
Ordering Interventions for Hardware Security

Viansa Schmulbach

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-238

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-238.html

November 24, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This project was advised by Professor Sanjit Seshia, Adwait Godbole, and
Kevin Cheang, who have all been incredibly helpful.

Ordering Interventions for Hardware Security
Viansa Schmulbach
ansa@berkeley.edu

Abstract—Hardware execution attacks exploit interactions in
the processor microarchitecture. The goal of our research is to use
formal verification tools to harden a processor implementation
such that certain programs running on the processor are secure
against transient execution attacks. In this paper, we formulate
the task of hardening as a search problem for a minimal set of
ordering constraints.

I. INTRODUCTION AND EXAMPLE

Transient execution attacks, such as Spectre [1] and Melt-
down [2], leak secret data from the victim to an adversary
through a side channel [3]. These attacks exploit microarchi-
tectural optimizations such as out-of-order (OoO) execution,
speculation, caching. While relaxing in-order execution con-
straints improves performance, it also produces a vulnerable
attack surface. Conversely, restricting certain microarchitec-
tural behaviours can eliminate vulnerabilities. In this work,
we aim to harden a given hardware design by synthesizing
additional constraints over executions such that the resulting
design securely executes a set of litmus test programs.

void victim_function(int x)
{ if (x < arr1.size()) tmp &= arr2[arr1[x]]; }

Fig. 1. Spectre v1: Bounds check bypass vulnerability

Spectre v1 (BCB) Vulnerability. We illustrate how mi-
croarchitectural (re)orderings are exploited through the Spec-
tre v1 (bounds-check-bypass) [1] vulnerability (Fig. 1). An
unprivileged attacker can call victim_function with a
carefully chosen input x such that the first load speculatively
(i.e. before the branch commits) accesses secret data from
memory. Thus, the address of the second load depends on the
secret. The (secret) address of the second load in the cache
can then be observed by an attacker using a timing analysis
technique, e.g., Flush+Reload [4].

This vulnerability leverages the fact that the second load was
dispatched (cache interaction) before the branch committed
(speculation resolution). A modification that enforces branch
commit to happen before the second load is dispatched would
mitigate this vulnerability. The scenarios before and after this
mitigation are visualized as microarchitectural happens-before
graphs (µhb-graph) [5], [6] in Fig. 2(a, b) respectively. A node
in an hb-graph represents a single microarchitectural event
and a directed edge between node n1 and n2 represents the
fact that n1 “happens-before” n2 in the execution. Fig. 2(a)
allows insecure executions (where the second load dispatch
event occurs before the branch commit event). However, the
executions from Fig. 2(b) are secure since branch commit is
forced before the second load is dispatched.

branch load 1 load 2

dispatch

issue

commit

branch load 1 load 2

(a) insecure set of executions (b) secure set of executions

Fig. 2. Happens-before graph representative of the executions of
victim function from Fig. 1.

Contribution. We aim to develop a synthesis-based repair
technique that generates additional ordering constraints such
that a set of litmus test programs execute securely on the
repaired hardware platform. Additionally, we aim to gener-
ate these constraints in a minimal way. This contrasts with
existing work that repairs software (e.g., secure compilation
[7]), manually develops mitigations specialized to certain
hardware (e.g., [8], [9]), or performs verification/detection of
vulnerabilities (e.g., [10], [11], [12]).

II. PROBLEM FORMULATION

A. Processor Model

The processor model defines the set of executions that
each program can produce. We begin by defining a generic
processor model, followed by an example (Ex. 1).

1) Events and ordering constraints: The execution of a
program takes place in a set of stages S as a set of mi-
croarchitectural events. The execution of each instruction takes
place in a set of stages, denoted as S. A microarchitectural
event is associated with each instruction-stage pair. Event-
based executions can be viewed as the graph in Fig. 2, where
columns are program instructions, rows are stages (from S)
and nodes are events. This notion of event-based executions
is adapted from the µspec specification language [5] and we
refer the reader to prior work (ref. e.g., [6], [13], [14]) for
details. The processor enforces a set of constraints, denoted
as O, over the order in which the events for a program are
executed. We assume that these constraints follow the µspec
syntax and semantics [5], [6].

2) Event semantics: While the constraints O define the
order in which events from the program are executed, we
also assume that each stage has certain functional semantics
associated with it. We have a transition relation T such that
T (s) defines the semantics of executing the stage s. A platform
has two components, (a) a set of orderings constraints over
events O and (b) a set of transition semantics for each stage:

Ts. Consequently, the behaviour of a program executing on
the platform is defined by the ordering constraints between
stages O, and the semantics for each node T : M(O, T). For
a platform M , and a program P executed on this platform,
we get a set of executions Ex (P,M). We now provide an
example of a processor model that we use in our experiments.

Example 1. The processor allows the following groups of
instructions - ALU instructions, memory instructions, and
branch instructions. Each instruction executes in four stages:
fetch, dispatch, issue, and commit. The implicit ordering
constraints of this model are similar to other OoO processors
and are precisely the constraints shown in Fig. 1(a). That is,
both dispatch and commit are done in-order in our example
design. ALU and branch instructions are marked as complete
immediately following dispatch, while load-store instructions
are placed in an out-of-order load-store queue. A branch may
take arbitrary latency to commit.

B. Security Property

Our threat model allows an attacker to execute a victim
program P and subsequently, observe specific signals from the
platform. This threat model is parameterized by the location
of victim secrets and the attacker-observable state, and is
specified as a non-interference-based security property (e.g.,
[15], [16]). For simplicity of discussion, we keep the threat
model parameters implicit. We denote NI(P,M) to mean that
the executions Ex(P,M) satisfy non-interference. This allows
us to define what it means for a program to be secure.

Definition 1 (Program security). Let M(O,S) be the platform
model. A program P is secure if NI(P,M(O,S)) holds.

Problem Statement. Given the input: (a) a processor model
M(O,S) (b) a grammar for ordering constraints (c) a set of
litmus test programs P that are required to be safe (d) a threat-
model (parameterized by Vsec, Vobs) and represented as a NI
property we generate minimum set of ordering constraints O′

such that all programs P ∈ P satisfy NI(P,M(O ∪O′, S)).

III. APPROACH

In our problem statement, we refer to a grammar for
ordering constraints as an input. Now, we would like to give a
concrete example of a grammar defining an ordering constraint
OC:
⟨inst⟩ ::= i1 | i2 | · · · | ik ⟨OC⟩ ::= ⟨CP⟩ ⇒ ⟨CE⟩

⟨CP⟩ ::= ⟨CP⟩ ∧ ⟨CP⟩ | IsStore(⟨inst⟩) | IsLoad(⟨inst⟩) |
IsBranch(⟨inst⟩) | po(⟨inst⟩,⟨inst⟩)

⟨CE⟩ ::= ⟨CE⟩ ∧ ⟨CE⟩ | hb(⟨inst⟩.⟨S⟩, ⟨inst⟩.⟨S⟩)
Each ordering constraint contains a precondition (CP) that
implies some execution constraint (CE). The precondition
may place restrictions on certain instruction types or enforce
program order (po) between two instructions. The execution
constraint enforces the “µ happens-before” (hb) relationships
between instructions. The instruction nonterminals (inst) are
the stream of instructions in the order that they are executed

in the program, and the nonterminal stages (S) are precisely
stages in S as given in the problem statement.

In order to encode hb into a SMT [17] problem, we define
timestamps for each microarchitectural event. A timestamp
contains the following fields: { ts: timestamp, done:
boolean }. The processor model maintains a global times-
tamp that increments at every step. When a microarchitectural
event completes, the processor model updates the correspond-
ing timestamp entries with the current time.

Constraint Example. We might write the dotted edge in
Fig. 2 as the following constraint:(

IsBranch(i1) ∧ IsLoad(i3) ∧ po(i1, i2) ∧ po(i2, i3)
)

=⇒ hb(i1.commit, i3.dispatch)

where the clause hb(i.commit, j.dispatch) can be
written with our timestamp implementation as follows:
i1.commit.ts ≤ i3.commit.ts

The language of OC describes all possible ordering con-
straints. Now, let us define the minimality of constraints as
the following:

Definition 2. (Minimality). Let C1, C2 be two sets of ordering
constraints. C1 is at least as minimal as C2 if C2 =⇒ C1.

Finding the minimal set of ordering constraints such that all
programs satisfy non-interference when run on the model is a
search problem over all sets of ordering constraints. A naive
solution would be to iterate over all possible sets of constraints
and return the most minimal set found. A more efficient
solution is an open area being explored in our research.

IV. CONCLUSION

A. Preliminary Results

We have implemented and verified the processor in Ex.
1 in UCLID5 [18]. We created a UCLID5 program which
ran our model on the litmus test shown in 3. For our threat
model, we defined non-interference as the following: our
attacker is able to observe, for any address, whether or not that
address hits in the cache. Our program correctly synthesized
a counterexample trace violating non-interference.

regs[x2] = addr // addr is unconstrained
regs[x2] = mem[regs[x2]]
regs[x2] = mem[regs[x2]]

Fig. 3. Litmus Test 1

Additionally, we have implemented and verified our times-
tamp system, and have been able to enforce ordering con-
straints in simple programs.

B. Next Steps

Our primary next step is to improve the efficiency and
scalability of our model and find an efficient algorithm for
searching the space of ordering constraint sets. Ultimately, we
would like to create a program which can correctly produce
the additional constraint identified in Fig. 2 when given our
model and Spectre v1 as inputs. However, the approach can
work with numerous litmus tests, such as Spectre v1.1 [19].

REFERENCES

[1] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in 40th
IEEE Symposium on Security and Privacy (S&P’19), 2019.

[2] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. C. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in USENIX
Security Symposium, 2018.

[3] J. Szefer, “Survey of microarchitectural side and covert channels, attacks,
and defenses,” Journal of Hardware and Systems Security, pp. 1–16,
2018.

[4] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in 2015 IEEE Symposium on Security
and Privacy, 2015, pp. 605–622.

[5] D. Lustig, G. Sethi, M. Martonosi, and A. Bhattacharjee, “Coatcheck:
Verifying memory ordering at the hardware-os interface,” Proceedings
of the Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems, 2016.

[6] A. Godbole, Y. A. Manerkar, and S. A. Seshia, “Automated conversion
of axiomatic to operational models: Theory and practice,” 2022 Formal
Methods in Computer-Aided Design (FMCAD), pp. 331–342, 2022.

[7] M. Patrignani and D. Garg, “Secure compilation and hyperproperty
preservation,” 2017 IEEE 30th Computer Security Foundations Sympo-
sium (CSF), pp. 392–404, 2017.

[8] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W.
Fletcher, “Speculative taint tracking (stt): A comprehensive protection
for speculatively accessed data,” IEEE Micro, vol. 40, pp. 81–90, 2019.

[9] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci, “Nda:
Preventing speculative execution attacks at their source,” Proceedings of
the 52nd Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2019.

[10] K. Cheang, C. Rasmussen, S. Seshia, and P. Subramanyan, “A formal
approach to secure speculation,” in 2019 IEEE 32nd Computer Security
Foundations Symposium (CSF), 2019, pp. 288–28 815.

[11] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez,
“Spectector: Principled detection of speculative information flows,” in
2020 IEEE Symposium on Security and Privacy (SP), 2020, pp. 1–19.

[12] C. Trippel, D. Lustig, and M. Martonosi, “Checkmate: Automated
synthesis of hardware exploits and security litmus tests,” in 2018
51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2018, pp. 947–960.

[13] Y. A. Manerkar, D. Lustig, M. Martonosi, and M. Pellauer, “Rtlcheck:
Verifying the memory consistency of rtl designs,” 2017 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pp. 463–476, 2017.

[14] C. Norman, A. Godbole, and Y. A. Manerkar, “Pipesynth: Automated
synthesis of microarchitectural axioms for memory consistency,” Pro-
ceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
3, 2023.

[15] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” 2008 21st IEEE
Computer Security Foundations Symposium, pp. 51–65, 2008.

[16] J. A. Goguen and J. Meseguer, “Security policies and security models,”
1982 IEEE Symposium on Security and Privacy, pp. 11–11, 1982.

[17] C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability Modulo
Theories Library (SMT-LIB),” www.SMT-LIB.org, 2016.

[18] E. Polgreen, K. Cheang, P. Gaddamadugu, A. Godbole, K. Laeufer,
S. Lin, Y. A. Manerkar, F. Mora, and S. A. Seshia, “Uclid5:
Multi-modal formal modeling, verification, and synthesis,” in Computer
Aided Verification: 34th International Conference, CAV 2022, Haifa,
Israel, August 7–10, 2022, Proceedings, Part I. Berlin, Heidelberg:
Springer-Verlag, 2022, p. 538–551. [Online]. Available: https://doi.org/
10.1007/978-3-031-13185-1 27

[19] V. Kiriansky and C. Waldspurger, “Speculative buffer overflows: Attacks
and defenses,” 2018.

https://doi.org/10.1007/978-3-031-13185-1_27
https://doi.org/10.1007/978-3-031-13185-1_27

	Introduction and Example
	Problem Formulation
	Processor Model
	Events and ordering constraints
	Event semantics

	Security Property

	Approach
	Conclusion
	Preliminary Results
	Next Steps

	References

