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Abstract

Offline Data-Driven Optimization:
Benchmarks, Algorithms and Applications

By

Xinyang Geng

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Sergey Levine, Chair

Black-box model-based optimization problems, where the goal is to find a design input
that maximizes an unknown objective function, are ubiquitous in a wide range of
domains, such as the design of proteins, DNA sequences, aircraft, and robots. Solving
model-based optimization problems typically requires actively querying the unknown
objective function on design proposals, which means physically building the candidate
molecule, aircraft, or robot, testing it to obtain the result. This process can be expensive
and time consuming, and one might instead prefer to optimize for the best design using
only the data one already has. This setting, called offline model-based optimization
(MBO), poses substantial and different algorithmic challenges than more commonly
studied online techniques. In this thesis, I will cover how to build benchmarks and
algorithms to tackle these challenges. In particular, I will first define the offline MBO
problem formally, and identify the common challenging properties associated with
real-world offline MBO problems. I will then present Design-Bench, a benchmark for
evaluating offline MBO methods with a suite of diverse and realistic tasks derived
from real-world optimization problems. With the benchmark set up, I will describe
conservative objective models (COMs), a surprisingly simple but effective method for
tackling offline MBO problems. Finally, I will cover applications of offline MBO in
computational chemistry and synthetic biology to demonstrate how variants of COMs
can be applied to solve real-world scientific problems.



i

To my parents.



ii

Contents

Contents ii

1 Introduction 1

2 Design-Bench: Benchmarks for Data-Driven Offline Model-Based
Optimization 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Offline Model-Based Optimization (Offline MBO) Problem Statement . 6
2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Design-Bench Benchmark Tasks . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Task Properties, Challenges and Considerations . . . . . . . . . . . . . 12
2.6 Algorithm Implementations . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 Benchmarking Prior Methods . . . . . . . . . . . . . . . . . . . . . . . 17
2.8 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Conservative Objective Models for Offline MBO 20
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Conservative Objective Models for Offline Model-Based Optimization . 23

3.3.1 Learning Conservative Objective Models (COMs) . . . . . . . . 23
3.3.2 Optimizing a Conservative Objective Model . . . . . . . . . . . 25
3.3.3 Using COMs for MBO: Additional Decisions . . . . . . . . . . . 26
3.3.4 Overall Algorithm and Practical Implementation . . . . . . . . . 27

3.4 Theoretical Analysis of COMs . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6.1 Empirical Performance on Benchmark Tasks . . . . . . . . . . . 31
3.6.2 Ablation Experiments . . . . . . . . . . . . . . . . . . . . . . . 33

3.7 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Latent Conservative Objective Models for Offline Data-Driven Crystal
Structure Prediction 37



iii

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Background and Definitions for Crystal Structures and Materials . . . . 39
4.3 Problem Statement, Dataset, and Evaluation . . . . . . . . . . . . . . . 40

4.3.1 Datasets for Training . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.2 Held-Out Evaluation Datasets . . . . . . . . . . . . . . . . . . . 41
4.3.3 Evaluation Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 LCOMs: Latent Conservative Objective Models for Structure Prediction 42
4.4.1 Transforming Crystal Structures to a Latent Representation . . 43
4.4.2 Conservative Optimization in Latent Space . . . . . . . . . . . . 44
4.4.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.7 Discussion, Future Directions, and Limitations . . . . . . . . . . . . . . 51

5 Designing Cell Type-Specific Promoter Sequences via Conservative
Model-Based Optimization 52
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Preliminaries of Offline Model-Based Optimization . . . . . . . . . . . . 53
5.3 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4 CPD: Conservative Promoter Design . . . . . . . . . . . . . . . . . . . 55

5.4.1 Pre-Training on Promoter Driven Expression Datasets . . . . . 56
5.4.2 Finetuning on Target Cell Type Dataset with Conservatism . . 57
5.4.3 Balancing Optimality and Diversity in Promoter Design . . . . 57

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5.1 Prior Approaches and Baselines . . . . . . . . . . . . . . . . . . 60
5.5.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5.3 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5.4 Motif composition of designed sequences . . . . . . . . . . . . . 63

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Conclusion 66

A Appendix for Design-Bench 83
A.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.1.1 TF Bind 8 and TF Bind 10 . . . . . . . . . . . . . . . . . . . . 83
A.1.2 ChEMBL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.1.3 Superconductor . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.1.4 Ant & D’Kitty Morphology . . . . . . . . . . . . . . . . . . . . 85
A.1.5 NAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.1.6 Hopper Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.2 Oracle Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.2.1 TF Bind 8 and TF Bind 10 . . . . . . . . . . . . . . . . . . . . 86
A.2.2 ChEMBL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



iv

A.2.3 Superconductor . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.2.4 Ant & D’Kitty Morphology . . . . . . . . . . . . . . . . . . . . 87
A.2.5 NAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.2.6 Hopper Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.3 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.3.1 Objective Normalization . . . . . . . . . . . . . . . . . . . . . . 88
A.3.2 50th Percentile Experiment Results . . . . . . . . . . . . . . . . 88
A.3.3 Unnormalized Experimental Results . . . . . . . . . . . . . . . . 89
A.3.4 Computation Resources . . . . . . . . . . . . . . . . . . . . . . 89

A.4 Additional MBO Tasks That Were Discarded From Our Benchmark . . 89
A.4.1 GFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.4.2 UTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.4.3 Additional Experimental Results . . . . . . . . . . . . . . . . . 91

A.5 Normalization Of Inputs and Outputs Is Important for Gradient Ascent 91
A.6 Hyperparameter Selection Workflow . . . . . . . . . . . . . . . . . . . . 93

A.6.1 Strategy For Autofocused CbAS . . . . . . . . . . . . . . . . . . 93
A.6.2 Strategy For CbAS . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.6.3 Strategy For MINs . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.6.4 Strategy For Gradient Ascent . . . . . . . . . . . . . . . . . . . 95
A.6.5 Strategy For REINFORCE . . . . . . . . . . . . . . . . . . . . . 95
A.6.6 Strategy For Bayesian Optimization . . . . . . . . . . . . . . . . 95
A.6.7 Strategy For Covariance Matrix Adaptation (CMA-ES) . . . . . 96
A.6.8 Strategy For Conservative Objective Models (COMs) . . . . . . 96

B Appendix for Conservative Objective Models 97
B.1 Method Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

B.1.1 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . 97
B.1.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . 97
B.1.3 Benchmarking Details . . . . . . . . . . . . . . . . . . . . . . . 99

B.2 Proof of Theorem 3.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
B.3 Network Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
B.4 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B.4.1 TF Bind 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
B.4.2 GFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
B.4.3 UTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
B.4.4 Superconductor . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
B.4.5 Hopper Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 104
B.4.6 Ant & D’Kitty Morphology . . . . . . . . . . . . . . . . . . . . 105

B.5 Oracle Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
B.5.1 TF Bind 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
B.5.2 GFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
B.5.3 UTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
B.5.4 Superconductor . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



v

B.5.5 HopperController . . . . . . . . . . . . . . . . . . . . . . . . . . 106
B.5.6 Ant & D’Kitty Morphology . . . . . . . . . . . . . . . . . . . . 107

C Appendix for Crystal Structure Design 108
C.1 Additional Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . 108
C.2 Details of Our Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . 109
C.3 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

D Appendix for Promoter Design 111
D.1 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
D.2 Hyperparameters and Experiment Details . . . . . . . . . . . . . . . . 111

D.2.1 Details for Pre-training . . . . . . . . . . . . . . . . . . . . . . . 111
D.2.2 Details for Ensemble Oracle Model . . . . . . . . . . . . . . . . 112
D.2.3 Details for CPD . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
D.2.4 Details for Motif Tiling . . . . . . . . . . . . . . . . . . . . . . . 113
D.2.5 Details for DENs . . . . . . . . . . . . . . . . . . . . . . . . . . 114



vi

Acknowledgments

Throughout my journey at Berkeley, I am very fortunate to have many people to
thank.

First and foremost, I am extremely grateful to my Advisor, Sergey Levine, for his
guidance and support throughout my PhD program. I was lucky to have Sergey as my
advisor ever since I was an undergraduate student at Berkeley. Throughout the years,
Sergey has sharpened my research skills and shaped my research tastes. He has taught
me to focus on the most impactful problems of research and gave me great freedom to
explore all the directions I am interested in.

I would like to thank my dissertation committee members, Nilah Ioannidis, Abhishek
Gupta and Jiantao Jiao for supporting me at this crucial milestone of my PhD. They
have given me great feedback for improving this dissertation.

Before pursuing my PhD, I spent two years doing research as an undergraduate student
at Berkeley. I was fortunate to work with Sergey Levine, Pieter Abbeel, Alexei Efros and
their postdocs and students (at that time) Marvin Zhang, Carlos Florensa, David Held,
Junyan Zhu, Phillip Isola, Richard Zhang. The wonderful experience of undergraduate
research made me decide to continue my research journey and stay at Berkeley to pursue
my PhD. I am especially grateful to Marvin Zhang for introducing me to research and
mentoring me on my first research project.

Over the course of my PhD, I had the fortune to work with many amazing collaborators.
My collaborators, Aviral Kumar, Hao Liu, Tianhe Yu, Charlie Snell, Aniketh Reddy,
Ailin Chen, Amy Lu, Eric Wallace, Arnav Gudibande, Michael Herschl, Stefano Rando,
Benjamin Eysenbach, Rishabh Agarwal, Yutong Bai, Yi Su, Kristian Hartikainen,
Tuomas Haarnoja, Lisa Lee, George Tucker, Jianlan Luo, Charles Xu, Gilbert Feng,
Kuan Fang, Liam Tan, James Bradbury, Rafi Witten, Stefan Schaal, Dawn Song, Russ
Salakhutdinov, Dale Schuurmans, Patrick Hsu, Grace Gu, Abhishek Gupta, Chelsea
Finn, Pieter Abbeel and Nilah Ioannidis have all taught me so much and helped me
build my research skills and vision.

RAIL lab has one of the best undergraduate research programs in Berkeley, and I had
the fortune to mentor some of the best undergraduates, Brandon Trabucco, Russell
Mendonca, Kevin Li, Sathvik Kolli and Han Qi. It has been a great experience working
with all of them.

The Berkeley AI Research lab has been a great place to study and do research. I
thank Michael Janner, Dibya Ghosh, Laura Smith, Colin Li, Katie Kang, Michael
Chang, Mitsuhiko Nakamoto, Joey Hong, Kevin Black, Vivek Myers, Seohong Park,
Kyle Stachowicz, Philip Ball, Manan Tomar, Oleh Rybkin, Marwa Abdulhai, Kuba
Grudzien, Dhruv Shah, Homer Walke, Simon Zhai, Ilya Kostrikov, Coline Devin,
Anusha Nagabandi, Natasha Jaques, Dinesh Jarayaman, Rowan McAllister, Vitchyr
Pong, Kelvin Xu, Justin Fu, JD Co-Reyes, Jason Peng, Siddharth Reddy, Amy Zhang,



vii

Glen Berseth, Frederik Ebert, Aurick Zhou, Avi Singh, Ashvin Nair, Sandy Huang,
Alex Lee, Karl Pertsch, Erin Grant, Sasha Sax, Philippe Hansen-Estruch, Philipp Wu,
Liamnin Zheng, Hao Zhang, Zhuohan Li, Xingyu Lin, Ademi Adeniji, Yuqing Du,
Fangchen Liu, Olivia Watkins, Sherry Yang, Kevin Zakka, Ajay Jain, Gregory Kahn,
Kate Rakelly, Ignasi Clavera for making my stay at the lab so wonderful.

During the summer of my 4th year at Berkeley, I took a research detour to work on
self-supervised learning and language models during my internship at Google. I would
like to thank Igor Mordatch, Lisa Lee and Sharan Narang for mentoring me in this new
direction.

Between my undergraduate and PhD, I spent one year in the Google AI Residency
program. I am grateful to my mentor Jeffrey Pennington, Hossein Mobahi, Ofir Nachum
and my fellow residents and colleagues at Google. I am especially grateful to Lechao
Xiao for introducing me to many theoretical aspects of machine learning.

My journey would have never been so wonderful without my friends. I thank Can Koc,
Cem Koc, Alan Li, Rahul Verma, Brian Su, Kevin Arfin, Can Kabuloglu, Lucas Zhang,
Jazlyn Li, Qiyin Wu, Zihao Jing, Ziyun Wang, Weiyi Liu, Zheng Dai, Zhenyang Zhang,
Jialun Zhang, Yichao Feng, Qin Yang, Yunjia Zhou, Yide Shentu, Haoran Tang, Yan
Duan, Xi Chen, Hanqing Liu and Gefei Li and many others for making my journey so
enjoyable.

Finally, I would like to thank my parents and family for their unwavering support
throughout my journey and keeping me sane in the most difficult times.



1

Chapter 1

Introduction

Computational design problems, where the goal is to find a design that maximizes a
given objective function, is probably one of the most common problems across many
scientific and engineering disciplines. In most settings, the exact form of the objective
function is unknown, and the objective values of a novel design can only be determined
by running a computer simulation or performing a real-world experiment. This problem
of optimizing an unknown function by only observing its input and output is known as
black-box model-based optimization (MBO), and is typically tackled via data-driven
approaches. From protein engineering [97], molecule design [36] to robot engineering [70],
researchers have made significant progresses in applying machine learning based methods
to optimization problems over structured design spaces and generated better designs
than what human experts can produce.

Typically, existing methods for black-box MBO problem learn a proxy function from
the observed data to represent the unknown objective function, and then optimize
the learned proxy function to propose new designs. These learned proxy functions
usually have errors compared to the ground truth. In order to prevent these errors from
affecting the optimization results, existing methods often require online data collection,
where the proposed new designs are evaluated under the ground truth objective and
the results are appended to the dataset to correct the errors of the learned proxy for
the next iteration of optimization. This strategy is very effective in settings where the
ground truth objective function is fast and inexpensive to evaluate, such as via computer
simulation. However, in many important real-world problems, online data collection is
often expensive, time consuming and can even be dangerous: evaluating the designs in
protein engineering requires synthesizing the candidate protein structures, which can
take months to complete in the wet lab; evaluating a new drug design might involve
testing it on animal or human subjects. Such high cost of evaluation often prohibits the
use of online MBO methods, and therefore a desirable alternative approach is to develop
offline MBO methods that produces optimized designs by only leveraging previously
collected datasets without querying the objective function.
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Figure 1.1: Model-based optimization problems are ubiquitous across many scientific and engineering
domains. Finding good designs in robotics, biology, neural network architecture and chemical com-
pounds are all instances of black-box model-based optimization problems.

Compared to the online variant of MBO problems which have been extensively studied
over the past decades, offline MBO problems have received comparatively less attention.
Traditionally, offline optimization problems are most commonly studied in the setting
of offline reinforcement learning (RL), where one optimizes a policy using an offline
dataset of temporal experiences, or batch Bayesian optimization, where the problem
allows for a few limited iterations of online data collections. Due to these differences in
problem setting, existing offline RL or batch Bayesian optimization methods cannot be
directly applied to offline MBO, and only a small number of recent works have been
proposed specifically for offline MBO [12, 66, 29, 31]. Even with only a few existing
offline MBO methods, it is hard to compare and track progress, as methods are typically
proposed and evaluated on different tasks with distinct evaluation protocols. To the
best of our knowledge, there is no commonly adopted benchmark for offline MBO. In
the first part of this thesis, we will address the evaluation problem of offline MBO
method, where we introduce Design-Bench, a suite of benchmark tasks for offline MBO
with a standard evaluation protocol. In proposing Design-Bench, we first identify a set
of core challenges in real-world offline MBO problems, and then carefully choose a set
of realistic tasks across a wide variety of domains, from synthetic biology to material
science, to represent these core challenges in the benchmark. We then evaluate existing
methods on our benchmark and report the findings.

Most prior methods of offline MBO often involve learning a objective model to predict
the ground truth objective value and a generative or density model to capture the
dataset distribution [12, 66, 29, 31]. While the objective model can be easy to learn via
simple supervised learning, the generative or density model is often difficult to train,
since good generative models are often strongly coupled with the data modality and
requires careful tuning to work reliably. In the second part of this thesis, we introduce
conservative objective models (COMs), a simple but effective method for offline MBO
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that only requires learning a objective model. By leveraging recent advances of value
conservatism [67], we augment the objective model with a conservatism loss to prevent
over-estimation on out-of-distribution examples, removing the need to capture the
dataset distribution explicitly. We show that COMs is easy to implement and stable to
train, and obtains better performance over prior methods reliably across many tasks in
Design-Bench.

In the last part of this thesis, we apply variants of our COMs model in two applications
and demonstrate that our algorithm can successfully tackle real-world offline MBO
problems. We first apply a variant of COMs in computational chemistry to tackle the
crystal structure prediction problem, and show that our method can reliably predict
the minimal energy structure of chemical compounds with little computation cost. In
addition to computation chemistry, we also apply COMs to synthetic biology, where we
demonstrate the COMs can help biologists design good promoter DNA sequences.

The structure of this thesis is organized as follows:

• In Chapter 2, we formally define the offline MBO problem and identify its core
challenges. We present Design-Bench, a suite of realistic benchmark tasks and a
standardized evaluation protocol created to benchmark offline MBO methods.

• In Chapter 3, we present conservative objective models (COMs), a simple but
effective method for offline MBO that does not require training a generative or
explicit density model of the dataset. We show that COMs outperforms prior
methods on Design-Bench reliably.

• In Chapter 4, we present a real-world application of offline MBO in computational
chemistry. We show that latent conservative objective models (LCOMs), a variant
of the COMs method, can reliably solve the crystal structure prediction problem
with significantly less computation cost compared to prior method.

• Chapter 5, we present another real-world application of offline MBO in synthetic
biology. We show that COMs can be adapter to design differentially expressive
promoter DNA sequences purely from a large batch of offline data.

We conclude this thesis in Chapter 6 by discussing some of the lessons we learned from
these investigations and promising new directions of research and applications in offline
MBO.
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Chapter 2

Design-Bench: Benchmarks for
Data-Driven Offline Model-Based
Optimization

2.1 Introduction

Automatically synthesizing designs that maximize a desired objective function is one of
the most important challenges in scientific and engineering disciplines. From protein
design in molecular biology [102] to superconducting material discovery in physics [48],
researchers have made significant progress in applying machine learning to optimization
problems over structured design spaces.

Commonly, the exact form of the objective function is unknown, and the objective
value for a novel design can only be found by either running computer simulations
or real world experiments. This process of optimizing an unknown function by only
observing samples from this function is known as black-box optimization, and is typically
solved in an online iterative manner, where in each iteration the solver proposes new
designs and queries the objective function for feedback in order to inform better design
proposals at the next iteration [126]. In many domains however, the objective function is
prohibitively expensive to evaluate because it requires manually conducting experiments
in the real world. In this setting, one cannot query the true objective function, and
cannot receive feedback on design proposals. Instead, a collection of past records of
designs and corresponding objective values might be available, and the optimization
method must instead leverage existing data to synthesize the most optimal designs.
This is called offline model-based optimization (offline MBO).
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Figure 2.1: Offline model-based optimization (MBO) requires generating designs x that
optimize a black-box objective function f(x) using a given static dataset of designs, without
any active queries to the ground truth function.

Although online black-box optimization has been studied extensively, offline MBO has
received comparatively less attention, and only a small number of recent works study
offline MBO in the setting with high-dimensional design spaces [12, 66, 29, 31, 116].
This is partly because online techniques cannot be directly applied in settings where
offline MBO is used, especially in high-dimensional settings. Online techniques, such as
Bayesian optimization [105], often require iterative feedback via queries to the objective
function. Such online optimizers exhibit optimistic behavior: they rely on active queries
at completely unseen designs irrespective of whether such a design is good or not. When
access to these queries is removed, certain considerations change: optimism is no longer
desirable and distribution shift becomes a major challenge [66].

Even with only a few existing offline MBO methods, it is hard to compare and track
progress, as methods are typically proposed and evaluated on different tasks with
distinct evaluation protocols. To the best of our knowledge, there is no commonly
adopted benchmark for offline MBO. To address, we introduce a suite of tasks for offline
MBO with a standardized evaluation protocol. We include a diverse set of tasks that
span a wide range of application domains—from synthetic biology to robotics–that
aims at representing the core challenges in real-world offline MBO. While the tasks are
not intended to directly enable solving the corresponding real-world problems, which
would require a lot of machinery in real hardware setup (e.g., a real robot or access
to a wetlab for molecule design), they are intended to provide algorithm designers
with a representative sampling of challenges that reflect the difficulties with real-world
MBO. That is to say, the tasks are not intended to be real, but are intended to be
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realistically challenging. Further, the diversity of the tasks measures how they generalize
across multiple domains and verifies they are not specialized to a single task. Our
benchmark incorporates a variety of challenging factors, such as high dimensionality
and sensitive discontinuous objective functions, which help identify the strengths and
weaknesses of MBO methods. Along with this benchmark suite, we present reference
implementations of a number of existing offline MBO and baseline optimization methods.
We systematically evaluate them on all of the proposed benchmark tasks and report
results. We hope that our work can provide insight into the progress of offline MBO
methods and serve as a meaningful metric to galvanize research in this area.

2.2 Offline Model-Based Optimization (Offline MBO)

Problem Statement

In online model-based optimization, the goal is to optimize a (possibly stochastic)
black-box objective function f(x) with respect to its input. The objective can be
written as arg maxx f(x). Methods for online MBO typically optimize the objective
iteratively, proposing design xk at the kth iteration and query the objective function
to obtain f(xk). Unlike its online counterpart, access to the true objective f is not
available in offline MBO. Instead, the algorithm A is provided access to a static dataset
D = {(xi, yi)} of designs xi and a corresponding measurement of the objective value yi.
The algorithm consumes this dataset and produces an optimized candidate design x∗

which is evaluated against the true objective function. This paradigm is illustrated in
Figure 2.1. Abstractly, the objective for offline MBO is:

arg max
A

f(x∗) where x∗ = A(D). (2.1)

In practice, producing a single optimal design entirely from offline data is very difficult,

so offline MBO methods are more commonly evaluated [66] in terms of “P percentile of
top K” performance, where the algorithm produces K candidates and the P percentile
objective value determines final performance. Next we discuss two important aspects
pertaining to offline MBO, namely, why offline MBO algorithms can improve beyond the
best design observed in the offline dataset despite no active queries, and the associated
challenges with devising offline model-based optimization algorithms.

Would offline MBO even produce designs better than the best observed
design in the dataset?
A natural question to ask is whether it is even reasonable to expect offline MBO
algorithms to improve over the performance of the best design seen in the dataset. As
we will show in our benchmark results, many of the tasks that we propose do already
admit solutions from existing algorithms that exceed the performance of the best sample
in the dataset. To provide some intuition for how this can be possible, consider a
simple example of offline MBO problems, where the objective function f(x) can be
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Figure 2.2: Offline MBO finds designs better than the best in the observed dataset by exploiting
compositional structure of the objective function. Left: datapoints in a toy quadratic function MBO
task over 2D space with optimum at (0.0, 0.0) in blue, MBO found design in red. Right: Objective
value for optimal design is much higher than that observed in the dataset.

represented as a sum of functions of independent partitions of the design variables,
i.e., f(x) = f1(x[1]) + f2(x[2]) + · · ·+ fN (x[N ])), where x[1], · · · ,x[N ] denotes disjoint
subsets of design variables x. The dataset of the offline MBO problem contains optimal
design variable for each partition, but not the combination. If an offline MBO algorithm
can identify the compositional structure of independent partitions, it would be able
to combine the optimal design variable for each partition together to form the overall
optimal design and therefore improving the performance over the best design in the
dataset. To better demonstrate this idea, we created a toy problem in two dimensions,
where the objective function is simply f(x, y) = −x2 − y2. We then run a näıve
gradient ascent algorithm, as we will describe later in this chapter. In Figure 2.2, we
can clearly see that our offline MBO algorithm is able to learn to combine the best
x and y and produce designs significantly better than the best sample in the dataset.
Such a condition appears in a number of scenarios in practice e.g., in reinforcement
learning (RL), where the Markov structure provides a natural decomposition satisfying
this composition criterion [32] and effective offline RL algorithms are known to exploit
this structure [32] or in protein design, where objective such as fluorescence naturally
decompose into functions of neighboring amino acids [12].

What makes offline MBO especially challenging?
The offline nature of the problem prevents the algorithm A from querying the ground
truth objective f with its proposed design candidates, and this makes the offline MBO
problem much more difficult than the online design optimization problem. One näıve
approach to tackle this problem is to learn a model of the objective function using
the dataset, which we can denote f̂(x), and then convert this offline MBO problem
into a regular online MBO problem by treating the learned objective model as the
true objective. However, this generally does not work: optimizing the design x with
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Dataset Name Size Dimensions Categories Type Oracle

TF Bind 8 32898 8 4 Discrete Exact
TF Bind 10 50000 10 4 Discrete Exact
NAS 1771 64 5 Discrete Exact
ChEMBL 1093 31 591 Discrete Random Forest

Superconductor 21263 86 N/A Continuous Random Forest
Ant Morphology 25009 60 N/A Continuous Exact
D’Kitty Morphology 25009 56 N/A Continuous Exact
Hopper Controller 3200 5126 N/A Continuous Exact

Table 2.1: Overview of the tasks in our benchmark suite. Design-Bench includes a
variety of tasks from different domains, including several from prior work, and multiple new
tasks, with both discrete and continuous design spaces, making it suitable for benchmarking
offline MBO methods. In addition to the provided tasks, we explore several from prior work
in Appendix A.4 that we chose not to include in the final benchmark.

respect to a learned proxy f̂(x) will produce out-of-distribution designs that “fool”
f̂(x) into outputting a high value, analogously to adversarial examples. Indeed, it is
well known that optimizing näıvely with respect to model inputs to obtain a desired
output will usually simply “fool” the model [66]. A näıve strategy to address this
out-of-distribution issue is to constrain the design to stay close to the data, but this is
also problematic, since in order to produce a design that is better than the best training
point, it is usually necessary to deviate from the training data at least somewhat. In
almost all practical MBO problems, such as optimization over drug molecules or robot
morphologies as we discuss in section 2.5, designs with the highest objective values
typically lie on the tail of the dataset distribution and we may not find them by staying
extremely close to the data distribution. This conflict between the need to remain close
to the data to avoid out-of-distribution inputs and the need to deviate from the data to
produce better designs is one of the core challenges of offline MBO. This challenge is
often exacerbated in real-world settings by the high dimensionality of the design space
and the sparsity of the available data, as we will show in our benchmark. A good offline
MBO method needs to carefully balance these two sides, producing optimized designs
that are good, but not too far from the data distribution.

2.3 Related Work

Prior work has extensively focused on online or active MBO, which requries active query-
ing on the ground truth function, including algorithms using Bayesian optimization and
their scalable variants [72, 105, 107, 100, 85], direct search [65], genetic or evolutionary
algorithms [125, 81, 135], the cross-entropy method [93], simulated annealing [120],
etc. These methods may not be well suited for real-world problems where the ground
truth function is expensive to evaluate and therefore prohibitive for active querying.
Offline MBO utilizes an already existing database of designs and objective values, which
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might be obtained from previously conducted experiments. This presents an attractive
algorithmic paradigm towards approaching such scenarios. Since offline MBO prohibits
any ability to query the true objective with new designs, it presents different challenges
from those typically studied in online MBO problem, as we discuss in Section 2.5. These
new challenges in turn require new benchmarks, motivating our work.

The most important components for a good offline MBO benchmark are datasets that
capture the challenges of real-world problems. Fortunately, researchers working on a
wide variety of scientific fields have already collected many datasets of designs which we
can use for training offline MBO algorithms. ChEMBL [36] provides a dataset for drug
discovery, where molecule activities are measured against a target assay. Hamidieh
[48] analyze the critical temperatures for superconductors and provide a dataset to
search for room-temperature superconductors with potential in the construction of
quantum computers. Some of these datasets have already been employed in the study
of offline MBO methods [66, 12, 29]. However, these studies all use different sets of
tasks and their evaluation protocols are highly domain-specific, making it difficult to
compare across methods. In our benchmark, we incorporate modified variants of some
of these datasets along with our own tasks, and provide a standardized evaluation
protocol.

Recently, several methods have been proposed for specifically addressing the offline
MBO problem. These methods [66, 12, 29] typically learn models of the objective
function and optionally, a generative model [61, 41, 76] of the design manifold and use
them for optimization. We discuss these methods in detail in Section 2.6 and benchmark
their performance in Section 4.6.

2.4 Design-Bench Benchmark Tasks

In this section, we describe the set of tasks included in our benchmark. An overview
of the tasks is provided in Table 2.1. Each task in our benchmark suite comes with a
dataset D = {(xi, yi)}, along with a ground-truth oracle objective function f that can
be used for evaluation. An offline MBO algorithm should not query the ground-truth
oracle function during training, even for hyperparameter tuning. We first discuss the
nature of oracles used in Design-Bench.

Expert model as oracle function. While in some of the tasks in our benchmark,
such as tasks pertaining to robotics (D’Kitty Morphology, and Ant Morphology), the
oracle functions are evaluated by running computer simulations to obtain the true
objective values, in the other tasks, the true objective values can only be obtained by
conducting expensive physical experiments. While the eventual aim of offline MBO is
to make it possible to optimize designs in precisely such settings, requiring real physical
experiments for evaluation makes the design and benchmarking of new algorithms
difficult and time consuming. Therefore, to facilitate benchmarking, we follow the
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evaluation methodology in prior work [12, 29] and use models built by domain experts
as our ground-truth oracle functions. Note, however, that the training data provided
for offline MBO is still real data – the domain expert model is used only to evaluate the
result for benchmarking purposes. In many cases, these expert models are also learned,
but with representations that are hand-designed, with built-in domain-specific inductive
biases. The ground-truth oracle models are also trained on much more data than is
made available for solving the offline MBO problem, which increases the likelihood that
this expert model can provide an accurate evaluation of solutions found by offline MBO,
even if they lie outside the training distribution. While this approach to evaluation
diminishes the realism of our benchmark since these proxy “true functions” may not
always be accurate, we believe that this trade off is worthwhile to make benchmarking
practical. The main purpose of our benchmark is to facilitate the evaluation and
development of offline MBO algorithms, and we believe that it is important to include
tasks in domains where the true objective values can only be obtained via physical
experiments, which make up a large portion of the real-world MBO problems.

We now provide a detailed description of the tasks in our benchmark. A description of
the data collection strategy and pre-processing can be found in Appendix A.1.

NAS: neural architecture search on CIFAR10.

Conv2D

Conv2D

…

1 of 10 output labels

…
…
…

… … …

kernel size ?

ReLU
ELU

Leaky RELU
SELU …

Activation ?

The goal of this task is to search for a good neural
network architecture [137] to optimize the test accu-
racy on the CIFAR10 [53] dataset. The model is a
32-layer convolutional neural network with residual
connections, and the task requires searching over the
kernel sizes and activation function types for each
of the 32 layers. Given the small image size of CI-
FAR10, we choose the list of possible kernel sizes to
be {2, 3, 4, 5, 6}. The possible choices of activation
functions are ReLU, ELU, leaky ReLU, SELU [63]
and SiLU [25]. The combination of kernel sizes and
activation functions give us a 64 dimensional discrete
space with 5 categories per dimension. The dataset
is collected by randomly sampling architectures in
the search space. We evaluate the design by training
the produced architecture on the training CIFAR10
dataset for 20 epochs and evaluating the accuracy on
the test set.

Hopper Controller: robot neural network controller optimization. The goal
in this task is to optimize the weights of a neural network policy so as to maximize the
expected discounted return on the Hopper-v2 locomotion task in OpenAI Gym [10].
While this might appear similar to reinforcement learning (RL), our formulation is
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distinct: unlike RL, we don’t have access to any form of trajectory data in the dataset.
Instead, our dataset only comprises of neural network controller weights and the
corresponding return values, which invalidates the applicability of conventional RL
methods. We evaluate the true objective value of any design by running 1000 steps
of simulation in the MuJoCo simulator conventionally ussed with this environment.
The design space of this task is high-dimensional with 5126 continuous variables
corresponding to the flattened weights of a neural network controller. The dataset
is collected by training a PPO [99] and recording the agent’s weights every 10,000
samples.

TCGATGCAA              1.34
ACGGAATGC             2.53
GCCTAATTGG         10.12

…                            …

TF Bind 8 and TF Bind 10: DNA sequence opti-
mization. The goal of TF Bind 8 and TF Bind 10 is to
find the length-8 DNA sequence with maximum binding
affinity with a particular transcription factor (SIX6 REF R1

by default). The ground truth binding affinities for all
65,792 and 1,048,576 designs for the two tasks are avail-
able [8]. The design space consists of sequences of one of
four categorical variables, one for each nucleotide. For TF
Bind 8, we sample 32898 of all the sequences, and for TF
Bind 10 we sample 50000 sequences to form the training
set.

Superconductor: critical temperature maximization. The Superconductor task
is taken from the domain of materials science, where the goal is to design the chemical
formula for a superconducting material that has a high critical temperature. We adapt
a real-world dataset proposed by [48]. The dataset contains 21263 superconductors
annotated with critical temperatures. Prior work has employed this dataset for the
study of offline MBO methods [29], and we follow their convention using a random forest
regression model, detailed in [48], for our oracle. The model achieves a final Spearman’s
rank-correlation coefficient with a held-out validation set of 0.9210. The design space
for Superconductor is a vector with 86 real-valued components representing the mixture
of elements by number of atoms in the chemical formula of each superconductor.

Ant and D’Kitty Morphology: robot morphology optimization.

The goal is to optimize the morphological structure of two
simulated robots: Ant from OpenAI Gym [10] and D’Kitty
from ROBEL [2]. For Ant Morphology, the we need to
optimize the morphology of a quadruped robot to run as
fast as possible. For D’Kitty Morphology, the goal is to
optimize the morphology of D’Kitty robot (shown on the
right) to navigate the robot to a fixed location. Thus the
goal is to find robot morphologies optimal for the given tasks.
In order to control the robot with the generated morphology, we use a controller that
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has been optimized for the given morphology with the Soft Actor Critic algorithm [46].
The morphology parameters of both robots include size, orientation, and location of
the limbs, giving us 60 continuous values in total for Ant and 56 for D’Kitty. To
evaluate a given design, we run robotic simulation in the MuJoCo [113] simulator for
100 time steps, averaging 16 independent trials giving us reliable but cheap to compute
estimates.

ChEMBL: molecule activity maximization for drug discovery.

SMILES 
representation

1.0

5.33
10.5
……

Molecules

The ChEMBL task in Design bench is derived from a large-
scale drug property database from which the task name is
derived [36]. This database consists of pairs of molecules
and assays tested for a particular chemical properties. We
choose the assay whose ChEMBL id is CHEMBL3885882

and measure its MCHC value. The goal of the resulting
optimization problem is to design a molecule that, when
paired with assay CHEMBL3885882, achieves a high MCHC

value. The training set is restricted to molecules whose
SMILES [124] encoding has fewer than 30 tokens. This
results in a training set with 1093 samples, and a design
space of length 31 sequences of categorical variables that take one of 591 values.

2.5 Task Properties, Challenges and Considerations

The primary goal of our benchmark is to provide a general test bench for developing,
evaluating, and comparing algorithms for offline MBO. While in principle any online
active black-box optimization problem can be turned into an offline MBO problem by
collecting a dataset of designs and corresponding objective measurements, it is important
to pick a subset of tasks that represent the challenges of real-world problems in order
to convincingly evaluate algorithms and obtain insights about algorithm behavior.
Therefore, several factors must be considered when choosing the tasks, which we discuss
next.

Diversity and realistically challenging. First of all, the tasks need to be diverse
and realistically challenging in order to prevent offline MBO algorithms from overfitting
to a particular problem domain and to expect that methods performing well on this
benchmark suite would also perform well on real-world offline MBO problems. Design-
Bench consists of tasks that are diverse in many respects. It includes both tasks with
discrete and with continuous design spaces. Continuous design spaces, equipped with
metric space and ordering structures, could make the problem easier to solve than
discrete design spaces. However, discrete design spaces are finite and therefore might
enjoy better dataset coverage than some continuous tasks. While our tasks are not
intended to directly solve real-world problems (e.g., we don’t actually expect the best
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robot morphology in our benchmark to actually correspond to the best possible real
robot morphology due to a variety of factors including limitations of the simulator),
they are intended to provide designers with a representative sampling of challenges that
reflect the kinds of difficulties they would face with real-world datasets, making them
realistically challenging.

High-dimensional design spaces. In many real-world offline MBO problems, such
as drug discovery [36], the design space is high-dimensional and good designs sparsely
lie on a thin manifold in this high-dimensional space. This poses a challenge for many
MBO methods: to be effective on such problem domains, MBO methods need to capture
the thin manifold to be able to produce good designs. Prior work [66] has noted that
this can be very hard in practice. In our benchmark, we include a task derived from
ChEMBL with up 31 dimensions and 591 categories per dimension to capture this
challenge. To intuitively understand this challenge, we performed a study on some tasks
in Figure 2.3, where we sampled 3200 designs uniformly at random from the design
space and plotted a histogram of the objective values against those in the dataset we
provide, which only consists of valid designs. Observe the discrepancy in objective
values, where randomly sampled designs generally attain objective values lower than the
best dataset sample. This suggests that performant designs only lie on a thin manifold
in the design space and therefore we are very unlikely to hit a performant design by
uninformed random sampling.
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Figure 2.3: Histogram (frequency distribution) of objective values in the dataset
compared to a uniform re-sampling of the dataset from the design space. In every
case, re-sampling skews the distribution of values to the left, suggesting that there exists a
thin manifold of valid designs in the high-dimensional design space, and most of the volume
in this space is occupied by low-scoring designs. The distribution of objective values in the
dataset are often heavy-tailed, for instance, in the case of ChEMBL and Superconductor.

Highly sensitive objective function. Another important challenge that should be
taken into consideration is the high sensitivity of objective functions, where closeness of
two designs in design space need not correspond to closeness in their objective values,
which may differ drastically. This challenge is naturally present in practical problems
like drug discovery [37], where the change of a single atom could significantly alter
the property of the molecule. The DKitty Morphology and Ant Morphology tasks
in our benchmark suite are also particularly challenging in this respect. To visualize
the high sensitivity of the objective function, we plot a one dimensional slice of the
objective function around a single sample in our dataset in Figure 2.4. Observe that
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Figure 2.4: Highly sensitive landscape of the ground truth objective function in
DKittyMorphology. A small change in a single dimension of the design space, for instance
changing the orientation θ (x-axis) of the base of the robot’s front right leg, critically impacts
the performance value (y-axis). The robot’s design on the left is the original D’Kitty design
and is held constant while varying θ uniformly from 3

4π to π.

with other variables kept constant, slightly altering one variable can significantly reduce
the objective value, making it hard for offline MBO methods to produce the optimal
design.

Heavy-tailed data distributions. Finally, another challenging property for offline
MBO methods is the shape of the data distribution. Learning algorithms are likely to
exhibit poor learning behavior when the distribution of objective values in the dataset
is heavy-tailed. This challenge is often present in black-box optimization [20] and can
hurt the performance of MBO algorithms that use a generative model as well as those
that use a learned model of the objective function. As shown in Figure 2.3 tasks in our
benchmark exhibit this heavy-tailed structure.
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2.6 Algorithm Implementations

To provide a baseline for comparisons in future work, we benchmark a number of recently
proposed offline MBO algorithms on each of our tasks. Since some of our tasks have a
high input dimensionality, we chose prior methods that can handle both the case of offline
training data (i.e., no active interaction) and high-dimensional inputs. Thus, we include
MINs [66], CbAS [12], autofocusing CbAS [29] and REINFORCE/CMA-ES [128] in our
comparisons, along with a baseline näıve “gradient ascent” method that approximates
the true function f(x) with a deep neural network and then performs gradient ascent
on the output of this model. In this section, we briefly discuss these algorithms, before
performing a comparative evaluation in the next section. Our implementation of these
algorithms are open sourced and can be found at github.com/rail-berkeley/design-
baselines.

Gradient ascent (Grad). This is a simple baseline that learns a model of the objective
function, f̂(x), and optimizes x against this learned model via gradient ascent. Formally,
the optimal solution x∗ generated by this method can be computed as a fixed point
of the following update: xt+1 ← xt + α∇xf̂(x)|x=xt . In practice we perform T = 200
gradient steps, and report xT as the final solution. Such methods are susceptible to
producing invalid solutions, since the learned model does not capture the manifold of
valid-designs and hence cannot constrain the resulting xT to be on the manifold. We
additionally evaluate a variant (Grad. Min) optimizing over the minimum prediction
of N = 5 learned objective functions in an ensemble of learned objective functions and
(Grad. Mean) that optimizes the mean ensemble prediction. We discuss additional
tricks (e.g., normalization of inputs and outputs) that we found beneficial with this
baseline in Appendix A.5.

Covariance matrix adaptation (CMA-ES). CMA-ES Hansen [49] is a simple
optimization algorithm that maintains a belief distribution over the optimal design, and
gradually refines this distribution by adapting the covariance matrix using feedback
from a (learned) objective function, f̂(x). Formally, let xt ∼ N (µt,Σt) be the samples
obtained from the distribution at an iteration t, then CMA-ES computes the value
of learned f̂(xt) on samples xt, and fits Σt+1 to the highest scoring fraction of these
samples and repeats this multiple times. The learned f̂(x) is trained via supervised
regression.

REINFORCE [128]. We also evaluated a method that optimizes a learned objective
function, f̂(x), using the REINFORCE-style policy-gradient estimator. REINFORCE is
capable of handling non-smooth and highly stochastic objectives, making it an effective
choice. This method parameterizes a distribution πθ(x) over the design space and then
updates the parameters θ of this distribution towards the design that maximizes f̂(x),
using the gradient, Ex∼πθ(x)[∇θ log πθ(x) · f̂(x)]. We train an ensemble of f̂(x) models
and pick the subset of models that satisfy a validation loss threshold τ . This threshold
is task-specific; for example, τ ≤ 0.25 is sufficient for Superconductor-v0.

https://github.com/rail-berkeley/design-baselines
https://github.com/rail-berkeley/design-baselines
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Conditioning by adaptive sampling (CbAS) [12]. CbAS learns a density model in
the space of design inputs, p0(x) that approximates the data distribution and gradually
adapts it towards the optimized solution x∗. In a particular iteration t, CbAS alternates
between (1) training a variational auto-encoder (VAE) [61] on a set of samples generated
from the previous model Dt = {xi}mi=1;xi ∼ pt−1(·) using a weighted version of the
standard ELBO objective biased towards estimated better designs and (2) generating
new design samples from the autoencoder to serve as Dt+1 = {xi|xi ∼ pt(·)}. In order
to estimate the objective values for designs sampled from the learned density model
pt(x), CbAS utilizes separately trained models of the objective function, f̂(x) trained
via supervised regression. This training process, at a given iteration t, is:

pt+1(x) := arg min
p

1

m

m∑
i=1

p0(xi)

pt(xi)
P (f̂(xi) ≥ τ) log pt(xi)

where {xi}mi=1 ∼ pt(·). (2.2)

Autofocused CbAS (Auto. CbAS) [29]. Since CbAS uses a learned model of
the objective function f̂(x) to iteratively adapt the generative model p(x) towards the
optimized design, the functionf̂(x) will inevitably be required to make predictions on
shifting design distributions pt(x). Hence, any inaccuracy in these values can adversely
affect the optimization procedure. Autofocused CbAS aims to correct for this shift by
re-training f̂(x) (now denoted f̂t(x)) under the design distribution given by the current
model, pt(x) via importance sampling, which is then fed into CbAS.

f̂t+1 := arg min
f̂

1

|D|

|D|∑
i=1

pt(xi)

p0(xi)
·
(
f̂(xi)− yi

)2

,

Model inversion networks (MINs) [66]. MINs learn an inverse map from the
objective value to a design, f̂−1 : Y → X by using objective-conditioned inverse
maps, search for optimal y values during optimization and finally query the learned
inverse map to produce the corresponding optimal design. MIN minimizes a divergence

measure Lp(D) := Ey∼pD(y)

[
D(pD(x|y), f̂−1(x|y))

]
to train such an inverse map. During

optimization, MINs obtains the optimized design by sampling from the inverse map
conditioned on the optimal y-value.

Bayesian optimization (BO-qEI). We perform offline Bayesian optimization to
maximize the value of a learned objective function f̂(x) by fitting a Gaussian Process,
proposing candidate solutions, and labeling these candidates using f̂(x). To improve
efficiency, we use the quasi-Expected-Improvement acquisition function [129] based on
the BoTorch framework [7].

Conservative Objective Models (COMs) [116]. COMs utilizes a single learned
model of the objective function f̂(xi) for offline model-based optimization. COMs
learns a conservative model of the objective function using an augmented regression
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objective that penalizes overestimation of the performance on off-manifold designs x.
Solutions are obtained by initializing x0 to a design from an observed training set D, and
performing T steps of gradient ascent xt+1 ← xt +∇xαf̂(x)|x=xt on the conservative
objective model’s predictions with respect to the design x.

Figure 2.5: Median, IQM and mean [1] aggregated 100th percentile normalized scores
(with 95% Stratified Bootstrap CIs) for the tasks in Design-Bench.

TF Bind 8 TF Bind 10 ChEMBL NAS Superconductor Ant Morph. DKitty Morph. Hopper

D (best) 0.439 0.467 0.605 0.436 0.400 0.565 0.884 1.0
Auto. CbAS 0.910 ± 0.044 0.630 ± 0.045 0.249 ± 0.305 0.506 ± 0.074 0.421 ± 0.045 0.882 ± 0.045 0.906 ± 0.006 0.137 ± 0.005
CbAS 0.927 ± 0.051 0.651 ± 0.060 0.473 ± 0.264 0.683 ± 0.079 0.503 ± 0.069 0.876 ± 0.031 0.892 ± 0.008 0.141 ± 0.012
BO-qEI 0.798 ± 0.083 0.652 ± 0.038 0.596 ± 0.226 1.079 ± 0.059 0.402 ± 0.034 0.819 ± 0.000 0.896 ± 0.000 0.550 ± 0.118
CMA-ES 0.953 ± 0.022 0.670 ± 0.023 0.085 ± 0.225 0.985 ± 0.079 0.465 ± 0.024 1.214 ± 0.732 0.724 ± 0.001 0.604 ± 0.215
Grad. 0.977 ± 0.025 0.657 ± 0.039 0.307 ± 0.308 0.433 ± 0.000 0.518 ± 0.024 0.293 ± 0.023 0.874 ± 0.022 1.035 ± 0.482
Grad. Min 0.984 ± 0.012 0.649 ± 0.032 0.653 ± 0.024 0.433 ± 0.000 0.506 ± 0.009 0.479 ± 0.064 0.889 ± 0.011 1.391 ± 0.589
Grad. Mean 0.986 ± 0.012 0.645 ± 0.018 0.652 ± 0.005 0.433 ± 0.000 0.499 ± 0.017 0.445 ± 0.080 0.892 ± 0.011 1.586 ± 0.454
REINFORCE 0.948 ± 0.028 0.663 ± 0.034 0.164 ± 0.285 -1.895 ± 0.000 0.481 ± 0.013 0.266 ± 0.032 0.562 ± 0.196 -0.020 ± 0.067
MINs 0.905 ± 0.052 0.616 ± 0.021 0.000 ± 0.000 0.717 ± 0.046 0.499 ± 0.017 0.445 ± 0.080 0.892 ± 0.011 0.424 ± 0.166
COMs 0.973 ± 0.016 0.730 ± 0.136 0.633 ± 0.000 0.459 ± 0.139 0.439 ± 0.033 0.944 ± 0.016 0.949 ± 0.015 2.056 ± 0.314

Table 2.2: 100th percentile evaluations. Results are averaged over 8 trials, and ± indicates the
standard deviation of the performance. The objective value normalization procedure is described in
Appendix A.3.1.

2.7 Benchmarking Prior Methods

In this section, we provide a comparison of prior algorithms discussed in Section 2.6 on
our proposed tasks. For purposes of standardization, easy benchmarking, and future
algorithm development, we present results for all Design-Bench tasks in Table 2.2. As
discussed in Section 2.2, we allow each method to produce K = 128 optimized design
candidates. These candidates are then evaluated with the oracle function, and we
report the 100th percentile performance among them averaged over 8 independent runs,
following the conventions of prior works [29, 12, 66]. We also provide unnormalized and
50th%ile results in Appendices A.3.3, A.3.2.

Algorithm setup and hyperparameter tuning. Since our goal is to generate
high-performing solutions without any knowledge of the ground truth function, any
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form of hyperparameter tuning on the parameters of the learned model should crucially
respect this evaluation boundary and tuning must be performed completely offline,
agnostic of the objective function. We provide a recommended method for tuning
each algorithm described in Section 2.6 in Appendix A.6, which also serves as a set of
guidelines for tuning future methods with similar components.

To briefly summarize, for CbAS, hyperparameter tuning amounts to tuning a VAE
where samples from the prior distribution map to on-manifold designs after reconstruc-
tion. We empirically found that a β-VAE was essential for stability of CbAS and high
values of β > 1 are especially important for modelling high-dimensional spaces. As
a general task-agnostic principle for selecting β, we choose the smallest β such that
the VAE’s latent space does not collapse during importance sampling. Collapsing
latent-spaces seem to coincide with diverging importance sampling, and the VAE’s re-
constructions collapsing to a single mode. For MINs, hyperparameter tuning amounts
to fitting a good generative model. We observe that MINs is particularly sensitive to
the scale of yi when conditioning, which we resolve by normalizing the objective values.
We implement MINs using WGAN-GP, and find that similar hyperparameters work well
across domains. For Gradient Ascent, while prior works report poor performance for
näıve gradient ascent optimization on top of learned models of the objective function,
we find that by normalizing the designs x and objective values y to have unit normal
statistics and scaling the learning rate as α ← α

√
d where d is the dimension of the

design space (discussed in Appendix A.5), a näıve gradient ascent based procedure
performs reasonably well on most tasks without task-specific tuning. For discrete
tasks, only the objective values are normalized, and optimization is performed over
log-probabilities of designs. We then obtain optimized designs by running 200 steps of
gradient ascent starting from the top scoring 128 samples in each dataset. We provide
further details in Appendix A.6.

Results. The results for all tasks are provided in Table 2.2. There are several takeaways
from these results. First, these results confirm that three prior offline MBO methods
(MINs, CbAS, and Autofocused CbAS), are very successful at solving a wide range
of offline MBO problems of varying dimensional and modality. Furthermore, perhaps
somewhat surprisingly, a classical CMA-ES baseline is competitive with several highly
sophisticated MBO methods in 4 out of 8 tasks (Table 2.2). This result suggests that it
might be difficult for generative models to capture high-dimensional task distributions
with enough precision to be used for optimization, and in a number of tasks, these
components might be unnecessary. Additionally a naive gradient ascent baseline is
competitive with complex approaches utilizing generative modelling on 4 of the 8 tasks.
However, on the other hand, as described in Appendix A.5 and A.6.4, baseline is also
sensitive to certain design choices such as input normalization schemes and the number
of optimization steps T . Therefore, while not a full-fledged offline MBO method, we
believe that gradient ascent has potential to form a fundamental building block for
future offline MBO methods.
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Finally, we remark that the performance of methods in Table 2.2 differ from the those
reported by prior works. This difference stems from the standardization procedure
employed in dataset generation (which we discuss in Appendix A.1).

2.8 Discussion and Conclusion

Offline model-based optimization carries the promise to convert existing databases of
designs into powerful optimizers, without the need for expensive real-world experiments
for actively querying the ground truth objective function. However, due to the lack of
standardized benchmarks and evaluation protocols, it has been difficult to accurately
track the progress of offline MBO methods. To address this problem, we introduce
Design-Bench, a benchmark suite of offline MBO tasks that covers a wide variety of
domains, and both continuous and discrete, low and high dimensional design spaces.
We provide a comprehensive evaluation of existing methods under identical assumptions.
The comparatively high efficacy of even simple baselines such as CMA-ES and näıve
gradient ascent suggests the need for careful tuning and standardization of methods in
this area. An interesting avenue for future work in offline MBO is to devise methods that
can be used to perform model and hyperparameter selection. One promising approach
to address this problem is to devise methods for offline evaluation of produced solutions.
We hope that our benchmark will be adopted as the standard metric in evaluating
offline MBO algorithms and provides insight in future algorithm development.
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Chapter 3

Conservative Objective Models for
Offline MBO

3.1 Introduction

Black-box model-based optimization (MBO) problems are ubiquitous in a wide range of
domains, such as protein [12] or molecule design [37], designing controllers [9] or robot
morphologies [70], optimizing neural network designs [138], and aircraft design [55].
Existing methods to solve such model-based optimization problems typically learn a
proxy function to represent the unknown objective landscape based on the data, and
then optimize the design against this learned objective function. In order to prevent
errors in the learned proxy function from affecting optimization, these methods often
critically rely on periodic active data collection [105] over the course of training. Active
data collection can be expensive or even dangerous: evaluating a real design might
involve a complex real-world procedure such as synthesizing candidate protein structures
for protein optimization or building the robot for robot design optimization. While these
problems can potentially be solved via computer simulation, a high fidelity simulator
often requires considerable effort from experts across multiple domains to build, making
it impractical for most problems. Therefore, a desirable alternative approach for a
broad range of MBO problems is to develop data-driven, offline methods that can
optimize designs by training highly general and expressive deep neural network models
on data from previously conducted experiments, consisting of inputs (x) and their
corresponding objective values (y), without access to the true function or any form of
active data collection [66]. In a number of these practical domains, such as protein [97]
or molecule design [37], plenty of prior data already exists and can be utilized for fully
offline, data-driven model-based optimization.
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Figure 3.1: Overview of COMs. Our method trains a model of the objective function by training
a neural net with supervised regression on the training data augmented two additional loss terms to
obtian conservative predictions. These additional terms aim to maximize the predictions of the neural
net model on the training data, and minimize the predictions on adversarially generated designs. This
principle prevents the optimizer from producing bad designs with erroneously high values at unseen
and poor designs.

Typical approaches for addressing MBO problems learn a model of the unknown
objective function f̂ that maps an input x (or a representation of the input [40]) to
its objective value f̂(x) via supervised regression on the training dataset [105]. Then,
these methods optimize the input against this learned model via, for instance, gradient
ascent. For MBO problems where the space of valid inputs forms a narrow manifold in a
high-dimensional space, any overestimation errors in the learned model will erroneously
drive the optimization procedure towards out-of-distribution, invalid, and low-valued
design designs that “fool” the model into producing a high values [66].

How can we prevent offline MBO methods from falling into such out-of-distribution
solutions? If we can instead learn a conservative model of the objective function that does
not overestimate the objective value on out-of-distribution inputs, optimizing against this
conservative model would produce the best solutions for which we are confident in the
value. In this chapter, we propose a method to learn such conservative objective models
(COMs), and then optimize the design against this conservative model using a näıve
gradient-ascent procedure. Analogously to adversarial training approaches in supervised
learning [42], and building on recent works in offline reinforcmeent learning [69, 67],
COMs first explicitly mine for out-of-distribution inputs with erroneously overestimated
values and then penalize the predictions on these inputs. Theoretically, we show that
this approach mitigates overestimation in the learned objective model near the manifold
of the dataset. Empirically, we find that this leads to good performance across a range
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of offline model-based optimization tasks.
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Figure 3.2: Training and optimization using COMs. The section on the left indicates that each
task provides a static dataset that is collected offline without ayn MBO algorithm in-the-loop. The
section on the right shows how a conservative objective model is used to produce promising optimized
designs using gradient ascent, and how these designs are inputs to a conservative regularizer.

The primary contribution proposed in this chapter, COMs, is a novel approach for
addressing data-driven model-based optimization problems by learning a conservative
model of the unknown objective function that lower-bounds the groundtruth function
on out-of-distribution inputs, and then optimizing the input against this conservative
model via a simple gradient-ascent style procedure. COMs are simple to implement,
utilizing a supervised learning procedure that resembles adversarial training, without
the need for complex generative modeling to estimate dataset support as in prior
work on model-based optimization. We theoretically analyze COMs and show that
they never overestimate the values at out-of-distribution inputs close to the dataset
manifold and we empirically demonstrate the efficacy of COMs on seven complex MBO
tasks that span a wide range of real-world tasks including biological sequence design,
neural network parameter optimization, and superconducting material design. COMs
is optimal on 4/7 tasks, and outperforms the best prior method by a factor of 1.3x in
a high-dimensional setting, and by a factor of 1.16x overall.

3.2 Preliminaries
The goal in data-driven, offline model-based optimization [66] is to find the best possible
solution, x∗, to optimization problems of the form

x∗ ← arg max
x

f(x), (3.1)

where f(x) is an unknown (possibly stochastic) objective function. An offline MBO
algorithm is provided access to a static dataset D of inputs and their objective values,
D = {(x1, y1), · · · , (xN , yN )}. While a variety of MBO methods have been developed [40,
12, 66, 29], most methods for tackling MBO problems fit a parametric model to the
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samples of the true objective function in D, f̂θ(x), via supervised training: f̂θ(x) ←
arg minθ

∑
i(f̂θ(xi)−yi)2, and find x∗ in Equation 3.1 by optimizing x against this learned

model f̂θ(x), typically with some mechanism to additionally minimize distribution shift.
One choice for optimizing x in Equation 3.1 is gradient descent on the learned function,
as given by

xk+1 ← xk + η∇xf̂θ(x)|x=xk
, for k ∈ [1, T ], x⋆ = xT . (3.2)

The fixed point of the above procedure xT is then the output of the MBO procedure.
In high-dimensional input spaces, where valid x values lie on a thin manifold in a
high-dimensional space, such an optimization procedure is prone to producing low-
scoring inputs, which may not even be valid. This is because f̂ may erroneously
overestimate objective values at out-of-distribution points, which would naturally lead
the optimization to such invalid points. Prior methods have sought to address this issue
via generative modeling or explicit density estimation, so as to avoid out-of-distribution
inputs. In the next section, we will describe how our method, COMs, instead trains the
objective model in such a way that overestimation is prevented directly.

3.3 Conservative Objective Models for Offline Model-

Based Optimization
In this section, we present our approach, conservative objective models (COMs). COMs
learn estimates of the true function that do not overestimate the value of the ground truth
objective on out-of distribution inputs in the vicinity of the training dataset. As a result,
COMs prevent erroneous overestimation that would drive the optimizer (Equation 3.2)
to produce out-of-distribution inputs with low values under the groundtruth objective
function. We first discuss a procedure for learning such conservative estimates and then
explain how these conservative models can be used for offline MBO.

3.3.1 Learning Conservative Objective Models (COMs)

The key idea behind our approach is to augment the objective for training of the
objective model, f̂θ(x), with a regularizer that minimizes the expected value of this
function on “adversarial” inputs where the value of the learned function f̂θ may be
erroneously large. Such adversarial inputs are likely to be found by the optimizer during
optimization, and hence, we need to train the learned function to not overestimate their
values. How can we compute such adversarial inputs? Building on simple techniques
for generating adversarial examples in supervised learning [42], we can run multiple
steps of gradient ascent on the current snapshot of the learned function f̂(x) starting
from various inputs in the training dataset to obtain such adversarial inputs. For
concise notation in the exposition, we denote the distribution of all adversarial inputs
found via this gradient ascent procedure as µ(x). Samples from µ(x) are obtained by
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sampling a datapoint from the training set and running several steps of gradient ascent
on f̂(x).

µ(x) =
∑
x0∈D

δx=xT
: xt+1 = xt + η∇xf̂θ(x)

∣∣
x=xt

(3.3)

While simply minimizing the function values under this adversarial distribution µ(x)
should effectively reduce the value of the learned f̂ at these inputs, this can result
in systematic underestimation even for in-distribution points. To balance out this
regluarization, our approach additionally maximizes the expected value of this function
on the training dataset. This can be formalized as maximizing the value of f̂(x) under
the empirical distribution of inputs x ∈ D given by: D̂(x) =

∑
xi∈D δx=xi

.

In Section 3.4, we will show that the minimization and maximization terms balance out,
and this objective learns a function f̂θ(x) that is a lower bound on the true function
f(x) for inputs that are encountered during the optimization process, under several
assumptions. This approach is inspired by recent work in offline RL [67], where a
similar objective is used to learn conservative value functions. We will elaborate on
this connection in Section 3.5.

Formally, our training objective is given by the following equation, where α is a
parameter that trades off conservatism for regression:

f̂ ⋆
θ ← arg min

θ∈Θ

COMs regularizer︷ ︸︸ ︷
α
(
Ex∼µ(x)

[
f̂θ(x)

]
− Ex∼D

[
f̂θ(x)

])
+

1

2
E(x,y)∼D

[(
f̂θ(x)− y

)2
]

︸ ︷︷ ︸
standard supervised regression

, (3.4)

This idea is schematically depicted in Figure 3.1. The value of α and the choice of
distribution µ(x) play a crucial role in determining the behavior of this approach. If
the chosen α is very small, then the resulting f̂ ⋆

θ (x) may not be a conservative estimate
of the actual function f(x), whereas if the chosen α is too large, then the learned
function will be too conservative, and not allow the optimizer to deviate away from the
dataset at all. We will discuss our strategy for choosing α in the next section. As noted
earlier, our choice of µ(x) specifically focuses on adversarial inputs that the optimizer
is likely to encounter while optimizing the input. We compute this distribution µ(x) by
sampling a starting point x0 from the dataset D, and then performing several steps of
gradient ascent on f̂θ starting from this point.
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Algorithm 1 COM: Training Conservative Models

1: Initialize f̂θ. Pick η, α and initialize dataset D.
2: for i = 1 to training steps do
3: Sample (x0, y) ∼ D
4: Find xT (x0) via gradient ascent from x0:

xt+1 = xt + η∇xf̂θ(x)
∣∣
x=xt

; µ(x) =
∑

x0∈D δx=xT (x0).
5: Minimize L(θ;α) with respect to θ.

L(θ;α)=Ex0∼D(f̂θ(x0)−y)2−αEx0 [f̂θ(x0)] + αEµ(x)[f̂θ(x)]
θ ← θ − λ∇θL(θ;α)

6: end for

Algorithm 2 COM: Finding x⋆

1: Initialize optimizer at the optimum in D:
x̃ = argmax(x,y)∈D y

2: Find x⋆ via gradient ascent from x̃:
xt+1 = xt + η∇xLopt(x)

∣∣
x=xt

where Lopt(x) := f̂⋆
θ (x)

3: Return the solution x⋆ = xT .

3.3.2 Optimizing a Conservative Objective Model

Once we have a trained conservative model from Equation 3.4, we must use this learned
model for finding the best possible input, x⋆. Prior works [66, 12] use a standard (non-
conservative) model of the objective function in conjunction with generative models or
density estimators to restrict the optimization to in-distribution values of x⋆. However,
since our conservative training method trains f̂ ⋆

θ to explicitly assign low values to
out-of-distribution inputs, we can use a simple gradient-ascent style procedure in the
input space to find the best possible solution.

Specifically, our optimizer runs gradient-ascent for T iterations starting from an input
in the dataset (x0 ∈ D), in each iteration trying to move the design in the direction
of the gradient of the learned model f̂ ⋆

θ . Starting from the best point in the dataset,
x0 ∈ D, our optimizer performs the following update (also shown in Algorithm 2, Line
2):

∀ t ∈ [T ],x0 ∈ D; xt+1 = xt + η∇xLopt(x)
∣∣
x=xt

where Lopt(x) := f̂ ⋆
θ (x). (3.5)

Equation 3.5 ensures that the value of the learned function f̂θ(xt+1) is larger than the
value at its previous iterate xt. Furthermore, the number of iterations T of gradient
ascent during optimization in Equation 3.5 is the identical to the number of steps that
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we use to generate adversarial examples, µ(x) in Equation 3.3. This ensures that the
optimizer only queries the region when the learned function f̂θ(x) is indeed conservative
and a valid lower bound.

3.3.3 Using COMs for MBO: Additional Decisions

Next we discuss other design decisions that appear in COMs training (Equation 3.4) or
when optimizing the input against a learned conservative model (Equation 3.5).

Choosing α. The hyperparameter α in Equation 3.4 plays an important role in weight-
ing conservatism against accuracy. Without access to additional active data collection
for evaluation, tuning this hyperparameter for each task can be challenging. Therefore,
in order to turn COMs into a task-agnostic algorithm for offline MBO, we devise an
automated procedure for selecting α. As discussed previously, if α is too large, f̂ ⋆

θ

is expected to be too conservative, since it would assign higher values to points in
the dataset, and low values to all other points. Selecting a single value of α that
works for many problems is difficult, since its effect depends strongly on the magnitude
of the objective function. Instead, we use a modified training procedure that poses
Equation 3.4 as a constrained optimization problem, with α assuming the role of a
Lagrange dual variable for satisfying a constraint that controls the difference in values
of the learned objective under µ(x) and D(x). This corresponds to solving the following
optimization problem:

f̂ ⋆
θ ← arg min

θ∈Θ

1

2
E(x,y)∼D

[(
f̂θ(x)− y

)2
]

(3.6)

s.t.
(
Ex∼µ(x)

[
f̂θ(x)

]
− Ex∼D

[
f̂θ(x)

])
≤ τ. (3.7)

While Equation 3.6 introduces a new hyperparameter τ in place of α, this parameter
is easier to select by hand, since its optimal value does not depend on the magnitude
of the objective function as we can normalize the objective values to the same range
before use in Equation 3.6, and therefore, a single choice works well across a diverse
range of tasks. We find that a single value of τ is effective on every continuous task
(τ = 0.5) and discrete task (τ = 2.0) respectively, and empirically ablate the choice of τ
in Figure 3.3.

Selecting optimized designs x⋆. So far we have discussed how COMs can be trained
and used for optimization; however, we have not established a way to determine which
xt (Equation 3.5) encountered in the optimization trajectory should be used as our final
solution x⋆. The most natural choice is to pick the final xT found by the optimizer
as the solution. We uniformly choose T = 50 steps. While the choice of T should, in
principle, affect the solution found by any gradient-ascent style optimizer, we found
COMs to be quite stable to different values of T , as we will elaborate empirically on in
Section 3.6.2, Figure 3.3. Of course, there are many other possible ways of selecting T ,
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including ideas inspired from offline model-selection methods in offline reinforcement
learning [112], but our simple procedure, which is also popular in offline RL [32], ensures
that the optimizer only queries the regions of the input space where the learned function
is indeed trained to be conservative and is also sufficient to obtain good optimization
performance.

3.3.4 Overall Algorithm and Practical Implementation

Finally, we combine the individual components discussed so far to obtain a complete
algorithm for offline model-based optimization. Pseudocode for our algorithm is shown
in Algorithm 1. COMs parameterize the objective model, f̂θ(x), via a feed-forward
neural network with parameters θ. Our method then alternates between approximately
generating samples µ(x) via gradient ascent (Line 4), and optimizing parameters θ
using Equation 3.5 (Line 5). Finally, at the end of training, we run the gradient ascent
procedure over the learned objective model f̂ ⋆

θ (x) for a large T number of ascent steps
and return the final design xT as x⋆.

Implementation details. Full implementation details for our method can be found in

Appendix B.1. Briefly, for all of our experiments, the conservative objective model f̂θ is
modeled as a neural network with two hidden layers of size 2048 each and leaky ReLU
activations. More details on the network structure can be found in Appendix B.3. In
order to train this conservative objective model, we use the Adam optimizer [60] with
a learning rate of 10−3. Empirically, we found that if η is too large, gradient ascent
begins to produce inputs xT that do not maximize the values of f̂ ⋆

θ (xT ), so we select

the largest η such that successive xt follow the gradient vector field of f̂ ⋆
θ (xt). For

computing samples µ(x), we used 50 gradient ascent steps starting from a given design
in the dataset, x0 ∈ D. During optimization, we used the gradient-ascent optimizer
with a learning rate of 0.05 for continuous tasks and 2.0 for discrete tasks. As we will
also show in our experiments (Section 3.6.2), this produces stable optimization behavior
for all tasks we attempted. Finally, in order to choose the step T in Equation 3.5 that
is supposed to provide us with the final solution x⋆ = xT , we pick a universal step of
T = 50.

3.4 Theoretical Analysis of COMs

We will now theoretically analyze conservative objective models, and show that the
conservative training procedure (Equation 3.4) indeed learns a conservative model of
the objective function. To do so, we will show that under Equation 3.4, the values of
all inputs in regions found within T steps of gradient ascent starting from any input
x0 ∈ D are lower-bounds on their actual value. For analysis, we will denote D(x) as
the smoothed density of x in the dataset D (see Appendix B.2 for a formal definition).
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We will express Equation 3.4 in an equivalent form that factorizes the distribution µ(x)
as µ(x) =

∑
x0∼DD(x0)µ(xT |x0):

min
θ∈Θ

α
(
Ex0∼D,xT∼µ(xT |x0)

[
f̂θ(xT )

]
− Ex∼D

[
f̂θ(x)

])
(3.8)

+
1

2
E(x,y)∼D

[(
f̂θ(x)− y

)2
]
. (3.9)

While µ(xT |x0) is a Dirac-delta distribution in practice (Section 3.3), for our analysis,
we will assume that it is a distribution centered at xT and µ(xT |x0) > 0 ∀ xT ∈ X .
This condition can be easily satisfied by adding random noise during gradient ascent
while computing xT . We will train f̂θ using gradient descent and denote k = 1, 2, · · · as
the iterations of this training procedure for f̂θ.

We first summarize some assumptions used in our analysis. We assume that the true
function f(x) is L-Lipschitz over the input space x. We also assume that the learned

function f̂θ(x) is L̂-Lipschitz and L̂ is sufficiently larger than L. For analysis purposes, we
will define a conditional distribution, D(x′|x), to be a Gaussian distribution centered at x:
N (x′|x, σ2). We will not assume a specific parameterization for the objective model, f̂θ,
but operate under the neural tangent kernel (NTK) [56] model of neural nets. The neural
tangent kernel of the function f̂(x) be defined as: Gf(xi,xj) := ∇θf̂θ(xi)

T∇θf̂θ(xj).
Under these assumptions, we build on the analysis of conservative Q-learning [67] to
prove our theoretical result in Theorem 3.4.1, shown below:

Proposition 3.4.1 (Conservative training lower-bounds the true function). Assume
that f̂θ(x) is trained with conservative training by performing gradient descent on θ
with respect to the objective in Equation 3.8 with a learning rate η. The parameters
in step k of gradient descent are denoted by θk, and let the corresponding conservative
model be denoted as f̂k

θ . Let G, µ, L̂, L, D be defined as discussed above. Then, under
assumptions listed above, ∀ x ∈ D,x′′ ∈ X , the conservative model at iteration k + 1 of
training satisfies:

f̂k+1
θ (x′′) := max

{
f̂k+1
θ (x)− L̂||x′′ − x||2,

f̃k+1
θ (x′′)− ηαEx∼D,x′∼µ[Gk

f (x′′,x′)]

+ ηαEx∼D,x′∼D[Gk
f (x′′,x′)]

}
,

where f̃k+1
θ (x′′) is the resulting (k+1)-th iterate of f̂θ if conservative training were not

used. Thus, if α is sufficiently large, the expected value of the asymptotic function,
f̂θ := limk→∞ f̂k

θ , on inputs xT found by the optimizer, lower-bounds the value of the
true function f(xT ):

Ex0∼D,xT∼µ(xT |x0)[f̂θ(xT )] ≤ Ex0∼D,xT∼µ(xT |x0)[f(x)].

A proof for Proposition 3.4.1 including a complete formal statement can be found in
Appendix B.2. The intuition behind the proof is that inducing conservatism in the
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GFP TF Bind 8 UTR # Optimal Norm. avg. perf.

D (best) 0.789 0.439 0.593
Auto. CbAS 0.865 ± 0.000 0.910 ± 0.044 0.691 ± 0.012 1 / 7 0.687
CbAS 0.865 ± 0.000 0.927 ± 0.051 0.694 ± 0.010 3 / 7 0.699
MINs 0.865 ± 0.001 0.905 ± 0.052 0.697 ± 0.010 4 / 7 0.745
BO-qEI 0.254 ± 0.352 0.798 ± 0.083 0.684 ± 0.000 0 / 7 0.629
CMA-ES 0.054 ± 0.002 0.953 ± 0.022 0.707 ± 0.014 2 / 7 0.674
Grad. 0.864 ± 0.001 0.977 ± 0.025 0.695 ± 0.013 3 / 7 0.750
Grad. Min 0.864 ± 0.000 0.984 ± 0.012 0.696 ± 0.009 3 / 7 0.829
Grad. Mean 0.864 ± 0.000 0.986 ± 0.012 0.693 ± 0.010 2 / 7 0.852
REINFORCE 0.865 ± 0.000 0.948 ± 0.028 0.688 ± 0.010 1 / 7 0.541

COMs (Ours) 0.864 ± 0.000 0.945 ± 0.033 0.699 ± 0.011 4 / 7 0.985

Superconductor Ant Morphology D’Kitty Morphology Hopper Controller

D (best) 0.399 0.565 0.884 1.0
Auto. CbAS 0.421 ± 0.045 0.882 ± 0.045 0.906 ± 0.006 0.137 ± 0.005
CbAS 0.503 ± 0.069 0.876 ± 0.031 0.892 ± 0.008 0.141 ± 0.012
MINs 0.469 ± 0.023 0.913 ± 0.036 0.945 ± 0.012 0.424 ± 0.166
BO-qEI 0.402 ± 0.034 0.819 ± 0.000 0.896 ± 0.000 0.550 ± 0.118
CMA-ES 0.465 ± 0.024 1.214 ± 0.732 0.724 ± 0.001 0.604 ± 0.215
Grad. 0.518 ± 0.024 0.293 ± 0.023 0.874 ± 0.022 1.035 ± 0.482
Grad. Min 0.506 ± 0.009 0.479 ± 0.064 0.889 ± 0.011 1.391 ± 0.589
Grad. Mean 0.499 ± 0.017 0.445 ± 0.080 0.892 ± 0.011 1.586 ± 0.454
REINFORCE 0.481 ± 0.013 0.266 ± 0.032 0.562 ± 0.196 -0.020 ± 0.067

COMs (Ours) 0.439 ± 0.033 0.944 ± 0.016 0.949 ± 0.015 2.056 ± 0.314

Table 3.1: Comparative evaluation of COMs against prior methods in terms of
the mean 100th-percentile score and its standard deviation over 8 trials. Tasks include
Superconductor-RandomForest-v0, HopperController-Exact-v0, AntMorphology-Exact-
v0, and DKittyMorphology-Exact-v0, which have a continuous design space and GFP-
Transformer-v0, TFBind8-Exact-v0, and UTR-ResNet-v0 with a discrete design space. COMs
perform strictly better on high-dimensional tasks, obtaining about 1.3x gains on Hopper Controller,
and compelling gains on Ant Morphology and D’Kitty Morphology tasks. In addition, COMs is able
to consistently find solutions that outperform the best training point for each task, given by D (best).
For each task, algorithms within one standard deviation of having the highest performance are bolded.
COMs attain the optimal performance in 4/7 tasks (“# Optimal”) attaining a normalized average
performance of 0.985 compared to 0.852 for the next best method, outperforming other methods as
indicated.

function f̂θ at each gradient step of optimizing Equation 3.8 makes the asymptotic
function be conservative. Moreover, the larger the value of α, the more conservative
the function f̂θ is on points x′ found via gradient ascent, i.e., points with high density
under µ(xT |x0), in expectation. Finally, when gradient ascent is used to find x⋆ on the
learned conservative model, f̂θ, and the number of steps of gradient ascent steps is less
than T , as we do in practice via Equation 3.5, this bound with additional offset will
hold for the point x⋆ in expectation, and therefore the estimated value of this point
will not overestimate its true value. This additional offset depends on the Lipschitz
constant L̂ and the distance between x∗ and the the optimized solutions xT found for
other data points, x0 ∈ D.
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3.5 Related Work

We now briefly discuss prior works in MBO, including prior work on active model-based
optimization and work that utilizes offline datasets for data-driven MBO.

Bayesian optimization. Most prior work on model-based optimization has focused on
the active setting, where derivative free methods such as the cross-entropy method [92]
and other methods derived from the REINFORCE trick [127, 91], reward-weighted
regression [86], and Gaussian processes [106, 101, 105] have been utilized. Most of these
methods focus mainly on low-dimensional tasks with active data collection. Practical
approaches have combined these methods with Bayesian neural networks [106, 105],
latent variable models [58, 34, 33], and ensembles of learned score models [3, 4, 75].
These methods still require actively querying the true function f(x). Further, as shown
by [12, 29, 66], these Bayesian optimization methods are susceptible to producing
invalid out-of-distribution inputs in the offline setting. Unlike these methods, COMs
are specifically designed for the offline setting with high-dimensional inputs, and avoid
out-of-distribution inputs.

Offline model-based optimization. Recent works have also focused on optimization
in the completely offline setting. Typically these methods utilize a generative model [62,
41] that models the manifold of inputs. [12, 29] use a variational autoencoder [62]
to model the space of x and use it alongside a learned objective function. [66] use a
generative model to parameterize an inverse map from the scalar objective y to input
x and search for the optimal one-dimensional y during optimization. Modeling the
manifold of valid inputs globally can be extremely challenging (see Ant, Hopper, and
DKitty results in Section 4.6), and as a result these generative models often need to be
tuned for each domain [114]. In contrast, COMs do not require any generative model,
and fit an approximate objective function with a simple regularizer, providing both a
simpler, easier-to-use algorithm and better empirical performance. Fu and Levine [30]
also avoid training a generative model, but instead use normalized maximum likelihood,
which requires training multiple discriminative models—COMs only requires one—and
quantizing y, which COMs does not.

Adversarial examples. As discussed in Section 3.2, MBO methods based on learned
objective models naturally query the learned function on “adversarial” inputs, where
the learned function erroneously overestimates the true function. This is superficially
similar to adversarial examples in supervised learning [42], which can be generated by
maximizing the input against the loss function. While adversarial examples have been
formalized as out-of-distribution inputs lying in the vicinity of the data distribution
and prior works have attempted to correct for them by encouraging smoothness [117] of
the learned function, and there is evidence that robust objective models help mitigate
over estimation [96], these solutions may be ineffective in MBO settings when the
true function is itself non-smooth. Instead making conservative predictions on such
adversarially generated inputs may prevent poor performance.
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Figure 3.3: Stability of COMs versus näıve gradient ascent. The x-axis shows the number
of gradient ascent steps taken on the design x∗, and the y-axis shows the 100th percentile of the
ground truth task objective function evaluated at every gradient step, which is used only for analysis
only and is unavailable to the algorithm. In both cases, COMs reach solutions that remain at higher
performance stably, indicating that COMs are less sensitive to varying numbers of gradient ascent
steps performed during optimization.

3.6 Experimental Evaluation

To evaluate the efficacy of COMs for offline model-based optimization, we first perform
a comparative evaluation of COMs on four continuous and three discrete offline MBO
tasks based on problems in physical sciences, neural network design, material design, and
robotics, proposed in the design-bench benchmark [114], that we also describe shortly. In
addition, we perform an empirical analysis on COMs that aims to answer the following
questions: (1) Is conservative training essential for improved performance and stability
of COMs? How do COMs compare to a näıve objective model in terms of stability?, (2)
How sensitive are COMs are to various design choices during optimization?, (3) Are
COMs robust to hyperparameter choices and consistent to evaluation conditions? We
answer these questions by studying the behavior of COMs under controlled conditions
and using visualizations for our analysis. Code for reproducing our results is at
https://github.com/brandontrabucco/design-baselines

3.6.1 Empirical Performance on Benchmark Tasks

We first compare COMs to a range of recently proposed methods for offline MBO in
high-dimensional input spaces: CbAS [12], MINs [66] and and autofocused CbAS [29],
that augments CbAS with a re-weighted objective model. Additionally, we also compare
COMs to more standard baseline algorithms including REINFORCE [128], CMA-ES [49]
, and BO-qEI, Bayesian Optimization with the quasi-expected improvement acquisition

https://github.com/brandontrabucco/design-baselines/blob/c65a53fe1e6567b740f0adf60c5db9921c1f2330/design_baselines/coms_cleaned/__init__.py
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function [129]. We also compare to a näıve gradient ascent baseline that first learns
a model of the actual function via supervised regression (with no conservative term
like COMs) and then optimizes this learned proxy via gradient ascent. CbAS variants
and MINs train generative models such as VAEs [62] and GANs [41], which generally
require task-specific neural net architectures, as compared to the substantially simpler
discriminative models used for COMs. In fact, we use the same architecture for COMs
on all the tasks. In addition, we instantiate this gradient ascent baseline with an
ensemble of learned models of the objective function, with either a minimum (Grad.
Min.) or mean (Grad. Mean) over the ensemble to obtain a learned prediction that is
then optimized via gradient ascent.

Evaluation protocol. Our evaluation protocol follows prior work [12, 114]: we query
each method to obtain the top N = 128 most promising optimized samples x⋆

1, · · · ,x⋆
N

according to the model, and then report the 100th percentile ground truth objective
values on this set of samples, max(x⋆

1, · · · ,x⋆
N), as well as the 50th percentile objective

values (See Appendix B.1 for numbers), averaged over 8 trials. We would argue that
such an evaluation scheme is reasonable as it is typically followed in real-world MBO
problems, where a set of optimized inputs are produced by the model, and the best
performing one of them is finally used for deployment.

Offline MBO tasks. The tasks we use can be found in the design-bench bench-
mark [114] at github.com/brandontrabucco/design-bench. Here we briefly summarize
the tasks: (A) Superconductor [29], where the goal is to optimize over 86-dimensional
superconductor designs to maximize the critical temperature using 21263 points, (B)
Hopper Controller [66], where the goal is to optimize over 5126-dimensional weights of
a neural network policy on the Hopper-v2 gym domain using a dataset of 3200 points,
and (C) Ant and (D) D’Kitty Morphology, where the goal is to design the 60 and
56-dimensional morphologies, respectively, of robots to maximize policy performance
using datasets, both of size 25009. We also evaluate COMs on tasks with a discrete input
space: (E) GFP [97], where the goal is to generate the protein sequence with maximum
fluorescence, (F) TF Bind 8, where the goal is to design a length 8 DNA sequence with
high binding affinity with particular transcriptions factors and (G) UTR [8], where
the goal is to design a length 50 human 5‘UTR DNA sequence with high ribosome
loading. We represent discrete inputs in a transformed space of continuous-valued log
probabilities for these tasks. Results for all baseline methods are based on numbers
reported by Trabucco et al. [114]. Additional details for the setup of these tasks is
provided in Appendix Section B.4.

Results on continuous tasks. Our results for different domains are shown in Ta-
ble 3.1. On three out of four continuous tasks, COMs attain the best results, in some
cases (e.g. (B) HopperController) attaining the performance of over 1.3x the best
prior method. In addition, COMs are shown to be the only method to attain higher
performance that the best training point on every task. A näıve objective model
without the conservative term, which is prone to falling off-the-manifold of valid inputs,

https://github.com/brandontrabucco/design-bench


33

0 10 20 30 40 50

Gradient ascent steps

1000

2000

3000

A
v
e
ra

g
e

R
e
tu

rn
Hopper Controller

Tau

0.2

1.0

2.0

0.5

0.1

0 10 20 30 40 50

Gradient ascent steps

8.2

8.4

8.6

8.8

R
ib

o
so

m
e

L
o
a
d

in
g UTR

Tau

4.0

0.5

8.0

1.0

2.0

Figure 3.4: Ablation of stability and universality of τ . In each of the two plots, we instantiate
COMs on the HopperController and UTR tasks, and vary τ that controls the degree of conservatism
(Equation 3.6). The x-axis denotes the number of gradient ascent steps taken on the design x∗ with

respect to f̂θ, and the y-axis indicates the 100th percentile of the ground truth function x, which
remains unobserved by the COMs algorithm, and only serves as an ablative visualization. The results
demonstrate that increasing τ improves stability of COMs, and that COMs is robust to the particular
choice of τ . We select τ = 0.5 universally for continuous tasks, and τ = 2.0 universally for discrete
tasks.

struggles in especially high-dimensional tasks. Similarly, methods based on generative
models, such as CbAS and MINs perform really poorly in the task of optimization over
high-dimensional neural network weights in the HopperController task. These results
indicate that COMs can serve as simple yet powerful method for offline MBO across a
variety of domains. Furthermore, note that COMs only require training a parametric
model y = f̂θ(x) of the objective function with a regularizer, without any need for
training a generative model, which may be harder in practice to effectively tune.

Results on tasks with a discrete input space. COMs perform competitively with
the best performing methods on GFP and TF Bind8, clearly outperforming the best
sample in the observed task dataset. COMs attain almost the best performance on the
GFP task and outperform CbAS variants and MINs on the TF Bind8 task. In addition,
COMs outperform prior methods on the UTR task, attaining performance within one
standard deviation of the highest performing method on that task.

Overall, COMs attain the best performance on 4/7 tasks, achieving a normalized
average objective value of 0.985, improving over the next best method by 16% on
average.

3.6.2 Ablation Experiments

In this section, we perform an ablative experimental analysis of COMs to answer
questions posed at the beginning of Section 4.6. First, we evaluate the efficacy of
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Figure 3.5: Ablation of consistency of COMs by visualizing sensitivity to the post-
optimization evaluation budget. How does the performance of COMs and näıve gradient ascent
vary as the evaluation budget is reduced? In our standard evaluation, we allow each offline MBO
algorithm a “budget” of 128 evaluations for determining 100th and 50th percentile performance. The
x-axis indicates the number N of allowed evaluations, and the y-axis indicates the 100th percentile
performance of the chosen N points. As this evaluation budget is reduced, COMs is resilient, and
remains superior to the näıve objective trained via supervised regression and optimized via standard
gradient ascent. In the case of HopperController, COMs is nearly invariant to budgets down to size
55. This indicates COMs consistently produce optimized x⋆ that attain high values under the true
function.

using conservative training for learning a model of the objective function by comparing
COMs to a näıve gradient ascent baseline and show that COMs are more stable, i.e.,
the optimization performance of COMs is much less sensitive to the number of gradient
ascent steps used for optimization. Second, we evaluate the effect of varying values of the
Lagrange threshold τ in Equation 3.6. Third, we demonstrate the consistency of COMs
by evaluating the sensitivity of the optimization performance with respect to the number
of samples N , that are used to compute the evaluation metric max(x∗

1, · · · ,x∗
N).

COMs are more stable than näıve gradient ascent. In order to better compare
COMs and a näıve objective model optimized using gradient ascent, we visualize the true
objective value for each xt encountered during optimization (t in Line 2, Algorithm 2)
in Figure 3.3. Observe that a näıve objective model can attain good performance for a
“hand-tuned” number of gradient ascent steps, but it soon degrades in performance with
more steps. This indicates that COMs are much more stable to the choice of number of
gradient ascent steps performed than a näıve objective model.

Ablation of τ in Equation 3.6. In Figure 3.4, we evaluate the sensitivity of the
performance of COMs as a function of the value of τ . As shown in Figure 3.4, we find
that within the range of values evaluated, a higher value of τ gives rise to more stable
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optimization behavior, and we were able to utilize a universal value of τ = 0.5 for all
tasks with a continuous input space and τ = 2.0 for all tasks with a discrete input
space.

COMs consistently produce well-performing inputs. Finally, we evaluate the
sensitivity of COMs to the evaluation procedure itself. Standard evaluation practice in
offline MBO dictates evaluating a batch of N most promising candidate inputs produced
by the algorithm with the ground truth objective, where N remains constant across all
algorithms [114, 12], and using the maximum value attained over these inputs as the
performance of the algorithm, i.e., max(x∗

1, · · · ,x∗
N). This measures if the algorithm

performs well within a provided “evaluation budget” of N evaluations. An algorithm is
more consistent if it attains higher values of the groundtruth function with a smaller
value of the evaluation budget, N . We used N = 128 for evaluating all methods in
Table 3.1, but the value of N is technically a hyperparameter and an effective offline
MBO method should be resilient to this value, ideally. COMs are resilient to N : as
we vary N from 1 to 128 in Figure 3.5, COMs not only perform well at larger values
of N , but are also effective with smaller budgets, reaching near-optimal performance
on HopperController in with a budget of 55, while a näıve objective model needs a
budget twice as large to reach its own optimal performance, which is lower than that of
COMs.

3.7 Discussion and Conclusion

We proposed conservative objective models (COM), a simple method for offline model-
based optimization, that learns a conservative estimate of the actual objective function
and optimizes the input against this estimate. Empirically, we find that COMs give
rise to good offline optimization performance and are considerably more stable than
prior MBO methods, returning solutions that are comparable to and even better than
the best existing MBO algorithms on four benchmark tasks. In this evaluation, COMs
are consistently high performing, and in high-dimensional cases such as the Hopper
Controller task, COMs improves on the next best method by a factor of 1.3x. The
simplicity of COMs combined with their empirical strength make them a promising
optimization backbone to find solutions to challenging and high-dimensional offline
MBO problems. In contrast to certain prior methods, COMs are designed to mitigate
overestimation of out-of-distribution inputs close to the input manifold, and show
improved stability at good solutions.

While our results suggest that COMs are effective on a number of MBO problems,
there exists room for improvement. The somewhat näıve gradient-ascent optimization
procedure employed by COMs can likely be improved by combining it with manifold
modelling techniques, which can accelerate optimization by alleviating the need to
traverse the raw input space. Similar to offline RL and supervised learning, learned



36

objective models in MBO are prone to overfitting, especially in limited data settings.
Understanding different mechanisms by which overfitting can happen and correcting for
it is likely to greatly amplify the applicability of COMs to a large set of practical MBO
problems that only come with small datasets. Understanding why and how samples
found by gradient ascent become off-manifold could result in a more powerful gradient-
ascent optimization procedure that does not require a model-selection scheme.
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Chapter 4

Latent Conservative Objective
Models for Offline Data-Driven
Crystal Structure Prediction

4.1 Introduction

Data-driven optimization problems arise in many areas of science and engineering.
In these settings, we have an unknown function that we would like to optimize with
respect to its inputs, provided only with a dataset of input-output pairs. Examples
include drug design, where inputs might be molecules and outputs are the efficacy of a
drug, protein design, where inputs correspond to protein sequences and outputs are
some metric such as fluorescence [97] or, as in our experiments, prediction of crystal
structures, where inputs consist of crystal structures and outputs correspond to their
formation energy. Such data driven optimization problems present several challenges.
First, näıvely training a predictive model to predict the output from the input and then
optimizing against such a model may lead to exploitation: a sufficiently strong optimizer
can typically discover inputs that lead any learned model to extrapolate erroneously,
and then exploit these errors to find inputs that “fool” the model into making the
desired predictions. Second, even if a model can be suitably robustified, many of the
most important design and optimization problems in science and engineering, including
crystal structure prediction, require optimizing over complex sets and non-Euclidean
manifolds, such that näıvely applying gradient-based methods in the input space is
unlikely to result in a meaningful improvement.

In this chapter, we study these challenges in the context of crystal structure prediction
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(CSP) [130]. Crystals are a class of solid-state materials characterized by the periodic
placement of atoms. These structures form the basis of a wide variety of applications such
as designing super-conductors, batteries [134], and solar cells [123]. Computationally
identifying stable crystal geometries given a particular chemical formula typically
involves minimizing (an estimate of) the crystal’s formation energy to find the minimal
energy structure. Conventional approaches to this problem rely on slow and compute-
intensive DFT simulators [19], but more recent machine learning approaches dispense
with DFT-based simulators and use databases of structures and their corresponding
energies to train models that estimate crystal formation energy directly [35, 64]. However,
the CSP problem suffers from both issues outlined above: crystal structures typically
exhibit highly complex geometries characterized by periodicity of the lattice that forms
the crystal and discrete (e.g., number and types of atoms in the chemical compound)
and continuous features (e.g., positions of atoms in 3D space), which make it hard to
produce reliable estimates of energies across the entire manifold of possible structures.
Optimizing the structure using such inaccurate models then bears the risk of the
optimization procedure “exploiting” these inaccuracies, resulting in structures that
erroneously appear promising in this learned model but are not stable.

In this chapter, we aim to develop a data-driven optimization approach to overcome
these challenges. First, to avoid the complexities associated with optimization over the
complex manifold of crystal structures that consists of both discrete and continuous
objects, our optimization procedure utilizes a crystal diffusion variational auto-encoder
(CD-VAE) [133] to convert crystal structures into latent representations, which are
much more amenable to simple gradient-based optimization. Second, to prevent the
optimizer from getting “fooled” by the errors in the learned surrogate model, we
extend conservative objective models [115], a robustification procedure, to our surrogate
energy prediction model. This procedure explicitly pushes down over-estimated out-
of-distribution designs in the latent space. Using a combination of these techniques,
we develop a method for finding stable crystal structures that alleviates the time
and compute costs associated with using DFT simulators, while also addressing the
inaccuracies in a purely offline approach for designing crystal structures.

Our main contribution is a data-driven optimization approach, that we call latent
conservative objective models (LCOM), for the problem of crystal structure prediction
for solid materials. Our method leverages both advances in generative modeling over
periodic solid-state materials for latent space learning [133] and recent advances in
model-based optimization for robustifying the learned model to make it amenable
to direct optimization of formation energies [115]. We summarize the approach in
Figure 4.1. We instantiate our approach, latent conservative objective models (LCOMs),
using crystal diffusion variational auto-encoders (CD-VAE) [133] for learning the latent
space and conservative objective models (COMs) [115] for optimization. Empirically, we
demonstrate that LCOMs are able to match the performance of the best prior method
from Cheng et al. [17] while significantly reducing the total wall-clock time needed for
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optimization by 40 times. In particular, a single optimization cycle in our framework
takes an average of 2 seconds. This allows our model to provide predictions for more
than 100 compounds in 4 minutes, much faster than prior works.

Figure 4.1: Overview of LCOMs. We train a graph-based CD-VAE to construct a latent space the
represents crystal structure, conditioned on the molecular structure of the compound. Different points
in this latent space correspond to different crystal structures, and we then optimize over the structure
with simple gradient-based optimization methods operating on this latent space. To do so, we train a
surrogate energy prediction model on the learned latent space via conservative training [115] to make
it robust on out-of-distribution inputs, thus preventing the optimizer from discovering latent space
points far from the training data for which the energy predictions yield erroneously low energies. The
optimized latent vector is then decoded into a structure. Since the entire optimization is performed in
the latent space, the comparatively complex encoder and decoder only need to be used once during
optimization (to encode the initial structure and decode the final one).

4.2 Background and Definitions for Crystal Struc-

tures and Materials
In this section, we present the background definitions associated with crystals and
solid-state materials. A crystal is a solid-state material characterized by a periodic
placement of its constituents, which are chemical elements. The stoichiometry or the
composition of a crystal, like NaCl, consists of the elements that make up the solid-state
material (i.e., Na and Cl in this case) and in what ratio. In real-world applications of
solid-state materials it is not enough to develop a material with a suitable chemical
composition, but we must also account for the crystalline periodic structure of the
solid and the atoms’ positions with respect to it to assess the stability of a given
compound.

Mathematically, we can describe the periodic structure of a chemical by defining its
lattice L in 3D space, which repeats periodically. To characterize a lattice, we define its
base vectors v,w, z. Every point in the lattice is a linear combination of these vectors
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using only integer coefficients.

p ∈ L ⇐⇒ ∃n,m, k ∈ Z | p = nv + mw + kz. (4.1)

Given a lattice L, the unit cell is the volume of 3D space contained between the base
vectors, defined formally as follows:{

p ∈ R3 | ∃x, y, z ∈ [0, 1] , p = xv + yw + zz
}
. (4.2)

We can obtain the entire lattice of a crystal by periodically repeating this unit cell in 3D
space. Given a lattice in 3D space, a crystal is additionally characterized by how many
atoms n are in the unit cell. We observe that the number n is always a multiple of the
number of elements in the chemical composition of the material. For example, for a
formula MgO3, which consists of 4 atoms, we can have 4, 8, 12, or generally 4k elements
in a unit cell (one element corresponding to one atom), but not 3 or 6 elements, which
are not a multiple of 4.

Finally, we can describe atoms’ types and positions with two matrices A ∈ Rn×128,
X ∈ Rn×3. The matrix A identifies different atoms in the unit cell using a one-hot
representation. Specifically, Ai is a vector with a 1 at position Z corresponding to the
atomic number of the i-th element, and 0 everywhere else. The matrix X provides
fractional coordinates for the atoms. These are coordinates between 0 and 1 with
respect to the basis defined by the lattice base vectors. More specifically, the vector Xi

tells us that the i-th element is at X1
i v + X2

i w + X3
i z in the unit cell.

To summarize, a crystal is defined by three quantities: (1) A 3×3 matrix L representing
the lattice, the rows of which corresponding to the base vectors of the lattice; (2) number
(n) and types (A ∈ Rn×128) in the chemical; and (3) atoms positions X ∈ Rn×3, which
is specified in terms of fractional coordinates between 0 and 1. In the following sections,
we will denote a crystal with the variable x and we will use subscripts to refer to lattice
parameters xL, atoms’ types xA, and fractional coordinates xX . We finally remark that
the majority of crystal and lattice configurations for a given chemical compound are
“unstable” and would collapse to a different configuration when synthesized.

4.3 Problem Statement, Dataset, and Evaluation
Crystal structure prediction (CSP) is the problem of finding a crystal of a given
chemical composition (e.g. NaCl, or MgO3) that attains the global minimum of the
crystal formation energy. Such a crystal is sythesizable and can be utilized for various
downstream applications.

Problem 4.3.1 (Crystal structure prediction). Given a chemical composition c,
find the crystal x∗ = (L∗, A∗, X∗) with lattice matrix L∗, atom types A∗, and atom
coordinates X∗ such that x∗ minimizes the formation energy function E for the chemical
composition.

x∗ = argminxE (x, c) .
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Why is solving CSPs hard? Only very few crystal structures are actually stable and
only one of these stable structures is at a global minimum, which makes crystal structure
prediction equivalent to searching for a “needle in a haystack”. The difficulty of solving
a CSP is further compounded by the fact that the search space over all possible crystal
structures for a given chemical composition is quite complex and non-Euclidean. This
is because there is no one-to-one correspondence between the matrices (A,X) and
lattices L. Given a lattice matrix L, every other matrix that is rotationally equivalent
or permutation equivalent represents the same lattice. Moreover, reducing the design
space from all possible structures to only stable ones changes the manifold of designs
considerably.

In principle, we could always attempt to find the globally optimal crystal structure
by evaluating many possible candidate structures against a simulator, but simulators
for CSP are typically based on density functional theory (DFT), and generally these
are extremely slow in terms of the wall-clock time. Therefore, we intend to solve this
problem using only existing static datasets (OQMD [94] and MatBench [24]). that
contain several (sub-optimal) crystal structures for a variety of chemical compounds
along with their corresponding formation energies. With no access to the simulator,
our goal is to find a globally optimal crystal structure given a new chemical compound.
We describe our procedure for constructing the dataset to train on and our evaluation
protocol next.

4.3.1 Datasets for Training
To robustly evaluate our method, we consider two training scenarios with different
datasets: the OQMD dataset [94] and the MatBench dataset [24], both of which consist
of the crystal structures and formation energies for obtained via DFT simulations.
Every sample in the dataset represents a stable crystal structure x (i.e., a crystal at
a local minimum of energy) computed via numerical relaxation [47], together with its
chemical composition c and formation energy E (x, c). We chose these datasets because
of their large size (OQMD has more than 1 million examples), and the availability
of more than one stable structure per chemical, all of which are not at their global
optimum.

4.3.2 Held-Out Evaluation Datasets
We evaluate our offline optimization approach in terms of its efficacy in discovering
the globally optimal structure for a given chemical compound. To this end, following
the protocol of Cheng et al. [17], we construct a held-out test set consisting of some
compounds and the associated globally optimal crystal structures (Table 4.1) and utilize
this set for evaluations.
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4.3.3 Evaluation Protocol
Following the evaluation protocol in prior works [133, 17], we test our method in terms
of its efficacy in recovering the globally optimal structure on 26 of the 29 compounds in
[17], where the 3 remaining compounds are omitted because they cannot be simulated
with GPAW to compute their ground truth energy values. These compounds are
listed in Table 4.1. For each of these compounds, we run our optimization process
to convergence and check the final energy of the optimized design. We compare the
optimized energy against the known global minimum energy. We consider it a success
if the final energy of the optimized structure produced by our approach recovers the
value of the known global minimum, up to a predefined noise threshold of 20% of the
ground truth minimum energy.

To stress-test our gradient-based optimization approach, we seed the optimizer with
a random stable initial crystal structure. We compute this initial stable structure by
running simulations in the GPAW [27] simulator, an open-source DFT simulator fully
integrated into python packages for chemistry like ase and pymatgen. Concretely, we
utilized the following protocol for obtaining this initial crystal structure: (i) for every
compound, we first select the number of atoms corresponding to the optimal compound
design as listed in the materials project database, (ii) we then randomly initialize the
lattice matrix and the atom coordinates, and (iii) we then run the process of structure
relaxation in the simulator to obtain the closest local minimum (i.e., a closeby structure
that is stable).

4.4 LCOMs: Latent Conservative Objective Models

for Structure Prediction
To design crystal structures with the lowest possible energy entirely from an existing
dataset of only sub-optimal structures, we utilize techniques from data-driven offline
model-based optimization. Directly applying these techniques [115, 136, 87] for optimiz-
ing crystals is non-trivial as these methods typically employ optimization procedures
that iteratively make local changes to the design (e.g., gradient-based updates or random
mutations) to optimize a “surrogate” estimate of the objective function. Such iterative
procedures fall short when optimizing over non-smooth geometries and non-Euclidean
manifolds like that of crystals. To alleviate this issue, we propose an approach for
offline optimization that first learns a latent vector representation for a crystal structure,
then performs data-driven optimization in this vector space, and finally maps back the
resulting outcome to a valid crystal structure. We outline each part of this procedure
below.
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4.4.1 Transforming Crystal Structures to a Latent Represen-
tation

Which sort of a latent representation space is especially desirable for CSP? Since one of
the central challenges in our problem is the abundance of invalid or infeasible structures
in the space of all possible crystals, it is very desirable to learn latent representations that
only encode valid and feasible structures. Once we learn such a space, we can directly
perform offline optimization in this latent space. If we can ensure that every possible
latent vector corresponds to some feasible crystal structure, then we are guaranteed to
at least prune out the possibility of finding infeasible structures during the optimization
process. To this end, we train a crystal diffusion variational auto-encoder (CD-VAE) on
our training dataset for various chemical compositions, and then run offline optimization
in the latent space of this auto-encoder. Since our training dataset only consists of
stable structures, the decoder of a well-trained CD-VAE should map latent vectors to
the manifold of stable crystal structures only, which would greatly benefit optimization
by enabling the optimizer to move in a much smaller manifold. Below we describe the
architecture and the training objective for the CD-VAE.

CD-VAE. A CD-VAE [133] is composed of three parts: a graph neural network
(GNN) encoder PGNNEnc that takes a crystal x as input and outputs a latent vector
representation, an NN predictor MLPAgg that outputs lattice parameters xL from
its encoded representation PGNNEnc (x, c), and a GNN diffusion denoiser PGNNDec

that takes a random noisy crystal x̃ and a latent encoding PGNNEnc (x, c) as inputs,
and outputs forces to apply on the atoms coordinates x̃X to build the original crystal
x via a diffusion process. Following Xie et al. [133], the encoder PGNNEnc uses a
DimeNet++ [64] architecture. Likewise, the decoder PGNNDec uses a GemNet-dQ
[35] architecture. During decoding, CD-VAE initializes a structure with random lattice
and coordinates and utilizes Langevin dynamics [108] to gradually recover the stable
structure represented by the latent vector.

To make the notation compact, we will refer to the PGNNEnc as ϕ, and thus the latent
representation of a crystal x with chemical composition c will be denoted by ϕ(x, c).
We will use the notation PGNNDec (z) to denote the structure obtained after applying
the denoising process with latent vector z. Akin to a variational auto-encoder [61],
CD-VAE [133] is also trained to maximize the likelihood of crystral structures seen in
the dataset, agnostic of the energy objective that we wish to optimize.

Training objective for the latent representation. We follow the training objective
utilized by the CD-VAE [133]. The first term in this objective is the reconstruction
error over lattice parameters, formally defined as:

LAgg (MLPAgg (ϕ(x, c)) ,xL) = ∥xL − ϕ(x, c)∥2. (4.3)

Akin to a VAE [61], we also include a loss term minimizes the KL-divergence between a
normal distribution over the latent representation induced by the encoder (with mean
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ϕ(x, c) and a learned standard deviation) and a standard multi-dimensional normal
distribution.

The decoder of the CD-VAE is a denoising diffusion model [54] that attempts to
transform an input latent vector into the corresponding crystal structure, starting from
a random structure x̃, which is iteratively refined via the diffusion process. Succinctly,
the objective for training this term is given by

LDec (x̃,x, ϕ(x, c)) =
1

2L

L∑
j=1

[
Eσj

∥∥∥∥PGNNDec (x̃, ϕ(x, c))− d (xX , x̃X)

σj

∥∥∥∥] , (4.4)

where {σj}Lj=1 are noise schedule scalars for the diffusion process and are in a geometric
sequence with common ratio greater than 1. Finally, we remark that we do not utilize
terms for reconstructing types or the number of atoms (i.e., xA or xn) because our
optimization procedure only aims to optimize over other parameters of the crystal
lattice so the number and types of atoms are fixed.

4.4.2 Conservative Optimization in Latent Space
Once the encoder of the CD-VAE is trained, we can then train a surrogate model,
Êθ(ϕ(x, c), c) to estimate the formation energy E of a crystal structure x for a given
chemical composition, c via standard supervised regression. Then, we can simply
optimize the crystal structure to maximize the outputs of this surrogate model. However,
as prior works [67, 115] note, this simple strategy often fails at finding optimized designs
due to the exploitation of errors in the learned surrogate model by the optimizer. To
address this issue, we extend the conservative objective models (COMs) technique from
Trabucco et al. [115] for optimizing crystals in the learned latent space.

Training latent space conservative models. To prevent the optimization procedure
from exploiting inaccuracies in this learned surrogate model, we apply an additional
regularizer from Trabucco et al. [115], Kumar et al. [68] to robustify the surrogate
model. This regularizer mines for adversarial vectors in the latent space z+ that
appear to have very low energies Êθ(z

+, c) under the learned surrogate model, and then

explicitly pushes up the predicted energy Êθ(z
+, c) on such adversarial z+. Following

the COMs approach [115], we interleave the training of the learned surrogate model

Êθ with an optimization procedure Opt(Êθ, c) that seeks to find the aforementioned
adversarial vectors z+ that optimize the current snapshot for the surrogate model, for a
given chemical composition c. After these adversarial vectors are found, the training
procedure explicitly pushes up the energy output of the surrogate model on such points.
To compensate for the effect of increasing the learned energy values in an unbounded
manner on all latent vectors, we additionally balance the push up term by pushing
down the energy values on the latent representations induced by crystal structures in
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the data. This idea can be formalized into the following loss for training Êθ:

minθ Ec,x∼D

[(
Êθ(ϕ(x, c), c)− E(x, c)

)2
]
− α

(
Ec,x∼D

[
Ez+∼Opt(Êθ,c)

[Êθ(z
+, c)]− Êθ(ϕ(x, c), c)

])
.

We will discuss the precise formulation for Opt below. Crucially, note that unlike
COMs [115], which directly runs gradient descent in the input space, our approach
operates in the latent space.

Optimizing in the latent space. Once a conservative surrogate model Êθ(z, c) is
obtained using the above training procedure, we must now optimize this model to
obtain the best possible structures. The optimization procedure Opt that was used to
obtain adversarial latent vectors in the training objective above can then be repurposed
to obtain optimized latent vectors once the latent conservative model is trained. Since
the latent space z is a continuous Euclidean vector space, for any given chemical
composition c, our choice of Opt is to run T rounds of gradient descent on the surrogate
energy Êθ(z, c) with respect to the latent vector z, starting from the latent vector z0
corresponding to a random initial crystal structure. For a given c, this procedure can
be formalized as follows:

zk+1 ← zk − α∇zÊθ(z, c), (4.5)

where z0 ∼ ϕ(x0, c), x0 ∼ D.

Once this optimization procedure is run for T steps, we pass the final latent vector zT
to the decoder of the pre-trained CD-VAE to obtain the optimized crystal structure:
x̂∗ = PGNNDec(zT ).

4.4.3 Implementation Details
For obtaining the latent space, we train a CD-VAE identically to Xie et al. [133] on our
datasets, following their implementation details for the encoder and the decoder. After
training the CD-VAE, we encode molecule structures from the dataset into vectors,
and these vectors are then used as inputs for training the optimization model. For
training LCOMs, we represent the conservative objective model Êθ(ϕ(x, c), c) as a
neural network with two hidden layers of size 2048 each and leaky ReLU activations.
For computing z+, we perform one gradient descent step on the vector z from input
latent space. We perform 50 gradient steps and get an optimized vector in the latent
space. We then decode these latent vectors into an optimized crystal structure. For
reporting statistically robust results, we repeat the optimization procedure for three
seeds and average over the resulting energy value.

4.5 Related Work
One widely studied optimization-based approach to CSP utilizes evolutionary algo-
rithms [73, 80]. For instance, USPEX [39] is an algorithm that uses a variety of



46

heuristic strategies for iteratively evolving structures directly in the space of the crystal
parameters. Each of these intermediate structures need to be evaluated against the
simulator, which repeatedly involves running relaxation to the nearest stable structure.
This extensive use of simulation makes such an approach computationally impractical,
necessitating offline learning-based approaches like our method that do not require any
simulation.

Due to the availability of large public datasets such as the materials project database
and the open catalyst project [15], recent works develop learning-based approaches for
solving CSPs. Another subset includes methods that use different types of evolutionary
optimizers to optimize a GNN-based surrogate energy model instead of the ground-truth
energy function. This includes methods based on random search [17], particle swarm
optimization [21], and Bayesian optimization [83]. In contrast, our method prescribes
the use a conservative surrogate model of the energy function, that takes as input a
latent representation of the crystal. As we show in our experimental results, both
of these aspects are crucial for effectively tackling the crystal structure prediction
problem.

Another related line of prior work aims to learn generative models for graph-structured
data including, but not limited to crystal structures. This includes methods that
leverage variational auto-encoders [103] normalizing flows [98], generative adversarial
networks [59], recurrent neural networks [44], reinforcement learning techniques [84] or
a combination of auto-encoders and diffusion models, for example, the CD-VAE [133],
that we build upon. While these approaches aim to model the manifold the graph-
structured data and our approach utilizes the latent space learned by one such approach,
CD-VAE [133], our goal of optimizing the structure is distinct from the goal of modelling
the data.

Model-based optimization (MBO) refers to the problem of optimizing an unknown
function by constructing a surrogate model. Bayesian optimization represents one of
the most widely known classes of MBO methods [106, 105, 38], but classically MBO
requires iteratively sampling new function values, which can be very expensive when
evaluating a crystal structure’s energy requires an expensive simulation process. More
recently, offline MBO methods, sometimes referred to as data-driven optimization,
have been proposed to optimize designs based entirely on previously collected static
datasets [11, 114, 66, 115, 87]. Our work builds on these methods, and is most closely
related to the COMs algorithm proposed by Trabucco et al. [115]. However, while prior
offline MBO methods focus on robustifying the surrogate model while optimizing in
the original design space, we integrate these approaches with latent space optimization
that makes it possible to optimize over the manifold of only stable crystal structures,
while still using a simple gradient descent optimizer at the core.
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4.6 Experimental Evaluation
The goal of our experimental evaluation is to evaluate the efficacy of LCOMs for crystal
structure prediction by answering the following questions: (1) Can LCOMs successfully
optimize in the latent representation space?, (2) Do LCOMs manage to effectively
recover the optimal energy structure up to a pre-defined threshold of accuracy?, and (3)
Does LCOM drastically reduce simulation wall-clock time compared to prior methods?
To answer these questions, we evaluate LCOMs against prior methods following the
protocol from Section 5.3 and then perform some diagnostic experimental studies that
we will discuss in this section.

Comparing LCOMs with baselines and prior methods. We compare LCOMs to
three methods from prior work [17]: random search (RAS), particle-swarm optimization
(PSO), and Bayesian optimization (BO). We also study two baseline methods: a method
that does not run any optimization in the latent space and simply constructs a stable
structure for a given chemical compound via the decoder (“CD-VAE”), and a method
where the crystal is optimized with a näıve supervised learning model in the latent space
of the CD-VAE via gradient descent (”Supervised learning; SL”). Note that the latter
is similar to LCOMs, but the surrogate energy prediction model is not trained with
any conservatism, but rather with only standard supervised regression. We evaluate
these methods on the 26 chemical compounds in our evaluation dataset, and present
the results in Table 4.1. During evaluation, we mark a crystal structure successful if
the energy of the optimized structure is close to the energy of the best known globally
optimal structure up to a certain threshold. This threshold is defined as an upper
bound of 0.2 on the quantity (E(x, c∗)− E(x, ĉ)) /|E(x, c∗)| to account for imprecision
in the simulator, where c∗ is the ground truth optimal crystal and ĉ is the optimized
crystal discovered by the optimization algorithm.

The results in Table 4.1 show that when trained on OQMD, our method improves
significantly over näıvely optimizing in the CD-VAE latent space without conservative
training (supervised learning; SL), and also that it is competitive with the prior state-
of-the-art methods RAS, PSO, and BO, exceeding the performance of the PSO baseline
and matching BO and RAS, without needing any simulations (we will quantify the
benefits on wall-clock time soon). A similar trend also holds for the MatBench dataset
in Table 4.1, indicating that LCOMs is performant for different choices of the training
data. We do note that the BO and RAS approaches outperform LCOMs when trained
on the MatBench dataset, but this is an artifact of the difference of our evaluation
metric compared to prior work [17] on this task1. No optimization over the latent space
and only utilizing the CD-VAE decoder (denoted as CD-VAE) to decode a structure

1Our evaluation protocol for determining the optimality of a structure uses an energy threshold.
This is a contrast to Cheng et al. [17], which adopts a manual inspection approach to check for equality
between optimized and optimal structures as their evaluation criterion. As such, comparisons between
our work and that of Cheng et al. [17] should be made with an understanding of this fundamental
difference in evaluation methodology.
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OQMD Baselines MatBench

Compounds RAS* PSO BO* LCOMs SL CD-VAE RAS* PSO BO* LCOMs

LiF ✓ ✓ ✓ ✓ ✓
NaF ✓ ✓ ✓ ✓ ✓ ✓
KF ✓ ✓ ✓ ✓ ✓ ✓ ✓
RbF ✓ ✓ ✓ ✓ ✓ ✓
CsF ✓ ✓ ✓ ✓ ✓
LiCl ✓
NaCl ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
KCl ✓ ✓ ✓ ✓ ✓
RbCl ✓ ✓ ✓ ✓ ✓ ✓
CsCl ✓ ✓ ✓ ✓ ✓ ✓
BeO ✓ ✓ ✓ ✓ ✓ ✓
MgO ✓ ✓ ✓ ✓ ✓ ✓
CaO ✓ ✓ ✓ ✓ ✓ ✓ ✓
SrO ✓ ✓ ✓ ✓ ✓ ✓ ✓
BaO ✓ ✓ ✓ ✓
ZnO ✓ ✓ ✓ ✓ ✓ ✓
CdO ✓ ✓ ✓
BeS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
MgS ✓ ✓ ✓ ✓
CaS ✓ ✓ ✓ ✓ ✓ ✓
SrS ✓ ✓ ✓ ✓ ✓ ✓
BaS ✓ ✓ ✓ ✓ ✓
ZnS ✓ ✓ ✓ ✓ ✓
CdS ✓ ✓
C ✓ ✓
Si ✓ ✓

Accuracy 17/26 6/26 16/26 16/26 5/26 6/26 20/26 8/26 22/26 19/26

Table 4.1: Evaluation of LCOMs and other prior crystal structure prediction methods in
terms of the accuracy of discovering the globally optimal structure for 26 compounds. Check marks
indicate successful discovery as per our criterion. Note crucially that while we utilize a threshold on
optimization energy to determine success, prior work utilizes a manual inspection protocol as discussed
in the footnote in Section 4.6.

for the test chemical formula does not perform well.

Does LCOM improve over prior methods in terms of wall-clock time? Our
method optimizes the crystal structure in the latent space of the CD-VAE, using gradient-
based optimization. One advantage of this approach is computational efficiency, since
the complex graph-based component of the pipeline is only used during the encoding
and decoding stages at the beginning and end of the optimization, rather than at each
optimization step. Hence, we measure the wall-clock time needed to run optimization
with LCOMs comparatively against other prior methods in Table 4.2. Observe that
while utilizing a graph neural network (GNN-BO) reduces the wall-clock time needed
by about 875× compared to DFT-PSO that queries the simulator for every design,
LCOMs further reduces the wall-clock time 40× by running optimization in the latent
space of a CD-VAE, which does not require running expensive message passing loops of
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a graph neural network encoder but rather runs relatively faster forward passes through
small MLPs. This indicates that LCOMs not only discovers are more optimal crystal
structure, but it does so 40× faster than the best prior method.

DFT-PSO GN-BO LCOMs

Optimization time per structure (seconds) 70000 80 2

Table 4.2: Comparing wall-clock time for different methods. Observe that not using a
simulator reduces the wall-clock time from 70000 seconds to 80 seconds per structure, and further
utilizing a latent space surrogate model in LCOMs instead of a graph neural network model cuts down
the total time further by 40× to 2 seconds.

Figure 4.2: Comparing the energy of intermediate structures observed over the course
of optimization with LCOMs (blue) and non-conservative models (orange). Note that while the
non-conservative model gets exploited as more steps of gradient-based optimization are performed,
structures discovered by conservative LCOMs attain lower energies after gradient descent, and the
final structures are close to the global optimum (marked as red in the plot above).

How does conservative training influence optimization? In the next set of
experiments, we aim to understand how conservative training of the surrogate model
influences the behavior of gradient descent optimization in the CD-VAE latent space.
If the energy model is trained näıvely (i.e., with standard supervised regression), it will
make arbitrarily erroneous predictions when queried on adversarial, out-of-distribution
crystals that differ too much from the training data. Some of these errors will be
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under-estimation errors, and therefore, a strong optimizer would be able to exploit
these errors to find points in the latent space for which the model erroneously predicts
arbitrarily low energies. Empirically, we evaluate the performance of optimized crystals
obtained by running 50 gradient steps of optimization on the learned surrogate models
starting from an initial structure. Specifically, we compute the relative improvement in
energy values after optimization, formally calculated as (E(x, c0)− E(x, ĉ)) /|E(x, c0)|,
where c0 denotes the initialization structure and ĉ denotes the optimized structure)
during optimization in Figure 4.3.

Figure 4.3: Comparison of energy improvements produced by LCOMs and the non-
conservative supervised learning (SL) baseline. Top: Energy improvement for 25 compositions,
when training on the OQMD dataset; Bottom: energy improvement over a set of 83 chemical
compositions, when training on the MatBench dataset. Note that structures found by LCOMs achieve
better formation energy after optimization, while the non-conservative supervised learning model
actually leads to structures with worse energy values (negative improvement). The quantity on the
y-axis represents the percentage of improvement (reduction) in the energy value. These results indicate
that conservative training is essential for successfully instantiating a method with gradient-based latent
space optimization for crystal structure prediction.
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Observe that while LCOMs generally produces positive improvement, the non-conservative
model leads to negative improvement: the optimized structures are generally worse
than the random structure at initialization. This indicates that conservative training
is critical for latent space optimization to work. We also perform a more fine-grained
analysis, where we plot the trajectory of evolution of the energy values over each round
of optimization in Figure 4.2. Observe that for the non-conservative model (orange),
the energy increases over the course of optimization indicating that the optimizer is
exploiting errors in the learned model. This exploitation is absent for LCOMs (in blue),
indicating that conservatism is crucial for attaining good performance.

4.7 Discussion, Future Directions, and Limitations

We presented a method for offline optimization that uses the latent space of a CD-VAE
to perform smooth gradient-based optimization of complex structures, with application
to crystal structure prediction. Our method combines concepts from conservative
objective models that robustify predictive models to make them amenable to gradient-
based optimization, with generative models of graphs, which provide us with a latent
space over crystal structures that overcomes the complex geometry of the design space,
enabling us to use simple gradient-based optimization methods. Experiments show that
our method can successfully optimize the formation energy and recover the optimal
structure of a chemical compound with a good level of accuracy, comparing favorably
with existing approaches, while tremendously reducing computation time. A limitation
of our work and an interesting avenue for future work is to study the efficacy of LCOMs
in more problems in computational chemistry. Another direction for future work is to
use the best performing models to predict the optimized structure for novel chemicals
and validate the predictions experimentally.
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Chapter 5

Designing Cell Type-Specific
Promoter Sequences via
Conservative Model-Based
Optimization

5.1 Introduction

Gene therapies treat diseases through the delivery and expression of therapeutic genetic
cargo in disease-associated cells and tissues. Expression of the genetic cargo is controlled
by its promoter sequence, a regulatory DNA sequence that is placed upstream of the
coding region. To increase the effectiveness of gene therapy and reduce side-effects,
the promoter needs to differentially induce expression in targeted cells while repressing
expression in all other cells i.e. it needs to be cell type-specific (we will use cell
type-specific promoter and differentially expressed promoter interchangably in this
paper). Although the human body consists of over 400 types of cells [111], very few cell
type-specific promoters have been discovered. Conventional promoter design techniques
rely heavily on manual curation and involve tiling known cis-regulatory elements (CREs)
or transcription factor (TF) binding motifs [74, 79, 131]. These techniques are difficult
to automate and are not guaranteed to work, especially in less studied cell types.

An alternate data-driven paradigm for promoter design could significantly accelerate
promoter discovery and improve the effectiveness of gene therapy. Specifically, if we can
obtain reasonably accurate predictors for promoter-driven gene expression from data,
we can simply optimize for the promoter sequence against this learned surrogate model.
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Building on this insight, in this paper, we develop sequence-based learned predictors
of promoter-driven expression and use them in conjunction with offline model-based
optimization (MBO) algorithms to automate the design of cell-type specific promoters.
While this sort of a paradigm is feasible in principle, for most cell types, very little
promoter-driven expression data is available. To circumvent this challenge, we can
borrow inspiration from supervised learning methods and first pre-train a model on
diverse promoter-driven expression datasets, followed by fine-tuning to produce accurate
models of promoter-driven expression [89]. However, despite the good in-distribution
generalization of these approaches, models can perform poorly on out-of-distribution
sequences, making them unsuitable for direct optimization. Moreover, to effectively
use experimental validation resources, designed promoters need to be diverse so as to
account for incorrect predictions.

The main contribution of this paper is a model-based optimization approach for designing
promoter sequences, that we call conservative promoter design (CPD). Our approach
first pre-trains a model for promoter-driven expression using large existing promoter-
driven expression datasets and then fine-tunes this model using limited amount of data
available for a set of target cell types. Then, it utilizes conservative optimization to
optimize designs against this learned surrogate model. Our in silico results show that
CPD is able to design highly diverse cell type-specific promoters reliably across different
target cell types, significantly outperforming prior methods.

5.2 Preliminaries of Offline Model-Based Optimiza-

tion

In this section we provide some background on offline model-based optimization meth-
ods. Typically, the goal in offline data-driven model-based optimization is to produce
designs that maximize some objective function, using experience from a provided static
dataset.

Offline model-based optimization. In the specific setting of promoter design,
experimentation is quite expensive and time-consuming, hence the only viable approach
is an offline approach, that can convert a dataset of historical measurements into an
effective design. In the setting of offline MBO, an algorithm is provided access to a
static dataset D = {(xi, yi)} of designs xi and a corresponding measurement of the
objective value yi. The algorithm consumes this dataset and produces an optimized
candidate design x∗ which is evaluated against the true objective function.

The offline MBO problem often involves learning a proxy objective fθ mapping input
sequence to measured property of interest, which we hereafter refer to as the design
model. Optimization is then performed to find an input which maximizes this learned
design model: x∗ = arg maxx fθ(x). In applying MBO to biological data, the workflow
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may resemble: (1) collect data (experimentally or from publicly available sources); (2)
train the model (or fine-tune a pre-trained model) via supervised learning; (4) perform
optimization on the learned model with respect to its inputs, such as by in silico
directed evolution or other classes of discrete optimization methods; and (5) evaluate
the optimized designs using multiple oracle models. An oracle model is a model which
(ideally) approximates the ground truth for evaluating new designs, following prior work
[12, 114].

Distribution shift in offline MBO and conservative regularization. While
we can train the design model fθ(x) on a broad training dataset, the design model
may still suffer from generalization failures common to supervised regression models.
To computationally explore new regions of the sequence space, it is intuitive to move
further away from the data distributions already experimentally explored to create more
sequence diversity, but we will run into greater risk of model inaccuracy. Optimizing
the promoter against the output of such a prediction model may still produce promoter
sequences that are invalid and unstable, especially when trying to start the optimization
from already good promoters. To alleviate this issue, we suggest learning a conservative
model of the objective function, that is trained via a regularized supervised regression
procedure following the COMs method of Trabucco et al. [115]. This conservative
regularizer penalizes the value of the design model on unseen and potentially invalid
promoters µ(x) that appear promising under the learned model fθ(·), preventing the
discrete optimizer from designing promoters which appear promising under the learned
design model, but do not actually perform well.

min
θ

Ex∼D
[
(fθ(x)− y)2

]︸ ︷︷ ︸
:= supervised loss

+α (Ex∼µ [fθ(x)]− Ex∼D [fθ(x)])︸ ︷︷ ︸
:= conservative regularizer

. (5.1)

While explicit conservative regularization may not be needed when optimizing a promoter
sequence sampled uniformly at random from the training dataset only upto a few
mutations, we find in our experiments that an adequate amount of conservatism is
needed if we wish to improve the high-scoring promoter sequences observed in the
data.

5.3 Problem Setup

As mentioned in Section 5.1, it would be very beneficial for effective gene therapy to
have a data-driven method that designs cell type-specific promoters in many settings.
This work describes a COMs-based [115] method to address this need. To evaluate our
promoter design method, we use it to design cell type-specific promoters for three cell
lines - Jurkat, K-562 and THP-1. For any given target cell tc ∈ {Jurkat, K-562, THP-1},
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we define the differential expression induced by a promoter sequence x (i.e. its cell
type-specificity) as:

DEtc(x) = etc(x)− 1

2

∑
oc ̸=tc

eoc(x) (5.2)

where ec(x), c ∈ {Jurkat, K-562, THP-1} is the experimentally measured expression
value induced by x in cell c. Our goal is to design sequences that maximize DEtc.

The design models are trained to predict ec(x) in all three cell lines simultaneously using
multi-task learning (MTL). We denote their predictions by ecθ(x) and the predicted
differential expression DEtc

θ can be computed using the individual expression predictions.
Since we do not have access to experimentally measured expression values, our offline
MBO method aims to design sequences that maximize DEtc

θ while using the conservative
regularizer during the training of the design models. As described in the previous
section, using the regularizer increases the likelihood of finding sequences that also
maximize DEtc.

We use the data, pre-training tasks, and the general model architecture from Reddy
et al. [89] to get our design model (more details about the pre-training tasks and model
are in Section 5.4). They collected promoter-driven expression data in Jurkat, K-562
and THP-1 for 17,104 sequences that are 250 base pairs (bp) long. These sequences
consist of promoters of naturally differentially expressed genes, sequences generated
by tiling motifs enriched in differentially expressed gene promoters, and promoters of
constitutive genes. Additionally, promoters are experimentally validated in batches
using reporter assays with batch sizes ranging from a few hundred to many thousands
or even millions, depending on the assay. Thus, we need our design method to generate
multiple cell type-specific promoters for each of the three cell lines. We aim to design
promoters for the assay used by Reddy et al. [89] that can measure promoter-driven
expression from 15,000-20,000 promoters and thus design 5,000 promoters for each cell
line.

5.4 CPD: Conservative Promoter Design

In this section we describe our approach, CPD, for designing cell type-specific promoters
purely from offline data. Our workflow consists of three stages: (1) pre-training a
base model on large existing datasets, (2) fine-tuning the pre-trained model on our
targeted dataset with conservative regularization, (3) generating differentially expressed
sequences by balancing optimality and diversity.
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5.4.1 Pre-Training on Promoter Driven Expression Datasets

Collecting a large dataset with experimental measurements of promoter-driven expres-
sion in multiple cell types is expensive and time-consuming. Therefore, it is highly
desirable to leverage existing large datasets of promoter-driven expressions to learn
relevant information. Inspired by the recent success of pre-training in deep learning
models [22, 50, 16, 13], we first pre-train a base model on several existing promoter
datasets, following the process of Reddy et al. [89].

Promoter-driven expression datasets. Reddy et al. [89] identified that pre-training
on existing large-scale promoter-driven expression datasets from massively parallel
reporter assays (MPRA) leads to significantly better modelling of smaller promoter-
driven expression datasets. They used data from two MPRAs for pretraining - SuRE
MPRA [119] and Sharpr-MPRA [28]. SuRE MPRA measures the expression induced
by 150-500bp genomic fragments from 4 individuals from 4 different populations in
the K-562 and HepG2 cell lines. ∼ 2.4B and ∼ 1.2B fragments were found to be
expressed in K-562 and HepG2 respectively. Most fragments have very low expression
and training on all measurements is time-consuming. Thus, Reddy et al. [89] define a
classification task using this data that subsets the data and bins each sequence into one
of 5 expression bins. We also use this classification task for pre-training. Sharpr-MPRA
is a smaller scale MPRA that measures the expression from ∼ 487K 145bp sequences
centered at DNase I peaks in K-562 and HepG2 cells and in two different settings.
Reddy et al. [89] use a preprocessed version of this data from Movva et al. [78] that
builds a regression task with 12 outputs (2 replicates for expression measured in 2
settings in 2 cell lines and 4 outputs that correspond to the average expression across
replicates). We use the same formulation for pre-training our models.

Model architecture and pre-training objectives. For the model architecture, we
follow the pre-training procedure of Reddy et al. [89]. Specifically, we use a hybrid
of 1D convolution and transformer [121] network. Before feeding the DNA sequence
into the network, we first encode it into a sequence of one-hot embedding vectors.
The embedding vectors are then fed into a stack of 1D convolution layers. After the
convolution layers, we prepend a learnable CLS token [22] to the embedding vectors
and feed them into a stack of transformer blocks, where we apply rotary positional
embeddings [110] in each attention layer. We provide details of our architecture in
Appendix D.2.1.

The output layer produces the probability of a sequence belonging to each of the
expression bins for the SuRE MPRA-based pre-training task and directly predicts the
expression values for the Sharpr-MPRA-based pre-training task. We minimize the
sum of the negative log-likelihood (NLL) loss for the SuRE MPRA task and the mean
squared error (MSE) loss for the Sharpr-MPRA task (since both tasks have distinct
sequences, a training sequence only contributes to one of the two loss terms, the other
loss is set to zero for that sequence).
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5.4.2 Finetuning on Target Cell Type Dataset with Conser-
vatism

After pre-training the model on existing datasets of promoter driven gene expression,
we finetune it on the datasets we collect for the target cell types in order to form
a design model. In order to have the model output the three expression levels for
the target TPH-1, Jurkat and K562 cell types, we discard the output layer of the
pre-trained model and attach three randomly initialized output heads, where each head
consists of a multilayer perceptron (MLP) with 2 hidden layers and 512 units width.
As described in Section 5.2, since we will be optimizing against the model to design
promoter sequences, it is imperative to address the distribution shift problem, so we
employ the COMs [115] regularization on top of our supervised fine-tuning objective.
Let us denote the model prediction for expression level in cell type i as f i

θ(x), then the
overall fine-tuning objective can be written as:

min
θ

∑
i

{
Ex∼D

[
(f i

θ(x)− yi)
2
]

+ α
(
Ex∼µ

[
DEi

θ(x)
]
− Ex∼D

[
DEi

θ(x)
])}

(5.3)

where i ∈ {Jurkat, THP-1, K562} indicates the cell types and DEi
θ(x) := f i

θ(x) −
1
2

∑
j ̸=i f

j
θ (x) is the design model predicted difference in expression levels between the

target cell type i and two other cell types. In contrast to the canonical formulation
of COMs in Eqn 5.1, we push up and push down the difference of expression levels
instead of just the expression levels since our goal here is to maximize the difference.
For the unseen, overestimated promoter distribution µ(x), we use a gradient ascent
optimizer and perform T steps of gradient ascent on DEi

θ(x) starting from a promoter
sequence in the dataset, similar to that in COMs [115]. Since the DNA sequences are
discrete, we perform the optimization in the probability simplex in the one-hot encoded
space, paramterized by a softmax function. At the end of T steps of gradient ascent, we
perform a hard clipping so that the resulting sequence is a valid one-hot encoding.

5.4.3 Balancing Optimality and Diversity in Promoter De-
sign

After fine-tuning the model, we run the gradient ascent optimizer on the differential
expression values predicted by the model to generate the design candidates. Specifically,
starting from each promoter sequence in the dataset, we perform T steps of gradient
ascent optimization to get an optimized sequence. This process gives us a large pool
of design candidates. As discussed in Section 5.3, in our problem, we simultaneously
evaluate the expression of multiple design candidates (say, K) at once. This is unlike
typical offline model-based optimization problems where an algorithm must produce
only a single design to be evaluated. In this section, we present an approach that
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prescribes a way to select these K candidate sequences to enhance the performance of
the COMs approach discussed above.

Our idea is based on the simple observation: the performance of an MBO method that
is allowed to produce multiple optimized designs can be enhanced in one of two ways:
(i) by ensuring that there exists one output design which attains a high value of the
ground-truth objective, and (ii) by ensuring that the optimized set of designs covers
as big of a volume in design space as possible, so that even if the best possible design
produced by underlying MBO method is not actually optimal under the ground-truth
objective, with high probability the output set still covers a good design by virtue of
covering the space. That is, baking in (i) and (ii) into a strategy for selecting a subset of
size K enables us to obtain the best possible candidate set given our constraints.

To instantiate this intuition into a concrete strategy, we construct a set of designs, of
size K, which consists of designs which attain high objective values and cover a space
as wide as possible, under a given domain-specific distance metric D(·, ·). Formally,
this can be written as selecting a set of sequences S∗ = {x∗

1,x
∗
2, · · · ,x∗

K} of size K such
that S∗ is the optimal solution to the following optimization problem:

S∗ := arg max
S

∑
x∈S

f̂θ(x) + β
∑

x∈S,x′∈S

D(x,x′), (5.4)

where f̂θ(x) denotes a pessimistic estimate of the objective function. While in theory,
we can obtain S∗ by optimizing over the entire design space, in practice, doing so is
computationally intractable, so the optimization in Equation 5.4 is usually performed
from within a significantly larger set of design candidates observed by the conservative
model over the course of training. To avoid the over-estimation bias in the pessimistic
estimate, f̂θ in Equation 5.4 due to correlations between the candidate sequences we
wish to sub-sample from and the conservative design model, in practice, we use the mean
estimate from an ensemble of “validation” models to estimate the objective function
in Equation 5.4. Crucially, this ensemble is trained on a different bootstrap of the
training data, ensuring no correlation between the ensemble and the larger set of design
candidates produced by optimizing our conservative design model.

Theoretical motivation. We will now intuitively discuss how the aforementioned
approach of balancing optimality and diversity from Equation 5.4 can be viewed under
certain assumptions, as an intermediate strategy for constructing a subset Ŝ of candidate
designs that attains a high performing best design. To understand how, we begin
expanding the formula for the best performing design from within a subset S of designs.
We will denote the ground-truth objective function as f ∗ and the learned function as f̂ ,
and utilize the modelling assumption that the potentially infinite-dimensional vector of
values f̂ is normally distributed around the ground-truth function f ∗ with covariance
Σ̂, i.e., f̂ ∼ N (f ∗, Σ̂). Then, the performance of the subset S is given by:
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Best 90th percentile Median Mean
Method THP-1 Jurkat K562 THP-1 Jurkat K562 THP-1 Jurkat K562 THP-1 Jurkat K562

CPD (Ours) 0.86 1.22 1.31 0.59 1.13 1.20 0.44 1.06 1.10 0.45 1.05 1.10
DENs 0.71 1.24 1.06 0.65 1.14 0.92 0.59 0.99 0.71 0.58 0.96 0.67
Näıve grad. asc. 0.81 1.09 1.31 0.54 0.96 1.13 0.38 0.86 1.03 0.38 0.85 1.03
Motif tiling 0.53 1.12 1.01 0.31 0.90 0.55 -0.02 0.67 0.18 -0.12 0.61 0.21
Best from data 0.57 1.13 1.10 0.42 0.67 0.61 0.25 0.16 0.25 0.15 0.21 0.26

Table 5.1: The performance of CPD and baselines for designing promoters with differential expression
levels on the three cell types. We report the best, the 90th percentile, the median and mean of the 5000
designed sequences from each method. We see that CPD robustly optimize the differential expression
levels for three different target cell types, achieving good performance across different metrics. We see
that CPD outperforms other methods reliably across three cell types.

ES∼Alg(f̂)

[
max
x∈S

f ∗(x)

]
:= d∗⊤

(
ĥS · f ∗

)
(5.5)

:= d∗⊤
(
ĥS ·

(
f̂ + f ∗ − f̂

))
(5.6)

Now since by construction, f̂ ∼ N (f ∗, Σ̂), we can express f̂ = f ∗ + Σ̂ε, where ε ∼
N (0, I), we can replace the difference f̂ − f ∗ in as follows:

ES∼Alg(f̂)

[
max
x∈S

f ∗(x)

]
:= d∗⊤

(
ĥS ·

(
f̂ − Σ̂ε

))
. (5.7)

Since ε is a random variable that is correlated with the operator ĥS , we will need to
use a uniform concentration argument over the randomness in ε to lower-bound the
RHS of Equation 5.7. This lower bound implies that in order to maximize the LHS
(i.e., the expected value of the highest performing sample), we must select a subset S
that consists of candidate designs which (i) maximize an estimate of the value of the

ground-truth function f̂ and (ii) minimize the top eigenvalue, λmax(Σ̂). While (ii) is
computationally expensive, an easy heuristic approach to attain a similar benefit is
to minimize the Frobenius norm of the matrix Σ̂. Since Σ̂(x,y) = D(x,y)−1, we can
choose to maximize pairwise distances within the subset S, which is essentially what
our strategy in Equation 5.4 attempts to achieve.

5.5 Experiments

The goal of our experiments is to understand the efficacy of our approach towards
designing cell-specific promoter sequences. To this end, we quantitatively and qualita-
tively analyze the promoter sequences designed by our approach, while comparing them
to those obtained using baseline design methods. We first discuss the prior approaches
that we compare to in Section 5.5.1. Then, we quantitatively analyze the sequences
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for their predicted differential expression in Section 5.5.2 and determine the effect of
various design parameters on the designed sequences in 5.5.3. Finally, we qualitatively
analyze the motif composition of the designed sequences in Section 5.5.4.

5.5.1 Prior Approaches and Baselines

We compare our approach, CPD, to three other baselines that we describe below:

Best in dataset. To verify that our model-based optimization approach indeed finds
designs better than the best in the dataset, we consider a baseline approach that simply
takes the top 5000 most differentially-expressed sequences for each target cell type
based on the dataset measured expression.

Tiling TF-binding motifs enriched in existing differentially expressed se-
quences. We also compare to a traditional method to design cell type-specific promoters
that aims to find TF-binding motifs that are enriched in some known set of differentially
expressed sequences or are known to be binding motifs for differentially expressed
TFs and tile these motifs, hoping that they are responsible for inducing differential
expression [79, 131]. We run this method for the three chosen cell lines - Jurkat, K-562
and THP-1. We present the details of this method in Appendix D.2.4.

Sequence optimization using design models trained without conservatism.
Another related prior approach for offline MBO is known as näıve gradient descent [114],
where we train a model to predict the objective value and use gradient descent method
to optimize the trained model with respect to the sequence. This is equivalent to
COMs without the conservatism regularization. Similar to COMs, we use the softmax
parameterization and perform T steps of gradient descent starting from each sequence
in the dataset, as described in Section 5.4.

Deep exploration networks (DENs). We also compare to the DENs approach [71]
which aims to specifically design biological sequences. To the best of our knowledge,
DENs are the only offline model-based optimizers whose designed sequences have been
experimentally validated. Concretely, given a prediction model, DENs train a sequence
generative model to produce samples that maximize the output of the prediction model
as well as maintaining a desired level of diversity for the distribution of generated
samples. We provide the details of this approach in Appendix D.2.5.

5.5.2 Main Results

For each prior approach described in the previous section as well as CPD, we produce
5000 optimized designs and evaluate them according to our oracle models. We compare
the final differential expression levels and present the results in Table 5.1. We observe
that CPD reliably outperforms prior methods across the three different cell lines. To
see how the expression levels of designed sequences differ from that of the sequences in
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Figure 5.1: comparison of oracle predicted expression levels of designed sequences on different cell
types. We visualize the expression levels on the target cell type we optimize against versus the other
cell types. We see that while all methods are able to improve the differential expression levels over
the average of the dataset, CPD can push the objective beyond the best of the dataset reilably across
three target cell types.

the dataset, we visualize the distribution for CPD, DENs and näıve gradient ascent
in Figure 5.1. We can see that across all target cell types, CPD is able to produce
a optimized pool of sequences which enhances the differential expression beyond the
dataset. Specifically, for K562 cell type, DENs and näıve gradient ascent are unable to
produce sequences that has differential expression levels against the THP-1 cell type
beyond the dataset, while CPD extend beyond the edge of the dataset. For THP-1,
because the expression level is naturally low in the dataset, DENs struggles to find
better sequences so the generator collapse onto a few modes, while CPD is able to
produce a diverse set of sequences with high differential expression level.

Additionally, we analyze the diversity between sequences in the designed pool by
computing the mean base pair entropy at every position and mean edit distance
between sequences in the pool. We present the result in Table 5.2. The diversity
suggests that CPD produces highly diverse sequences, matching the diversity of the best
sequences in the dataset. As discussed before, DENs struggles to find diverse sequences
for THP-1 target cell type.

5.5.3 Ablation Studies

In this section we provide ablation experiments to verify the efficacy of two important
aspects of CPD: (i) the use of a conservative objective instead of a non-conservative,
standard supervised regression objective, and (ii) balancing diversity and optimality
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Mean base pair entropy Mean edit distance
Method THP-1 Jurkat K562 THP-1 Jurkat K562

CPD (Ours) 1.96 1.87 1.96 184.25 176.17 183.76
DENs 0.93 1.87 1.86 101.41 175.68 175.58
Näıve grad. asc. 1.96 1.92 1.88 184.07 181.00 176.69
Motif tiling 1.92 1.89 1.92 180.73 178.90 180.86
Best in data 1.97 1.94 1.94 185.06 182.74 182.30

Table 5.2: Quantifying the diversity of designed sequences with mean base pair entropy and edit
distance. The results suggest that CPD is able to produce highly diverse sequences, matching the
diversity of the best sequences in the dataset, while DENs struggles on THP-1 and collapse onto a few
modes.

during sequence selection. We first examine the necessity of the conservative objective,
and compare the results of CPD under different conservatism coefficients in Table 5.3.
Our results suggest that having higher level conservatism is crucial to CPD as the higher
conservatism variant almost uniformly outperforms the baseline with no conservatism.
Further more, we see that with our ensemble sequence selection strategy is able to
combine the best design from all α hyperparamters.

Best 90th percentile Median Mean
CPD α THP-1 Jurkat K562 THP-1 Jurkat K562 THP-1 Jurkat K562 THP-1 Jurkat K562

0 0.81 1.09 1.31 0.54 0.96 1.13 0.38 0.86 1.03 0.38 0.85 1.03
3e− 4 0.86 1.13 1.31 0.52 0.98 1.15 0.35 0.88 1.05 0.35 0.87 1.05
1e− 3 0.78 1.18 1.29 0.46 1.04 1.17 0.27 0.94 1.08 0.27 0.93 1.07
3e− 3 0.74 1.22 1.31 0.35 1.11 1.18 0.16 1.03 1.08 0.16 1.02 1.07
1e− 2 0.58 1.21 1.28 0.27 1.10 1.15 0.09 1.02 1.04 0.10 1.02 1.03
3e− 2 0.52 1.18 1.21 0.25 1.04 1.02 0.10 0.95 0.90 0.10 0.95 0.89

Combined 0.86 1.22 1.31 0.59 1.13 1.20 0.44 1.06 1.10 0.45 1.05 1.10

Table 5.3: Ablation study of the conservative coefficient α in CPD

We also perform an ablation study for our diversity enhanced sequence selection strategy,
and compare the effects between different diversity coefficient β during sequence selection.
We present the results in Table 5.4. The results suggest that CPD is not sensitive to the
diversity coefficient, as CPD is able to produce diverse sequences even without explicit
encouraging diversity (β = 0). This result is not surprising, since unlike a generative
model, CPD starts the optimization from different staring sequences and therefore finds
different local minima of the objective landscape. In comparison, the diversity driven
selection is crucial for DENs as DENs sequences tend to cluster to a few local minima
due to the mode collapse phenomenon in generative models. This means that utilizing
our diversity metric for sequence selection is crucial for obtaining good performance
when the underlying optimizer does not naturally find high entropy solutions.
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Mean base pair entropy Mean edit distance
Method THP-1 Jurkat K562 THP-1 Jurkat K562

CPD: β = 0.0 1.96 1.87 1.96 184.25 176.17 183.76
CPD: β = 0.1 1.96 1.87 1.96 184.25 176.17 183.77
CPD: β = 0.3 1.96 1.87 1.96 184.27 176.18 183.77
CPD: β = 1.0 1.96 1.87 1.96 184.30 176.46 183.90
CPD: β = 3.0 1.96 1.88 1.96 184.41 177.05 184.14
CPD: β = 10.0 1.97 1.90 1.97 184.80 179.01 184.78

DENs: β = 0.0 0.93 1.78 1.54 101.41 169.04 151.44
DENs: β = 0.1 0.93 1.78 1.54 101.41 169.04 151.67
DENs: β = 0.3 0.93 1.79 1.55 101.41 169.32 152.33
DENs: β = 1.0 0.93 1.79 1.58 101.41 169.83 154.52
DENs: β = 3.0 0.93 1.82 1.67 101.41 172.03 161.17
DENs: β = 10.0 0.93 1.87 1.86 101.41 175.68 175.58

Table 5.4: Quantifying the diversity of designed sequences with mean base pair entropy and edit
distance. We see that CPD is able to produce diverse sequence without the need to artificially encourage
diversity during sequence selection.

5.5.4 Motif composition of designed sequences

Ultimately, the efficacy of a promoter design method would be dictated by whether or
not the designed promoter enables differential expression in real experiments. As we
did not have access to experimental validation resources, we seek to verify the potential
biological validity of the designed sequences by analyzing whether they contain known
TF-binding motifs. We use GimmeMotifs [14] to identify instances of the clustered
TF-binding motifs defined by Vierstra et al. [122] in the sequences designed by the
best performing methods, COMs, DENs, and näıve gradient ascent. When identifying
motifs, we use a 0.01 false-positive rate cut-off. The most enriched motifs in these
sequences are shown in Figure 5.2. It is clear that the designed sequences from all of the
methods contain many known TF-binding motifs. More interestingly, there are many
ZBTB-binding motifs in the sequences, especially in those designed for Jurkat cells. The
ZBTB family of TFs are known to play a role in the development, differentiation and
functioning of T cells [18], which Jurkat cells are derived from. These results suggest
that the designed sequences contain many known TF-binding motifs, some of which
are known to affect cell-type specific functions, which provides strong support for the
biological validity of the designed sequences.

5.6 Conclusion

In this paper, we develop a data-driven approach to tackle the problem of cell-type spe-
cific promoter sequence design. By combining pre-training on diverse promoter-driven
expression datasets with conservative offline model-based optimization techniques, our
approach, CPD, is able to design novel and effective promoter sequences that enhance
differential expression of different targets, by simply training on existing promoter
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Figure 5.2: Motifs most enriched in sequences designed using various methods and the number of
sequences in which they occur.

experimental data, without requiring any active “in-the-loop” experimentation. Our
experiments show that CPD can produce promoters that not only enhance differential
expression as predicted by oracle evaluation models but are also diverse enough, out-
performing prior approaches. We also find that both conservatism and diversity are
crucial and the promoter sequences designed by our method satisfy biological validity
criteria.

While our results are promising, there are still some limitations of this work and quite
a few avenues for future work. First, we note that our evaluation protocol is limited
as it does not involve actual experimentation. Even though our ablations study a
variety of properties of the designed sequences and finds positive results, we believe that
actual experimentation to synthesize the proposed design candidates will be crucial in
demonstrating the efficacy of this method. Second, we believe that running our offline
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design approach in conjunction with a few rounds of in-the-loop experimentation will
likely produce much better sequences, that attain significant practical improvements.
Finally, combining advances in self-supervised pre-training and generative modeling for
sequences together with our conservative approach will likely yield better results and
hence, is an interesting avenue for future work.
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Chapter 6

Conclusion

In this thesis, we study the problem of offline model-based optimization (MBO) which
is ubiquitous in a wide variety of scientific and engineering domains. We begin by giving
it a formal definition and identify the core challenges associated with its real-world
instances. With these core challenges in mind, we select a suite of realistic tasks from a
wide variety of disciplines to build Design-Bench, a benchmark for offline MBO with a
standardized evaluation protocol. Using our benchmark, we evaluate and fairly compare
prior methods in offline MBO, and discover that no single method outperforms others
in all tasks, indicating there is still a large room for improvement in offline MBO
methods.

When evaluating prior methods in Design-Bench, we discover that many existing
methods make use of generative models or explicit density estimation to capture the
dataset distribution, which severely limit their performance across different tasks.
Generative models or density models can be difficult to train and often requires tuning
for each modality of data. To address this limitation, we propose conservative objective
models (COMs), a simple but effective offline MBO method that does not require
training a generative or density model. Instead of directly capturing the dataset
distribution, COMs rely on conservative regularization of the prediction model, which
makes it easy and stable to train. We demonstrate that COMs outperforms prior
methods in a variety of tasks in Design-Bench.

To verify that COMs works not only on benchmarks but also in real-world problems,
we present two applications of COMs in the final part of the thesis. We propose latent
conservative models (LCOMs) for the problem of crystal structure prediction in compu-
tational chemistry, and apply COMs to the problem of differentially expressive promoter
DNA sequence optimization in synthetic biology. Through these two applications, we
demonstrate that our offline MBO methods can be successfully applied in real-world
problems in various domains.

Throughout our study of real-world offline MBO problems, we have also identified some



67

important limitations in conservative offline MBO methods. Throughout this work, one
major assumption we make in offline MBO is that it is easy to learn a prediction model
for objective function via supervised learning. While this is true for many common
modalities of data where researchers have already developed good prediction models,
supervised prediction are still open problems in many specialized domains, and it
is not clear how to apply offline MBO methods when supervised prediction models
cannot be reliably trained. Another important challenge is the integration of domain
knowledge into learned models. While deep learning models can be accurate with
sufficient training data, in many scientific and engineering problems, the data is fairly
limited and practitioners often rely on domain knowledge to make good decisions. Due
to the black-box nature of neural networks, sometimes it can be a challenge to integrate
domain knowledge into these learn model.

Like many other research programs, our journey in offline MBO also raises many
questions for future research. We conclude this thesis by discussing some promising
directions we’ve identified in offline MBO:

• Self-supervised pre-training in offline MBO. In many real-world problems
of offline MBO, collecting labeled data is often very expensive as it involves
physical experiments. However, in many settings, it is easy to collect a large
amount of unlabeled data. For example, in synthetic biology, while it is expensive
to collect a protein sequence dataset with certain property measured, it is very
easy to collect a dataset of unlabeled protein sequences. Recently, researchers
in computer vision and natural language process have introduced a wide variety
of self-supervised learning methods [22, 13, 16, 50], which can learn expressive
embeddings that enables sample efficient finetuning for downstream tasks. Finding
effective methods of self-supervised pre-training in offline MBO has the potential
of making model training a lot more data-efficient, therefore making it much
easier to apply offline MBO methods in small data domains.

• Theoretical analysis of compositionality in offline MBO. In Chapter 2,
we introduce the concept of compositionality, and how compositionality makes it
possible to find designs better than the best one in the dataset. While the concept
it intuitive, it would be highly desirable to provide some theoretical treatments of
this subject, where one provides a formally definition and theoretical guarantees
for the possibilities of improving beyond the datset.

• Software toolkit for offline MBO. While our method, COMs, significantly
reduces the tuning required compare to prior methods, applications of offline MBO
still requires a significant amount of machine learning background and practical
experience, which limits its applications in many disciplines where practitioners
are not familiar with machine learning. Therefore, it is highly desirable to build
an easy-to-use software toolkit for offline MBO to facilitate the applications of
offline MBO methods in more domains.
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Even though the exact benchmarks or methods we propose in this thesis might not
prove to be useful eventually, we hope that the work we present in this thesis can
bring in some insights into the problem and incite future research in methodology and
applications of offline MBO.
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Urmo Võsa, Lude Franke, et al. High-throughput identification of human snps
affecting regulatory element activity. Nature genetics, 51(7):1160–1169, 2019. 56,
112

[120] Peter JM Van Laarhoven and Emile HL Aarts. Simulated annealing. In Simulated
annealing: Theory and applications, pages 7–15. Springer, 1987. 8

[121] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

https://github.com/brandontrabucco/design-bench
http://proceedings.mlr.press/v139/trabucco21a.html
https://openreview.net/forum?id=rkZvSe-RZ


81

Aidan N Gomez,  Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
Advances in neural information processing systems, 30, 2017. 56, 111

[122] Jeff Vierstra, John Lazar, Richard Sandstrom, Jessica Halow, Kristen Lee, Daniel
Bates, Morgan Diegel, Douglas Dunn, Fidencio Neri, Eric Haugen, et al. Global
reference mapping of human transcription factor footprints. Nature, 583(7818):
729–736, 2020. 63, 113

[123] Aron Walsh, Shiyou Chen, Su-Huai Wei, and Xin-Gao Gong. Kesterite thin-film
solar cells: Advances in materials modelling of cu2znsns4. Advanced Energy
Materials, 2(4):400–409, 2012. 38

[124] David Weininger. Smiles, a chemical language and information system. 1. intro-
duction to methodology and encoding rules. Journal of chemical information and
computer sciences, 28(1):31–36, 1988. 12

[125] Darrell Whitley. A genetic algorithm tutorial. Statistics and computing, 4(2):
65–85, 1994. 8

[126] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for
machine learning, volume 2. MIT press Cambridge, MA, 2006. 4

[127] R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8(3-4):229–256, May 1992. 30

[128] Ronald J. Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Mach. Learn., 8:229–256, 1992. doi: 10.1007/
BF00992696. URL https://doi.org/10.1007/BF00992696. 15, 31

[129] James T. Wilson, Riccardo Moriconi, Frank Hutter, and Marc Peter Deisenroth.
The reparameterization trick for acquisition functions. CoRR, abs/1712.00424,
2017. URL http://arxiv.org/abs/1712.00424. 16, 32

[130] Scott M Woodley and Richard Catlow. Crystal structure prediction from first
principles. Nature materials, 7(12):937–946, 2008. 38

[131] Ming-Ru Wu, Lior Nissim, Doron Stupp, Erez Pery, Adina Binder-Nissim, Karen
Weisinger, Casper Enghuus, Sebastian R Palacios, Melissa Humphrey, Zhizhuo
Zhang, et al. A high-throughput screening and computation platform for iden-
tifying synthetic promoters with enhanced cell-state specificity (specs). Nature
communications, 10(1):1–10, 2019. 52, 60

[132] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European
conference on computer vision (ECCV), pages 3–19, 2018. 111

[133] Tian Xie, Xiang Fu, Octavian-Eugen Ganea, Regina Barzilay, and Tommi Jaakkola.
Crystal diffusion variational autoencoder for periodic material generation. arXiv
preprint arXiv:2110.06197, 2021. 38, 42, 43, 45, 46, 110

https://doi.org/10.1007/BF00992696
http://arxiv.org/abs/1712.00424


82

[134] Tomoki Yamashita, Hiroyoshi Momida, and Tamio Oguchi. Crystal structure
predictions of naxc6o6 for sodium-ion batteries: First-principles calculations with
an evolutionary algorithm. Electrochimica Acta, 195:1–8, 2016. 38

[135] Xin-She Yang and Adam Slowik. Firefly algorithm. In Swarm Intelligence
Algorithms, pages 163–174. CRC Press, 2020. 8

[136] Sihyun Yu, Sungsoo Ahn, Le Song, and Jinwoo Shin. Roma: Robust model
adaptation for offline model-based optimization. Advances in Neural Information
Processing Systems, 34, 2021. 42

[137] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578, 2016. 10

[138] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement
learning. 2017. URL https://arxiv.org/abs/1611.01578. 20

https://arxiv.org/abs/1611.01578


83

Appendix A

Appendix for Design-Bench

A.1 Data Collection

In this section, we detail the data collection steps used for creating each of the tasks
in design-bench. We answer (1) where is the data from, and (2) what pre-processing
steps are used?

A.1.1 TF Bind 8 and TF Bind 10

The TF Bind 8 and TF Bind 10 tasks are derivativesof the transcription factor binding
activity survey performed by [8], where the binding activity scores of every possible
DNA sequence was measured with a variety of human transcription factors. We filter
the dataset by selecting a particular transcription factor SIX6 REF R1, and defining an
optimization problem where the goal is to synthesize a length 8 DNA sequence with
high binding activity with human transcription factor SIX6 REF R1. This particular
transcription factor for TF Bind 8 was recently used for optimization in [5, 6]. TF
Bind 8 is a fully characterized dataset containing 65792 samples, representing every
possible length 8 combination of nucleotides xTFBind8 ∈ {0, 1}8×4. The training set
given to offline MBO algorithms is restricted to the bottom 50%, which results in a
visible training set of 32898 samples.

A.1.2 ChEMBL

The ChEMBL task is a derivative of a much larger dataset that is derived from
ChEMBL [36], a large database of chemicals and their properties. The datawas
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originally collected by performing physical experiments on a large number of molecules,
and measuring a chemical property in the presence of a target assay. We have processed
the ChEMBL database—available at https://www.ebi.ac.uk/chembl/g/#browse/

activities—into collections of smaller datasets mapping particular molecules to
measured values, determined by a target assay that accompanies each set. We choose
the assay specified by ASSAY CHEMBL ID = CHEMBL3885882 and select the standard type
of MCHC as the measurement to maximize with offline model-based optimization. The
resulting dataset has 1093 samples in total. This assay is chosen for its high validation
rank correlation, namely 0.7141, when fitting a random forest regression model to map
molecules to MCHC values. The majority of other assays in ChEMBL produce a validation
rank correlation below 0.5. We preprocess the dataset by converting each molecule
into a SMILES string using RDKit, and then apply the DeepChem SmilesTokenizer

to convert each SMILES string into a sequence of integer tokens. We then remove
all molecules whose SLIMES sequence is longer than a maximum of 31 tokens with
the vocabulary has 591 elements, xChEMBL ∈ {0, 1}31×591. When evaluating MBO
methods, we remove the top 50% of molecules sorted by their MCHC value to increase
task difficulty.

A.1.3 Superconductor

The Superconductor task is inspired by recent work [29] that applies offline MBO to
optimize the properties of superconducting materials for high critical temperature.
The data we provide in our benchmark is real-world superconductivity data originally
collected by [48], and subsequently made available to the public at https://archive.
ics.uci.edu/ml/datasets/Superconductivty+Data#. The original dataset consists
of superconductors featurized into vectors containing measured physically properties like
the number of chemical elements present, or the mean atomic mass of such elements. One
issue with the original dataset that was used in [29] is that the numerical representation
of the superconducting materials did not lend itself to recovering a physically realizable
material that could be synthesized in a lab after performing model-based optimization.
In order to create an invertible input specification, we deviate from prior work and
encode superconductors as vectors whose components represent the number of atoms of
specific chemical elements present in the superconducting material—a serialization of
the chemical formula of each superconductor. The result is a real-valued design space
with 86 components xSuperconductor ∈ R86. The full dataset used to learn approximate
oracles for evaluating MBO methods has 21263 samples, but we restrict this number
to 17010 (the 80th percentile) for the training set of offline MBO methods to increase
difficulty.

https://www.ebi.ac.uk/chembl/g/#browse/activities
https://www.ebi.ac.uk/chembl/g/#browse/activities
https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data#
https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data#
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A.1.4 Ant & D’Kitty Morphology

Both morphology tasks are collected by us, and share methodology. The goal of these
tasks is to design the morphology of a quadrupedal robot—an ant or a D’Kitty—such
that the agent is able to crawl quickly in a particular direction. In order to collect
data for this environment, we create variants of the MuJoCo Ant and the ROBEL
D’Kitty agents that have parametric morphologies. The goal is to determine a mapping
from the morphology of the agent to the average return of the agent using a controller
optimized for that morphology. In order to facilitate fast optimization, we pre-compute
a morphology conditioned neural network controller using SAC [45] that has been
trained to perform optimally on a wide range of morphologies. For both the Ant and
the D’Kitty, we train the controllers for more than ten million environment steps, and
a maximum episode length of 200, with all other settings as default. These morphology
conditioned controllers are trained on Gaussian distributions of morphologies. The
Gaussian distributions are obtained by adding Gaussian noise with standard deviation
0.03 for Ant and 0.01 for D’Kitty the design-space range to the default morphologies.
After obtaining trained morphology-conditioned controllers, we create a dataset of
morphologies for model-based optimization by sampling initialization points randomly,
and then using CMA-ES to optimize for morphologies that attain high reward using the
morphology-conditioned controllers. To obtain initialization points, we add Gaussian
random noise to the default morphology for the Ant with standard deviation 0.075
and D’Kitty with standard deviation 0.1, and then apply CMA-ES with standard
deviation 0.02. We ran CMA-ES for 250 iterations and then restarted, until 25000
morphologies were collected, resulting in 25009 samples for both the Ant and D’Kitty.
The design space for Ant morphologies is xAnt ∈ R60, whereas for D’Kitty morphologies
is xD’Kitty ∈ R56. We sremove the top 40% of samples when training offline MBO
algorithms.

A.1.5 NAS

The data for the NAS task is collected by us. The goal of this task is to search for a
good neural network architecture to optimize the test accuracy on the CIFAR10 dataset.
The architecture search space is a 64-dimensional discrete variable with 5 categories
for each dimension. We collect the dataset by randomly sample architecture designs
in the search space, and train them on the CIFAR10 dataset. We sample 2440 total
designs, and select the bottom performing 70% to be our training set. This gives us
1771 samples in total, with the test accuracy ranging from 59.3% to 63.8%.

A.1.6 Hopper Controller

The goal of this task is to design a set of weights for as neural network policy, in order
to achieve high expected return when evaluating that policy. The data collected for
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Hopper Controller was taken by training a three layer neural network policy with 64
hidden units and 5126 total weights on the Hopper-v2 MuJoCo task using Proximal
Policy Optimization [99]. Specifically, we use the default parameters for PPO provided
in stable baselines [52]. The dataset we provide with this benchmark has 3200 unique
weights. In order to collect this many, we run 32 experimental trials of PPO, where we
train for one million steps, and save the weights of the policy every 10,000 environment
steps. The policy weights are represented originally as a list of tensors. We first traverse
this list and flatten each of the tensors, and we then concatenate each of these flattened
tensors into a single training example xHopper ∈ R5126. The result is an optimization
problem over neural network weights. After collecting these weights, we perform no
additional pre-processing steps. In order to collect objective score values we perform a
single rollout for each x using the Hopper-v2 MuJoCo environment. The horizon length
for training and evaluation is limited to 1000 simulation time steps.

A.2 Oracle Functions

We detail oracle functions for evaluating ground truth scores for each of the tasks
in design-bench. A common thread among these is that the oracle, if trained, is fit
to a larger static dataset containing higher performing designs than observed by a
downstream MBO algorithm.

A.2.1 TF Bind 8 and TF Bind 10

TF Bind 8 and TF Bind 10 are a fully characterized discrete offline MBO tasks, which
means that all possible designs have been evaluated [8] and are contained in the full
hidden datasets. The oracles are therefore implemented simply as a lookup table that
returns the score corresponding to a particular DNA sequence from the dataset. By
restricting the size of the training set visible to an offline MBO algorithm, it is possible
for the algorithm to propose a design that achieves a higher score than any other DNA
sequence visible to the algorithm during training.

A.2.2 ChEMBL

We tested several models as candidate oracle functions for ChEMBL [36], including
a Gaussian Process, Random Forest, CNN, and Transformer regression models. We
ultimately chose the Random Forest model in scikit-learn due to its quick inference and
relatively high performance compared with neural network alternatives, achieving a
spearman’s rank correlation coefficient of 0.7141 with a held-out validation set. These
models were trained on the entire hidden ChEMBL dataset for ASSAY CHEMBL ID =
CHEMBL3885882 with standard type MCHC encoded into SMILES and tokenized. Hyper-
parameters for the random forest oracle are provided in the official github release of
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design-bench.

A.2.3 Superconductor

The Superconductor oracle function is also a random forest regression model. The
model we use it the model described by [48]. We borrow the hyperparameters described
by them, and we use the RandomForestRegressor provided in scikit-learn. Similar to
the setup for the previous set of tasks, this oracle is trained on the entire hidden dataset
of superconductors. The random forest has a rank correlation of 0.9155 with a held-out
validation set.

A.2.4 Ant & D’Kitty Morphology

The Ant & D’Kitty Morphology tasks in design-bench use an exact oracle function,
using the MuJoCo simulator. For both morphology tasks, the simulator performs a
rollout and returns the sum of rewards at every timestep in that rollout. Each task is
accompanied by a pre-trained morphology-conditioned policy. To perform evaluation, a
morphology is passed to the Ant or D’Kitty MuJoCo environments respectively, and a
dynamic-morphology agent is initialized inside these environments. These simulations
can be time consuming to run, and so we limit the rollout length to 100 steps. The
morphology conditioned policies were trained using the reinforcement learning algorithm
SAC for 10 million steps for each task, and are ReLU networks with two hidden layers
of size 64.

A.2.5 NAS

The NAS task in the design bench uses an exact oracle, where we train the proposed
architecture on CIFAR10 and then test it on the test set. To perform the evaluation,
we construct the proposed architecture using PyTorch, and train it for 20 epochs using
batch size 256 and then compute the test accuracy on the test set.

A.2.6 Hopper Controller

Unlike the previously described tasks, Hopper Controller implements an exact oracle
function. For Hopper Controller the oracle takes the form of a single rollout using the
Hopper-v2 MuJoCo environment. The designs for Hopper Controller are neural network
weights, and during evaluation, a policy with those weights is instantiated—in this case
that policy is a three layer neural network with 11 input units, two layers with 64 hidden
units, and a final layer with 3 output units. The intermediate activations between
layers are hyperbolic tangents. After building a policy, the Hopper-v2 environment is
reset and the reward for 1000 time-steps is summed. That summed reward constitutes
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the score returned by the Hopper Controller oracle. The limit of performance is the
maximum return that an agent can achieve in Hopper-v2 over 1000 steps.

A.3 Experimental Details

In this section we present additional details for the experiments, including the score
normalization process and 50th percentile performance.

A.3.1 Objective Normalization

In order to report performance on the same order of magnitude for each offline model-
based optimization task in Design-Bench, we normalize the performance reported in
Table 2.2 by calculating the minimum objective value ymin and the the maximum
objective value ymax in the full unobserved dataset associated with each offline model-
based optimization problem. Crucially, note that this is not the same as normalizing
with respect to the best and worst samples in the training dataset used by the offline
MBO algorithm, but rather a bigger dataset of designs and objective values. We then
report performance by calculating what fraction of the distance between ymin and ymax

is attained by a particular offline MBO baseline.

ynormalized(y) =
y − ymin

ymax − ymin

(A.1)

The final performance ynormalized is the normalized performance of an offline MBO
method that achieved an unprocessed objective value of y. The result is larger than one
when the offline MBO method finds a solution more performance than all solutions in
the full unobserved dataset associated with the corresponding task. The result is less
than zero when the offline MBO method finds a solution attaining less performance
than all samples in the full unobserved dataset.

A.3.2 50th Percentile Experiment Results

In this section, we present the 50th percentile performance of the runs presented
in Table 2.2 of Chapter 2. Similar to the 100th percentile performance reported in
the main text, performance is calculated by evaluating solutions to each task found
by an optimization method, subtracting the minimum objective value present in the
corresponding task dataset, and dividing by the range of objective values present in
the corresponding task dataset. The result is a performance of greater than one if
optimization converges to a solution with a higher objective value that the best observed
design in the corresponding task dataset.
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TF Bind 8 TF Bind 10 ChEMBL NAS Superconductor Ant Morphology D’Kitty Morphology

Auto. CbAS 0.419 ± 0.007 0.461 ± 0.007 -1.823 ± 0.000 0.217 ± 0.005 0.131 ± 0.010 0.364 ± 0.014 0.736 ± 0.025
CbAS 0.428 ± 0.010 0.463 ± 0.007 -1.807 ± 0.004 0.292 ± 0.027 0.111 ± 0.017 0.384 ± 0.016 0.753 ± 0.008
BO-qEI 0.439 ± 0.000 0.467 ± 0.000 -1.774 ± 0.020 0.544 ± 0.099 0.300 ± 0.015 0.567 ± 0.000 0.883 ± 0.000
CMA-ES 0.537 ± 0.014 0.484 ± 0.014 -1.763 ± 0.019 0.591 ± 0.102 0.379 ± 0.003 -0.045 ± 0.004 0.684 ± 0.016
Gradient Ascent 0.609 ± 0.019 0.474 ± 0.005 -1.772 ± 0.018 0.433 ± 0.000 0.476 ± 0.022 0.134 ± 0.018 0.509 ± 0.200
Grad. Min 0.645 ± 0.030 0.470 ± 0.002 -1.769 ± 0.014 0.433 ± 0.000 0.471 ± 0.016 0.185 ± 0.008 0.746 ± 0.034
Grad. Mean 0.616 ± 0.023 0.471 ± 0.004 -1.757 ± 0.010 0.433 ± 0.000 0.469 ± 0.022 0.187 ± 0.009 0.748 ± 0.024
MINs 0.421 ± 0.015 0.468 ± 0.006 -1.745 ± 0.000 0.433 ± 0.000 0.336 ± 0.016 0.618 ± 0.040 0.887 ± 0.004
REINFORCE 0.462 ± 0.021 0.475 ± 0.008 -1.805 ± 0.003 -1.895 ± 0.000 0.463 ± 0.016 0.138 ± 0.032 0.356 ± 0.131
COMs 0.497 ± 0.038 0.465 ± 0.008 0.633 ± 0.000 0.287 ± 0.173 0.386 ± 0.018 0.519 ± 0.026 0.885 ± 0.003

Table A.1: 50th percentile evaluations for baselines on every task. Results are averaged over 8
trials, and the ± indicates the standard deviation of the reported performance. This table corresponds
to the normalized performance, using the normalization methodology described in Appendix A.3.1

.

A.3.3 Unnormalized Experimental Results
In this section, we present the raw 100th percentile performance of the runs presented
in Table 2.2 of Chapter 2. These values, presented in Table A.2, represent the mean
raw objective values and the standard deviation of the objective values attained by
various offline MBO methods.

TF Bind 8 TF Bind 10 ChEMBL NAS Superconductor Ant Morphology D’Kitty Morphology

Auto. CbAS 0.910 ± 0.044 0.655 ± 0.178 42467.285 ± 0.000 64.530 ± 0.764 77.910 ± 8.361 474.888 ± 44.424 226.156 ± 7.043
CbAS 0.927 ± 0.051 0.738 ± 0.239 46681.988 ± 4987.456 66.360 ± 0.820 93.078 ± 12.695 469.499 ± 30.570 209.412 ± 9.593
BO-qEI 0.798 ± 0.083 0.742 ± 0.150 30069.684 ± 3187.300 70.447 ± 0.606 74.322 ± 6.347 413.084 ± 0.000 213.816 ± 0.000
CMA-ES 0.953 ± 0.022 0.811 ± 0.090 31607.031 ± 1578.222 69.475 ± 0.821 86.072 ± 4.508 799.394 ± 715.702 4.290 ± 1.505
Gradient Ascent 0.977 ± 0.025 0.762 ± 0.155 32514.541 ± 2612.903 63.770 ± 0.000 95.789 ± 4.436 -100.265 ± 22.118 187.206 ± 27.274
Grad. Min 0.984 ± 0.012 0.729 ± 0.126 32617.006 ± 370.390 63.770 ± 0.000 93.590 ± 1.719 80.853 ± 62.308 205.639 ± 13.427
Grad. Mean 0.986 ± 0.012 0.714 ± 0.071 33715.059 ± 1136.034 63.770 ± 0.000 92.265 ± 3.206 48.064 ± 78.555 209.355 ± 13.928
MINs 0.905 ± 0.052 0.599 ± 0.082 42732.578 ± 5126.862 66.709 ± 0.471 86.702 ± 4.171 505.515 ± 34.934 273.479 ± 14.184
REINFORCE 0.948 ± 0.028 0.786 ± 0.137 41448.012 ± 3220.380 39.720 ± 0.000 88.996 ± 2.389 -127.440 ± 30.831 -194.540 ± 238.857
COMs 0.945 ± 0.033 0.649 ± 0.153 391827.500 ± 2273.631 64.041 ± 1.431 81.238 ± 6.170 535.125 ± 16.064 278.344 ± 17.727

Table A.2: Unnormalized 100th percentile unnormalized evaluations for baselines on every
task. Results are averaged over 8 trials, and the ± indicates the standard deviation of the reported
performance. This table corresponds to the unnormalized performance.

A.3.4 Computation Resources

The amount of computation resources required to produce the experiments for design-
bench is relatively modest except for the NAS tasks. We ran our experiments on a
single server with 2 Intel Xeon E5-2698 v4 CPUs and 8 Nvidia Tesla V100 GPUs. All
our experiments can be completed within 96 hours on this single machine.

A.4 Additional MBO Tasks That Were Discarded

From Our Benchmark

The main benchmark consists of eight offline MBO tasks, four of which have discrete
design-spaces, and four of which have contiguous design-spaces. In addition to the
provided tasks, we also experimented with two other candidate MBO tasks from prior
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work [6, 12], but chose to not include them in the final benchmark due to lack in-
distinguishable results across all methods, suggesting that these tasks may not be
suitable for devising better algorithms.

A.4.1 GFP

GFP uses the oracle function derived from Rao et al. [88]. This oracle is a transformer
regression model with 4 attention blocks and a hidden size of 64. The Transformer is fit
to the entire hidden GFP dataset, making it possible to sample a protein design that
achieves a higher score than any other protein visible to an offline MBO algorithm. Our
Transformer has a Spearman’s rank correlation coefficient of 0.8497 with a held-out
validation set derived from the GFP dataset.

The GFP task provided is a derivative of the GFP dataset [97]. The dataset we
use in practice is that provided by Brookes et al. [12] at the url https://github.
com/dhbrookes/CbAS/tree/master/data. We process the dataset such that a single
training example consists of a protein represented as a tensor xGFP ∈ {0, 1}237×20. This
tensor is a sequence of 237 one-hot vectors corresponding to which amino acid is present
in that location in the protein. We use the dataset format of [12] with no additional
processing. The data was originally collected by performing laboratory experiments
constructing proteins similar to the Aequorea victoria green fluorescent protein and
measuring fluorescence. We employ the full dataset of 56086 proteins when learning
approximate oracles for evaluating offline MBO methods, but restrict the training
set given to offline MBO algorithms to 5000 samples drawn from between the 50th
percentile and 60th percentile of proteins in the GFP dataset, sorted by fluorescence
values. This subsampling procedure is consistent with prior work [12].

A.4.2 UTR

UTR uses a Transformer as the oracle function, which differs from the CNN that was
originally used by [6]. Our reasoning for making this change is that the Transformer is
a newer and possibly higher capacity model that may be less prone to mistakes than
the shallower CNN model proposed by Sample et al. [95]. This Transformer has 4
attention blocks and a hidden size of 64. The Transformer is fit to the entire hidden
UTR dataset, making it possible to sample a DNA sequence that achieves a higher
score than any other sequence visible to an offline MBO algorithm. The resulting model
has a spearman’s rank correlation of 0.6424 with a held-out validation set.

The UTR task is derived from work by Sample et al. [95] who trained a CNN model to
predict the expressive level of a particular gene from a corresponding 5’UTR sequence.
Our use of the UTR task for model-based optimization follows Angermüller et al.
[6], where the goal is to design a length 50 DNA sequence to maximize expression
level. We follow the methodology set by Sample et al. [95] to sort all length 50 DNA

https://github.com/dhbrookes/CbAS/tree/master/data
https://github.com/dhbrookes/CbAS/tree/master/data
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sequences in the unprocessed UTR dataset by total reads, and then select the top
280,000 DNA sequences with the most total reads. The result is a dataset containing
280,000 samples of length 50 DNA sequences xUTR ∈ {0, 1}50×4 and corresponding
ribosome loads. When training offline MBO algorithms, we subsequently eliminate the
top 50% of sequences ranked by their ribosome load, resulting in a visible dataset with
only 140,000 samples.

A.4.3 Additional Experimental Results

We report the normalized performance of all baselines on the three additional MBO
tasks that were not chosen for inclusion in the benchmark. Note that for GFP [12]
and UTR [6, 95] performance of offline MBO method is not not distinguishable, and
we consider this an indication each task is not suitable for benchmarking offline MBO
methods. We encourage future revisions of these tasks.

GFP UTR

Auto. CbAS 0.865 ± 0.000 0.691 ± 0.012
CbAS 0.865 ± 0.000 0.694 ± 0.010
BO-qEI 0.254 ± 0.352 0.684 ± 0.000
CMA-ES 0.054 ± 0.002 0.707 ± 0.014
Grad. 0.864 ± 0.001 0.695 ± 0.013
Grad. Min 0.864 ± 0.000 0.696 ± 0.009
Grad. Mean 0.864 ± 0.000 0.693 ± 0.010
MINs 0.865 ± 0.001 0.697 ± 0.010
REINFORCE 0.865 ± 0.000 0.688 ± 0.010
COMs 0.864 ± 0.000 0.699 ± 0.011

Table A.3: Normalized 100th percentile normalized evaluations for baselines on unused tasks.
Each entry reports the empirical mean and empirical standard deviation over 8 independent trials.

A.5 Normalization Of Inputs and Outputs Is Im-

portant for Gradient Ascent

An important component for the good performance of the gradient ascent baseline is
the normalization of design space. We found that the identical gradient-ascent baseline
performed a factor 1.4x worse on Hopper Controller, when optimizing in the space of
unnormalized designs and objective values, as seen in Figure A.1. This indicates that
normalization is key in obtaining good performance with a näıve gradient ascent baseline.
For continuous design-space tasks, we normalize both the designs, and the scores to
have unit Gaussian statistics. For discrete design-space tasks, we first map designs
to real-valued logits of a categorical distribution before performing this normalization.
See the official code for how this mapping is performed. This is a necessary part of
the optimization workflow because scores vary by several orders of magnitude in the

https://github.com/rail-berkeley/design-bench/blob/new-api/design_bench/datasets/discrete_dataset.py
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Figure A.1: Comparison of unnormalized vs normalized gradient ascent in the HopperController-v0
task.

dataset, for example, 0.91 for TF Bind 8 and as high as 799.394 for Ant Morphology.
The specific normalization equation is given below.

x̃i,j =
xi,j − µ(x,j)

σ(x,j)
: x ∈ RN×D (A.2)

We also normalize the objective values in a similar fashion to have unit Gaussian
statistics. The result in a new set of designs x̃ and objective values ỹ that is optimized
over

ỹi,j =
yi,j − µ(y,j)

σ(y,j)
: y ∈ RN×1 (A.3)

The gradient ascent procedure is performed in the space of these normalized designs.
Suppose T steps of gradient ascent have been taken, and a final normalized solution x̃∗

T

is found. This solution is de-normalized using the following transformation.

(x∗
T )ij = (x̃∗

T )ij · σ(x,j) + µ(x,j) (A.4)

This normalization strategy is heavily inspired by data whitening, which is known to
reduce the variance of machine learning algorithms that learn discriminative mappings
on that data. The learned model of the objective function is one such discriminative
model, and normalization likely improves the consistency of Gradient Ascent across
independent experimental trials.
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A.6 Hyperparameter Selection Workflow

Hyperparameter tuning under a restricted computational budget is emerging as an
import research domain in optimization [104, 23, 57]. Care must be taken when tuning
each of the prescribed algorithms so that only offline information about the task is used
for hyperparameter selection. Formally, this means that the hyperparameters, H, are
conditionally independent of the particular value of the performance metric M, given
the offline task dataset D. Examples of hyperparameter selection strategies that violate
this requirement might, for example, perform a grid search over H and take the set
that maximizes the performance metric, but this is not offline. An example of a tuning
strategy that is fully offline is tuning the parameters of a learned model such that is is
a good fit for the task dataset D. One can choose H that minimizes a validation loss,
such as negative log likelihood. A detailed record of hyperparameters can be found in
the experiment scripts located alongside our reference implementations: .

We now present guidelines for hyperparameter selection (i.e. workflow) for methods
evaluated in the benchmark. These are general principles that can be used to tune
the hyperparameters of these methods on a new task in an offline fashion. While we
only present workflow details for methods we benchmark in Section 4.6, we expect
that these general strategies will allow users to devise analogous schemes for tuning
hyperparameters of new offline MBO methods with shared components.

A.6.1 Strategy For Autofocused CbAS

The main tunable components of Autofocused methods [29] are the learned objective
function, and the generative model fit to the data distribution. When training the
learned objective function, tracking a validation performance metric like rank correlation
is helpful to ensure that the resulting learned model is able to generalize beyond its
training dataset. This tracking is especially important for Autofocused methods because
re-fitting the learned objective model during importance can lead to divergence if the
importance weights generated by Autofocusing are very large or very small in magnitude.
The algorithm is tuned well if, for example, the validation rank correlation stays above
a positive threshold, such as a threshold of 0.9.

The second component of Autofocused methods is the fit of the generative model used
for sampling designs. The algorithm has the best chance of success if the generative
model can generalize beyond the dataset in which it was trained. This can be monitored
by holding out a validation set and tracking a metric such as negative log likelihood on
this held-out set. In the case when the generative model is not an exact likelihood-based
generative model—for example, a VAE—other validation metrics can be used that
measure the fit of the generative model on a validation set. The generative model
is especially impacted by the importance sampling procedure used by Estimation
of Distribution Algorithms (EDAs), and tracking the effective sample size of the

https://github.com/brandontrabucco/design-baselines
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importance weights can help diagnose when the generative model is failing to generalize
to a validation set.

A.6.2 Strategy For CbAS

The main tunable components of CbAS methods [12] are the learned objective function,
and the generative model fit to the data distribution. While the learned objective
function is not affected by the importance sampling weights generated by CbAS, the
same tuning strategy described in section A.6.1 that focuses on generalization to a
validation set is effective. Generative model tuning can also follow an identical strategy
to that described in section A.6.1, which focuses on the ability for the generative model
to represent samples outside of its training set. In the case of a β-VAE, which is used
with CbAS in this work, the main parameter for controlling this generalization ability
is the β parameter. We found that β is task specific, and must be found in order for
the CbAS optimizer using β-VAE to generate samples that are in the same distribution
as its validation set. This value can be tuned in practice using a validation metric like
that in section A.6.1.

A.6.3 Strategy For MINs

The main tunable components of MINs [66] are the learned objective function, and
the generative model fit to the data distribution. The learned objective function is
typically trained using a maximum likelihood objective, and the validation log-likelihood
(or regression error) can be directly tracked. The learned objective function should
train until a minimum validation loss is reached, which ensured that the model will
generalize as well as possible beyond its training set. Since only the static task dataset
is used for this—it may be split into train/validation sets—this tuning strategy is fully
offline.

The generative model for MINs is an inverse mapping x = f−1(y, z), conditioned on the
objective value y. Training conditional generative models is considerable less stable than
unconditional generative models, so in addition to monitoring the fit of a validation set
recommended in section A.6.1, it is also necessary to track the extent of the dependence
of the generative model’s predictions on the objective value y. This can be evaluated
in practice by comparing the distribution of x from the conditional generative model
p(x|y) to an unconditional generative model p(x) with an identical initialization, or
by comparing if p(x|y) is independent of y by querying the inverse model for different
values of y and visualizing the similarity in the predictions of x. One metric for more
formally studying the extent of the dependence of x on z is the mutual information
I(x; z). The conditional generative model has an appropriate fit if for some positive
threshold c we have that I(x; z) > c.



95

A.6.4 Strategy For Gradient Ascent

The main tunable components of Gradient Ascent MBO methods are the learned
objective function, and the parameters for gradient ascent. The learned objective
function is typically trained using a maximum likelihood objective under a Gaussian
distribution, and the methodology for obtaining a high-performing learned objective
function is identical to that in section A.6.3. The second aspect of gradient ascent MBO
algorithms are the parameters of the gradient-based optimizer for the designs—such
as its learning rate, and the number of gradient steps it performs. The learning rate
should be small enough that the gradient steps taken increase the prediction of the
learned objective function—if the learning rate is too large, gradient steps may not
follow the path of steepest ascent of the objective function. The number of gradient
steps is more difficult to tune. The strategy we used is a fixed number of steps, and an
offline criterion to select this parameter is future work.

A.6.5 Strategy For REINFORCE

The main tunable components of REINFORCE-based MBO methods are the learned
objective function, and the parameters for the policy gradient estimator. The learned
objective function is typically trained using a maximum likelihood objective, and the
methodology for obtaining a high-performing learned objective function is identical to
that in section A.6.3. The remaining parameters to tune are specific to REINFORCE.
The distribution of the policy should be carefully selected to be able to model the dis-
tribution of designs. For continuous MBO tasks, a Gaussian distribution is appropriate,
and for discrete MBO tasks, a categorical distribution is appropriate. In addition, the
learning rate, and optimizer should be selected so that policy updates improve the
model-predicted score.

A.6.6 Strategy For Bayesian Optimization

The main tunable components of Bayesian Optimization MBO methods [7] are the
learned objective function, and the parameters for the bayesian optimization loop. The
learned objective function is typically trained using a maximum likelihood objective,
and the methodology for obtaining a high-performing learned objective function is
identical to that in section A.6.3. For a detailed review of the strengths and weaknesses
of various Bayesian Optimization strategies and their hyperparameters, we refer the
reader to the BoTorch documentation, available at the BoTorch website https://

botorch.org/docs/overview. In this work we employ a Gaussian Process as the
model, and the quasi-Monte Carlo Expected Improvement acquisition function, which
has the advantage of scaling up to our high-dimensional optimization problems.

https://botorch.org/docs/overview
https://botorch.org/docs/overview
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A.6.7 Strategy For Covariance Matrix Adaptation (CMA-
ES)

The main tunable components of Covariance Matrix Adaptation MBO methods are the
learned objective function, and the parameters for the evolution strategy. The learned
objective function is typically trained using a maximum likelihood objective, and the
methodology for obtaining a high-performing learned objective function is identical
to that in Subsection A.6.3. For a detailed review of the strengths and weaknesses of
various Bayesian Optimization strategies and their hyperparameters, we refer the reader
to an open-source implementation of CMA-ES and its corresponding documentation
https://github.com/CMA-ES/pycma. In this work we employ the default settings for
CMA-ES reported in this open source implementation, with σ = 0.5.

A.6.8 Strategy For Conservative Objective Models (COMs)

Conservative Objective Models has three main tunable parameters, and we refer the
reader to the original paper for a full experimental description [116]. The first parameter
for COMs is the degree to which the objective model is allowed to overestimate the
objective value for off-manifold designs. This parameter can be implemented as a
constraint with threshold τ , or as a penalty with weight α. This parameter is chosen to
be as high as possible, permitting high validation performance. When either τ or α
imposes too much conservatism, this regularizes the objective model, and may lead the
model to poorly fit the dataset D. This parameter is uniformly chosen to be 2 for all
discrete tasks and 0.5 for all continuous tasks. The second tunable parameter of COMs
is the number of gradient ascent steps to perform when optimizing x, and is uniformly
chosen to be 50. The final parameter is the learning rate used when optimizing x, which
is uniformly chosen to be 2

√
d for all discrete tasks and 0.05

√
d for all continuous tasks,

where d is the cardinality of the design space.

https://github.com/CMA-ES/pycma
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Appendix B

Appendix for Conservative
Objective Models

B.1 Method Details

In this section we provide additional information about our method conservative
objective models (COMs). In this section, we provide a 50th percentile evaluation
of COMs compared to other methods and discuss additional details for COMs includ-
ing including hyperparameters. Finally, we discuss how the benchmarking tasks are
curated.

B.1.1 Additional Results

In addition to reporting performance using the mean 100th percentile objective value,
as in Table 3.1, we additionally provide a table measuring the mean 50th percentile
objective value in Table B.1. This follows the convention for evaluation standardized
by [114] when benchmarking model-based optimization algorithms. The 50th percentile
results in Table B.1 confirm that COMs again is optimal in 4/7 tasks, the most of any
method we tested, and attains a normalized average performance of 0.590, the greatest
normalized average performance of all baselines we tested.

B.1.2 Implementation details

In addition to various considerations from Sections 3.3.3 and 3.3.4, one important
implementation detail of COMs is to normalize the inputs (x) and outputs (y values)



98

GFP TF Bind 8 UTR Norm. avg. perf. # Optimal

D (best) 0.789 0.439 0.593
Auto. CbAS 0.848 ± 0.007 0.419 ± 0.007 0.576 ± 0.011 0.441 0 / 7
CbAS 0.852 ± 0.004 0.428 ± 0.010 0.572 ± 0.023 0.444 0 / 7
MINs 0.820 ± 0.018 0.421 ± 0.015 0.585 ± 0.007 0.574 3 / 7
BO-qEI 0.246 ± 0.341 0.439 ± 0.000 0.571 ± 0.000 0.478 1 / 7
CMA-ES 0.047 ± 0.000 0.537 ± 0.014 0.612 ± 0.014 0.311 1 / 7
Grad. 0.838 ± 0.004 0.609 ± 0.019 0.593 ± 0.006 0.464 1 / 7
Grad. Min 0.837 ± 0.001 0.645 ± 0.030 0.598 ± 0.005 0.529 2 / 7
Grad. Mean 0.838 ± 0.002 0.616 ± 0.023 0.601 ± 0.003 0.528 3 / 7
REINFORCE 0.844 ± 0.003 0.462 ± 0.021 0.568 ± 0.017 0.395 1 / 7

COMs (Ours) 0.864 ± 0.000 0.497 ± 0.038 0.608 ± 0.012 0.590 4 / 7

Superconductor Ant Morphology D’Kitty Morphology Hopper Controller

D (best) 0.399 0.565 0.884 1.0
Auto. CbAS 0.131 ± 0.010 0.364 ± 0.014 0.736 ± 0.025 0.019 ± 0.008
CbAS 0.111 ± 0.017 0.384 ± 0.016 0.753 ± 0.008 0.015 ± 0.002
MINs 0.336 ± 0.016 0.618 ± 0.040 0.887 ± 0.004 0.352 ± 0.058
BO-qEI 0.300 ± 0.015 0.567 ± 0.000 0.883 ± 0.000 0.343 ± 0.010
CMA-ES 0.379 ± 0.003 -0.045 ± 0.004 0.684 ± 0.016 -0.033 ± 0.005
Grad. 0.476 ± 0.022 0.134 ± 0.018 0.509 ± 0.200 0.092 ± 0.084
Grad. Min 0.471 ± 0.016 0.185 ± 0.008 0.746 ± 0.034 0.222 ± 0.065
Grad. Mean 0.469 ± 0.022 0.187 ± 0.009 0.748 ± 0.024 0.243 ± 0.064
REINFORCE 0.463 ± 0.016 0.138 ± 0.032 0.356 ± 0.131 -0.064 ± 0.003

COMs (Ours) 0.386 ± 0.018 0.519 ± 0.026 0.885 ± 0.003 0.375 ± 0.003

Table B.1: Comparative evaluation of COMs against prior methods in terms of the mean
50th-percentile score and its standard deviation over 8 trials. Tasks include Superconductor, Hopper-
Controller, AntMorphology, and DKittyMorphology, which have a continuous design input space and
GFP, TFBind8 and UTR with a discrete design input space.

for training the conservative model, f̂θ(x). Our motivation for using normalization
was simple: Since the input and output ranges and modalities of various tasks we
evaluated on in Table 3.1 is very different from each other, in order to be able to
use a uniform set of hyperparameters for COMs, it is necessary to normalize both
the inputs x and outputs y to a standard range. Following standard normalization
practices, we normalized x and y such that the resulting first and second moments
match those of a unit Gaussian distribution. In practice, this means collecting all
objective values from the training dataset into a vector Y ∈ RN×1, evaluating the
sample mean µ̂ = mean(Y ) and sample standard deviation σ̂ = std(Y − µ̂). A similar
procedure is used for calculating the sample mean and sample standard deviation of x.
The objective values and inputs are then normalized by subtracting their sample mean
and dividing by their sample standard deviation y ← (y − µ̂)/σ̂, except where doing
so would divide by zero. This normalization allows COMs to use the uniform set of
hyperparameters, which we mention explicitly, in Table B.2.
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Hyperparameter Discrete Continuous

Number of epochs to train f̂θ 50 50
T (Number of gradient ascent steps using Equation 3.5) 50 50
Number of steps used to generate adversarial samples µ(x) in Equation 3.6 50 50
α learning rate (used to optimize Equation 3.6 via dual gradient descent) 0.01 0.01
τ in Equation 3.6 2.0 0.5

η in Equation 3.5 2.0
√
d 0.05

√
d

Table B.2: Hyperparameters for COMs. All hyperparameters are kept constant across all discrete
tasks and continuous tasks respectively in COMs. The variable d indicates the cardinality of a single
design x in the training set of the model. Scaling the learning rate by a factor proportional to

√
d

follows the implementation of the Gradient ascent baseline from Trabucco et al. [114]

B.1.3 Benchmarking Details

In order to promote reproducibility, we additionally provide the task identifiers and
keyword arguments used with the design-bench Trabucco et al. [114] package. These
arguments are passed to the design bench.make function call in order to build a model-
based optimization Task object in Python. Note that in addition to specifying the name
of the task dataset (such as GFP), one must also specify the desired oracle function
(such as a Transformer). In Table B.3 we detail the specific combination of task datasets
and oracle functions used in this work. Additionally, when an approximate oracle is
used, commonly because an exact simulator or closed form equation for the ground
truth y values is not available, there is a train-test discrepancy, where the predictions
of the approximate oracle may not be a perfect reflection of the ground truth y values
contained in the original model-based optimization dataset. This discrepancy is further
explored by Trabucco et al. [114]; however, we find that UTR is particular susceptible to
such discrepency, and so we choose to relabel the y values contained in the MBO dataset
with the predictions of the CNN oracle. See Appendix B.4 for more information.

Task Design-Bench ID Relabel

GFP GFP-Transformer-v0 False
TF Bind 8 TFBind8-Exact-v0 False
UTR UTR-ResNet-v0 True
Superconductor Superconductor-RandomForest-v0 False
Ant Morphology AntMorphology-Exact-v0 False
D’Kitty Morphology DKittyMorphology-Exact-v0 False
Hopper Controller HopperController-Exact-v0 False

Table B.3: Design-Bench task identifiers. This table contains the necessary arguments to pass
to the design bench.make function call. More information is available at https://github.com/

brandontrabucco/design-baselines, and documentation for Design-Bench is available at https:
//github.com/brandontrabucco/design-bench

https://github.com/brandontrabucco/design-baselines
https://github.com/brandontrabucco/design-baselines
https://github.com/brandontrabucco/design-bench
https://github.com/brandontrabucco/design-bench
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B.2 Proof of Theorem 3.4.1

In this section, we provide a proof for Theorem 3.4.1 and show that the conservative
training by performing gradient descent on θ with respect to the objective in Equation 3.8
(restated below in a more convenient form as Equation B.1) indeed obtains a conservative
model of the actual objective function. Note that D(x′|x) denotes a smoothed Dirac-
delta distribution centered at x, which can be obtained by adding random noise to a
given x.

L(θ;µ,D) := α
(
Ex0∼D,xT∼µ(xT |x0)

[
f̂θ(xT )

]
− Ex∼D,xT∼D(xT |x0)

[
f̂θ(xT )

])
(B.1)

+
1

2
Ex0∼D,(x,y)∼D(x|x0)

[(
f̂θ(x)− y

)2
]

︸ ︷︷ ︸
:=(∧)

. (B.2)

We now restate a formal version of Theorem 3.4.1, and then provide a proof. We make
an additional assumption that the neural tangent kernel, Gk

f(x,x′), is semi-positive
definite.

Theorem B.2.1 (Formal version of Theorem 3.4.1). Assume that f̂θ(x) is trained by
performing gradient descent on θ with respect to the objective L(θ;µ,D) in Equation B.1
with a learning rate η. The parameters in step k of gradient descent are denoted by θk,
and let the corresponding conservative model be denoted as f̂k

θ . Let G, µ, L̂, L, D be
defined as discussed above. Then, under assumptions listed above, ∀ x ∈ D,x′′ ∈ X , the
conservative model at iteration k + 1 of training satisfies:

f̂k+1
θ (x′′) := max

{
f̂k+1
θ (x)− L̂||x′′ − x||2, f̃k+1

θ (x′′)−

ηαEx∼D,x′∼µ[Gk
f (x′′,x′)] + ηαEx∼D,x′∼D[Gk

f (x′′,x′)]
}
,

where f̃k+1
θ (x′′) is the resulting (k+1)-th iterate of f̂θ if conservative training were not

used. Thus, if α is sufficiently large, the expected value of the asymptotic function,
f̂θ := limk→∞ f̂k

θ , on inputs xT found by the optimizer, lower-bounds the value of the
true function f(xT ):

Ex0∼D,xT∼µ(xT |x0)[f̂θ(xT )] ≤ Ex0∼D,xT∼µ(xT |x0)[f(x)].

Proof. For proving the first part of the theorem, we first derive the expression for the
gradient of L(θ;µ,D) with respect to θ, and denote the y-value for a given x as a
deterministic function y(x). Our proof can directly be extended to a non-deterministic
y(x) with an additional integral over y values, but we stick to deterministic y(x) for



101

simplicity.

∇θL(θ;µ,D) = α

∫ (
D(x0)µ(x|x0)−D(x0)D(x|x0)

)
∇θf̂θ(x) dx0dx

+

∫
D(x0)D(x|x0)(fθ(x)− y(x))∇θf̂θ(x) dxdx0.

At any iteration k of gradient descent, the next parameter iterate θk+1 are obtained via,
θk+1 = θk−η∇θL(θ;µ,D). Using this relation, and making an approximate linearization
assumption on the non-linear function f̂k

θ for a small learning rate η << 1 under the
assumption of the neural tangent kernel (NTK) [56] regime, which models the behavior
of deep neural networks in the infinite-width limit, we obtain the expression for the
next function value: f̂k+1

θ (x′′):

f̂k+1
θ (x′′) ≈ f̂k

θ (x′′) + (θk+1 − θk)T∇θf̂
k
θ (x′′)

= f̂k
θ (x′′) + ηEx∼D,x′∼D[

(
y(x′)− f̂k

θ (x′)
)
Gk

f (x′′,x′)]︸ ︷︷ ︸
:=(∗)

−
(
ηαEx∼D,x′∼µ[Gk

f (x′′,x′)]− ηαEx∼D,x′∼D[Gk
f (x′′,x′)]

)︸ ︷︷ ︸
:=∆(x′′)

,

where the expression marked as (∗) denotes the (k + 1)-th iterate of the function, under
gradient descent on just the mean-squared error (f(x) − y)2 term, marked as (∧) in
Equation B.1. Noting that the theorem statement denotes the term (∗) as f̃k+1

θ (x′′), we
obtain our first desired result. To obtain the first argument of the max in the theorem
statement, note that if the function f̂k+1

θ is L̂-Lipschitz, the value at x′′ cannot be

smaller than f̂k+1
θ (x)− L̂||x− x′′||2, and hence the maximum over the two terms.

For proving the second part of the theorem statement, observe that if we can show
that in expectation over x′′ ∼ µ(xT );µ(xT ) :=

∫
x0
D(x0)µ(xT |x0) dx0, the quantity

∆(x′′) is positive, then our argument is complete since we have shown that each step
of gradient descent on θ reduces the value of Ex0∼D,xT∼µ(xT |x0)

[f̂k
θ (xT )] by a positive

quantity by virtue of training with Equation B.1 as compared to only training θ
with standard squared error (∧). Thus, if Ex0∼D,xT∼µ(xT |x0)

[∆k(xT )] is positive for all
gradient descent steps k, we obtain the desired lower-bound condition as k →∞. As
an additional detail, note that we assumed L̂ >> L (i.e. the Lipschitz constant of f̂θ(x)
is sufficiently larger than that of f(x)). This condition handles the boundary case when
the predictions f̂k+1

θ (x′) get lower-bounded under the first argument of max in the first

part of Theorem B.2.1 due to the Lipschitz condition: f̂k+1
θ (x)− L̂||x′ − x||2.

Finally, we fill in the missing piece that show Ex0∼D,xT∼µ(xT |x0)
[∆k(xT )] is positive for

each k. Under the assumption that the neural tangent kernel Gk(x,x′) is semi-positive
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definite for all k, we can express:

Ex0∼D,xT∼µ(xT |x0)
[∆k(xT )]

:= ηα

∫
x,x0,x′,xT

[
D(x)µ(x′|x)−D(x)D(x′|x)

]
D(x0)µ(xT |x0)G

k
f (x′,xT )

= ηα

∫
x0

D(x0)

∫
x

D(x)

∫
x′,xT

[µ(x′|x)−D(x′|x)]µ(xT |x0)G
k
f (x′,xT )

By now writing the above in matrix form, we note that the RHS of the above equation
has the same structure as the second term in the RHS of Equation 14 in Kumar
et al. [67], and furthermore since Gk

f is positive semi-definite, it satisfies the required
conditions for Equation 14 and Theorem D.1 from Kumar et al. [67] to be applicable.
Thus, exactly following the proof of Theorem D.1 in Kumar et al. [67] for the linear
function approximation case in reinforcement learning, with the following substitutions:
PF := Gk

f (·,xT ) (i.e., a column of the kernel Gram-matrix for a fixed value of the second

argument) and a = xT , s = x0, we can show that Ex0∼D,xT∼µ(xT |x0)
[∆k(xT )] ≥ 0, thus

finishing our argument.

B.3 Network Details

In each of our experiments, we train a neural network f̂θ to approximate the ground
truth score function of an offline MBO task, where θ represents the weights of the
model. Distinct from prior methods based on generative models [66, 12] we are able to
utilize the same neural network architecture for representing the learned model, f̂θ(x)
across all MBO tasks. This architecture is a three-layer neural network with two hidden
layers of size 2048, followed by Leaky ReLU activation functions with a leak of 0.3.
Each neural network f̂θ has an output layer that predicts a single scalar objective value
y, which is used for regression. Specifically, f̂θ is trained to minimize the mean squared
error of observed objective values, using the default parameters of the Adam optimizer
as discussed in Section 3.3.4.

B.4 Data Collection

In this section, we detail the data collection steps used for creating each of the tasks
from [114], used for benchmarking COMs. We answer (1) where is the data from, and
(2) what pre-processing steps are used?

B.4.1 TF Bind 8

The TF Bind 8 task is a derivative of the transcription factor binding activity survey
performed by Barrera et al. [8], where the binding activity scores of every possible length
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eight DNA sequence was measured with a variety of human transcription factors. We
filter the dataset by selecting a particular transcription factor SIX6 REF R1, and defining
an optimization problem where the goal is to synthesize a length 8 DNA sequence with
high binding activity with human transcription factor SIX6 REF R1. This particular
transcription factor for TF Bind 8 was recently used for optimization in Angermueller
et al. [4, 3]. TF Bind 8 is a fully characterized dataset containing 65792 samples,
representing every possible length 8 combination of nucleotides xTFBind8 ∈ {0, 1}8×4.
The training set given to offline MBO algorithms is restricted to the bottom 50%, which
results in a visible training set of 32898 samples.

B.4.2 GFP

The GFP task provided is a derivative of the GFP dataset [97]. The dataset we
use in practice is that provided by Brookes et al. [12] at the url https://github.
com/dhbrookes/CbAS/tree/master/data. We process the dataset such that a single
training example consists of a protein represented as a tensor xGFP ∈ {0, 1}237×20. This
tensor is a sequence of 237 one-hot vectors corresponding to which amino acid is present
in that location in the protein. We use the dataset format of [12] with no additional
processing. The data was originally collected by performing laboratory experiments
constructing proteins similar to the Aequorea victoria green fluorescent protein and
measuring fluorescence. We employ the full dataset of 56086 proteins when learning
approximate oracles for evaluating offline MBO methods, but restrict the training
set given to offline MBO algorithms to 5000 samples drawn from between the 50th
percentile and 60th percentile of proteins in the GFP dataset, sorted by fluorescence
values. This subsampling procedure is consistent with the procedure used by prior work
[12].

B.4.3 UTR

The UTR task is derived from work by Sample et al. [95] who trained a CNN model to
predict the expressive level of a particular gene from a corresponding 5‘UTR sequence.
Our use of the UTR task for model-based optimization follows Angermueller et al.
[3], where the goal is to design a length 50 DNA sequence to maximize expression
level. We follow the methodology set by Sample et al. [95] to sort all length 50 DNA
sequences in the unprocessed UTR dataset by total reads, and then select the top
280,000 DNA sequences with the most total reads. The result is a dataset containing
280,000 samples of length 50 DNA sequences xUTR ∈ {0, 1}50×4 and corresponding
ribosome loads. When training offline MBO algorithms, we subsequently eliminate the
top 50% of sequences ranked by their ribosome load, resulting in a visible dataset with
only 140,000 samples.

https://github.com/dhbrookes/CbAS/tree/master/data
https://github.com/dhbrookes/CbAS/tree/master/data
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B.4.4 Superconductor

The Superconductor task is inspired by recent work [29] that applies offline MBO to
optimize the properties of superconducting materials for high critical temperature.
The data we provide in our benchmark is real-world superconductivity data originally
collected by [48], and subsequently made available to the public at https://archive.
ics.uci.edu/ml/datasets/Superconductivty+Data#. The original dataset consists
of superconductors featurized into vectors containing measured physically properties like
the number of chemical elements present, or the mean atomic mass of such elements. One
issue with the original dataset that was used in [29] is that the numerical representation
of the superconducting materials did not lend itself to recovering a physically realizable
material that could be synthesized in a lab after performing model-based optimization.
In order to create an invertible input specification, we deviate from prior work and
encode superconductors as vectors whose components represent the number of atoms of
specific chemical elements present in the superconducting material—a serialization of
the chemical formula of each superconductor. The result is a real-valued design space
with 86 components xSuperconductor ∈ R86. The full dataset used to learn approximate
oracles for evaluating MBO methods has 21263 samples, but we restrict this number
to 17010 (the 80th percentile) for the training set of offline MBO methods to increase
difficulty.

B.4.5 Hopper Controller

The goal of the Hopper Controller task is to design a set of weights for a neural network
policy that achieves high expected return. The data collected for HopperController
was taken by training a three layer neural network policy with 64 hidden units and
5126 total weights on the Hopper-v2 MuJoCo task using Proximal Policy Optimization
[99]. Specifically, we use the default parameters for PPO provided in stable baselines
[52]. The dataset we provide with this benchmark has 3200 unique weights. In order
to collect this many, we run 32 experimental trials of PPO, where we train for one
million steps, and save the weights of the policy every 10,000 environment steps. The
policy weights are represented originally as a list of tensors. We first traverse this
list and flatten each of the tensors, and we then concatenate each of these flattened
tensors into a single training example xHopper ∈ R5126. The result is an optimization
problem over neural network weights. After collecting these weights, we perform no
additional pre-processing steps. In order to collect scores we perform a single rollout
for each x using the Hopper-v2 MuJoCo environment. The horizon length for training
and evaluation is limited to 1000 simulation time steps, which is standard practice for
this MuJoCo environment.

https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data#
https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data#
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B.4.6 Ant & D’Kitty Morphology

Both morphology tasks share methodology. The goal of these tasks is to design the
morphology of a quadrupedal robot—an ant or a D’Kitty—such that the agent is able
to crawl quickly in a particular direction. In order to collect data for this environment,
we create variants of the MuJoCo Ant and the ROBEL D’Kitty agents that have
parametric morphologies. The goal is to determine a mapping from the morphology
of the agent to the average return of a pre-trained morphology conditioned agent.
We implement this by pre-training a morphology conditioned neural network policy
using SAC [45]. For both the Ant and the D’Kitty, we train the agents for more
than ten million environment steps, and a maximum episode length of 200, with all
other settings as default. These agents are pre-trained on Gaussian distributions of
morphologies. The Gaussian distributions are obtained by adding Gaussian noise with
standard deviation 0.03 for Ant and 0.01 for D’Kitty the design-space range to the
default morphologies.

After obtaining trained morphology-conditioned policies, we create a dataset of mor-
phologies for model-based optimization by sampling initialization points randomly,
and then using CMA-ES to optimize for morphologies that attain high reward using
the pretrained morphology-conditioned policy. To obtain initialization points, we add
Gaussian random noise to the default morphology for the Ant with standard deviation
0.075 and D’Kitty with standard deviation 0.1, and then apply CMA-ES with standard
deviation 0.02. We ran CMA-ES for 250 iterations and then restart, until a minimum
of 25000 morphologies were collected, resulting in a final dataset size of 25009 for both
the Ant and D’Kitty. The design space for Ant Morphologies is xAnt ∈ R60, whereas for
D’Kitty morphologies is xD’Kitty ∈ R56. We subsample the dataset to its 40th percentile
when training offline MBO algorithms, resulting in 10004 samples.

B.5 Oracle Functions

We detail oracle functions for evaluating ground truth scores for each task. A common
thread is that the oracle, if trained, is fit to a larger static dataset containing higher
performing designs than observed by a downstream MBO algorithm.

B.5.1 TF Bind 8

TF Bind 8 is a fully characterized discrete offline MBO task, which means that all
possible designs have been evaluated [8] and are contained in the full hidden TF Bind
8 dataset. The oracle for TF Bind 8 is therefore implemented as a lookup table that
returns the score corresponding to a particular length 8 DNA sequence from the dataset.
By restricting the size of the training set visible to an offline MBO algorithm, it is
possible for the algorithm to propose a design that achieves a higher score than any
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other DNA sequence visible to the offline MBO algorithm during training.

B.5.2 GFP

GFP uses a simplified Transformer to the TAPE Transformer proposed by Rao et al. [88].
The Transformer used has 4 attention blocks and a hidden size of 64. The Transformer
is fit to the entire hidden GFP dataset, making it possible to sample a protein design
that achieves a higher score than any other protein visible to an offline MBO algorithm.
The model has a Spearman’s rank correlation coefficient of 0.8497 with a held-out
validation set derived from the GFP dataset.

B.5.3 UTR

UTR uses a CNN, which differs from the CNN that was originally used by [3] in that
it has residual connections. Our reasoning for making this change is that ResNet is a
newer and possibly higher capacity model that may be less prone to mistakes than the
shallower CNN model proposed by Sample et al. [95]. The chosen CNN has 2 residual
blocks with 2 convolution layer each, and a hidden size of 120. The CNN is fit to the
entire hidden UTR dataset, making it possible to sample a DNA sequence that achieves
a higher score than any other sequence visible to an offline MBO algorithm. The
resulting CNN has a spearman’s rank correlation coefficient of 0.8617 with a held-out
validation set.

B.5.4 Superconductor

The Superconductor oracle function is also a random forest regression model. The
model we use it the model described by [48]. We borrow the hyperparameters described
by them, and we use the RandomForestRegressor provided in scikit-learn. Similar to
the setup for the previous set of tasks, this oracle is trained on the entire hidden dataset
of superconductors. The random forest has a spearman’s rank correlation coefficient
with a held-out validation set of 0.9155.

B.5.5 HopperController

HopperController and the remaining tasks implement an exact oracle function. For
HopperController the oracle takes the form of a single rollout using the Hopper-v2
MuJoCo environment. The designs for HopperController are neural network weights,
and during evaluation, a policy with those weights is instantiated—in this case that
policy is a three layer neural network with 11 input units, two layers with 64 hidden
units, and a final layer with 3 output units. The intermediate activations between
layers are hyperbolic tangents. After building a policy, the Hopper-v2 environment is
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reset and the reward for 1000 time-steps is summed. That summed reward constitutes
the score returned by the Hopper Controller oracle. The limit of performance is the
maximum return that an agent can achieve in Hopper-v2 over 1000 steps.

B.5.6 Ant & D’Kitty Morphology

The final two tasks in design-bench use an exact oracle function, using the MuJoCo
simulator. For both morphology tasks, the simulator performs a rollout and returns the
sum of rewards at every timestep in that rollout. Each task is accompanied by a pre-
trained morphology-conditioned policy. To perform evaluation, a morphology is passed
to the Ant or D’Kitty MuJoCo environments respectively, and a dynamic-morphology
agent is initialized inside these environments. These simulations can be time consuming
to run, and so we limit the rollout length to 100 steps. The morphology conditioned
policies were trained using Soft Actor Critic for 10 million steps for each task, and are
ReLU networks with two hidden layers of size 64.
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Appendix C

Appendix for Crystal Structure
Design

C.1 Additional Ablation Study

Figure C.1: Ablation study. The overestimation threshold, τ , is the factor controlling the level of
conservatism imposed by LCOMs. The above plot shows the performance of the crystal structures
found by LCOMs by varying this threshold for two sample compounds: SrS and MgO.

Since our method builds on existing conservative optimization algorithms, one of the
main hyper parameters of our method is the coefficient α controlling the strength
of the conservatism regularizer. In the practical instantiation of COMs [115], this
hyperparameter is replaced by its Lagrangian dual Equation 6 in Trabucco et al. [115]),
and the corresponding hyperparameter in the practical algorithm is τ , the threshold of



109

allowed over-estimation on adversarial examples (in our case, adversarial latent vectors).
A smaller τ enforces a stricter upper bound on the allowed amount of distribution
shift, whereas a larger τ does not penalize distributional shift. As a result, energies
of produced designs would be close to the energy in the dataset when the coefficient
τ is small, but also get exploited when τ is too large. An intermediate value of τ is
expected to likely lead to the most favorable results.

As shown in Figure C.1, an intermediate value of τ (e.g., 1.0 in this case) leads to the
best results as more gradient steps are performed to optimize the crystal structure. As
expected, while a very small τ = 0.5 plateaus in the case of MgO, a very large value
τ = 5.0 starts to get exploited for both the sample compounds, MgO and SrS. These
results align with our hypothesis.

C.2 Details of Our Simulator

DFT simulators, underpinned by Density Functional Theory (DFT) [82], serve as
crucial computational tools for approximating the solution of the Schrödinger equation
for a given system of particles. Particularly, in our study, these particles constitute
the chemical structure of a crystal. By providing an approximate solution of the
underlying differential equation, DFT simulators enable the calculation of system
dynamics, including critical properties such as total energy, and facilitate the simulation
of system relaxation to a stable, energy-minimal configuration.

DFT represents a class of computational algorithms rather than a single operation
method, which justifies the availability of multiple DFT simulators. Examples of these
simulators include licensed platforms like VASP, and open-source ones like GPAW
[77, 26]. We leveraged the operational flexibility inherent to DFT in this work by using
GPAW to create random stable structures as initial points for the optimization process.
Its accessibility as an open-source tool, and ease of integration with Python, made it
the preferred choice.

However, GPAW does have limitations, most notably the absence of pseudo-potentials
for all chemical elements, essential for approximating the potential experienced by
valence electrons in atoms. This limitation hindered the simulation of some structures
used for evaluation, as highlighted by Cheng et al. [17]. Consequently, our evaluation
was limited to 25 out of the original 29 compounds discussed in this prior work that
informed our evaluation procedure.

C.3 Experiment Details

In this section, we detail the hyperparameters and configurations employed in our
experiments to facilitate reproducibility of the results. Please note that for competing
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models, we rely on results reported in the original work instead of replicating the
experiments. For comprehensive information regarding these models, we refer the reader
to the work of [17].

Encoding and Decoding Following the method in [133], we firstly train an variational
encoder to transform crystal structure to CD-VAE latent space, with the same training
protocol in [133]. We use a batch size of 256 here when training the encoder.

Hyperparameters In LCOMs, we follow most of the hyper-parameters in the im-
plementation of COMs method [115]. The number of epochs to train the model

Êθ(ϕ(x, c), c) is 50 and the number of gradient descent steps used in Equation 4.5 is
50. The number of steps used to generate optimized results in latent space is 10 for
model trained with OQMD dataset and 40 for model trained with MatBench dataset.
Please note that this number is picked by evaluating the distance between optimized
groups and training dataset. The training batch size is 128 and the learning rate for
model training is 0.00003. The model structure is followed by the one in [115]. The
overestimation limit τ in Equation 6 of [115] is picked as 1.0.
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Appendix D

Appendix for Promoter Design

D.1 Additional Results

In this section we provide some additional results for the designed sequences from CPD
and baseline methods. We present histograms of the differential expression levels of
CPD, DENs and näıve gradient ascent across three target cell types in Figure D.1. We
see that CPD is able to produce a large number of sequences beyond the best sequences
in the dataset, outperforming the baseline methods.

D.2 Hyperparameters and Experiment Details

In this section we provide the details for the training setup and hyperparameters of
CPD and various baselines. CPD is able to produce sequences with high differential
expression levels, outpeforming DENs and näıve gradient ascent.

D.2.1 Details for Pre-training

In this section, we provide the details about the pre-trained model. Our model archi-
tecture consists of a 1D convolutional network and a Transformer network. Taking the
one-hot encoding of the DNA sequence as input, the convolutional network consists of
3 convolution layers, with 256, 512 and 1024 units respectively. After each convolution
layer, we apply GeLU activation [51], GroupNorm [132] and dropout [109] with proba-
bility 0.1. After the convolutional network, we concatenated the output with a learnable
CLS embedding [22], and feed the concatenated sequence into a Transformer [121]
network with 5 blocks. Each Transformer block has 1024 hidden dimensions and 8
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Figure D.1: Histogram for the oracle predicted differential expression level. We see that while all
methods are able to improve the differential expression levels over the average of the dataset, CPD can
push the objective beyond the best of the dataset reilably across three target cell types.

attention heads. We apply the RoPE position embedding [110] at each attention
layer.

Following the pre-training process of Reddy et al. [89], we pre-train our model using
the Sharpr-MPRA [28] and SuRE MPRA [118, 119]. During training, we use a batch
size of 448, AdamW optimizer wtih learning rate 1e-4 and weight decay 3e-3. We train
the model for 20000 steps in total, with a cosine learning rate decay schedule that
decays to 0. The best checkpoint was selected using validation loss throughput the
training process.

D.2.2 Details for Ensemble Oracle Model

In this section, we provide the details about the ensemble models we used for sequence
selection and oracle evaluation. The sequence selection and evaluation oracle are two
sets of ensemble models trained independently on random partitions of the dataset. For
each model of the ensemble, we take the pre-trained model and apply three MLP heads
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on top of the last layer embedding to predict the expression levels of the three cell types.
Within the ensemble set, we vary the depth (2, 4 and 8 layers), hidden dimensions (215,
1024 and 2048) and activation functions (tanh, GeLU, ReLU and SiLU [51]) of the
MLP heads. This gives us 36 ensembles models of different architectures in total in a
set.

The ensemble models are finetuned with AdamW optimizer with batch size 512, learning
rate 5e-5 and weight decay 3e-3. We finetune the model for 250 steps in total, with a
cosine learning rate decay schedule that decays to 0.

D.2.3 Details for CPD

For CPD, similar to one of the ensemble models, we apply three heads with 2 hidden
layers, 512 hidden dimensions, and GeLU activation to the last layer embedding of our
pre-trained model. For the conservatism loss, we produce the adversarial example with
gradient ascent optimizer in the one-hot encoding space, parameterized by a softmax.
We perform 60 steps of gradient ascent using the Adam Optimizer with learning rate
0.5, and clip the result to a valid one-hot encoding. We train the model using the same
hyperparamters as the ensemble models described in Appendix D.2.2.

During sequence generation, we start from each sequence in the dataset and optimize
the sequence for 60 steps with the same gradient ascent optimizer we use during training
time. We take the final sequence as the optimization result.

D.2.4 Details for Motif Tiling

In this section we provide the details for the motif tiling method for optimizing promoters.
First, to identify motifs that might contribute to differential expression, we use FIMO
[43] with default settings to detect instances of clustered TF-binding motifs defined by
Vierstra et al. [122] 1 in the sequences assayed by Reddy et al. [89] and retain detected
motif occurrences with q-value ¡ 0.01. Let’s now consider designing a cell type-specific
promoter for Jurkat. For every motif, we run 2 pairwise t-tests to determine if its
presence leads to higher expression in Jurkat compared to K-562 or THP-1. Motifs
that have positive effect sizes in both t-tests (i.e. leads to higher expression in Jurkat
compared to both K-562 and THP-1) with q-values ¡ 0.05 are retained as those that
could be contributing towards differential expression in Jurkat. Then, these motifs are
used to design two sets of sequences - one set of sequences is designed by inserting the
same motif into a background sequence as many times as possible while separating the
motifs by 10bp and the second set is designed by randomly sampling motifs from the
list of retained motifs and inserting as many of them as possible into a background
sequence while separating the motifs by 10bp. While generating each sequence, the

1https://resources.altius.org/∼jvierstra/projects/motif-clustering-v2.0beta/

https://resources.altius.org/~jvierstra/projects/motif-clustering-v2.0beta/
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background sequence is a randomly chosen sequence from those assayed by Reddy et al.
[89] that exhibits a differential expression of at least 2. Inserted motif sequences are
sampled from the motif’s position weight matrix (PWM). The same process is repeated
for K-562 and THP-1.

We discover 7, 45, and 10 motifs that may be causing differential expression in Jurkat,
K-562 and THP-1 respectively. Thus, we get 7, 45, and 10 sequences in Jurkat, K-562
and THP-1 respectively by tiling the same motif repeatedly. Then, for each cell line,
we design 5,000 sequences by randomly sampling motifs. Therefore, we get a total of
5007, 5045, and 5010 sequences for Jurkat, K-562 and THP-1 respectively using this
design method.

D.2.5 Details for DENs

DENs are generative models that are trained to output diverse sequences that maximize
a design model’s predictions. The generator takes random noise as input and transforms
it into a sequence PWM. We use a UNet-style [90] generator that first transforms the
noise vector into a sequence PWM-sized matrix (i.e. of size (250, 4)). Then, it applies
6 downsizing convolutional layers followed by 5 upsizing convolutional layers. A final
convolutional layer then pools information across the final set of filters’ outputs to
produce the sequence PWM. The PWM is used to sample sequences that are fed to
the design model to get its predictions and a fitness-based loss that trains the DEN
to output high-fitness sequences is computed. Additionally, to explicitly increase the
diversity of the generated sequences, in every training step, random noise vectors are
input to the DEN in pairs to get two sequence PWMs per pair. Then, a diversity-based
loss is computed that incentivizes the sequences generated using the two different noise
vectors to be distinct from each other, both in sequence and design model embedding
space. An entropy-based loss is also minimized to reduce the entropy of the PWM
output by the DEN at every position.

Thus, when training a DEN to generate cell type-specific promoters for a target cell
i ∈ {Jurkat, K-562, THP-1}, the training objective we use is:
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:= entropy loss

where ϕ is the set of trainable parameters of DEN gϕ which outputs N = 250 base pairs
long sequence PWMs by taking u1 or u2 - 200-dimensional random noise vectors sampled
from the uniform distribution over [-1, 1], as inputs. From the sequence PWMs output
by gϕ, we sample two one-hot encoded sequences per noise vector denoted by sj and qj .
These sequences are then input to the trained design model fθ that predicts expression
induced in each of the three cell types. Then, the predicted differential expression in
the target cell i induced by a sequence x is given by DEi

θ(x) := f i
θ(x)− 1

2

∑
j ̸=i f

j
θ (x).

The fitness loss maximizes this predicted differential expression. The other loss terms
increase sequence diversity and reduce entropy in the sequence PWM. Here, sj,k is the
one-hot encoded base pair at position k in sj (similarly for qj,k), Rθ(sj) is an embedding
for sj extracted from the design model fθ, gϕ(u1)k is the probability distribution over
base pairs in the sequence PWM gϕ(u1) at position k. Finally, the coefficients βdiversity

and βentropy are used to weight the diversity and entropy losses relative to the fitness loss
and to one another. They can be varied to regulate the diversity vs. fitness trade-off.
We refer readers to the original work by Linder et al. [71] that proposed DENs for more
details on the method. We tune the various hyperparameters reflected in the training
objective by observing the overall quality of the generated sequences.


