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Abstract

This report presents a comprehensive study on the design and control of an overactuated quadcopter

in simulation and hardware. The vehicle is engineered to autonomously maneuver intricate flight

paths with better performance than a traditional quadcopter. To accomplish this, we designed a

novel hardware system consisting of four thrust motors and four tilt motors, corresponding to

each of the drone’s four arms. This setup allows the drone to change the direction of motion more

smoothly while minimizing its roll, pitch, and yaw, leading to more precise control in narrower

spaces.

We developed a custom controller using the Model Predictive Control (MPC) algorithm. The

MPC controller generates angular velocities for the drone’s brushless motors, and tilt angles for

the servo motors based on an input trajectory. The algorithm enables real-time optimization of

control inputs, allowing the drone to adapt to a dynamic environment robustly. This algorithm

was tested in simulation with a trajectory that mimicked a real-life slalom course on a traditional

quadcopter and our drone. Keeping all other variables the same, the results of this experimental

evaluation highlighted the superiority of the overactuated system in terms of maneuverability,

stability, and trajectory tracking accuracy.

Our research also delves into the detailed design aspects of the overactuated UAV, including the

body design, selection of appropriate materials, propulsion mechanisms, and control electronics.

The hardware design was tested with the onboard MPC controller, making it perform consistent

hover with real-time state feedback.

In conclusion, this research presents a novel overactuated UAV with the entire software and

hardware pipeline designed from the ground up by us. The presented findings contribute to

the advancement of UAV technologies, with potential applications in surveillance, search and

rescue, and precision agriculture, among others. This work serves as a valuable reference for

researchers and engineers seeking to enhance UAV maneuverability and control in autonomous

flight scenarios.
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1 Introduction

In recent years, the demand for Unmanned Aerial Vehicles (UAVs) has surged due to their potential

applications in various industries. However, achieving optimal performance and precise control

for UAVs remains an unexplored and challenging task, especially when navigating through dense

spaces and complex trajectories. Drones have proven to be effective and versatile machines

due to their ability to reach remote locations that may be impossible to get to by land. These

drones have many use cases from delivering packages to military and recreational use; however,

current quadcopter designs are constrained to strictly using roll, pitch, and yaw to maneuver

the drone, restricting the drone’s movement in the horizontal plane. The dynamics and design

of a traditional drone prohibit its ability to turn quickly at high speeds. We propose a fix to

this issue by implementing an over-actuated UAV that can take more aggressive turns at higher

speeds, thus traveling faster and more efficiently. Recent works in over-actuated systems have

shown that simple PID controllers and remote-controlled drones are very efficient at navigating

complex trajectories at higher speeds [5]. In this paper, we expand on these systems and present

an over-actuated autonomous drone using Model Predictive Control (MPC) to guide itself through

a slalom course at high speeds. We compared the results by running our MPC algorithm through a

slalom course with the dynamics of a traditional quadcopter in the same environment, to observe

the performance advantages achieved by the addition of tilt rotors.

We also test the algorithm on real hardware. In order to have a novel drone, we designed,

wired, and built the drone completely from ground up. The MPC controller is integrated with the

hardware and we test it by making the drone hover stably. We elaborate on these tests in this

paper.

2 Related Work

The end goal of our project was to develop a functional full-stack hardware, control, and commu-

nication system for a tilt-rotor quadrotor. Each aspect of this stack was developed in parallel, and

we took inspiration from several papers in our design process. In designing our physical drone, we

took reference from several papers demonstrating design principles for traditional quadcopters and

over-actuated models [2] similar to ours. These papers were used for design principle inspiration

such as techniques to locate the center of mass, mount motors, and methods of mounting servos

under possible shear stresses. In our control design, we use Euler angle representations for our

state vector, as presented in the following reference [4]. This paper describes MPC control design
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for a fixed-axis quadrotor, which we used as a starting point for parameter tuning of our own

controller. Note, the above reference had a typo in its body rate/euler-angle representations, which

we corrected according to an article on quaternions [8].

3 Hardware Setup

3.1 Drone Design

To create a drone for agility at high speeds we had to think about the size of the drone we wanted

to use for this specific purpose. Our original design was built upon the overall skeleton of the

Holybro S500 V2+ Pixhawk 4. However, for our implementation, we needed a more versatile frame

with a less restricting flight control module. To achieve this design, we decided that 3D printed

parts were a more viable option that allowed for more flexibility in design choice and placement

of actuators and electronics. All parts were 3D printed with PETG filament on a Prusa i3 MK3S+.

Figure 1: 3D printed arm joints of drone

We decided on an octagonal base plate with a radius of 3.5 inches. This was the smallest our

drone could be in width to allow for the inner (tilt) servos and other electronic parts to fit on

the drone without significant issues regarding wiring and safely harnessing flight-critical parts.

To leverage this small body design, the drone is split into three levels. The base level houses the

servos, the servo driver, and the breadboard that grounds all of the ESCs. The second level houses
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the Arduino and the power distribution board, the third level houses the Jetson Orin Nano, and

underneath the first level are the two LiPo batteries and the Realsense camera.

To properly and securely house the servos to stand upright, we devised a housing that keeps

the servo upright in the vertical direction. The housing assembly that holds the carbon fiber rod

end has a ball bearing on the inside that smooths the swiveling of each arm.

The camera is set up at a 58◦ angle to the vertical of the drone. We do this to optimize space on

the drone and we take care of the resulting transformations in our calculations.

Fig. 2 shows the top view of our completed drone with the Jetson Orin Nano, bladeless motors,

and the completed wiring.

Figure 2: Top View of drone

Fig. 3 shows the CAD model of the preliminary design of our drone with just two levels instead

of three. We decided to add the third layer to balance out the weight of the drone and add more

stability.

Figure 3: Preliminary design of drone
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3.2 Power Distribution Model

The entire drone is powered by two 3S LiPo batteries. Each battery has 2200𝑚𝐴𝐻 , can hold charge

up to 35𝑐 , and can supply a voltage of 11.1𝑉 . Therefore, the maximum current draw supported by

each battery is

2200 ∗ 35 = 77000𝑚𝐴 at 11.1𝑉 .

Each embedded system and actuator has a different current and voltage draw rating. In order to

supply them with the accurate amount of current and voltage using the least number of batteries,

we decided to use a power distribution board (PDB). Fig4 shows the power distribution circuit

onboard.

Figure 4: Voltage and current draw diagram from two 3S LiPo batteries

A power distribution board has different pins that supply different voltages. One LiPo battery

powers the PDB which in turn provides power to the Arduino and Jetson Orin Nano. The Nano

can take anywhere between 9 and 19 volts. Due to the limitations of the PDB, we provide the Nano

with 12 volts which is sufficient to run all desired processes. The Arduino is connected to the 3.3

volt pin. The servo driver takes 5 volts and provides that to all the servo motors that are connected

in parallel. The same LiPo battery also powers two brushless DC motors through the ESC.
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Component Max current draw (A)

ESC 1 30

ESC 2 30

Servo Driver 5

Jetson Orin Nano 5

Arduino Uno 0.2

Total 70.2

Table 1: Maximum current drawn by each component in circuit 1

Component Max current draw (A)

ESC 3 30

ESC 4 30

Total 60

Table 2: Maximum current drawn by each component in circuit 2

The other LiPo battery only powers two Brushless motors. Table1 and 2 show the maximum

current that each component in the respective circuits can draw. Each ESC can draw a maximum

of 30𝐴. However, our brushless motors require at most 18.3𝐴 to provide 10𝑁 of thrust, giving

an RPM of 99800. Our thrust constraint is 10𝑁 , keeping well within the limits of the ESC. The

maximum current rating of the battery is 77𝐴. Therefore, we know that we can use the 3S LiPo

batteries safely.

Based on the maximum current drawn, we also had to size the wires so that they wouldn’t burn.

For the connection between the ESC and Lipo, we use 8 gauge wires [6] which can safely conduct

73 A of current, and for the connection between the LiPo and PDB, we use 20 gauge wires.

3.3 Electronics

Electronic Speed Controllers

The Arduino is connected to the brushless motors via an Electronic speed controller (ESC). We

have four ESCs on our drone, each one is connected to a brushless motor. The ESC 30A is used

to regulate and control the speed of these motors by converting the incoming electrical signals

from the Arduino into appropriate voltage and current outputs that control the motor’s speed and

direction. The ESC is connected to the battery source as well the digital pin of the Arduino. The
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power draw of an ESC 30A depends on the motors it is connected to and has a maximum power

draw of 30 amps.

Brushless Motors

We use four brushless motors to provide lift to the drone. The two motors rotating clockwise

are placed across from each other and the two motors rotating anticlockwise are placed on the

other two mounts. We tested motors with different specifications to find one that suited our needs.

The main deciding factor was the rounds per minute (RPM) per volt rating of the motors (𝐾𝑣).

Since our drone houses eight motors and several processing boards, it requires a relatively large

amount of thrust to make it fly. Large thrust corresponds to a higher 𝐾𝑣 . However, high 𝐾𝑣

reduces efficiency and needs to be powered by batteries with higher voltage, aka heavier batteries.

We needed motors that would adhere to our battery restrictions and require a similar amount

of voltage as the other electronic parts on the drone. Additionally, higher 𝐾𝑣 makes the motors

more sensitive to disturbances and throttle changes, reducing stability. Lastly, it is advisable to use

motors with lower 𝐾𝑣 for heavier drones to obtain larger torques with lower RPM [1]. Because of

the size of our drone, we wanted motors that would be more stable and less sensitive to unwanted

disturbances. Based on this, we chose to go with 920𝐾𝑣 motors. 920𝐾𝑣 is in the lower range but

provides enough thrust to lift our drone in the air. We also have a constraint on the maximum

thrust that can be outputted by the motor at 10𝑁 .

Figure 5: (Left): Motor thrust test to find thrust coefficient, 𝐶𝑇 .

(Middle): Motor torque test to find torque coefficient, 𝐶𝑄 .

(Right): Motor microsecond test to find microsecond coefficient, 𝐶𝑀 .

To get precise values of thrusts and torques for our MPC calculation we needed to find the true

corresponding thrust and torque coefficients of each motor. We used the RC Benchmark testing

kit to test the thrust and torque by running the motors and saving their data into a CSV file. We
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then ran a linear regression on 𝑡ℎ𝑟𝑢𝑠𝑡 𝑣𝑠 𝑅𝑃𝑀2 and 𝑡𝑜𝑟𝑞𝑢𝑒 𝑣𝑠 𝑅𝑃𝑀2 to give us the line that best

fits our data. This line of best fit gives us the slope which is our thrust and torque coefficients.

For the actuation of the brushless motors, the Arduino receives a thrust (N) from the Jetson and

runs a computational function that converts that thrust to a PWM signal in microseconds (𝜇s) and

sends it to the motors. In this calculation, we use the thrust coefficient, 𝐶𝑇 , and the input thrust to

set up a mapping of 𝑅𝑃𝑀2 to 𝜇. The power band of our brushless motors (RPM vs. PWM) is an

exponential curve that is impossible to map directly to 𝜇. Therefore, to complete the mapping, we

plotted the 𝑅𝑃𝑀2 vs. PWM and ran a linear regression on this data to give us another line of best

fit to define our desired 𝑅𝑃𝑀2 value used in the conversion. To convert thrusts to microseconds

we used the following formulas in our function call:

𝑅𝑃𝑀2 =
𝑡ℎ𝑟𝑢𝑠𝑡

𝐶𝑇

𝜇𝑠 = 𝐶𝑀 · 𝑅𝑃𝑀2 + 𝑦𝐶𝑀

(.1)

The thrust variable is the input to the system, 𝐶𝑇 is equal to 1.37456645𝑒−07, 𝐶𝑀 is equal to

1.19113068𝑒−05, and the y-intercept, 𝑦𝐶𝑀 , is equal to 991.91930173.

Figure 6: Test stand setup

Fig.6 is the test stand setup to test the thrust and torque of each motor.
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Propellers

The 𝐾𝑣 of a motor also dictates the size and pitch of the propellers used. 920𝐾𝑣 motors are usually

paired with propellers that have a pitch of 4.5 inches. Even though higher pitch results in more

thrust, we chose propellers with a relatively lower pitch as it makes the drone more maneuverable

and agile, something that is very important for our end goal. The length of the propellers was

based on the size of our drone. Our goal was to install the longest propellers possible without

letting it interfere with the electronics placed in the middle of the board. This is because long

propellers can generate more thrust and lift, reach higher speeds, and are more efficient. We chose

to go with 10 inch long propellers.

Servo Motors

We used four 20 kg (load) servo motors to over-actuate our drone, each corresponding to a specific

arm. Our servos are programmed to tilt between −70◦ to 70◦. To convert the servo angle to

microseconds we created a mapping from the input angle to a corresponding microsecond value.

We know that the servo can turn 180◦ and the full PWM duty cycle length in microseconds for

our servo is between 500 and 2500. So by using the min and max of the duty cycle, we were able

to map the min and max of the angle range.

4 Software Setup

4.1 System Design

We built an end-to-end system described in fig 7.
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Figure 7: Drone Pipeline [3]

An Intel Realsense T265 fisheye camera located on the drone uses its visual-inertial odometry

(VIO) pipeline to scan its surroundings and gather obstacle data. A localized map is created which

is used by the trajectory planner to generate waypoints. Waypoints are sent to the controller

which is running on a Jetson Orin Nano computing platform. The Nano runs the MPC algorithm

in real-time using the state data and waypoints to produce inputs for the drone. These inputs are

sent to the actuators through the Arduino Uno, making the drone fly. The new state of the drone

is measured by the camera and IMU, the generated state feedback is sent back to the controller,

and the model is updated.

Intel Realsense T265

We chose a tracking camera to set up our visual-inertial odometry (VIO) pipeline. The T265 has an

inbuilt IMU and two fisheye cameras that capture high-resolution images of the environment.

The VIO pipeline orchestrates a sophisticated fusion of visual and inertial sensor data to enable

robust motion tracking. The captured images are rectified and mapped onto a common panoramic

plane and the onboard IMU sensors record precise measurements of angular velocity and linear

acceleration. Using sensor fusion techniques, the pipeline synchronizes and aligns the visual and

inertial data to give an estimate of the camera’s pose and motion trajectory. The IMU data is

capable of compensating for external accelerations and gravitational effects. The pipeline refines
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pose estimates and minimizes sensor-derived errors, to output accurate and consistent position

and velocity outputs that we use in our state estimation model.

We chose this RealSense camera as it has an inbuilt VIO platform that runs at approximately

200 Hz and reduces the burden of computation on the Jetson. It can also be used to calculate

trajectories for reinforcement learning models.

Jetson Orin Nano Processor

The Jetson Orin Nano compute platform is composed of multiple high-performance Arm Cortex-

A76 and Nvidia GPU cores, making it a suitable choice to run the MPC algorithm and other complex

algorithms in real-time. We use the Orin Nano as the computing platform for all processes; it also

has its own ROS2 and GPIO libraries which makes data communication very smooth. Using the

onboard wifi, we are able to SSH into the board to run and perform wireless communication while

testing the drone.

Arduino Uno

We have the Arduino Uno microcontroller onboard as a connection between the processor and the

actuators. Using pulse width modulation (PWM) signals, we can have precise speed and direction

manipulation. Furthermore, the Arduino UNO makes communication and integration seamless

with serial communication protocols such as UART.

4.2 Communication

ROS2

Communication between the camera and the onboard computing platform is done via ROS2

Foxy. We set up a publisher node in the camera that publishes position and orientation data to

/camera/pose/sample with respect to the inertial frame, and linear velocity data with respect to

the body frame. The node also sends body rates data through the /camera/gyro/sample topic.

Since our state estimation model records linear velocity information in the inertial frame, we gather

information from the /tf topic to provide the transformation matrix between the inertial and body

frame. The MPC algorithm is wrapped in a ROS2 subscriber node. The node subscribes to the topics

mentioned above and parses the relevant data into a state estimation matrix, 𝑋 . This matrix is used

by the controller to determine the motor inputs in line u <- mpc_controller.make_step(X).
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Each topic may publish at different rates and may not publish all values in each message.

Therefore, to ensure that there are no gaps in information sent to the controller, we use a boolean

flag to ensure that values are only sent to the controller once all the data has been collected. In the

meanwhile, the data that is already collected gets updated continuously so that the most recent

data is sent to the controller.

Serial Communication

Serial Communication is used between the processor and the Arduino Uno to send input values,

calculated by the MPC, to the motors. We use UART to establish a reliable communication link.

The controller outputs four thrust values for the brushless motors and four tilt angles for the servo

motors. These values are stored as a float array that is converted into a string and encoded into

a byte array of fixed length for quick transmission over the UART link. The Arduino receives

the byte array and converts it back into a float array to retrieve the values. Since Arduino only

accepts arrays of fixed length, we ensure that the parser reads the valid bytes and discards the rest.

The values are converted to pulse width modulation signals, where each signal is represented as

the duration of a high pulse in microseconds. The pulse duration is sent to the Electronic Speed

Controller (ESC) which conveys the information to the motors.

5 Model Predictive Control

Our high level control design is done with a closed loop Model Predictive Control(MPC) algorithm,

an advanced control strategy that utilizes a mathematical model of a system to optimize control

actions over a finite prediction horizon. Using the linearized system dynamics, we project the

system’s future behavior over 𝑛 number of timesteps and compute the sequence of optimal control

inputs that minimize our predefined cost function. This process is repeated at every time step,

at a rate of 20 Hz, and we only apply the first set of control inputs from the sequence. 𝑛 is a

hyperparameter that needs to be tuned based on the desired speed and stability of the controller.

The speed of the controller depends on the time taken to compute new input values with the

chosen value of 𝑛 and the speed of serial communication between the controller and the Arduino

done at every time step. MPC allows for precise trajectory tracking and stochastic disturbance

rejection when dealing with nonlinear models with complex constraints, making MPC a suitable

choice for our drone. Since our goal is to test the drone in dense and complex environments, using

system dynamics and future predictions helps an MPC controller surpass traditional controllers
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like PID. Additionally, we optimize over a finite time frame, unlike Linear Quadratic Regulator

(LQR) control which optimizes a quadratic cost function over an infinite horizon, making it more

adaptable to real-world situations and capable of running in real time.

Initially, we built a position-based controller. The MPC would take in a desired position and

find motor inputs to maneuver the drone to that position and orientation. However, to increase

maneuverability, stability, and smoothness of control, we decided to switch to a velocity-based

controller. Our controller takes in a desired velocity and produces motor values to match that

velocity.

5.1 State Model

The first step is to derive the dynamics equations that represent our system and define our states

and inputs. We derive our dynamics by expanding the Newton-Euler equations. Our system has

16 states, represented by 𝑋 - the 𝑥 , 𝑦, and 𝑧 positions and velocities, the Euler angles representing

the attitude of the UAV relative to our initial inertial frame, and 𝑝𝑞𝑟 representing the body rates of

the UAV. Our state representation also includes the tilt angles of the four servos.

The inputs that are sent to the eight motors are represented by 𝑢, an 8𝑥1 vector where the first

four values represent the angular velocities of our motors which directly impact the thrusts, and

the next four values represent the angular velocities of our servos which change the line of action

of our thrusts by rotating the arms. The choice of states and inputs was made so that our system

would be control affine - i.e fit to the form �𝑥 = 𝑓 (𝑥) + 𝑔(𝑥)𝑢.
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𝑋 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥

𝑦

𝑧

𝜙

𝜃

𝛾

�𝑥
�𝑦
�𝑧
𝑝

𝑞

𝑟

𝛽1

𝛽2

𝛽3

𝛽4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, �𝑋 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�𝑥
�𝑦
�𝑧
�𝜙
�𝜃
�𝛾
�𝑥
�𝑦
�𝑧
�𝑝
�𝑞
�𝑟
�𝛽1
�𝛽2
�𝛽3
�𝛽4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑢 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜔2
1

𝜔2
2

𝜔2
3

𝜔2
4

�𝛽1
�𝛽2
�𝛽3
�𝛽4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑎𝑐𝑐𝑒𝑙𝑏 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�𝑥𝑏
�𝑦𝑏
�𝑧𝑏
�𝑝
�𝑞
�𝑟

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(.2)

In (.2), 𝑥,𝑦, 𝑧, 𝜙, 𝜃,𝛾, �𝑥, �𝑦 and �𝑧 are in the inertial frame while �𝑝, �𝑞and�𝑟 are body rates which are

in the body frame. �𝑋 is the derivative of 𝑋 .

𝑢 represents the inputs to the motors. 𝜔2
𝑖 is the angular velocity squared of the 𝑖𝑡ℎ motor and �𝛽𝑖 is

the change in tilt of that motor.

𝑎𝑐𝑐𝑒𝑙𝑏 represents the linear and angular accelerations in the body frame.

We relate our body rates, 𝑝, 𝑞, and 𝑟 , to our Euler angles by applying the following transforms:

�𝜙 = 𝑝 + 𝑟 cos𝜙 tan𝜃 + 𝑞 sin𝜙 tan𝜃

�𝜃 = 𝑞 cos𝜙 − 𝑟 sin𝜙

�𝛾 =
𝑟 cos𝜙

cos𝜃
+ 𝑞 sin𝜙

cos𝜃

(.3)

where �𝜙, �𝜃 and �𝛾 represent the change in roll, pitch and yaw.
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5.2 Dynamics of Tilt-Rotor andQuad-Rotor

A traditional quadcopter with four motors has the following dynamics:

�𝑧𝑏 =
𝑇1 +𝑇2 +𝑇3 +𝑇4 −𝑚𝑔 cos𝜃 cos𝜙

𝑚
(.4)

�𝑝 =
(𝑇1 +𝑇2 −𝑇3 −𝑇4)𝑙√

2
+ 𝐼𝑦𝑞𝑟 + 𝐼𝑧𝑞𝑟

𝐼𝑥
(.5)

�𝑞 =
(𝑇1 −𝑇2 −𝑇3 +𝑇4)𝑙√

2
− 𝐼𝑥𝑝𝑟 + 𝐼𝑧𝑝𝑟

𝐼𝑦
(.6)

�𝑟 =
−𝜏1 + 𝜏2 − 𝜏3 + 𝜏4 + 𝐼𝑥𝑝𝑞 − 𝐼𝑦𝑝𝑞

𝐼𝑧
(.7)

In eq. (.5), (.6), (.7), we are calculating the body angular accelerations of the drone. In eq. (.4)

we are calculating the acceleration in the z direction in the body frame. Movement in the (body

frame) x and y direction is zero because thrust is only possible in the (body frame) z direction.

Movement in any other spatial direction is achieved by the quadrotor flying at an angle.

𝐼𝑥𝑥 , 𝐼𝑦𝑦, 𝐼𝑧𝑧 are the principle moments of inertia, 𝑇𝑖 is the thrust and 𝜏𝑖 is the torque produced by

the 𝑖𝑡ℎ motor. 𝑙 is the length of the arm.

The dynamics for a tilt copter are different. With tilt angles involved, the drone is capable of

moving in the x and y direction with respect to the body frame even when roll, pitch and yaw

is zero - the advantage being that we can fly in any direction while maintaining horizontal fight.

The dynamics of a tilt- quadcopter are as follows:

�𝑥𝑏 =
(−𝑇1 sin 𝛽1 −𝑇2 sin 𝛽2 +𝑇3 sin 𝛽3 +𝑇4 sin 𝛽4) cos𝜋/4 −𝑚𝑔 sin𝜙 − 𝐾𝑥𝑥

𝑚
(.8)
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�𝑦𝑏 =
(𝑇1 sin 𝛽1 −𝑇2 sin 𝛽2 −𝑇3 sin 𝛽3 +𝑇4 sin 𝛽4) cos𝜋/4 −𝑚𝑔𝑠𝑖𝑛(𝜃 ) − 𝐾𝑦𝑦

𝑚
(.9)

�𝑧𝑏 =
(𝑇1 cos 𝛽1 +𝑇2 cos 𝛽2 +𝑇4 cos 𝛽4 +𝑇3 cos 𝛽3) −𝑚𝑔 cos𝜃 cos𝜙 − 𝐾𝑧𝑧

𝑚
(.10)

�𝑝 =
(𝑇1 cos 𝛽1 +𝑇2 cos 𝛽2 −𝑇3 cos(𝛽3) −𝑇4 cos 𝛽4)𝑙

𝐼𝑥
√
2

+ −𝜏1 sin 𝛽1 + 𝜏2 sin 𝛽2 + 𝜏3 sin 𝛽3 − 𝜏4 sin 𝛽4) cos(𝜋/4) + 𝐼𝑦𝑞𝑟 + 𝐼𝑧𝑞𝑟 − 𝐾𝑝𝑝

𝐼𝑥

(.11)

�𝑞 =
(𝑇1 cos 𝛽1 −𝑇2 cos 𝛽2 −𝑇3 cos 𝛽3 +𝑇4 cos 𝛽4)𝑙

𝐼𝑦
√
2

+ (−𝜏1 sin 𝛽1 − 𝜏2 sin 𝛽2 + 𝜏3 sin 𝛽3 + 𝜏4 sin 𝛽4) cos𝜋/4 + 𝐼𝑥𝑝𝑟 + 𝐼𝑧𝑝𝑟 − 𝐾𝑞𝑞

𝐼𝑦

(.12)

�𝑟 =
(𝑇1 sin 𝛽1 +𝑇2 sin 𝛽2 +𝑇3 sin 𝛽3 +𝑇4 sin 𝛽4)𝑙

𝐼𝑧

+ −𝜏1 cos 𝛽1 + 𝜏2 cos 𝛽2 − 𝜏3 cos 𝛽3 + 𝜏4 cos 𝛽4 + 𝐼𝑥𝑝𝑞 − 𝐼𝑦𝑝𝑞 − 𝐾𝑟𝑟

𝐼𝑧

(.13)

where 𝐾𝑥 , 𝐾𝑦, 𝐾𝑧, 𝐾𝑝 , 𝐾𝑞, 𝐾𝑟 are the respective drag coefficients.

Representing our dynamics with Euler angles results in a singularity when pitch (𝜃 ) is at 90

degrees. This is not a concern since we would not expect our drone to occupy that angle during

flight, especially given the added stability of near horizontal flight made possible by the tilt-rotors.
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Our inputs to the brushless motors are in RPM. However, the thrust and torque values are on a

similar scale as 𝑑𝑡𝑖𝑙𝑡 . It is easier to tune a controller that optimizes for these values directly rather

than RPM values. Therefore, we design our MPC algorithm to solve for thrust values, which are

converted into RPM’s based on eq. (.14). 𝐶𝑡 is the coefficient of thrust and 𝐶𝑘 is the coefficient of

torque, which allows us to relate our 𝜏 to thrusts in our dynamics formulation

𝑇𝑛 = 𝐶𝑡 ∗ 𝜔2
𝑛

𝜏𝑛 = 𝐶𝑘 ∗ 𝜔2
𝑛

𝜏𝑛 =
𝑇𝑛 ∗𝐶𝑘

𝐶𝑡

(.14)

5.3 MPC Integration Constraint

Next, we define the integration constraints of the MPC. using eq. (.8) to (.13). Let 𝑓 ∗ be that

equation. The nominal value of 𝑓∗ is 0, representing the relationship between the state’s second

derivatives and the dynamics equations above. We define the following function:

𝑓 ∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�𝑥𝑖𝑛𝑡
�𝑦𝑖𝑛𝑡
�𝑧𝑖𝑛𝑡
�𝑝𝑖𝑛𝑡
�𝑞𝑖𝑛𝑡
�𝑟𝑖𝑛𝑡

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−
[
𝑇𝐸𝐵 (𝜙, 𝜃,𝛾)

𝐼

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�𝑥𝑏
�𝑦𝑏
�𝑧𝑏
�𝑝
�𝑞
�𝑟

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0 (.15)

In eq (.15),
[
�𝑥𝑏 �𝑦𝑏 �𝑧𝑏 �𝑝 �𝑞 �𝑟

]𝑇
is defined by eq (.8) - (.13) in the body frame.[

�𝑥𝑖𝑛𝑡 �𝑦𝑖𝑛𝑡 �𝑧𝑖𝑛𝑡 �𝑝𝑖𝑛𝑡 �𝑞𝑖𝑛𝑡 �𝑟𝑖𝑛𝑡
]𝑇

are the calculated accelerations, which drive the integration

of the system states over the MPC’s horizon.

In the equation above, in order to transform from the body frame to the inertial frame, we have

a transformation matrix, 𝑇𝐵𝐸 , defined as

𝑇𝐵𝐸 =

⎡⎢⎢⎢⎢⎢⎣
𝑐 (𝛾)𝑐 (𝜃 ) 𝑠 (𝛾)𝑐 (𝜃 ) −𝑠 (𝜃 )

𝑐 (𝛾)𝑠 (𝜃 )𝑠 (𝜙) − 𝑠 (𝛾)𝑠 (𝜙) 𝑠 (𝛾)𝑠 (𝜃 )𝑠 (𝜙) + 𝑐 (𝛾)𝑐 (𝜙)) 𝑐 (𝜃 )𝑠 (𝜙)
𝑐 (𝛾)𝑠 (𝜃 )𝑐 (𝜙) + 𝑠 (𝛾)𝑠 (𝜙) 𝑠 (𝛾)𝑠 (𝜃 )𝑐 (𝜙) − 𝑐 (𝛾)𝑠 (𝜙) 𝑐 (𝜃 )𝑐 (𝜙))

⎤⎥⎥⎥⎥⎥⎦
(.16)
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where 𝑐 (·) is a cosine function and 𝑠 (·) is a sine function.
We left multiply

[
�𝑥𝑏 �𝑦𝑏 �𝑧𝑏 �𝑝 �𝑞 �𝑟

]𝑇
with 𝑇𝐸𝐵 to get the transformed values in the world

frame.

To be able to run our optimization in real time, we are using adaptive MPC, and linearizing our

system at every time step. We linearize 𝑓 ∗ using the Taylor Series Expansion. For this, we can

find the Jacobian of each of the state variables with respect to 𝑓 ∗ and use them to find the expansion.

Let 𝐴, 𝐵 and𝐶 be the Jacobians of state variables 𝑋 , 𝑢 and time-varying parameter, acceleration,

respectively.

𝐴 =
𝜕𝑓

𝜕𝑥

𝐵 =
𝜕𝑓

𝜕𝑢

𝐶 =
𝜕𝑓

𝜕

[
�𝑣
�𝑤

]
(.17)

Adding eq.(.17) to the Taylor Series expansion we get,

𝛿 𝑓 = 0 − 𝑓 ∗ = 𝐴 𝛿𝑋 + 𝐵 𝛿𝑢 +𝐶 𝛿

[
�𝑣
�𝑤

]
(.18)

Eq. (.18) is the Euler Lagrange function.

5.4 Objective Function

The objective function is where we set the desired behavior of our controller, including setting our

reference trajectory and doing the bulk of our controller tuning. We define it using the loss term,

meyer term and the r-term. The loss term is a cost function that quantifies the error associated

with the state, 𝑥𝑘 , control inputs, 𝑢𝑙 , time-varying parameters, 𝑧𝑘 and target pose, 𝑝 , over time 𝑘 .

The meyer term is the terminal cost or penalty function associated with the state at the end of the

prediction horizon. Here we set the meyer term equal to the loss term. Our primary objective is to
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track our desired velocities (the terms with the highest gains), while our secondary objective is

for stabilized horizontal flight. We do most of our tuning by adjusting gains within our objective

function which is defined as a soft constraint, rather than adding additional hard constraints to

our problem, which can make it unsolvable.

𝑙 (𝑥𝑘 , 𝑢𝑙 , 𝑧𝑘 , 𝑝) =𝑚(𝑥𝑛) = 𝐾1 ∗ (( �𝑥𝑑 − �𝑥)2 + ( �𝑦𝑑 − �𝑦)2 + ( �𝑦𝑑 − �𝑦)2) + 𝐾2 ∗ (( �𝑝)2 + ( �𝑞)2 + ( �𝑟 )2)+
𝐾3 ∗ ((𝜙)2 + (𝜃 )2 + (𝛾)2)

(.19)

The r-term is

𝑟 (𝑢𝑘 ) = Δ𝑢𝑇𝑘 𝑅Δ𝑢𝑘 (.20)

Putting everything together we get the objective function, 𝐶 ,

𝐶 =
𝑛−1∑
𝑘=0

(𝑙 (𝑥𝑘 , 𝑢𝑙 , 𝑧𝑘 , 𝑝) + Δ𝑢𝑇𝑘 𝑅Δ𝑢𝑘 ) +𝑚(𝑥𝑛) (.21)

5.5 Control Algorithm

Once we set up our model with all the dynamics mentioned above, we can define our constants

and variables. Table 3 describes all the constant values and variables used in our algorithm.
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Variable Value Description

𝑔 9.81𝑚𝑠−1 acceleration due to gravity

𝑚 2.19𝑘𝑔 mass of drone

𝑙 0.2212𝑚 arm length of drone

𝑠𝑖𝑑𝑒_𝑎𝑟𝑚_𝑙𝑒𝑛 𝑙/√2 arm length along the x-axis and y-axis

𝐼𝑥𝑥 0.00989 principle component of inertia of drone in x direction [7]

𝐼𝑦𝑦 0.01254 principle component of inertia of drone in y direction

𝐼𝑧𝑧 0.00994 principle component of inertia of drone in z direction

𝐶𝑡 1.242𝑒−7/1.242𝑒−7 coefficient from𝑤2 to thrust

𝐶𝑘 1.4799𝑒−10/1.242𝑒−7 coefficient from𝑤2 to torque

𝐾𝑥 = 𝐾𝑦 = 𝐾𝑧 0.2 linear drag coefficients

𝐾𝑝 = 𝐾𝑞 = 𝐾𝑟 0.2 moment drag coefficients

𝑛_ℎ𝑜𝑟𝑖𝑧𝑜𝑛 6 MPC horizon

𝑡_𝑠𝑡𝑒𝑝 0.04𝑠 duration of each step

Table 3: Variables used in the MPC algorithm

𝑛_ℎ𝑜𝑟𝑖𝑧𝑜𝑛 and 𝑡_𝑠𝑡𝑒𝑝 are variable values that we tune based on the performance of our controller.

We initially started with 𝑛_ℎ𝑜𝑟𝑖𝑧𝑜𝑛 = 20. This means that our controller is projecting 20 time

steps into the future as it calculates its sequence of optimal control inputs. In this process, we are

optimizing our sequence of inputs to minimize our cost function over the time horizon; this means

that the shorter our horizon, the faster the controller will attempt to converge to our reference

trajectory 𝑟 . A controller with a shorter horizon is more reactive and will have a higher overshoot,

while a controller with a larger horizon will have less overshoot but will be less reactive. A longer

horizon also increases compute time, as we need to optimize over a larger sequence of inputs.

We needed to find a 𝑛_ℎ𝑜𝑟𝑖𝑧𝑜𝑛 that was able to stabilize the drone, prevent overshoot, and also

be able to run in real-time without causing any delays. Thus, after trial and error, we settled

for 𝑛_ℎ𝑜𝑟𝑖𝑧𝑜𝑛 = 6. 𝑡_𝑠𝑡𝑒𝑝 is the duration of each interval for which the controller is run before

executing the next set of outputs. The shorter the interval, the more often the control loop runs.

We started off with 𝑡_𝑠𝑡𝑒𝑝 = 0.01𝑠 . For 𝑡_𝑠𝑡𝑒𝑝 = 0.01𝑠 and 𝑛_ℎ𝑜𝑟𝑖𝑧𝑜𝑛 = 6, the MPC controller

would look ahead by 0.06 seconds and then give us the control output for 0.01 seconds. The key

challenge here was that in order to accurately update the motors in real time at every timestep,
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𝑡_𝑠𝑡𝑒𝑝 , the MPC had to compute new values within 0.01 seconds, which was not possible on our

compute platform. Therefore, based on experimentation, we decided to have 𝑡_𝑠𝑡𝑒𝑝 = 0.04𝑠 .

At every timestep, the Realsense camera VIO pipeline publishes data to the topics, /camera/pose/sample

and /camera/gyro/sample. Our script subscribes to these topics and updates the state data. From

/camera/pose/samplewe get Pose.position, Pose.orientation and Twist.linear_velocity.

From /camera/gyro/sample we get angular_velocity. Algorithm 1 describes the way data is

pulled from the topics and stored in the 𝑠𝑡𝑎𝑡𝑒_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 . Once the data is gathered, Algorithm 2

uses that data to update the MPC controller and find input values, 𝑢, which are sent to the motors

through the Arduino using serial communication.
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Algorithm 1 Getting state data from the camera

1: 𝑠𝑡𝑎𝑡𝑒_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ← []
2: 𝑝𝑜𝑠𝑒_𝑡𝑤𝑖𝑠𝑡 ← [] ⊲ initialize arrays to store data received from topics

3: 𝑖𝑚𝑢 ← []
4:

5: function pose_twist_data(𝑚𝑠𝑔) ⊲𝑚𝑠𝑔 stores data received from camera/pose/sample

6: if 𝑚𝑠𝑔 ≠ NULL then

7: 𝑝𝑜𝑠𝑒_𝑡𝑤𝑖𝑠𝑡 ←𝑚𝑠𝑔 ⊲ pose_twist stores the relevant values of𝑚𝑠𝑔

8: end if

9: send_data()

10: end function

11:

12: function imu_data(𝑚𝑠𝑔) ⊲𝑚𝑠𝑔 stores data received from camera/gyro/sample

13: if 𝑚𝑠𝑔 ≠ NULL then

14: 𝑖𝑚𝑢 ←𝑚𝑠𝑔 ⊲ imu stores the relevant values of𝑚𝑠𝑔

15: end if

16: send_data()

17: end function

18:

19: function send_data

20: if 𝑖𝑚𝑢 ≠ NULL & 𝑝𝑜𝑠𝑒_𝑡𝑤𝑖𝑠𝑡 ≠ NULL then ⊲ checks if new data has been added to 𝑖𝑚𝑢

and 𝑝𝑜𝑠𝑒_𝑡𝑤𝑖𝑠𝑡

21: 𝑠𝑡𝑎𝑡𝑒_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ← 𝑖𝑚𝑢 + 𝑝𝑜𝑠𝑒_𝑡𝑤𝑖𝑠𝑡

22: 𝑝𝑜𝑠𝑒_𝑡𝑤𝑖𝑠𝑡 ← [] ⊲ empty arrays for new data

23: 𝑖𝑚𝑢 ← []
24: end if

25: run_mpc()

26: end function
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Algorithm 2 Running Model Predictive Control Algorithm at each timestep

1: 𝑑𝑒𝑠_𝑣𝑒𝑙 = desired_velocities[0]

2: 𝑋𝑡 ← 𝑠𝑡𝑎𝑡𝑒_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ⊲ state_estimate data is gathered from the VIO pipeline

3: 𝑋𝑡−1 ← 𝑋𝑡

4: 𝑢 ← [0, 0, 0, 0, 0, 0, 0, 0]
5: function run_mpc

6: 𝑢 ← mpc_controller.step(𝑋 ) ⊲ run the controller to compute the next set of inputs based

on the current state

7: to_motors(𝑢) ⊲ send the computed inputs to the motors

8: 𝑋 ← 𝑠𝑡𝑎𝑡𝑒_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ⊲ update state data

9: 𝑎𝑐𝑐𝑒𝑙 ← 𝑋𝑡−𝑋𝑡−1
Δ𝑡

10: mpc_controller.X← 𝑋𝑡

11: mpc_controller.u← 𝑢 ⊲ update the values stored by the controller object

12: mpc_controller.a← 𝑎𝑐𝑐𝑒𝑙

13: 𝑋𝑡−1 ← 𝑋𝑡

14: if 𝑑𝑒𝑠_𝑣𝑒𝑙 is reached then

15: 𝑑𝑒𝑠_𝑣𝑒𝑙 ← next(desired_velocities) ⊲ go towards the next desired velocity given by the

trajectory

16: end if

17: end function

6 Experiments and Results

6.1 Simulation

Hover with external disturbances

The first big test we conducted was to test the stability of the MPC controller by making the drone

hover in the presence of external disturbances. Wemodeled noise using random.normal(0, 0.01, 16)

and added it to the state model. The results of the test are depicted in fig. 8.
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Figure 8: Velocity vs time graph of a tiltrotor attempting to hover with external random distur-

bances

The controller is able to interpret the disturbances and continue to maintain steady flight without

changing velocity, in the air.

Slalom Course

To quantify the performance of our tilt-rotor compared to a traditional quadcopter, we ran both

drones through a slalom course. Both drones were exactly the same in all aspects except one- the

tiltrotor had four more servos than the quadcopter. Fig. 9 shows the results of navigating through

the course.
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Figure 9: Left: Traditional quadcopter traversing a slalom course; Right: Tiltcopter traversing the

same slalom course; Top: Top view of the drone navigating around obstacles; Bottom:

Velocity vs time graph of drones navigating through the course

The two graphs on top show the top view of the obstacle course where the blue dots are the

obstacles. The orange dotted line is the path determined by the MPC that both drones are trying

to follow. This path is the same for both drones. The blue solid line is the drone trying to follow

that path in simulation. We see that in places where the MPC expects the drone to make a tight

maneuver, the traditional quadcopter overshoots and deviates noticeably from the path. The

tiltrotor on the other hand follows the given trajectory more smoothly and accurately.

The two graphs at the bottom give a more clear view of the desired vs actual velocity. We see a

noticeable right shift in the actual y velocity graph from the desired y velocity of the quadcopter.

All the velocities of the tilt rotor, on the other hand, are more accurate. This is because having tilt

motors allows the drone to instantaneously change direction without affecting velocity in the z

direction.
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6.2 Hardware

Testing Environment

Our hardware test environment was in Cory 391 as it had a test space separated by a safety net.

We had three different test formats. We started by running the desired test on the drone without

blades. This gave us output values that we could graph and analyze. Following the success of that,

we placed the drone in the test space and repeated the same test, keeping the drone tethered by a

wire. Lastly, we tried to make the drone hover while leaving it untethered. In fig.12 the drone is

placed on a box so that the camera can be kept off the ground for calibration.

Hover test without propellers

We tested the drone without propellers by manually tilting it and watching the MPC stabilize itself.

The graphs below show the thrust and RPY produced by the motors over time based on the MPC,

to maintain the given desired velocity.

Figure 10: Left: Thrust(N) graph of four brushless motors tested without propellers vs timesteps;

Right: Orientation (radians) of the drone vs timesteps; Running MPC to make the

drone hover

Fig. 13 shows the effect of thrust on the roll, pitch, and yaw of the drone. For the first 600

timesteps, all four motors maintain a constant and equal thrust, thereby keeping the RPY stable

as well. During the second half, we manually roll the drone to mimic imbalance. As a result, the
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MPC tries to balance it out by decreasing the thrust values on motor 2 and 3, so that the drone can

correct itself and become horizontal again.

Hover test with propellers

We attached propellers to our drone to test flight. At first we manually increased the thrust over

multiple timesteps to watch the drone take off and hover in the air. We were successfully able to

do so as shown in fig. 11.

Figure 11: Applying thrust via wire connection to test lift capabilities

We then ran the controller onboard the Jetson without any tethers. The setup is shown in fig.

12.
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Figure 12: End-to-end test of autonomous drone

Our goal was to make it hover 0.15 meters above the ground and then increase the thrust to

increase its height. Fig. 13 shows the stable flight of the drone maintaining a constant hover for 25

time steps before increasing thrust uniformly to gain height. The drone remains relatively flat

without any unexpected rotations, as seen by the three graphs on the right.
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Figure 13: Left: Thrust(N) graph of four brushless motors during untethered flight vs timesteps;

Right: Orientation (radians) of the drone vs timesteps

Thus, we were able to test the software set up on the drone and conduct preliminary tests with

promise. While everything works smoothly in simulation, there were many challenges we faced

during hardware testing which still need to be ironed out.

7 Future Work

We would like to continue working on this project and there are several ways to do so. The

immediate next steps would be to run the hardware through the same slalom course and compare

it with a traditional quadcopter. This is challenging because incorporating hardware introduces

manymore challenges such as uncertainty and non-deterministic behavior of electronics. Wewould

also like to take this project one step further by making it a neuro-symbolic system. Currently, we

are providing it with a pre-determined trajectory with the help of waypoints. The goal is to make

the drone navigate through an unknown environment by determining the next target position

using a Reinforcement Learning model. Using visual odometry data, the model should be able to

give a suitable waypoint after learning its surroundings and avoiding obstacles. Another future

work could be to do an analysis of battery charge and discharge and optimize the battery usage

for more efficient flight. This could also lead to better battery choices that would help reduce the

weight of the drone.
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8 Conclusion

In conclusion, this technical research report presents the design, construction, and evaluation of a

novel tilt rotor drone featuring eight motors. This undertaking encompassed the development of

both, the hardware and software pipeline, along with the utilization of 3D printing techniques

to fabricate essential parts. Our objective was to assess the drone’s performance, particularly in

comparison to conventional quadcopters, within various operational environments.

The integration of tilt rotor functionality proved to be a key differentiator in the drone’s behavior.

Simulation results, based on the slalom course tested in fig. 9, indicated that the presence of tilts

increased the drone’s capability to excel in challenging scenarios, such as densely populated spaces

and complex trajectories. This outcome unleashes the potential of the proposed design to surpass

the limitations of conventional quadcopters and be applied in scenarios that require more precision

and maneuverability.

Experimentation with this tilt rotor design bears implications for broader aerial exploration.

The expanding space flight industry, characterized by evolving challenges and demands, stands to

benefit from the adaptability exhibited by the over actuated drones.

On the hardware front, this research was able to prove the conceptual design and translate it

into functional hardware components. Acknowledging the constraints of the current motor setup,

having more sophisticated motors would allow for deterministic flight and more reliable testing,

thereby elevating the overall performance of the drone.

The seamless integration of the hardware and software stack was instrumental in enabling flight

operations and establishing a foundation for autonomous control. Notably, we were able to verify

the application of Model Predictive Control (MPC) for autonomous flight and its viability in the

context of the tilt rotor drone.

In summary, this research has realized a novel tilt rotor drone design from conception to

implementation. The integration of hardware design, software architecture, and fabrication

techniques has yielded a platform that can be used as a test bed for future designs. The observed

advantages in confined spaces indicate promising potential for further exploration in applications

demanding precision flight. As the aerospace industry evolves and demand increases, the need

for new directions in aerial exploration also increases. We remain hopeful that our exploratory

research paves the way for continued advancements in the realm of aerial robotics.
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