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Abstract

Synthesizing Complex-Valued Multicoil MRI data from Magnitude-only Images

by

Nikhil Deveshwar

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Michael Lustig, Chair

Despite the proliferation of deep learning techniques for accelerated MRI acquisition and

enhanced image reconstruction, construction of large and diverse MRI datasets continues to

pose a barrier for e↵ective clinical translation of these technologies. One major challenge is

in collecting the MRI raw data (required for image reconstruction) from clinical scanning,

as only magnitude images are typically saved and used for clinical assessment and diagnosis.

The image phase and multi-channel RF coil information are not retained when magnitude-

only images are saved in clinical imaging archives. Additionally, preprocessing used for data

in clinical imaging can lead to biased results. While several groups have begun concerted

e↵orts to collect large amounts of MRI raw data, current databases are limited in the diver-

sity of anatomy, pathology, annotations, and acquisition types they contain. To address this,

we present a method for synthesizing realistic MR data from magnitude-only data, allowing

for the use of diverse data from clinical imaging archives in advanced MRI reconstruction

development. Our method uses a conditional GAN based framework to generate synthetic

phase images from input magnitude images. We then apply ESPIRiT to derive RF coil sen-

sitivity maps from fully sampled real data to generate multi-coil data. The synthetic data

generation method was evaluated by comparing image reconstruction results from training

Variational Networks either with real data or synthetic data. We demonstrate that the Vari-

ational Network trained on synthetic MRI data from our method, consisting of GAN-derived

synthetic phase and multi-coil information, outperformed Variational Networks trained on

data with synthetic phase generated using current state of the art methods. Additionally,

we demonstrate that the variational networks trained with synthetic k-space data from our

method perform comparably to image reconstruction networks trained on undersampled real

k-space data.



1 Introduction

Deep learning-based MRI reconstruction methods show promise in faithfully reconstruct-

ing MR images from undersampled k-space measurements, but such methods are usually

hampered by a lack of paired and diverse training data posing a barrier for e↵ective clini-

cal translation of these technologies. Current deep learning MRI reconstruction techniques

use datasets [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] containing paired images and raw k-

space MRI data and have enabled major advances in MRI reconstruction methods. However

they are limited in several ways. Magnitude images contained in these datasets are some-

times preprocessed which can lead to biased results for MRI reconstruction [14] and are

hard to standardize. Furthermore, these publicly available datasets are typically limited

in anatomy, acquisition parameters and pathology information. Recent studies have shown

that such limitations could sometimes result in hallucinations of structures or artifacts dur-

ing deep learning based MRI reconstruction[15, 16] limiting the generalization potential of

these methods and their clinical use.

There could be significant advantages to leveraging the diversity of existing clinical MRI

databases as they contain a range of patient populations, anatomy, pathology, image con-

trasts, acquisition parameters, and data from di↵erent vendors. This would be particularly

useful for multi-task networks, e.g.,[17], that perform both image reconstruction and a down-

stream task such as segmentation or classification. Training on more diverse and representa-

tive datasets can also greatly contribute to improving deep learning reconstruction models,

especially for rare anatomies and pathologies; this could potentially allow greater clinical

adoption.

However, we cannot simply use clinical datasets for MRI reconstruction algorithm develop-

ment because they typically only contain magnitude images while image phase information

is discarded. Furthermore, MRI data is acquired from multi-channel RF coils, but clinical

images show a coil-combined image and thus the multi-channel information is lost. MRI

phase data is important because it contains information related to contrast from chemi-

cal shift, magnetic susceptibility di↵erences, inhomogeneities in the main magnetic field,

RF coils used, fat/water separation, tissue interfaces, blood flow, and temperature change

[18, 19, 20, 21, 22, 23]. Additionally, recent studies have shown that using complex-valued

neural networks which operate on data that includes phase information produce higher-

quality reconstructed images. [24, 25]

Thus, the ability to recover or generate image phase from already completed scans could
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increase the utility and applicability of deep learning MRI reconstruction methods. While

a variety of techniques aim to synthesize di↵erent MRI contrasts [26, 27, 28, 29, 30, 31] or

parameter maps [32, 33], relatively few techniques exist to synthesize MRI image phase and

complex-valued multi-coil data. Recent studies have included methods to generate synthetic

image phase by emulating very specific physical models [34], generating sinusoidal phase [35],

or have focused on fine tuning training datasets consisting mostly of natural images [36]. To

the best of our knowledge, no methods have attempted to broadly synthesize realistic MRI

phase maps.

To address this, we present a method for synthesizing realistic MRI data, including image

phase and multi-channel information, from magnitude-only images that, for example, are

found on clinical imaging archives. Our method leverages recent advances in deep genera-

tive modeling [37, 38] to generate synthetic MRI phase images from input MRI magnitude

images. Corresponding coil sensitivity maps are derived and then used to generate synthetic

multi-channel data. The resulting synthetic multi-coil MRI data, including synthesized im-

age phase, was then evaluated for its ability to be used in image reconstruction tasks by

training a variational network [39] and comparing to a network trained on real multi-coil

MRI data. Our results show that the proposed method (i) generates realistic looking MR

phase maps, (ii) outperforms current methods used to generate synthetic phase data for

training reconstruction models and (iii) image reconstruction networks trained on synthetic

multi-coil data perform comparably to the same networks trained on real data. Our findings

suggest that this framework has the potential to address the limitations that exist in current

MRI datasets used for reconstruction tasks where access to raw k-space data is required.

2 Methods

We first start by defining k-space, magnitude, and phase in mathematical terms. We then

describe generating synthetic phase images from input magnitude-only images using a condi-

tional generative adversarial network (GAN) framework. Finally we describe the evaluation

of the synthetic data quality.

2.1 Preliminaries

The signal acquired from a 2D slice (assuming we can neglect T2 decay) in the spatial

frequency domain, or k-space, can be expressed as:
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M(kx, ky) =

Z

X

Z

Y

m(x, y)e�j2⇡(kxx+kyy)dxdy (1)

Where m(x, y) is the signal generated at the position (x, y). This is a complex quantity

which is equivalent to

m(x, y) = mx(x, y) + jmy(x, y) (2)

where mx(x, y) is the real component of the signal and my(x, y) is the imaginary component

of the signal. The goal of MRI reconstruction is to recover m(x, y) from M(kx, ky).

The MRI signal, m(x, y), is generated by the rotation of the transverse components of the net

magnetization. The signal is complex-valued because it is a measurement of both the x and

y components of the net magnetization. The majority of MRI scans are interpreted based on

the magnitude of the signal, |m(x, y)|, which corresponds to the amplitude of the transverse

magnetization. There is also information encoded in the phase (also known as angle) of the

signal, \m(x, y), which corresponds to the rotation angle of the transverse magnetization.

This includes chemical shift, magnetic susceptibility di↵erences, inhomogeneities in the main

magnetic field, RF coil profiles, fat/water separation, tissue interfaces, and blood flow.

2.2 Generative Modeling

2.2.1 Neural Network Architecture

The generator is a 16-layer U-Net [40] with skip connections and the discriminator is a 70x70

PatchGAN [38]. In this setup, the discriminator, in a convolutional manner, decides if a patch

is real or fake. We use a PatchGAN discriminator to restrict the networks attention to the

structure of local image patches. This encourages the discriminator to penalize the structure

at the scale of patches rather than the whole image (as in a typical binary classifier) in order

to e↵ectively capture high-frequencies in the synthetic image. In a sense, PatchGAN acts as

a classifier itself. The main di↵erence is that the output of the PatchGAN is an NxN array

where each element signifies whether the corresponding patch in the image is real or fake.

We chose a patch size of 70x70 based on results of previous studies [38], which empirically

found that this patch size gives the best tradeo↵ between image sharpness and alleviating

artifacts in the generated image. Each generative model was trained with a batch size of 1.

We used minibatch stochastic gradient descent (SGD) with the Adam optimizer [41] using
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a learning rate of 2e-4 and momentum parameters �1 = 0.5 and �2 = 0.999. Additional

implementation details can be found in [38].

2.2.2 Synthetic Phase Generation

The conditional GAN uses a hybrid objective consisting of two loss functions: a conditional

adversarial loss function and a regularized L1 distance loss function. In essence, we are

training the model to generate high-frequency structures in the synthetic image, and we use

the L1 loss to control how much low-frequency structures are present in the image.

G⇤ = argmin
G

max
D

Ex,y[logD(x, y)] + Ex,z[log(1�D(x,G(x, z))]| {z }
LcGAN

+�Ex,y,z[ky �G(x, z)k1]| {z }
LL1

(3)

where x is the input magnitude image, y is the generated synthetic phase image that corre-

sponds to the x, and z is the latent vector. In this objective, G tries to minimize the objective

while D tries to maximize it. This setup is suitable for our aim because the discriminator

is conditioned on the input image x, and we have access to the raw ground-truth data, and

thus also to the ground-truth phase data. The network is optimized by alternating between

gradient descent steps conducted for optimizing the discriminator and the generator, simi-

larly to the approach as described in the original GAN paper [37].

Specifically, we train a U-Net to predict the phase component from input magnitude-only

images. During training, this synthetic phase component is compared to the ground truth

phase using a hybrid objective (3). This mixed loss function balances realistic looking phase

images via the adversarial loss and encourages less blurring via the L1-norm. Each GAN

model was trained for 50 epochs with qualitative analysis of realistic synthetic phase maps

being the main stopping criteria. During inference, the trained U-Net is used to gener-

ate synthetic phase from previously-unseen magnitude images, resulting in the creation of

realistic synthetic phase MRI data.

2.2.3 Multi-coil Data Generation

To generate synthetic multi-coil k-space data we first analytically converted the input mag-

nitude and generated synthetic phase images to real and imaginary components. Sensitivity

maps are then generated using the ESPIRiT [42] algorithm on corresponding ground-truth

raw data from the training dataset. The resulting sensitivity maps are multiplied with the

real and imaginary components to generate multi-coil synthetic k-space data. This resulting

complex-valued data can be used in place of ground truth k-space data to train deep learning
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based MRI reconstruction networks.

2.3 Dataset

Multi-coil k-space data obtained from the fastMRI [1] dataset was for training the conditional

GAN. The dataset consists of raw complex-valued k-space with both magnitude and phase

information of brain scans at 1.5 and 3T. The images were acquired with a fast spin echo

(FSE) pulse sequence with an echo train length (ETL) of 4. For training we divided the

dataset into two datasets with 16-coil and 20-coil acquisitions. Each dataset consisted of

T1-weighted, T2-weighted, and FLAIR contrast images.

2.4 Experiments

2.4.1 Generative

We trained two generative models: A 16-coil model and a 20-coil model trained on 22691

and 18519 magnitude-only brain images respectively. During training, the U-net generator

generates a synthetic phase image and the discriminator compares the generated image to

the corresponding ground truth phase image (obtained from fastMRI) in a convolutional

patch-wise manner. At inference time, magnitude-only images from the fastMRI test set

are run through a forward pass of the trained generative models. In our experiments, this

enabled generating 6541 synthetic phase images for the 16-coil model and 5845 synthetic

phase images for the 20-coil model.

2.4.2 Evaluation: Physics-based Image Reconstruction

To evaluate the utility of complex-valued multi-coil k-space data synthesized from the gen-

erative model, we compared the quality of reconstructed MR images from reconstruction

networks trained on ground-truth and synthetic data. Multiple equispaced undersampling

masks of acceleration factors R = {4, 6, 8, 10} with a center fraction of 0.04 were applied to

k-space data to be used for training. Two Variational Networks [39] were then trained for

10 epochs with the 16-coil and 20-coil datasets each. Each Variational Network was trained

separately on synthetic and ground truth multi-coil k-space with a 80/10/10 training/vali-

dation/test split for a total of four trained reconstruction networks per acceleration factor.

Each trained reconstruction model (ground-truth and synthetically trained) was then run

on the same ground-truth test set. The quality of reconstructed magnitude images was eval-

uated using standard quantitative image reconstruction metrics: PSNR, NMSE, SSIM [43].

We decided to use the variational network for evaluation because of its reliance on under-
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sampled multi-coil k-space and coil sensitivity maps as inputs into the unrolled network.

All models (generative and reconstruction) were implemented in PyTorch and trained on

NVIDIA (Santa Clara, CA) Titan RTX and Quadro 8000 RTX GPUs.

Figure 1: The proposed synthetic raw data generation and image reconstruction pipeline.
The generative model takes magnitude images as an input seed and produces plausible
synthetic phase images as output, which are trained to match ground truth phase images
from the dataset. Synthetic complex-valued data is obtained by combining the input (ground
truth) magnitude image and synthetic phase image to yield real and imaginary components.
Estimated sensitivity maps calculated with ESPIRiT from the training dataset are then
applied to synthetic complex-valued multicoil data to compute multicoil k-space encoded
with synthetic phase information. The synthetic raw data was evaluated by training a
variational network using undersampled k-space data.

3 Results

Figure 2 shows sample comparisons between synthetic and ground truth phase images. The

synthetic phase images show several expected features, including low spatial-frequency com-

ponents, a noisy background, and tissue phase contrast, for example between the ventricles

and adjacent brain tissue. We do not expect the synthetic phase to exactly match the ground

truth phase because the MRI phase is not deterministic and can vary based on B0 homo-

geneity and RF coil induced phase shifts. In some cases blocking artifacts have appeared,

possibly due to the PatchGAN discriminator.
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Figure 2: Representative ground truth magnitude, ground truth phase, and synthetic phase
images generated from the conditional GAN. Synthetic phase images show expected features,
including appropriate noise patterns, low spatial-frequency components and tissue contrast
between the ventricles and nearby brain tissue, but exhibit some blocking artifacts possibly
from the patchGAN discriminator.

Figures 3 and 4 shows representative images reconstructed with variational network models

trained with undersampled ground truth and synthetic k-space data, correspondingly. For

R = 4, 8 acceleration factors, the reconstructed images trained on synthetic data contain

slightly more error structures compared to the images trained on ground-truth data. How-

ever, visually there are no obvious artifacts in the reconstructed images in either method.

For the R = 8 acceleration factor, we can see more errors in high resolution features, possi-

bly due to the lack of high frequency details in the synthetic phase images used to train the

reconstruction network.

Figure 5 and the tables in the Supplementary Material compare the e↵ect of di↵erent types

of phase on variational network reconstruction performance at various acceleration factors.

The reconstruction networks were trained on ground truth data, synthetic data (from our

proposed method), sinusoidal phase data, data with random phase and data with zero phase.

From the plots, variational networks trained on undersampled synthetic data perform com-

parably to the same networks trained on ground truth undersampled k-space at R = {4, 6}

as measured by PSNR, NMSE and SSIM. At R = {8, 10} acceleration factors, the perfor-

mance of networks trained on synthetic data dips, especially the SSIM curve, but remains

relatively comparable to that of the networks trained on ground truth data. Additionally,

the networks trained on synthetic data outperform newtworks trained on sinusoidal phase
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Figure 3: Sample image comparisons at 4x and 8x acceleration factors for the 20 coil dataset.
The columns compare the zero-filled image, reconstructed image, and error maps generated
with 2 variational networks trained on ground truth and synthetic k-space.

Figure 4: Sample image comparisons at 4x and 8x acceleration factors for the 16 coil dataset.
The columns compare the zero-filled image, reconstructed image, and error maps generated
with 2 variational networks trained on ground truth and synthetic k-space.
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data in all quantitative metrics for the 20-coil dataset. For the 16-coil dataset, similar results

were observed for the PSNR and NMSE measurements, while the performance in the SSIM

metric was comparable to the sinusoidal phase trained network.

Figure 5: Performance of ground truth-trained and synthetically trained Variational Network
reconstruction models at di↵erent acceleration factors for 16-coil and 20-coil datasets. At
up to 10x acceleration factors, synthetically trained models show comparable performance
to ground-truth trained models. This data is also shown in tables in the Supplementary
Material.

4 Discussion

There is a massive amount of magnitude-only images as this is what is typically stored in

clinical imaging databases (e.g. PACS), which do not usually contain phase and multi-coil

information or raw k-space data. This work proposes a framework to generate synthetic

multi-coil MRI data from magnitude-only MR images, and evaluates its utility by training

a deep learning-based image reconstruction network using the synthesized datasets. The

demonstrated framework aims to allow for use of these large imaging databases for develop-

ing data-driven methods that require MRI raw data. We chose to evaluate using a variational

network image reconstruction model as a proof of concept to demonstrate the e↵ectiveness

of the method. We believe a more significant opportunity for such a synthetic data pipeline

is to train multi-task networks, e.g. networks that perform both image reconstruction and

a downstream task such as image segmentation or classification [17]. In these methods, the
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synthetic data pipeline can take advantage of existing clinical images and annotations for the

downstream tasks, enabling creation of customized datasets for multi-task machine learning

techniques.

Other approaches that generate synthetic MRI training data typically build o↵ natural image

datasets. For example in [34], the authors simulated signal voids in MR images by randomly

applying masks to natural images to generate synthetic data. Additionally, in [35, 36], the

authors used a natural image dataset and a magnitude-only MRI dataset, respectively, and

modulated the training images with a sinusoidal phase at random frequency. They demon-

strated that training with this synthetic data showed substantially higher levels of aliasing

artifacts compared to using real MRI data. The proposed the proposed generative model-

ing approach shows more realistic image phase maps that include both the low-frequency

features which these prior methods aimed to incorporate as well as contrast based on the

underlying tissues and anatomy (Fig. 2). Our quantitative results 5 suggest that encoding

this tissue phase information (not just low-frequency or sinusoidal phase information) into

training data for deep learning models adds more useful information for the network to learn

higher quality image reconstructions.

The authors of [36] observe that deviations in SNR, acquisition type, and aliasing patterns

between training and test time can result in widely varying image reconstruction quality.

With this in mind, future experiments can extend our work to exploit the synthetic data

pipeline and large clinical imaging databases to generate custom heterogeneous datasets to

train more robust and generalizable image reconstruction models.

In addition to generating synthetic phase maps, a major aim of this work was to generate

multi-coil data to increase the clinical relevancy of the technique. We take advantage of

the well-established coil sensitivity map algorithm ESPIRiT [42] to estimate coil sensitivities

instead of trying to learn them directly. This approach requires running ESPIRiT on prior

ground truth data from fastMRI and thus a paired dataset with magnitude and ground truth

phase information is still required for this part of the method for image generation.

In previous experiments, we tried to generate multi-coil data by adding a 2 channel real and

imaginary component to the output of the conditional GAN. This would result in generated

synthetic real and imaginary images for N coils from a single magnitude-only image input.

While this approach produced reasonable phase maps and comparable reconstructions for

generative models trained on data acquired with a small number of coils (e.g. N = 4),
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the phase maps resulting from generative models trained on N = {16, 20} number of coils

su↵ered from large amounts of structure hallucination and blocking artifacts. We hypothe-

size that during training, gradients across multiple individual coil images are ill-behaved and

thus GAN models trying to generate a large number of coil images have di�culty converging.

The advantage of our proposed technique is that it is coil-agnostic; it can be applied to MR

images acquired with any number of coils with the generative model learning a one-to-one

mapping from magnitude to phase. This results in more stable training and gradient flow,

especially for GANs. It is important to note that we do not expect the synthetic phase

maps to be necessarily consistent with the ground truth phase maps. This is because MR

phase is not deterministic, and can vary due to tissue composition, scan parameters such as

TE, magnetic field homogeneity, and the RF coil configuration and loading. This inconsis-

tency would be problematic for doing any quantification on the synthetic maps themselves.

However, consistency with ground truth phase for individual datasets is not required when

the synthetic data is used for training, but rather the synthetic phase should be consistent

with population-level phase patterns. Nevertheless, enforcing a physics-based consistency

between the input magnitude image and output phase image by adding a regularized term

in k-space to the training objective could be a useful follow-up experiment to this work. Such

a change could result in even more representative phase maps, however GAN stability during

training with this new objective remains an open question and would have to be answered

empirically. In lieu of this, a score-based generative model could be used for this technique

due to their improved training stability compared to GANs [44].

A current limitation of this study is that only fast spin-echo (FSE) images from the fastMRI

database were used to train the generative model. The exclusion of gradient-recalled echo

(GRE) acquisition data in the training dataset makes the trained generative models and

downstream reconstruction models susceptible to distribution shift errors. To address this

limitation, future work could include fine-tuning the generative models trained on FSE data

with GRE data. Additionally, quantifying the uncertainty in distributions not seen at infer-

ence time as proposed in [45] could give insight into how the generative model is synthesizing

phase images on a pixel-wise basis.

Finally, evaluation of generative models, especially for synthetic medical imaging data is

still an open research direction [46]. While this study used an unrolled image reconstruc-

tion network to evaluate the utility of the synthesized complex-valued multi-coil data, other

methods, e.g. the Inception Score [47] or FID score [48] could be used to characterize the
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distribution of that data. Incorporating a customized implementation of these distance met-

rics based on medical imaging datasets[49] could be more fruitful in characterizing synthetic

phase. This information could also possibly be used to direct generative model training to

datasets customized for specific downstream tasks.

5 Conclusion

This work presents a new method for synthesizing realistic, multi-coil MRI data from

magnitude-only images that uses a GAN to generate image phase and ESPIRiT-generated

coil sensitivity maps. The synthetic data were evaluated by comparing the reconstruction

performance of Variational Networks trained on real k-space and synthetic k-space data.

Our results suggest that the proposed method for generating synthetic data i) outperforms

current state of the art methods for creating synthetic image phase and ii) is adequate for

training deep learning MRI reconstruction models at typical acceleration factors (up to 10x),

shown by the Variational Networks results. Taken together, our results suggest that image-

to-image translation generative adversarial networks are able to generate MRI phase images

that are both realistic looking and can also provide good performance when used for training

an image reconstruction network. This allows for the possibility of using large, diverse clin-

ical imaging databases that contain magnitude-only images when developing deep learning

MRI reconstruction methods.
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6 Supplementary Material

Table 1: PSNR values for VarNet trained on di↵erent types of phase at various acceleration
factors for the 16-coil dataset. Bold values indicate the best performing type of phase (not
including ground truth)

Phase type R=4 R=6 R=8 R=10
Ground truth 32.915 29.995 28.4529 27.692
Synthetic Phase (ours) 31.196 28.602 28.039 26.378
Sinusoidal Phase 23.652 23.229 22.99 22.590
Random Phase 23.938 22.255 22.028 22.581
Zero Phase 23.911 23.589 22.976 21.518

Table 2: PSNR values for VarNet trained on di↵erent types of phase at various acceleration
factors for the 20-coil dataset. Bold values indicate the best performing type of phase (not
including ground truth)

Phase Type R=4 R=6 R=8 R=10
Ground Truth 32.605 30.0454 28.367 27.747
Synthetic Phase(ours) 30.484 29.712 27.054 26.314
Sinusoidal Phase 23.068 22.576 22.255 22.020
Random Phase 22.994 22.771 22.434 22.066
Zero Phase 2.947 22.74 22.388 21.826

Table 3: NMSE values for VarNet trained on di↵erent types of phase at various acceleration
factors for the 16-coil dataset. Bold values indicate the best performing type of phase (not
including ground truth)

Phase Type R=4 R=6 R=8 R=10
Ground Truth 0.0133 0.0213 0.029295 0.03615
Synthetic Phase (ours) 0.0195 0.0309 0.0336 0.043
Sinusoidal Phase 0.096 0.099 0.108 0.115
Random Phase 0.093 0.102 0.103 0.116
Zero Phase 0.092 0.101 0.107 0.152
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Table 4: NMSE values for VarNet trained on di↵erent types of phase at various acceleration
factors for the 20-coil dataset. Bold values indicate the best performing type of phase (not
including ground truth)

Phase Type R=4 R=6 R=8 R=10
Ground Truth 0.0176 0.0244 0.0354 0.0383
Synthetic Phase (ours) 0.0265 0.0337 0.0520 0.0613
Sinusoidal Phase 0.249 0.253 0.263 0.304
Random Phase 0.247 0.2409 0.251 0.284
Zero Phase 0.266 0.230 0.243 0.301

Table 5: SSIM values for VarNet trained on di↵erent types of phase at various acceleration
factors for the 16-coil dataset. Bold values indicate the best performing type of phase (not
including ground truth)

Phase Type R=4 R=6 R=8 R=10
Ground Truth 0.8425 0.816 0.773 0.767
Synthetic Phase (ours) 0.7468 0.745 0.6889 0.6511
Sinusoidal Phase 0.768 0.736 0.721 0.694
Random Phase 0.668 0.639 0.618 0.598
Zero Phase 0.668 0.645 0.617 0.546

Table 6: SSIM values for VarNet trained on di↵erent types of phase at various acceleration
factors for the 20-coil dataset. Bold values indicate the best performing type of phase (not
including ground truth)

Phase Type R=4 R=6 R=8 R=10
Ground Truth 0.8189 0.790 0.731 0.722
Synthetic Phase (ours) 0.819 0.784 0.681 0.671
Sinusoidal Phase 0.701 0.687 0.674 0.655
Random Phase 0.708 0.687 0.669 0.652
Zero Phase 0.709 0.691 0.672 0.644
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