algorithms are very power-hungry which limits the benefits of this strategy. The
battery life of the sensors is improved if the additional power consumption of the on-board
intelligence is less than that saved from reduced data transmission. For an advanced neural
prosthetic, for example, various biosensors are used to map the user’s intended movements
into prosthetic actuation. The ability to achieve this locally can extend the lifetime of the
device and also reduce latency; both significantly improve the user experience.

Hyperdimensional computing (HDC) is an emerging brain-inspired paradigm that has
the potential to address the needs of wireless biosensor nodes. It is based on manipulating
large patterns of information in the form of very long binary vectors [28]. If we randomly
generate one very long vector, with each bit randomly selected to be a 1 or a 0, and we
randomly generate a second very long vector, the chances that these two vectors are going to
be the same is very unlikely. These two vectors are considered orthogonal, or uncorrelated,
occupying completely different spaces within the “hyperdimensional space”. The random-
ness results in the orthogonality, and as the dimension of the vectors increase, more and
more random orthogonal vectors can fit within the available hyperdimensional space with-
out overlap. To maintain this property to a sufficient extent, dimensions greater than 2000
are usually selected for the vectors, referred to as hypervectors (HVs), as anything smaller
compromises on performance/accuracy.

This property of randomness and orthogonality, and three simple binary operations -
bundling (bitwise majority count), binding (bitwise XOR), and permutation (cyclical shift) -
can be used to achieve high-accuracy classification. Figure 1.1 shows the key HDC operations,
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Figure 1.1: Key operations, elements, and blocks of HDC classification, shown for a 64-
electrode EMG gesture recognition task [55].

elements and classification blocks for an example EMG gesture recognition task. The first
step is assigning each electrode channel to a random hypervector; the full set of which is
referred to as the item memory. Feature extraction is done on the signals measured on each
electrode, such as a mean absolute value over a certain window [55]. Information about the
electrode’s feature value for the window at time t is projected onto its random hypervector
by scaling the corresponding item vector by it. For example, if the first electrode has a
value of 50mV, the full first item memory hypervector is scaled by 50. All the scaled vectors
are then bundled: summed together into one hypervector and then thresholded to assign
each bit to either a 1 or 0 and return to the binary representation. Because the mean
absolute value changes for each window, the output of the spatial encoder varies over time.
A temporal encoder is used to capture patterns that may arise over several windows by
permuting spatially encoded hypervectors for a set of n windows according to occurrence
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Figure 1.2: Illustration of the scope of this thesis.

and then binding. For the gesture recognition example, during training, the subject will be
asked to demonstrate gestures such as middle flexion. The temporal encoder output for that
data will represent EMG patterns for a middle flexion; this gets stored as the representative
hypervector for that class in the associative memory. During inference, if the user is doing a
middle flexion, the output of the temporal encoder once again contains that EMG pattern.
The pattern is classified by checking for correlation with the trained hypervectors which
would indicate similarity to the middle flexion.

This powerful pattern recognition algorithm has demonstrated superior performance over
other state-of-the-art algorithms for applications such as seizure detection [6], gesture recog-
nition [53], EEG error-related potentials classification for brain-computer interfaces [64] and
emotion recognition [7]. HDC even shows high performance under constraints such as lim-
ited training data [54] or noise from sensor misplacement, and provides rapid model updates
[53]. These properties are especially useful for biosensors where the training data is user-
specific and the sensors are vulnerable to displacement between or during extended usage
[53]. The paradigm has also been used for probabilistic queries [19], and reactive robotics
[42], demonstrating its versatility. However, the primary motivation for the growing usage of
this paradigm is its inherently simplicity which promises highly energy efficient intelligence
due to its binary representation and minimal models.
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The full scope of this thesis is shown in Figure 1.21. Towards a wireless biosensor node
with improved sensor lifetime through ultra-low-power on-board intelligence, the first section
of this thesis introduces a highly energy-efficient HDC processor. Prior HDC processors are
dominated by costly hypervector memory storage, which grows linearly with the number
of sensors. However, when observing biosignals such as EMG and EEG, large arrays of
sensors are used to collect spatial information [53] which significantly limits the efficiency of
this paradigm for these applications. To address this, the memory is replaced with a light-
weight cellular automaton for on-the-fly hypervector generation. The use of this technique
is explored in conjunction with vector folding for various real-time biosignal classification
latencies in post-layout simulation on an emotion recognition dataset with >200 channels.
The proposed architecture achieves 39.1 nJ/prediction; a 4.9x energy efficiency improvement,
9.5x per channel, over the state-of-the-art HDC processor. The processor is compared against
an optimized support vector machine (SVM) processor designed in this work for the same
use-case. HDC is 9.5x more energy-efficient than the SVM, paving the way for it to become
the paradigm of choice for high-accuracy, on-board biosignal classification.

The second section of this thesis explores how robot navigation tasks can leverage the ad-
vantages of the hypervector representation, including robustness to noise, hardware efficiency,
and high performance with limited training data - all as useful for robotics applications as for
biosensing. The paradigm enables behavioral prioritization through a weighted encoding of
heterogeneous sensor information. Experiments over 100 trials in each of the 100 randomly
generated obstacle maps demonstrate that the proposed weighted sensor encoding scheme
boosts the success rate of the navigation task by over 30% compared to an unweighted sen-
sor encoding, even while using a neural network. A hybrid scheme using the HDC weighted
scheme at the input of a deep feed-forward neural network achieves the highest success rate.
The hybrid scheme furthermore is more robust when reducing the HDC dimension by 50%.
However, the simple HDC implementation remains the most hardware efficient, making it
desirable for resource-constrained systems.

The final section of this thesis pulls together the elements described in prior sections
to address the burden and limitations of prosthetic devices. There is increasing interest in
shared control for assistive robotics with adaptable levels of supervised autonomy. In this
work, we present a user-adaptive multi-layer shared control scheme for control of assistive
devices. The system leverages the advantages of HDC for classification, probabilistic queries,
and reactive robotics to execute actuation based on the user’s goal while alleviating the bur-
den of fine control. A multi-modal dataset is collected for various activities of daily living;
the controller first recognizes the user’s most recent behaviors, then predicts the user’s next
action based on their habitual action sequences, and finally, determines actuation through
shared control with HDC-based reactive robotics which intelligent deliberates between the
predicted action and sensor feedback-based autonomy. Each layer independently achieves
>92% accuracy. Through error correction, the system is able to eliminate and correct accu-
mulated mistakes after integration of all the layers to achieve an overall accuracy of 93%.

1Zeus Bionic Hand showcased as an example prosthetic hand
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Chapter 2

Brain-inspired Biosignal Processor for
Ultra-energy-efficient Classification

2.1 Introduction

Specialized biosignal classifiers have been designed to efficiently classify biosignal information
streams using various algorithms for a variety of applications. Prior art includes application-
specific integrated circuits (ASICs) for: EEG-based seizure event classification using support
vector machines [21] and logistic regression with stochastic gradient descent [9], decision trees
for intracranial EEG-based brain state classification [59], and ECG-based cardiac arrhythmia
classification through an artificial neural networks [82]. ASIC classifiers have also been
designed to efficiently handle multiple types of biosignals using decision trees [70] and a
reconfigurable neural network [39]. All of these works aim for energy efficient usage in
ultra-low-power multi-channeled biosignal monitoring devices.

The HDC paradigm has been efficiently implemented in hardware as demonstrated by
several examples of specialized processors [13], [16]. However, the energy efficiency has been
limited for applications with many channels, such as biosignal monitoring, because HDC
processors require as many pseudo-orthogonal channel identification HVs as number of in-
put data sensor channels. Datta et al. synthesized a generic HDC processor for which the
channel identification HV storage, using ROMs, contributed the most (over 40%) towards
total power consumption [13]. This demonstrates the large cost of the necessary hypervec-
tor storage. Eggiman et al. generated the channel identification HVs and the adjustably
pseudo-orthogonal feature vectors with a similarity manipulator during the encoding pro-
cess to alleviate this issue [16]. This led to a 3x energy-efficiency improvement in post-layout
simulation over [13]. However, this process is still overly complex, especially for applications
with sequential channel access patterns. Therefore, the ability for HDC to efficiently classify
for applications with large numbers of channels remains limited.

Prior work has explored the usage of in-memory compute to do end-to-end HDC language
classification in the item memory vector storage through use of carbon nanotube FETs and
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Figure 2.1: Cellular automaton rule 90 iterative HV generation where ρ is a circular shift
and ⊕ is a bitwise XOR. HVs are generated through an XOR of the circular right and left
shift of the prior iteration.

Resistive RAM (RRAM, an emerging technology for analog memory storage) for bundling
and random projection [79]. An alternate implementation focuses on the associative mem-
ory, which stores trained HDC language classes, by using an XNOR-based RRAM content-
addressable memory to measure similarity between an input query and stored patterns [20].
A third in/near-memory HDC system uses two planar memristive crossbar engines (one for
binding, the other for associative memory search) in combination with nearby digital CMOS
for bundling applied to language and news datasets [29]. However, these techniques depend
on specialized memory elements in order to reduce the burden of the costly hypervector
storage, instead of reducing the storage itself.

Algorithm optimizations suggest an alternate and less specialized solution. HDC demon-
strates no accuracy degradation when re-using feature HVs across all channels and sensor
modalities, making the total number of hypervectors that needs to be stored for feature
representation constant regardless of channel count [46]. This is possible because pseudo-
orthogonality is maintained through the unique channel identification HVs which are equal
in count to number of channels being classified. Prior work has shown that these can be
generated on-the-fly using a cellular automaton (CA) instead of being stored in memory [32].

A cellular automata consists of a grid of cells, each of which evolve with complex behavior
over time through a set of discrete computations using the state of the current and nearby
cells [33]. CA rule 90 assigns the next state in a method shown to be equivalent to an
XOR of the two nearest cells [33]. This involves a single seed hypervector, a cyclical right
and left shift, and an XOR across the resulting vectors, visualized in Figure 2.1. Seed
vectors of dimensions over 24 have been shown to generate new degrees of freedom, new
pseudo-orthogonal vectors, for more than 103 iterations before saturating [32]. Hypervectors,
with thousands of cells in the grid, provide a linearly larger number of random iterations;
sufficient for the majority of applications. Prior work has shown that HDC demonstrates no
performance degradation with CA rule 90 channel vector generation [46]. The architecture
proposed in this work aims to take advantage of this.
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The proposed designs are demonstrated with the AMIGOS emotion recognition dataset
due to its large number of channels which allow for exploration of scaling up the design’s
input channels [12]. This dataset has 214 channels of multi-modal physiological feature
information used to classify human affective states based on two neurophysiological systems,
valence (pleasure vs. displeasure) and arousal (alertness). Discrete emotions can be described
as a linear combination of these two systems [63], reduced to high and low arousal and valence
values for emotion recognition. Previous work on the AMIGOS dataset includes various other
machine learning algorithms such as Fisher’s linear discriminant with Gaussian Naive Bayes
(F1 score of 57.8%) [12], extreme learning machines (83.4%) [71], extreme gradient boosting
(74.3%), and a common machine learning algorithm, a support vector machine (SVM), which
obtained 67.15% average arousal and valence accuracy [76].

Comparison of HDC hardware against common machine learning algorithms is limited, to
the best of our knowledge, to a single prior work which shows that HDC computing achieved
2x faster execution and lower power at iso-accuracy on an ARM Cortex M4 compared to
an optimized SVM [56]. However, that architecture used hypervectors with a dimension of
200 bits. In order to maintain pseudo-orthogonality, the key to HDC’s high classification
accuracy, prior HDC hardware implementations have instead suggested dimensions in the
range of 1000 to 2048 bits [53], [13], [16], [46]. Hence, the HDC implementation used for prior
comparison is not viable for the majority of applications due to the large accuracy trade-off
that results in better hardware performance, but non-competitive algorithm performance
[56]. In order to truly make HDC a desirable choice over alternative machine learning
algorithms, the hardware efficiency of HDC must be improved at dimensions of 1000-2000
bits to achieve superior performance in both hardware and classification accuracy.

In this work, a 2000-bit HDC processor is designed for always-on, on-board classifica-
tion, especially for large numbers of channels, to increase the monitoring lifetime of wearable
biosignal sensor arrays. CA rule 90 is combined with vector folding to increase energy ef-
ficiency with additional analysis and improved performance at maximum throughput over
[44]. Finally, an optimized support vector machine architecture is designed for the same
use-case, formalizing the first realistic hardware comparison between HDC and a common
machine learning algorithm, explored at a variety of channel counts. All architectures used
in this work are demonstrated with emotion recognition on over 200 channels and 3 sensor
modalities. This chapter is organized as follows: Section 2.2 proposes an HDC architecture
using CA rule 90 including the development of the HDC algorithm for the emotion recogni-
tion dataset. Section 2.3 focuses on results and analysis of the key techniques. Section 2.4
develops alternative architectures to compare HDC’s energy efficiency against a traditional
machine learning algorithm. Section 2.5 concludes with a summary, comparison against
state-of-the-art and potential future directions.
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Figure 2.2: Proposed HDC processor with CA rule 90 hypervector generation.
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2.2 Implementation

The HDC encoding architecture is primarily composed of four blocks [54], [7]. The first is
mapping into the HD space. Each channel, or item, is assigned a unique pseudo-random
HV. The full set of channel identification HVs is called the item memory (iM). A continuous
item memory (CiM) is used for encoding of feature values. This comprises a set of HVs that
gradually increase in hamming distance (a metric for HV orthogonality) and corresponds to
a range of discrete feature values. The feature resolution is set by the number of HVs in the
CiM. In the proposed architecture, shown in Figure 2.2, tie-high/tie-low cells are used to
store the CiM vectors. These are re-used across all of the channels. The iM HVs, however,
are generated on-the-fly instead of being pre-generated or stored in memory. This is done in
the HV generator using CA rule 90. If HVn is the hypervector state at step n, and ρ is the
cyclical shift operation (+1 for right, -1 for left), then HVn+1 can be generated by:

HVn+1 = ρ+1(HVn)⊕ ρ−1(HVn) (2.1)

These operations are vectorizable and computationally minimal. The iM generation process
is further minimized by using the final CiM HV as the seed. Mapping into HD space involves
a binding of the channel identification HV generated with CA rule 90 and its corresponding
feature value HV selected from the CiM.

The second block is the spatial encoder which accumulates the mapped vectors across all
channels. To minimize leakage power, only one channel is accumulated per cycle. Once accu-
mulation of all the channels in a sensor modality is completed, a majority count is performed
to generate a single HV for the modality. This is accomplished by thresholding the accu-
mulator. Then, the fuser bundles these modality HVs providing an equal contribution from
each of the modalities. The resulting output HV is an observation across all channels. This
is fed to the next block, the temporal encoder, as an n-gram, a single sample in a sequence
of n samples for which order is preserved through permutation of each hypervector. This
encoding scheme captures time-varying signals, enabling recognition of temporal patterns in
time-series data. The final block, the associative memory (AM), stores prototype HVs for
each data class. Classification is performed through hamming distance comparison between
the incoming HV and each of the stored prototype HVs. The class with the least distance is
predicted.

CA rule 90 makes the design flexible to changes in channel count. Since only a single
iM vector is stored for the current channel and a new one is generated each cycle, the HV
generation architecture does not expand with the number of channels. Instead, the HV
generator and spatial encoder take additional cycles to complete. For sequential channel
access patterns, each additional channel adds only a single additional cycle. For random
channel access patterns, the HV generator will need to restart with the seed and iterate
until the specified channel identification HV is generated.
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Vector Folding

In this work, vector folding is implemented and the impact on optimizations and trade-offs
in area, energy, and classification latency are evaluated for the HDC architecture. Oper-
ations within the HDC algorithm are frequently performed on very large vectors. When
implemented on hardware, a large amount of fanout is induced on control signals that drive
registers across these wide hypervectors, resulting in an increased amount of leakage power
dissipation as more buffers are inserted to meet hold timing requirements. To mitigate this
problem, the HV datapath can be folded to a fraction of the hypervector dimension. The
remaining hardware is then time-multiplexed fold-by-fold. This technique reduces the dat-
apath register count, resulting in a decrease in leakage power and area, while incurring a
cost in classification latency. An analysis of these trade-offs is presented in Section 2.3. In
the proposed architecture, a hypervector of dimension D is divided into F folds for the HV
generator, spatial encoder, and fuser and G folds for the associative memory.

Given this, the iM vectors are generated as follows. The first D/F section of the last CiM
vector is used to generate the initial fold F1 of the first iM. The first fold of each subsequent
iM is then generated by simply applying CA rule 90 iteratively. This process is then repeated
for the subsequent folds of each iM, one after another. This entire process is time-multiplexed
such that in hardware, only a single iM fold of dimension D/F needs to be stored per cycle,
minimizing the footprint of iM generation within the HV generator. However, as the width
of the CA reduces, the degrees of freedom – the number of pseudo-random rule 90 iterations
– also scales linearly downward, resulting in a classification accuracy degradation below a
fold width of approximately 20 bits, equivalent to 100 folds [32]. This method is applicable
until the number of folds is above this point, as shown in section 2.3.

The benefits of vector folding are most prominent in the spatial encoder and fuser, where
the accumulator registers within each block can be decreased by a fold factor of F , as
observed in Figure 2.2. The temporal encoder can be folded to further reduce the size of
the n-grams to a width of D/F . Permutations of each D/F section of the n-grams are then
binded and sent to the associative memory for comparison. However, n full spatial and fuser
encodings for the fold need to be performed to generate these n-grams. As a result, folding
in the temporal encoder requires re-generation of n − 1 n-grams from prior input samples
per fold, increasing latency by a factor of n cycles. In addition, the HV generator would
need to buffer n times the amount of features to include the previous n− 1 feature samples
in addition to the current one. On the other hand, the D-width hvout register at the end of
the fuser can be removed. This eliminates a main source of high fanout in the design which
occurs between control signals in the fuser and the 2000-bit register. The tradeoff between
the dynamic and leakage power as a result of folding this block are explored in Section 2.3.

Finally, for the majority of applications, the number of channels is greater than the
number of classes. Hence, the AM takes less cycles to execute than the spatial encoder.
Even without folding, the number of cycles within the sequential spatial encoder scales with
the number of features, while the AM takes only 4 cycles across 4 distance comparisons. As
a result, the AM can operate with considerably more folds than the spatial encoder and be
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executed in parallel with the rest of the HDC datapath. This pipelining allows the spatial
encoder to begin processing the next classification while the AM is still performing distance
computation with the current classification. In this work, a separate fold factor, G, is used
for the AM, reducing the footprint of hamming distance computations.

Simulation Dataset and Algorithm

This processor is simulated with the AMIGOS dataset from [12] which contains 214 features
across 3 modalities: GSR (Galvanic Skin Response: 32 channels), ECG (Electrocardiogram:
72 channels) and EEG (Electroencephalogram: 105 channels). The features were measured
for 33 subjects as they watched 16 videos [12]. Each video for each subject was classified to
have either led to a positive or negative emotion (valence), and the strength of the emotion
was classified as either strong or weak (arousal). From the 3 sensor modalities, Wang et
al. selected these 214 time and frequency domain features relevant to accurate emotion
classification [76]. With a total of 214 input features, this dataset was especially suited
towards demonstrating energy efficiency of the proposed processor as the number of channels
scales to large quantities.

The features used include GSR skin response/conductance and skin conductance slow
response, ECG heart rate spectral power, variability and heart rate time series, and EEG
average power spectral density and asymmetry of theta band, alpha band, beta band, and
gamma band. The data for all 33 subjects was appended and a moving average of 15 seconds
over 30 seconds was applied. The signals were scaled to be between −1 and +1 to meet the
HDC encoding process and downsampled by a factor of 8 for more rapid processing and usage
of the HDC classification algorithm. Previous work uses the leave-one-subject-out approach
to evaluate performance, this was also implemented to evaluate the algorithm in this work
[12], [76], [71].

Given the largest modality of 105 features, 6-bits is required to determine a majority
across the EEG modality for the saturating counter within the spatial encoder accumulator.
The classification result is a binary valence and a binary arousal decision through comparison
with four prototype vectors within the associative memory. Transitionary ngrams (those
with samples from both classes) were excluded from training and testing. Because emotion
recognition involves various sensor modalities, it requires sensor fusion. Previous HDC sensor
fusion implementations fused after the temporal encoder [7], but in this work, an early fusion
approach is taken, which fuses the modalities directly after the spatial encoding process.
Therefore, this architecture requires only a single temporal encoder as opposed to one per
modality, as shown in Figure 2.3. This reduces the parallel encoding paths while still allowing
each modality to be weighted equally instead of by number of features. The temporal encoder
was tuned and an optimal n-gram of 3 feature windows was selected.

Classically, the encoding of 214 features would requires advance storage of 214 iM hyper-
vectors with 2 feature projection hypervectors per iM vector (each feature value is encoded
through a hypervector representing a positive value or hypervector representing a negative
value) totalling to 642 hypervectors that need to be stored in the item memory. Various
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Figure 2.3: HDC (a) late fusion and (b) early fusion architectures for a three-modality
emotion recognition system. The late fusion architecture fuses after the temporal encoder,
resulting in 3 parallel temporal encoders - one per modality. In comparison, the early fusion
architecture fuses before the temporal encoder, resulting in only 1 temporal encoder.

alternate memory optimizations were explored alongside CA rule 90 to ensure equivalent
algorithm performance while using CA rule 90.

In the spatial encoder, the iM vector and the FP vector are bound together to form a
unique representation containing feature information that is specific to a feature channel.
However, both the iM and FP vectors do not need to be unique to the feature channel in order
to generate a unique combination of the two. The binding operation will inherently create
a vector different, and pseudo-orthogonal to both of its inputs. Therefore, as long as one of
these inputs is different for a specific feature channel, the spatially encoded feature channel
vector will be unique. Using this idea, a set of optimization parameters were developed:

‘iM vectors constant per modality’: the iM is replicated across the various modali-
ties. If, between each modalities, the FP vectors are different, then orthogonality and input
feature channel uniqueness are maintained even if the iM is the same.

‘FP constant per feature channel’: though the iM is now the same between each
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modalities, each feature channel within a modality still has a unique iM vector. Therefore,
it is possible to re-use the same FP vectors for every feature channel within a modality. This
requires maintaining 2 unique FP vectors for each modalities, and unique iM vectors within
a modality.

‘Combinatorial pairs’: taking this combinatorial binding strategy to its limit, the 2-
input binding operation can be used to generate many unique vectors from a smaller set
of vectors by following an algorithmic process. Each feature channel requires a distinct set
containing an iM vector, and two FP (positive & negative) vectors: {iM, PFP, NFP}. If
the vectors for feature channel 1 are {A, B, C}, then the bound pairs that could result from
spatial encoding (iM ⊕ PFP or iM ⊕ NFP) are:

• A ⊕ B

• A ⊕ C

B ⊕ C will not occur because they are both FP vectors. However, it is a unique pairing that
could be re-used for another channel. For example, the set for feature channel 2 could be:
{B, C, D}. The encoding process would use the following pairings:

• B ⊕ C

• B ⊕ D

This re-use strategy is the key to saving memory; it can be applied across all channels using
a bank of the minimal required vectors.

Each vector can be paired with every other vector only once in order to maintain orthog-
onality and paired uniqueness across all feature channel. For a feature channel, one vector
(the iM) must have two other available vectors (PFP and NFP) to pair with. With ⌊x⌋
defined as the floor function of x, the following equation can be used to calculate the total
feature channels, TFC, possible given a bank of v vectors:

TFC =
v−2∑
n=1

⌊
v − n

2

⌋
(2.2)

The formula can be derived by looping through each vector in the vector bank and sequen-
tially grouping it with pairs of the other vectors.

‘Rule 90 generation’: implementation of CA rule 90 trades off vector storage for vector
generation. Two vectors are used for the PFP and NFP vector used for all modalities. These
would be maintained throughout training and inference. However, the rest of the iM vectors
would be generated on-the-fly for each feature channel during the encoding process, requiring
no additional vector storage.

The performance of each of the memory optimization as the hypervector dimension de-
creases is shown in the Figure 2.4. The final result using CA rule 90, at a hypervector
dimension of 10,000, was compared against prior work in Table 2.1.
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Figure 2.4: Average valence and arousal accuracy for the various memory optimizations
proposed as the hypervector length decreases. The data labels are shown for the most
effective optimization: CA rule 90.

Table 2.1: AMIGOS classification accuracy comparison table

Method HV vs. LV (%) HA vs. LA (%)
GaussianNB1 [12][7] 57 58.5

SVM [76] 68.0 66.3
ELM [71] 83.9 82.8
XGB [76] 80.1 68.4

HDC late fusion [7] 83.2 70.1
HDC early fusion 87.1 80.5

The performance of various memory optimizations were explored and shown in Figure
2.4. HDC depends on near-orthogonality between different data streams and feature val-
ues to ensure that samples from different classes that vary in these ways are encoded into
sufficiently orthogonal class vectors. Each optimization reduces the total number of unique
vectors that need to be stored in advance, however, there was no decrease in accuracy on
AMIGOS between the most unoptimized and most optimized. CA rule 90 provides a >98%
decrease in memory storage while maintaining high performance, making it a viable solution
HDC architectures. It maintains the properties required for successful hyperdimensional
computing and therefore could generalize to other applications, and will be particularly use-
ful for those with many, varied streams of input information. There was actually an average
increase of ∼2.3% at a dimension of 10,000 when using CA rule 90 ; this accuracy change
may be attributed to the random element of HDC vector initialization/generation which
may result in either beneficial or detrimental random patterns.
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Table 2.1 demonstrates the overall improvement in performance on the AMIGOS dataset
as compared to the HDC late fusion algorithm, even with CA rule 90. The boost in accuracy
may come from the fact that different modalities may have different temporal behavior,
which may lead to different optimal n-grams. For late fusion, an n-gram of 4 was used
for all modalities without individual tuning. For early fusion, an optimal n-gram of 3 was
selected for the fused modalities temporal behavior, improving the overall performance. The
early fusion method requires tuning of only a single temporal encoder and still achieves
higher accuracy even with reduction of the overall encoding complexity. This indicates the
potential, benefits, and feasibility of early fusion encoding processes in HDC. Information
is retained in the high-capacity vectors even with only a single encoding path after the
spatial encoder. Compared to state-of-the-art for this dataset, as shown in Table 2.1, HDC
early fusion with CA rule 90 performed better on average than than GaussianNB1, SVM,
XGB, and ELM. The following sections deeply explore the hardware benefits of the HDC
architecture using the proven CA rule 90 technique and also compare against an SVM
hardware implementation.

Simulation Parameters and Tools

Modern recording systems for biological signals use sampling frequencies typically ranging
between 200 Hz to 1 kHz. Therefore, new data is sampled every 5ms - 1ms. In this work, the
systems were implemented and analyzed to generate a new classification for each incoming
data sample targeting real-time classification latencies of 1ms and 5ms, aligning with these
typical sampling rates [62].

All designs introduced in this work were implemented in the TSMC 28nm HPM technol-
ogy. Development was facilitated with the HAMMER framework [75]. CA rule 90 designs
used 0.8V VDD supply, and ROM designs used 0.9V VDD supply, both at the TT corner
of 25◦C. For minimal leakage power given the low-frequency use-case, only RVT/HVT cells
were utilized during synthesis with Cadence Genus. An area utilization of 70% was targeted
for place & route with Cadence Innovus. Power measurements were obtained using Cadence
Voltus using post place & route Synopsys VCS gate-level simulation, back-annotated SDF
delays, and SPEF parasitic resistances and capacitances at the TT corner.

2.3 Results & analysis

As shown in Figure 2.5, generating item memory HVs with a folded cellular automaton shows
virtually no impact on accuracy down to a fold width of 20 bits with fold factor F = 100.
Fold factors larger than this lead to an accuracy of ∼50%. These results align with prior
work on maximum degrees of freedom as CA rule 90 grid size varies; 20 bits provides fewer
than 10 pseudo-random iterations, while even 25 bits provides more than 1000, sufficient for
most applications [32].

1F1 score. Accuracy value not available.
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Figure 2.5: Impact of folding the D = 2000-bit HDC processor with CA rule 90 HV gener-
ation on classification accuracy.

The design was benchmarked across a range of fold factors while adjusting the clock
frequency to realize a 1ms classification latency. The optimal fold factor minimizes power
dissipation. The datapath width and accumulator register size in the design decrease as the
fold factor increases. However, to meet the target latency, a faster clock frequency, and hence
higher switching rate, is required. Hence, the dynamic power increases with the decrease in
leakage power. As shown in Figure 2.7, the optimal occurs where the dynamic and leakage
power intersect. At 4 folds, (F = 4, G = 200), the energy efficiency of the design is 39.1
nJ/prediction.

Figure 2.6 shows the generated layout for this design at 4 folds. The minimal size of the
HV generator, especially as compared to other blocks, is notable. The hypervector flow is
also visible, as exemplified by the HV generator which connects to input channels around the
chip, and is encompassed by the spatial encoder. The fuser is wedged between the spatial
encoder and temporal encoder, with the small, folded associative memory sitting within.
The spatial encoder is significantly reduced due to vector folding, but it remains the largest
block at a fold factor of 4.

The impact of folding on the energy consumption of each block is shown in Figure 2.8.
The HV generator finds the optimal somewhere between 2 and 4 folds, similar to the rest
of the design. The spatial encoder benefits the most from folding. Despite the higher clock
frequency, the savings in leakage power from folding the accumulator register is massive. The
resulting reduced fanout of control signals in the spatial encoder contributes as well. The
associative memory is folded at a faster rate than the other blocks to process in parallel with
the spatial encoder and keep the total cycle count down. This allows for a reduced clock
frequency across fold factors which helps to keep the dynamic power down in other blocks.
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Figure 2.6: Generated layout of the proposed HDC processor using 28 nm CMOS process
(without rings and pads)

However, as a result the AM grows slightly as the fold factor increases due to the increased
switching rate.

The fuser finds the optimal at 2 folds after which point the dynamic power resulting
from the more frequent switching of the same block causes the overall power of the block to
increase. The fuser also has an unfolded output register at the input of unfolded temporal
encoder that doesn’t benefit from the savings in leakage power but suffers from the increase
in dynamic power. Similarly, the temporal encoder power consumption grows as folding
occurs because it is left unfolded but switches at a much higher rate as each fold makes its
way through the block. Overall, folding improves power consumption in the spatial encoder
the most significantly. The other blocks see benefits until between 2-4 folds after which point
the increased dynamic power due to the faster clock frequency to meet the 1ms target latency
outweighs the savings in leakage power. The optimal fold point of 4 occurs as a result of the
balance between the benefit to the spatial encoder and the cost that starts to accumulate in
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Figure 2.7: Impact of vector folding a D = 2000-bit processor with 1ms classification latency
on dynamic & leakage power and energy/prediction

Figure 2.8: Impact of vector folding a D = 2000-bit processor with 1ms classification latency
on power consumption of each HDC block.
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Figure 2.9: Dynamic and leakage power and energy/prediction to observe the optimal folding
point when targeting 5ms classification latency.

Figure 2.10: Dynamic and leakage power and energy/prediction to observe the impact of
folding the temporal encoder targeting 1ms classification latency.
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the other blocks.
Folding of the temporal encoder was explored to reduce its rapidly increasing power

consumption as the fold factor increases (and in the fuser due to the unfolded output register).
The results are shown in Figure 2.10. Temporal encoder folding necessitates re-generation of
n−1 prior n-grams to form the n-length sequence, scaling latency by n. Hence, the processor
needs to run n times faster to meet the target latency of 1ms which increases the dynamic
power. Over the same time period, the resulting energy/prediction is much higher. Based
on this, it can be concluded that folding of this block is too costly.

Hence, the temporal encoder is left unfolded. However, as a result, as the rest of the
design is folded, the temporal encoder becomes the largest contributor to the area. By
folding the temporal encoder, its size, and the output register in the fuser, drops along with
the rest of the design, allowing the overall design to be nearly 45% smaller at the fold factor
of 4. If there is a biomedical application that requires and prioritizes miniaturization, such
as for implanted or distributed sensor nodes, folding the temporal encoder is an option to
rapidly reduce the logic area.

The parameters in this architecture may find a new optimal given different design prior-
ities or application specifications. For example, other applications may have other desired
classification latencies as a result of varying sensor sampling rates, lower frequency biosig-
nals, or low classification usage. Targeting highest energy efficiency for a different latency
specification changes the optimal vector folding point. A 5ms classification latency was used
to demonstrate the effect. The results are shown in Figure 2.9. Because of the decreased
clock frequency, the overall dynamic power of the design has decreased while the leakage is
very similar to the 1ms design. As a result, the intersection of the two has shifted to the
right and the minimum energy/prediction occurs at a fold factor of 16. It follows that, if,
instead, the classification latency was selected to be lower than 1ms, the dynamic power
would increase to meet the target and hence the optimal fold factor would be smaller.

Finally, the design was pushed to it’s maximum throughput to observe the performance at
its extreme. A potential use-case is post-processing of data that has already been collected,
providing local analysis of longer-term patterns/sequences of classified human response dur-
ing the observed period, that the system can adapt to in the future. The results are shown in
Figure 2.11. Without folding, the design meets timing at a clock frequency of 357MHz. The
energy/prediction is the product of the total power and the classification latency, which is no
longer constant since we are aiming for maximum throughput and not a target latency. The
overall switching power is massively increased from the 1ms latency design. However, the
drop in latency is so large that the energy efficiency is much higher. We hypothesized that
folding the design would allow for further reduction of the critical path, and hence greater
speed-up, due to reduced fanout. The design was evaluated at various fold factors, each
running at the corresponding maximum throughput. By folding, we get reduced power, but
the cycles per classification increases approximately by the folding factor. For the folding to
be an improvement in energy/classification, the overall frequency (latency) needs to increase
(decrease) by the same factor so as to not negate the decrease in power consumption. In this
architecture, beyond a fold factor of 2, the critical path reductions that occur due to folding
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Figure 2.11: Energy/prediction when running at the maximum throughput for each fold
factor.

and the corresponding decreases in latency are not large enough to benefit from the reduced
power. However, at a fold factor of 2, this architecture runs at a frequency of 455 MHz and
achieves an optimal energy efficiency of 17.8 nJ/prediction.

2.4 Alternate Implementations

In this work, architectures for alternate approaches to the same task, biosignal classification,
especially for large numbers of channels, were also designed for comparison against HDC
processor using CA rule 90.

The first is a RISC-V CPU implementation. Many IoT applications utilize microproces-
sors rather then application-specific ICs due to design time and fabrication costs. We explore
optimizations to accelerate HDC on these platforms including utilizing commonly accessible
vector accelerators. The heavily optimized energy/prediction is an expected several orders
of magnitude larger than for the HDC ASIC processor due to the generality of the RISC-V
processor, but several orders of magnitude improved over prior HDC CPU implementations,
even those using accelerators with multiple cores [56]. The improved CPU performance can
be used for tradeoff analysis to determine the platform of best fit by designers interested in
taking advantage of HDC for their applications.

The second is an HDC processor ASIC with vector folding, but with ROMs instead of
CA rule 90. This implementation specifically analyzes the contributions of vector generation
and provides a parallel to prior HDC processor implementations.
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Figure 2.12: Key CPU operations for HDC encoding in the (a) spatial encoder (b) temporal
encoder (c) associative memory.

The final approach is an optimized support vector machine architecture. Other models
have achieved higher performance on the AMIGOS dataset. However, these algorithms are
uncommon, especially as compared to an SVM, and therefore any comparisons or conclusions
wouldn’t generalize beyond this specific dataset. Hence, the SVM was implemented, allow-
ing a hardware comparison between the proposed 2000-bit HDC processor and a common
machine learning algorithm. The SVM implementation also enables a controlled analysis
and comparison across various channel counts.

CPU Implementation

Modern machine learning workloads use computationally-intensive matrix multiplication,
convolutions and accumulation that are addressed by integration of custom accelerators
containing systolic arrays [27],[73]. As opposed to custom hardware accelerators, vector
accelerators are commonly accessible, requiring little-to-no design time, and can even serve
multiple applications with the same hardware instance [80]. Because HDC training and
inference computation is done entirely with vectors of high dimension, vector accelerators
have the potential to significantly improve HDC performance. Specifically, of the various
HDC blocks, the spatial encoder is the most expensive in terms of cycles (∼6× greater)
and energy (∼4× greater) due to the computationally-intensive bundling operation across
input channels [56],[43]. As a result, classification of more than 128 channels requires >1.5
million cycles, even on an accelerator platform with 8 cores [56]. Hence, there is potential for
significant optimization. Towards the acceleration of HDC on these platforms, in this section
we explored HDC’s energy consumption on CPUs, shown with the open-source Rocketchip
RISC-V CPU [2] and Hwacha vector accelerator [37].

First, we propose a novel bit-serial word-parallel approach to accelerate the spatial en-
coder on any CPU. Then, we describe methods to optimize each block in the HDC classi-
fication algorithm for a vector accelerator, focusing on the key operations shown in Figure
2.12, and demonstrate the impact on execution time in terms of clock cycles and on power
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Figure 2.13: Bit-serial word-parallel technique to accelerate the key HDC bundling operation.

consumption. Finally, we explore additional hardware to improve execution time, specifically
lanes in the vector accelerator, and show that there are diminishing returns in execution time
resulting in an optimal configuration for energy efficiency, after which increased hardware
complexity outweighs the reduced latency. We demonstrate the proposed techniques using
the AMIGOS emotion recognition dataset used in prior sections due to the large number of
input channels which allows for extensive exploration of expensive spatial encoding block.

Accelerating the Spatial Encoder on a CPU

The spatial encoder finds the bit-wise mode across all input channel HVs, visualized in Figure
2.13. The prior method for this involved looping through each word in the hypervector,
extracting every bit into an unsigned integer and then executing a popcount [56]. While
sufficient for an implementation with only 4 input channels, it scales very poorly due to
the 3 nested loops and excess memory accesses [56]. The AMIGOS dataset used in this
work contains 214 input channels, making this method infeasible for reasonable latencies.
Hence, we moved to a transpose-popcount approach that involves breaking the HVs up into
bit matrices (i.e. 64-element array of 64-bit unsigned integers), transposing them, and then
performing a popcount on each row. While this removes 1 loop, it still requires a transpose
and concurrent storage of unsigned integers equal in number to input channels.

To further reduce execution time we eliminated the transposition by implementing a
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technique similar to the transition counting implemented in [36]. Visualized in Figure 2.13,
a set of 157-element arrays of unsigned integers, hypervectors, were used to represent a
counter. The counter was set to 7 bits for our dataset, large enough to count a majority
across all channels. This resulted in 7 counter hypervectors; each hypervector represents a
bit in the counter. The counters ripple-carry a bit in the incoming channel hypervector to
corresponding bit in the counter MSB hypervector. The counters are initialized to a value
equal to 27 − 1 − channels/2. If a majority occurs for a certain bit, the corresponding
bit in the counter MSB hypervector will flip. Thus, the output of the spatial encoder is
simply the 7th counter hypervector. This process can occur in a single loop. Using this
bit-serial, word-parallel method, the memory footprint in the spatial encoder stays constant
as channels increase until another counter bit is needed at which point another hypervector
would be added. This technique also improves the vectorizability of the bundling operation
as all computation can occur across the entire vector in parallel.

Outside of the spatial encoder, the permutation operation in the temporal encoder re-
quires carrying the overflow bit from every 64-bit unsigned integer in a ripple-shifting scheme.
To speed up this operation, it was noted that the point of permutation is to remove corre-
lation. A CPU-friendly optimization logically shifts each unsigned integer without carrying
over, thereby injecting 1 zero every 64 bits. As this maintains sufficient orthogonality, the
accuracy is not impacted, and several operations can be eliminated.

Utilization of a Vector Accelerator

Targeting Hwacha requires that vector assembly code be written inline with the original C
code. The datapath was broken into blocks that could maximally utilize vector registers. For
the spatial encoder, the bit-serial word-parallel technique was crucial to minimizing register
footprint in the vector unit and loads/stores. In total, only 10 vector registers (1 per counter
bit and 4 for intermediate storage), 4 address registers, and 5 shared registers were used.
The ripple-carry through the counter involving ANDs and XORs from the input hypervector
to MSB hypervector was manually unrolled for maximum register reuse. Thus, only 2 vector
loads were required for each channel and 1 vector store at the end of spatial encoding.

For the temporal encoder, a set of N spatial hypervectors are logically right shifted and
then bound to the output vector. The N parameter was three for the algorithm used; this
loop was unrolled to eliminate redundant loading/storing of the output for each sample.
The final code mapped to just three loads, one store, two shifts, and two XORs. In the
associative memory, the class comparisons were unrolled with each class loaded into vector
data registers. Hamming distance is calculated with an XOR which was done in the vector
accelerator, and a popcount. The vector popcounts could not be implemented on Hwacha
due to the inexistence of a vector accumulation instruction; instead, this was done on the
Rocket core.
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Figure 2.14: Execution time and energy efficiency with transpose-popcount bundling, bit-
serial word-parallel bundling, and after implementation on the vector accelerator.

Optimization of the Vector Accelerator

Hwacha vector lanes contain two major components: the Vector Execution Unit (VXU) and
the Vector Memory Unit (VMU) [38]. Vector instructions are steered to these decoupled
lanes during the decode stage. Hwacha is parameterized to support multiple (powers-of-2)
identical lanes. We simulated the classification task with 1 (default), 2, 4 and 8 vector lanes.
Each additional lane enables increased parallel processing of elements in each vector which
reduces execution time but increases average power consumption.

Results

The execution times in clock cycles and energy efficiencies of each acceleration effort are
shown in Figure 2.14. The bit-serial word-parallel approach to spatial encoding improves
the total number of cycles per prediction by 15.8× and the corresponding energy-efficiency
by 14.5×. The transpose-popcount implementation had an average power consumption of
42.3mW. As the bit-serial word-parallel approach does not add any hardware complexity,
there is minimal increase in average power consumption (3.9mW) and thus the total en-
ergy/prediction decreases by a similar factor as the execution time. The impact is shown for
each HDC classification block in Figure 2.15. Using the transpose-popcount to bundle, the
spatial encoder, for the AMIGOS dataset with 214 input channels, takes 2860× more cycles
than the other blocks combined. By switching to the bit-serial word-parallel approach, the
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Figure 2.15: Impact of the optimizations on execution time in clock cycles for the spatial
encoder, temporal encoder and associative memory.

spatial encoder is accelerated by a factor of 15.9×, the main factor in the net reduction
in execution time. An 1.4× acceleration is also seen in the temporal encoder due to the
elimination of overflow between array elements during circular shifts.

Implementing the algorithm on the Hwacha vector accelerator (with the bit-serial word-
parallel technique) achieved an additional 12.8× reduction in algorithm execution time due
to a speedup of 12.9× in the spatial encoder, 102.1× in the temporal encoder and 5.1× in the
associative memory. With the vector accelerator and the bit-serial word-parallel approach,
the spatial encoder was totally accelerated by 204.4×, now only 98× slower than all other
blocks combined while processing >107× more vectors. The average power consumption
increased by 33.2mW to 79.4mW due to the added hardware complexity, after integrating
Hwacha onto the Rocket Chip. However, due to the reduced execution time, the energy
efficiency still improved by a factor of 7.4.

Adding hardware acceleration through vector lanes continues to improve the execution
time. However, as shown in Figure 2.16, the returns on this are diminishing. Adding one
vector lane results in a 1.6× speedup, 2 to 4 lanes leads to a 1.4× speedup and 4 to 8 lanes
only results in a 1.15× speedup. Simultaneously, the average power consumption grows
more than linearly; one more lane causes a 1.3× increase, 2 to 4 lanes leads to a 1.4×
increase and 4 to 8 lanes results in a 1.6× increase. While the optimal number of lanes may
vary with input channels and hypervector length, this behavior will be consistent. For this
dataset, the power increase for more than 4 lanes outweighs the reduced execution time; the
net energy/prediction with 8 lanes is larger than for even 1 lane. As a result, the optimal
number of lanes is 4 which achieves a 22.4% improvement in energy efficiency.

As compared to HDC implementations on prior accelerators with multiple cores [56],
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Figure 2.16: Change in execution time per prediction, average power and overall energy
efficiency as the number of lanes in the vector accelerator increase.

the bit-serial word-parallel bundling technique on the vector accelerator offers several orders
of magnitude improvement in clock cycles. With 4 vector lanes and a clock frequency of
100MHz, the proposed system achieves a latency of ∼0.86ms (>10x prior work), significant
especially given the 214 channels being processed.

Overall, the bit-serial word parallel approach is a promising method to significantly accel-
erate the bundling operation that is key to HDC algorithms. The full classification algorithm
can receive orders of magnitude of improvement in cycles and energy/prediction through in-
tegration of a vector accelerator to speed up HDC operations. Taking advantage of the
available parameters of the vector accelerator such as vector lanes can further improve the
overall energy per prediction until the relative optimum after which the diminishing im-
provements in cycles/prediction make the added hardware acceleration too expensive. In
this section, we demonstrated the massive advantage provided to hyperdimensional comput-
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Figure 2.17: HV generation block with (a) ROMs vs. (b) CA rule 90.

ing operations by vector accelerators which, unlike custom accelerators, are accessible for
integration into hardware instances without additional design effort and can provide utility
for various other workloads. The combination of a vector accelerator with HDC-based clas-
sification provides a promising direction for highly efficient machine learning on the edge.
While the optimized energy/prediction is an expected several orders of magnitude over the
HDC processor with CA rule 90 (119µJ vs. 39.1nJ), the CPU platform offers benefits such
as reduced design time and functionality beyond HDC classification. For some applications,
a CPU implementation may be preferable; the techniques introduced in this section provide
a methodology to improve HDC performance on those platforms.

Future work for HDC CPU implementations can address strategies for data re-use. For
example, if the required output rate allows for it, batch processing of multiple accumulated
samples would allow for re-use of the same item memory vector multiple times before moving
onto the next sample. This would necessitate multiple counters for multiple samples in
parallel, but would significantly reduce memory transactions for all of the vectors involved.

HDC Processor using ROMS

The HDC ASIC processor with the ROM architecture is minimally altered from the baseline
CA rule 90 design; only the CA rule 90 unit was replaced with an item memory ROM
containing 214×F rows and D/F columns, each row containing one fold of a pre-computed
item memory vector, as shown in Figure 2.17. Figure 2.18 shows a comparison of area
utilization between storing hypervectors in ROM, as opposed to generating HVs through CA
rule 90, for both the iM only and for the entire design. The area scaling in iM generation
is minimal with CA rule 90, with an increase of only 3.11mm2 from 3 channels to all 214
channels, predominantly attributed to an increase in counter overhead. The ROM iM on the
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Figure 2.18: iM and total area as channels increase with CA rule 90 HV generator vs. ROMs
evaluated with F = 4 and 1ms classification latency.

other hand, increases by 30.84mm2 as every new channel requires an additional 2000-bit HV
to be stored. This growth in memory induces a significant 68.07mm2 increase in total area
for the ROM implementation, while in the CA rule 90 design, only a 28.75mm2 increase
is observed, primarily originating from increases in the spatial encoder accumulator register
bit-width.

SVM Processor

The SVM architecture was designed based on the algorithm in prior work for AMIGOS
[76]. The goal of the SVM is to find a hyperplane in N-dimensional space that distinctively
separates data points into their respective classes. For this architecture, two separate hyper-
planes for valence and arousal classification are needed. The classification decision can be
performed using the equation below.

m∑
i=1

αiy
(i)K(x(i), x) + b, (2.3)

αi represents the support vector weights, yi are the corresponding labels of the support
vector, K is the kernel function, x(i) are the support vectors, x is the new data point, and
b is the intercept. Given 214 input channels, a total of 120 support vectors for the valence
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Figure 2.19: SVM architecture with systolic array



CHAPTER 2. BRAIN-INSPIRED BIOSIGNAL PROCESSOR FOR
ULTRA-ENERGY-EFFICIENT CLASSIFICATION 31

classification and 155 support vectors for the arousal classification are required. The number
of support vectors remains relatively constant regardless of channel count. The length of
each support vector scales with the number of channels, so the memory requirement for both
valence and arousal support memories scales with the number of channels as well. In terms
of algorithm performance, the SVM achieved accuracies of 68% for valence and 66.3% for
arousal while HDC achieved 87.1% and 80.5% [76], [46].

Figure 2.19 depicts the overall system diagram of the SVM architecture. All input data
is quantized to a minimum data-width of 9-bits to limit average accuracy loss to <5%. The
classification process is divided into 3 steps.

• MATMUL 1 : The first step is a matrix multiply between the support vector matrix and
a set of 214 incoming features. To optimize cycle count, a systolic array with weight-
stationary dataflow is implemented, consisting of 214 total processing elements (PEs).
An entire set of features are first loaded into the systolic array, after which support
vectors can then flow into each PE and propagate downwards. Each PE is also double
buffered, allowing a new set of features to be sent in while the current classification is
still running. Within each PE in the systolic array, input support values are multiplied
with the stored feature, quantized back to 9-bits with minimal accuracy degradation,
then accumulated with the partial sum from the PE above. The result of this matrix
multiplication is an S × 1 vector, where S is the number of support vectors.

• MATMUL 2 : The second matrix multiplication is a single MAC, performing the mul-
tiplication between the 1× S α vector, and the S × 1 result from MATMUL 1.

• Decision: The result of MATMUL 2 is compared with the intercept b to generate the
final classification. The classification is 1 if the result of MATMUL 2 is greater than
−b, and 0 otherwise.

To store the large set of support and alpha vectors, this SVM architecture contains a
memory block, implemented as a set of ROMs. The data storage is optimized for minimal
retrieval time and minimal control logic overhead. The entire set of required supports per
cycle at the west face of the systolic array are stored as a single row in memory, resulting in
single-cycle data retrieval from memory. The intercept value for the two valence and arousal
classifications are stored as constant tie-high/tie-low cells. The overall power contributions
from the SVM ROMs were scaled based on the ROM utilization.

Figure 2.20 compares the SVM with the 2000-bit HDC architectures, a dimension that is
10x larger than used in comparisons in prior work [56]. Overall, in terms of energy efficiency,
HDC CA rule 90 scales extremely well with the number of channels. For applications with
more than a dozen channels, HDC outperforms the SVM. For the HDC ROM design, this
is only true for channel counts greater than 96 due to the large memory cost. SVM does
perform better at low channel counts because the supports and vectors scale directly with
the number of channels. HDC, however, uses 2000-bit hypervectors regardless of the number
of channels which makes the baseline single-channel architecture more expensive. This is,
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Figure 2.20: Energy/prediction comparison as the number of channels scales between the
SVM, HDC with CA rule 90 and HDC with ROM.

however, helpful at higher channel counts where the hypervector size is still constant instead
of increasing like the SVM. A comparison is shown in Table 2.2. By fully exploiting the
paradigm’s simplicity and minimal computation, without specialized memory blocks and only
standard cells, HDC achieves 9.5x better energy efficiency than SVM (372.2 nJ/prediction).

2.5 Conclusion

A comparison between the HDC processor proposed in this work and prior work (Table 2.3)
presents a 4.9x improvement in energy efficiency over state-of-the-art [16] HDC processors
for the implementation targeting physiological signal frequencies running at 909 kHz. At
maximum throughput, 455 MHz, the architecture achieves an even larger improvement of
10.7x over the state-of-the-art HDC processor by minimizing leakage power. Since this
processor was designed specifically targeting sensor arrays where the channel count is large,
the energy efficiency per channel is also compared (64-channel implementations were used for
fair comparison). An improvement of 9.5x and 33.5x over the state-of-the-art HDC processor
can be seen for the 909 kHz and 455 MHz implementations, respectively.

Based on this, we conclude that CA rule 90 is a highly viable choice for HDC processors,
especially for applications with large channel counts, as it enables elimination of expensive
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Table 2.2: Comparison between the HDC architecture proposed in this work using CA rule
90 with vector folding and the SVM developed in this work both targeting physiological
signal classification.

memory storage and overly complex generation. Vector folding alleviates the high fanout
caused by hypervectors to improve energy efficiency. Though the most energy-efficient fold
factor was 4 for a 1ms classification latency, this varies for different throughput requirements.
Shorter latencies will find an optimum at lower fold factors, longer latencies at higher. With
no accuracy loss down to widths of 20 bits, vector folding and CA rule 90 can sucessfully
be used concurrently. The techniques used in this work are not specific to the emotion
recognition application; they generalize to other biosignal classification applications as well.
Overall, reducing energy/prediction enables in-sensor classification with increased battery
life which improves the usability of biosignal monitoring devices.

An SVM implementation was designed in this work for the same biosignal application to
do a controlled analysis across a variety of channel counts for comparison. After applying the
techniques proposed in this paper, HDC achieves better energy efficiency than the SVM for
applications with more than a dozen channels. This is achieved even while maintaining high
classification accuracy with a 2000-bit processor, making this the first, to our knowledge,
viable HDC hardware comparison. This work’s contributions establish HDC as a desirable
paradigm for high-accuracy, extremely energy-efficient on-board biosignal classification, es-
pecially for large numbers of channels.

Table 2.3 also summarizes where this work fits within the biosignal classification ecosys-
tem, including comparisons with previous work dealing with similar biosensor signals. In
general, this work performs each classification with very low latency and energy/prediction
per channel despite the large cumulative channel count, including when compared with
similar work at comparable technology nodes and supply voltages. Overall, only Chua
et al. demonstrates a lower energy/prediction, achieved with highly domain-specific fea-
tures/algorithm and by aggressively scaling the supply voltage down to 0.5V [10]. Future
works fabricated with this work’s architecture would allow for power measurements at lower
supplies, including tradeoff analysis between the accuracy and the lowest functional supply
voltage as datapath bits begin to flip. Integrating this work with feature extraction hardware
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Table 2.3: Comparison of this work at 909 kHz, targeting real-time physiological signal
classification, and at 455 MHz, the maximum throughput, against state-of-the-art HDC
processors and biomedical classifiers.

and sensor IO would also provide a more holistic view on the entire energy impact of this
processor.

Future work can also explore the application of these techniques on different benchmarks
with various throughputs requirements, particularly non-physiological time-series tasks such
as keyword recognition or anomaly detection, where the feature resolution and hence CiM
may need to be scaled to larger sizes. Comparing against other traditional machine learning
algorithms, such as convolutional neural networks, in terms of both algorithmic performance
and hardware efficiency for other benchmarks would further inform the advantages and
limitations of the HDC paradigm. As more classes are added, the AM storage will run into
same scaling issue as the iM. HDC vector compression techniques can be explored to address
this. Without the iM memory storage, future work should explore algorithmic changes
focusing on the spatial encoder which is now the largest block in the architecture due to the
accumulator. This could include exploration of feature reduction or elimination for HDC.
This has been used successfully for other machine learning algorithms and would reduce the
overall number of channels and therefore spatial encoder cycles and register size.
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Chapter 3

Design of Reactive Robotics with
High Performance & Efficiency

3.1 Introduction

For robotic applications, deep learning faces challenges with learning from limited amounts of
training data, integrating prior knowledge, generalizing to new environments, and producing
interpretable models [74]. Using hypervector representation and operations, [58] proposes
a fully-HDC algorithm for robot learning and recall of reactive behaviors (HDC RORB) to
take advantage of HDC’s interpretability, representational power, and robustness against
noise to address these existing challenges. Previous works hypothesize the advantages of this
approach, but do not measure its performance/limitations in a well-defined environment
using standard metrics [58], [57].

A major motivation for recent interest in HDC is efficient hardware implementation [53],
[44], [13], [16]. HDC has achieved 11.6x greater ASIC energy efficiency than an optimized
support vector machine (SVM) [43] and 2x faster execution and lower power at iso-accuracy
on an ARM Cortex M4 compared to an SVM [56]. It has high applicability for battery-
operated systems, relevant to robotics. Though the HDC RORB algorithm is different
from classification, the simple operations and minimal model size are maintained suggesting
similar hardware efficiency.

In this work, we explore the ability of this technique to learn from human demonstrations
and emulate those behaviors in new runs/environments for a large number of trials. The
problem we aim to solve is prioritizing behaviors based on prior knowledge about the task
through encoding of heterogeneous sensor information. Prior work on sensor fusion with HDC
has shown its ability to represent heterogeneous sensor data in a unified form regardless of the
type or complexity of the inputs [46], [7]. Each sensor channel is assigned a unique random
hypervector (e.g. sensorIDn in Fig. 2). The discrete value of each of these channels is also
assigned a random hypervector (e.g. sensorValn in Fig. 2) [18]. The two hypervectors are
then bound together (through the XOR operator ⊕) to represent the relevant variable-value
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correspondence. The sensor channel values can be obtained through feature extraction or
other suitable discretized mappings. Thus, any type of information stream can be encoded
into this representation, which lends HDC well to sensor fusion. After assigning hypervectors
to sensor channels and values, they can be combined into rich representations through the
elementary HDC operators; these representations enable weighting or prioritization of the
different types of information. Previous work fused modalities with equal weight in order to
create a sensor summary for classification [46]. In this work, we build on this premise but,
exploring robotics applications, we propose uneven sensor weighting as a method to integrate
prior knowledge about the task to influence behavioral priorities and demonstrate the ability
to leverage the high-dimensional representation and operations to achieve this. This can
be accomplished through modifying the impact a specific sensor has on the overall sensor
hypervector representation, affecting the weight of that sensor on the recalled actuation.
Various encodings are demonstrated on the 2-D robot simulated navigation task, shown in
Fig. 3.1, to significantly impact the ability to reach the goal. To our knowledge, this is the
first implementation of a fully-HDC algorithm for a robot navigation task.

In this work, we are primarily exploring the HDC RORB paradigm to determine if key
HDC properties can be leveraged for robotics. State-of-the-art algorithms for similar 2-D
navigation tasks include, but are not limited to, NNs and Reinforcement Learning (RL)
approaches such as policy gradients [24], actor critic [50], and deep Q-learning networks
(DQN) [51], [78], [1], [68]. To explore the role that HDC can play in tandem with state-of-
the-art approaches, we develop a HDC-NN hybrid. Previous hybrid approaches use HDC
representation with NNs [34], [30] and long short-term memory networks [47] for classification
tasks, or for spatial representation [35]. In this work, we propose a hybrid approach to
leverage the HDC weighted sensor encoding and noise robustness for robotics applications
and observe the impact of the weighted sensor encoding on non-HDC models. We implement
three versions: a standard NN, a NN with the HDC sensor encoding at the input, and a
NN with the HDC sensor encoding at the input but trained to generate a hypervector as
the output followed by the inherent HDC noise clean-up process. The weighted encoding
significantly boosts the NN performance, demonstrating an avenue for future research on
integrating HDC into other machine learning paradigms.

Prior work improves efficiency primarily through hypervector dimensionality reduction
[53], [46], [13], [56]. We use this technique for in this work to observe the efficiency-
performance trade-offs. HDC RORB, shown in Fig. 3.2, depends heavily on the program
hypervector’s ability to represent all sensor-actuator training pairs; this is heavily correlated
to dimensionality of the hypervectors [60]. We hypothesize and experimentally demonstrate
that the HDC-NN hybrid, which doesn’t rely directly on hypervector dimensionality, per-
forms well for a 50% smaller dimension than HDC RORB. Based on this, we compare the
hardware efficiency for the two implementations based on first-order memory and opera-
tion count and show that HDC RORB is still more efficient, highlighting it’s potential for
resource-constrained systems.
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Figure 3.1: 2-D simulated navigation environment with obstacle (Ob1-Ob4) and target goal
x and y direction sensors. The robot can move in the four directions (up, down, left, right).

3.2 Problem Formulation

We formalize the navigation and obstacle avoidance setting in a simulated 2-D 10× 10 grid
with 15 randomly placed obstacles as shown in Fig. 3.1. The blue square indicates the
robot’s current location while the green indicates the goal’s location. The robot’s task is
to traverse to the goal location while avoiding any obstacles in its path. At each time-step,
the robot moves in one of four directions (up, down, left, right) based on its environmental
sensor data.

To mimic a real-world scenario, the environment is partially observable: the robot does
not know its own state (grid location), but has access to sensor data for the presence of
an obstacle in each of four directions around it, the x and y direction of the target goal,
and its previous movement. Since HDC RORB is a supervised algorithm, training data
was collected from human demonstration of moving the robot to the goal location through
various randomly generated obstacle maps with random initial and goal locations.

We use this setup to explore the ability for HDC RORB to encode behavioral strategies
for navigation of a 2-D maze. Using this testing environment, we aim to achieve compact
encoding of heterogeneous information, prioritizing the different pieces of information in a
way that is relevant or useful for the task. The same environment is used to study the hybrid
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Figure 3.2: (a) Visualization of the sensor-actuator pairs generated during training of the
program hypervector, and the query and clean-up done during recall in the HDC RORB al-
gorithm. (b) A sensor hypervector is computed from the various sensors information through
(c) modality-based encoding (d) directional encoding (e) constraints vs. goals.

HDC-NN schemes.

3.3 HDC RORB

All HDC algorithms rely on three fundamental vector operations: bundling (bitwise major-
ity count), binding (bitwise XOR), and permutation (cyclic shift) [28]. The binding and
permutation operations return a hypervector that is pseudo-orthogonal to its inputs. The
bundling operation outputs a hypervector that is similar to each of its inputs. Functionality
results from the following three concepts: (i) due to their very large dimension, randomly
generated hypervectors are pseudo-orthogonal [28]; (ii) HDC is inherently high capacity from
an information-theoretic perspective – as the hypervector dimension grows, the capacity of a
single hypervector increases – more orthogonal hypervectors can be bundled together while
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remaining individually identifiable [60]; (iii) the distance between two hypervectors can be
measured using a similarity metric such as cosine similarity.

The HDC RORB algorithm uses these basic HDC operations and concepts to encode be-
haviors into a single program hypervector which can be later queried to recall behaviors, as
shown in Fig. 3.2(a). For the 2-D navigation task, each of the 7 sensors and the actuator (in
this case, the robot movement direction) is assigned a random ID hypervector, and random
feature value hypervectors. These hypervectors are fixed and stored. During training, the
sensor data is encoded into a single sensor hypervector using binding and bundling oper-
ations. For each training sample, the sensor hypervector is bound with the corresponding
actuator hypervector, creating sensor-actuator pairs. The sensor-actuator hypervectors, if
sufficiently different from hypervectors already available in the program hypervector until
that point, are then bundled into the program hypervector.

During the testing phase, the same encoding process is performed on the input sensor
data. The sensor hypervector is bound to the trained program hypervector, which effectively
results in the ‘unbinding’ of a noisy actuator hypervector. This hypervector undergoes
a clean-up process by comparing against the stored hypervector representations of possible
robot actuations (up, down, left right). The actuation corresponding to the hypervector with
the highest cosine similarity to the noisy actuator hypervector is provided as the output to
the robot. This clean-up process pushes the output hypervectors into different parts of the
hyperdimensional space and is the key to HDC’s robustness to noise.

Heterogeneous Sensor Encodings

For the 2-D navigation task, the heterogeneous sensors (obstacle sensors, target sensors, and
previous movement) are bound with their corresponding sensor ID hypervectors and then
fused to create a single sensor hypervector. Recall that the binding operation creates an
output pseudo-orthogonal to its inputs and the bundling operation creates an output similar
to its inputs. Using these operations, the weight or relevance of specific sensors in the overall
sensor hypervector can be manipulated. The fusion process was designed for three different
strategies using this idea. The first is modality-based encoding, shown in Fig. 3.2(c), in
which modality hypervectors are generated through binding of channels for each modality,
and then bundled together. Each sensor has approximately an equal weight on the fused
sensor hypervector.

The second method is directional encoding, shown in Fig. 3.2(d), which creates repre-
sentations for the x and y directions through binding the horizontal obstacle data to the
horizontal target data and the vertical obstacle data to the vertical target data. These
directional representations are then bundled with the last move sensor. This method was
inspired by how a human approaches this navigation task, by combining information on
constraints/goals in the possible movement directions together.

The final method is constraints vs. goals encoding, shown in Fig. 3.2(e), which bundles
the target direction sensors and last move sensors and binds these to the combined obstacle
representation. This builds on the previous method with the difference that obstacles (con-
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Figure 3.3: The implemented models are (a) NN: input sensor values, output actuation (b)
HDC-NN1: input constraint vs. goals sensor hypervector where each bit is a feature for the
NN, output actuation (c) HDC-NN2: input constraint vs. goals sensor hypervector, output
actuator hypervector with the HDC clean-up process.

straints on movements towards task completion) and goals are combined directly instead of
within each direction. This is equivalent to projecting the bundled direction and last move
data into one of obstacle subspaces depending on the constraint data. This ensures that
movement decisions are based first on obstacle avoidance; a different choice will be made
for two different obstacle scenarios even if the bundled target direction and last move data
is identical. Within a certain obstacle sensor combination, decisions are made based on the
goal and last move.

The impact of the different encoding schemes on the success rate in the navigation envi-
ronment are presented in Section 3.5.

3.4 Hybrid HDC and NN

To further explore the effect of the behavioral prioritization through weighted sensor fusion
technique in non-HDC models, we integrated the HDC sensor hypervectors as inputs to a
NN and compared against a standard NN with raw sensor data as inputs. The NN models
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used in this work were developed in Python using the TensorFlow Library [40]. The first
model, shown in Fig. 3.3(a), is a deep feed-forward NN with an input layer, 2 hidden layers,
and an output layer. The input size is 7, the first and second hidden layers have 16 and
8 nodes, respectively, and both use ReLU activation functions. The output has 4 nodes,
one for each of the 4 movement directions. The loss function used for learning was sparse
categorical cross entropy. The stand-alone NN learns on raw sensor data as features and
robot movements as labels. The HDC-NN1 hybrid, shown in Fig. 3.3(b), uses the same
deep feed-forward NN but the size of its input layer is equal to the dimension of the sensor
hypervector. As such, we are able to train the NN with the HDC-encoded dataset of human
demonstrations; sensor hypervectors are the features, while the corresponding movements
are the labels. The comparison results are shown in Section 3.5

To improve the performance of the hybrid model, we further designed the HDC-NN2
hybrid, shown in Fig. 3.3(c). This version also contains a deep feed-forward NN, however,
the output is a hypervector. In this case, the input size is the hypervector dimension, but
the first and second hidden layers have 50 and 20 nodes, respectively, and both use tanh ac-
tivation functions in order to output a bipolar hypervector. To achieve this, the loss function
is selected to be cosine similarity, the metric used for measuring distance between hypervec-
tors. The neural network is trained on HDC-encoded sensor hypervectors as features with
corresponding actuator hypervectors as labels. During inference, the NN output hypervector
is returned to HDC representation by thresholding to bipolar values. Then, a prediction is
made by computing the maximum cosine similarity against the 4 HDC actuator hypervec-
tors. Note that this is the same actuator clean-up used by HDC RORB; it is inherent to
the process of returning from the HDC representation to the selected robot actuation. The
performance of this system is compared with the NN, HDC-NN1 and HDC RORB in Section
3.5

A softmax function is applied to the outputs of HDC-NN1 (probability), HDC-NN2
(cosine similarity) and HDC RORB (cosine similarity) to add a probabilistic element that
prevents an endless loop of repeated movements. This tends to occur when there is conflicting
sensor information, such as when the robot finds itself stuck inside a dead-end (in this
situation, obstacle avoidance can conflict with goal reaching). The softmax function is not
implemented for the modality-based or directional HDC RORB sensor encodings or the
stand-alone NN for which the crash rates are too high for this to occur.

3.5 Experimental Results

Testing was done with 100 trials on a set of 100 randomly generated obstacle maps with
different initial and goal locations (100,000 runs in total). The same set of maps was used
to compare between algorithms. Successful trials are those where the robot reaches the
goal within a reasonable number of steps without crashing into an obstacle. The reasonable
number of steps was defined with a timeout set to 100 iterations. This limit was hit only if the
robot entered a endless loop of repeated movements due to conflicting sensor information,
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Figure 3.4: The impact of sensor encoding strategy on success rate for HDC RORB. The
error bars indicate standard deviation.

neither crashing nor reaching the goal; this is considered a failed trial. The robot fails
immediately if it crashes into an obstacle. Success rate is defined as the mean percentage of
success in the set of 100 maps over all 100 trials. Standard deviation is computed for the
percentage of success in the 100 maps over the 100 trials.

Behavioral Prioritization through Sensor Fusion

Success rate of the 3 different encoding schemes used with HDC RORB across the 100 trials
in each of the 100 testing obstacle maps is shown in Fig. 3.4. The modality-based encoding
performs the worst at 46.89%, the directional encoding does ∼15% better at 61.53%, and
the constraints vs. goals encoding does the best at 88.57%. The results demonstrate the
ability to integrate prior knowledge about the task into the encoding process, typically a
challenge for deep learning [74]. Sensors that only go through binding operations into the
final sensor hypervector have a strong impact on the output. Sensors that go through the
bundling operation will have a weaker impact and lower association with specific output
movements. Therefore, the binding operation allows for prioritizing the impact of changes
in specific sensors, and through this, the ability to prioritize certain behaviors.

For this navigation task, hitting an obstacle causes a failed trial. Therefore, the first
priority should be to avoid obstacles, even if temporarily moving away from the goal. The
ability to make that choice requires balance between the decisions different sensors suggest.
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Figure 3.5: Success rates for the NN on its own, the HDC-NN1 with constraints vs. goals
sensor encoding, and the HDC-NN2 with constraints vs. goals sensor encoding and actuator
clean-up. Error bars indicate standard deviation.

As demonstrated by the results, HDC RORB can learn this behavioral priority by binding
the obstacle sensors at both stages in the sensor encoding process while including the target
goal and last move sensors through a bundling operation in the first stage, as shown in Fig.
3.2(e). The constraints vs. goal encoding method is the most suitable for this task. Using
only 3 operations, the results showcase the simplicity and expressiveness of weighted sensor
fusion in HDC representation.

Integration of HDC with NN

The success rates of the 3 instances of NN-based models are shown in Fig. 3.5. The NN alone
has a 45% success rate which is similar to the HDC RORB with modality-based encoding.
This shows, interestingly, that performance is equally low for the two algorithms when the
sensor information is provided to the model without intelligent weighting based on prior
knowledge about the task.

Because of its high performance with HDC RORB, constraint vs. goals sensor hypervec-
tor encoding was integrated into the HDC-NN hybrids. With each bit of the weighted sensor
hypervector provided as a feature to the NN, HDC-NN1 shows ∼40% improvement in suc-
cess rate to 84.81%. This is a significant boost and demonstrates the value of the expressive,
weighted HDC sensor fusion technique, even for non-HDC learning schemes. When NNs
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Figure 3.6: Impact of hypervector dimension on HDC RORB and HDC-NN2 success rate.
At 1000, HDC RORB degrades by more than 20% while the HDC-NN hybrid remains within
3% of the peak. Shaded area indicates standard deviation.

are trained with the original sensor data, they are not capable of prioritizing application-
relevant information because they lack knowledge encoding capabilities, they simply learn
statistically-relevant patterns found in that data. A hybrid allows the NN to receive some
of the knowledge encoding through representing training data as weighted fused sensor hy-
pervectors.

However, even when using the constraints vs. goals sensor hypervector bits as the in-
put features to the NN, it still has a ∼4% lower success rate than HDC RORB. The only
remaining difference between the two is that the HDC-NN1 outputs an integer representing
the selected robot actuation while HDC RORB outputs a hypervector that undergoes the
clean-up process, pushing it closer to an existing actuator hypervector before translating
down to an robot actuation.

To include this key step, as explained in Section 3.4, the HDC-NN2 hybrid uses actuator
hypervectors as labels and the cosine similarity-based clean-up process on the output of the
NN. The success rate improves by ∼4.5% when using this system, demonstrating that the
clean-up process contributes to the overall performance. With this boost, the HDC-NN2
hybrid achieves 89.22% success rate, actually better (∼0.7%) than HDC RORB. The deep
feed-forward networks used in this work underwent a hyperparameter search to select layer
sizes, but the models were kept simple (input, output, 2 hidden layers) for the purposes of
integration exploration. We hypothesize that additional time spent designing a NN for the
specific task and for the hypervector input and output layers could result in success rates
with a larger margin above the HDC compressed recall algorithm.

Considering hardware efficiency (a key benefit of the HDC paradigm), the most com-
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mon optimization technique is reducing the hypervector dimension. This reduces the size of
the entire datapath affecting operation count and memory storage approximately linearly.
However, due to the correlation between hypervector dimension and ability to store infor-
mation [60], this reduction has an impact on algorithm performance. For HDC RORB, a
reduction in dimension affects how many training examples the program memory can learn
and effectively unbind into recognizable actuator hypervectors during recall. This effect is
confirmed in Fig. 3.6 where HDC RORB significantly degrades for dimensions below 2000.
We hypothesized that the HDC-NN2 hybrid would not face as significant performance ef-
fects, because the training samples are used to train weights rather than be bundled into
a compressed hypervector. This is demonstrated in Fig. 3.6. The hybrid is able to main-
tain performance to within ∼3% even with a 90% reduction in dimension. By 1000 bits,
HDC RORB has already degraded by more than 20%; the HDC-NN hybrid allows for a 50%
smaller hypervector dimension than HDC RORB.

For this task, HDC RORB requires storage of around 17 hypervectors including the
binary program and ID/values hypervectors. The computation includes XORs, additions,
comparisons and hamming distance operations, totalling to around 20 operations per hyper-
vector bit. To first order, if D is the hypervector dimension, this results in 20×D operations
per recall and 17×D bits in memory. For the HDC-NN2, all the weights in the neural net-
work are stored instead of the program hypervector. There are D×50 feed forward weights
between each input node and hidden layer node and 20×D between each second hidden layer
node and output node. Hence, the hybrid network storage scales with D by a factor of 70.
The operation count of the NN includes the multiply and additions which in total, to first
order, scale with D by a factor of 140. With 32-bit weights, this is approximately 2256×D
bits in memory and 159×D operations, excluding the middle layers. Because layers of the
NN are now HDC dimension, the hardware cost has significantly expanded. Even with 50%
smaller hypervector dimension for the hybrid, the HDC RORB would still be more efficient.

3.6 Conclusion

In this work, we explored the use of hyperdimensional computing for robotics navigation. Us-
ing prior knowledge about a 2-D navigation and obstacle avoidance task, we proposed a sensor
encoding scheme that uses only 3 operations to prioritize selected behaviors through sensor
weighting. The effectiveness, simplicity and noise robustness of HDC encoding and repre-
sentation for weighted sensor fusion tasks showed promising results for both HDC RORB
and non-HDC paradigms. The hybrid model with a hypervector input and output is highly
robust against dimension reduction. However, the simple HDC RORB algorithm has the
highest hardware efficiency of the explored models, demonstrating its potential for resource-
constrained robotics systems. The hybrid schemes provide avenues for future research in
integration schemes that leverage the advantages of HDC alongside other machine learning
algorithms to improve performance for robotics applications.

Future work includes observing performance of HDC RORB as more sensors and actuator
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degrees of freedom are available. In this work, the success rate metric was used to compare
ability to navigate while avoiding obstacles, but additional observation of optimality of the
taken paths to the goal would further inform the model’s performance, particularly as more
variables are added. Transitioning the model from the simulation environment to a physical
environment and measuring the ability to handle noise from non-ideal sensors would provide
insight into the input noise robustness. A key property of HDC is the ability to perform
well with limited training data, useful for robotics. Future work could explore this for
HDC RORB. Finally, in this work we show that HDC facilitates hybrid models; future work
should consider these results as a baseline. The hybrid techniques in this work provide a
basis on which integration of HDC with state-of-the-art robotics learning algorithms such
as DQN-based reinforcement learning is possible. Exploring that for more complex robotics
applications is left as future work.
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Chapter 4

Shared Control for Neural Prosthetic
Devices

4.1 Introduction

Current myoelectric upper limb prosthetic devices aim to bridge the gap between users and
their prosthetic with a functional residual limb that performs common grips for activities of
daily living including pinching, pushing, or grasping objects [4]. However, assistive function-
ality on commercial hands is limited to a set of programmable grips [52] decided based on
the user’s daily activities [77]. The terminal device of myoelectric prostheses is capable of
rotating through a set of programmable grips - the myoelectric control generally involves two
sensors on a flexor and extensor muscle which are used to trigger this. While noninvasive,
the myoelectric control relies on the consistent accuracy of sensor placement on the forearm
when donning the prosthetic device, involves a long training phase and faces signal degreda-
tion even during a single wear session [11]. As a result, some companies take extra measures
such as the Grip Cycle Button in the TASKA hand which provides the necessary means to
change a grip or return to a neutral position while bypassing the use of EMG signals.

Due to the inconvenience and unreliability of switching between grips, users stick to
one grip 70% of the time [4], resulting in low voluntary usage of even the existing limited
functionalities. Additionally, while performing a grasping task, users focus around 90% of
their visual attention on either their prosthetic or the area near the object [17]. This, and
factors such as dexterity limitations and unintuitive design ultimately lead to up to a 75%
abandonment rate of prosthetics [22]. EMG-based control also puts excessive burden on the
user to over-emphasize grasping muscle patterns, causing early fatigue [85]. Overall, the lack
of intuitive assistive functionality makes it difficult for users to be motivated to continue
dealing with the practical issues and mental load involved [17].

Existing approaches to robotic control that eliminate the mental/physical burden of
EMG-based control include optimal control algorithms such as reinforcement learning (RL).
These are fully automated through a policy that minimizes a cost function [69]. However,
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the policies are limited to known scenarios/goals [81] and are slow and data hungry [67] -
particularly an issue for myoelectric control where limited training data exists for a specific
user/wear session and latency impedes proper functionality. Additionally, the system selects
an optimal trajectory so the user can not naturally execute on their intents, make decisions
or anticipate prosthetic behavior. Hence this alone does not address prosthetic needs.

“Shared control” is an approach that intelligently arbitrates between human control and
prosthetic autonomy. This strategy executes on the user’s intent while alleviating the bur-
den of fine control. Existing shared control schemes include a binary system that switches
between a multi-layer perceptron for myoelectric control to autonomous object contact max-
imization once contact is made [85]. However, in this case, the human’s intent is lost once
the automated control takes over. Also, the system does not generalize to daily tasks that do
not need, or may even be hindered by maximum contact. A different shared control scheme
uses a weighted sum of the intent-specific optimal trajectory learned through inverse RL
and the direct human-controlled trajectory [86]. However, the involvement of RL limits it
to specific trajectories - a variation in object location would require re-training under a new
intent.

In this work, we design & evaluate a shared control system that maintains user autonomy
at all times, but displaces the burden of fine control. The system is user-adaptive, generalizes
to new tasks without large amounts of training data, and aims for computational simplicity
for in-device implementation to lower latency and avoid power-hungry data streaming. It
has the potential to quickly update its model, avoiding performance degradation due to time
or sensor placement inconsistency. Towards these goals, the system takes advantage of the
benefits of Hyperdimensional Computing discussed in prior sections such as energy efficiency
and small memory footprint [43] as shown in in Chapter 2, high accuracy on limited training
data [46] shown in Chapter 2, and quick model updates for new classes/contexts - especially
useful for user/session-specific EMG systems [54]. Embedded HDC enables low latency
due to its simplicity, enabling in-device feedback for rapid, natural prosthetic response [55].
HDC can also be used to prioritize reactive robotic behaviors relevant to specific user intents
through intelligent sensor encoding [42] as shown in Chapter 3. HDC is a very versatile
paradigm that, in addition to the classification mentioned before, can encode probabilistic
queries [19], address sensorimotor mappings [48], enable model superposition [8] for reduced
memory footprint [83] and achieve efficient symbolic reasoning [49].

These various schemes can be used in combination to leverage the benefits of HDC to
address the versatile needs of prosthetic shared control. This work utilizes the appropri-
ate algorithms to achieve decoding, interpretation, prediction and reaction in a multi-layer
fashion in order to achieve prosthetic shared control.

4.2 Data Collection

We collected a dataset of EMG, accelerometer and force sensor data while subjects completed
a set of 6 ADLs. These include “folding laundry”, “writing with pen”, “opening a jar”,
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Figure 4.1: The data collection setup integrating flexible force sensors into the EMG and
accelerometer acquisition system.

“screwing lightbult”, “combing hair”, and “tying shoelaces”, selected to cover a variety of
hand motions and positions [45]. The EMG sensor array was fabricated by screen-printing
connective traces and circular electrodes (diameter r, 4.3mm) using conductive silver ink
(NovaCentrix FG57b) in a uniform 4×16 array on a flexible PET substrate [55]. Each
row was spaced 14.3mm apart, and each column was spaced 17.8mm apart. A dielectric
encapsulation layer (NovaCentrix DE-SP1) contains via holes to expose the electrode pads
but insulate the connective traces from the skin. Overall dimensions (29.3cm×8.2cm) allow
the array to wrap around an above-average-sized forearm, enabling observation of extrinsic
flexor and extensor muscle activity [55].

The flexible EMG sensor array interfaces with the WAND device - an 8-layer PCB that
accommodates an accelerometer and components for processing/telemetry [84]. This is done
using a flat flexible connector (FFC) on a two-layer adapter board re-designed in this work
to also interface with 5 force sensors. Tekscan FlexiForce A201 111N resistive force sensors
were selected for their precision and replicability. These were placed in a voltage divider with
the reference voltage and unity-gain buffer to output a signal that changes with the force
applied. The additions to the PCB include force sensor connectors, op-amps for unity gain
buffers and resistors for the voltage dividers for each sensor, and a 3V coin cell battery to
power the voltage supplies and reference voltages. To improve the replicability and stability
of the signal for weights with larger radii, a bumper was added to centralize the force onto
the sensor area. The force sensors had a maximum sensor length of 190.5 mm that allowed



CHAPTER 4. SHARED CONTROL FOR NEURAL PROSTHETIC DEVICES 50

Figure 4.2: The data collection GUI and objects for common activities of daily living.

for attachment to the tips of the subject’s fingers.
As the system is setup for 64 channels, 5 of the channels were re-routed from EMG

channels on the edge of the array to the 5 force sensors. All 64 channels (59 EMG, 5 force
sensor) were sampled and digitized at 1 kS/s using the custom-designed sensing and digitizing
neural interface IC35 that maintains very low power consumption (700µW) [26]. In operating
WAND, the wide input voltage mode with a range of 400 mV was used to allow for a larger
range of force measurements. The device wirelessly connects to a base station computer
with a 2.4 GHz radio SoC for data streaming and re-configuring. The neural interface was
powered using a single 3.7 V, 240 mAh lithium-ion battery weighing 4g. The full system,
shown in Figure 4.1, tracks motion, sEMG signals, and force exerted on each fingertip.

The current dataset includes 4 able-bodied, adult subjects1 [45]. Data was collected using
a graphical user interface (GUI) to guide subjects through the 6 ADLs shown in Figure 4.2.
For each ADL, the subject first watched a tutorial. Then, the subject did 5 repetitions of
the ADL in a controlled time frame during which they were guided through the sub-tasks
comprising the ADL. Subsequently, they did 5 repetitions of the ADL at their own discretion,
unguided and with unspecified sub-task timing.

During the controlled time frame, each of the 6 ADLs were broken down into sub-tasks
guided to last 5 seconds. The sub-tasks were selected to correspond to changes in prosthetic
actuation (e.g releasing, lifting, changing of grip, etc.). “Folding laundry” consisted of 8 sub-
tasks to lift and fold a jacket. “Writing with a pen” consisted of 15 sub-tasks to use a two-
finger pinch to write “hello” on a paper. “Opening a jar” consisted of 14 sub-tasks to untwist
and remove a jar cap. “Screwing lightbulb” consisted of 13 sub-tasks to screw a lightbulb
into a lamp. “Combing hair” consisted of 16 sub-tasks to pickup and comb through hair 4
times. “Tying shoelaces” consisted of 9 sub-tasks to use a mirrored L grip and closed pinch

1Dataset & scripts available at https://github.com/alisha-menon/ADL-data
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to tie the laces. During the variable time frame, the subject was instructed to complete each
ADL under 20 seconds freely, without guidance. All experiments were performed in strict
compliance with the guidelines of IRB and were approved by the Committee for Protection
of Human Subjects at University of California, Berkeley (Protocol title: Continuous EMG
for Learning Activities of Daily Living Study, Protocol number: 2021-11-14838).

Most existing sEMG datasets are limited to specific movements or static gestures [61,
41, 31]. Prior sEMG datasets that were collected during ADLs do not include feedback
information, which a controller could heavily benefit from for object manipulation, or labels
for various parts of the ADL, which could enable more specific grasp selection and timing
[23]. This dataset collects sEMG and accelerometer information during ADLs along with
the critical feedback force sensors, includes labels for sub-tasks and also adds the controlled
timing scenario in which executed tasks are guided under specific timing [45]. The controlled
time frame serves as a foundation for analyzing data collected in the variable, unguided time
frame which is also included. The two levels of timing complexity aid in control scheme
exploration and development.

The proposed shared control system is evaluated on this multi-sensor dataset for 6 ADLs
(with 75 total sub-tasks or short-term behaviors) for 4 able-bodied, adult subjects.

4.3 Proposed System

Overview

The multi-layer shared control scheme designed and built in this work is shown in Fig. 4.3.
The lowest layer acquires feed forward sensor data: EMG and accelerometer data on the
x, y and z axes collected on the forearm. This information is used to determine the user’s
long-term goal (ADL) using an HDC classifier. A time series classifier recognizes the most
recent sub-task completed by the user within the selected ADL using the accelerometer data.
Because the classification layer classifies on prior sensor data, it determines what has already
happened and therefore can not direct actuation that corresponds to the user’s actions at
the present. To solve this, we include a probabilistic layer that encodes the user’s habitual
sequences of sub-tasks used to accomplish an ADL in order to predict sub-tasks. This
information is used to predict the sub-task that the user intends to do at the present based on
their most recent sub-task recognized by the time series classifier. Prior work has successfully
projected probability tables to HDC vectors [19]. While we use a traditional probabilistic
model in this work, we make initial steps towards an HDC representation through taking
input sensor data in the form of HDC vectors instead of raw data. Future work will fully
replace this layer with an HDC representation making the full multi-layer control scheme
majority HDC and able to take advantage of HDC properties like computational efficiency,
low latency, and quick model updates. The output of this layer is provided to the shared
control layer as the human-driven control.

Currently, when being fit for a myoelectric terminal device, patients are asked to describe
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Figure 4.3: Multi-layer shared control scheme with (a) sensor inputs (b) user behavior recog-
nition (c) user intent prediction (d) shared control with HDC RORB (e) actuation & feed-
back.

their activities of daily living (ADLs) – this determines the order and range of grips pre-
programmed into the hand. ADLs can include a wide range of activities, each with its own
unique set of necessary grips. For instance, if a patient enjoys working on their car, they
would need a more durable hand, capable of being scratched and waterproof in case oil leaks
on it. Others are more widely selected such as brushing one’s hair or feeding themselves,
each of which requires specific grips.

Some examples of commonly used prosthetic grips in commercial devices include the
power grasp, closed pinch, open pinch, key grip, and finger point with the pinch grips and
power grasp being the most used overall [52]. For the power grasp, all 5 digits begin to flex,
surrounding the object of interest [72]. This grip is useful when the user would like to hold
something or pick up an object. During the closed pinch, digits 3-5 are flexed while the first
and second digits function by opening and closing. Conversely, during the open pinch, digits
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3-5 remain extended while the first and second digits open and close [72]. These grips are
examples of the high-level prosthetic behavior that must be outputted by the shared control
system.

The shared control also depends on feedback from force sensors on the fingers of the
end-effector during actuation. The shared control is achieved through HDC RORB which
is designed to intelligently use both the human-driven control and the feedback-based auto-
matic control to determine the appropriate reactive high-level prosthetic actuation. In this
work, each layer was implemented individually and developed for high accuracy. During
integration, an error correction scheme was included to eliminate accumulated error or per-
formance degredation. Thus, high performance functionality is enabled for prosthetic shared
control.

User Behavior Recognition

The lowest layer of the system recognizes the user’s ADL. The HDC classifier used includes
a spatial encoder, temporal encoder and associative memory as outlined in Figure 4.4.

We used the controlled time frame dataset collected for the 4 subjects and designed an
HDC framework for task recognition. The algorithm is shown in Figure 4.4 for the example
ADL ”screwing lightbulb”. The user reaches for a lightbulb, moves it towards the lamp, then
proceeds to screw it in with periodic rotations of the wrist. During data collection, the data
was labeled by ADL and sub-task. In the controlled time frame, there were 5000 samples
per sub-task. Feature extraction involved a mean absolute value over 50ms non-overlapping
windows selected based on [55]. Hence, each sub-task is represented by 100 data points per
EMG channel.

The proposed algorithm then maps these features into the HD space. The basic build-
ing block of the algorithm is hypervectors (HVs), bipolar vectors with dimensions in the
thousands. An item memory (iM) consists of a set of randomly generated HVs (randomly
placed equal number of −1’s and +1’s). These are pseudo-orthogonal in the HD space due
to the high dimensionality [28]. Using point-wise multiplication/addition, scalar multipli-
cation, and permutation, HVs can be combined while still preserving information due to
the orthogonality. The classification procedure involves spatially encoding by assigning each
channel an iM HV, scaling by the channel feature value and then summing across channels
and bipolarizing to generate a single HV per time step [55]. The temporal encoder uses 2-
grams, selected by parameter sweep. This involves point-wise multiplication of 2 consecutive
samples with the later being permuted to encode patterns over a 100ms window.

All the information within the relevant sub-task time window is then summed, bipolarized
and then compared against stored classes in the associative memory. The closest class by
cosine similarity determines the prediction. Leave-one-out cross validation was used for
the 5 examples of each ADL to determine task recognition accuracy. This process allows
us to determine the long-term intent of the user based on their continuous motions and
corresponding EMG signals involved in accomplishing it.
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Figure 4.4: Task prediction of continuous motion, shown for ”Screwing lightbulb”. Raw
data is spatially and temporally encoded, bundled across a sub-task, and classified in the
associative memory.

ADL recognition provides long-term information to the system, but does not provide
information on the short-term actuation the user is doing. While EMG primarily reflects
arm position and hand gestures, accelerometer signals reflect arm movements and hence
sub-tasks. To recognize the temporal accelerometer sub-task patterns, we used ROCKET,
a method that transforms time series through random convolutional kernels and uses these
transformations to train a linear classifier [14]. ROCKET performs similarly to state-of-the-
art time series classifiers while requiring far less computational resources [15]. We train and
test ROCKET with the 5 examples of each sub-task (each is 5s, 100 samples) using leave-
one-out cross validation. The repetitive sub-tasks in ADLs like opening jar and combing
hair such as untwist or comb through hair are given the same label. Through iteration,
we included additional features for each channel on top of the raw data including standard
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deviation over a moving 10-sample window and jerk (change in acceleration) to improve
sub-task recognition.

User Intent Prediction

The second layer comprises a collection of Dynamic Bayesian Networks (DBNs), one for each
ADL. The goal is to execute short-term intent prediction, as shown in Fig. 4.5 which depicts
a singe slice of the DBNs, by taking into consideration the most recently recognized sub-task
and the prior prediction made by the DBNs. This allows the system to predict the sub-task
the subject is currently aiming to complete so that the shared control algorithm can assist
in real-time instead of waiting to recognize the sub-task from prior user behaviors at which
point the subject has already completed sub-task’s arm motions. A naive model makes a
prediction only based on the prior accelerometer classification and the known sequences.
However, the sub-task recognition does not perform with 100% accuracy which can cause
errors if purely making predictions based on that.

Similarly, each DBN relates the sub-tasks probabilistically over time, for example in the
open jar ADL, untwist (cap) follows (hand) realign most frequently, except when the user has
finished unscrewing in which case place cap follows. This results in errors as well if the user is
following an unlikely behavior which primarily occurs during ADLs with recurring behaviors:
opening a jar, screwing in a lightbulb and combing hair. Hence, even given 100% correct sub-
task classifications, the probabilistic layer can’t be relied on to always correctly predict the
next sub-task. Worse, while using the inevitably imperfect sub-task classifier, errors from
misclassifications will accumulate with errors from the probabilistic layer resulting in lower
performance than either layer alone.

To adjust for this, a confusion matrix is generated during training based on error in
accelerometer classification and the transition model for the probabilistic prediction as shown
in Figure 4.5. During testing, this confusion matrix is used to generate the likelihood of a
sub-task at time t based on the prior sub-task as recognized through accelerometer data and
by the prior prediction made by the DBN. This query favors the more reliable source of
information and hence corrects for errors commonly made by either the classifier or the prior
prediction by selecting the next prediction based on the more reliable guess of the prior sub-
task. This significantly improves the performance over predicting only based on the prior
classified sub-task or only based on the prior DBN prediction because the accelerometer
classification and probabilistic prediction are generally not unreliable at the same time.
Additionally, this model adjusts to potentially unpredictable behaviors by keeping up with
the most recent accelerometer data instead of only following a set sequence.

To address the challenge of correctly predicting future sub-tasks in ADLs with recurring
behaviors to improve the prediction of the probabilistic layer, we introduce an additional cost
variable, which modifies the transition model depending on the number of prior recurrences.
For example, if the user has only realigned their hand one time, untwist is very likely to
follow, but if the user has realigned their hand already 4 times, then remove should be
more likely. Thus, the cost variable enables modification of the appropriate conditional
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Figure 4.5: Probabilistic model depicting a single slice of the DBNs, integrating error correc-
tion and a cost variable for recurring behaviors. The query favors the more reliable source
of information.

distribution, and inference is made. In general we infer future sub-tasks by evaluating the
query P (subtaskt|accelt−1, predictedt−1, costt−1) on the relevant DBN at each time step.

Shared Control with Recall of Reactive Behavior

The previous layer predicts the current sub-task and the current ADL is passed all the way
up from the HDC-based ADL classification in the lowest layer. We combine these with
feedback force sensors on the end-effectors fingers to determine the desired actuation of the
prosthetic device. This occurs via an HDC RORB scheme in which the ADL, sub-task and
force information are all equally weighted in determining the actuation. The primary benefit
of using HDC for this layer is the ability to fuse the various sensor input streams efficiently
[46], [7].

The force data is processed to detect one of four states: no contact, touch, grip with
slipping, or gripping. Each of these is mapped to a pseudo-orthogonal hypervector (HV)
that gets bound (via the XOR operator ⊕) to the output of the ADL–sub-task binding
and then to the associated actuation HV for that state. The fused vectors for the various
ADL, sub-task, and force combinations get bundled together with equal weighting into a
hypervector we call the program memory or program vector. This process is explained in
more detail with several variations in [42]. However, there are several sub-tasks for which
all 4 force states will have the same actuation. This occurs in force-independent sub-tasks,
such as the L grip actuation which has a prescribed final position.

Given 75 unique sub-tasks across all ADLs and 4 force states, there are 300 sub-task-
force-actuation combinations that get bundled together with equal weight into the Program
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Figure 4.6: The adopted HDC RORB algorithm with (a) the originally proposed algorithm
combining all training data into a single PV, representing both the naive method and the
version in which force-independent cases are pruned to prevent redundancy and (b) the
added second PV for the force-independent subset of the data which results in higher recall
performance.

Vector (PV) as in Eq. 4.1. The appropriate actuation can be extracted in real time by
sequentially binding each of the HVs associated with input values to the PV. The resulting
HV is a noisy approximation to one of the actuation HVs and the appropriate actuation HV
can be extracted by comparison with an item memory. See Fig 4.6.

PV =
∑

w,x,y,z

ADLw ⊕ Sx ⊕ Fy ⊕ Actz (4.1)

However, this naive implementation doesn’t take into consideration the 22 sub-tasks that
are force-independent. Each of these sub-tasks will have 4 training samples in the current
training scheme, 3 of which are redundant. Exploiting this, we store only the training sample
for the no contact state for force-independent sub-tasks. Similarly, at test time we query only
the no contact state for the force HV binding. This reduces the number of training samples
from 300 to 234 which decreases the magnitude of noise in the recovered noisy actuation HV,
increasing the probability that we can correctly identify the right entry in the item memory.

Given that each training sample in the bundle contributes equally to the noise during
extraction, we can further increase our accuracy by adding a second PV. We split our model
into two parallel channels for the force-dependent and independent sub-tasks. Our primary
channel is the same as our original naive model in which we bind ADL, sub-task, force, and
actuator HV together and bundle those together into a program vector (now PV1). However,
for our force-independent sub-tasks, we bind only the ADL, sub-task, and actuation HV
together – without the force HV – and bundle all of these into PV2. This further decreases
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the number of training samples stored in PV1 to 212, with only 22 samples stored in PV2.
This third model alleviates noise during extraction at the expense of slightly more processing.
We implement and evaluate all three models in Section 4.4. There are 19 unique high-level
actuation outputs that are passed to the end-effector ranging from Wrist flex to 2 finger
closed pinch. This full set of 19 prosthetic behaviors was compiled based on the needs of
the ADLs included in the dataset [45], commonly used prosthetic grips and gestures, and
prosthetic responses during interactions with objects.

User-adaptivity

This system is designed to be able to adapt to users through personalization based on the
user’s activities of daily living, similar to commercial prosthetics. Though data was collected
for and performance evaluated on a set of 6 ADLs, the control scheme can adjust to a new
user’s ADLs and sub-tasks. The probabilistic layer stores information on these sequences and
the likelihood of a next sub-task given the most recent user behavior and prior predictions.
The actuation mapping for the range of potential sub-tasks is stored in the HDC RORB layer.
Both of these would require a one-time setup when the user is fitted for their prosthetic. The
user would then need to provide demonstrations of each ADL/sub-task with corresponding
EMG and accelerometer data in order to train the classifiers to recognize them. The dataset
used in this work included 5 examples of each, though the classifiers can theoretically be
trained on just one example instead of four. Future studies are needed to validate the
one-shot learning property for the full system.

4.4 Experimental Results

EMG & Accelerometer Classification

The results of task recognition with HDC on the collected continuous motion EMG are
shown in Figure 4.7 for each subject per ADL and overall. The task recognition accuracy
shows the ability to map the 74 sub-tasks to the correct ADL, averaged across 5-folds for
leave-one-out cross-validation. The average accuracy across all 4 subjects was 92.5% with
subject 3 performing the highest at 93.6%. The performance difference among subjects is
attributed to variation in arm sizes/hair resulting in discrepancy in sensor contact and signal
quality. Additionally, subjects vary in task emphasis and consistency which can affect the
ability to recognize the task.

Most tasks are recognized with greater than 90% accuracy although certain tasks for sub-
jects show lower performance such as “screwing lightbulb”, “writing with pen” and “folding
laundry” for which subject 1 performs 16% worse, subject 3 performs 10% worse, and subject
2 performs 10% worse than overall, respectively. Because these activities require changes in
arm angle, some subjects’ low performance is hypothesized to be due to a combination of
reduced sensor contact in certain arm positions, which varies per subject, and inconsistency
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Figure 4.7: EMG-based task recognition accuracy with HDC per ADL and overall for the 4
subjects. The error bars indicate standard deviation.

in task completion. However, overall, the ability to distinguish between the different tasks is
satisfactory, especially given the 74 different sub-tasks over the 6 ADLs that are being recog-
nized and correctly mapped. Several of the sub-tasks are similar between different ADLs as
well since more than a few include sub-tasks such as ”reach out” and ”pick-up”, increasing
the significance of this result.

Figure 4.8 shows the similarity between sub-tasks measured with cosine similarity be-
tween the sub-task hypervectors with each row/column corresponding to a sub-task, shown
for the highest performing subject. Overall, there is a clear separation between ADLs while
the sub-tasks within each ADL are very similar. However, within specific ADLs there is some
dissimilarity, such as in “combing hair” where the initial and later sub-tasks are dissimilar.
This can be explained by the fact that each ADL occurs at varying arm positions; this is
known to heavily change the EMG signals that are produced [25]. This explains the simi-
larities shown for an ADL such as “combing hair” where the initial sub-tasks are done with
the hand at waist-level, while the later ones are done at head-level. Hence, an important
factor in detecting the ADL is the change in arm position that can be observed from the
EMG signals.

These results show that this simple and efficient algorithm can successfully predict the
long-term intent regardless of the part of the task the subject is engaging in, even the first
sub-task. This provides valuable information to the controller which can now select an intent-
specific model to anticipate behaviors and assist accordingly. In the proposed multi-layer
control scheme, this outcome is provided to the time series classifier so that it is recognizing
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Figure 4.8: Similarity matrix of the hypervectors for each sub-tasks within the ADLs mea-
sured with cosine similarity.

from the more specific set of sub-tasks within the recognized ADL.
The time series classification of the accelerometer sensor data achieves an average sub-

task recognition accuracy within each ADL of 91.7% across all the subjects with leave-one-
out cross-validation over 5 examples, shown in Fig. 4.9. This algorithm also sees the same
varied performance across tasks between different subjects which, in this case, is attributed to
inconsistencies in the exact method of accomplishing each ADL between examples. Overall,
the performance of both classifiers is very high, especially given the 75 different possible
sub-tasks, and showcases the utility of both the EMG and accelerometer information in
recognizing the user’s behaviors.

Probabilistic Model

Fig. 4.10 shows the ideal prediction accuracy of the naive DBN, calculated over the set of all
sub-tasks for each ADL starting at t = 1 assuming the prior accelerometer classification is
correct. This figure demonstrates the performance of the probabilistic layer alone. Note that,
unlike time series sub-task classification, we consider repeated sub-tasks because one goal of
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Figure 4.9: Sub-task recognition accuracy with a time-series classifier, given an accurate
ADL from the HDC classifier. The error bars indicate standard deviation.

this layer is to correctly predict future sub-tasks in ADLs with recurrent behavior despite
the number of times this behavior is repeated. This allows the user to repeat the sub-task
as needed (e.g. prediction must be successful whether the user opens a jar by twisting the
cap 3, 4, 5, etc. times). Using just the predictive algorithm, ADLs that present recurrent
behaviour attain lower accuracy as the repetitions of this recurrence is non-deterministic,
the rest achieve perfect performance.

The results in Fig. 4.4 shows the performance of the probabilistic model when consid-
ering the non-ideal output of the accelerometer-based time series classifier from Section 4.4.
Overall, the average prediction accuracy is now 82%, a 10% degradation. This end-to-end
implementation is affected by the error accumulating throughout the layers. Accuracy degra-
dation is most severe for subject 4 in tying shoelaces, which indeed corresponds to the lowest
time series classification accuracy shown in Fig. 4.9.

Using the scheme to instead deliberate between the prior accelerometer classification and
the prior prediction to make the next prediction based on confidence in each model enables
for elimination of accumulated error and instead uses the strengths of each model. This is
shown in Figure 4.12 which demonstrates the increase in performance for each subject when
comparing the naive integration-based prediction with the error-corrected prediction. The
final performance of the predictive layer is recovered to 92.6%.
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Figure 4.10: Ideal accuracy of sub-task prediction using the probabilistic layer assuming
correct prior sub-task classifications.

Figure 4.11: Sub-task prediction performance when integrating error from prior sub-task
classification.



CHAPTER 4. SHARED CONTROL FOR NEURAL PROSTHETIC DEVICES 63

Figure 4.12: Sub-task prediction performance when using the error correction scheme.

HDC Recall of Reactive Behavior

The HDC RORB control system first determines which PV to query based on a flag passed
by the probabilistic layer which contains a map of all ADLs and their sub-tasks including
their force dependency. We then bind the ADL and sub-task HVs to the appropriate PV. In
the case where force feedback is not relevant, we are left with a noisy approximation of the
actuation HV which we clean up via an item memory. When force feedback is necessary, we
identify the appropriate force state: no contact, touch, grip with slipping, or grip, and bind
that HV to the earlier HV. This produces a noisy actuation HV for further clean-up.

Fig. 4.13 shows the accuracy of our adopted HDC RORB method, as well as the two
simpler models implemented, as a function of the dimensionality of our HD space. We
highlight performance at a dimensionality of 10,000 due to its common usage in the HDC
community [28]. The total accuracy of 98.4% in the chosen model is due to the combining of
a 100% accurate force-independent model (PV2) and 97.9% accurate force-dependent model
(PV1). The difference in recall accuracy between PV1 and PV2 can be entirely attributed
to the difference in number of unique psuedo-orthogonal sample vectors stored in each.
The force-independent model stores a total of 22 training samples, while the force model
stores 212 training samples. This shows that 212 vectors begins to exceed the maximum
storage capacity of an hypervector of dimensionality 10,000, additionally demonstrated by
the two simpler models which store even more samples into their single PVs. In terms of
computational simplicity, though the chosen method uses two program HVs, to achieve the
same accuracy, the simpler methods would require an overall increase in HD dimensionality
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Figure 4.13: Shared control prosthetic actuation recall accuracy for HDC RORB imple-
mented naively, after eliminating redundancy, and with two shared control models. Shaded
area shows standard deviation.

which would cumulatively be much more expensive.

Actuation

Given the appropriate high-level actuation from the HDC RORB layer, we are able to imple-
ment these actuations in simulation as well as with a physical robot hand. We are currently
primarily using the simulation to model the end-to-end system including feedback. The
simulation environment uses the PyBullet physics simulation along with the Shadow Dex-
trous Hand to model a human hand and its movements [66]. This model has 20 actuated
degrees of freedom and is able to replicate the movements of a human hand almost entirely
(the human hand has 27 degrees of freedom [65]). Objects used in ADLs are instantiated
from OpenAI’s Roboschool Objects [5]. This allows for testing of shared control with the
shadow hand and its interaction with a wide range of objects. The simulation environment
provides force feedback at the contact points between objects mirroring the force sensors
on the physical setup. The Shadow Dextrous Hand is used in combination with the JACO
arm, replacing it’s original end effector, which enables maneuvering of the end effector to
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Figure 4.14: Simulation environment with the Shadow Dexterous hand and all the various
ADL objects including a cloth for folding, a lightbulb, a jar, a pen, a comb and a cup.

the desired location using inverse kinematics. All the various objects for the 6 ADLs in the
dataset collected are also present in the simulation environment, as shown in Figure 4.14.
The hand can interact with them to simulate completion of the various ADLs.

Hardware Efficiency

The full shared control system was designed while prioritizing hardware efficiency to enable
in-sensor implementation. In this section, we conduct a first-order analysis of the various
layers to estimate the total operations and memory.

HDC classification is highly efficient, as demonstrated extensively in Chapter 2. Prior
work using HDC for EMG classification has shown usage of 43,384 LUTs and 45,477 DFFs
[55], good estimators of the total number of operations and memory, respectively. The
algorithm used in the first layer of the prosthetic control scheme is very similar, except that
it involves bundling over a longer time window. Therefore, the hardware utilization of this
part of the lowest layer will be similar.
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The first layer also includes a time series classifier. Traditional implementations require
heavy computation in the form of matrix multiplications which would make this block likely
to dominate the entire prosthetic control scheme in terms of operations/memory. To allevi-
ate this, we are currently working on an HDC implementation. Preliminary work suggests
that alternate, potentially more complex, feature extraction is needed in order to generate
equivalent accuracy to the ROCKET classifier. Thus, the feature extraction will likely re-
main the most expensive part of this classifier, as it is for EMG classification [55], despite
the significantly reduced input channels (3 for the accelerometer - one for each axis, com-
pared to 64 for EMG). However, the overall HDC accelerometer classification will be several
times more efficient than the HDC EMG classifier due to the reduced input data streams
which especially affects the spatial encoder. Even with more complex features, the feature
extraction and spatial encoder will be reduced by a factor close to 20x as compared to EMG
classification, resulting in an estimated 21,000 LUTs (50% decrease) and 34,000 DFFs (25%
decrease).

The second layer of the system is the DBN. Prior work has demonstrated that DBNs can
be effectively implemented with HDC representation with minimal performance degredation
[19]. A traditional implementation requires storage of a few large tables of floating point
probability values in order to generate predictions. With HDC, each table is reduced to a
single hypervector through superposition. Probability values can be retrieved from these
hypervectors through an unbinding (XOR) and descaling process (cosine similarity and the
floating point division), similar to the reactive robotics algorithm. For the probabilistic layer
described in this work, the necessary tables include the confusion matrices used to estimate
confidence in classifications generated by the time series classifier, and in predictions gener-
ated by the DBN described by the transition model. This results in two hypervectors being
stored for each ADL, one for the confusion matrix model and one for the transition model.
Additionally, each subtask requires a unique pseudo-orthogonal hypervector. However, the
technique proposed in Chapter 2, CA rule 90, can be used to reduce the hypervector storage
to a single hypervector from which the rest can be generated. Therefore, the total storage
of 13 hypervectors includes 12 table hypervectors and 1 seed hypervector. Computing a
posterior distribution over subtaskt involves retrieving three values from the two probability
tables. This is done for each possible subtaskt−1 to generate a probability of a particular
current sub-task, and then for each possible subtaskt to generate a distribution and, from
that, a prediction. This process takes an estimated 1536 operations per hypervector bit due
to the number of sub-tasks that must be iterated over (the longest ADL has 16 subtasks).
To first order, if D is the hypervector dimension, this results in 1536×D operations per
prediction and 13×D bits in memory for this layer. Implementation with HDC and then
further analysis will indicate the minimum hypervector dimension that maintains predic-
tion accuracy which will then inform whether the HDC implementation provides hardware
benefits. The alternative would be storage of the probability tables as simply lookup tables
which would require greater storage due to the decimal nature of the probabilities, but offer
reduced computation for value retrieval.

The HDC reactive robotics algorithm is shown in Chapter 3 to be exceedingly simple.
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The specific algorithm used to recall high-level prosthetic behaviors uses 51 unique sen-
sor/actuation pseudo-orthogonal hypervectors, but these can be generated using CA rule
90. Therefore, the total storage of 3 hypervectors includes the 2 trained program hyper-
vectors and a single seed hypervector. The overall computation for this algorithm includes
XORs, additions, comparisons and hamming distance operations, totalling to around 42
operations per hypervector bit, the majority of which come from cleaning up the retrieved
actuation with comparison against all 19 possibilities. To first order, if D is the hypervector
dimension, this results in 42×D operations per recall and 3×D bits in storage for this layer.

Overall, each layer of the shared control scheme can be implemented with an algorithm
that maintains minimal computation and storage, creating a structure that achieves a broad
range of functions whilst remaining lightweight enough for wearable hardware constraints
such as hardware resources and power. Future work will involve an FPGA implementation
of the full system to measure LUT/DFF usage, latency, and overall power consumption.

4.5 Summary & Future Work

In conclusion, this chapter demonstrates the successful design of a multi-layer shared control
scheme, primarily through HDC. Through classification, prediction, and reactive robotics,
the full-stack performance was shown to achieve performance greater than 92%. Each layer
has been implemented prioritizing hardware efficiency to enable in-sensor implementation of
the full shared control algorithm.

In future work, we aim to demonstrate live experiments of the control scheme in simula-
tion to observe the impact of real-time feedback. We also aim to do an FPGA implementation
of the algorithm to observe the overall hardware efficiency and latency. Given the prosthetic
application, the dataset must also be expanded to amputee studies. By fitting a population
of right radioulnar amputees with a socket containing the 64 electrode array, we can compare
our control scheme to the amputees’ existing device. To standardize the study, we would
fit each subject with the same type of socket and myoelectric terminal device. We can also
track endurance levels on a subject basis, as our shared control system aims to minimize the
fatigue amputees undergo when controlling their device for extended periods of time. By
expanding the research to the prosthetic wearing community, future devices can be worn for
longer periods of time and provide the user with more accurate and intention al movements.
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Chapter 5

Final Thoughts

This thesis comprised multiple elements which came together for a neural prosthetic with
a shared control scheme designed while prioritizing hardware efficiency to enable in-sensor
implementation. It contains the first significant hardware comparison of the emerging hyper-
dimensional computing (HDC) paradigm to a traditional machine learning algorithm with
results that demonstrate HDC’s potential to become a paradigm of choice for tinyML appli-
cations. It also tackled HDC’s usage for reactive robotics to bring the same property to the
robotics field. The exploration of hybrid HDC-NN schemes shows the benefits of the HDC
representation and opens the door for further hybrid models to leverage these alongside the
benefits of other popular optimal control algorithms such as reinforcement learning. Finally,
the neural prosthetic control system demonstrates the ability of the paradigm to provide
in-sensor intelligence that addresses the versatile needs of even highly complex systems.

The methods proposed in this work can be leveraged for any closed-loop application in-
volving biosignal processing, understanding, response and feedback. Applications include a
broad range of tasks from brain-computer interfaces for restoration of movement, communi-
cation, rehabilitation, and memory augmentation, to artificial organs that monitor biological
conditions and respond with the necessary enzymes, to chronic pain management systems
that observe biosignal indicators of pain and deliver drugs to maintain patient comfort. Such
systems generating intelligent responses to biosignals measured on, in, or around the human
body have the potential to revolutionize the way we interact with machines, devices, and
each other. Through in-sensor implementation, the door is open to untethered advancement
of the human-machine interface.
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