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Abstract

We study the computational complexity of approximating 2 → 4 linear operator norm, defined as
∥A∥2→4 = maxf ̸=0(∥Af∥4/∥f∥2) We explore the problem of multiplicatively approximating to such
a norm to a constant factor. We present the previous results in the area, share our attempt to give
a new NP-hardness proof, and discuss applications to other problems, such as Khot’s Unique Games
Conjecture [7].
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This was a joint project for both CS270 and CS191. Anirban, Rohit, and Anthony were on the CS191 side
while Anirban, Rohit, and Axel were on the CS270 side. All four of us read most of the papers together.
Anirban studied quantum complexity and wrote section 3.1, Anthony focused on the role of quantum in
the classical reduction and wrote section 3.2, Axel wrote section 3.3, focusing on the classical reductions,
and Rohit wrote section 4, came up with the partial directions showcased in 3.3 and the appendix, as
well as edited all of the sections.
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1 Introduction

We study the computational complexity of approximating 2 → 4 linear operator norm, defined as

∥A∥2→4 = max
f ̸=0

∥Af∥4
∥f∥2

We explore the problem of multiplicatively approximating to such a norm to a constant factor, e.g.
for constants 1 < c < C deciding between the cases ∥A∥2→4 ≥ Cσ and ∥A∥2→4 ≤ cσ where σ is the
minimum singular value of A; we shall call such an approximation a good approximation of ∥A∥2→4.
As a polynomial optimization over the unit sphere, this problem is of great importance to quantum
information theory and in resolving Khot’s Unique Games Conjecture [7].

First, we discuss the preliminaries from Fourier Analysis and quantum information needed. Then, we
will give an introduction to the quantum information notions used in hardness of approximation results
for this norm, including describing the quantum complexity class QMA. Next, we follow the paper of
Barak et. al. [1] and attempt to explain the following reduction from Section 9.1 in a simpler fashion
than the original work.

Theorem 1 (Informal Version). Consider a 3-SAT instance ϕ, with n variables and O(n) clauses.
Deciding whether ϕ is satisfiable can be reduced to finding a good approximation to ∥A∥2→4 where the

dimensions of A are m×m where m ≈ exp
(
Õ(

√
n)
)
.

Thus, assuming the Exponential Time Hypothesis (ETH), one cannot give a good approximation for
∥A∥2→4 in polynomial time. Afterwards, we will attempt to prove the NP-Hardness through classical
reductions, namely through the classic promise problem of smooth label cover. We explain some of the
roadblocks in why our current approaches do not work and show a technique that may have promise.
Lastly, we provide a discussion of current/possible future results, what they imply about the Unique
Games Conjecture (UGC), and related problems.

2 Notation and Preliminaries

2.1 Linear Algebra/Fourier Analysis

We will use the functional definitions of norms unless otherwise stated, as they are more ubiquitous in
the literature ([1], [3]). Fix a natural number R, which will be the number of bits needed to index into
vectors (the dimension of the space will be 2R). We define L2 as the set of all functions f : {±1}R → R
endowed with inner product

⟨f, g⟩ = Ex∼Unif{±1}n [f(x)g(x)] =
1

2n

∑
x∈U

f(x)g(x)

and induced norm ∥f∥2 =
√
⟨f, f⟩. More generally, we define the p-norm as ∥f∥p = Ex[f(x)

p]1/p. Then,
the p→ q norm is

∥A∥p→q = max
0 ̸=f∈L2

∥Af∥q
∥f∥p

For any f : {±1}R → R, define the function f̂ : [R] → R as f̂(i) = Ex(xi · f(x)). This is called the

(partial) Fourier transform of f , which we shall denote as f̂ = FP f . For vectors in the Fourier space, we
endow them with the counting inner product and norm

⟨f̂ , ĝ⟩ =
∑

S⊆[R]

f̂(S)ĝ(S)
∥∥∥f̂∥∥∥

p
=

 ∑
S⊆[R]

f̂(S)p

1/p

Its inverse, which is also its adjoint, satisfies:

FT
P f̂ =

R∑
i=1

f̂(i)xi

We will use the following theorem.

Theorem 2. For a function f : {±1}R → R, and a function ĝ : [R] → R, ∥f∥2 ≥ ∥FP f∥2 and∥∥FT
P ĝ
∥∥
2
= ∥ĝ∥2. In addition, FT

P FP f = f if and only if f is linear.
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2.2 Quantum Information

We follow the notions from [1]. Let L(V ) be the set of linear operators on a vector space V . Let S(V )
be the set of all L2 unit vectors on V . The set of density matrices over V is defined as:

D(V ) = {ρ ∈ L(V ) : ρ ⪰ 0,Tr ρ = 1} = conv{xx∗ : x ∈ S(V )}

Where conv{·} is the convex hull. We define the set of separable states over k systems then as

Sepk(n) = conv{x1x∗1 ⊗ · · · ⊗ xkx
∗
k : x1 ∈ S(Cn), . . . , xk ∈ S(Cn)}

This corresponds to operators of the form ρ =
∑

k pk(ρ1k ⊗ ρ2k), where
∑

k pk = 1. If we want to use

real vectors instead, we’ll denote this as Sepk(Rn). Finally, we define the support function of M as

hK(M) = max
ρ∈K

|Tr(Mρ∗)|

One can interpret this as the maximum probability that a quantum measurement implemented by the
matrix M returns true for a state in K (which will typically be Sep).

2.3 Quantum Complexity

Quantum Merlin Arthur (QMA) is a quantum complexity class that is the set of all languages L
that can be solved with a quantum verifier V . QMAf(m)(k)c,s is the set of all languages L that have a
quantum verifier V such that for an x ∈ {0, 1}n:

• (Completeness) If x ∈ L, then there exists k proofs ψ1, . . . , ψk, all l = O(f(m)) qubits long, such
that running V on input (x⊗ ψ1 ⊗ · · · ⊗ ψk) accepts w.p. ≥ c.

• (Soundness) If x /∈ L, then ∀ ψ1, . . . , ψk, all at most l = O(f(m)) qubits long, running V on input
(x⊗ ψ1 ⊗ · · · ⊗ ψk) accepts w.p. ≤ s.

If c and s are not specified, they are assumed to be 2
3 ,

1
3 respectively.

Swap Test: The swap test is a method used to check how much two states differ. It takes two input
states of equal dimension, ρ and σ, as input. It returns either 0 or 1, which corresponds to whether the
two states ρ and σ are close or far in inner product respectively. The test returns 0 with probability
1
2 + 1

2 Tr(ρσ).

Product Test: The product test follows these steps, and detects if a state is entangled:

1. Create two copies of ψ ∈ Cd1 ⊗ · · · ⊗ Cdn . Let these two copies be ψ1, ψ2.

2. Perform the swap test on each of the n pairs of corresponding subsystems in ψ1, ψ2.

3. If all of the swap tests returned 0, corresponding to the states being the same, then accept. Else,
reject.

Soleimanifar and Wright show in [11] that we can upper bound the product test, which tells us that
the product test will detect the distance from our product state.

Theorem 3. For state ψ ∈ Cn ⊗ Cn with overlap ω = maxϕ∈Sep2(n),ϕ is pure |⟨ψ, ϕ⟩|2, the product test
has acceptance probability at most:

PTn(ω) ≤

{
ω2 − ω + 1 ω ≥ 1

2
1
3ω

2 + 2
3 ω < 1

2

2.4 Label Cover

We follow the complete graph formulation of [3]. An instance of Label Cover is given by a tuple L =
(G, [R], [L],Σ) that consists of a regular connected graph G = (V,E), a label set [R] and a collection of
maps Σ = {(πe,v, πe,w) : e = (v, w) ∈ E} where πe,v : [R] → [L] for all adjacent v ∈ V, e ∈ E. We say
for an edge e = (v, w) is satisfied by some labeling ℓ : V → [R] if πe,v(ℓ(v)) = πe,w(ℓ(w)). OPT(L) is the
maximum proportion of edges satisfied by any labeling. It is known ([3]) that the Gap version of this
problem is hard.

Theorem 4. For any ξ > 0 there exist positive integers R and L and a label cover instance L =
(G, [R], [L],Π) such that deciding between OPT(L) = 1 and OPT(L) ≤ ξ is NP-Hard.
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3 Main Results

3.1 QMA and the Role of 3-SAT

Because 3-SAT is in the complexity class of QMA(2), We are able to use the hardness of 3-SAT to prove
results about the hardness of QMAlog(2). More specifically, Harrow and Montanaro show in [6] that if
ℓ : N → N and is polynomially bounded, then 3-SAT ∈ QMAℓ(n)

√
npolylog(n)(2)2−ℓ(n),1.

As an aside, recall the definitions of QMA and the product test. Harrow and Montanaro also show
that QMAn(k) = QMAn(2) for 2 ≤ k ≤ poly(n) where n is the size of the proof with the following
protocol:

1. Create two copies of ψ ∈ Cd1 ⊗ · · · ⊗ Cdn . Let these two copies be ψ1, ψ2.

2. Do exactly one of the following, each with probability 1
2 :

(a) Run the product test on ψ1 and ψ2 and accept iff the product test accepts.

(b) Randomly pick either ψ1 or ψ2 and then run the quantum verifier V on this state, and accept
iff the verifier accepts.

Completeness for this protocol follows directly, as it either runs the product test, which will always return
the correct value, or we run the verifier on one of the two states, and the verifier is defined to accept
with a probability of at least c. Therefore completeness holds. To show soundness, we find an upper
bound on the probability that the product test will accept ψ1 ⊗ψ2, which eventually yields a soundness

bound of (1−s)2

100 . Thus, 3-SAT is instrumental in collapsing the quantum proof size hierarchy, and this
reduction relies on the product test result.

For our purposes, the Exponential Time Hypothesis states that 3-SAT /∈ DTIME(exp(ℓ(n))) for
any function ℓ : N → N for ℓ(n) = o(n). Here, n is the number of clauses on the 3-SAT. Assuming ETH
is true, then we can conclude the following:

1. QMAlog(d)(2) 1
2 ,1

⊈ DTIME(dlog
1−ε d) for arbitrary ϵ > 0

2. QMAlog(d)(2)2−
√

log(d)/polylog(log(d)),1
⊈ DTIME(poly(d))

These two results allow us to make stronger hardness claims for QMAlog(d)(2), and subsequently
hSep(d,d). Harrow and Montanaro showed that QMAm(2)c,s is the set of languages that can be de-
cided by checking whether hSep(2m,2m)(M) is ≥ c or if it is ≤ s where M is a measurement operator that
is able to be constructed in polynomial time on a quantum computer. This, in turn, allows us to make
stronger claims about the hardness of hSep(d,d), which we will discuss more in the next section.

3.2 Simplifying the Barak et. al. Proof

One key result of a paper by Barak et. al. paper [1] is that approximating the 2 → 4 norm for a specially
constructed matrix is sufficient to approximate hSep to any desired level of precision and thus resolve
3-SAT. We roughly reproduce the proof of Theorem 1 here with additional insights. The first main idea
of the proof is to establish equivalences between the 2 → 4 norm and several other norms and hSep for
matrices of a specific structure.
Let us first define the injective tensor norm || · ||inj for a vector T ∈ V1 ⊗ V2 ⊗ ...⊗ Vr where the Vi are
some vector spaces:

||T ||inj = max
x1∈S(V1)...xr∈S(Vr)

|⟨T, x1 ⊗ ...⊗ xr⟩|

Let us then define the symmetric subspace ∨rFn as the subspace of (Fn)⊗r that is invariant under any
permutation of its elements. For example, if x⊗y⊗z is in ∨3Fn, then x⊗y⊗z = y⊗z⊗x = z⊗y⊗x, or
any other such permutation. Then, for a matrix T ∈ ∨rFn, the injective tensor norm can be simplified:

||T ||inj = max
x∈S(F)

|⟨T, x⊗r⟩|
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This leads to a connection to the 2 → 4 norm of a matrix A. If we define a new tensor A4 based on the
rows a1, ..., an of A as A4 =

∑n
i=1 a

⊗4
i , then, by direct calculation:

||A||42→4 = max
x ̸=0

(
||Ax||4
||x||2

)4

= max
x∈S(Rn)

||Ax||44

= max
x∈S(Rn)

n∑
i=1

⟨ai, x⟩4 = max
x∈S(Rn)

⟨A4, x
⊗4⟩

= ||A4||inj

The last line follows from the fact that A4 ∈ ∨4Rn. Now we wish to draw a connection from the injective
tensor norm of A4 to hSep. The key property that we will exploit to make this connection is the following:
a tensor T ∈ (Rn)⊗k can always be written in the form

∑n
i=1 Ti ⊗ ei where Ti ∈ (Rn)⊗k−1. Then:

||T ||2inj = hSepk−1(Rn)

(
n∑

i=1

TiT
∗
i

)

This is proven in [1] through direct calculation. Instead of applying this directly to A4, we define
an intermediate matrix A3 =

∑n
i=1 ai ⊗ ai ⊗ ei. It is shown in [1], again through direct calculation,

that ||A4||inj = ||A3||2inj . Note that this matrix is defined in a way that can be used directly by the
aforementioned key property. Then:

||A3||2inj = hSep2(Rn)

(
n∑

i=1

(ai ⊗ ai)(a
∗
i ⊗ a∗i )

)
= hSep2(Rn)

(
n∑

i=1

aia
∗
i ⊗ aia

∗
i

)

Let us trace the line of equivalences we have made:

||A||42→4 = ||A4||inj = ||A3||2inj = hSep2(Rn)

(
n∑

i=1

aia
∗
i ⊗ aia

∗
i

)

Every step we have taken works backward as well. This has a critical consequence: hSep2(Rn) (
∑m

i=1 xix
∗
i ⊗ xix

∗
i )

for any set of vectors x ∈ Rn can be expressed as the || · ||2→4 norm of some matrix of dimension m by
n that can be efficiently constructed from x. This is the starting point of the rest of the proof: we will
try to find a reduction from 3-SAT to the problem of approximating hSep(

∑
xx∗ ⊗ xx∗) for some set of

vectors x.
A reduction from 3-SAT to the problem of approximating hSep(M) for a p.s.d. matrix 0 ⪯ M ⪯ I

is already known; this follows from the quantum complexity of 3-SAT. In particular, since it is in
QMAÕ(

√
n)(2), then there exists a verifier V which accepts two small-sized proofs, i.e. a product state

over two vectors in C2Õ(
√

n)

. Recall that this means that hSep(V ) represents the maximum probability a
proof can be accepted by V . Then, the remaining work is to show that we can transform M into some
M ′ of the desired form. More formally, if we are given that hSep(M) is either 1 or below (1 − δ) (a
so-called promise problem), we wish to find a related matrix M ′ such that hSep(M

′) is also either 1 or
below (1− δ).

The main idea of the transformation to M ′ is best understood through a quantum lens: it is based
on the product test studied by Harrow and Montanaro in [6]. We desire our resulting matrix to be in the
form of a quantum state tensored with itself. The product test would accept such a state with probability
1, and it would reject states not in that form with some constant probability. We can implement this as
a projection matrix, where things that are close to products are mostly preserved, and things far from
products are attenuated. The projector P onto the subspace symmetric under permutation of the 1st
and 3rd element and 2nd and 4th elements (denoted Pn(1, 3) and Pn(2, 4)) can be thought of as applying
the product test to a 2-subsystem system (a⊗ b)⊗̂(c⊗ d). The notation ⊗̂ denotes the cut across which
the product test is performed. Formally, the projector matrix is:

P =
I + Pn(1, 3)

2
· I + Pn(2, 4)

2
= Ea,b(aa

∗ ⊗ bb∗⊗̂aa∗ ⊗ bb∗)

The second equality comes from an application of Isserlis’/Wick’s theorem. The expectation is over

complex gaussian distributed vectors a and b with Ea∥a∥22 = Eb∥b∥22 = n√
2
. This form is easier to work
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with, so we will use the expectation formulation of P . In this form, we see that we are close to the form
that we desired for our matrix. We want to use this projector to relate M to some M1. We will do this
as follows. Define M1 as:

M1 = (
√
M⊗̂

√
M)P (

√
M⊗̂

√
M)

Here
√
M denotes the unique square root of positive matrix M (it is a POVM):

√
M = U

√
ΛUT where

M = UΛUT is the spectral decomposition of M . Plugging in the expectation form for P :

M1 = (
√
M⊗̂

√
M)Ea,b(aa

∗ ⊗ bb∗⊗̂aa∗ ⊗ bb∗)(
√
M⊗̂

√
M)

= Ea,b((
√
Maa∗ ⊗ bb∗

√
M)⊗̂(

√
Maa∗ ⊗ bb∗

√
M))

= Ea,b(((
√
Ma⊗ b)(a∗ ⊗ b∗

√
M))⊗̂((

√
Ma⊗ b)(a∗ ⊗ b∗

√
M)))

Let us define va,b =
√
M(a⊗ b). Then, we can see that,

M1 = Ea,b(va,bv
∗
a,b⊗̂va,bv∗a,b)

Recall that we want some matrix that can be written in the form
∑
xx∗⊗̂xx∗. Since the expectation is

a weighted sum of elements, this matrix M1 is in the desired form. However, if we were to reconstruct
a matrix A such that ||A||2→4 = hSep(M1), this matrix A would have infinite dimension because the
expectation is a sum over an infinite amount of tensors. This is insufficient for any hardness claims so we
wish to find some finite sized equivalent matrix. For this purpose, we can apply Caratheodory’s Theorem
to M1:

M1 = Ea,b(va,bv
∗
a,b⊗̂va,bv∗a,b) =

n2∑
i=1

ziz
∗
i ⊗̂ziz∗i

Caratheodory’s theorem states that for any point inside the convex hull of some set can be represented as
the convex combination of a small subset of the points that define that convex hull. The size of this subset
is defined by the dimension of the space containing that convex hull. It is clear that Ea,b(va,bv

∗
a,b⊗̂va,bv∗a,b)

is a point inside the convex hull of points of the form va,bv
∗
a,b⊗̂va,bv∗a,b. Then, applying the theorem, we

get the finite summation representation of M1 =
∑n2

i=1 ziz
∗
i ⊗̂ziz∗i as above. There are n2 vectors needed

because the dimension of va,b is n2, as each of a and b are of dimension n. Note that we could have just
found a gadget summation that captured this instead of resorting to Wick’s theorem. However, finding
such a gadget is tricky, as the number of terms explodes quite substantially even for small n.

We have constructed a matrix M1 related to M that is in the desired form to connect to the 2 → 4
norm, but does this matrix M1 serve as a good approximation of M? We claim that it does. Formally:

hSep2(n2)(M1)

{
= 1 hSep2(n)(M) = 1 (Case Y)

≤ 1− δ/2 hSep2(n)(M) ≤ 1− δ (Case N)

A proof that includes mechanical details of this is provided at the end of section 9.2 of [1]. We will
discuss the intuition of the proof instead.

In Case Y, there must exist some separable state x ⊗ y with x, y of dimension n and magnitude 1
that satisfy Tr(M(xx∗ ⊗ yy∗)) = 1. Then, ⟨x⊗ y,Mx⊗ y⟩ = 1. This means that x⊗ y is an eigenvector
of M with eigenvalue 1. Then, we can define z = (x⊗ y)⊗̂(x⊗ y) such that Tr(M1(zz

∗)) = 1. This can
be broken up into z∗(

√
M⊗̂

√
M)P (

√
M⊗̂

√
M)z. z is an eigenvector of (

√
M⊗̂

√
M) with eigenvalue 1

because x ⊗ y was an eigenvector of M and
√
M with eigenvalue 1. Similarly, z is an eigenvector of P

with eigenvalue 1 by construction. Then, Tr(M1zz
∗) = z∗z = 1.

The idea of the proof for Case N is similar: either (
√
M⊗̂

√
M) or P will shrink any vector z = x⊗ y

where x, y are of dimension n2 and norm 1. If x and y are tensor products of the form a⊗ b where a, b
are of dimension n, then (

√
M⊗̂

√
M) must shrink x and y since hSep2(n)(M) ≤ 1 − δ. Otherwise, if x

and y are not shrunk significantly by (
√
M⊗̂

√
M), then they must be shrunk by the projection matrix

P . This last argument is analogous to the fact that the product test has a small probability of success
for non product states.

Thus, we have a matrix M1 of the desired form that achieves about the same separation between
cases Y and N asM does. However, we would like a matrix that achieves the same or stronger separation
between cases. Therefore, we want to achieve some completeness-soundness gap amplification. This is
achieved by constructing a matrix M2 from M1 that amplifies the gap while maintaining the desired
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form. Recall that M1 = Ea,b(va,bv
∗
a,b⊗̂va,bv∗a,b) =

∑n2

i=1 ziz
∗
i ⊗̂ziz∗i . We will define M2 as tensoring M1

with itself k times. Specifically, this tensoring is not across the product cut.

M2 =M⊗k
1 = Ea1...ak,b1...bk((va1,b1v

∗
a1,b1 ⊗ ...⊗ vak,bkv

∗
ak,bk

)⊗̂(va1,b1v
∗
a1,b1 ⊗ ...⊗ vak,bkv

∗
ak,bk

))

=
∑

i1,i2,...,ik∈[n2]

(zi1z
∗
i1 ⊗ ...⊗ zikz

∗
ik
)⊗̂(zikz

∗
ik
⊗ ...⊗ zi1z

∗
i1)

We now claim that hSep2(n2k)(M2) = (hSep2(n2)(M1))
k by Lemma 10 of [6], but once again this fact can

be seen in a quantum information way: if the probability of accepting the test M1 is at most p, then
the probability of accepting k parallel copies of the test M1 is at most pk. Thus, we can amplify the
soundness-completeness gap however much we want at the cost of growing the resulting matrix.

This concludes the proof that 3-SAT reduces to approximating ∥A∥2→4 for some matrix A. Recall
that n is the number of states in the corresponding proof provided to the QMA protocol for 3-SAT.

The proofs provided are Õ(
√
n′) qubits long, so n = exp

(
Õ(

√
n′)
)
, where n′ denotes the number of

variables in the 3-SAT instance ϕ that we are reducing from. The conclusion, then, is that determining
whether there exists a satisfying assignment of variables for a 3-SAT instance ϕ reduces to approximating

∥A∥2→4 for a related A where A has sub-exponential dimensions exp
(
Õ(

√
n′)
)
. This implies, assuming

the Exponential Time Hypothesis, that approximating ∥A∥2→4 is NP-Hard. This presentation of the
proof excludes some details for the sake of clarity, but we include all of the main ideas necessary to
understand the logic of the proof. One such detail is that the norm of the matrix A is defined to
be achieved with real vectors, but quantum proofs can be complex vectors, so an additional step of
converting complex vectors to real vectors is needed (this is done by multiplication by a constant gadget
matrix).

3.3 Attempts at Showing Full NP-Hardness

To show full NP-hardness, we move away from the language of Quantum Information and instead present
a reduction from a classically hard problem to approximate, the problem of Gap Label Cover. We attempt
to follow the proof of [3], who are able to prove hardness for approximating 2 → r norms for r < 2,
though we were ultimately unsuccessful along this path.

At a high-level, what the NP-Hardness proof in [3] does is replace every vertex label of the label
cover problem with a Boolean hypercube function. A covering (proof) of perfect completeness can be
represented as hypercube functions that are all dictator functions fv(x) = xℓ(v). A projection matrix
is used to verify the consistency of the label cover constraints; e.g. whether they (approximately) fit
the constraints. A codeword test, i.e. a local test that ensures that each function is actually a dictator
function, exists implicitly in the construction of the matrix and causes unsatisfactory functions f to have
small norm when transformed, resulting in a small 2 → r norm if no good label cover can be found.

More specifically, for a particular label covering problem L = (G, [R], [L],Σ) where G = (V,E),
the square matrix A = F⊤

P P̂FP of size |V |2R is defined, where FP is the partial Fourier transform

defined previously and P̂ is an orthogonal projection onto the subspace containing all valid dictatorship
encodings of the labels for a valid label cover instance (but it has other vectors, too). Effectively, this
projection checks for label cover consistency in the Fourier domain, shrinking the norm for vectors that
don’t correspond to a correct label cover solution.

For instances that have a satisfying assignment of labels, there is a corresponding vector f which has
fv be a dictator function for the corresponding label value of vertex v, for every vertex v. This results in
Af = f , so ∥A∥2→r ≥ 1. On the other hand, if there is no good solution to the label cover instance, then
the matrix A will have 2 → r norm bounded by a constant strictly less than 1 for fixed r via lemma A.2
of [3], which acts as a codeword test.

This method works for r < 2 due to the convexity of the norms. For a fixed value of the 2 norm (an
L2 ball), maximizing the r norm means distributing the mass equally amongst its components. Thus, we
cannot generalize directly as the opposite behavior occurs in the r > 2 domain, leading to the possibility
of “cheating” solutions that have concentrated mass and nearly all elements around 0 (and thus are not
valid dictators/labelings) but still have a high objective value.

We attempted to modify this approach by defining the 1, 4 mixed vector norm as follows: ∥g∥1,4 =

Ev[Ex[|gv(x)|4]1/4]. Consider the matrix C such that Cg = 1
|V |
∑

v∈V gv, and define B = CA. By

the triangle inequality, ∥B∥2→4 ≤ ∥A∥2→1,4. In fact, if we’re in the case where OPT (L) ≤ ξ(ε), then

∥A∥2→1,4 ≤ 3ε2R/4 + γ4 + ε by Theorem 5 in the Appendix. This will be our soundness. On the other
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hand, if the label cover is satisfiable there exists some f such that Af = f , so Bf = 1
|V |
∑

v∈V fv. With

a possible degradation of parameters (R becomes |V |R), we can state that the labels are distinct and
thus the dictators fv’s are linearly independent, so there exists at least one nonzero entry of Bf . Since
fv consists of ±1 for all v, ∥Bf∥4 ≥ 1

|V |2R .

Due to our inexperience, this approach ended up being problematic in multiple ways, however, and we
were not able to fix the flaws. To start off with, the γ4 > 1 term automatically disqualifies this method;
we had hoped that a stronger alternative to lemma A.2 of [3] could be applied, but there is the bigger
issue of parameters. The degradation of parameters to ensure our claim of linear independents creates
a possibly exponential dependence on |V | in R, when we had previously taken R to be fixed. Finally,
we were working with the belief that ε could be set arbitrarily small to create a gap between ∥B∥2→4

between the completeness and soundness cases. However, in this setting, R = poly(1/ε), meaning that
no such gap could be proven. All of these troubles led to this method being abandoned ultimately.
However, we think that considering other, more exotic norms is a relatively unexplored and promising
technique for this problem.

4 Discussion - Applications to Unique Games

The previous results only show an ETH-based hardness, but a full NP-hardness would be a large result
for the reasons we discuss below.

4.1 Unique Games Conjecture

Let’s reframe the Label Cover problem slightly differently, inspired by [8]. Instead of having a complete
graph G, imagine having a bipartite directed graph G′ = (V ∪W,E), and instead of a function for each
edge-vertex incidence, we have a projection for each edge πe : [R] → [L] and satisfying an edge (v, w)
means πe(ℓ(v)) = ℓ(w) (where ℓ(V ) ⊆ [R] and ℓ(W ) ⊆ [L]). For a sketch of why these two settings are
equivalent, consider making a vertex in V for each vertex in G and for each edge make a vertex in W .
Finally connect every vertex in V with its incident edges in G with the projections π(v,e) = πe,v. This
exactly doubles the number of edges, so this exactly reduces the covering by a constant factor; the graph
doesn’t get much bigger either. One can think of this as a probabilistic game–a challenger names an edge
to two provers and the provers must return labels for each of the vertices across the edge. The proof is
accepted if the projection condition for that edge is satisfied. In this sense, the problem is sometimes
called the 2-Prover-1-Round Game.

There is a slightly related problem; relax the graph to be any directed graph, not necessarily bipartite,
have only one label set, and use projections that are bijections. Concretely,

Definition 1. An instance of the Unique Game Problem is U(G(V,E), [n], {πe | e ∈ E}) The goal is to
assign to each vertex a label from the set [n]. The constraint on an edge e = (v, w) ∈ E is described by
a bijection πe : [n] → [n]. A labeling ℓ : V → [n] satisfies edge e = (v, w) if and only if πe(ℓ(v)) = ℓ(w).
Let OPT (U) denote the maximum fraction of constraints that can be satisfied by any labeling:

OPT (U) = max
ℓ

1

|E|
|{e ∈ E : ℓ satisfies e}|

This trivializes the completeness case; since the constraint functions are bijections, one can just
try every possibility for one of the vertices and fill in the rest in its connected component efficiently
(e.g. Breadth-first search). The Unique Games Conjecture (UGC) in [7] is then that gap version of
this problem is NP-hard. In particular, it says calling the optimal fraction of edges that can be satisfied
OPT , that it is NP-hard to distinguish the cases where OPT ≥ 1−ϵ and OPT ≤ δ for every δ, ϵ > 0 (the
problem size is a constant n = n(δ, ϵ)). We briefly mention that this problem has known sub-exponential
algorithms (unlike say, 3-SAT), the most famous of which are based on Semidefinite Programming (SDP)
and Rounding [2]. In fact, many these algorithms actually solve a more general class of problems, called
constraint-satisfaction problems (CSPs).

4.2 SDPs for Unique Games

To give a flavor of what these SDPs look like, consider the analysis first studied by Feige and Lovasz
in [5]. We first formulate an integer quadratic program. Let the variables xv,i ∈ {0, 1} represent the
labeling and be 1 if and only if ℓ(v) = i. Then the natural constraints are for all v ∈ V ,

∑n
i=1 x

2
v,i = 1,
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xv,ixv,j = 0 for i ̸= j (every vertex must have a unique label). In addition, xv,ixw,j ≥ 0 for all v, w ∈ V
and i, j ∈ [n] (that way we do not get x’s of different signs). The vector programming relaxation replaces
all these products with vector dot products. We can state it as:

maximize 1
|E|

∑
e=(v,w)

n∑
i=1

⟨xv,i,xw,πe(i)⟩

subject to

∀v ∈ V

n∑
i=1

∥xv,i∥2 = 1

∀v ∈ V, i, j ∈ [n], i ̸= j ⟨xv,i,xv,j⟩ = 0
∀v, w ∈ V, i, j ∈ [n] ⟨xv,i,xw,j⟩ ≥ 0

Raghevendra [9] proved that if the UGC is true, then no algorithm can approximate CSPs efficiently
to a better factor than this SDP and associated rounding scheme (which we do not describe here). In
particular applying the Laserre and Sherali-Adams Hierarchies cannot help.

4.3 Small-Set Expansion and Subexponential Algorithms

There is another problem called the Small-Set Expansion Problem, which is the following problem. For
a d-regular graph G = (V,E), recall the conductance of a cut S ⊂ V is

ΦG(S) =
|E(S, V \ S)|

d|S|

Then we define its expansion profile for δ ∈ [0, 1/2] as

ΦG(δ) = min
|S|≤δ|V |

ΦG(S)

We consider the gap problem, i.e. for constants ξ, δ > 0, deciding between ΦG(δ) ≥ 1 − ξ or ΦG(δ) ≤
ξ. Intuitively, we are deciding between the cases where all small sets have many edges leaving them
and where there exists a small set that has few edges leaving it. Spectral graph theory seems to fail
spectacularly for this problem, so many posit it is hard, but not too hard. In fact, Raghavendra and
Stuerer [10] showed a reduction from the Small-Set Expansion Problem to the Unique Games Problem.
So, it also inherits the subexponential runtime of Unique Games SDPs. The two also give rise to the
Small-Set Expansion Hypothesis (SSEH), which conjectures that the other direction is true, too, that
Unique Games reduces to Small-Set Expansion.

Further, in [1], Barak et. al. also show a subexponential algorithm for approximating ∥A∥2→4. It
is also an SDP algorithm called Tensor-SDP (Section 5 of [1]). It uses the Sum-of-Squares hierarchy to
construct a natural relaxation of the optimization problem, whose solution approaches the true optimum
(at level r of the hierarchy, the maximizing vector f is restricted to being a polynomial of degree at
most O(r), which takes runtime nO(r)). They are then able to use this algorithm to solve the gap Small-
Set Expansion problem. The connection is through a spectral lens. Let A be a graph G’s normalized
adjacency matrix and call {(λi, vi)} its eigenvalue eigenvector pairs. P≥λ(G) be the projector onto
span{vi : λi ≥ λ}; then the 2 → 4 norm corresponds to the expansion of the graph (Theorem 2.4 in [1]).

Barak et. al. also show that ∥A∥2→4 is Small-Set Expansion-Hard. Therefore, ∥A∥2→4 is harder than
Unique Games assuming SSEH, but it’s not that much harder, as it admits a subexponential algorithm.
In a sense, they are similarly complex problems. However, there are not even ETH-level Hardness results
known for Unique Games. Proving an NP-hardness result for Unique Games would resolve UGC, while
proving an NP-hardness result for ∥A∥2→4 would give strong evidence for UGC being true. Thus, any
progress in this direction has the capacity to be applicable to the study of Khot’s conjecture.
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A Proof of 2 → 1, 4 Bound

Theorem 5. For every ε > 0, there exists a ξ > 0 and a label cover instance L = (G, [L], [R],Σ) such
that if OPT(L) ≤ ξ, L is D-to-1, and L is J-smooth, then ∥A∥2→1,4 ≤ γ4 + ε+ 3ε2R/4.

Proof. We follow closely the proof of Theorem 3.3 from [3]. Let f ∈ RV×2R be an arbitrary L2 unit
vector. Call f̂ = FP f , ĝ = P̂f , and g = FT

P ĝ. By Parseval’s and the fact that P̂ is an orthogonal

projection, ∥ĝ∥2 ≤
∥∥∥f̂∥∥∥

2
≤ 1. Assume for the sake of contrapositive that

∥g∥1,4 > γ4 + ε+ 3ε2R/4

Lemma A.2 from [3] claims it works it only works for r < 2, but in reality works for all r with a
slight degradation in parameters. In particular, we can use it to obtain a δ = δ(ϵ) such that ∥gv∥4 >
(γ4 + ε)∥gv∥2 implies ∥ĝv∥4 > δ∥ĝv∥2. We separate the vertices into four mutually disjoint sets

V0 = {v ∈ V : ∥ĝv∥4 > δε and ∥ĝv∥2}
V1 = {v ∈ V : ∥ĝv∥4 ≤ δε and ∥ĝv∥ < ε}
V2 = {v ∈ V : ∥ĝv∥4 ≤ δε and ∥ĝv∥ ≥ ε}
V 3 = {v ∈ V : ∥ĝv∥2 > 1/ε}
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and attempt to bound them separately. In fact, we will show |V0| ≥ ε2|V |. By the arguments made by
Lemme 3.5 of [3] and Lemma 3.6 of [4] before them this means that there exists a labeling satisfying
more than poly(ε) edges; setting ξ to this quantity means we’re done.

Bounding sums yields: ∑
v∈V0

∥gv∥4 ≤
∑
v∈V0

2R/4∥gv∥2

= 2R/4
∑
v∈V0

1

ε

=
2R/4

ε
|V0|∑

v∈V1

∥gv∥4 ≤
∑
v∈V1

2R/4∥gv∥2

= 2R/4
∑
v∈V1

∥ĝv∥2

= 2R/4
∑
v∈V1

ε

≤ ε2R/4|V1|
≤ ε2R/4|V |∑

v∈V2

∥gv∥4 ≤ (γ4 + ε)
∑
v∈V2

∥gv∥2

≤ (γ4 + ε)

√√√√|V2|

(∑
v∈V2

∥gv∥22

)
≤ (γ4 + ε)

√
|V2||V |

≤ (γ4 + ε)|V |∑
v∈V3

∥gv∥4 ≤
∑
v∈V3

2R/4∥gv∥2

= 2R/4
∑
v∈V3

∥ĝv∥2

= 2R/4
∑
v∈V3

∥ĝv∥22
∥ĝv∥2

≤ 2R/4
∑
v∈V3

ε∥ĝv∥22

≤ ε2R/4|V |

Putting everything together gives us

|V0| ≥
ε

2R/4

∑
v∈V0

∥gv∥4

|V0| ≥
ε

2R/4
|V |

(
∥g∥1,4|V | −

∑
v∈V1

∥gv∥4 −
∑
v∈V2

∥gv∥4 −
∑
v∈V3

∥gv∥4

)
|V0| ≥

ε

2R/4
|V |
(
(γ4 + ε+ 3ε2R/4)− ε2R/4 − (γ4 + ε)− ε2R/4

)
|V0| ≥ ε2|V |
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