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Abstract

Robot Planning and Execution with Unreliable Models

by

Ellis Marshal Ratner

Doctor of Philosophy in Engineering– Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Anca Dragan, Co-chair

Professor Claire Tomlin, Co-chair

Many modern robotic systems rely on models to complete their tasks. A model captures all
aspects of the environment relevant to the robot, and enables the robot to predict the result
of any action it may take. Such a model enables the robot to plan and execute an efficient
behavior to complete a given task.

Unfortunately, however, no model is perfect. Many real-world phenomena that a robot
may encounter — from contact forces such as friction, to unpredictable human behavior —
are exceedingly difficult to model precisely. Instead, we typically make certain simplifying
assumptions, which make it easier to build a model of the environment for the robot to use
in planning and execution. These assumptions, however, invariably break down somewhere.
Since the robot relies on such simplified models for planning and execution, its performance
can suffer as a result of these inaccuracies. We refer to such models as being unreliable, since
the robot’s planning and execution systems are unable to rely on the model’s predictions to
produce a behavior to ensure that the robot completes its task in the real-world with a good
level of performance. It is therefore critical to design the robot’s planning and execution
systems to be as robust as possible to unreliable models.

To that end, we focus on increasing the robustness of two key aspects of a model-based
planning and execution system: first, how to choose a model that best captures the robot’s
current environment; and, second, how to plan with that model, despite the possibility that
it is unreliable. In this dissertation, we introduce three new algorithms towards increasing
the robustness of a robot’s planning and execution system, to unreliable models of the real-
world. First, we introduce an approach to enable the robot to choose the best model for
its current situation online, from a larger set of possible models. However, even this best
model may not be perfectly reliable. To address this, we complement our approach with the
ability to reason about where the robot should and should not rely on the model, which we
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describe in the second part of this dissertation. In doing so, the robot is able to leverage
the model where it is accurate, but avoid regions where the model may lead the robot’s plan
astray. More specifically, we present two implementations of this idea in the second part of
this dissertation, the main difference being in the type of model that each approach assumes
— the first focuses on deterministic (or, certain) models, whereas the second focuses on
probabilistic (or, uncertain) models.

Throughout this dissertation, to evaluate the effectiveness of our approaches, we present a
set of experiments in simulation, as well as on various real-robots. These robots include a 7
degree-of-freedom robot arm, a non-holonomic ground robot, and a free-flying space robot
that operates in zero-gravity. Overall, we show how our approaches improve the robot’s
ability to plan and execute behaviors with greater robustness to unreliable models. Finally,
we summarize several preliminary ideas and future research directions around building a
unified framework for model-based planning and execution with unreliable models, bringing
together all of the key contributions in this dissertation.
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Chapter 1

Introduction

Many modern robotic systems rely on model-based planning and execution to complete their
tasks. The model predicts the outcome of the robot taking an action at a particular state.
Regardless of where this model comes from — whether it is derived through first-principles,
acquired through a data-driven or machine learning method, and so on — no model can
perfectly capture the real-world. Every model will make an incorrect prediction for some
states and actions. A challenge, however, arises when these wrong predictions have negative
downstream effects on the robot’s planning and execution, such as sub-optimal performance,
or in the more extreme case, complete failure at completing the task, or intermittent failures
over several repetitions of the task. In these cases, we refer to the model as being unreliable,
in that the robot could not rely on the model to complete its task.

For example, accurately modeling friction and contact is challenging (e.g., [23]), the
dynamics of non-rigid bodies very challenging (e.g., [85, 4, 84, 31]), and modeling the complex
decision-making processes of humans is still an open research question (e.g., [70]). In these
cases, it is difficult to avoid models that will sometimes poorly predict the outcomes of the
robot’s actions for at least some regions of the state space where the robot operates. As a
result, if the robot’s planner relies on these models, the quality of the robot’s plan can suffer
from these poor predictions — the robot may come up with a plan to complete the task that
proves to be sub-optimal, or even infeasible, when executed in the real-world.

To avoid these possibilities, it is important to design a robot’s planning and execution
system to be as robust as possible to operating with an unreliable model of the real-world.
Two key aspects of designing a model-based planning and execution system are:

1. the choice of model, which predicts the outcomes of the robot’s possible actions, as
described earlier; and,

2. the choice of planner, which utilizes the aforementioned planner to devise a behavior
that enables the robot to complete the task when executed.

In this dissertation, we investigate how to improve both aspects of the system to better pre-
pare a robot to complete tasks despite these inevitable unreliable models. Fig. 1.1 summa-
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Execute path(Part I) Choose a model
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Figure 1.1: Model-based planning and execution systems typically exhibit the structure il-
lustrated here. (Left) The system relies on a model, which summarizes the robot’s knowledge
of the real-world, to predict the outcome s′ of taking action a at state s. The system may
select this model offline (i.e., before deploying the robot), or online (i.e., after the robot has
begun operating). (Center) Using this model, the robot plans a path to the goal using an
appropriate planning algorithm. (Right) Finally, the robot executes this plan, using control
algorithms to follow the planned path.

rizes how our key contributions in this dissertation fit into the flow of a typical model-based
planning and execution framework.

In such systems, it is typical to try designing one model, prior to the robot being deployed,
which captures everything that the robot may encounter throughout its lifetime. This can
be a very challenging modelling problem, however; building a single model to handle a broad
set of scenarios that the robot may encounter is very difficult. As an alternative, in the first
part of this dissertation (Chapter 2), we propose to have the robot choose a model online,
i.e., while the robot is already operating in the real-world. To do so, we enumerate a large
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set of possible models prior to deploying the robot, and enable the robot to choose the best
model based on the latest information available.

Unfortunately, however, not even the best model that the robot chooses online is perfect;
the robot will invariably encounter scenarios where that model is no longer reliable. In many
cases, however, the model is not inaccurate everywhere— instead, the model is inaccurate
only in smaller regions of the robot’s state and action space. Motivated by this, in the
second part of this dissertation (Chapers 3 and 4), we present planning approaches that
rely on the model only where we believe it to be an accurate representation of the real-world.
In this part, we present two approaches that implement this key idea. The first approach,
in Chapter 3, focuses on deterministic or certain models (i.e., models that predict a single
outcome for a given state and action). We present a way to use control-level information
gathered during execution to determine where the model is inaccurate, which we ultimately
use to bias the planner away from these inaccuracies in future replanning. The second
approach, in Chapter 4, focuses instead on stochastic or uncertain models (i.e., models that
predict a probability distribution over outcomes for a given state and action). Specifically,
we focus on uncertain models for human motion prediction. Relying on the model’s predicted
distribution over outcomes enables the robot to find an efficient plan to complete the task.
However, if parts of that distribution are unreliable, in that the probabilities do not well-
characterize the human’s behavior in the real-world, then the robot’s performance will suffer.
To avoid this, our approach relies on the model to predict only what is very unlikely— which
enables the robot to behave conservatively with respect to the all predictions the model
makes, which we do not believe to be accurate.

Since the first part of this dissertation (Chapter 2) focuses on the choice of model aspect,
and the second part (Chapters 3 and 4) focuses on the choice of planner aspect, it seems nat-
ural to combine these three approaches into a single planning and execution framework. To
that end, in Chapter 5, we explore some preliminary thoughts on how to build a model-based
planning and execution framework that unifies all of these approaches. Specifically, we dis-
cuss several directions of future research that would be helpful towards realizing this unified
framework. Following that, we discuss some limitations of the current work, and examine
some possible ways to extend our approach to handle a broader set of unreliable models.
While many of these ideas are not yet complete, we believe they form promising avenues for
future research. Finally, in Chapter 6, we conclude by summarizing the contributions in this
dissertation work.

1.1 Impact of Unreliable Models on Task

Performance

What is an unreliable model?

When viewed from the perspective of planning, we can characterize models as being either
reliable or unreliable. A reliable model is one that predicts the outcomes of actions with
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Planned path

Actual path

Figure 1.2: (Left) The robot plans a path to move its end effector to a goal pose, shown by
the red dashed line. (Right) While executing this path, one of the robot’s joints unexpectedly
locks (due to someone physically preventing it from moving about that joint). Therefore,
the robot is unable to reach the goal along this path.

sufficient accuracy so that the robot can compute a plan that is successful— both from
the perspective of task performance and completion— when executed in the real-world.
Importantly, a reliable model need not be perfect; loosely speaking, it only needs to be “good
enough” for the task. On the other hand, an unreliable model is one whose predictions are
inaccurate in ways that lead to a plan that is unsuccessful at completing the task with a
sufficient level of performance during execution.

Examples of unreliable models in planning

To make the definition of an unreliable model more concrete, we present three example
tasks, and highlight how an unreliable model impacts overall task performance. We will
return to these examples in later chapters to demonstrate how our approaches improve upon
a standard model-based planning and execution system to more appropriately handle each.

For the first example, consider the task of moving a robot’s end effector to a desired pose,
as shown in Fig. 1.2. A standard approach is to use a motion planner — which utilizes a
model of the robot’s kinematics and dynamics, as well as of the environment (e.g., where
dynamic and static obstacles are) — to find a collision-free path to the goal, satisfying any
additional constraints such as joint position, velocity, acceleration limits, and so on. We
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Fan

Planned path

Actual path

Figure 1.3: (Left) The Astrobee robot plans a path to goal, shown by the dashed red line,
passing directly through the fan, which it neglected to model. (Right) As a result, when the
robot executes this path, it is blown into the obstacle along the path shown by the solid red
line.

show such a path by the dashed red line in Fig. 1.2 (Left). In this example, when the robot
begins executing this path, one of the robot’s joints unexpectedly becomes locked, due to
someone physically holding the robot, as in Fig. 1.2 (Right). As a result, the robot gets
stuck, and can no longer complete the task of reaching its goal. This is because the motion
planner’s model was unreliable, in that it failed to predict the robot’s locked joint.

For the second example, consider NASA’s Astrobee free-flying robot [10], as shown in
Fig. 1.3. Astrobee is designed to operate in a zero-gravity environment, such as a space
station, and uses an impeller-based propulsion system to move; here we show the robot
operating in a specialized lab that enables the robot to move in the plane with very little
friction. The robot’s task is to move from its current location to a goal location at the other
end of the lab space. As in the previous example, the robot uses a model-based motion
planner to find a collision-free path to the goal. However, in this example, the robot is
unaware of the fan. Therefore, the planner’s model neglects to capture the effect of the
fan on the robot’s motion. So, the robot plans a path that crosses the fan, as shown by the
dashed line in Fig. 1.3 (Left). Because this path passes directly through the fan’s air current,
the robot is pushed off of the planned path, instead taking the path shown by the solid red
line in Fig. 1.3 (Right), and the robot is unable to reach its goal. Because the model failed
to accurately predict the effect of the fan on the motion of the robot around its air current,
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Planned path

Actual path

Figure 1.4: The TurtleBot navigates to a goal in an environment shared with a human.
(Left) To avoid collision with the human, the robot uses a model that predicts a probability
distribution over the human’s possible future paths, shown in blue. Darker blue indicates
higher probability, and lighter blue indicates lower probability. (Right) In contrast to the
robot’s prediction, the human walks straight. As a result, the robot fails to avoid colliding
with the human, as shown.

it is unreliable. In this example, that the planner used an unreliable model caused the robot
to be unable to complete its task of reaching the goal.

For the third example, we consider the TurtleBot navigating to a goal in a shared human
robot environment, as shown in Fig. 1.4. As in the previous two examples, we use a model-
based motion planner to find a path to goal for the robot. However, here we use an uncertain
model, which provides a probability distribution over the possible future motion of the
human. In this example, the model predicts, with high probability, that the human will either
walk to the right or the left, and will continue walking forward with low probability, as shown
in Fig. 1.4 (Left). Here, darker blue indicates high probability, and lighter blue indicates low
probability. Unfortunately, however, this probability distribution is uncalibrated, in the sense
that the predicted probabilities do not match the human’s actual behavior. As a result, when
the human unexpectedly moves straight, the robot does not have sufficient time to avoid a
collision, as shown in Fig. 1.4 (Right). Again, because the model was unreliable, the robot
failed to achieve the task of safely reaching its goal. This example also illustrates that our
notion of reliability applies to both deterministic (i.e., certain) and uncertain models alike.

In reality, few models are reliable; furthermore, the reliability of a model is often not
known until actually observing the outcomes of taking actions in the real-world, so as to
truly evaluate the quality of the robot’s planned behavior. Despite this, a majority of
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[Chapter 2] [Chapter 3] [Chapter 4]

Part III: Towards a unified framework for model-based planning and execution

Part I: Choosing the best model Part II: Avoiding unreliable regions of the model in planning

Figure 1.5: We illustrate each of the three approaches introduced in this dissertation, in the
context of the examples presented in this section. Chapter 2 (Left) focuses on how to choose
a model. Chapter 3 and Chapter 4 focus on how to plan with unreliable deterministic and
uncertain models, respectively. Finally, Chapter 5 provides our perspectives on how to unify
these approaches into a single model-based planning and execution framework.

research in planning — both classical planning and planning under uncertainty — relies on
the model that it uses in generating a plan or policy; relatively less work has focused on
settings where the model is not fully reliable. The focus of this dissertation, therefore, is to
enable robots to complete tasks despite having access only to unreliable models in planning
and execution.

1.2 Designing a Better Planning and Execution

System when Models are Unreliable

So far, we have examined several examples of unreliable models. We have seen how the
models’ inability to accurately predict the outcome of the robot’s actions in the real-world
causes the robot’s task performance to suffer. How, then, can we improve a standard model-
based planning and execution system in settings such as these examples? In this dissertation,
we propose new approaches to improve the two key aspects illustrated in Fig. 1.1.
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Choose the Best Model from a Large Set

In some settings, it is very difficult to specify a single model that reliably characterizes the
environment everywhere the robot operates over its lifetime. In Sec. 1.1, we examined the
example of a robot’s joint locking unexpectedly (Fig. 1.2). Since this event was caused by
some unpredictable factors (i.e., a person holding the robot), it may be exceedingly difficult
to model exactly when and where the joint will lock beforehand. More generally, intermittent
and unexpected changes in the environment or operation of the robot’s sensors and actuators
can be difficult to predict prior to deployment, and may require significantly different models
to effectively plan over.

Rather than choosing a single model beforehand, as shown in Fig. 1.1 (Left), we can
detect during execution when our current model is no longer reliable, and then switch to
a new model selected from a larger set of candidates. We can then use that new model to
replan a more suitable path to the goal.

Prior work has introduced several ways to choose the best model from a set— notably
Multiple Model Adaptive Estimation (MMAE) [50] algorithms, Interactive Multiple Model
(IMM) algorithms [61, 9], and Generalized Pseudo-Bayesian (GPB) algorithms [1, 13, 33].
Unfortunately, however, these methods suffer with respect to computational efficiency, par-
ticularly when the full set of possible models is large. We address this issue in Chapter 2 by
proposing a new algorithm for performing the model selection more efficiently.

Specifically, in Chapter 2, we introduce an estimator that leverages an adaptive model
set to efficiently estimate the best model at each point in time. While adaptive model sets
have been used in prior work, e.g. [83, 41, 67, 45, 44, 43], designing a general mechanism for
adapting the model set has remained challenging. To that end, our key idea is to start with a
small set of models, and to only expand that set when none of its models sufficiently explain
the observations. Our approach compares favorably to competing approaches with respect
to computation time, without sacrificing estimation accuracy. One additional advantage of
our approach is that it can readily be integrated with models learned — either online or
offline — from data, e.g., using model learning [57], model-based reinforcement learning [63],
or learning-based control [21]. We discuss avenues for future work around utilizing learned
models in Chapter 5.

Avoid Unreliable Regions of the Model when Planning

Despite our best efforts to choose the best model available, no model is perfect, and invariably
will be unreliable in some regions of the state and action space. The model’s inaccurate
predictions, in turn, may prevent the robot from being able to complete its task. We address
this in the second part of this dissertation, where we propose approaches that enable a
planner to avoid regions in the state and action space where we believe the model to be
inaccurate. Chapters 3 and 4 present specific implementations of this idea when the model
is deterministic or stochastic, respectively.



CHAPTER 1. INTRODUCTION 9

Biasing the planner away from unreliable parts of a deterministic model

Consider again the example illustrated in Fig. 1.3 in Sec. 1.1. Here, the robot is planning
a path to the goal, but its model neglects to capture the effect of the fan on the robot.
Consequently, the robot plans to pass through the fan, and as a result the robot is pushed
into an obstacle before it can reach the goal. One possible solution would be to learn a better
model, i.e., one that accurately predicts the effect of the fan on the robot (using, e.g., model
learning [57], model-based reinforcement learning [63], or learning-based control [21]). This
may be a very challenging learning problem, however, and in fact not necessary— we observe
that the robot can still reach the goal if it were to take an alternate route that avoids the
fan all together.

Motivated by this, in Chapter 3, we introduce an approach to bias the planner away
from regions where we believe the model to be inaccurate. The challenge, however, is how
to construct such a bias. Prior work has proposed to bias the planner by introducing an
additional cost on taking states and actions where we believe the model to be inaccurate [81,
80], or to utilize a learned classifier to predict where the model will be inaccurate inside the
planning loop [51, 55]. These approaches, however, neglect potentially valuable information
gathered at the control-level that can better inform the planner’s bias. Motivated by this,
our key idea in this work is to observe the performance of the path following controller, and
use this information to infer where the model may be inaccurate. We then translate that
information back up to the planner in the form of a bias, which then guides replanning to
find an alternate path avoiding these inaccurate regions. Chapter 3 explains in detail how
our approach achieves this, and presents an experimental evaluation in simulation and in
real-robot experiments on NASA’s Astrobee [10] robot.

Planning conservatively with an unreliable stochastic model

When planning around other agents, such as humans, in the environment, we often use
stochastic (or, uncertain) models to predict how those agents will behave in the future; for
example, a large body of prior work focuses on leveraging a model of the humans’ intent
to predict what they will do in the future [6, 65, 86, 34, 12]. Optimistically trusting these
predictions, the planner can come up with efficient behaviors for the robot that avoid un-
desirable situations, such as collisions or other conflicts. This planned behavior will lead
to good performance when executed by the robot only if the predictions are indeed correct.
Unfortunately, however, such behaviors are often very brittle if this is not the case — if the
agent does something unexpected under the model’s prediction, the planner has no way of
accounting for that possibility, and may lead the robot to perform poorly, as in the example
illustrated in Fig. 1.4.

One way to address this issue is to be completely conservative with respect to the model’s
predictions. That is, to ensure that the planner avoids conflicts under any possible future
behavior of the agents, e.g., using a reachability analysis to determine all possible states the
agent may take in the future [53, 19]. Such a high level of conservatism, however, may have a
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negative effect on efficiency of the planned behavior at best, or may lead to the robot failing
to complete its task all together.

In Chapter 4, we propose an approach to find a balance between the optimistically
relying on the model, and conservatively guarding against possibilities not captured by the
model’s predictions in planning. Our key idea is to only rely on the model to predict what is
exceedingly unlikely, and otherwise plan conservatively with respect to all other possibilities
under the model. We show how to implement this idea in a reachability computation, and
how to use the resulting predictions in planning to enable the robot to better navigate
in situations such as the example in Fig. 1.4. We present evaluations of our approach in
simulation and experiments involving a TurtleBot navigating to a goal in an environment
shared with a human.
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Part I

Choosing the Best Model for Planning
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Chapter 2

Efficient Estimation with Adaptive
Model Sets

Whether operating on the road, on a deep space exploration mission to a distant world such
as Europa, or in a household around people, robots frequently face changing environments
and operating conditions of their sensors, actuators, and so on. These changes arise for
a variety of reasons, such as traversing changing terrains, faults induced by wear and tear
from extreme operating conditions, or navigating around people with uncertain and changing
intentions.

While obtaining a single model that captures all of these possible situations is often
prohibitively difficult, we can often more easily construct a separate model for each of these
operating modes, for example by first-principles or data-driven approaches. Planning for the
robot, however, requires a single model (or, in some cases, a distribution over some set of
models). Therefore, we must estimate the model based on the latest sensor measurements.
This estimation problem can be posed as a general filtering problem over the space of possible
models; however, this set is typically large (or even infinite) in practice. Furthermore, since
the dynamics switch over time, an optimal estimator must track all possible mode sequences,
the number of which grows geometrically in the time step. While there exist approximate
estimators [61, 9], these typically still require large model sets at estimation time, which can
be computationally expensive to manage.

In this chapter, we propose to use only a small subset of models for estimation at each
time step. The fundamental challenge with such an approach, however, is that the best model
may not be in this subset. To address this, our key idea is that the robot can detect when
none of the current models sufficiently explain the sensor measurements, which in turn it can
use as an indicator of when to expand the model set. Equipped with this idea, we propose a
multiple model estimator with a novel mechanism for adapting the model set. Starting with
a small subset of models, our algorithm only expands that set when the true observations
are assigned low likelihood under all models in our current model set. To determine which
model to add, we measure the predictive performance of each model currently not in the
set and add the one from the set which assigns highest likelihood to the true observations.
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Figure 2.1: We apply our adaptive estimator in three domains: (left) Manipulator moves
into contact with a table, (center) interaction dynamics between the vehicles wheels and the
ground change when it moves from dirt to icy terrain, (right) human switches goal locations
as they move through a hallway (path shown in color), affecting a nearby robot’s motion
plan (shown in grey arrows).

Further, to keep the subset as small as possible, we remove any models with low posterior
probability which indicates that they are no longer needed to explain the measurements;
should they become necessary again, we will detect this and add them in later on.

We experimentally evaluate the performance, with respect to efficiency and accuracy, and
the robustness of our algorithm on a set of simulations on the following domains: trajectory
tracking for a 3 DOF and a 6 DOF manipulator, which encounter actuation faults; trajectory
tracking for a skid-steering vehicle driving across uncertain and changing terrains; and,
trajectory planning for a Dubins’ car-like robot navigating around a human with changing
intentions. Through these evaluations, we show that our adaptive estimation algorithm is
computationally favorable when compared to non-adaptive estimators without sacrificing on
estimation performance. Additionally, we found that our adaptive estimator was actually
more accurate at predicting the true system mode in all experiments. We attribute this to
an additional layer of filtering in our mechanism for adapting the model set, providing more
stability in predicting the most likely mode.

This chapter is based on research previously published in [66], in collaboration with
Andrea Bajcsy, Terry Fong, Claire Tomlin, and Anca Dragan.
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2.1 Background and Related Work

We wish to estimate the state xk at time k, given the sequence of measurements observed,
y0:k, and controls taken, u0:k. We assume the system evolves according to:

xk+1 ∼ P (· | xk, uk,mk)

yk+1 ∼ P (· | xk+1,mk+1)

mk+1 ∼ P (· | mk)

(2.1)

where mk ∈ {1, 2, . . . , N} is the mode of the system at time k. We assume access to a set
of candidate models that could characterize the dynamics mode of the robot, obtained from
first-principles or identified via data-driven approaches. We further assume that the state
and mode are initially unknown. So, at any given time k, we must simultaneously estimate
the state and mode of the system. Note that we do, however, assume full knowledge of the
system dynamics in Eq. 2.1.

Consider the state estimator x̂k of xk, defined to be the expected state given the sequence
of measurements taken up to time k. Then

x̂k := E[xk | y0:k] =
∑
m0:k

P (m0:k | y0:k)E[xk | y0:k,m0:k]. (2.2)

Observe that such an estimator requires enumerating all possible mode sequences of length
k+1, or Nk+1 sequences, and thus typically cannot be implemented [30, 67, 42]. Even in the
case where we make the simplifying assumption that we know the state xk, and only need
to estimate mk, this geometric complexity remains.

Due to these issues, prior work has focused on developing approximate methods, which
do not track all Nk+1 mode sequences to estimate the state and/or mode. We broadly divide
such related work into fixed model set, online model learning, skill learning, and adaptive
model set approaches.

Fixed model set

There has been a large amount of research on estimation algorithms that maintain a fixed
set of models (pre-defined or learned a priori) to simultaneously estimate the state and mode
of the system. The Multiple Model Adaptive Estimation (MMAE) algorithm [50] keeps a
bank of estimators, one per mode, each of which computes the mode conditioned estimate
E[xk | y0:k,mi,k]; traditionally, these are implemented as Kalman filters. To handle tracking
of the mode sequence, the MMAE algorithm makes the simplifying assumption that the
mode is fixed but unknown at k = 0, and therefore the estimator in Eq. 2.2 simplifies to:

x̂k =
N∑
i=1

P (mk = i | y0:k)E[xk | y0:k,mk = i]. (2.3)
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While computationally convenient, such an approximation often does not perform well when
the mode evolves over time, as in Eq. 2.1. To address this, the Interacting Multiple Model
(IMM) algorithm [61, 9] adds an additional mixing step to the estimator update each time
step, to account for the mode switches that may occur over time. While still an approxi-
mation, IMM estimation typically outperforms the MMAE algorithm, without considerable
overhead [32]. Several other algorithms have been designed to handle such switches, a no-
table class of those being the generalized pseudo-Bayesian (GPB) estimators [1, 13, 33].
Finally, Cully et al. leverage an offline precomputation to enable the system to detect and
compensate for failures (e.g. the loss of an actuator) [17]; while no new models are learned
online, their system is still capable of adapting to novel situations at execution time. Our
method is complementary to these approaches, as we introduce a mechanism for adapting
the set of models, rather than keeping a fixed set for all time.

Online model learning

In Event-Triggered Learning (ETL), the algorithm learns a new model when there is a
mismatch between what the existing model predicts, and what is actually measured [73].
Harris et al. introduce a method for measuring the overall performance of a control system
for the purposes of indicating that a chosen controller may be insufficient for the task at
hand [26]. MOSAIC [28] simultaneously learns the set of all possible models, as well as
how to select the subset relevant for the current environment in a single learning-based
framework. In contrast to these approaches, our method selects from an existing set of
models acquired a priori. These online learning approaches, however, are complementary: a
combined algorithm could determine whether to choose from this existing set of models or
identify a new model online.

Learning new skills

Within robot skill learning, some prior work focuses on how to combine existing model sets
with new model sets (e.g. of how to accomplish a task). Koert et al. manage a set of
skills, represented by Gaussian Mixture Models, and introduce a mechanism for adding and
removing skills from this set, analogous to our procedures from adding and removing models
from a model set [36]. Similarly, Maeda et al. introduce a mechanism for deciding whether
to rely on previously learned skills (represented as Gaussian Process motion primitives) to
accomplish a task, or to signal learning of a new skill [48]. While these approaches employ
a similar idea of managing a set of models via adding, removing, and updating mechanisms,
they do not apply directly to the simultaneous mode and state estimation problem that we
address in this chapter.
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Figure 2.2: An example depicting the operation of our AMS estimator on the Kinova JACO
7 DOF manipulator system. As in an experiment in Sec. 2.6, the end-effector follows a
position trajectory. The person immobilizes one of the robot’s joint at time step k1. By
time step k1+NV , the algorithm detects that the current model set is insufficient to explain
the encoder measurements– so it expands the model set appropriately. Later, the algorithm
removes the models that are no longer needed to explain the measurements. At time step
k2, the person lets go of the robot, allowing the joint to move freely again.

Adaptive model set

In some cases, such as when computational resources are constrained and the number of
possible modes is high, it is desirable to adapt the model set over time. Estimators that
choose a model set from an existing set of models are generally referred to as Variable
Structure Multiple Model (VSMM) algorithms [83, 41]; our approach resides in this category.
One approach is to frame the questions around how to adapt the model set as statistical
hypothesis tests [67, 45]. However, we need to perform 2N of these, which is computationally
prohibitive. To address this, certain methods leverage structure in the system, such as the
Model-Group Switching (MGS) algorithm [44, 43]. In many robotics settings, however, we
often cannot assume such structure (e.g. sensing and actuation faults are unpredictable).
Our proposed approach, in contrast, scales linearly (rather than geometrically) with N , and
does not assume any structure on the mode switching dynamics.

2.2 The Adaptive Model Set (AMS) Algorithm

Overview

Our proposed Adaptive Model Set (AMS) estimator applies the IMM algorithm with the
addition of a model set update via Alg. 1 at each step. We wish to use only a small subset
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of all possible models at each time step in order to mitigate computational expense.

When to expand the model set

Our key idea is to expand the current model set only if the current models are insufficient
to explain the sensor measurements. We implement this in line 8, which checks a threshold
on the measurement likelihood

p(yk | y0:k−1,mk = i) > β.

If none of the current models can explain the current measurement, then Alg. 1 expands the
model set.

Majority voting

Instead of deciding to expand the model set on the basis of a single measurement, our
algorithm considers a majority vote over this decision across NV time steps (lines 8-13). For
example, in Fig. 2.2, the algorithm expands the model set only after a majority of votes
between time step k1 and k1 + NV agree that it is necessary to do so. In Fig. 2.2, grey
indicates a vote against adding models, and red indicates a vote for adding models at that
time step.

If NV > 1, then the system may have switched modes at some point during the past NV

time steps. To account for this, we enumerate all mode sequences of length NV , illustrated
by the trees of mode sequences at time steps k1 + NV and k2 + NV in Fig. 2.2. Then, for
each mode sequence M , we instantiate a filter to compute the state estimate at time step
k conditioned on mode sequence M between time steps k − NV + 1 and k. To do so, we
instantiate the filter with the state estimate at k−NV + 1 (line 17), and then for each time
step up until k, we update the filter with the input and measurements that were received at
that time step (lines 18-20). In order to perform these updates, we must store uk, yk, as well
as some additional information about the estimates, for the last NV time steps (e.g. for a
Kalman filter, we would store the previous state estimate and estimation error covariances).

While we enumerate all mode sequences of length NV , there exist several possible opti-
mizations. For example, we could assume that the system switched modes only once during
the voting period.

Which models to add

Once it has constructed all candidate filters, Alg. 1 selects the best performing models, with
respect to an evaluation function q. This evaluation function is specific to the type of filter
that we are using, and provides a measure of how well the filter predicts the current observed
measurements. For example, if we are using Kalman filters, then q(FM) is proportional to
the filter’s residual (i.e. difference between predicted and observed measurement), where i
is the final mode in the mode sequence M . Finally, Alg. 1 adds the best performing model
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F ∗
M (line 23), as well as all other filters FM whose performance is close to F ∗

M with respect
to q, to the new filter set Mk (lines 24-26).

Removing models

If a model has low a posteriori probability P (mk−1 = i | y0:k−1) (denoted as pi in the
pseudocode) at the previous time step k − 1, then the algorithm removes it (lines 4-6);
hence, models not needed to explain the data seen thus far are not kept in the model set.
While prematurely removing a model temporarily degrades the estimator performance, if
that model is important, it will simply be added again at a later time step.

Algorithm 1 Updates the model set at time step k, given the latest measurement and
control input.

1: function AMS-UpdateModels(uk, yk,Mk−1, {pi})
2: Mk ← Mk−1

3:

4: for each model i in Mk−1 do
5: if pi < α then
6: Remove model i from Mk

7:

8: if p(yk | y0:k−1,mk = i) > β for all i in Mk−1 then
9: Vote for adding new models at time step k
10: else
11: Vote against adding new models at time step k

12:

13: Check majority vote over past NV time steps
14: if majority vote favors adding models then
15: filters ← ∅
16: for each mode sequence M of length NV do
17: Construct FM at time step k −NV + 1
18: for l = 1, 2, . . . , NV do
19: Switch internal model of FM according to M
20: Update FM with uk−NV +l and yk−NV +l

21: Add FM to filters

22:

23: F ∗
M ← one-of argmin

FM∈filters
q(FM)

24: for each FM in filters s.t. |q(F ∗
M)− q(FM)| < γ do

25: Add the last mode in M to Mk

26: Assign FM as the filter associated with mode M

27: return Mk
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Parameters

Threshold for removing models (α)

The parameter α (line 5) determines when to remove a model, based on the a posteriori
probability of that particular model best representing the system mode. In our experiments,
we use α = 0.01.

Threshold for expanding the model set (β).

The parameter β is used to determine when to expand the model set (line 8), and may
in fact vary over time. For example, in our experiments, since we use Kalman filters that
assume Gaussian measurement likelihood distributions, we set β to be the likelihood of a
measurement that is two standard deviations away from the predicted measurement.

Threshold for adding models (γ)

The parameter γ determines how the algorithm “groups” similarly performing models (line 24).
An alternative approach would add only the models i where q-value is above a threshold.
In the case where none of the models adequately explain the measurements with respect to
this threshold, no models would be added, causing poor performance. Therefore, it is better
to add the best models we have relative to one another, rather than with respect to a fixed
threshold. In practice, the value of γ depends on the scale of the evaluation function q, and
should typically be small.

Number of votes (NV )

The parameter NV determines the number of votes before expanding the model set. This
parameter captures a trade-off between robustness (explored experimentally in Sec. 2.4), and
computational efficiency, since the number of mode sequences is on the order of NNV .

2.3 Evaluation in Simulation

Overview

We first evaluate if our AMS estimator enables high estimation accuracy, while decreasing
the computational load. We evaluate our estimator on 2 simulated systems: a planar 3
DOF manipulator, and a 6 DOF manipulator, proposed for a future NASA lander mission
to Europa [25] (see Fig. 2.3).
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Nominal AMS (1 Vote)IMMGT

Figure 2.3: NASA 6 DOF Europa lander arm, tracking a position trajectory for the end-
effector (the scoop). The actuator on the second joint suffers a temporary 75% degradation.
Using the nominal model for controlling the manipulator leads to a trajectory that diverges
from the reference, since controller is unable to compensate for the degradation.
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Experimental Setup

Simulated Behavior

Each experiment is 3.1 s long, with a time step of 0.01 s. The system starts in mode nominal,
and switches to another modes after 0.75 s, and then switches back to nominal after 1.75 s.

Behavior Modes

We consider models of the following behavioral modes for the 3 DOF and 6 DOF manipula-
tors.

1. Nominal: Manipulator is operating normally. We apply a first-order Euler discretiza-
tion in time to the manipulator equations (see [56]) to derive an equation of the form
in Eq. (2.1).

2. Locked joint: A single joint is completely immobile.

3. Free-swinging joint: All input torque at the free-swinging joint is set to zero.

4. Degraded actuator: The input torque at the degraded actuator is multiplied by a scalar
degradation factor in the interval (0, 1). We consider degradation factors of 0.25, 0.50
and 0.75.

Each of these modes, other than the nominal mode, can occur at each joint; furthermore,
we consider a single model for each behavioral mode. Therefore, to count the total number
of models, we multiply by the number of joints. So, in these experiments, we consider 17
possible models for the 3 DOF arm, and 32 models for the 6 DOF arm.

Control Objective

We consider two control objectives:

1. a jointspace tracking task, where the goal is for the manipulator to follow a time-
varying, sinusoidal sequence of joint positions, velocities, and accelerations;

2. and, a taskspace tracking task, where the goal is for the end-effector to follow a time-
varying sequence of positions and velocities in taskspace.

Control Law

For both control objectives, we use a Computed Torque Control (CTC) law [56]. We design
the CTC input based on the model with highest a posteriori probability at each time step.
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Independent Variables

We manipulate whether we adapt the model set or keep it fixed; this leads to three non-
adaptive baselines to compare with our adaptive estimator.

1. Ground-Truth (GT): A Kalman filter using the ground-truth model at each time step.

2. Nominal (N): A Kalman filter using the nominal internal model.

3. Interacting Multiple Model (IMM): The IMM algorithm described in Sec. 2.1. Note
that the model set includes all possible models at each time step.

4. Adaptive Model Set (AMS): Our proposed AMS estimator, described in Alg. 1. For
the AMS algorithm, we also manipulate NV .

Dependent Measures

We consider the following dependent measures.

1. Mode Prediction Accuracy: The percentage of time steps for which the estimator cor-
rectly predicts the system mode. Here, the estimator predicts the mode with maximum
a posteriori probability.

2. State Estimation Error: Defined for each time step to be the norm of the difference
between the actual state and the estimated state.

3. Position/Velocity Tracking Error: Defined as the norm of the difference between the
desired position/velocity and the actual position/velocity. For the jointspace control
objective, position/velocity is the joint angles/velocities. For the taskspace control
objective, position/velocity is the end-effector position/velocity.

4. Estimator Update Time: Defined for each time step as the amount of time (in seconds)
needed to update the state estimate. All measures reported in the tables in this chapter
are mean values, with standard error reported in parenthesis.

Hypotheses

H1 Adapting the model set, via our AMS algorithm, performs better with respect to
computation time than a non-adaptive estimator.

H2 Adapting the model set, via our AMS algorithm, performs at least as well as a non-
adaptive estimator with respect to state estimation and trajectory tracking error.

Trials

For each algorithm, we conduct 50 trials, each with a different random seed, every combina-
tion of manipulator, true mode the system switches to, and control objective.



CHAPTER 2. EFFICIENT ESTIMATION WITH ADAPTIVE MODEL SETS 23

Analysis

For the 3 DOF and 6 DOF systems, our AMS estimator is faster than the IMM estimator
on both control objectives, supporting H1. Fig. 2.4 shows the update times for the 6 DOF
experiments, and the 3 DOF experiments follow the same trend. Our estimator also performs
similar or better than the IMM estimator with respect to estimation and tracking errors on
both control objectives, shown in Table 2.1, in support of H2. We note that AMS outperforms
IMM in mode prediction accuracy, shown in Fig. 2.4.

We observe no effect of voting for the 3 DOF manipulator, in that the performance of
our estimator with and without voting is comparable; however, in the 6 DOF manipulator
experiments, we see about a 10% increase in mode prediction accuracy when using our
estimator, compared to using the IMM estimator. This is likely because voting is designed
to help when there is ambiguity among which model best describes the system mode. These
ambiguities are more prone to occur in the 6 DOF experiments, where there are 32 possible
models, compared to in the 3 DOF experiments where there are only 17 possible models.

We also observe that all estimators perform better on the jointspace objective than on
the taskspace objective. In the jointspace objective, the manipulator follows a sinusoidal
trajectory; it is likely that this trajectory more persistently excites the system when compared
to the taskspace trajectory, leading to better estimator performance.

Summary

We find that our AMS algorithm is more computationally efficient than baselines, while
not compromising on performance. In some cases our method outperforms baselines, most
notably in mode prediction accuracy. This is due in part because our AMS estimator provides
an additional layer of filtering: we only increase the model set when the existing models are
poorly explaining the measurements. This prevents the maximum a posteriori probability
model from switching as frequently as in the IMM estimator.

2.4 Robustness to Misspecified Models

Overview

Our first experiment analyzed the performance of our AMS algorithm in situations where
the models perfectly describe the dynamics of the system. Next, we verify that working
with an adaptive model set, rather than the full one as in the IMM algorithm, does not
negatively affect accuracy in situations where the models are imperfect: where the noise
model is inaccurate, where the link masses are imperfectly characterized, or where we are
missing a model of the correct mode altogether. We keep the same 3 DOF manipulator
system, as well as the same models, control objective, control law, trials, and dependent
measures as in Sec. 2.3.
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Figure 2.4: Performance comparison of an IMM estimator versus our AMS estimator for the
6 DOF arm. Error bars indicate standard deviation.

3DOF Manipulator

Estimation Error Tracking Error

Joint (rad) Task (m) Joint (rad) Task (m)
N 1.178 (4.7e-3) 0.202 (7.1e-4) 1.008 (4.6e-3) 0.070 (2.7e-4)
IMM 0.047 (4.8e-5) 0.052 (5.2e-5) 0.093 (3.0e-4) 0.019 (7.2e-5)
AMS 0.045 (5.1e-5) 0.053 (6.3e-5) 0.082 (3.0e-4) 0.020 (1.1e-4)

GT 0.044 (4.8e-5) 0.044 (4.7e-5) 0.074 (3.0e-4) 0.012 (6.3e-5)

Table 2.1: 3 DOF manipulator, all models available to estimation algorithm, position esti-
mation and tracking errors. Mean and standard error in parentheses.
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Experimental Setup

Independent Variables

In addition to the estimation algorithms described in Sec. 2.3, we further manipulate the
following three variables in separate experiments to evaluate robustness: the standard devi-
ation of the simulated sensor noise (in this case σ2

v = 0.03) versus the standard deviation of
the modeled sensor noise (in this case σ2

v = 0.01); whether the link masses are mismodeled
(i.e. the actual simulated masses are perturbed randomly in the range [−0.2, 0.2] kg from
their modeled values used by the estimator); and, whether or not the estimator has access
to a model of the mode to which the system switches.

Hypotheses

H3 Our AMS estimator does not lead to further degradation in performance when faced
with (a) mismodeling of the measurement noise; (b) mismodeling of the link masses;
and (c) a completely unknown system mode.

Analysis

For NV = 1, while the errors for our estimator are in some cases greater than for the
IMM estimator, it is never by more than 1 degree on average, as shown in Table 2.2, 2.3,
and 2.4. Increasing NV greater than 1 showed no effect on performance for the second and
third experiments, and hence the results are not shown in the respective tables. For the
first experiment, however, increasing NV to 3, 5 and 7 provided additional robustness to the
mismodeling of sensor noise as measured by mode prediction accuracy, as shown in Fig. 2.5.
Despite this, there is not necessarily an improvement in performance from the perspective
of estimation and tracking errors in Table 2.2. Furthermore, the geometric complexity in
NV of the model set expansion starts to have an effect when NV increases to 5 and 7 votes.
Overall, we find that the performance of our AMS estimator is similar to the performance
of the IMM estimator, in support of H3.

Summary

Our experiments indicate that our estimation algorithm exhibits reasonable robustness to
mismodeling when compared to the IMM estimator. Furthermore, our experiments provide
evidence that voting may provide robustness to mismodeling of sensor noise; however, we
also observe that for NV ≥ 5, the computational advantages of our estimator compared to
IMM estimation begin to diminish.
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3DOF Manipulator, Mismodelled Sensor Noise (H3 (a))

Estimation Error Tracking Error

Joint (rad) Task (m) Joint (rad) Task (m)
IMM 0.090 (1.45e-4) 0.084 (9.01e-5) 0.137 (3.19e-4) 0.026 (7.33e-5)
AMS1 0.095 (1.71e-4) 0.095 (1.10e-4) 0.135 (3.67e-4) 0.023 (7.24e-5)
AMS3 0.086 (1.65e-4) 0.091 (1.07e-4) 0.146 (5.60e-4) 0.019 (7.65e-5)
AMS5 0.090 (3.74e-4) 0.090 (1.21e-4) 0.180 (1.21e-3) 0.019 (8.20e-5)
AMS7 0.096 (6.15e-4) 0.090 (1.60e-4) 0.199 (1.66e-3) 0.020 (8.61e-5)

Table 2.2: Experiment for H3 (a): 3 DOF manipulator, sensor is noisier than modeled in
estimation algorithm (position).

3DOF Manipulator, Incorrect Link Masses (H3 (b))

Estimation Error Tracking Error

Joint (rad) Task (m) Joint (rad) Task (m)
IMM 0.060 (1.02e-4) 0.057 (6.39e-5) 0.100 (3.01e-4) 0.020 (7.16e-5)
AMS 0.070 (1.01e-4) 0.069 (8.07e-5) 0.104 (3.02e-4) 0.021 (6.56e-5)

Table 2.3: Experiment for H3 (b): 3 DOF manipulator, link masses are slightly different
than model used by estimator (position).

3DOF Manipulator, Completely Unknown Mode (H3 (c))

Estimation Error Tracking Error

Joint (rad) Task (m) Joint (rad) Task (m)
IMM 0.113 (3.86e-4) 0.075 (2.14e-4) 0.267 (9.98e-4) 0.035 (1.67e-4)
AMS 0.124 (5.16e-4) 0.084 (2.73e-4) 0.252 (1.03e-3) 0.028 (1.37e-4)

Table 2.4: Experiment for H3 (c): 3 DOF manipulator, estimator has no access to model for
system mode (position).
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2.5 Domain Generalization

So far, our experiments have been restricted to manipulator systems with mode switching
caused by some change in the robots own internal dynamics model. In fact, many interesting
switching dynamics arise from changing dynamics external to the robot– such as varying
environmental conditions or the changing behavior of other agents. For example, a vehicle
driving over dirt experiences a change in dynamics that it must compensate for if it suddenly
encounters an icy patch on the road, as shown in Fig. 2.1 (center). Similarly, a robot
operating around a human must adapt when the person changes their intention, as shown in
Fig. 2.1 (right). The following 2 experiments evaluate the performance of our AMS estimator
in such situations.

Driving on Variable Terrain

Vehicle Model

We use a kinematic, skid-steering model of the Robotnik Summit XL robot, shown in Fig. 2.1.
The state is the position, orientation, and linear and angular velocities of the robot with
respect to the world frame. The input is a commanded velocity for each of the 4 wheels.

Modes

For each terrain, we model the effect of friction by setting vk+1 = γvk + (1− γ)vk,in, where
vk+1 is the vehicle velocity at the next time step k+1, vk is the vehicle velocity at the current
time step k, and vk,in is the commanded velocity, which we convert from the commanded
wheel velocities via the kinematics model. Finally, γ ∈ [0, 1] is a coefficient represents the
amount of friction.

1. Dirt. We model friction having negligible effects, so γ = 0.

2. Sand. We model the friction with γ = 0.01.

3. Ice. We model the friction with γ = 0.001.

4. Shallow Mud. Here we set γ = 0; however, we model the vehicle being stuck in mud if
its velocity is below 0.3 m/s.

5. Deep Mud. γ = 0 as in the model of shallow mud, but here the vehicle is stuck if its
velocity is below 0.6 m/s.

6. Single Wheel Stuck. Here we set γ = 0; however, to model a single wheel being stuck,
we simply zero out that wheels commanded velocity.
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Simulated Behavior

We run each experiment for 1000 time steps, sampled every 1/30 s. The vehicle begins on
the dirt terrain. After 3 m, the terrain switches to ice.

Control Objective

We designed a 5 m straight-line reference trajectory in both position and velocity for the
vehicle to track. The vehicle starts and ends at zero velocity.

Local Planner

In order to track the reference trajectory, we employ a local planner, which performs a
Dijkstra search to find a sequence of control inputs (or, local plan) that minimizes tracking
error and control efforts, with respect to the model provided to it. We employ a horizon
of 5 time steps with a time step of 0.25 s. At each time step, we re-run the local planner
and execute the first input in the plan it returns. The local planner uses the model with
maximum a posteriori probability from the estimator.

Independent Variables

We consider the same independent variables as in Sec. 2.3:

1. Ground-Truth (GT): A Kalman filter using the ground-truth model at each time step.

2. Nominal (N): A Kalman filter using the nominal internal model.

3. Interacting Multiple Model (IMM): The IMM algorithm described in Sec. 2.1. Note
that the model set includes all possible models at each time step.

4. Adaptive Model Set (AMS): Our proposed AMS estimator, described in Alg. 1. For
the AMS algorithm, we also manipulate NV .

Dependent Measures

We measure the mode prediction accuracy, the state estimation error, the position and
velocity tracking errors, and the estimator update time, the same as in Sec. 2.3’s experiment:

1. Mode Prediction Accuracy: The percentage of time steps for which the estimator cor-
rectly predicts the system mode. Here, the estimator predicts the mode with maximum
a posteriori probability.

2. State Estimation Error: Defined for each time step to be the norm of the difference
between the actual state and the estimated state.
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Driving on Variable Terrain

Mode Pred. Accuracy (%) Update Time (ms) Track. Err. Pos. (m) Track. Err. Vel. (m/s)

N 34.0 (0.02) 22 (0.1) 0.41 (0.019) 0.11 (0.003)
IMM 79.0 (1.9) 269 (1) 1.4 (0.252) 0.25 (0.023)
AMS 99.3 (0.11) 96 (0) 0.03 (0.016) 0.03 (0.002)

GT 100 (0.0) 31 (0) 0.03 (0.015) 0.02 (0.002)

Table 2.5: Comparison of performance in the driving domain.

3. Position/Velocity Tracking Error: Defined as the norm of the difference between the
desired position/velocity and the actual position/velocity. For the jointspace control
objective, position/velocity is the joint angles/velocities. For the taskspace control
objective, position/velocity is the end-effector position/velocity.

4. Estimator Update Time: Defined for each time step as the amount of time (in seconds)
needed to update the state estimate. All measures reported in the tables in this chapter
are mean values, with standard error reported in parenthesis.

Hypotheses

We assume the same hypotheses as in Sec. 2.3’s experiment:

H1 Adapting the model set, via our AMS algorithm, performs better with respect to
computation time than a non-adaptive estimator.

H2 Adapting the model set, via our AMS algorithm, performs at least as well as a non-
adaptive estimator with respect to state estimation and trajectory tracking error.

Trials

For each algorithm, we conduct 20 trials, each with a different random seed.

Analysis

The results summarized in Table 2.5 support both H1 and H2. We see that our AMS
estimator outperforms the IMM and nominal estimators with respect to accuracy (both in
mode prediction and state estimation) and performance (in tracking the reference trajectory).

Summary

We find that the AMS estimator works well when facing changes in dynamics arising from
factors external to the dynamics of the vehicle– namely a change of terrain.
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Human Motion Prediction and Robot Navigation

Human Model

Each mode corresponds to a goal location in the environment that the human could walk
to. The estimator uses a model of the human in the form of (2.1), with

fi(k, xk, uk) =

{
pxk + Tv cos(ui,k),

pyk + Tv sin(ui,k)

where the ui,k is the angle along a straight-line path from the persons current position to

the gith goal position: ui,k = tan−1(
pyk−gyi
pxk−gxi

). T is the time step of the simulation. In the

measurement model we have gi(xk) = xk. There is no process noise but the measurement
noise has covariance Ri = diag(0.052, 0.052). The indoor environment occupancy map is
from [60] and the map and the possible 20 human goals are shown in Fig. 2.1.

Robot Model

We model the robot as a 3D Dubins car vehicle, with control inputs being the speed and
steering angle. The robot has a fixed start and goal state across all trials and uses a spline-
based motion planner [82]. At each time step, the robot makes a prediction of the human’s
goal, taking the maximum a posteriori probability goal from the estimator. The robot subse-
quently predicts the human’s trajectory, simply extrapolating forward in time by applying a
nominal velocity for a number of time steps into the future. We use this predicted trajectory
for robot collision checking.

Simulated Behavior

For each trial, the human starts at the same position, and follows the same mode switching
sequence: goal 18 for the first 7 time steps, then goal 14 for the next 8 time steps, then goal
11 for the next 6 time steps, and finally goal 23 for the remainder of the trial (see Fig. 2.1).
We run each trial for 38 time steps (∼ 15.2 s).

Independent Variables

We manipulate the estimation algorithm, the same as in Sec. 2.3’s experiment.

Dependent Measures

We measure the mode (i.e. goal) prediction accuracy, the state estimation error, and the
estimator update time, the same as in Sec. 2.3’s experiment. Furthermore, to capture the
safety of the robot’s path, we measure the minimum distance between the robot and the
human for the duration of each trial.



CHAPTER 2. EFFICIENT ESTIMATION WITH ADAPTIVE MODEL SETS 32

Human Goal Prediction & Robot Navigation

Mode Pred. Accuracy (%) Update Time (ms) Safety (m) Estimation Err. (m)

N 0 (0) 2 (0) 0.19 (0) 3.50 (0.04)
IMM 59.5 (1.4) 61 (1) 0.30 (0.04) 0.05 (0)
AMS 66.0 (2.8) 30 (1) 0.32 (0.05) 0.06 (0.01)

GT 100 (0) 2 (0) 0.28 (0.01) 0.0 (0)

Table 2.6: Comparison of performance in the robot navigation domain. Mean values reported
with standard errors in parenthesis.

Hypothesis

We assume the same hypothesis as in Sec. 2.3’s experiment.

Trials

For each algorithm, we conduct 20 trials, each with a different random seed.

Analysis

We summarize the results in Table 2.6. Our AMS estimator is about twice as fast to update,
when compared to IMM, in support of H1. It also achieves comparable performance on all
other measures when compared to the IMM estimator, in support of H2. In fact, we observe
that the AMS is actually about 6% more accurate at predicting the human’s goal than IMM,
consistent with our findings in the other experiments.

Summary

We confirm that the AMS estimator is computationally faster than baseline estimators, and
show that it can be employed in settings where the switches arise from the behavior of other
agents in the environment.

2.6 Evaluation in Hardware

We further evaluate our estimation algorithm in hardware experiments on a Kinova JACO
7 DOF manipulator, shown in Fig. 2.1. We input desired velocity commands uk ∈ R7 to the
manipulator, and have access to measurements of the joint positions xk ∈ R7 via encoders
at each of the joints, represented by the output yk+1 = xk+1 + vk+1, where vk+1 is Gaussian
noise, as in Sec. 2.1.
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Modes

Nominal

The nominal dynamics model is xk+1 = xk + Tuk + wk.

Locked joint

Let Li be a diagonal matrix where the ith diagonal entry is 0, and all others are 1. Then
the dynamics model is xk+1 = xk + TLiuk + wk.

End-effector contact.

Let J(xk) ∈ R3×7 be the Jacobian of the end-effector position forward kinematics mapping;
then the linear velocity of the end-effector at time step k is ve,k = J(xk)uk. Furthermore,
let J†(xk) ∈ R7×3 be the Moore-Penrose pseudo-inverse of J(xk). Consider a contact with
surface normal n̂ ∈ R3. Then the dynamics model is xk+1 = xk + Tu0,k + wk where

u0,k =

{
J†(xk)(I − n̂n̂⊤)ve,k if n̂⊤ve,k < 0

u0,k = uk otherwise.
(2.4)

Control Objective

In the first experiment, the JACO follows an end-effector position trajectory. In the second
experiment, the JACO follows an end-effector pose (position and orientation) trajectory,
sliding a grasped object across a table. In the third experiment, the JACO follows an end-
effector position trajectory, specified by a planner whose task is to have the end-effector
reach two position goals in the robot’s workspace, A and B.

Control Law

Let Xk, X
d
k ∈ R4×4 be the homogeneous transformation matrices representing the actual and

desired end-effector poses with respect to a common inertial reference frame, respectively.
Let Ve,k ∈ R6 be the twist with matrix representation given by X−1

k Xd
k . Then the tracking

control law is
uk = J#(xk)KpVe,k

where Kp is a positive-definite diagonal proportional gain matrix, where J#(xk) ∈ R6×7 is
the damped least-squares pseudoinverse of the body manipulator Jacobian.

Procedure

For the first and third experiments, we simulated a locked joint by physically holding that
joint in place. For the second experiment, we set the reference trajectory to pass through the
table, to ensure contact. In all experiments, we use our AMS algorithm for state estimation.
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Analysis

In the first and third experiments, we find that our estimator is able to reliably identify the
locked joint in about 1 s. Once the robot stopped at the end of the reference trajectory, we
noticed that the estimator assigned about 50% probability to both the nominal and locked
modes– this is expected, since it is not possible to distinguish between these modes when no
velocity is commanded at the joint. In the second experiment, we found that our estimator
took longer to identify the contact– between 3 to 5 s. This is partially due to certain
unmodeled factors occurring during contact, including frictional effects such as stiction, as
well as motion of the object in the gripper.

Summary

Here, we showed the applicability of AMS to predict mode changes on a hardware manipu-
lator system.

2.7 Discussion

Summary

Robotic systems frequently operate under changing dynamics; to do so effectively requires
a good estimator for both the continuous state and dynamics mode. In this work, we
propose such an estimator that adapts the set of models at each time step based on a
novel algorithm. We provide thorough experimental evaluation in simulation and hardware,
to demonstrate the algorithm’s effectiveness for state estimation under changing dynamics–
including actuation faults, driving over various terrain, and navigating around a human with
uncertain and changing intent.

Limitations and Future Work

In future work, we plan to explore “active” algorithms that design control inputs to improve
estimates and combine online parameter adaptation with our adaptive model set algorithm.
Furthermore, our method is limited to a set of a priori specified models; however, adap-
tive estimators are amenable to learning models online. We discuss these ideas further in
Chapter 5.
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Part II

Avoiding Unreliable Regions of a
Model in Planning
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Chapter 3

Bias Planning Away from Model
Inaccuracies using Control-Level
Information

Robots rely on models to plan intelligent behaviors and complete tasks. Therefore, robots
require models that accurately predict the outcome of actions in the real-world. Unfortu-
nately, however, regardless of how we construct a model — from first-principles, through
data-driven methods, etc. — it will never be accurate everywhere. An important challenge,
therefore, is how to enable robots to complete tasks despite using inaccurate models.

For example, consider a robot navigating to a goal, as shown in Fig. 3.1. Here, the robot
neglects to model the fan, which then pushes it off of the planned path into the obstacle. The
robot’s propulsion is insufficient to overcome the fan, and therefore it must find an alternate
path to the goal.

Finding a better path to the goal, however, requires changing how the planner reasons in
some way to account for the fan. One possibility is to learn a new model, using observations
from the robot’s actual execution, through model learning [57], model-based reinforcement
learning [63], or learning-based control [21]. With limited data and difficult-to-model phe-
nomena such as aeorodynamics, however, this can be very challenging. Moreover, it is often
unnecessary for completing the task– in Fig. 3.1’s example, it is possible for the robot to
take a longer path around the other side of the obstacle to avoid the fan altogether and still
reach the goal. Finding this path does not require a detailed model of the fan’s effect on the
robot.

Motivated by this, our work focuses on biasing the planner away from regions where the
original model has proven to be inaccurate, rather than learning a completely new model. A
challenge, however, is how to informatively bias the planner, using only the data observed
during execution.

To address this, note that any observed performance of a path following controller pro-
vides us with valuable information about where the model is likely inaccurate. From the
robot’s actual path in Fig. 3.1 (Right, solid line) compared to its planned path (Left, dotted
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Figure 3.1: (Left) The robot plans a path to the goal through a fan’s strong air current not
captured by its model. (Right) To avoid the fan, the robot must plan an alternate path.

line), we can infer that the model is not correctly predicting action outcomes in this region;
furthermore, the inputs that the controller applies while failing to follow the plan provide
even more fine-grained information about how the predictions are wrong.

Our key idea is to infer a statistical model over discrepancies between the controller’s
model and the real-world, using this information. We then translate this discrepancy model
to the planning-level, by inflating the cost of states and actions with a control-level penalty.
To compute this penalty for a state and action, we forward-simulate the behavior of the con-
troller when following this action, taking into account the control-level discrepancy model,
and compute a probability over whether the final state differs by more than a small con-
stant from the outcome predicted by the planner’s model. The control-level penalty is then
proportional to this probability.

In this chapter, we contribute:

1. a principled approach for integrating planning and control to enable robots to complete
tasks despite using inaccurate models;

2. an experimental analysis of our approach in simulation, which demonstrates a signifi-



CHAPTER 3. BIAS PLANNING AWAY FROM MODEL INACCURACIES USING
CONTROL-LEVEL INFORMATION 38

cant improvement in efficiency over baseline approaches;

3. and, a demonstration of our approach on NASA’s Astrobee free-flying robot [10] in the
lab.

This chapter is based on research in collaboration with Claire Tomlin, and Maxim
Likhachev.

3.1 Related Work

We focus on how a robot can complete a task despite using a model that is inaccurate in
ways unknown prior to execution. Our approach changes the planner’s behavior but keeps
the model unchanged, in contrast to adjacent research in, for example, model learning [57],
model-based reinforcement learning [63], and learning-based control [21].

Planning with inaccurate models

To bias the planner away from inaccurate parts of the model, Vemula et al. [81] introduce a
penalty, or additional cost, at states and actions where the model’s predictions were observed
to be inaccurate during execution. [80] extends this to incorporate model-free learning to
improve performance on repetitive tasks. Our approach differs in two key aspects. First, we
maintain a probability over whether the model will poorly predict an action’s outcome, and
add an additional cost proportional to this probability (rather than a fixed cost, as in [81]).
Second, we use control-level information to better guide where to inflate the planner’s cost
function.

Pan et al. [62] address a similar problem in task planning. They propose to learn proba-
bilities over actions resulting in unexpected outcomes, over repeated executions of the task.

For some applications, we wish to trade-off model accuracy for speed of planning. For
example, modelling deformable objects is computationally challenging; [51, 55] propose to
use a simplified model in planning by first training a classifier to predict where discrepancies
will occur in the simplified model. They then use this classifier to bias the planner away from
states and actions where it predicts a discrepancy. While the idea of biasing the planner in
this way is similar to our work (and to [81]), we do not assume access to a higher fidelity
model of the environment, as is required for training the classifier in [51, 55].

[59] introduces a way to learn a predictor for whether an action taken by a high-level
planner will be executable by a lower-level of planning or control. This requires a way to
simulate executions of the higher-level actions by the lower-level, which we cannot do before
actually executing the robot in the real-world.
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Integrating planning and control

Many robots, from legged systems [39, 58] to autonomous vehicles [79, 78], use hierarchical
planning and control systems, wherein a high-level planner generates a path for a low-level
controller to follow. Typically, the planner uses a simpler model to plan faster over a longer
horizon, whereas the control uses a more complex model, closer to the actual robot dynamics,
over a shorter horizon. A challenge is to ensure that the plan is executable by the controller,
despite differences between the models.

To address this, [14, 38, 72] perform an offline reachability analysis to characterize differ-
ences between the planning and control models. Using these precomputations of this during
planning, these approaches can guarantee that the planner will avoid paths that the con-
troller would be unable to follow. An alternate approach is to plan with funnels [11], or
motion primitives that the system is guaranteed to follow up to bounded disturbances [77,
49], to ensure a feasible path.

A related approach is to increase the model complexity and replan only when the con-
troller cannot follow the plan during execution [75, 74]. This is similar to our approach in
that control-level information is used to change the operation of the planner. However, this
requires having a set of models to switch to, which we do not assume in our problem setting.

Compared to these approaches, our work involves a greater amount of feedback from the
controller to the planner: information about model discrepancies from control is fed back to
bias the planner. Additionally, we focus on discrepancies between the robot’s model and the
real-world, rather than between the two models themselves. From that perspective, many of
these approaches are complementary to our work.

3.2 Problem Setup

We consider a hierarchical system consisting of a planning-level and a control-level. Our
approach integrates planning and control to handle discrepancies between our environment
model and the real-world.

Planning-level

We use a deterministic graph-based representation of the planning problem, consisting of a
state space S, action space A, a successor function succ(s, a), which gives the outcome of
taking action a at state s, and a cost function c(s, a), which assigns a nonnegative, finite cost
to taking a at s. Furthermore, we assume that all discrepancies between our model and the
real-world do not change over time. This assumption precludes, for example, other agents
unexpectedly moving through the environment, or static obstacles that the robot discovers
to be movable during execution.

Given a start state sstart ∈ S, the planner finds a least-cost path to a goal in G ⊂ S; we
denote this path π.
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Control-level

For control, we represent the environment through a state spaceX (typically Rn, with n being
the state dimension), control space U (typically Rm, with m being the control dimension),
and a difference equation xt+1 = f(xt, ut, dt), which gives the outcome xt+1 of applying the
control ut to the system at state xt, and t is the integer-valued time index. We assume an
additional input dt ∈ D (typically D = Rl), which represents the discrepancy between our
model of the environment f and the real-world. We do not know dt a priori.

At each time step, the controller produces a ut so as to reduce the deviation between
the robot’s actual state xt and its desired state x∗

t to the greatest extent possible. We
compute the desired state trajectory {x∗

t} by postprocessing π. We do not impose any
additional constraints on the controller’s structure, aside from being able to forward-simulate
the controller’s output for arbitrary state and desired state trajectory inputs. Specifically,
given a state xt and desired trajectory {xt}, we must be able to simulate the output of the
controller, ut.

Finally, we require that there exists a function ϕ : S → X, representing the relationship
between the planning- and control-level states spaces.

Control-level discrepancies

We characterize the discrepancy between the control model f and the real-world through an
unknown function of state and control, d(x, u), similar to the disturbance in [2]. We refer to
d as the control-level discrepancy model.

Specifically, d(x, u) =
[
d1(x, u) . . . dl(x, u)

]⊤
, where we assume that the components

di and dj are independent, for i ̸= j. We then infer each di using Gaussian Process (GP)
regression (see, for example [64]). For the remainder of this section, we use the shorthand

z =
[
x u

]⊤
, to represent the stacked vector of state x and control u.

We assume each component i to be a GP with zero mean function and a squared expo-
nential covariance function of the form

C(z, z′) = v21 exp

(
−1

2

n+m∑
i=1

(zi − z′i)
2

w2
i

)
+ v20δzz′ (3.1)

where {wi}, v0, and v1 are hyperparameters, which are typically computed by maximizing
the marginal likelihood of the training data (and hence must be recomputed each time more
training data is added).

For a new x, u not part of the data set, we denote the predicted mean and variance of
di as µi(x, u) and σ2

i (x, u), respectively (for i = 1, 2, . . . , l). We can express these functions
analytically in terms of the covariance function in Eq. 3.1, and the data set (see [64]).
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3.3 Approach

Our approach addresses the challenge of inaccurate models by interleaving planning and
execution, which we summarize in Alg. 2, and illustrate in Fig. 3.2. We first plan a least-cost
path to goal π from the robot’s current state sstart (Alg. 2, lines 2-4). We then execute the
path at the control-level, and monitor the execution for deviations exceeding a threshold of
δ (Alg. 2, lines 6-12). If this threshold is exceeded, we use the robot’s execution history to
update our control-level discrepancy model (Alg. 2, line 13). We provide more detail on each
step in the following sections.

Algorithm 2 Interleaving planning and execution.

1: while robot has not reached a goal do
2: sstart ← get robot’s (planning) state
3: π ← Plan(sstart)
4: {x∗

i } ← Postprocess(π)
5: history ← ∅
6: do
7: xt ← get robot’s (control) state
8: ut ← GetControl(xt, {x∗

i })
9: Execute(ut)
10: xt+1 ← get robot’s (control) state
11: history ← history ∪ {(xt, ut, xt+1)}
12: while ∥xt − x∗

t∥ > δ
13: UpdateDiscrepancyModel(history)

Planning with control-level penalties

Given the problem in Sec. 3.2, we use A* search [27] to plan a least-cost path to goal.
However, we use a penalized cost function (similar to [81]), of the form

c(s, a) +ControlLevelPenalty(s, a) (3.2)

for taking action a at state s. This additional control-level penalty translates the control-
level’s discrepancy model, which we learn through observing the robot’s executions in the
real-world, to a planning-level bias. This bias translates discrepancy information from the
control-level to the planning-level. This control-level information is more fine-grained and
hence typically very informative to the planner, since the controller operates at a much
higher frequency than the planner.

Alg. 3 shows how we compute the control-level penalty for action a at state s. First,
FwdSimController returns the sequence of control inputs u1, u2, . . . , uT−1 that the con-
troller would produce to follow a from state x, ignoring any model discrepancies. In Sec. 3.2,
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Planning
Control

Figure 3.2: An illustration of our approach. The planning-level first generates a desired path
(dashed line), which the control-level then executes. If the robot’s actual path (solid line)
deviates, then we update the control-level discrepancy model with the estimated discrepan-
cies d̂. The planner uses the new d to bias away from actions likely to result in a discrepancy,
using the control-level penalty.
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we remarked that there are very few constraints on the controller design; in fact, the only
requirement is that we are able to forward-simulate the controller in this way to generate
this sequence of inputs.

Next, we predict the state of the robot after taking the sequence of control inputs
u1, . . . , uT−1 from state x. Specifically, Predict predicts the distribution p(xT | x1, u1, . . . , uT−1) =
N (µxT

,ΣxT
) over the final state xT , given the initial state x, and sequence of controls

u1, . . . , uT−1. To do so, we forward propagate the uncertain discrepancy d through the
dynamics, based on our latest estimate. In general, there exist many ways to do this, and
we describe our particular implementation in Sec. 3.3.

Given our prediction of xT , we can evaluate the probability that there will be a dis-
crepancy between what the planning model predicts and the actual outcome of a. This is
determined by whether xT differs from x∗

T by δ or more, as in Alg. 3 line 5. In practice, we
estimate this probability, denoted p, empirically via sampling. Finally, we return a penalty
proportional to p.

Algorithm 3 Evaluating the control-level penalty.

1: function ControlLevelPenalty((s, a))
2: x← ϕ(s)
3: u1, . . . , uT−1 ← FwdSimController(x, a)
4: µxT

,ΣxT
← Predict(x, u1, . . . , uT−1)

5: p← P (∥xT − x∗
T∥ > δ | x, u1, . . . , uT−1)

6: return p · cpenalty

Prediction using the discrepancy model

Here, we describe our implementation of Predict. Our goal in this section is to derive a
principled yet computationally simple way to predict forward in time the distribution over
the state under our GP-based discrepancy model. Aside from the approach presented here,
however, there exist many other methods for forward simulating using a GP model; see, for
example, recent work in [29].

For simplicity, we assume that f is linear. That is:

xt+1 = Axt +But +Bddt (3.3)

where dt = d(xt, ut) is the predicted discrepancy at (xt, ut) defined in 3.2, and A,B, and
Bd are the appropriately-sized matrices. If f is not linear, we can add an additional step to
the procedure below, where we linearize f around the current x and u, to find approximate
A,B, and Bd.

We assume that the initial state x1 is known. However, the state at the next time step
x2 is unknown due to the uncertain effect of d. Specifically, p(x2 | x1, u1) is Gaussian with



CHAPTER 3. BIAS PLANNING AWAY FROM MODEL INACCURACIES USING
CONTROL-LEVEL INFORMATION 44

the following mean and covariance:

µx2 = Ax1 +Bx1 +Bd

µ1(x1, u1)
...

µl(x1, u1)

 (3.4)

Σx2 = Bd

σ
2
1(x1, u1) 0

. . .

0 σ2
l (x1, u1)

B⊤
d (3.5)

where µi and σ2
i are the mean and variance functions described in Sec. 3.2.

Then, in general at time step t, given the mean and covariance of xt, µxt and Σxt ,
respectively, we approximate the mean and covariance of xt+1 as:

µxt+1 = Aµxt +But +Bdµ(xt, ut) (3.6)

Σxt+1 = AΣxt+1A
⊤ +BdCov(dt, dt)B

⊤
d +

ACov(xt, dt)B
⊤
d +BdCov(dt, xt)A

⊤. (3.7)

To arrive at Eq. 3.6 and Eq. 3.7, we use the same 1st- and 2nd-order Taylor series-based
approximation approach as described in [24]; the full derivation can be found there.

We implement Predict by recursively computing µxt and Σxt for t = 1, 2, . . . , T using
Eq. 3.4-3.7, and returning µxT

,ΣxT
. We illustrate an example of these mean and covariance

predictions in Fig. 3.2 (upper right).

Updating the discrepancy model

When the robot deviates by δ from the planned path, i.e., ∥xt − x∗
t∥ > δ (Alg. 2, line 12),

we update the control-level discrepancy model with the execution history. To do so, we first
construct a data set {d̂t}, where

d̂t = xt+1 − f(xt, ut), (3.8)

is the observed disturbance, for each (xt, ut, xt+1) in the execution history. We illustrate
these d̂t by the blue arrows in Fig. 3.2 (lower left). Finally, we update our GP model d(x, u)
defined in Sec. 3.2, with the new data {d̂t}.

3.4 Experimental Evaluation

Setup

Planning-level

The planning state is the x- and y-position of the robot. At each state, there are 4 actions:
move in the +x-, −x-, +y-, and −y-directions by 0.1 m. Each action has cost 0.1. The
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planner uses an A* search with a standard Manhattan distance heuristic. To postprocess
the path, we fit a piecewise polynomial to it, which we then pass to the controller.

Control-level

The control state is the x- and y-position, and yaw angle θ (i.e., angle about the z-axis) of
the robot. The robot is holonomic, so the control inputs are simply linear velocities in x and
y, and an angular velocity about z.

Simulation

We conducted a set of simulation experiments primarily to evaluate the efficiency of our
approach at completing tasks, compared to state-of-the-art approaches. For the simulation
experiments, we used the Gazebo-based Astrobee simulator [22].

Methods

We compared our approach to two baselines. First, we compared with replanning, which
simply replans a path to goal whenever the robot deviates too far from the plan. This is a
simple, yet widely used method in hierarchical planning and control systems, described in
Sec. 3.1. Second, we compared with CMAX [81], which inflates the costs of all states and
actions in a small neighborhood around previously observed model discrepancies. In our
experiments, we fixed this neighborhood size to 0.075 m.

Measures

To measure efficiency, we considered the total time to complete the task (this includes both
the planning and execution times), and the total distance traveled. On the planning side,
we measured the planning times, and the number of replans.

Scenarios

We ran 50 randomized instances of the following 3 scenarios. The environment in S1 and S2
is 2 m× 2 m, and 3.6 m× 2.4 m in S3.

S1 (Wire) The robot navigates to the goal, but an unmodelled wire obstructs its path,
shown in Fig. 3.3. The wire is always at the origin, and we randomize its size in x
([0.05 m, 0.15 m]) and y ([0.25 m, 0.75 m]). For simplicity, we model the wire as a
rigid-body.

S2 (Fan) The robot navigates to the goal, but there is an unmodelled fan in the environ-
ment, as shown in Fig. 3.4. We simulate the fan as exerting an external force on the
robot when it is within a specified region near the fan. There is also an obstacle at the
center of the environment. We randomize over the angle ([10◦, 45◦]) and magnitude
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wire

Figure 3.3: A wire obstructs the robot’s path to goal π1. An alternate path, such as π2, is
required to reach the goal.

([0.25 N, 0.35 N ]) of the fan, and the obstacle’s size ([0.23 m, 0.53 m] in both x and
y).

S3 (3 Fans +Wire) The robot navigates the environment shown in Fig. 3.5, which contains
3 fans and 1 wire. We randomize the magnitude and angle of each fan the same as in
S2. We randomly place the wire in the freespace in the lower half of the environment
shown in Fig. 3.5, and randomize its length ([0.02 m, 0.20 m]) and angle ([−20◦, 20◦]),
and use the same rigid-body model as in S1.

Analysis

Across all scenarios, the robot completes the task significantly faster than CMAX using our
approach, as shown in Fig. 3.6. Furthermore, the margin by which our approach is more
efficient, with respect to both time (Fig. 3.6) and distance traveled (Table 3.1) increases as
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Figure 3.4: A simulated fan exerts a force on the robot, indicated by the blue arrows.
Unaware of the fan, the robot initially plans path π1, but is pushed into the obstacle. An
alternate path, such as π2, is required to complete the task.
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Wire

Figure 3.5: 3 fans and 1 wire obstruct the robot’s path to goal. We show several alternate
paths in red.
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S1 S2 S3
Replan N/A N/A N/A
CMAX 2.46 (0.08) 7.95 (0.35) 13.79 (0.69)
Ours 2.53 (0.07) 5.41 (0.12) 8.62 (1.64)

Table 3.1: Mean distance traveled (m) by the robot in each scenario, with standard error in
parentheses.

S1 S2 S3
CMAX 1.96e-6 (1.00e-7) 8.65e-5 (1.06e-5) 7.10e-4 (2.35e-5)
Ours 8.35e-2 (4.56e-3) 9.93e-2 (5.12e-3) 9.42e-2 (3.34e-3)

Table 3.2: Mean planning time in seconds, with standard error in parentheses.

the complexity of the scenario increases, from S1 being the simplest to S3 being the most
complex.

We found that replanning was unable to complete any task. In all experiments, the
planner continues to produce a path that passes through the discrepancy region, and the
robot gets stuck. This validates that we chose scenarios where changing the model or planner
is necessary to complete the task.

In S1, the control-level information provides little additional insight into the size of the
region where the model is inaccurate– the robot is stopped in place by the wire obstructing
its path. Consequently, our approach shows the smallest gain in efficiency with respect to
time, and no significant difference compared to CMAX with respect to distance. However, as
the complexity of the scenarios increase in S2 and S3, this control-level information becomes
more valuable– our approach is able to more quickly determine that the model is wrong in
a larger region by observing the performance of the path following controller as the robot
attempts to move through the fan’s air current. That is why we see a larger advantage for
our approach over CMAX in these scenarios, with respect to both time and distance.

One drawback of our approach, however, is increased planning time, as shown in Table 3.2.
While our approach leads to lower overall time to complete the task (including fewer number
of replans, as shown in Table 3.3), each planning call is more expensive. The additional
computation time is largely due to the Predict routine, which performs a series of expensive
GP-related computations, as described in Sec. 3.3 (in some cases, Predict took up to 90%
of the planning time).

Real-robot

To demonstrate our approach on a real-robot, we ran our planner on-board NASA’s Astrobee
free-flyer; for more details about Astrobee’s sensing, localization, propulsion, etc., see [10,
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Figure 3.6: The mean and standard errors of time to complete the task, for the wire (S1),
fan (S2), and 3 fans + 1 wire (S3) scenarios.

S1 S2 S3
CMAX 10.2 (0.4) 16.2 (0.3) 29.8 (2.2)
Ours 4.6 (0.2) 5.0 (0.2) 8.6 (1.6)

Table 3.3: Mean number of replans (standard error in parentheses).
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wire

Figure 3.7: Astrobee plans a path to the goal, but the path is obstructed by an unseen wire.

22]. Astrobee is designed for zero-gravity, but we utilized a 2 m × 2 m low-friction surface
in a lab at NASA. We show our full results, comparing our approach with replanning and
CMAX, in the accompanying video.

Fan

Similar to S1, as shown in Fig. 3.1. The planner finds a path around the other side of the
obstacle (Fig. 3.1, solid line), to avoid the fan and reach the goal.

Wire

Similar to S2, as shown in Fig. 3.7. Unlike the simulation, the robot can actually get stuck
in the wire, and there is also some flexibility and elasticity in the wire, adding additional
challenge. The planner is eventually able to find a path to the goal around the wire.
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3.5 Conclusion and Future Work

In this chapter, we have presented an approach to enable robots to complete tasks despite
planning with an inaccurate model. We utilize control-level information to bias replanning
away from where we infer the model to be inaccurate. We found that our approach led to
significantly more efficient robot behavior compared to baselines in simulation. Finally, we
demonstrated our approach running successfully in lab experiments on NASA’s Astrobee
free-flyer.

Despite the advantages, our approach introduces additional overhead, leading to increased
planning times. We plan to investigate ways to address this through algorithmic improve-
ments and optimizations. Furthermore, we believe that finding additional, more complex
robotics applications – such as environments that include other agents or movable objects –
is an interesting direction for future work. Finally, we discuss additional extensions, such as
to stochastic environments, in Chapter 5.
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Chapter 4

Planning Conservatively with
Unreliable Human Models

Robots such as autonomous vehicles and assistive manipulators are increasingly operating
in dynamic environments and close physical proximity to people. In such scenarios, it is
important that robots not only account for the current state of the humans nearby, but also
predict their future state to plan safe and efficient trajectories.

To maximally preserve safety, a robust optimal control perspective models the human as
taking any action (with equal likelihood) from a set of controls. The predictor combines this
control set with a conservative human dynamics model to compute a full forward reachable
set, or the set of all states that the human could reach from their current state [53, 19]. This
approach allows the robot to produce safe predictions when very little is understood about
human decision-making.

A complementary perspective is that there is structure to human decision-making: hu-
mans have intentions, and make decisions in pursuit of these intentions. For example, con-
sider an indoor home environment where people often move towards chairs, tables, or door-
ways. Predictors synthesized from this perspective, called intent-driven predictors, build
data-driven models of human actions given intent [6, 65, 86, 34, 12], and have been success-
ful in a variety of domains including manipulation [3, 18, 37], autonomous driving [71], and
navigation [47, 68] (see [69] for a survey). Since human behavior varies between people and
over time, these decision-making models are often parameterized and predictors maintain a
belief distribution over the model parameters [21, 40]. This provides a direct and succinct
way for the robot to use online data to update its human model [86, 8, 35, 6].

However, a key challenge remains with such intent-driven predictors. To update the
belief over model parameters and to generate predictions, intent-driven predictors rely on
priors and on likelihood models which describe the probability of observing a data point as
a function of the model parameters. Although these two components enable data and prior
knowledge to improve the human model online, likelihood models are difficult to specify and
the priors may be incorrect.

In this work we seek an approach which bridges robust control and intent-driven pre-
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Figure 4.1: When intent-driven human models are misspecified in Bayesian predictors, robots
confidently plan unsafe motions (top). Our approach (bottom) trusts the intent-driven model
only to remove completely unlikely human actions, resulting in safer robot plans despite a
misspecified model. (not depicted here) When planning using the worst-case predictor, the
robot has to leave the environment entirely to avoid the predicted human state.
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dictors: a predictor which is more robust to misspecified models and priors, but still able
to leverage human data online to safely reduce conservatism. Our key idea is to compute a
restricted forward reachable set by trusting the intent-driven model to tell us only what is
completely unlikely. However, unlike intent-driven predictors, we will not rely on the exact
probability of each action under our model during prediction. Rather, we use the decision-
making model and the belief to divide the set of human actions in two disjoint sets of likely
and unlikely actions. We then predict human motion by treating all sufficiently likely actions
as equally probable, much like in the full forward reachable set. Using this restricted control
set results in a prediction problem which can be readily formalized and solved through exist-
ing robust control methods and tools [52, 15]. We utilize Hamilton-Jacobi (HJ) reachability
analysis [53, 46] which is a method for guaranteeing safety for continuous-time, nonlinear
dynamical systems. Finally, to properly restrict the set of human controls based on the
intent-driven model and belief over model parameters, we augment the state space with the
belief. Since the belief encodes the likelihood of human actions given the history of human
actions, this explicit belief tracking allows us to compute the likely actions at any future
state.

To summarize, our key contributions in this chapter are:

• a robust control framework for human motion prediction which provides robustness
against misspecified models and model parameter priors;

• a comparison of our approach to forward reachable set and stochastic predictors for
static and time-varying human intent models and in three pedestrian scenarios where
the belief over the human intent changes online;

• a demonstration of our prediction approach in hardware.

This chapter is based on research previously published in [7], in collaboration with Andrea
Bajcsy, Somil Bansal, Claire Tomlin, and Anca Dragan.

4.1 Problem Setup

We consider a robot operating in a shared workspace with a human. The robot needs to
predict the human’s motion (we assume that the robot and human states can be accurately
sensed) and plan a collision-free path around the human to reach the goal as efficiently and
safely as possible. To describe the motion of the robot and the human, we model both as
dynamical systems. Let the state of the human and the robot be xH ∈ RnH and xR ∈ RnR

respectively. The time-evolution of these states can be described by

˙xH = fH(xH , uH)

ẋR = fR(xR, uR)

where the human and robot’s controls are uH ∈ RmH and uR ∈ RmR respectively.
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The robot’s goal is to plan a control trajectory uR(t) with t ∈ [0, T̄ ] such that it does not
collide with the human or any (known) static obstacles, and reaches its goal gR by T̄ . In
this work, we will solve this planning problem in a receding horizon fashion. However, the
future states of the human are not known a priori, and thus the robot must predict future
human motion in order to plan collision-free trajectories.

Throughout this chapter, we will focus on contrasting the intent-driven and full forward
reachable set predictor with our novel predictor. However, all prediction schemes ultimately
produce a set of sufficiently likely states (forward in time until the prediction horizon, N)
that the robot uses for collision checking. We define the set of likely human states at some
future time, t+ τ as: Kt(τ), ∀τ ∈ [0, N ].

Running Example

We now introduce a running example for illustration purposes throughout the chapter. Con-
sider a mobile robot that needs to navigate to a goal position gR ∈ R2 in a room where a
person is walking. Since the human is a pedestrian in this scenario, we use a planar human
model with state xH = [hx, hy] and dynamics ẋH = [vH cos(uH), vH sin(uH)]. We model
the human as moving at a fixed speed vH ≈ 0.6m/s and controlling their heading angle
uH ∈ [−π, π]. Our mobile robot is modeled as a 3D system with state given by its posi-
tion and heading xR = [sx, sy, ϕ], and speed and angular speed as the control uR = [vR, ω],
and dynamics ẋR = [vR cosϕ, vR sinϕ, ω]. The robot control inputs are constrained between
[0, 0.6]m/s and [−1.1, 1.1]rad/s respectively.

4.2 Background: Robust versus Intent Prediction

In this work, we aim to unify ideas from the robust control with the intent-driven prediction
so we start with a brief background on both. In each section, we refer interested readers to
more comprehensive resources on each approach.

Robust Control Prediction

The most conservative prediction of human motion is the set of all states the human could
reach in a time horizon. Let t be the current real time and τ ∈ [0, N ] be a future time used
by the predictor. Also, let ξ(x0

H , τ, uH(·)) := xτ
H denote the human state starting from the

current state x0
H := xt

H at time 0 and applying control uH for a duration of τ . The full
Forward Reachable Set (FRS) is defined as:

Kt
FRS(τ) := {xτ

H : ∃uH(·), xτ
H = ξ(x0

H , τ, uH(·))} (4.1)

In other words, if the human is in state x0
H , then they are predicted to reach any state xτ

H

in τ time if that state is reachable through some control signal uH(·).
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In general there are many techniques for computing these sets [15, 19, 52], but in this
work we use Hamilton-Jacobi (HJ) reachability analysis [46, 54]. In HJ reachability, the
computation of the FRS is formulated as a dynamic programming problem which ultimately
requires solving for the value function V (τ, xH) in the following initial value Hamilton Jacobi-
Bellman PDE (HJB-PDE):

∂V (τ, xH)

∂τ
+ max

uH∈U
∇xH

V (τ, xH) · f(xH , uH) = 0

V (0, xH) = l(xH),

(4.2)

where τ ≥ 0. The function l(xH) is the implicit surface function representing the initial
set of states that the human occupies L = {xH : l(xH) ≤ 0}. Note that this equation is
the continuous-time analogue of the discrete-time Bellman equation. The maximization over
the human’s control, uH ∈ U , encodes the effect of the human dynamics and control on
the value, which lies in the set of all possible controls. Note that since this optimization
considers all controls, the predictions will include all possible states the human could reach,
thereby resulting in the safe but oftentimes overly conservative predictions. Once the value
function V (τ, xH) is computed, the FRS predictions are given by the sub-zero level set
Kt

FRS(τ) = {xH : V (τ, xH) ≤ 0}. For more details on the HJB-PDE, please refer to [54].

Intent-driven Bayesian Prediction

Unlike the robust predictor, the intent-driven Bayesian predictor couples a structured model
of how the human chooses their actions with the dynamics model. In general, constructing
a human decision-making model for a robotic application is a particularly difficult modeling
challenge and many approaches exist in the literature (see [69]). In this work, we consider
stochastic control policies that are parameterized by a discrete random variable λt where
Λ is the set of all values that λt can take. The human’s control policy can be described
by the probability density function ut

H ∼ p(ut
H | xt

H ;λ
t). Here, λt can represent many

different aspects of human decision-making, including what goal locations they are moving
towards [86] or even the kind of visual cues they pay attention to in a scene [34]. We refer
to these aspects of human decision-making as the human’s intent. Furthermore, we use the
superscript t on the parameter to denote that the value of the human parameter can be
time-varying. This allows the human model to encode how the human’s intent changes over
time; for example, if a person changes the goal they are moving towards in a room.

In general, the specific choice of parameterization is often highly problem specific and
can be hand-designed or learned from prior data [86, 20]. Regardless of the specific param-
eterization, in practice, the true value of λt is frequently unknown beforehand and instead
can be estimated from the measurements of the true human behavior. Thus, at any time
t, the robot additionally maintains a belief distribution bt(λt) over the model parameters,
which allows it to estimate the human’s intent online via a Bayesian update:

bt+(λ
t | ut

H , x
t
H) =

P (ut
H | xt

H ;λ
t)bt(λt)∑

λ̄∈Λ P (ut
H | xt

H ; λ̄)b
t(λ̄)

(4.3)
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Figure 4.2: Intent-driven predictions 1.8 seconds into future. Human is a black dot, grey
dashed circle is the full FRS. (left) Full state distribution shown in green gradient with dark
color indicating higher probability, (center) ϵ = 0 is the full FRS, (right) ϵ > 0 drastically
reduces set of states to avoid.

Returning to our running example, the robot has uncertainty about the human’s goal
location. Let the human parameter λt ∈ Λ = {g1, g2} take two values which indicates which
goal location the human moving towards. The human decision-making model at any state
and for a particular goal is given by a Gaussian distribution over the heading angle with
mean pointing in the goal direction and a variance representing uncertainty in the human
action:

p(ut
H | xt

H ;λ
t) =

{
N (µ1, σ

2
1), if λt = g1

N (µ2, σ
2
2), if λt = g2

, (4.4)

where µi = tan−1
( gi(y)−ht

y

gi(x)−ht
x

)
and σi = π/4 for i ∈ {1, 2}. Here, (gi(x), gi(y)) represents the

position of goal gi.
At prediction time, the stochastic nature of the human decision-making model and the

belief over the parameters is naturally converted into state distributions (instead of deter-
ministic sets) forward in time. Note that typically, these predictors use a temporally and
spatially discretized form of the dynamics by integrating fH over a fixed time interval δt.
Controls are often discretized too and assumed to be held fixed during δt. This results in the
predictor maintaining and updating discrete distributions over the human state space. Given
the current real time t, we will denote a future time discrete timestep by k ∈ {0, 1, . . . , H

δt
}.

Suppose the current state of the human at the start of the prediction horizon is x0
H := xt

H

and the current belief is b0(λ0) := bt(λt). Assume the human is at xk
H at some future time

k. Combining the dynamics and human policy, the human’s state distribution at the next
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timestep k + 1 is

P (xk+1
H | xk

H ;λ
k) =

∑
uk
H

P (xk+1
H | xk

H , u
k
H)P (uk

H | xk
H ;λ

k).

This equation can be applied recursively to compute P (xk+1
H | x0

H ;λ
0:k) starting from

k = 0. Marginalizing over all sequences of values that the human parameter λ could take,
Sk, where |Sk| = |λ|k, we get the overall distribution over the human state at future time
step k + 1: P (xk+1

H | x0
H).

Here, the probability of the parameter sequence has to be set in the model and is generally
defined by

P (λ0:k | x0
H) =

( k∏
m=1

P (λm | λm−1)
)
b0(λ0).

Note that in the case of static latent parameters, the summation simplifies to

P (xk+1
H | x0

H) =
∑
λ∈Λ

P (xk+1
H | x0

H ;λ)b
0(λ).

Importantly, at planning time, the robot must decide which predicted states are suffi-
ciently likely to warrant avoiding. A strict notion of safety requires the robot to avoid all
states whose probability is > 0. While safe (and equivalent to the full FRS), this choice of
states does not leverage the data encoded through the belief or the human decision-making
model. To reduce the volume of this set in a way commensurate with human decision-making,
choosing a nonzero probability threshold is desirable and reveals a significantly smaller set
of states that aligns with the model. Thus, the ultimate predicted set of human states that
the robot must avoid at planning time is:

Kt
ϵ(k) =

{
xk
H : P (xk

H | x0
H) > ϵ

}
,∀k ∈

{
0, . . . ,

N

δt

}
(4.5)

where ϵ ≥ 0 is a safety threshold and a design parameter.

4.3 A Robust-Control Framework for Intent-Driven

Human Prediction

Our key idea in this approach is to compute a restricted forward reachable set by trusting
the intent-driven model to infer only what is completely unlikely. After using the intent-
driven model to prune away sufficiently unlikely actions, our robust predictor will safeguard
against all sufficiently likely actions equally, much like in the full forward reachable set. The
main question becomes how to perform this control-set pruning in a principled way over the
prediction horizon.
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One simple way of choosing this set is as follows. At the beginning of the prediction
horizon, let the human state be x0

H := xt
H and the current belief be b0 := bt. We can

form a new distribution over the human’s controls at the first time step by marginalizing
out the latent model parameters, given the initial belief we have over those parameters:
p(uH | xH) =

∑
λ∈Λ p(uH | xH ;λ)b

0(λ). Then, we can choose the set of human actions to
be those for which this marginalized initial likelihood is above a threshold: U(xH) = {uH :
p(uH | xH) ≥ δ}. This leads to a set of reachable states for t = 1. To obtain the set of states
at t = 2, it is tempting to follow the same process, restricting the set of future actions based
on b0. Unfortunately, this would (accidentally) model that the human is “resampling” their
intent from this initial distribution independently at every step. It would disregard that
a human’s second action will be consistent with their first, with the intent only changing
according to the dynamics of λ. Thus, we must enforce that the human control from a state
xH at t = 2 is not only consistent with the initial belief, but also with the control that took
them to state xH .

To properly restrict the set of feasible controls over the prediction horizon, we need to
take into account how the likelihood of any future control depends on the past sequence
of human controls. The belief precisely encodes this likelihood given the past sequence of
human controls through the Bayesian update from Eq. 4.3. Thus, our predictor explicitly
tracks the updated belief as it makes predictions, rather than just the updated state, and
restricts future actions based on future beliefs (see left of Fig. 4.4 for intuitive depiction).
Let this joint state space be denoted by

zt :=
[
xt
H bt(λt = λ1) . . . bt(λt = λ|Λ|)

]
. (4.6)

When predicting using this state space, to simultaneously predict the possible future
beliefs over λt and corresponding likely human states, we consider the joint dynamics:

żt =
[
ẋt
H ḃt(λt = λ1) . . . ḃt(λt = λ|Λ|)

]
, (4.7)

where żt := f(zt, ut
H). The continuous evolution of the belief bt(λt) can be described by:

ḃt(λt) = γ
((
λt | ut

H , x
t
H

)
− bt(λt)

)
+ k

(
bt(λt)

)
(4.8)

for any specific value of λt. Here, the function k(·) represents the intrinsic changes in the
human intent, whereas the other component captures the Bayesian change in bt(λt) due to
the observation ut

H . Note that the time derivative in (4.8) is pointwise in the space of all λ’s.
Typically, the Bayesian update is performed in discrete time when the new observations are
received. However, to unify this with continuous-time robust controls tools, in this work, we
reason about continuous changes in bt(λt). Intuitively, to relate the continuous-time Bayesian
update to the discrete-time version, γ in (4.8) can be thought of as the observation frequency.
Indeed, as γ ↑ ∞, i.e., observations are received continuously, bt(λt) instantaneously changes
to bt+(λ

t | ut
H , x

t
H). On the other hand, as γ ↓ 0, i.e., no observation are received, the

Bayesian update does not play a role in the dynamics of bt(λt).
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Now that we are able to track the evolution of the robot’s belief and the human’s physical
states, we can prune unlikely human actions by combining the intent-driven model and the
predicted belief over the human model parameters. For some future time τ ∈ [0, N ], the
marginalized human action distribution at joint state zτ is given by

p(uτ
H | zτ ) =

∑
λ∈Λ

p(uτ
H | xτ

H ;λ)b
τ (λ). (4.9)

Very importantly, note that this set is joint state dependent, and therefore belief -dependent.
This allows us to prune away the sufficiently unlikely actions by removing actions which are
not assigned sufficient probability under the future predicted belief (and not just the initial
belief):

uτ
H ∈ U(zτ ), U(zτ ) = {uτ

H : p(uτ
H | zτ ) ≥ δ} (4.10)

where p(uH | z) is computed as in Eq. (4.9) and δ is a threshold that partitions the actions
into likely and unlikely.

Returning to our running example, consider the case when the intrinsic behavior of the
human does not change over time, i.e., k(bt(λt)) = 0, meaning the human has a fixed goal
they are moving to. Since λ takes only two possible values, the joint state space is three
dimensional. In particular, z =

[
hx hy p1

]
, where p1 := bt(λt = g1) and bt(λt = g2) is

given by (1− bt(λt = g1)) so we do not need to explicitly maintain it as a state. The state-
dependent control distribution is p(uH | z) = p1N (µ1, σ

2
1) + (1 − p1)N (µ2, σ

2
2) and can be

used to compute the set of allowable controls U for different values of δ via Eq. (4.10). Note
Fig. 4.3 where the top-left inset figures show the allowable controls for x = (0, 0) and two
different belief states b0(λ = g1) = 0.5 and b0(λ = g1) = 0.9 for three different δ thresholds.

Using HJ-Reachability for Prediction

Using a control set rather than a distribution results in a prediction problem which can be
readily solved using the HJB-PDE formulation in Section 4.2. At any real time t, given
the current state of the human and the current belief over the model parameters, we can
construct the joint state at the beginning of the prediction horizon z0 := zt. Using this
initial state and the thresholded control policy from (4.9), we are interested in computing
the following set:

V(τ) := {zτ : ∃uH(·) ∈ U(z), zτ = ξ(z0, τ, uH(·))}, (4.11)

where τ ∈ [0, N ]. Intuitively, V(τ) represents all possible states of the joint system, i.e., all
possible human states and beliefs over λ, that are reachable under the dynamics in (4.7)
for some sequence of human actions. We refer to this set as the Belief Augmented Forward
Reachable Set (BA-FRS) from here on. Much like the computation of the full forward
reachable set from Sec. 4.2, we can leverage the same tools from HJ-Reachability to compute
the BA-FRS where xH is replaced with z and instead of optimizing over all controls U , we
use the restricted set of controls U(z) instead.
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Figure 4.3: Effect of the belief and the δ-threshold on the admissible set of controls (shown
in upper-left inset) and the overall predictions (shown in pink) for 3 seconds into the future.

After solving the dynamic programming problem to obtain the BA-FRS from (4.11), our
predictions include not only the physical locations of the human but also the corresponding
future beliefs. However, for motion planning, the robot needs to collision-check against a
set of physical states the human could occupy. We obtain this set by projecting V(τ) on the
human state space via

Kt
δ(τ) =

⋃
zτ∈V(τ)

Π(zτ ), ∀τ ∈ [0, N ]

where Π(z) is the physical state component of z.
Returning again to our running example, our starting set of states, L, is a small ball at

the joint starting state z0 = [0, 0, 0.5], shown in grey in Fig. 4.4. Consider how the state
and belief can change in a small (δt = 0.4668) timestep after observing the person moving
towards goal 1 via uH = π/4. Since this action is highly likely under the model where λ = g1,
then the next joint state will have the person not only moved physically in that direction, but
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Figure 4.4: (left) Initial set in z-space (in grey). Likely control distribution for δ = 0.01
shown projected in hx − hy plane. Comparisons of the resulting joint state if the human
moves directly towards g1 (in red) versus towards g2 (in blue). (right) 4 seconds BA-FRS
and its projection into xH-space.

the posterior will have increased probability mass on b(λ = g1). Similarly, this probability
decreases if the human moves to g2. After solving for V (τ, z) via (4.2), we take the sub-zero
level set to retrieve the joint state predictions (Fig. 4.4, right), and the predictions Kt

δ after
projecting onto the human’s state space.

In summary, to predict the human’s motion, our predictor optimizes the initial value
HJB-PDE from (4.2) but instead of optimizing over all controls, our formulation modifies
Eq. (4.2) to maximize over the restricted set uH ∈ U(z) which changes based on human
state, time, and belief. Ultimately, the proposed prediction framework is a less conservative
FRS, but a more conservative intent-driven predictor. This has two advantages: (1) when
the intent-driven model is correct, it computes an under-approximation of the full FRS to
reduce conservatism in a principled way, and (2) when the model is incorrect, we can be
more robust to such inaccuracies since the predictions no longer rely on the exact action
probabilities. We discuss this further in Sec. 4.4.

4.4 Prediction Comparisons

We now compare our predictor with the intent-driven Bayesian predictor and the full FRS
when (1) the human intent is static, (2) the human intent is time-varying, and (3) the human
moves in unmodelled ways over time.
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Figure 4.5: Comparisons of Bayesian and BA-FRS predictions for static vs. time-varying
human intent. Dashed lines are the full FRS. Predictions are for 2 seconds for the static
parameter and 1.8 seconds for time-varying. For the Bayesian predictor, we choose ϵ to
capture the (1− δ) most likely states.

Static parameter

One simple but common predictive model of human behavior assumes that the human’s
intent (and thus model parameter λ) is static. In our running example, this means the
person has a fixed goal location they are moving towards and they will not change their
mind. Mathematically, in the intent-driven Bayesian predictor, this is represented via the λ
transition distribution P (λk+1 | λk) = 1{λk+1=λk} where 1 represents the indicator function.
In the BA-FRS predictor it means k(bt(λt)) = 0 in the distribution dynamics.

In the left block images in Fig. 4.5, we see a snapshot of predictions generated by the
intent-driven predictor and the BA-FRS forward in time for 2 seconds (N = 18). The full
forward reachable set is visualized as a series of concentric dashed grey circles. The top row
represents a uniform belief over the two goals, while the bottom row represents a high belief
on goal 1 (g1). As expected, both the intent-driven predictor and the BA-FRS are far less
conservative than the full FRS. Furthermore, the set of sufficiently likely states predicted by
the intent-driven Bayesian predictor is always contained within the BA-FRS. Consequently,
when the belief over λ is confident that the human is moving towards g1 (see bottom row
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of Fig. 4.5), then the BA-FRS allows us to compute an approximation of the stochastic
predictor.

Time-varying parameter

A more complex model of human intent allows it to vary over time. To encode this time-
varying intent in the predictor, we need a model of how the human chooses the next value
of λt. In our running example, let a simple model for how the person changes their behavior
to be:

P (λk+1 | λk) =

{
α+ (1− α) ·∆(λk) if λk+1 = λk

(1− α) ·∆(λk+1) if λk+1 ̸= λk
(4.12)

where α is a known model parameterwhich governs how likely the person is to change their
intent and ∆ is a known discrete distribution over the model parameters. This model encodes
that if the person was moving towards λk = g1 at the previous timestep k, they are likely to
continue to walk to g1 at the next timestep with probability α+(1−α) ·∆(λk = g1), or they
can switch to λk+1 = g2 at the next timestep with probability (1−α) ·∆(λk+1 = g2). In the
BA-FRS predictor, this time-varying intent model is encoded via the distribution dynamics:
k(bt(λt)) = αbt(λt) + (1− α) ·∆(λt)− bt(λt).

In the right block of images in Fig. 4.5, we see a snapshot of predictions when the latent
parameter is time-varying forward in time for 1.8 seconds (H = 11). Note that when the
parameter is time-varying, the computational complexity of the intent-driven Bayes predictor
exponentially increases in the size of the prediction horizon, |Λ|N , due to the necessity of
tracking all sequences of values that λ can take over time. In practice, prediction was
computationally prohibitive for horizons greater than 1.8 seconds. In contrast, the BA-FRS
computation grows linearly in the length of the prediction horizon, but exponentially in the
number of parameter values due to the addition of the belief in the state. Thus, for time-
varying parameters which take a few values and for longer prediction horizons, our prediction
method can be particularly suitable for getting an approximation of Bayes predictor at a
lower computational complexity.

When λ is static, then the intent-driven predictor with a high belief over g1 deems moving
directly towards g2 to be highly unlikely. However, when λ is time-varying, the human can
“switch” which goal they are moving towards, thereby making states in the direction of g2
somewhat likely as well. For the BA-FRS, even though directly moving towards g2 is unlikely
under the intent-driven model and belief, the BA-FRS realizes that moving away from g1
is still likely enough. Consequently, the predicted BA-FRS mass moves in the direction of
g2 over time, in the case of both static and time-varying λ, allowing us to be robust to
suboptimal human trajectories as discussed in the next section.

Online updates & robustness to misspecified models

Ultimately, both the intent-driven Bayesian predictor and the BA-FRS will update the belief
over the human parameters online based on how the person moves. Here we simulate three
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Figure 4.6: Comparison of the intent-driven Bayesian, our BA-FRS, and the full FRS pre-
dictions for three scenarios. In the first row the human moves towards one of the modelled
goals. In the middle the human moves towards an unmodelled goal. In the last row the
human is moving towards a modelled goal (g2) but they take a suboptimal path under our
model because they are avoiding an unmodelled obstacle on the ground (shown in grey cir-
cle). The belief over g1 is visualized over time in the lower-left inset plot.
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scenarios–one where the person takes a path well-modelled by the intent-driven model and
two where the person behaves in an unmodelled way–and discuss how our framework ensures
robustness in situations like these.

In all examples, the predictors begin with a uniform prior over the two goals, use a static
model of human intent, and the BA-FRS uses a δ = 0.02. In the top row of Fig. 4.6 the
human has a fixed intent to move towards the upper goal 1 (g1). In this scenario, the intent-
driven model is correctly specified and as the person moves towards g1, the belief over g1
increases and the Bayesian predictions focus towards this goal. Our BA-FRS performs simi-
larly since it too performs the belief update over time. However, since the BA-FRS explicitly
tracks the evolution of the belief in the future during prediction, the sets include more states
even in the direction of g2. This is because the predictions are safeguarding against slightly
suboptimal actions which are still likely enough under the model and would lead to the belief
over g1 decreasing in the future. Nevertheless, the BA-FRS takes up significantly less volume
than the full FRS, thereby reducing overall conservativism.

The second and third rows demonstrate two human behaviors that are unmodelled – a
scenario where the human is actually walking towards a third unmodelled goal in between
g1 and g2 and a scenario where the human takes a seemingly suboptimal path to g2 due to
an unmodelled obstacle. In the later scenario, the belief over g1 sharply increases as the
person moves around the unknown obstacle. This results in the Bayesian predictor being
overly optimistic, and it places most probability mass on states that are in the direction of
g1. In contrast, our predictor remains cautiously conservative because (1) it is safeguarding
against the slightly suboptimal but still sufficiently likely actions and (2) it is evolving the
belief during the prediction horizon. In fact, the true sequence of human states and actions
lies within the predictions of the BA-FRS, ensuring that a robot which relies on these
predictions will in fact avoid the states that the human eventually occupies. We discuss the
middle scenario in greater detail in Sec. 4.5.

We conducted a series of additional experiments with simulated human trajectories to
systematically analyze the three misspecification types: (1) accurate goal but inaccurate op-
timality level, (2) unmodelled goal, (3) accurate goal but unmodelled obstacle. We compare
different predictors for prediction accuracy and conservatism. A predictor is considered ac-
curate at a particular time step if the true future human states lies within the predictions for
the entire prediction horizon. Conservatism is measured by computing the percent volume of
the full FRS that the predicted states occupy. Both the accuracy and conservatism metrics
are computed at each time step and averaged over the horizon [0, T̄ ]. Note that the full
FRS always achieves 100% accuracy but also 100% conservatism. These metrics provide us
a proxy for the prediction’s effect on the safety and efficiency of the robot’s plan; ideally, a
predictor should have high accuracy and low conservatism over the entire human trajectory.
In all experiments, the Bayesian and BA-FRS predictors modelled two goals and used a fixed
σ = π/4 in the action model described in the running example from 4.2 and δ = 0.02.

For (1), the human was simulated as moving towards modelled goal g1 by sampling an
action u(x) ∼ N (µ1, σ

2). To capture a range of human behavior from completely optimal
to completely random, we simulated five levels of σ (depicted in Fig. 4.7). We sampled 7
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Figure 4.7: Simulated human moves to modelled g1 but with varied optimality from σ = 0
(optimal) to π (random). Both predictors use a fixed σ = π/4.

random initial human states for each σ and averaged results over these trials. Fig. 4.7 shows
box plots of our metrics for Bayesian and BA-FRS. Although the BA-FRS is about twice as
conservative as Bayesian, it maintains a high prediction accuracy across all optimality levels,
while still being far less conservative than the full FRS (BA-FRS is ≈ 45% of the full FRS).

For (2) and (3) we fixed the human’s initial condition but varied the unmodelled goal
or unmodelled obstacle. For unmodelled goals, we randomly sampled 7 unmodelled goals
which were diversely spread in the (x,y)-plane. The true (unknown) human trajectory is a
straight line to the unmodelled goal starting from the initial position. Fig. 4.8 (top) shows
plots of the accuracy and conservatism for each of the unmodelled goals, sorted from the
“most” modelled (e.g. an unmodelled goal which is nearby a modelled goal) to “least” mod-
elled. For unmodelled obstacles, the simulated human always moved towards g2, but their
straight-line path was always obstructed by an unmodelled obstacle, forcing them to take a
trajectory around the obstacle. We simulated 7 of these trajectories around various circu-
lar and rectangular-shaped obstacles. Fig. 4.8 (bottom) shows the results sorted from least
deviation from straight-line trajectory to the goal to most deviation. The more irrational
the human “appears” (either due to an unmodelled goal or taking a suboptimal path to the
goal), the more the drop in accuracy of the Bayesian predictor, as it overrelies on the intent
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Figure 4.8: (top) Simulated human moves to one of 7 unmodelled goals in an optimal tra-
jectory. Results are in increasing misspecification of the goal. (bottom) Simulated human
moves to modelled goal g2 but has their straight-line path obstructed by an unmodelled
obstacle. Results from 7 unmodelled obstacles are shown in increasing deviation from the
straight trajectory.

model to explain the human’s behavior. In contrast, since BA-FRS only uses the human
model to filter likely and unlikely actions, it maintains a relatively higher accuracy.

4.5 Implications for Safe Motion Planning

Consider the scenario where the actual human goal is midway between the modelled goals
g1 and g2 (see g3 label in Fig. 4.1 and middle row of Fig. 4.6), but the true human goal is not
explicitly modelled in the intent-driven model. We will use this example in simulation and
in hardware to demonstrate the challenges with over-relying on a misspecified intent-driven
model. Our hardware experiments are performed on a TurtleBot 2 navigating around a
human pedestrian. We measured human positions at 200Hz using a VICON motion capture
system and used on-board odometry sensors for the robot state measurement. The robot is
modelled via the dynamics in Sec. 4.1, its goal gR is behind the initial state of the human
(green circle in Fig. 4.1) and it uses a spline-based planner [82] to plan six-second trajectories
in a receding-horizon fashion.

When the robot uses the full FRS for human motion prediction (see Fig. 4.6 for visualiza-
tions of the predictions over time), the robot plans a trajectory which deviates significantly
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from the ideal straight line path towards its goal and in fact forces the robot to leave the
testbed1. In contrast, the Bayesian predictor consistently predicts that that pedestrian will
walk towards one of the goals and fails to assign sufficient probability to the true human
states because of its over reliance on the model. Ultimately, this leads to a collision between
the human and the robot (top row Fig. 4.1). Our proposed approach does not rely heavily
on the exact action probabilities, and infers that the straight line trajectory is likely enough
under the pedestrian model. As a result, the robot makes a course correction early on to
reach its goal without colliding with the pedestrian (bottom row Fig. 4.1).

4.6 Conclusion

When robots operate around humans, they often employ intent-driven models to reason
about human behavior. Even though powerful, such predictors can make poor predictions
when the intent-driven model is misspecified. This in turn will likely cause unsafe robot
behavior. In this work, we formulated human motion prediction as a robust control problem
over the set of only sufficiently likely actions, offering a bridge between conservative full
forward reachable set predictors and intent-driven predictors. We demonstrated that the
proposed framework provides more robust predictions when the prior is incorrect or human
behavior model is misspecified, and can perform these predictions in continuous time and
state using the tools developed for reachability analysis. In the future, we will scale it to
higher dimensions with multiple humans, perform a user study to gauge the impact of our
predictor on a humans’ comfort in close navigation scenarios, and integrate it with online
model confidence estimation approaches.

1Hardware demonstration videos: https://youtu.be/uZi-zIi1S6A

https://youtu.be/uZi-zIi1S6A
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Part III

Future Work and Conclusion
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Chapter 5

Future Research Directions

In this chapter, we present directions for future research, building from the approaches for
model-based planning and execution that we have presented in the previous chapters. Specif-
ically, we focus on two broad categories: first, how to unify the three approaches presented
in this dissertation into a single framework; and second, how to extend that framework to
handle a broader set of unreliable models.

5.1 Towards a Unified Framework for Planning and

Execution with Unreliable Models

Thus far, the work in this dissertation has focused on improving two aspects of model-based
planning and execution — namely, how to choose a model, and subsequently how to plan
with that model — to be more robust to unreliable models. We have presented three specific
approaches to do so, and investigated how they enable various types of robots to successfully
complete their tasks despite using an unreliable model in planning and execution. So far, we
have investigated these approaches largely in isolation, despite the fact that they address a
complementary set of challenges around using unreliable models. Therefore, a natural next
question is: can we unify these three approaches into a single, more robust model-based
planning and execution framework? We explore possible directions to answer that question
in this section.

From a high-level design perspective, we can combine the three approaches presented so
far into a single framework, as illustrated in Fig. 5.1. Instead of having a single model of
the world that the robot uses for its entire lifetime, we propose to choose the best model of
the environment online, using the latest information available to the robot to select from a
larger model set. As we have emphasized throughout this dissertation, however, no model is
perfect– so, we need to better prepare the planner in case this model that we chose proves
to be unreliable in practice. To do so, we can leverage the planning approaches that we
introduced in Chapter 3 and Chapter 4; broadly, these planners avoid regions of the state
and action space where we believe our model to be unreliable. Since each planner is designed
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Choose best model 
from a set Plan with best model

…

[Chapter 2]

Execute planMonitor plan 
execution

[Chapter 3] [Chapter 4]

Figure 5.1: We illustrate one way to unify our approaches in Chapter 2, Chapter 3, and
Chapter 4, into a single model-based planning and execution framework.

to operate on a different class of models— the former on deterministic models, and the latter
on stochastic models— using them together within a single planning framework promises to
broaden the type of models we can handle within this framework.

This unified framework presents a natural composition of the approaches we have pre-
sented in this dissertation; however, there are several practical challenges that we must
address before implementing it, which we enumerate in the remainder of this section. In the
following section, we propose some approaches to extend this framework to a broader set of
unreliable models.

What set of models is sufficient for the task?

One key component of the unified framework in Fig. 5.1 is a mechanism to choose a best
model to use in planning. In Chapter 2, we presented an approach to efficiently choose this
best model from a set, and demonstrated the advantages of this over assuming a fixed model
for several applications. However, throughout Chapter 2, we assumed that we were already
given a sufficient set of models for the task— but, what exactly defines a sufficient set of
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models?
Broadly, a sufficient set of models would ideally reliably cover all possible scenarios the

robot may encounter during its lifetime and for its desired tasks. Developing tools to analyze
and possibly provide guarantees on the coverage of a particular model would be valuable from
the perspective of system design— and hence is an important direction for future research.
Since computational requirements scale with the number of models in the robot’s set, such
tools could provide us with ways to choose the minimal number of models that guarantees
the required level of coverage. For example, if there are two different models that, when
used by the planner, result in the same plan, then perhaps the robot only needs to keep one
of them.

Should we replan with the same model or choose a new model?

In the unified framework in Fig. 5.1, the robot first plans a path to the goal, using the best
model available. Then, the robot executes that plan; during execution, the robot monitors
for any unexpected deviations from the plan. If that occurs, then the robot must find an
alternate path to the goal. As discussed, however, simply replanning may not necessarily
be sufficient— instead, we can either change to a new model, if a better one is available, or
keep the same model, and simply bias replanning away from where we believe that model to
be inaccurate.

This choice is sometimes simple. For example, if there is no better model available
according to the robot’s current information, then we have no choice but to keep the same
model; however, if there is a better model available, then we must decide whether to change
to that new model, or keep the existing one, and bias the planner away from where we
believe that model to be unreliable, e.g., using the approach in Chapter 3. Always changing
the model when a better one is available is likely a good first solution to this. Nonetheless,
how the model selection and planning are integrated can significantly impact the overall
performance of this framework. For example, changing the model and keeping the same
model may result in two very different plans, one of which may be more efficient than the
other; it is not clear that one strategy is always better than the other. Therefore, it is
important to address this question more thoroughly in future research.

Should uncertainty over the best model influence the robot’s
behavior?

In Fig. 5.1, we show choosing the model and planning with that model as being decoupled
aspects of the system. However, there are situations where there is a lot of ambiguity over
which model best describes the observed behavior of the system, which in turn leads to high
uncertainty over what “best” model we should choose for use in planning. For example,
consider again the robot arm in Fig. 1.2. If the robot is unable to rotate one of its joints,
it may not be clear whether this is because an actuator failed, the robot made unexpected
contact with the environment, a human is interacting with the robot, and so on, based on
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the available sensor information (encoders, force torque sensors, etc.) For each of these
situations, we may desire the robot to exhibit a different behavior to complete its task— but
the robot will be unable to plan the correct one if it does not know which model to choose.
Therefore, the robot will either plan with a wrongly chosen model— and hence come up
with an unsuitable behavior for the task— or, it may quickly switch between a set of likely
models and replan; in either case, the performance of the robot’s planning and execution
will suffer.

One solution would be to plan a motion that actively attempts to disambiguate between
several equally likely models. This could help overall task performance, since the robot
may be able to identify the most accurate model earlier on, and therefore will be able
to proactively plan accordingly. Of course, there are some important trade-offs that we
would need to consider, such as how much time to spend on exploratory or information
gathering actions versus exploiting the current best model to complete the task quickly or
efficiently. We believe that extending the current framework in this way is an interesting
direction for future research; in fact, it may be possible to utilize existing ideas around
exploration in Reinforcement Learning (RL) [76], or concepts in Active Learning [16], to
actually implement such a system design. Furthermore, a similar problem has been studied
in the context of dynamical systems, i.e., System Identification [5], where the concept of
persistent excitation provides guidance on how to choose informative actions for the purposes
of parameter identification.

Rather than choosing a single best model to plan with, it may also be possible to plan
over a set of possible models. One benefit of this is that we no longer need to choose a single
best model to plan with — instead, we defer reasoning about this to the planner. In fact,
such a formulation may naturally encode the exploratory or information gathering behavior
that we discussed earlier, if we encoded the planning problem, e.g., as a Partially Observable
Markov Decision Process (POMDP). A key challenge, however, is computational — planning
under uncertainty, e.g. with POMDPs, is known to have high computational time and space
requirements to find a solution. Nonetheless, we believe this is also a promising direction for
future research.

5.2 Handling a Broader Set of Unreliable Models

Bias replanning away from unreliable regions in probabilistic
models

Both planning approaches in this dissertation, presented in Chapter 3 and Chapter 4, share
the common idea of avoiding regions where we believe the model to be inaccurate, and
otherwise relying on the model’s predictions as usual in planning. Each, however, has its
limitations: the approach in Chapter 3 is restricted to deterministic models, i.e., where the
model predicts a single outcome for each state and action; and, the approach in Chapter 4
focuses on stochastic models, i.e., where the model predicts a probability distribution over
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multiple possible outcomes, and more specifically on a class of models tailored for human
motion prediction. Therefore, extending and possibly combining these approaches would
broaden the types of unreliable models that a combined framework could deal with.

In Chapter 3, we use information gathered during execution to understand where the
model is inaccurate; we then use this understanding to bias replanning away from these
inaccurate regions. In this way, we are able to leverage the model where it is accurate,
and avoid relying on it all together where it is inaccurate. So far, we have only shown how
this approach works for settings where the underlying model is deterministic. One challenge
of extending this idea to stochastic models is that it is more difficult to define whether the
model has accurately predicted the outcome of a state and action (i.e., transition), if we have
only one observation of the robot executing that transition in the real-world. For example,
if we observe an outcome that has low likelihood under the model, it is unclear whether that
happened by chance, or because our model’s prediction was wrong. On the other hand, if the
robot is performing a repetitive task, we may be able observe the same transition executed
multiple times, and hence be able to better determine whether or not the model’s predicted
distribution over the outcome is accurate. How exactly to do this, however, is not trivial,
and therefore is an important direction for future research.

Our approach in Chapter 4 instead focuses specifically on stochastic models, introducing
the idea of only relying on the model to predict what is very unlikely, and planning conserva-
tively (i.e., assuming the worst-case outcome) everywhere else. While stochastic models are
more general than deterministic models, one drawback of this approach is that our decision
of where to rely on the model is fixed offline, in contrast our approach in Chapter 3. There-
fore, it would be interesting to see if we could extend this approach to combine information
gathered online to update our understanding about the reliability of the model. This, in
turn, could be used to adapt where we rely on the model, and hence better trade-off between
conservatism and efficiency in the planning.

Learning new models during execution

In all the work presented so far in this dissertation, there is always an assumption that
some model, or part of some model, which we have constructed prior to execution, can
reliably capture the relevant aspects of the robot’s environment. However, in some cases,
this assumption may not hold.

Consider, for example, a deep space exploration mission where little is known about the
location where the robot is sent prior to arrival. It may not be possible to construct a
reliable model of the environment a priori ; yet at the same time, the robot may be required
to act quickly, as time is limited — e.g., since the robot will have a short lifetime due to
extreme operating conditions — and with little interaction with remote operators due to
high communication latency.

One possible solution is to add the ability to learn a new model using observations
collected at execution time to the framework in Fig. 5.1. This fits naturally into the approach
we introduced in Chapter 2, since there is no requirement that the full model set needs to be
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fixed beforehand. Indeed, it is possible to have that set grow over time as the robot learns
new models. While there has already been extensive research around learning a model
from this kind of data, e.g., in model-based RL [63], model learning [57], and learning-
based control [21], several challenging questions remain. For example, it may not always be
necessary or desirable to learn a new model from scratch— so, when is it better to update an
existing model compared to learning a completely new model? Uncertainty over the current
model adds to this challenge, because what model should be updated with the observed data
if there are several possible models? Related to this, the data may be very sparse, so does
this constrain the type of model that such a system can learn? Regardless, we believe that
this model learning is a key direction of future research towards broadening the types of
unreliable models that our framework can handle.

Finally, closely related to learning models is the idea of generating new models by com-
bining existing ones. For example, is there a meaningful way to combine several models, e.g.,
via some weighted combination, to produce new and useful predictions from an existing set?
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Chapter 6

Conclusion

Models play an important role in the planning and execution systems of many modern
robotic systems. Specifically, the model enables a robot to forward-simulate the outcomes of
various actions it may potentially take in the real-world, which is an important component
of finding an efficient plan for completing a desired task. Unfortunately, however, it is often
very difficult to accurately model the real-world. As a result, it is common for models to
make inaccurate predictions about the outcomes of actions. When a robot relies on such
models in planning, its task performance suffers. Motivated by this, we have investigated how
to increase the robustness of planning and execution frameworks that must use unreliable
models of the real-world.

In this dissertation, we have introduced methods to improve two key aspects of model-
based planning and execution systems: choosing a model, and planning with that model.
To that end, in the first part of this dissertation, we focused on improving the first aspect—
namely, choosing the best model that we can given all the available information. Specifically,
in Chapter 2, we presented an approach for choosing the best model from a set, which
alleviates the need to come up with a single reliable model prior to deploying the robot.
Unfortunately, however, no model is perfect— even the best model we can choose may be
unreliable in certain regions of the state and action space. Therefore, in the second part of
this dissertation, we develop approaches that enable a planner to avoid utilizing parts of the
model we believe to be unreliable. Specifically, Chapter 3 focused on deterministic models,
and introduced a method for biasing the planner away regions in the state and action spaces
where we believe the model will make inaccurate predictions. Chapter 4 focused instead
on stochastic models in settings where the robot operates in an environment shared with a
human. We introduced a method for finding a balance between conservatism and efficiency
in planning, when we believe the predictive model of the human’s motion is unreliable.

Finally, in Chapter 5, we provided some avenues for future work concentrated around:
unifying the approaches in this dissertation into a single model-based planning and execution
framework; and, extending the set of unreliable models that such a framework can handle.
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