
Eye Blink Classification for Ear EEG

Carolyn Schwendeman

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-24

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-24.html

May 1, 2023



Copyright © 2023, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



 

 
 

Eye Blink Classification for Ear EEG 
 

by Carolyn Schwendeman 
 
 
 
 

Research Project 
 

Submitted to the Department of Electrical Engineering and Computer Sciences, 
University of California at Berkeley, in partial satisfaction of the requirements for the 
degree of Master of Science, Plan II. 
 
 
Approval for the Report and Comprehensive Examination: 
 
 
 

Committee: 
 
 
 

Professor Rikky Muller 
Research Advisor 

 
 

(Date) 
 
 
 

* * * * * * * 
 
 
 

Professor Michel Maharbiz 
Second Reader 

 
 

(Date) 

5/11/2021

14 May 2021



Acknowledgements 
 

This thesis is the culmination of four years of working in Professor Rikky Muller’s 

lab as an undergraduate and master’s student. Throughout these years, I have been very 

fortunate to learn from her experience and the experience of other graduate and 

undergraduate students in the group. I greatly appreciate the opportunities I have had to 

work on interesting and challenging projects with Professor Muller’s guidance. I am 

fortunate to have spent several years working on Ear EEG with Ryan Kaveh and Justin 

Doong, and I am very grateful for the role they have played in my education as we 

worked together. I would like to thank them and Professor Muller for all their technical 

contributions to this work. Additionally, I would like to thank Professor Michel Maharbiz 

for his contributions to Ear EEG and for reading this report. Finally, I would like to 

acknowledge the discussion and feedback from all the student’s in Professor Muller’s lab 

that helped me navigate this project. 



Abstract 
 

Electroencephalography (EEG) is a safe, non-invasive method of monitoring the 

brain’s electrical activity that can be used for Brain Computer Interfaces (BCIs). 

However, the usability of EEG in everyday BCIs is limited since clinical EEG systems 

consist of wet electrodes that must be placed across the scalp by a trained technician. 

Recently, it has been demonstrated that EEG signals may be recorded from dry electrodes 

placed inside the ear canal (in-ear EEG), yet in order to perform the signal classification 

necessary for BCIs these systems must overcome the challenges of reduced spatial 

covering and reduced SNR of the recorded EEG signals. In this technical report, a 

wireless, multielectrode, user-generic Ear EEG system is used to record voluntary eye 

blink events. Though eye blinks are an ocular artifact in EEG signals, eye blink event 

classification is a component of many EEG-based BCIs allowing for user choice selection 

and drowsiness detection. Here, classification of this signal is demonstrated with four 

machine learning classifier models: logistic regression, support vector machine, random 

forest, and an artificial neural network. A combination of temporal, spectral, and spatial 

features available to the Ear EEG system are implemented and analyzed in order to 

optimize classification results across these models and demonstrate the feasibility of more 

complex signal classification with in-ear EEG recordings. The result of this work is a 

comparison of four eye blink classifiers for the Ear EEG system each with sensitivity 

above 95% and specificity above 98%. The model that achieves the highest eye blink 

classification results is a random forest classifier with 100% sensitivity and 99.5% 

specificity. 
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Chapter 1 

Introduction 

 

Electroencephalography (EEG) is used extensively in the clinical setting to monitor 

the electrical activity in the brain of a patient and diagnose neurological complications 

including epilepsy and sleep disorders [1] [2]. Additionally, the non-invasive nature of 

EEG make it an ideal tool for Brain Computer Interfaces (BCI). EEG systems may be 

used to record steady-state visual and auditory evoked potentials, event related auditory 

and visual potentials, low-frequency neural waves, and electrooculogram (EOG) related 

artifacts including eye blinks [3]. Many of these signals are practical for BCIs, which has 

led to work focusing on the development of EEG signal classifiers and detection 

algorithms. 

Eye blink classification for EEG systems is used extensively in the clinical setting 

and is a fundamental component of many EEG-based BCIs. In the clinical setting, eye 

blink artifacts contaminate a recorded EEG signal and may interfere with the analysis of 

the signal for diagnostic purposes. Automated eye blink artifact removal techniques have 

been developed where the first stage of the algorithm focuses on the detection of the 

artifacts in the recorded EEG signal [4]. For BCIs, voluntary eye blink classification has 

been used for choice selection, cursor movement, and prosthetic control [5] [6] [7]. 
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Additionally, it has been demonstrated that eye blink artifacts are a meaningful data 

feature to consider for drowsiness detection [8].  

Until recently, EEG for consumer BCIs has been out of reach due to the extensive 

clinical set up an EEG system requires, the bulkiness of these systems, and the time 

limitations wet electrodes place on the recording of EEG signals. Clinical EEG utilizes wet 

electrodes that must be placed across the scalp by a trained technician [9]. The hydrogel 

of wet electrodes greatly reduces the electrode-skin impedance (ESI) and provides 

mechanical stability; however, as this hydrogel dries out the signal-to-noise ratio (SNR) of 

the system degrades which reduces the quality of the recorded signal [10]. EEG headsets 

that utilize dry electrodes have proven useful for ambulatory recording over longer periods 

of time, but the bulkiness of these headsets makes them not ideal for consumer BCI 

applications [11] [12]. 

Recently, it has been demonstrated that EEG can be recorded by dry electrodes 

from inside the ear [13]-[16]. Our work has demonstrated that a user-generic earpiece can 

be fabricated with low-cost and scalable manufacturing techniques. These earpieces can be 

employed to record voluntary eye blink artifacts, alpha band modulation, and auditory 

steady-state response EEG signals from within the ear using a wireless, multichannel read-

out system [17] [18].  
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Fig. 1.1. Envisioned In-Ear EEG system for BCI  

 

The discreet nature of an in-ear EEG system and the advancement towards a user-

generic recording device are promising steps towards EEG for consumer BCIs (Fig. 1.1). 

However, in-ear EEG systems do not provide the same spatial covering as an EEG 

headset, and the use of dry electrodes may be less mechanically stable and reduce the 

SNR [12]. These differences between clinical and in-ear EEG systems present challenges 

for the implementation of signal classification for BCIs, since many EEG-based classifiers 

utilize additional sensors and the placement of the electrodes on the head or require a low 

SNR to achieve high performance [19]. 

This technical report focuses on the development of a voluntary eye blink classifier 

that utilizes only the signals recorded from the Ear EEG system in order to understand if 

this system provides sufficient information for signal classification. Chapter 2 details the 

experimental set up of the Ear EEG system and the recording of the voluntary eye blink 

trials that will be considered by the signals classifiers presented in later chapters. In order 
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to set up a comprehensive classification framework that may be extended to more complex 

applications in future work, an assortment of spatial, temporal, and spectral features 

available to an in-ear system have been implemented and their effectiveness at classifying 

voluntary eye blink artifacts is compared. Additionally, four machine learning algorithms 

commonly used for classification of biological signals have been implement: logistic 

regression, support vector machine (SVM), random forest, and artificial neural networks. 

Often, the optimal choice of classifier model is application dependent and takes into 

consideration constraints such as the low SNR of EEG signals, whether or not an 

increased number of motion artifacts may be introduced due to the use of an ambulatory 

system, and subject to subject variability of EEG, which can make it difficult to obtain 

large training sets of data [20]. In Chapter 3 of this report, a logistic regression classifier, 

the simplest of these models, is implemented and feature analysis is discussed. Chapter 4 

continues this analysis by discussing the implementations of a SVM, a random forest, and 

an artificial neural network models for eye blink classification and showing their respective 

results. This allows for the comparison of these algorithms for eye blink classification with 

this system and provides a basis for future work with more complex signal classification. 
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Chapter 2 

Ear EEG Eye Blink Recordings 

2.1 Ear EEG System 

To collect voluntary eye blink data sets, a wireless, multielectrode, user-generic Ear 

EEG system is used for recordings [17] [18]. The Ear EEG system consists of a user-

generic earpiece and a compact wireless neural recording module (WANDmini) that 

wirelessly transmits data to a base station at a sampling rate of 1000 samples per second 

(Fig 2.1a). A custom graphical user interface provides the subject with instructions and 

visual cues during the experiment and saves the recorded trials so they may be post-

processed and examined for signal classification. 

The user generic earpiece (Fig 2.1b) is designed with four in-ear electrodes, E1 – E4, 

positioned in the ear canal, and two out-of-ear electrodes, E5 – E6, that are positioned in 

the cymba and concha of the ear. Before recording trials with the Ear EEG system, an 

out-of-ear electrode, E5 or E6, is selected as a reference for each subject in order to 

maximize the differential EEG signal. The electrode-skin impedance (ESI) between these 

potential reference electrodes and the in-ear sense electrodes is recorded with an LCR 

meter, and an average ESI is calculated for each potential reference (Equation 2.1).  
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𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸 =
1
4
�𝐸𝐸𝐸𝐸𝐸𝐸 ([𝐸𝐸 𝑛𝑛

4

𝑛𝑛=1

−  𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟] ) (2.1) 

The reference electrode with the lowest average ESI will be used during a subject’s 

eye blink recordings (Fig 2.2). 

 

 

Fig. 2.1. (a) Experimental set up of Ear EEG system. (b) User-generic earpiece with 
labeled electrodes. 

 

 

Fig. 2.2. Reference electrode selection for subject 2 based on LCR measurements. E5 is 
selected as reference electrode for EEG recordings due to its lower average electrode-skin 

impedance magnitude (Equation 2.1). 
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2.2 Voluntary Eye Blink Recordings 

 Voluntary eye blinks were recorded across three subjects with the Ear EEG system 

providing a total of 100 trials that are each 50s in length (Table 2.1). The subject was 

asked to perform a hard eye blink when prompted by a visual cue from an on-screen GUI 

every 10s. The EEG signals recorded from the four in-ear electrodes are saved after each 

trial (Fig. 2.3). 

Table 2.1 
Number of Trials and Recorded Eye Blinks Per Subject 

Subject Number of Trials Number of Eye Blinks Recorded 
1 49 245 
2 35 175 
3 16 80 

 

 

Fig. 2.3. Four in-ear EEG signals recorded during an eye blink trial (bandpass filtered 
from 0.05-50Hz). Red markers indicate eye blink cues given during the trial. 
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2.3 Eye Blink Labels 

In order to train the signal classifiers and determine how effectively a classifier 

identifies the eye blinks, it is necessary to create eye blink event labels for each recorded 

trial. Eye blink labels are manually created by aggregating the four recorded EEG signals 

and visually identifying the voluntary eye blink following the cue provided to the subject 

during the trial (Fig. 2.4). A label is assigned to each sample of recorded data. 

 

Fig. 2.4. Manually created labels for the four in-ear EEG signals recorded during the eye 
blink trial shown in Fig 2.3. (Eye blinks are bandpass filtered from 0.05-50Hz). ‘1’ labels 

indicate eye blink samples. 
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Chapter 3 

Eye Blink Classification: 

Logistic Regression Model 
 

3.1 Logistic Regression Classification 

The first eye blink classification algorithm considered in this report is implemented 

with a logistic regression classifier model. The logistic regression model considered here is 

binomial in that it is concerned with differentiating between ‘0’ samples and ‘1’ samples, 

which correspond to the rest and eye blink samples in the recorded eye blink trials. The 

labeling of these samples and the recording of eye blink trials was discussed in Chapter 2. 

This chapter focuses on the remaining components of an eye blink classification algorithm 

that can be represented as five blocks (Fig. 3.1). In order to achieve better separation of 

eye blink and rest samples using a classifier model, additional analysis of the recorded 

signals can be implemented prior to signal classification. This analysis, known as feature 

extraction, makes up block 3 and its implementation is discussed in Sections 3.3, 3.4, and 

3.5. A final block is implemented after the classification of eye blink and rest samples to 

allow for the identification of eye blink events. This block is discussed in Section 3.2. 
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As shown in block 4 of Figure 3.1, a logistic regression classifier model can be 

represented generally by the sigmoid function in Equation 3.1, where x0…xn represent the 

features passed to the classifier and β0… βn represent feature weights the classifier trains to 

best model the ‘0’ and ‘1’ samples of a data set [21]. P represents the probability of a 

sample being in a ‘1’ state, and a threshold of 0.5 is set in order to separate the instances 

of rest and eye blink events (Fig. 3.1, block 4). 

 𝑃𝑃(1|𝑥𝑥,β) =  
1

1 + exp (−(β0 + β1𝑥𝑥1 + ⋯+ β𝑛𝑛𝑥𝑥𝑛𝑛))
 (3.1) 

 

This classifier is implemented in python with the scikit logistic regression model. 

The model is trained on 50% of eye blink trials for a specific subject, and sample weights 

are provided to the classifier in order to account for the disbalance of rest and eye blink 

events in the data sets. The classifier is then tested on the remaining 50% of a subjects 

eye blink trials. 

 
Fig. 3.1. Block diagram for eye blink classification with a logistic regression classifier. 
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3.2 Eye Blink Detection and Result Metrics 

 Classification results are commonly reported in terms of sensitivity and specificity 

metrics represented by Equations 3.2 and 3.3, which can be computed from a confusion 

matrix [20]. 

𝐸𝐸𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝐴𝐴𝑇𝑇𝐴𝐴 𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆

𝑇𝑇𝐴𝐴𝑇𝑇𝐴𝐴 𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆 + 𝐹𝐹𝐴𝐴𝐹𝐹𝑆𝑆𝐴𝐴 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆
 (3.2) 

𝐸𝐸𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝐴𝐴𝑇𝑇𝐴𝐴 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆

𝑇𝑇𝐴𝐴𝑇𝑇𝐴𝐴 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆 + 𝐹𝐹𝐴𝐴𝐹𝐹𝑆𝑆𝐴𝐴 𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆
 (3.3) 

 

In the context of eye blink classification, the confusion matrix can be defined in 

terms of eye blink events, since an eye blink event is more likely to be of significance to a 

BCI than the state of each individual sample of data (Table 3.1). 

Table 3.1 
Confusion Matrix for Eye Blink Classification 

Term Description 
True Positive Classifier correctly detects an eye blink event 

False Negative Classifier fails to detect an eye blink event 
True Negative Classifier correctly detects a rest event 
False Positive Classifier falsely detects an eye blink event 

 

 

In order to identify eye blink events and report the sensitivity and specificity for 

this eye blink classification algorithm, block 5 of Figure 3.1 acts as an eye blink detector 

that can be represented visually as a finite state machine (Fig. 3.2). The purpose of this 

state machine is to translate classification results for each sample of data into 

classification results for eye blink events. During training, this block sets a window size 

equivalent to the maximum duration of a subject’s eye blinks, approximately 1.5s (Fig. 

3.3), and a threshold for eye blink detection equivalent to the minimum duration of a 
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subject’s eye blinks, approximately 0.3s. During testing, decisions about whether or not an 

event has occurred are reported every 1s. If the number of samples identified as eye blinks 

in a window exceeds the preset threshold, it is verified that an eye blink was not detected 

in the previous detector window. If two eye blinks are identified consecutively, the overlap 

between these windows is checked for samples labeled as eye blinks, and the second eye 

blink event is reported only if this overlapping region is free of eye blink samples. This 

logic prevents the eye blink detector from reporting a single eye blink event twice. Once 

eye blink events and rest events have been identified in the classifier’s predicted labels 

and the manually created labels, these results are compared to report the classifier’s 

sensitivity and specificity. 

 

 
Fig. 3.2. Finite State Machine for eye blink event detection during testing. A detector 

output of ‘1’ indicates an eye blink event. A detector output of ‘0’ indicates a rest event. 
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Fig. 3.3. Eye blink durations (widths) for subject 1 calculated according to manually 

created data labels. 

 

3.3 Feature Extraction: Re-referencing 

 A common method used to identify eye blink artifacts in an EEG datasets is to 

consider the location of the electrodes on the head as features that may be passed to a 

signal classifier. In the clinical setting, it may be practical to rely on electrodes positioned 

around the eye, EOG, to provide information about when an eye blink artifact has 

occurred [19]. Additionally, the frontal electrodes of scalp EEG systems record greater 

amplitude eye blink artifacts then scalp EEG electrodes in other locations allowing for eye 

blink signal classifiers to take advantage of this signal variation [22]. These are considered 

spatial features for EEG signal classification. 

 A fundamental challenge of EEG signal classification from within the ear is the 

close-proximity of the in-ear electrodes, which make it difficult to take advantage of 

spatial features for the purpose of greater signal variation. However, signal re-referencing 

can be implemented as a spatial feature in the context of in-ear EEG in order to reduce 
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the impact of motion artifacts due to the movement of the user-generic earpiece. Recall 

from section 2.1, an out-of-ear electrode, E5 or E6, is selected as a reference electrode for a 

subject’s EEG recordings (Fig. 2.2). Though these out-of-ear electrodes provide the largest 

differential signal, they tend to be the more mechanically unstable than the in-ear 

electrodes that are held in place by the ear canal. When a subject performs a voluntary 

eye blink, the movement of the facial muscles can cause a change in the electrode-skin 

impedance of the out-of-ear reference electrode and introduce artifacts in the recorded 

data (Fig. 3.4a, Fig 3.4b). This effect tends to occur more frequently in specific subjects 

due to the fit of the user-generic earpiece. 

 Since measurements with all in-ear electrodes are recorded with the same out-of-ear 

reference electrode, a new differential signal can be calculated by re-referencing each signal 

as shown in Equation 3.4. This technique removes the mechanical artifacts caused by the 

out-of-ear reference (Fig 3.4c). 

 [𝐸𝐸𝑠𝑠𝑟𝑟𝑛𝑛𝑠𝑠𝑟𝑟 1 −  𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟]−  [𝐸𝐸𝑠𝑠𝑟𝑟𝑛𝑛𝑠𝑠𝑟𝑟 2 −  𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟] = [𝐸𝐸𝑠𝑠𝑟𝑟𝑛𝑛𝑠𝑠𝑟𝑟 1 −  𝐸𝐸𝑠𝑠𝑟𝑟𝑛𝑛𝑠𝑠𝑟𝑟 2] (3.4) 

 In order ensure the eye blink classifier is provided features without these 

mechanical instabilities, each dataset is expanded to include a combination of the 

recorded EEG signals and the in-ear re-referenced signals (Table 3.2), and all further 

feature extraction is performed on this expanded data set. In the case of subject 3, the eye 

blink classification results with the recorded signals are only 85.2% sensitivity and 98.3% 

specificity when all features discussed in this chapter are implemented; however, when 

recorded and re-referenced signals are considered these results increase to 97.1% 

sensitivity and 100% specificity. This demonstrates the significance of re-referencing for 

eye blink classification with the Ear EEG system. 
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Table 3.2 
Electrode Differential Pairs Considered During Eye Blink Classification 

 
 

Recorded EEG Signals Re-referenced EEG Signals 
E1 – Eref E1 – E2 

E2 - Eref E1 – E3 

E3 – Eref E1 – E4 

E4 - Eref E2 – E3 

 E2 – E4 

 E3 – E4 

  
  

 

Fig. 3.4. (a), (b) Recorded eye blinks with mechanical artifacts due to movement of out-
of-ear reference electrode. (c) Re-referenced eye blinks with mechanical artifacts removed. 
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3.4 Feature Extraction: Temporal Features 

 Four time-domain features (temporal features) are calculated for each of the 

recorded EEG and re-referenced EEG signals. In the following subsections, these feature 

calculation are introduced, and the sensitivity and specificity of eye blink classification 

with a logistic regression model that uses the indicated feature is shown per subject. This 

allows for a numerical comparison of the effectiveness of the signal classifier based on 

which features are implemented.  

3.4.1 Voltage Amplitude Feature 

 Eye blink events are characterized by an abrupt change in voltage amplitude [22]. 

In order to make this change in amplitude more apparent in the signal, each of the 

recorded EEG signal and re-referenced EEG signal is bandpass filtered form 0.05Hz - 

10Hz, and the resulting signals are used as features for eye blink classification (Fig. 3.5). 

This feature calculation relies on the consistency of the voltage amplitude across eye blink 

events for a specific subject, which may be effected by the electrode skin impedance and 

variability in how the subject performs an eye blink. 

 

Fig. 3.5. Voltage amplitude feature calculated for one recorded signal of EEG data. 
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Table 3.3 
Logistic Regression Classification with Voltage Amplitude Features 

Subject Sensitivity Specificity 
1 83.9 % 98.8 % 
2 84.8 % 96.9 % 
3 90.6 % 97.4 % 

 

3.4.2 Derivative Feature 

 In order to take advantage of the abrupt change in voltage amplitude that is 

characteristic of eye blink artifacts, derivative-based features have been used to identify 

eye blinks in frontal EEG electrodes and EOG recordings [19] [23]. In this report, a simple 

derivative feature is implemented according to Equation 3.5, where y(x) indicates the 

bandpass filtered voltage amplitude of the sample located at time, x. The parameter Δx is 

set to 0.05s in order to calculate the slope of the y-axis slope through point x. The 

absolute value of this derivative is taken, in order to avoid a sign difference in the feature 

values corresponding to the rising and falling edges of an eye blink (Fig. 3.6). 

 𝐷𝐷(𝑥𝑥) = 𝐴𝐴𝑎𝑎𝑆𝑆 �
𝑆𝑆(𝑥𝑥 + Δx) − 𝑆𝑆(𝑥𝑥 − Δx)

(𝑥𝑥 + Δx) − (𝑥𝑥 − Δx)
� (3.5) 

 This feature identifies eye blink events based on the sharp changes in voltage 

amplitude that is characteristic of all eye blink artifact, which results in very high 

sensitivity across all subjects (Table 3.4). However, the specificity of the eye blink 

classifier is low when this feature is implemented due to inability to separate motion 

artifacts in the data sets from eye blink events. 
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Fig. 3.6. Comparison of (a) voltage amplitude feature to (b) derivative feature for same 
recorded signal of EEG data. 

  

Table 3.4 
Logistic Regression Classification with Derivative Features 

Subject Sensitivity Specificity 
1 98.0 % 92.3 % 
2 100 % 89.9 % 
3 100 % 91.0 % 

 

3.4.3 Standard Deviation Feature 

 Eye blink artifacts are characterized by an increase in the standard deviation of the 

EEG voltage amplitude [24]. In order to compute a standard deviation feature, a sliding 

window is implemented, and the standard deviation of the bandpass filtered voltage 

amplitude is computed and assigned as the feature value for the center-most sample of 

this sliding window (Fig. 3.7). To select an optimum length for this sliding window, the 
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window length parameter is trained to maximize the sensitivity of eye blink classification 

while specificity remains above 95%. The optimal sliding window length for all subjects is 

between 0.4s and 0.5s. 

 

 

Fig. 3.7. Comparison of (a) voltage amplitude feature to (b) standard deviation feature for 
same recorded signal of EEG data. 

 

Table 3.5 
Logistic Regression Classification with Standard Deviation Features 

Subject Sensitivity Specificity 
1 73.2 % 99.7 % 
2 100 % 98.3 % 
3 93.8 % 93.8 % 
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3.4.4 Standard Deviation Ratio Feature 

 In order to better separate eye blink events from motion artifacts in the EEG 

signal, a variation of the standard deviation feature is implemented where a ratio is 

calculated between the standard deviation of two sliding windows according to Equation 

3.6 (Fig. 3.8). The delay length between the two sliding windows is set such that the total 

time elapsed from the start of the current window to the end of the delayed window is 

1.5s, roughly the maximum duration of eye blinks recorded with this system (Fig 3.3).  

𝑅𝑅𝐴𝐴𝑆𝑆𝑆𝑆𝑃𝑃 (𝑥𝑥) =
𝑆𝑆𝑆𝑆𝑠𝑠𝐴𝐴𝐴𝐴(𝑆𝑆𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆 𝑤𝑤𝑆𝑆𝑆𝑆𝑠𝑠𝑃𝑃𝑤𝑤)
𝑆𝑆𝑆𝑆𝑠𝑠𝐴𝐴𝐴𝐴(𝑠𝑠𝐴𝐴𝐹𝐹𝐴𝐴𝑆𝑆𝐴𝐴𝑠𝑠 𝑤𝑤𝑆𝑆𝑆𝑆𝑠𝑠𝑃𝑃𝑤𝑤)

 (3.6) 

The sensitivity and specificity of eye blink classification with this ratio feature 

increases compared to the previous standard deviation feature across all subjects due to 

the suppression of motion related artifacts in the signal as these ratios are computed. 

 

Fig. 3.8. Comparison of (a) voltage amplitude feature to (b) standard deviation ratio 
feature for same recorded signal of EEG data. 



21 
 

Table 3.6 
Logistic Regression Classification with Standard Deviation Ratio Features 

Subject Sensitivity Specificity 
1 100 % 99.6 % 
2 100 % 98.1 % 
3 96.8 % 98.9 % 

 

3.5 Feature Extraction: Spectral Features 

 EEG signals are often analyzed in terms of frequency bands: Delta (δ) 0.05 - 4 Hz, theta 

(θ) 4 - 7 Hz, alpha (α) 8 – 12 Hz, beta (β) 12 - 30 Hz, and gamma (γ) 30 - 50 Hz. The band power 

and peak power spectral density (PSD) of these frequency ranges commonly appear as features 

in EEG drowsiness classifiers, and eye blink movement is often visible in the delta band, δ (0.05 

- 4 Hz) [8] [19].  This is demonstrated in Figure 3.9. In the following subsections, three power 

spectral features are implemented in the delta band to classify eye blink events. For each feature, 

the power spectral density of a 2s sliding window is computed using the Welch method with a 

Hanning window and 50% overlap [25]. The features are then calculated based on the power 

spectral density of the 2s window surrounding the given sample. 

 

Fig. 3.9. PSD of EEG signal for a 2s eye blink window and a 2s rest window. EEG 
frequency bands are labelled. Increased PSD in delta band during an eye blink window is 

demonstrated. 



22 
 

3.5.1 Peak PSD in Delta Band Feature 

The peak of the power spectral density in the delta band is calculated by 

determining the maximum PSD between 0.5 and 4Hz in 2s window of data surrounding a 

given sample (Fig. 3.10). The high sensitivities and specificities across all subjects (Table 

3.7) indicate a strong correlation between an increase in peak power spectral density in 

the delta band during a voluntary eye blink, as was observed in Figure 3.9. 

 

Fig. 3.10. Comparison of (a) voltage amplitude feature to (b) peak PSD in delta band 
feature for same re-referenced signal of EEG data. 

 

 

 

 

 

 



23 
 

Table 3.7 
Logistic Regression Classification with Peak PSD in Delta Band Features 

Subject Sensitivity Specificity 
1 95.1 % 99.0 % 
2 100 % 99.6 % 
3 100 % 100 % 

 

3.5.2 Absolute Delta Band Power Feature 

The absolute delta band power of a 2s window of the EEG signal can be computed 

by estimating the area under the PSD curve in the delta band using Simpson’s rule (Fig. 

3.11). There is a decrease in specificity with this feature in comparison to the peak PSD 

feature in the previous subsection (Table 3.8). This is the result of the absolute band 

power feature identifying spontaneous eye blinks as false positives, which may also 

interfere with the classifiers ability to train itself to separate the eye blink and rest events 

in these EEG signals and explain the decrease classification sensitivity. While this feature 

is not as effective for voluntary eye blink classification in these data sets as the peak delta 

PSD feature, it may be more effective for applications where spontaneous eye blinks are 

targeted by a signal classifier. This is often the case in drowsiness detection, where 

absolute band power in the delta band is a commonly implemented feature [19]. 
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Fig. 3.11. Comparison of (a) voltage amplitude feature to (b) absolute delta band power 
feature for same re-referenced signal of EEG data. 

 

Table 3.8 
Logistic Regression Classification with Absolute Delta Band Power Features 

Subject Sensitivity Specificity 
1 92.3 % 96.0 % 
2 100 % 99.4 % 
3 100 % 97.1 % 

 

3.5.3 Relative Delta Band Power Feature 

The relative delta band power of a 2s window of the EEG signal can be computed 

by estimating the area under the PSD curve in the delta band using Simpson’s rule and 

dividing it by the area under the PSD curve in the 0.05 - 50Hz frequency range. This 

calculation results in the percentage of the total of the EEG band power made up of delta 

band power (Fig. 3.12). This feature may be less optimal for eye blink classification due to 
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its dependence on the EEG activity in other frequency bands, which may be inconsistent 

from trial to trial. Similar to the absolute delta band power feature, this feature has a 

lower specificity due to spontaneous eye blinks appearing as false positives (Table 3.9).   

 

Fig. 3.12. Comparison of (a) voltage amplitude feature to (b) relative delta band power 
feature for same re-referenced signal of EEG data. 

 
 

Table 3.9 
Logistic Regression Classification with Relative Delta Band Power Features 

Subject Sensitivity Specificity 
1 88.7 % 99.5 % 
2 99.0 % 99.3 % 
3 96.9 % 97.8 % 
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3.6 Summary 

To conclude the analysis of eye blink classification using the logistic regression 

model, the weighted average of the sensitivity and specificity of eye blink classification for 

each subject is calculated for each of the features analyzed in this chapter. These averages 

are calculated according to Equations 3.7 and 3.8, which takes into consideration the 

number of trials per subject in order account for the varying numbers of eye blinks across 

subjects. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 =  ��𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠 𝑛𝑛� ∗ �
𝑆𝑆𝑇𝑇𝑛𝑛𝑎𝑎𝐴𝐴𝐴𝐴 𝑃𝑃𝑆𝑆 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝐹𝐹𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠 𝑛𝑛

𝑆𝑆𝑇𝑇𝑛𝑛𝑎𝑎𝐴𝐴𝐴𝐴 𝑃𝑃𝑆𝑆 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝐹𝐹𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠
� 

3

𝑛𝑛=1

 (3.7) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  ��𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠 𝑛𝑛� ∗ �
𝑆𝑆𝑇𝑇𝑛𝑛𝑎𝑎𝐴𝐴𝐴𝐴 𝑃𝑃𝑆𝑆 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝐹𝐹𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠 𝑛𝑛

𝑆𝑆𝑇𝑇𝑛𝑛𝑎𝑎𝐴𝐴𝐴𝐴 𝑃𝑃𝑆𝑆 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝐹𝐹𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠
�

3

𝑛𝑛=1

 (3.8) 

  

In addition to the analysis presented in sections 3.4 and 3.5 where a single feature 

calculation occurs in the feature extraction block, an overall analysis was completed in 

which all seven features presented in this chapter are calculated for the recorded and re-

referenced EEG signals during the feature extraction block. This allows the classifier 

model to consider multiple features as indicators of eye blink and rest events and train 

optimal feature weights for a particular subject. These features are normalized by 

removing the median and scaling the data according to the quantile range in order to 

ensure their y-axis scales are comparable before feature weights are assigned. The results 

of this analysis are presented in Figure 3.13. 



27 
 

 

Fig. 3.13. Average sensitivity and specificity (Equation 3.7, 3.8) for eye blink classification 
with logistic regression classifier when implemented with features indicated on the x-axis. 

 

 From this analysis, we conclude that eye blinks may be detected with 98.6% 

sensitivity and 99.1% specificity when the features detailed in this chapter are 

implemented simultaneously with a logistic regression classifier model. The results of eye 

blink classification with individual feature calculations allows for future work to select 

which features may be best suited for a specific BCI application with an understanding of 

their eye blink classification results. 
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Chapter 4 

Eye Blink Classification:  

Classifier Model Comparisons 
 

4.1 Support Vector Machine Classification 

 In order continue the analysis of eye blink classification with the Ear EEG system, 

three additional classifier models are implemented to compare their classification results to 

those of the logistic regression model presented in Chapter 3. In this section, a support 

vector machine (SVM) is implemented (Fig. 4.1). 

A SVM is a classifier that constructs an optimum decision boundary, called a 

hyperplane, between the states the classifier is concerned with separating. For eye blink 

classification, these states are ‘0’ for rest events, and ‘1’ for eye blink events. Here, an 

SVM with a linear kernel is used to create an optimal decision boundary that is defined as 

the maximum margin that can be created between the decision boundary and the data 

samples being classified [4] [21]. The number of features provided to the classifier, n, will 

be separated by a decision boundary of dimension n - 1. For a 2-dimensional problem 

where only two features are considered by the SVM, this can be visualized as a scatter 
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plot where the x and y axes represent feature values, and a line with maximum distance 

between the two classes is drawn between the data samples (Fig. 4.1, block 4). 

 This classifier is implemented in python with the scikit linear SVC model. Similar 

to the logistic regression classifier previously used, the model is trained on 50% of the eye 

blink trials for a specific subject, and sample weights are provided to the classifier in order 

to account for the imbalance of rest and eye blink events in the data sets. The classifier is 

then tested on the remaining 50% of a subjects eye blink trials.  

 

 
Fig. 4.1. Block diagram for eye blink classification with a SVM classifier. 

  

 In order to create a fair comparison between these classifier models, the same 

feature extraction steps and analysis from Chapter 3 are repeated. The average sensitivity 

and specificity of the three subjects results are reported below (Fig. 4.2).  
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Fig. 4.2. Average sensitivity and specificity (Equation 3.7, 3.8) for eye blink classification 
with SVM classifier when implemented with features indicated on the x-axis. 
 

From this analysis, we conclude that eye blinks may be detected with 98.3% 

sensitivity and 98.9% specificity when the features detailed in Chapter 3 are implemented 

simultaneously with the SVM classifier model. This is a 0.3% decrease in sensitivity and a 

0.3% increase in specificity compared to the logistic regression classifier implemented with 

the same features in Chapter 3. These results are consistent with expectations, as the high 

sensitivity and specificity achieved using a logistic regression classifier indicated the eye 

blinks events and rest events in the EEG signals are linearly separable. An SVM may be 

implemented with a kernel trick to create a non-linear decision boundary, which may 

reduce the few outlying cases present in this data set. However, these methods are 

computationally more complex, and may lead to overfitting the data. 

 

 

 



31 
 

4.2 Random Forest Classification 

The third eye blink classification algorithm is implemented with a random forest 

classifier model. Random forest classifiers are often utilized in BCI due their ability to 

achieve high classification accuracy with small sets of training data [20]. A random forest 

classifier works by constructing an ensemble of decision trees based on random subsets of 

the features available to the classifier (Fig. 4.3, block 4). A final decision about the state 

of a sample is then made by aggregating the results of these decision trees [20]. 

The random forest classifier in this report is implemented in python with the scikit 

random forest classifier. A maximum tree depth is set to 3 in order to reduce the classifier 

complexity and the memory it requires. Similar to the logistic regression and SVM 

classifiers, the model is trained with 50% of a subjects eye blink trials and tested on the 

remaining 50% of their trials. Sample weights are provided to the classifier in order to 

account for the imbalance of rest and eye blink events in the data sets. 

 
Fig. 4.3. Block diagram for eye blink classification with a random forest classifier. 
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Fig. 4.4. Average sensitivity and specificity (Equation 3.7, 3.8) for eye blink classification 
with random forest classifier when implemented with features indicated on the x-axis. 

 

From this analysis, we conclude that eye blinks may be detected with 100% 

sensitivity and 99.5% specificity when the features detailed in Chapter 3 are implemented 

simultaneously with the random forest classifier. Generally, sensitivity and specificity 

increased with a random forest classifier in comparison to the results from a logistic 

regression or SVM classifier implemented with the same features. This makes random 

forest an ideal classifier model to consider for future work with Ear EEG classification. 
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4.3 Artificial Neural Network Classification 

 The final classifier implemented in this report is an artificial neural network. A 

neural network is a black-box machine learning algorithm, in which hidden layers 

approximate a non-linear decision boundary between the desired classification states by 

learning mathematical relationships between the inputs and desired outputs of the 

classifier and adjusting the internal weights of ‘neurons’ to classify a data set [20] [26]. 

Neural networks are often capable of achieving high classification accuracy without the 

more complex feature extraction blocks required for logistic regression, SVM, and random 

forest classifier models. However, neural networks require high computational power, and 

often large training data sets in order to achieve high sensitivity and specificity, which 

may make them not ideal for an embedded system or BCI [26].  

 The neural network in this report is implemented in python with the TensorFlow 

sequential model. Two hidden layers are implemented with a ReLU activation function 

and a binary cross entropy loss function. The model is trained with 50% of eye blink trials 

for a specific subject, and sample weights are provided to the classifier in order to account 

for an unbalanced number of eye blink and rest events in the data sets. The model is 

tested on the remaining 50% of a subjects eye blink trials. The block diagram for the 

neural network eye blink classification algorithm differs from the logistic regression, SVM, 

and random forest diagrams in that the more complex feature extraction block from 

previous block diagrams has been replaced by a simpler feature extraction block (Fig. 

4.5). In this case, the feature extraction block re-references the EEG signals and bandpass 

filters each signal from 0.05Hz-10Hz in order to compute the voltage amplitude features. 

This simpler feature extraction is used in order to take advantage of the black-box nature 

of this model. 
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Fig. 4.5. Block diagram for eye blink classification with a neural network classifier. 

 

The neural network implemented in this report classifies eye blinks with 95.2% 

sensitivity and 98.2% specificity when an average across subjects is calculated according 

to Equations 3.7 and 3.8. These classification results are not as high as the results of the 

logistic regression, SVM, or random forest classifiers implemented in this report; however, 

the neural network classifies eye blink events more effectively using this simple voltage 

amplitude feature than the other classifier models. The sensitivity of the neural network 

classifier is approximately 10% higher than the logistic regression and SVM classifiers 

implemented with this feature and 1.3% higher than the random forest classifier 

implemented with this feature. This classifier may be an ideal choice for applications 

where a simple feature extraction block is beneficial or little is known about the 

relationship between events in a data sets, which makes it challenging to manually design 

a comprehensive set of features. 
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4.4 Classifier Comparison Summary 

 The following table summarizes the eye blink classification sensitivity and 

specificity results for each subject using the four classifier models detailed in Chapters 3 

and 4 (Table 4.1). For the logistic regression, SVM, and random forest models, the 

classification results are reported when all seven feature calculations explored in Chapter 3 

are implemented. For the neural network, the classification results when the simpler 

feature extraction block presented in the previous section are reported. 

Table 4.1 
Classifier Results Comparison 

Subject Logistic Regression SVM Random Forest Neural Network 
 Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 
1 99.3 % 99.4 % 98.7 % 98.9 % 100 % 99.7 % 94.7 % 98.7 % 
2 98.2 % 98.2 %  98.2 % 98.5 % 100 % 99.8 % 99.4 % 99.1 % 
3 97.1 % 100 %  97.0 % 100 % 100 % 98.3 % 87.7 % 94.7 % 

Average 
(Eq. 3.7, 3.8) 

98.6 % 99.1% 98.3% 98.9% 100% 99.5% 95.2% 98.2% 

 

 From this table, we conclude that the random forest classifier has the highest 

sensitivity and specificity on average for the eye blink trials recorded with the Ear EEG 

system in this study. However, all four classifier models are highly effective at identifying 

the voluntary eye blinks while maintaining relatively high specificity. This allows for 

choice of classifier model to be made considering other factors, including the amount of 

training data or computational requirements, in future work that incorporates eye blink 

classification.  
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Chapter 5 

Summary and Future Work 
 

 The eye blink classification results in this report are promising for the use of a 

user-generic in-ear EEG for eye blink based BCIs. For 500 eye blinks across three 

subjects, above 95% sensitivity and 98% specificity is reported when logistic regression, 

SVM, random forest, or neural network classifier models are implemented for eye blink 

classification. The highest eye blink classification results are achieved with a random 

forest classifier when seven feature calculations are performed on four recorded and six re-

referenced EEG signals. This classifier achieves an average sensitivity of 100% and a 

specificity of 99.5% across all subjects. Feature selection based on the results reported for 

eye blink classification when a single feature calculation is considered may allow for the 

complexity of this classifier to be reduced while achieving similar results, making this 

classifier more practical for an embedded BCI system.  

Of the temporal features analyzed for eye blink classification, the standard 

deviation ratio feature achieved the highest sensitivity and specificity across all subjects 

and classifier models with above 96.8% sensitivity and 98.1% specificity in all the 

considered cases. The peak PSD in the delta band feature achieved the highest sensitivity 

and specificity of the spectral features considered in this report with 97.1% sensitivity and 
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99.3% specificity across all subjects and classifier models. These results allow for the 

implementation of a simple, single feature classifier with high eye blink detection 

accuracy, which may be useful for applications in which eye blink classification is part of a 

more complex classification network. 

In the process of implementing these eye blink classification algorithms, a reliable 

classification framework has been set up for the Ear EEG system that can be extended to 

target the classification of other events in EEG signals. It has been demonstrated in this 

report that the challenges of reduced spatial covering and reduced SNR of an in-ear EEG 

system compared to a clinical or EEG headset do not prevent the system from 

successfully classifying eye blink artifacts. Future work with this system may explore the 

classification of more complex signals, such as drowsiness, to investigate the applications 

of a discreet, wearable in-ear EEG system.  
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