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Abstract

Geometry of Local-spectral Expanders

by

Siqi Liu

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Alessandro Chiesa, Chair

Expanders are well-connected graphs. They have numerous applications in constructions
of error correcting codes, metric embedding, derandomization, sampling algorithms, etc.
Local-spectral expanders (HDXes) are a generalization of expander graphs to hypergraphs.
They have recently received more attention due to their applications to agreement tests [24],
locally testable codes [28, 99, 75, 27], hardness of SoS refutation [25, 59], and connections
with local sampling algorithms [5].

In comparison to expanders we have very limited understanding of HDXes: there are abun-
dant random or explicit constructions of sparse expander graphs such as random d-regular
graphs [50], algebraic expanders [92, 51], the zig-zag product [101], etc. In contrast, we
know only two general constructions of sparse HDXes: the LSV complexes [90] and the
coset construction [66]. In this thesis, we take two approaches to tackle the construction
problem. The first approach is taking graph products of sparse expander graphs. This is
inspired by the zig-zag product. However, this construction fails to give good local-spectral
expansion. The second approach is inspired by the following question: does any continuous
space have the local-spectral expansion property? We show that the answer is affirmative
for high-dimensional spheres. More precisely, we show that 3-uniform hypergraphs sampled
randomly over high-dimensional spheres are (relatively sparse) local-spectral expanders.

Furthermore, tight isoperimetric inequalities of local-spectral expanders have remained elu-
sive. Intuitively, isoperimetric inequalities provide a lower bound on the probability that a
random walk leaves a subset of vertices in the graph. A tight bound on this probability is
crucial for applications to agreement testing. In this thesis, we explore this problem and give
an improved bound for good local-spectral expanders.
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Chapter 1

Introduction

Many functional analysis results over discrete spaces are defined and studied after their con-
tinuous counterparts have been proven. Notions including Laplacian operators, derivatives,
Fourier decomposition are first defined over continuous spaces such as multivariate Gaus-
sians. They are later generalized to discrete spaces (e.g. the hypercubes Fn2 , the symmetric
groups Sn). Moreover, tools like the invariance principle and the Central Limit theorem have
been developed to coupled discrete spaces with continuous spaces, and thereby transform
isoperimetric type inequalities over the Gaussians to corresponding discrete spaces and vice
versa. Examples include the proofs of Log-Sobolev inequalities over the Gaussians [55] and
of the majority is the stablest theorem over the hypercubes [94].

Local-spectral expanders (HDXes) are a class of hypergraphs whose spectral expansion
can be certified locally. They have recently attracted a lot of attention due to applications
to testing, coding, and sampling. The key feature of an HDX is that the subgraphs induced
by the neighbors of any hyperedges are all expander graphs. This property is called local-
spectral expansion. A natural question is: are there natural continuous spaces that have
local-spectral expansion? This is particularly interesting since most known constructions
of sparse HDXes are algebraic, and a more geometric view of local-spectral expansion can
potentially give more constructions of HDXes and also more intuitions for isoperimetric
inequalities over HDXes.

Furthermore due to the abstraction in the definition of HDXes, it has been challenging to
obtain tighter isoperimetric inequalities for these hypergraphs. For instance, we do not know
good bounds on small set expansion for random walks over HDXes. Known tight bounds for
hypercubes rely on orthogonal decompositions for functions over these domains. The main
challenge here is that the space of functions over HDXes does not have an explicit orthogonal
decomposition.

This thesis addresses the two problems above. This chapter starts with an introduction
on expander graphs. We briefly summarize their special properties, their applications in
computer science, and some well-known constructions. From there, we generalize the notion
of expansion to hypergraphs and define local-spectral expanders. Lastly we motivate and
summarize the main results of the thesis: two constructions of HDXes and improved small
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set expansion results over good HDXes.

1.1 Expanders

Expander graphs (or expanders) are well-connected graphs. More precisely a family of
discrete graphs {Gn = (Vn = [n], En)}n are expanders if:

• either as n→ ∞ the normalized Laplacian matrix LGn ’s smallest eigenvalue is bounded
away from 0 (spectral expansion),

• or as n→ ∞ for all subset of vertices S ⊆ Vn of size |S| ⩽ |Vn|/2, a constant fraction of
S’s adjacency edges are connected to vertices outside S (combinatorial expansion).

The expansion parameters are omitted for simplicity.
These two definitions are obtained by generalizing Laplace operators and Cheeger con-

stants to discrete graphs. It was first shown by Cheeger [16] that these two definitions of
expansion are roughly equivalent over compact Riemann manifolds. Later, the equivalence
was established for discrete graphs by Dodziuk [32]. Some important properties of expander
graphs include that random walks over these graphs mix fast, any small set of vertices has
most of their neighbors outside the set, and these graphs have no low-distortion embeddings
to low-dimensional Euclidean spaces.

Examples of well-known expanders include the complete graphs and boolean hypercubes.
While it is easy to construct expanders with large average degree, expanders with constant
average degree (also called sparse expanders) have more applications to algorithm deran-
domization, gap amplification, linear-time encodable codes, etc [57]. Through decades of
intensive research, we now have many randomized and explicit constructions of sparse ex-
panders: random d-regular graphs [50], algebraic expanders [92, 51], the zig-zag product
[101], to name a few.

1.2 Local-spectral expanders

One important insight in property testing is that a tester T over a set of variables V can
be viewed as a hypergraph G = (V,E), where E is the query set of T . We note that if T
can check relations over k variables, then E would contain hyperedges of size k. In the case
that T only checks binary relations, G is a graph, and T ’s soundness can be derived from
the expansion property of G. To analyze more general testers, one needs to study expansion
properties of hypergraphs.

High-dimensional expanders are expanding hypergraphs. Though both spectral expan-
sion and combinatorial expansion can be generalized to hypergraphs, they are not equivalent
notions on hypergraphs. In this thesis we focus on local-spectral expanders which are spec-
trally expanding hypergraphs. Discussions on combinatorially expanding hypergraphs and
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the comparison between the two definitions are postponed till Chapter 5. In the other
chapters HDXes are used interchangeably with local-spectral expanders.

Local-spectral expanders are a generalization of spectral expansion to simplicial com-
plexes [87]. A simplicial complex is a special type of hypergraph whose hyperedges are
downward closed. A 1-dimensional simplicial complex is a graph. A general d-dimensional
simplicial complex χ consists of hyperedge sets χ(0), . . . , χ(d) where χ(i) contains hyper-
edges of cardinality (i + 1). We define the link of a vertex v to be the (d − 1)-dimensional

hypergraph χv with hyperedges
{
f ∈

⋃d−1
i=0 χ(i) | f ∪ {v} ∈ χ(i+ 1)

}
. So in a 2-dimensional

simplicial complex, a link χv is a graph over v’s neighbors in χ.
A 1-dimensional local-spectral expander is an expander. A d-dimensional local-spectral

expander is a simplicial complex that satisfies (1) the global graph G∅ = (χ(0), χ(1)) is an
expander, and (2) for every vertex v ∈ χ(0), the link χv is a (d−1)-dimensional local-spectral
expanders. So χ is a 2-dimensional local-spectral expander if it is a 1-dimensional expander
and all its vertices’ links are also 1-dimensional expanders.

1.2.1 The local-to-global phenomenon

The definition above suggests that to show a d-dimensional χ is an HDX, one should check
that the link graphs of all hyperedges of size < (d−1) are expanders. However, the trickling-
down theorem from [97] states that it suffices to check the links of hyperedges in χ(d − 2)
are expanders and the link graphs of all smaller hyperedges are connected.

For a 2-dimensional simplicial complex χ, the trickling-down theorem says that if every
vertex’s link is a λ-expander (λ is 1 minus the smallest eigenvalue of the graph Laplacian)
and if the global graph G∅ = (χ(0), χ(1)) is connected, then G∅ is a

(
λ

1−λ

)
-expander. Thus

χ is a 2-dimensional
(

λ
1−λ

)
local-spectral expander.

1.2.2 Applications

The local-to-global phenomenon on local-spectral expanders has led to many applications in
computer science. Starting with [24], local-spectral expanders have been used to construct
agreement tests. As the setup of an agreement test, consider a space Ω, a set of subspaces
S, and a code C that encodes functions f : Ω → Σ as a collection of local functions {fs :
s→ Σ}s∈S. In an agreement test for C, a randomized tester T is given oracle access to a set
of local functions {gs}s∈S and needs to output whether these local functions are close to C
(i.e. close to subspace restrictions of some global function g). T is required to always accept
if the local functions are in C (completeness), and to reject with probability proportional to
the distance from the local functions to C (soundness).

[24] shows that a d-dimensional local-spectral expander χ gives rise to the following
agreement tester: let Ω = χ(0) and S = χ(k), then the tester T samples a random τ ∈
χ(2k + 1) and two random s, s′ ⊂ τ , and outputs “accept” if and only if fs and fs′ agree
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on s ∩ s′. The local-spectral expansion guarantees that T has soundness. This application
illustrates the connection between expansion and testing.

As an example, consider the [24] agreement tester given by a 3-dimensional complete
complex X. By definition the hyperedge sets of the complex are given by X(i) =

(
[n]
i+1

)
.

Let the space Ω = [n], the alphabet Σ = F2 and S = X(1). So a codeword of C is a
collection of functions {f |s : s → F2 | s ∈ X(1)} that are restrictions of a global function f
to hyperedges. The tester T samples a random τ ∼ X(3) and two random s, s′ ⊆ τ . Then
T outputs whether the input local functions fs|s∩s′ = fs′ |s∩s′ .

More recently chain complexes (more general hypergraphs than simplicial complexes)
with local-spectral expansion are used to construct locally testable codes with constant rate,
distance, and arity [28, 79], and quantum low-density parity-check codes [99, 75, 27].

Markov chain Monte Carlo method (MCMC) is a class of algorithms that sample from
exponential size distributions. Whether MCMC can efficiently sample from a distribution
depends on the convergence time of the underlying Markov chain. Recently [5] resolved a
longstanding open question by showing rapid mixing of matroid basis exchange walks. The
result is proved by showing that the matroid basis exchange complexes are local-spectral
expanders. Followup works prove more rapid mixing results under this framework [2, 4, 39].

1.2.3 Constructions

In comparison to expanders, we have limited understanding of HDXes. In contrast to the
numerous explicit and probabilistic constructions of sparse expanders, we know only a few
explicit constructions of bounded-degree HDXes and they are either heavily algebraic [90,
66, 95] or have bounded dimensions [15]. For a while we do not know any combinatorial con-
structions of HDXes of all constant dimensions. Furthermore, while properties of the Laplace
operators of many expanders are well-studied and have been applied to solve problems in
combinatorics, computational complexity, and statistical physics, we have yet to understand
their counterparts in HDXes.

1.3 Overview

Given many applications of HDXes, we would like to have more intuitive constructions of
local-spectral expanders and also find reasons why certain standard approaches fail. More-
over, since certain applications require a more precise characterization of combinatorial ex-
pansion of random walks over local-spectral expanders, we need to develop new tools to
improve existing analyses. This thesis provides partial answers to these questions.

In Chapter 2, we give an approach of constructing HDXes from expanders. We start with
a global graph that is already a sparse expander. Currently the link of a vertex is simply a set
of disjoint vertices. Next we start adding edges and triangles to the graph via graph products
to make the link graphs of all vertices connected. This approach produces bounded-degree
local-spectral expanders whose link graphs are

(
1
2
+ ε
)
-expanders. This expansion parameter



CHAPTER 1. INTRODUCTION 5

is in the regime where the trickling-down theorem gives a trivial bound of 1. Since many
applications hinge on local expansion parameter to be arbitrarily close to 0, this construction
is not widely applicable.

In Chapter 3, we take a different approach to the construction problem. We ask if
any compact manifolds naturally gives rise to local-spectral expansion. If so, we would be
able to find geometric intuition behind analytical properties of HDXes, and also construct
HDXes from these manifolds. As a first step towards this direction, we consider the high-
dimensional spheres, and study the random 2-dimensional simplicial complexes over the
spheres. We obtain polynomial degree HDXes from this model. Though the average degree
is not bounded, it beats the average degree of HDXes constructed from random simplicial
complex models that do not have any latent geometry.

Lastly in Chapter 4, we characterize non-expanding sets over random walks in HDXes.
The main tool is a basis decomposition framework that gives an almost orthogonal decompo-
sition of functions over HDXes. This framework applies generally to spaces that are “locally”
close to product spaces. HDXes are examples of such spaces.

1.3.1 Chapter 2: High-dimensional expanders from expanders

We present an elementary way to transform an expander graph into a local-spectral expander
where all high order random walks have a constant spectral gap, i.e., they converge rapidly to
the stationary distribution. As an upshot, we obtain new constructions, as well as a natural
probabilistic model to sample constant degree local-spectral expanders.

In particular, we show that given an expander graph G, adding self loops to G and
taking the tensor product of the modified graph with a constant-size local-spectral expander
produces a larger local-spectral expander. The resulting local-spectral expanders have local-
spectral expansion parameter strictly greater than 1

2
. Though in this regime local-to-global

phenomenon does not hold, this is the first combinatorial construction of constant-degree
local-spectral expanders of any constant dimension with local expansion independent of the
number of vertices and dimension.

We also analyze the various high order random walks over these complexes. Our proof
of rapid mixing of high order random walks is based on the decomposable Markov chains
framework introduced by Jerrum et al.

This chapter is based on joint work with Mohanty and Yang [83].

1.3.2 Chapter 3: 2-dimensional expanders from random
geometric graphs

To achieve local expansion strictly smaller than 1
2
, we construct local-spectral expanders

from random geometric complexes.
Consider a 2-dimensional random geometric simplicial complex X sampled as follows:

first, sample n vectors u1, . . . ,un uniformly at random on Sd−1; then, for each triple i, j, k ∈



CHAPTER 1. INTRODUCTION 6

[n], add {i, j, k} and all of its subsets to X if and only if ⟨ui,uj⟩ ⩾ τ, ⟨ui,uk⟩ ⩾ τ , and
⟨uj,uk⟩ ⩾ τ . We prove that for every ε > 0, there exists a choice of d = Θ(log n) and
τ = τ(ε, d) so that with high probability, X is a local-spectral expander of average degree
nε in which each vertex’s link graph has second eigenvalue smaller than 1

2
.

To our knowledge, this is the first demonstration of a natural distribution over 2-dimensional
local-spectral expanders of arbitrarily small polynomial average degree and spectral link ex-
pansion better than 1/2. All previously known constructions are algebraic. This distribution
also furnishes an example of simplicial complexes for which the trickling-down theorem is
nearly tight.

En route, we prove general bounds on the spectral expansion of random induced sub-
graphs of arbitrary vertex transitive graphs, which may be of independent interest. For
example, one consequence is an almost-sharp bound on the second eigenvalue of random
n-vertex geometric graphs on Sd−1, which was previously unknown for most n, d pairs.

This chapter is based on joint work with Mohanty, Schramm, and Yang [84].

1.3.3 Chapter 4: Global hypercontractivity inequality over
ε-product space

A key property of local-spectral expanders is rapid mixing of the up-down walks in every
dimension. The k up-down walk in a d-dimensional simplicial complex χ is the two-step
walk over the bipartite graph Gk = (χ(k), χ(k+1), Ek) induced by the containment relation
between χ(k) and χ(k + 1).

Indeed we know that the k up-down walk has spectral gap O
(
1
k

)
[68]. Therefore by

Cheeger’s inequality any small set of k-faces has edge expansion Ω
(
1
k

)
in the walk graph.

Though k is a constant in our context, many applications need an expansion that does not
depend on k.

However, such expansion cannot hold for all small sets as shown by the following example.
Let v ∈ χ(0) be a vertex in χ, define the set Sv(k) to contain all k-faces that contains v.
Sv(k)’s edge expansion is O

(
1

k+1

)
. Though a k-independent edge expansion does not hold

for all small sets, we note that the counterexamples are highly structured, and one could
still hope for a better expansion for all “unstructured sets”. This is the result in Chapter 4.

We prove hypercontractivity inequalities for local-spectral expanders. Our inequalities
are effective for global functions, which are functions that are not significantly affected by
a restriction of a small set of coordinates. As an application, we obtain small-set expansion
for local-spectral expanders. It implies that in the k up-down walk of an HDX, the non-
expanding sets are precisely those that have large overlaps with sets of the form {s ∈ χ(k) |
e ⊂ f} where e is some lower-dimensional hyperedge. Our approach applies more generally to
ε-product spaces. They are multivariate probability spaces satisfying that fixing any constant
number of variables make the resulting conditional distribution almost pairwise independent.
The distribution given by a local-spectral expander is a natural example of such spaces. The
key technique is a new approximate Efron-Stein decomposition for ε-product spaces.
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This chapter is based on joint work with Gur and Lifshitz [56].
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Chapter 2

High-dimensional Expanders from
Expanders

We construct bounded-degree high–dimensional expanders of all constant–sized dimensions,
where the high order random walks have a constant spectral gap, and thus mix rapidly.
We base our HDX’s from existing T -regular one-dimensional constructions, which can be
sampled readily from the space of all T -regular graphs. This endows a natural distribution
from which we can sample HDX’s of our construction as well. After the first version of this
paper was written, it was brought to our notice by a reviewer that the construction in this
paper has been previously discussed in the community. Nevertheless, a contribution of our
work is a rigorous analysis of the expansion properties of this construction.

One sufficient, but not necessary criterion that implies rapid mixing is spectral, which
comes from the graph theoretic notion below.

Definition 2.0.1 (Informal). A d–dimensional λ–spectral expander is a d–dimensional sim-
plicial complex (i.e. a hypergraph whose faces satisfy downward closure) such that

• (Global Expansion) The vertices and edges (sets of two vertices) of the complex con-
stitute a λ–spectral expander graph,

• (Local Expansion) For every hyperedge E of size ⩽ d − 1 in the hypergraph, the
vertices and edges in the ”neighborhood” of E also constitute a λ–spectral expander.
(The precise definition of ”neighborhood” will be discussed later.)

Most known constructions of bounded-degree high–dimensional spectral expanders are
heavily algebraic, rather than combinatorial or randomized. In contrast, there are a wealth
of different constructions for bounded-degree (one-dimensional) expander graphs [58]. Some
of these are also algebraic, such as the famous LPS construction of Ramanujan graphs [88],
but there are also many simple, probabilistic constructions of expanders. In particular,
Friedman’s Theorem says that with high probability, random d-regular graphs are excellent
expanders [49].
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Unfortunately, random d–dimensional hypergraphs with low degrees are not d–dimensional
expander graphs. For a hypergraph with n vertices, we need a roughly n (log n/n)1/d-
degree Erdős-Rényi graph to make the neighborhood of every hyperedge of size ⩽ d − 1
to be connected with high probability. While random low degree hypergraphs are not high–
dimensional expanders, our construction provides simple probabilistic high–dimensional ex-
panders of all dimensions.

2.1 Problem background and summary of results

2.1.1 Our results

Construction. We construct an H–dimensional simplicial complex Q on n · s vertices,
from a graph G of n vertices and a (small) H–dimensional complete simplicial complex B on
s vertices. To construct Q, we replace each vertex v of G with a copy of B which we denote
Bv. Denote the copy of a vertex w ∈ B in Bv by (v, w). The faces of Q are chosen in the
following way: for every face {w1, w2, . . . , wk} in B, add it {(v1, w1), (v2, w2), . . . , (vk, wk)} to
the complex, where for some edge e in G, the vertices v1, . . . vk are each one of the endpoints
of e; in particular there are 2 choices for each vi. The main punchline of our work is that
when G is a (triangle-free) expander graph, the high order random walks on Q mix rapidly.
Specifically, we prove:

Theorem 2.1.1 (Main theorem, informal version of Theorem 2.3.1). Suppose G is a triangle-
free expander graph with two-sided spectral gap ρ. For every k such that 1 ⩽ k < H, there is
a constant C depending on k,H, s, ρ, but independent of n such that the Markov transition
matrix for the up-down walk on the k-faces of Q has two-sided spectral gap C.

First attempt at proving rapid mixing of high order random walks. [65], which
introduced the notions of up-down and down-up random walks, and subsequent works [24,
68, 67, 5] developed and followed the “local-to-global paradigm” to prove rapid mixing of
high order random walks. In particular, each of these works would:

A. Establish that all the links of a relevant simplicial complex have “small” second eigen-
value.

B. Prove or cite a statement about how rapid mixing follows from small second eigenvalues
of links (such as Theorem 2.1.3).

Then, step A. and step B. together would imply that the up-down and down-up random walks
on the simplicial complexes they cared about mixed rapidly. This immediately motivates
first bounding the second eigenvalue of the links of our construction, and applying the
quantitatively strongest known version of the type of theorem alluded to in step B.. Thus,
in Section 2.4 we analyze the second eigenvalue of all links of Q and prove:
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Theorem 2.1.2 (Informal version of Theorem 2.3.3). The two-sided spectral gap of every
link in Q is bounded by approximately 1

2
.

And the ‘quantitatively strongest’ known “local-to-global” theorem is

Theorem 2.1.3 (Informal statement of [68, Theorem 5]). If the second eigenvalue of every
link of a simplicial complex S is bounded by λ, then the up-down walk on k-faces of S, S↑↓

k

satisfies:

λ2(S↑↓
k ) ⩽

(
1− 1

k + 1

)
+ kλ.

Observe that the upper bound on the second eigenvalue of all links must be strictly
less than 1

k(k+1)
to conclude any meaningful bounds on the mixing time of the up-down

random walk. Thus, unfortunately, Theorem 2.1.2 in conjunction with Theorem 2.1.3 fails
to establish rapid mixing.

Hence, we depart from the local-to-global paradigm and draw on alternate techniques.

Decomposing Markov chains. Each k-face of Q is either completely contained in a
cluster {(v, ?)} for a single vertex v in G, or straddles two clusters corresponding to vertices
connected by an edge, i.e., is contained in {(v, ?)} ∪ {(u, ?)}. Consider performing an up-
down random walk on the space of k-faces of Q (henceforth Q↑↓

k ). If we record the single
cluster or pair of clusters containing the k-face the random walk visits at each timestep, it
would resemble:

{17, 19} → {17, 19} → {17, 19} → {17} → {17} → {17, 155} → {17, 155} →
{17, 155} → {155} → {155, 203} → {155, 203} → {155, 203} → {155, 203} →
{155, 203} → {203} → {6, 203} → {6, 203} → · · ·

In the above illustration of a random walk, let us restrict our attention to the segment of the
walk where the k-faces are all contained in, say, the pair of clusters {155, 203}. Intuitively,
we expect the random walk restricted to those k-faces to mix rapidly and also exit the set
quickly by virtue of the state space being constant-sized. In particular, if we keep the random
walk running for t ≈ C log n steps for some large constant C, it would seem that the number
of “exit events”1 is roughly α · C log n for some other constant α. The sequence of “exit
events” can be viewed as a random walk on the space of edges and vertices of G, and since
there are many steps in this walk, the expansion properties of G tell us that the location of
the random walk after t steps is distributed according to a relevant stationary distribution.
In light of these intuitive observations of rapidly mixing in the walks within cluster pairs and
also rapidly mixing in a walk on the space of cluster pairs, one would hope that the up-down
walk on k-faces mixes rapidly.

This hope is indeed fulfilled and is made concrete in a framework of Jerrum et al. [62].
In their framework, there is a Markov chain M on state space Ω. They show that if Ω can

1Transitions like {17, 19} → {17}, {155} → {155, 203}, and so on.
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be partitioned into Ω1, . . . ,Ωℓ such that the chain “restricted” (for some formal notion of
restricted) to each Ωi, and an appropriately defined “macro-chain” (where each partition
Ωi is a state) each have a constant spectral gap, then the original Markov chain M has
a constant spectral gap as well. Our proof of the fact that Q↑↓

k has a constant spectral
gap utilizes this result of [62]. This framework of decomposable Markov chains is detailed
in Section 2.2.2, and the analysis of the spectral gap of the down-up random walk2 is in
Section 2.5.

2.1.2 Related Work

While high–dimensional expanders have been of relatively recent interest, already many
different (non-equivalent) notions of high–dimensional expansion have emerged, for a variety
of different applications.

The earliest notions of high–dimensional expansion were topological. In this vein of
work, [80, 54] introduced coboundary expansion, [37] defined cosystolic expansion, and [37,
64] defined skeleton expansion. To our knowledge, most existing constructions of these types
of expanders rely on the Ramanujan complex. We refer the reader to a survey by Lubotzky
[87] for more details on these alternate notions of high dimensional expansion and their uses.

To describe notions of high dimensional expansion that are relevant to computer scien-
tists, we need to first highlight a key property of (one-dimensional) expander graphs–that
random walks on them mix rapidly to their stationary distribution. The notion of a random
walk on graphs was generalized to simplicial complexes in the work of Kaufman and Mass
[65] to the “up-down” and “down-up” random walks, whose states are k-faces of a simplicial
complex. They were interested in bounded–degree simplicial complexes where the up-down
random walk mixed to its stationary distribution rapidly. They then proceed to show that
the known construction of Ramanujan complexes from [90] indeed satisfy this property.

A key technical insight in their work that the rapid mixing of up-down random walks
follows from certain notions of local spectral expansion, i.e., from sufficiently good two-sided
spectral expansion of the underlying graph of every link. A quantitative improvement be-
tween the relationship between the two-sided spectral expansion of links and rapid mixing
of random walks was made in [24], and this improvement was used to construct agreement
expanders based on the Ramanujan complex construction. Later, [68] showed that one-sided
spectral expansion of links actually sufficed to derive rapid mixing of the up-down walk on
k-faces.

2.1.3 HDX Constructions

Although this combinatorial characterization of high–dimensional expansion is slightly weaker
than some of the topological characterizations mentioned above, few constructions are known

2Which is actually equivalent to proving a spectral gap on the up-down random walk but is more
technically convenient. See Fact 2.2.29.
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for bounded degree HDX’s with dimension ⩾ 2. Most of these rely on heavy algebra. In con-
trast, for one-dimensional expander graphs, there are a wealth of different constructions,
including ones via graph products and randomized ones. [49] states that even a random
d-regular graph is an expander with high probability.

The most well-known construction of bounded-degree high–dimensional expanders are
the Ramanujan complexes [90]. These require the Bruhat-Tits building, which is a high-
dimensional generalization of an infinite regular tree. The underlying graph has degree
qO(d2), where q is a prime power satisfying q ≡ 1 (mod 4). The links can be described by
spherical buildings, which are complexes derived from subspaces of a vector space, and are
excellent expanders.

Dinur and Kaufman showed that given any λ ∈ (0, 1), and any dimension d, the d–skeleton
of any d + ⌈2/λ⌉–dimensional Ramanujan complex is a d–dimensional λ–spectral expander

[24]. Here, the degree of each vertex is (2/λ)O((d+2/λ)2). In other words, they “truncate” the
Ramanujan complexes, throwing out all faces of size greater than some number k. Their
primary motivation was to obtain agreement expanders, which find uses towards PCPs.

Recently, Kaufman and Oppenheim [67] present a construction of one–sided high–dimensional
expanders, which are coset complexes of elementary matrix groups. The construction guar-
antees that for any λ ∈ (0, 1) and any dimension d, there exists a infinite family of high–
dimensional expanders {Xi}i∈N, such that (1) every Xi are d–dimensional λ–one–sided–

expander; (2) every Xi’s 1-skeleton has degree at most Θ

(√
(1/λ+d−1)(d+2)2

2 log (1/λ+d−1)

)
; (3) as i goes

to infinity the number of vertices in Xi also goes to infinity.
Even more recently, Chapman, Linial, and Peled [15] also provided a combinatorial con-

struction of two-dimensional expanders. They construct an infinite family of (a, b)-regular
graphs, which are a-regular graphs whose links with respect to single vertices are b-regular.
The primary motivation for their construction comes from the theory of PCPs. They prove
an Alon-Boppana type bound on λ2(G) for any (a, b)-regular graph, and construct a fam-
ily of graphs where this bound is tight. They also build an (a, b)-regular two-dimensional
expander using any non-bipartite graph G of sufficiently high girth; they achieve a local
expansion only depending on the girth, and the global expansion depending on the spectral
gap of G. Like ours, their construction also resembles existing graph product constructions
of one-dimensional expanders.

2.2 Preliminaries and Notation

2.2.1 Spectral Graph Theory

While we can describe our constructions combinatorially, our analysis of both the mixing
times of certain walks as well as the local expansion will heavily rely on understanding graph
spectra.
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Definition 2.2.1. For an edge-weighted directed graph G on n vertices, we use Adj(G) to
denote its (normalized) adjacency matrix, i.e. the matrix given by

Adj(G)(u,v) =
1(u,v)∈E(G) · w((u, v))∑
v:(u,v)∈E(G)w((u, v))

and write its (right) eigenvalues as

1 = λ1(G) ⩾ λ2(G) ⩾ . . . ⩾ λn(G) ⩾ −1

Let Spectrum(G) to indicate the set {λi(G)}. We write OneSidedGap(G) for the spectral gap
of G, which is the quantity 1 − λ2(G). Graphs with OneSidedGap(G) ⩾ µ are one-sided
µ-expanders.

Most of the graphs we analyze achieve a stronger condition; that the second largest
eigenvalue magnitude is not too large. Formally, we write |λ|i for the i-th largest eigenvalue
in absolute value. In particular, |λ|2 = max{|λ2|, |λn|}. The absolute spectral gap of G,
denoted TwoSidedGap(G), is the quantity 1 − |λ|2. Graphs with TwoSidedGap(G) ⩾ µ are
two-sided µ-expanders.

Remark 2.2.2. For an undirected weighted graph, we simply have w((u, v)) = w((v, u)),
and use this to define the adjacency matrix the same way.

Graph Tensors Our construction can roughly be described as a tensor product, defined
below.

Definition 2.2.3. The tensor product G×H of two graphs G and H is given by

1. Vertex set V (G×H) = V (G)× V (H),

2. Edge set E(G×H) = {((u1, v1), (u2, v2)) : (u1, u2) ∈ E(G) and (v1, v2) ∈ E(H)}.

The adjacency matrix Adj(G×H) is the tensor (Kronecker) product Adj(G)⊗Adj(H). Due
to this structure, Spectrum(G×H) = {λiµj : λi ∈ SpectrumG, µj ∈ Spectrum(H)}. As 1 is
the largest eigenvalue of both Adj(G) and Adj(H), it follows that both

OneSidedGap(G×H) = min(1− 1 · µ2, 1− λ2 · 1)
= min(OneSidedGap(G),OneSidedGap(H))

TwoSidedGap(G×H) = min(1− 1 · |µ|2, 1− |λ|2 · 1)
= min(TwoSidedGap(G),TwoSidedGap(H))
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2.2.2 Markov Chains

We provide a basic overview of the Markov chain concepts used to analyze our high order
walks. We refer to [76] for a detailed and thorough treatment of the fundamentals of Markov
chains.

Definition 2.2.4. A Markov chain M = (Ω, P ) is given by states Ω and a transition matrix
P where P [i, j] is the probability of going to state j from state i. We may also write this
quantity as M [j → i].

Remark 2.2.5. The literature often defines Pi,j as the probability Pr(i → j), so their P
is the transpose of ours. However, we work with column (right) eigenvectors to analyze
the spectrum of P , while this alternate convention uses row (left) eigenvectors, so both
conventions yield the same results.

Definition 2.2.6. We can view any Markov chain M as a weighted, directed graph G,
defined by V (G) = States(M), E(G) := {(i, j) : i, j ∈ V (G),M [i → j] > 0}, and
w((i, j)) =M [j → i].

The transition matrix of M is Adj(G), and we also refer to Spectrum(G) as the spectrum
of M . Every adjacency matrix has λ1 = 1, so transition matrix of M has an eigenvector
πM (normalized so that entries sum to 1) for the eigenvalue 1. We call πM a stationary
distribution of M .

Remark 2.2.7. We may use the term “graph” in lieu of “chain” when we want to indicate
the random walk defined by the transition matrix Adj(G).

The next property we introduce is present for every Markov chain we analyze.

Definition 2.2.8. The Markov chain M = (Ω, P ) is time-reversible if for any integer k ⩾ 1:

πM(x0)M [x0 → x1] · · ·M [xk−1 → xk] = πM(xk)M [xk → xk−1] · · ·M [x1 → x0]

Intuitively, it means that if start at the stationary distribution and run the chain for a
sequence of time states, the reverse sequence has the same probability of occurring. Time
reversibility helps us compute stationary distributions via the detailed balance equations.
(This is especially helpful when there are a huge number of symmetric states.)

Fact 2.2.9. The Markov chain M = (Ω, P ) is time-reversible if and only if it satisfies the
detailed balance equations: for all x, y ∈ Ω,

πM(x)M [x→ y] = πM(y)M [y → x]

Definition 2.2.10. The ε-mixing time of a Markov chain M is the smallest t such that for
any distribution ν over the states of M ,

∥πM − P tν∥1 ⩽ ε

where πM is the stationary distribution of M .
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Theorem 2.2.11. For any Markov chain M , the ε-mixing time tmix(ε) satisfies:

tmix(ε) ⩽ log

(
1

εminπM

)
· 1

TwoSidedGap(M)
.

Decomposing Markov Chains Consider a finite-state time reversible Markov chain M
whose structure gives rise to natural state-space partition, M can be decomposed into a
number of restriction chains and a projection chain. [62] show that the spectral gap for the
original chain can be lower bounded in terms of the spectral gaps for the restriction and
projection chains.

We now formally define the decomposition of a Markov chain. Consider an ergodic
Markov chain on finite state space Ω with transition probability P : Ω2 → [0, 1]. Let π : Ω →
[0, 1] denote its stationary distribution, and let {Ωi}i∈[m] be a partition of the state space
into m disjoint sets, where [m] := {1, . . . ,m}.

The projection chain induced by the partition {Ωi} has state space [m] and transitions

P (i, j) =

(∑
x∈Ωi

π(x)

)−1 ∑
x∈Ωiy∈Ωj

π(x)P (x, y).

The above expression corresponds to the probability of moving from any state in Ωi to any
state in Ωj in the original Markov chain.

For each i ∈ [m], the restriction chain induced by Ωi has state space Ωi and transitions

Pi(x, y) =

{
P (x, y), x ̸= y,

1−
∑

z∈Ωi\{x} P (x, z), x = y.

Pi(x, y) is the probability of moving from state x ∈ Ωi to state y when leaving Ωi is not
allowed.

Regardless of how we define the projection and restriction chains for a time reversible
Markov chain, they all inherit one useful property from the original chain.

Fact 2.2.12. Let M = (Ω, P ) be a time-reversible Markov chain. Then, for any decomposi-
tion of M , the projection and restriction chains are also time-reversible.

We ultimately want to study the spectral gap of random walks. Luckily, the original
Markov chain’s spectral gap is related to the restriction and projection chains’ spectral gaps
in the following way:

Theorem 2.2.13 ([62, Theorem 1]). Consider a finite-state time-reversible Markov chain
decomposed into a projection chain and m restriction chains as above. Define γ to be maxi-
mum probability in the Markov chain that some state leaves its partition block,

γ := max
i∈[m]

max
x∈Ωi

∑
y∈Ω\Ωi

P (x, y).
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Suppose the projection chain satisfies a Poincaré inequality with constant λ̄ , and the restric-
tion chains satisfy inequalities with uniform constant λmin. Then the original Markov chain
satisfies a Poincaré inequality with constant

λ := min

{
λ̄

3
,
λ̄λmin

3γ + λ̄

}
.

Recall that if λ satisfies a Poincaré inequality, it is a lower bound on the spectral gap (cf.
[76]).

2.2.3 High-Dimensional Expanders

The generalization from expander graphs to hypergraphs (more specifically, simplicial com-
plexes) requires great care. We now formally establish the high dimensional notions of
“neighborhood”, “expansion,” and “random walk.”

Definition 2.2.14. A simplicial complex S is specified by vertex set V (S) and a collection
F(S) of subsets of V (S), known as faces, that satisfy the “downward closure” property: if
A ∈ F(S) and B ⊆ A, then B ∈ F(S). Any face S ∈ F(S) of cardinality (k + 1) is called
a k-face of S. We use k-faces(S) to denote the subcollection of k-faces of F(S). We say S
has dimension d, where d = max{|F | : F ∈ F(S)} − 1.

Example 2.2.15. A 1-dimensional complex S is a graph with vertex set V (S) and edge set
1-faces(S).

Definition 2.2.16. To formally define random walks and Markov chains on a S, we need
to associate S with a weight function w : F(S) → R+. We want our weight function to be
balanced, meaning for F ∈ k-faces(S):

w(F ) =
∑

J∈(k+1)-faces(S):J⊃F

w(J)

If we restrict ourselves to balanced w, it suffices to only define w over d-faces(S) and prop-
agate the weights downward to the lower order faces.

Definition 2.2.17. The (weighted) k-skeleton of S is the complex with vertex set V (S) and
all faces in F(S) of cardinality at most k + 1, with weights inherited from S.

Example 2.2.18. The 1-skeleton of S only contains its vertices (0-faces) and edges (1-
faces). It can be characterized as a graph with edge weights, so we can also compute
OneSidedGap(1-skeleton(S)) and TwoSidedGap(1-skeleton(S)).

Definition 2.2.19. For S ∈ k-faces(S) for k ⩽ H − 1, we associate a particular (H − k)-
dimensional complex known as the link of S defined below.

link(S) := {T \ S : T ∈ F(S), S ⊆ T}
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If S was equipped with weight function w, then link(S) “inherits” it. We associate link(S)
with weight function wS given by wS(T ) = w(S ∪ T ). If w is balanced, then wS is also
balanced. We call a link(S) a t-link if |S| has cardinality t.

Example 2.2.20. In a graph, the link of a vertex is simply its neighborhood.

Definition 2.2.21. The global expansion of S, denoted GlobalExp(S), is the expansion of
its weighted 1-skeleton.

Definition 2.2.22. The local expansion of S, denoted LocalExp(S) is

LocalExp(S) := min
0⩽k⩽H−1

min
S∈k-faces(S)

TwoSidedGap(1-skeleton(link(S))).

In words, it is equal to the expansion of the worst expanding link.

Example 2.2.23. We use K(H)
H+2 to denote the complete H-dimensional complex on vertex

set [H + 2], i.e., the pure H-dimensional simplicial complex obtained by making the set of
(H + 1)-faces equal to all subsets of [H + 2] of size H + 1. The 1-skeleton is then a clique
on H + 2 vertices whose expansion is 1 − 1

H+1
and the 1-skeleton of a t-link is a clique on

H+2−t vertices, which has expansion 1− 1
H+1−(t−1)

. As a result, TwoSidedGap
(
K(H)
H+2

)
= 1

2
.

Remark 2.2.24. We often use Adj(S) to refer to the adjacency matrix of the 1-skeleton of
S, and we may also use λi(S) to refer to the i-th largest eigenvalue of Adj(S).

Previously, we mentioned that there are several different notions of high dimensional ex-
pansion: some geometric or topological, some combinatorial. We now formally define high
dimensional spectral expansion, which is a more combinatorial and graph theoretic notion:

Definition 2.2.25. S is a two-sided λ-local spectral expander if GlobalExp(S) ⩾ λ and
LocalExp(S) ⩾ λ.

High Order Walks on Simplicial Complexes Let S be a H-dimensional simplicial
complex and with weight function w : k-faces(S) → R⩾0 on the k-faces of S, for k ⩽ H. For
each k < H, we can define a natural (periodic) Markov chain on a state space consisting of
k-faces and (k + 1)-faces of S.

• At a (k + 1)-face J , there are exactly (k + 2) faces F ∈ k-faces(S) such that F ⊂ J ,
due to the downward closure property. We transition from J to each k-face F with
probability 1

k+2
.

• At a k-face F , we transition to each (k + 1)-face J satisfying J ⊃ F with probability
w(J)
w(F )

. (Note that w must be balanced for these transitions to be well-defined.)

Restricting the above chain to only odd or even time steps gives us two new random walks:
one entirely on k-faces(S) and one entirely on (k + 1)-faces(S).
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Definition 2.2.26 (Down-up walk on k-faces of S). = Let S↓↑
k+1 be the Markov chain with

state space equal to k-faces(S) and transition probabilities S↓↑[J → J ′] described by the
process above, where there is an implicit transition down to a k-face and back up to a
(k + 1)-face. Then:

S↓↑[J → J ′] =



1

k + 1

∑
F∈k-faces(S):F⊂J

w(J)

w(F )
if J = J ′

1

k + 1
· w(J ′)

w(J ∩ J ′)
if J ∩ J ′ ∈ k-faces(S)

0 otherwise

Definition 2.2.27 (Up-down walk on k-faces of S). Let S↑↓ be the Markov chain with state
space equal to k-faces(S) and transition probabilities S↑↓[F → F ′] described by the process
above, where there is an implicit transition up to a (k + 1)-face and back down to a k-face.
Then:

S↓↑[F → F ′] =


1

k + 1
if F = F ′

w(F ∪ F ′)

w(F )
if F ∪ F ′ ∈ (k + 1)-faces(S)

0 otherwise

Remark 2.2.28. In the literature, we also see S↓↑
k+1 written as S∨

k+1, and S↑↓
k written as S∧

k .

We now present some facts about these high order walks without proof. We refer to [68, 5]
for proofs of these facts.

Fact 2.2.29. The transition matrices for S↓↑
k+1 and S↑↓

k share the same eigenvalues. The
nonzero eigenvalues occur with the same multiplicity. A straightforward but important con-
sequence of this fact is

Spectrum(S↓↑
k+1) = Spectrum(S↑↓

k+1)

Fact 2.2.30. The Markov chains S↓↑
k and S↑↓

k have the same stationary distribution on
k-faces(S), which is proportional to w(F ) for each F ∈ k-faces(S). We will call this distri-
bution πk(·).

For the remainder of the paper, we will assume a uniform weight function on d-faces(S),
which is useful for applications like sampling bases of a matroid [5]. When using the uniform
weighting scheme, for F ∈ k-faces(S), there is a natural interpretation of πk(F ): the fraction
of d-faces that contain F as a subface. (We also note that we will use symbolic variables to
represent various weight values, and that it is straightforward to adapt our computations to
cases where we have uniform weights over k-faces(S) for any k.)
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2.3 Local Densification of Expanders

For a graph G and H-dimensional simplicial complex S, we give a way to combine the
two to produce a bounded-degree H-dimensional complex LocalDensifier(G,S) of constant
expansion. First, construct a graph G′ with

1. vertex set equal to V (G)× V (S), and

2. edge set equal to {{(v1, b1), (v2, b2)} : {b1, b2} ∈ 1-faces(S), {v1, v2} ∈ E(G) or v1 = v2}.

LocalDensifier(G,S) is then defined as the H-dimensional pure complex whose H-faces
are all cliques on H +1 vertices {(v1, b1), (v2, b2), . . . , (vH+1, bH+1)} such that there exists an
edge {a, b} in G for which v1, . . . , vH+1 ∈ {a, b}.

To describe a k-face of LocalDensifier(G,S), we may also use the ordered pair (F, f),
where F is a k-face of S, and f is a function mapping each element of F to a vertex of G.
Because of the local densifier’s tensor structure, image(f) is either a single vertex, or a pair
of vertices that form an edge in G.

Linear algebraically, we can think of this graph construction as adding a self loop to each
vertex of G and then taking the tensor product with the 1-skeleton of S.

Our construction isQ := LocalDensifier(G,B), where B is equal toK(H)
s , theH-dimensional

complete complex on some constant s ⩾ H + 1 vertices, and G is a T -regular triangle-free
expander graph on n vertices. We endow Q with a balanced weight function w induced by
setting the weights of all H-faces to 1.

As a first step to understanding this construction, we inspect the weights induced on
k-faces for k < H. Consider a k-face F := {(v1, b1), . . . , (vk+1, bk+1)}. A short calculation
reveals that if v1, . . . , vk+1 are all equal, then w(F ) is equal to wJ,k :=

(
s

H−k

)
·[T2H−k−(T−1)]

and otherwise, w(F ) is equal to wI,k :=
(

s
H−k

)
· [2H−k]. Henceforth, write wJ and wI instead

of wJ,k and wI,k when k is understood from context.
We now list out what we prove about Q. Most importantly, we show:

Theorem 2.3.1. For every 1 ⩽ k < H, the Markov transition matrix Q↓↑
k for down-up (and

equivalently up-down) random walks on the k-faces satisfies:

TwoSidedGap
(
Q↓↑
k

)
⩾

TwoSidedGap(G)

64T 2(k + 1)2(s− k)(2k − 1)
.

We dedicate Section 2.5 to proving Theorem 2.3.1.
As an immediate corollary of Theorem 2.3.1 and Theorem 2.2.11, we get that

Corollary 2.3.2. Let Nk denote the number of k-faces in Q. Then the ϵ-mixing time of Q↓↑
k

satisfies:

t(ε) ⩽
64T 2(k + 1)2(s− k)(2k − 1)

TwoSidedGap(G)
· log

(
2Nk

ε

)
.

We note that Nk = Θ(n).
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We also derive bounds on the expansion of links of Q. In particular, as a direct con-
sequence of Theorem 2.4.2 and the discussion of the expansion properties of the complete
complex in Example 2.2.23, we conclude:

Theorem 2.3.3. We can prove the following bounds on the local and global expansion of Q:

GlobalExp(Q) ⩾

[
1

2
− 1

2 · (T2H + 1)

]
· TwoSidedGap(G), and

LocalExp(Q) ⩾
1

2
.

Remark 2.3.4. Suppose G is a random T -regular (triangle-free) graph and H ⩾ T . Then
the corresponding (random) simplicial complex Q, as a consequence of Friedman’s Theorem
[49]3, with high probability satisfies

TwoSidedGap
(
Q↓↑

k

)
⩾

T − 2
√
T − 1− on(1)

64T 3(k + 1)2(s− k)(2k − 1)

GlobalExp(SQ) ⩾
T − 2

√
T − 1− on(1)

T + 1
, and

LocalExp(S) ⩾ 1/2.

Thus,Q endows a natural distribution over simplicial complexes that gives a high-dimensional
expander with high probability.

Remark 2.3.5. If G is strongly explicit, such as an expander from [101, 10], then Q is also
strongly explicit since the tensor product of two strongly explicit graphs is also strongly
explicit.

2.4 Local Expansion

For this entire section, we will mainly work with the complex LocalDensifier(G,S), so when
we use link(·) without a subscript, it will be with respect to LocalDensifier(G,S). Next, fix
a face σ = (F, f) ∈ k-faces(LocalDensifier(G,S)). In order to study the expansion of the
1-skeleton of link(σ), we need to first compute the weights on its 1-faces.

Let τ = {(v1, b1), (v2, b2)} ∈ 2-faces(link(σ)), where as before, vi ∈ V (G) and bi ∈
1-faces(S). There are several cases we need to consider:

1. Case 1: |image(f)| = 2.
Here, wσ(τ) = w(τ ∪ σ), which is proportional to the number of H-faces (F ′, f ′) that
contain τ ∪ σ. The face τ ∪ σ already has (k+3) vertices, so there are

(
S

H−(k+2)

)
possi-

bilities of F ′. There are 2H−(k+2) choices for f ′, since image(f ′) must equal image(f).

3Friedman’s theorem says that a random T -regular graph, whp, has two-sided spectral gap (T−2
√
T − 1−

on(1))/T . Additionally, random graphs are triangle-free with constant probability.
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2. Case 2: |image(f)| = 1.

a) Case 2(a): v1 = v2 ∈ image(f) and {b1, b2} ∈ 2-faces(linkS(F )).
Again, there are

(
S

H−(k+2)

)
possibilities for F ′. Since v1 = v2 ∈ image(f), we will

have T · [2H−(k+2) − 1] + 1 choices for f ′, as v1 has T neighbors in G, and when f ′

is not constant on v1, there are T choices for the other value it can take.

b) Case 2(b): v1 ̸= v2 but (v1, v2) ∈ E(G), and {b1, b2} ∈ 2-faces(linkS(F )).
Again, we have

(
S

H−(k+2)

)
possibilities for F , but we only have 2H−(k+2) choices

for f ′; the image of f ′ must be {v1, v2}.
c) Case 2(c): v1 = v2 /∈ image(f) but v1 ∪ image(f) ∈ E(G), and {b1, b2} ∈

2-faces(linkS(F )).
The analysis is identical to that of Case 2(b)

For simplicity, we’ll assign weights to the elements of 2-faces(LocalDensifier(G,S)) as below:

w({(v1, b1), (v2, b2)}) =

{
wS,k := 2H−(k+2) for Case 1, 2(b), and 2(c)

wC,k := 1 + T (2H−(k+2) − 1) for Case 2(a)

(Here, the C and S denote “center” and “satellite,” whose meanings will be more natural
when discussing link(σ) when σ ̸= ∅.)

Remark 2.4.1. Note that if we choose σ = ∅ (so k = −1), we simply get the weights of the
1-skeleton of LocalDensifier(G,S) itself, which will be useful for computing global expansion.

Theorem 2.4.2. Let G be a triangle-free T -regular graph and let S be a pure H-dimensional
simplicial complex. Then

GlobalExp(LocalDensifier(G,S)) = min

{
T2H−1

T2H − (T − 1)
· TwoSidedGap(G),GlobalExp(S)

}
,

and LocalExp(LocalDensifier(G,S)) = TwoSidedGap(S).

We omit the proof and refer the readers to section 4 of [83] for more details.

2.5 Spectral Gap of High Order Walks

In this section we omitted the proofs of many lemmas. These proofs can all be found in
section 5 of [83].

2.5.1 Offsets and Colors

We now inspect the structure of the k-faces of our construction Q in more detail.
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Definition 2.5.1 (k-faces of Q). The set of k-faces of Q is exactly equal to the set of
tuples (F, f) where F is a k-face of B and f is a labeling of each element by endpoints
of some edge {u, v} in G. We call (F, f) t-offset if either |{x ∈ F : f(x) = u}| = t or
|{x ∈ F : f(x) = v}| = t.

Remark 2.5.2. Suppose t ⩽ k + 1 − t. Note that a (k + 1 − t)-offset state is also t-offset,
but we will stick to the convention of describing such states as t-offset. For example, a
(k + 1)-offset state is also 0-offset, but we will only use the term 0-offset.

Definition 2.5.3 (Coloring of k-faces of Q). We color a k-face (F, f) of Q with image(f).
Each 0-offset face is then colored with a vertex of G and the remaining faces are each colored
with an edge of G.

Figure 2.1: A 5-face in Q. Corresponding 5-face in B is {1, 3, 4, 5, 7, 8} is given by red
vertices. Labeling is (1, u), (3, v), (4, v), (5, u), (7, u), (8, v). {u, v} is an edge in G. Color of
5-face is {u, v}

In the rest of the section, we study the spectral gap of the Markov chain Q↓↑
k , the down-up

random walk on k-faces of Q induced by certain special weight functions — weight functions
w : k-faces(Q) → R⩾0 with the property that there are two values wI and wJ such that

w((F, f)) =

{
wJ if (F, f) is 0-offset

wI otherwise.

For the sequel, we use D to refer to the quantity TwI +wJ . The transition probabilities
between states (F, f) and (F ′, f ′) depends on a number of conditions such as whether they
are 0-offset or 1-offset or a different type, whether they arise from the same k-face in B,
and the colors of (F, f) and (F ′, f ′) respectively. A detailed treatment of the transition
probabilities Q↓↑

k [(F, f) → (F ′, f ′)] can be found in Table 1 in Appendix A of [83]. From the
transition probability table we observe that:
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Figure 2.2: A 0-offset 5-face. Color of 5-face is {u}.

Observation 2.5.4. For all k-faces in Q↓↑
k , the self-loop probability is at least 1

s−k · wJ
D
.

Therefore, the smallest eigenvalue of Q↓↑
k is at least 1

s−k ·
wJ
D

− 1.

2.5.2 High-Level Picture of Q↓↑
k

As noted in the previous subsection, each k-face can be described by three parameters: a
base face F ∈ k-faces(B), a “color” set C that is either a single vertex or an edge in E(G),
and a function f : F → C. The walk Q↓↑

k is difficult to analyze directly, but by grouping
states based on these three parameters, we can decompose the walk into a projection and
restriction chain, and analyze it using the tools from [62].

At the outermost level, we can first group states into subchains based on their color. All
subchains whose color is an edge (the rounded rectangles in Figure 2.3) are isomorphic to each
other; similarly, all subchains whose color is a single vertex (the circles in Figure 2.3) are also
isomorphic to each other. At first, it seems promising to partition Q↓↑

k into these subchains;
however, it is inconvenient that these subchains are not all isomorphic. To remedy this,
we split the single-vertex-colored subchains into T isomorphic copies (with some changes to
transition probabilities), and absorb them into the edge-colored subchains. This is detailed
in the next section.

If we use this partition, the projection chain resembles a random walk on the line graph
of G. Each restriction chain corresponds to all states of a single color C. The states are still
represented by any base face F ∈ k-faces(B) and any function f : F → C. To analyze each
of these restriction chains, it is simplest to apply [62] once more.

Now, we first group states by which base face F they correspond to. The subchains
derived from fixing a particular F (the rectangles in Figure 2.4) are all isomorphic to each
other, which leads to a much simplified analysis. Using this partition, the projection chain
is simply the k-down-up walk on B. Each restriction chain is thus over states corresponding
to a fixed base face F and fixed color C, but the function f : F → C is allowed to vary. At
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Figure 2.3: This figure illustrates Q↓↑
k , with states clustered by their color. The rounded

rectangles correspond to colors that are edges, while circles correspond to colors that are
single vertices. In each cluster, the {F} indicates that all F could be represented. Similarly,
{f} indicates that any f with image(f) as the color set can be represented. We use fu to
denote the constant function on u.

this point, we may assume |C| = 2; thus f corresponds to assigning every element of F one
of two elements. The inner restriction chain can be modeled by a hypercube.

Figure 2.4: This figure illustrates a subchain of Q↓↑
k , for particular color {u, v} and {u}. We

can further cluster the states in this subchain by which face F in B they represent. Again,
{f} indicates that f can be any function with image(f) as the color.

Thus, the spectral gap of Q↓↑
k is a combination of the spectral gaps of (1) the line graph

of G, (2) the k-down-up walk on B, and (3) the random walk on a hypercube.



CHAPTER 2. HIGH-DIMENSIONAL EXPANDERS FROM EXPANDERS 25

2.5.3 Splitting 0-Offset Vertices

Towards our end goal of lower bounding the spectral gap of Q↓↑
k , we find it convenient to

analyze a related Markov chain Q̃↓↑
k , since the related chain has a natural partition into

isomorphic subchains. Q̃↓↑
k has the property that its spectrum contains that of Q↓↑

k , which

lets us translate a lower bound on the spectral gap of Q̃↓↑
k to a lower bound on the spectral

gap of Q↓↑
k .

Definition 2.5.5 (Split chain Q̃↓↑
k and coloring of states in Q̃↓↑

k ). We identify each state in

States(Q̃↓↑
k ) with a tuple (F, f, c) where (F, f) is a face in k-faces(Q) and c is a color.

1. For each 0-offset face (F, f) in k-faces(Q), let {u} be the color of F , and let the

neighbors of u in G be v1, . . . , vT . States(Q̃↓↑
k ) contains the states (F, f, {u, v1}), . . . ,

(F, f, {u, vT}) in place of the state (F, f, u).

2. For each remaining k-face (F, f) of Q (i.e. each k-face that isn’t 0-offset), States(Q̃↓↑
k )

contains (F, f, image(f)).

For each pair of states (F, f, c), (F ′, f ′, c′) in States(Q̃↓↑
k ),

Q̃↓↑
k [(F, f, c) → (F ′, f ′, c′)] =

{
Q↓↑
k [(F,f)→(F ′,f ′)]

T
if (F ′, f ′) is 0-offset

Q↓↑
k [(F, f) → (F ′, f ′)] otherwise.

Intuitively, we want to split any transition to a 0-offset face in Q into T separate transi-
tions in Q̃↓↑

k , since each 0-offset face is also split into T new states.

Definition 2.5.6. We say two k-faces (F, f, e) and (F ′, f ′, e′) have identical base k-faces if
F = F ′ and different base k-faces if F ̸= F ′.

Definition 2.5.7. Given a state (F, f, e) such that (F, f) is a 1-offset face, there is a single
vertex v such that f(v) is different from f(u) for all u in F \ {v}. We call this vertex v a
lonely vertex.

In the next lemma, we show that the spectrum of the original Markov chain Q↓↑
k is

contained in that of Q̃↓↑
k .

Lemma 2.5.8. Spec
(
Q↓↑
k

)
⊆ Spec

(
Q̃↓↑
k

)
, and therefore, λ2(Q↓↑

k ) ⩽ λ2(Q̃↓↑
k ).

2.5.3.1 Stationary Distribution of Q̃↓↑
k

If we want to apply the projection and restriction framework to Q̃↓↑
k , we first need to compute

its stationary distribution. To do this, we take advantage of the time-reversibility of the high
order random walks, and apply the detailed balance equations.
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Figure 2.5: This figure illustrates the post-split vertices of Definition 2.5.5. The new vertices
can take on any F , but their mappings f will be constant functions.

Lemma 2.5.9. The stationary distribution of the Markov chain Q̃↓↑
k is given by:

πQ̃↓↑
k
(x) =


1

|E(G)|
· 1(

s
k+1

) · 1
2
· wJ
(2k − 1)TwI + wJ

for x 0-offset

1

|E(G)|
· 1(

s
k+1

) · 1
2
· TwI
(2k − 1)TwI + wJ

otherwise

Proof. Via the detailed balance equations, we first observe that all vertices with the same
offset have the same stationary distribution. Now, let x be any 0-offset vertex and y be any
1-offset vertex. Using the detailed balance equations, we have:

πQ̃↓↑
k
(x) · wI

(k + 1)(s− k)D
= πQ̃↓↑

k
(y) · wJ

(k + 1)(s− k)DT

Now, let x be any t-offset vertex, with t ⩾ 1, and let y be any (t + 1)-offset vertex. Again,
using the detailed balance equations:

πQ̃↓↑
k
(x) · 1

2(k + 1)(s− k)
= πQ̃↓↑

k
(y) · 1

2(k + 1)(s− k)

From here, we see that all 0-offset faces have one stationary distribution probability, and all
other faces also share the same stationary probability. The relations above tell us that for a
0-offset vertex x, and a t-offset vertex y with t ⩾ 1:

πQ̃↓↑
k
(x)

πQ̃↓↑
k
(y)

=
wJ
TwI
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Normalizing so that
∑

x∈Q̃↓↑
k
πQ̃↓↑

k
(x) = 1 gives the desired result.

2.5.4 Outer Projection and Restriction Chains

Now, we can further decompose Q̃↓↑
k into a projection chain and m isomorphic restriction

chains, where m = |E(G)|, since we will have one partition element for each edge in G.

Formally, we partition States(Q̃↓↑
k ) into m disjoint sets Ω1 ∪ · · · ∪Ωm, where Ωi = {(F, f, c) |

c = ei}.

2.5.4.1 The Outer Projection Chain

The partition Ω induces a projection chain ([m], Po). The state space is [m]. The edge set is

E(Po) = {{i, j} | ∃(F, f, ei) ∈ Ωi and (G, g, ej) ∈ Ωj s.t. Q̃↓↑
k [(F, f, ei) → (G, g, ej)] > 0}

In words, we have an edge between i and j if there are transitions from Ωi to Ωj.
We obtain the following lower bound on the spectral gap of Po.

Lemma 2.5.10. The spectral gap of Po is

TwoSidedGap(G)

2
· wJ + TwI
wJ + (2k − 1)TwI

⩾
TwoSidedGap(G)

2(2k − 1)
.

2.5.4.2 The Outer Restriction Chain

Each partition block Ωi induces a restriction chain Ro,i. We show that all restriction chains
Ro,i for i ∈ [m] are isomorphic.

Lemma 2.5.11. For any i ̸= j, i, j ∈ [m], the restriction chains Ro,i and Ro,j are isomorphic.

2.5.4.3 Stationary Distribution of Ro,1

To compute the spectral gap of Ro,1, we will further decompose the chain in the next section.
In order to apply the projection and restriction framework once more to Ro,1, we must again
compute a stationary distribution.

Lemma 2.5.12. The stationary distribution of the outer restriction chain is given by:

πRo,1(x) =


1(
s

k+1

) · 1
2
· wJ
(2k − 1)TwI + wJ

for x 0-offset

1(
s

k+1

) · 1
2
· TwI
(2k − 1)TwI + wJ

otherwise

Proof. By Fact 2.2.12, Ro,1 is also time-reversible. We proceed using the same analysis we
used for Lemma 2.5.9. At the very end, we use a slightly different normalization to get the
desired result.



CHAPTER 2. HIGH-DIMENSIONAL EXPANDERS FROM EXPANDERS 28

2.5.5 Inner Projection and Restriction Chains

Now, we are left to study the outer restriction chain, which, for a fixed e ∈ E(G), is composed

of all (F, f, e) in States(Q̃↓↑
k ). Again, we further decompose this chain into projection and

restriction chains which are easier to analyze.
We group all (F, f, e) with the same F ∈ k-faces(B) into the same restriction state space

ΩF , which induces a projection chain resembling B↓↑, the down-up walk on k-faces of B, and
a restriction chain resembling a lazy random walk on a (k + 1)-dimensional hypercube.

2.5.5.1 The Projection Chain

By defining the projection restriction chains as above, we end up with isomorphic restriction
chains for each F ∈ k-faces(B). Thus, we can identify each of the states of the inner
projection chain PI with some face F ∈ k-faces(S). Let {Fi} be this partition based on face.

Given F, F ′ ∈ k-faces(S), we can only transition from F to F ′ either when F = F ′, or
when F ∩ F ′ ∈ (k − 1)-faces. This coincides with the feasible transitions in B↓↑.

We are able to obtain the following bounds on the spectral gap of the outer projection
chain:

Lemma 2.5.13. OneSidedGap(PI) ⩾
1

2T (k + 1)
.

2.5.5.2 The Restriction Chain

Each restriction chain RI can be treated as a (k+1)-dimensional hypercube with self loops.

To see this, note that each restriction chain is a set of states (F, f, e) in Q̃↓↑
k where both F

and e are the same. There are thus 2k+1 states in each restriction chain, since for each x, we
have two choices for f(x). Associating x where f(x) = u to a 0-coordinate in a hypercube
vertex, and x where f(x) = v to a 1-coordinate, gives us a bijection from the restriction
chain to the hypercube.

We show:

Lemma 2.5.14. If we impose uniform weights on the highest order faces,

OneSidedGap(RI) ⩾
wJ

2TwI
· 2wJ
D(k + 1)(s− k)

⩾
1

(k + 1)(s− k)
.

2.5.6 Rapid Mixing for High Order Random Walks

Now we put together the decomposition theorem, the lower bounds for the spectral gaps of
the project and restriction chains, and Observation 2.5.4 to obtain the following lower bound
on the two-sided spectral gap of Q̃↓↑

k :
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Theorem 2.5.15 (Restatement of Theorem 2.3.1). The k down-up random walk Q↓↑
k has

one-sided spectral gap,

TwoSidedGap(Q↓↑
k ) ⩾

TwoSidedGap(G)

64T (k + 1)2(s− k)(2k − 1)
. (2.1)

Proof. Use OneSidedGap(M) to denote the spectral gap of a Markov chain M . We deduce
from Lemma 2.5.8 and Theorem 2.2.13 that

OneSidedGap(Q↓↑
k ) ⩾ OneSidedGap(Q̃↓↑

k )

(Lemma 2.5.8)

⩾ min

{
OneSidedGap(Po)

3
,
OneSidedGap(Po)OneSidedGap(Ro,1)

3γo + OneSidedGap(Po)

}
(Theorem 2.2.13 on Q̃↓↑

k )

⩾ min

{
OneSidedGap(Po)

3
,

OneSidedGap(Po)

3γo + OneSidedGap(Po)
· OneSidedGap(PI)

3
,

OneSidedGap(Po)

3γo + OneSidedGap(Po)
· OneSidedGap(PI)OneSidedGap(RI)

3γI + OneSidedGap(PI)

}
(Theorem 2.2.13 on Ro,1),

where

γo = max
i∈[m]

max
x∈Ωi

∑
y∈Ω\Ωi

Q̃↓↑
k (x, y) < 1

γI = max
F∈k-faces(S)

max
x∈V (RI)

∑
y∈V (Ro,1)\V (RI)

Ro,1(x, y) < 1.

Furthermore, Lemma 2.5.10, Lemma 2.5.13 and Lemma 2.5.14 provide lower bounds for
OneSidedGap(Po), OneSidedGap(PI), and OneSidedGap(RI). If we substitute the spectral-
gap lower bounds, and an upper bound of 1 for both γo and γI , we obtain a lower bound on
OneSidedGap(Q↓↑

k ):

OneSidedGap(Q↓↑
k ) ⩾

TwoSidedGap(G)

64T (k + 1)2(s− k)(2k − 1)
. (2.2)

Observation 2.5.4 gives a lower bound on 1 − |λmin(Q↓↑
k )| larger than the right hand side

of (2.2), which immediately lets us upgrade the statement (2.2) to (2.1), thus proving the
theorem.
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Chapter 3

2-dim Expanders from Random
Geometric Graphs

The simplest example of a 2-dimensional expander is the complete complex, based on the
complete graph Kn. Sparse examples are known as well (e.g. [14, 77, 90, 91, 64]), though at
first their existence may seem remarkable: such graphs must be globally sparse, and yet the
O(1)-sized local neighborhood of every vertex must be densely connected to ensure sufficient
expansion. This is a delicate balance, and indeed given the state of our knowledge today the
phenomenon of sparse high-dimensional expansion seems “rare,” in sharp contrast with the
ubiquity of 1-dimensional expansion. Only a few sparse constructions are currently known,
and many of these constructions are algebraic, inheriting their expansion properties from
the groups used to define them (as discussed further in Section 3.1.2).

A prominent open problem in the area is to identify natural distributions over sparse
higher-dimensional expanders [87, 82, 86]; this would be highly beneficial, both for a deeper
mathematical understanding and for applications in algorithms and complexity. The simplest
distributions immediately fail: random d-regular graphs are locally treelike, and so with high
probability G[N(v)] will be an independent set (with λ = 1) for most v ∈ V . The same
is true for an Erdős-Rényi graph G(n, p) when p ≪ 1√

n
. Though a number of distributions

have been shown to have some higher-dimensional expansion properties [80, 47, 18, 19, 83,
53], they all fall short in some sense: either they are quite dense (degree Ω(

√
n)) or fail to

satisfy the spectral conditon λ < 1
2
. In this work, our primary question is the following:

Are there natural, high-entropy distributions over 2-dimensional expanders of average
degree ≪

√
n?

We answer this question in the affirmative. We prove that for any ε > 0 and any large
enough n ∈ N, there exists a choice of d ∈ N such that a random n-vertex geometric graph
on Sd−1 with average degree nε is a 2-dimensional expander with high probability.
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3.1 Problem background and summary of results

3.1.1 Our results

In order to state our results, we first recall some definitions.

Definition 3.1.1 (Simplicial complex). A k-dimensional simplicial complex X is a downward-
closed collection of subsets of size at most k+1 over some ground set X0, with a downward-
closed weight function w.1 Any S ∈ X is called a (|S| − 1)-face, and the restriction of X to
sets of size at most ℓ + 1 ⩽ k is called the ℓ-skeleton of X. The degree of v ∈ X0 is the
number of top-level faces that contain it.

For example, the set of all cliques of size at most k+1 in a graph G, where the weight of each
clique is proportional to the number of (k + 1)-cliques it occurs in, defines a k-dimensional
simplicial complex.

Definition 3.1.2 (Link). Let X be a simplicial complex. For any face S, the link of S in
X is the simplicial complex XS with weight function wS, consisting of all sets in X which
contain S, minus S:

XS = {T \ S | T ⊇ S, T ∈ X}, wS(T \ S) = w(T ) ∀T ∈ XS

For example, in the simplicial complex whose highest order faces are the triangles in a graph
G, the link of a vertex v is the induced graph on the neighbors of v with its isolated vertices
removed.

We are interested in simplicial complexes where the links expand enough to trigger
a “local-to-global phenomenon” via the trickling-down theorem, stated below in the 2-
dimensional case.2

Theorem 3.1.3 (Trickling-down theorem [97]). Let X be a 2-dimensional simplicial complex.
If its 1-skeleton is connected, and the second eigenvalue of every link’s random walk matrix
is at most λ, then the second absolute eigenvalue of the random walk matrix of the 1-skeleton
of X is at most λ

1−λ .

This theorem explains the significance of λ = 1
2
, since when λ < 1

2
, local expansion “trickles

down” to imply global expansion. We will show that random geometric graphs, in a carefully-
chosen parameter regime, have sufficient link expansion.

1Recall that X is called downward-closed if S ⊆ T and T ∈ X imply S ∈ X, and w is called downward-
closed if weights are assigned to maximal faces, and for each non-maximal S ∈ X, we recursively define
w(S) =

∑
x∈X0

w(S ∪ {x}).
2The trickling-down theorem also generalizes to higher dimensions: sufficiently strong local spectral

expansion of only the highest-order links implies global spectral expansion.
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Definition 3.1.4 (Random geometric graph). A random geometric graph G ∼ Geod(n, p)
is sampled as follows: for each i ∈ [n], a vector ui is drawn independently from the uniform
distribution over Sd−1 and identified with vertex i. Then, each edge {i, j} is included if and
only if ⟨ui,uj⟩ ⩾ τ where τ = τ(p, d) is chosen so that PrGeod(n,p)[(i, j) ∈ G] = p.

Definition 3.1.5 (Random geometric complex). The random geometric k-complex Geo
(k)
d (n, p)

is the distribution defined by sampling G ∼ Geod(n, p) and taking the downward-closure of
the complex whose k-faces are the cliques of size (k + 1) in G.

Our main result proves that there are conditions under which random geometric 2-
complexes of degree nε are high-dimensional expanders enjoying the trickling-down phe-
nomenon:

Theorem 3.1.6. For every 0 < ε < 1, there exist constants Cε and δ = exp(−O(1/ε)) such
that when H ∼ Geo

(2)
d (n, n−1+ε) for d = Cε log n, with high probability every vertex link of

H is a (1
2
− δ)-expander, and hence its 1-skeleton is a (1− 4δ

1+2δ
)-expander.

Remark 3.1.7. The complexes arising from Theorem 3.1.6 with high probability have degree
bounded by O(n2ε), as the number of triangle a vertex participates in is the square of its
degree in the 1-skeleton.

Along the way, we also analyze the spectrum of G ∼ Geod(n, p) directly and obtain
sharper control of its second eigenvalue in a more general setting, giving bounds on the
spectral norm of random geometric graphs in the full high-dimensional (d →n ∞) regime.
To our knowledge, previous results in this vein are only for d ∼ n1/k for fixed integers k [34,
17, 31, 11, 38, 85].

Theorem 3.1.8. Let G ∼ Geod(n, p) and τ := τ(p, d). Then with high probability G is a
µ-expander, where

µ := (1 + o(1)) ·max

{
(1 + odτ2(1)) · τ,

log4 n
√
pn

}
,

where odτ2(1) denotes a function that goes to 0 as d · τ(p, d)2 → ∞.

In Section 3.8 we show that an eigenvalue close to τ is achieved (for some p, d), so
Theorem 3.1.8 is close to sharp. Since in Theorem 3.1.6 we show that the vertex links of G
have eigenvalue λ ⩽ τ

1+τ
, this implies that the trickling-down theorem is tight

Proposition 3.1.9 (Trickling-down theorem is tight). For each λ ∈ (0, 1
2
] and η > 0 there

exists a 2-dimensional expander in which all vertex link eigenvalues are at most λ for which
the 1-skeleton is connected with eigenvalue at least λ

1−λ − η.
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Spectra of random restrictions. Theorem 3.1.8 (and morally Theorem 3.1.6) is a conse-
quence of a more general theorem that we prove concerning the spectral properties of random
restrictions of graphs. We describe this result here, both because it may be of independent
interest, and because it may help demystify Theorem 3.1.6.

Random restriction is a procedure for approximating a large graph X by a smaller graph
G: one selects a random subset of vertices S, and then takes G to be the induced graph
X[S]. The random restriction G is now a smaller (and often sparser) approximation to X;
this idea has been useful in a number of contexts in theoretical computer science (e.g. [52,
3, 9, 74, 60]). The core question is: to what extent do random restrictions actually inherit
properties of the original graph? We will show that if random walks on X mix rapidly
enough, then random restrictions inherit the spectral properties of the original graph.

To see the relevance of this result in our context, notice that a random geometric graph
on the sphere is a random restriction of the (infinite) graph with vertex set Sd−1 and edge
set {(u, v) | ⟨u, v⟩ ⩾ τ}. Theorem 3.1.6 is then a consequence of the fact that the sphere is
itself a 2-dimensional expander.

We state the theorem precisely below.

Definition 3.1.10 (Random restriction). Suppose X is a (possibly infinite) graph, and
that the simple random walk on X has unique stationary distribution ρ. We define an n-
vertex random restriction of X to be a graph G ∼ RRn(X) sampled by sampling n vertices
independently according to ρ, S ∼ ρ⊗n, then taking G = X[S] to be the graph induced on
those vertices.

We show that if the average degree in G is not too small, λ2(G) reflects the rapid mixing
of the random walk on X.

Theorem 3.1.11. Let X be a (possibly infinite) vertex-transitive graph on which the associ-
ated simple random walk has a unique stationary distribution ρ, and let p = PrG∼RRn(X)[(i, j) ∈
E(G)] be the marginal edge probability of a n-vertex random restriction of X. Suppose there
exist C ⩾ 1 and λ ∈ [(np)−1/2, 1] such that for any k ∈ N, k-step walks on X satisfy the
following mixing property: for any distribution α over V (X),

dTV

(
Xkα, ρ

)
⩽ C · λk,

where Xk denotes the k-step random walk operator on X, and furthermore suppose pn ≫
C6 log4 n. Then for any constant γ > 0,

Pr
G∼RRn(X)

[∣∣∣λ2(ÂG)
∣∣∣ , ∣∣∣λn(ÂG)

∣∣∣ ⩽ (1 + o(1)) ·max

(
λ,

log4 n
√
pn

)]
⩾ 1− n−γ,

where ÂG is the (normalized) adjacency matrix of G.

Remark 3.1.12. It is likely that some of the conditions of Theorem 3.1.11 could be weak-
ened. The decay of total variation could plausibly be replaced with a (much weaker) as-
sumption about the spectral gap of X; this would not impact our results for Sd−1, but may
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be useful in other applications. Transitivity is assumed mostly to make the proof of The-
orem 3.1.11 go through at this level of generality; to prove Theorem 3.1.6 we re-prove a
version of Theorem 3.1.11 for the specific non-transitive case where X is a link of a vector
in the sphere (a spherical cap).

3.1.2 Related work

We give a brief overview of related work. While so far we have focused on a spectral notion
of high-dimensional expanders (HDX), there are two additional notions: coboundary and
cosystolic expansion. These are meant to generalize the Cheeger constant, a cut-based
measure of graph expansion.

Distributions over high-dimensional expanders. The existence of natural distributions
over sparse HDXs has been a question of interest since sparse HDX were first shown to exist
(and this was highlighted as an important open problem in e.g. [87, 86]).

The early work of Linial and Meshulam [80] considered the distribution over 2-dimensional
complexes in which all edges

(
[n]
2

)
are included, and each triangle is included independently

with probability p; they identified the phase transition at p for coboundary connectivity for
this distribution (see also the follow-ups [6, 93, 81]). This distribution has the drawback that
the 1-skeleton of these complexes is Kn, and so the resulting complex is far from sparse.

In [47], the authors show that a union of d random partitions of [n] into sets of size k+1
with high probability produces a geometric expander [54], which is a notion of expansion
which measures how much the faces must intersect when the complex is embedded into
Rk. The resulting complexes have disconnected links when d ≪

√
n, and so they fail to be

spectral HDXs.
The work of [83] introduces a distribution over spectral expanders with expansion exactly

1
2
by taking a tensor product of a random graph and a HDX; the authors show that down-up

walks on these expanders mix rapidly, and [53] introduces a reweighing of these complexes
which yields improved mixing time bounds. However, the links in these complexes fail
to satisfy λ < 1

2
, and so fall outside of the range of the trickling-down theorem. The same

drawback applies to [18, 19]: they show that up-down walks mix on random polylogarithmic-
degree graphs given by subsampling a random set of generators of a Cayley graph. However,
these graphs do not satisfy the conditions of the trickling-down theorem.

Explicit constructions. One of the first constructions of sparse high-dimensional spectral
expanders was the Ramanujan complex of [14, 77, 90, 91], which generalize the Ramanujan
expander graphs of [89]. Not only are these spectral expanders, but [64, 37] also show
that they are co-systolic expanders. These Ramanujan complexes are algebraic by nature,
constructed from the Cayley graphs of PSLd(Fq). Other algebraic constructions include that
of [66]; the authors analyze the expansion properties of coset complexes for various matrix
groups. They achieve sparse spectral expanders, with local expansion arbitrarily close to
0. More recently, [95] extend the coset complex construction to the more general family of
Chevalley groups.
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A few combinatorial constructions for HDX are also known. [15] prove that objects called
(a, b)-expanders are two-dimensional spectral expanders; they give a graph-product-inspired
construction of a family of such expanders, and show that other known complexes [14, 77,
90, 91, 66] are also (a, b)-expanders. Their work is extended by [48] to higher dimensions.

Applications of HDX. The local-to-global phenomenon in HDX has already been useful
in many settings. [24] use high-dimensional spectral expanders to construct “agreement
expanders,” whose links give rise to local agreement tests: given “shards” of a function that
pass a large fraction of the local agreement tests, the authors can conclude the presence of a
“global” function g that stitches the shards together. In coding theory, the locally testable
codes of [28] and quantum LDPCs of [98, 75, 26] utilize a common simplicial-complex-like
structure called the square Cayley complex, whose local-to-global properties are essential in
the analysis of these codes.

The local-to-global phenomenon also implies that “down-up” walks on the associated
simplicial complex mix (as made formal in [2]). A k-down-up walk is supported k-faces
of the simplicial complex, and transitions occur by dropping down into a random (k − 1)-
face, then transitioning up to a random k-face (one can also define the “up-down” walk
analagously). This local-to-global analysis has recently been influential in the study of
mixing times of Markov chains. Several well-studied Markov chains can be recast as the
k-down-up random walk of a carefully designed simplicial complex. One notable example is
the matroid basis exchange walk, which is an algorithm for sampling independent sets of a
matroid (e.g. spanning trees in the graphical matroid). [5] were able to obtain an improved
mixing time bound for the basis exchange walk–a significant breakthrough that, due to the
local-to-global property, was achieved through the analysis of simple, “local” view of the
matroids.

Random geometric graphs and random kernel matrices. Random restrictions of
metric spaces such as Sd−1 and [−1, 1]d are well-studied in the fixed-dimensional regime,
where d = O(1) and n→ ∞ (see the survey of Penrose [100]). In our work we are interested
in the high-dimensional setting, where d → ∞ with n. The high-dimensional setting was
first studied only recently, initiated by [22, 13], and many mysteries remain in this young
area of study.

Our Theorem 3.1.8 is related to the study of kernel random matrices : random n × n
matrices whose (i, j)-th entry is given by fd (⟨ui,uj⟩), for fd : R → R and u1, . . . ,un
sampled independently from some distribution over Rd. The special case of ui ∼ Unif(Sd−1)
and fd(x) = 1[x ⩾ τ(p, d)] yields the adjacency matrix of Geod(n, p). A line of work initiated
by [73] studies the spectrum of kernel random matrices [34, 17, 31, 11, 38], and the most
recent work [85] characterizes the limiting empirical spectral distribution when d = Θ(n1/k)
for k a fixed constant and f can be “reasonably” approximated by polynomials (in a sense
that is flexible enough to capture the indicator fd(x) = 1[x ⩾ τ(p, d)]). In comparison with
our results, they characterize the entire empirical spectral distribution, but we do not need
to restrict d ∼ n1/k for integer k, which is crucial for our applications.
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3.1.3 Overview of the proof

We now explain how we prove our main theorem, Theorem 3.1.6, which states that for a
complex sampled from H ∼ Geo

(2)
d (n, p) for p = n−1+ε with 0 < ε < 1 and d = Cε log n,

with high probability every link of H is a
(
1
2
− δ
)
-expander for some δ = exp(−O(1/ε)),

and its 1-skeleton is a
(
1− 4δ

1+2δ

)
-expander. By the trickling-down theorem, it suffices for us

to prove:

1. All n vertices’ corresponding links in H are
(
1
2
− δ
)
-expanders with high probability.

2. The 1-skeleton of H is connected with high probability.

To show Item 2, it is enough to show that some reweighting of the 1-skeleton expands;
Item 1 implies that every edge (i, j) must participate in at least one triangle (otherwise
the link would contain isolated vertices), so the unweighted 1-skeleton is just the adjacency
matrix of an unweighted graph from Geod(n, p). En route to proving Item 1 we’ll prove that
unweighted random geometric graphs expand, by this logic yielding Item 2 a consequence.

Analyzing link expansion. We establish Item 1 by showing that that each of the n
links is a

(
1
2
− δ
)
-expander with probability 1 − o(1/n), then applying a union bound. We

can think of sampling the link of vertex iw in H by first choosing the number of neighbors
r ∼ Binom(n − 1, p), then sampling r points v1, . . . ,vr independently and uniformly from
a measure-p cap in Sd−1 centered at some point w (corresponding to the vector of the link
vertex iw), placing an edge between every i, j such that ⟨vi,vj⟩ ⩾ τ(p, d). Finally, we remove
any isolated vertices; here, we’ll show that the graph expands with high probability before
removing these isolated vertices, which implies that no isolated vertices have to be removed.
For the remainder of the overview, let τ = τ(p, d). We’ll show that:

Theorem 3.1.13 (Informal version of Theorem 3.5.1). Let G be the link of some point
w ∼ Sd−1 induced by v1, . . . ,vm ∼ capp(w) . Then with high probability G is a µ-expander
where

µ := (1 + o(1)) ·max

{
τ

τ + 1
,
log4m
√
qm

}
+ od(1).

Here q = Pru,v∼Sd−2

[
⟨u, v⟩ ⩾ τ

τ+1

]
.

Links are essentially random geometric graphs in one lower dimension. Since
most of the measure of the cap lies close to its boundary, intuitively the link is distributed
almost like a random geometric graph with points drawn independently from the cap bound-
ary, i.e. the shell shellp(w) := {x : ⟨x,w⟩ = τ}. Our proof of Theorem 3.1.13 must pay
attention to the fluctuations in ⟨vi, w⟩− τ , but to simplify our current discussion we assume
each link is in fact a random geometric graph on shellp(w), and address the fluctuations later
in the overview.
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Observe that a uniformly random v from shellp(w) is distributed as τ · w +
√
1− τ 2 · u

where u is a uniformly random unit vector orthogonal to w. Using this decomposition, we
see that ⟨vi,vj⟩ ⩾ τ if and only if ⟨ui,uj⟩ ⩾ τ

1+τ
. Thus, under our simplifying assumption,

the link is distributed exactly like a random geometric graph on Sd−2 with inner product
threshold τ

1+τ
. Hence (up to the difference between capp(w) and shellp(w)), to understand

link expansion we can study the second eigenvalue of a random geometric graph on the
sphere.

Remark 3.1.14 (Requiring d = Θ(log n)). In light of Theorem 3.1.13 (and even the heuristic
discussion above), it turns out that d = Θ(log n) is the only regime for which the links can
be connected while the 1-skeleton has average degree ≪

√
n. To see this, we consider the

relationship between p, τ, and d; we have that

p = Pr
v,v′∼Sd−1

[⟨v,v′⟩ ⩾ τ ] = Θ
(

1
τd

)
·
(
1− τ 2

) d−1
2 ≈ exp(−dτ 2/2). (3.1)

See Lemma 3.2.8 for a formal argument.3 Note that the arguments above in conjunction
with (3.1) imply that the probability that two vertices within the link are connected is also
roughly

q = Pr
u,u′∼Sd−2

[
⟨u,u′⟩ ⩾ τ

1+τ

]
= Θ

(
1
τd

)
·
(
1− τ2

(1+τ)2

) d−2
2
,

since the link is like a random geometric graph on shellp(w).
Connectivity within the links in conjunction with sparsity now requires us to have d ∈

Θ(log n): The number of vertices inside each link concentrates around m = np, so the
average degree inside the link is qm ≈ qpn; we must have the average link degree qpn ⩾ 1,
otherwise the link is likely disconnected. Now, if τ = o(1), then τ ≈ τ

1+τ
and p ≈ q, so

qpn ⩾ 1 =⇒ p2n ⪆ 1 =⇒ p ⪆ n−1/2, ruling out a 1-skeleton with average degree ≪
√
n.

Hence we need τ = Ω(1). Given that τ = Ω(1), (3.1) implies that to have the average
1-skeleton degree

√
n ⩾ pn ⩾ 1 we need d ∈ Θ(log n).

Spectral expansion in random geometric graphs. We now explain how to prove
near-sharp second eigenvalue bounds for random geometric graphs.

Theorem (Restatement of Theorem 3.1.8). Let G ∼ Geod(n, p) and τ := τ(p, d). Then with
high probability G is a µ-expander, where

µ := (1 + o(1)) ·max

{
(1 + odτ2(1)) · τ,

log4 n
√
pn

}
,

where odτ2(1) denotes a function that goes to 0 as d · τ(p, d)2 → ∞.

3Heuristically, it makes sense that p = Pr[⟨v,v′⟩ ⩾ τ ] ≈ exp(−Θ(τ2d)), because ⟨v,v′⟩ is approximately
N (0, 1

d ).
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As mentioned above, Theorem 3.1.8 is a consequence of the more general Theorem 3.1.11
about the second eigenvalue of random restrictions of vertex-transitive graphs, and the in-
ner product threshold τ = τ(p, d) appears as the mixing rate of the random walk on Sd−1

where a step originating at v walks to a random vector in capp(v). Via standard concen-
tration arguments applied to the vertex degrees, to prove the above it suffices to bound
∥AG − EAG∥ ⩽ µ · pn, where AG is the (unnormalized) adjacency matrix of G. We’ll focus
on the regime where pn≫ poly log n, so that µ ≈ τ .

Trace method for random geometric graphs. To bound ∥AG − EAG∥, we employ the
trace method, bounding the expected trace of a power of AG − EAG. This is sufficient for
the following reason: for convenience, let AG = AG − EAG, and let ℓ be any non-negative,
even integer. Since ℓ is even, ∥∥AG

∥∥ℓ = ∥∥∥AℓG∥∥∥ ⩽ tr
(
A
ℓ

G

)
,

And so applying Markov’s inequality,

Pr

(∥∥AG

∥∥ ⩾ eε
(
E tr

(
A
ℓ

G

))1/ℓ)
= Pr

(∥∥AG

∥∥ℓ ⩾ eεℓE tr
(
A
ℓ

G

))
⩽ exp(−εℓ).

Thus, our goal reduces to bounding the expectation of tr(A
ℓ

G) for a sufficiently large even ℓ;

in particular, if we choose ℓ ≫ log n, then since AG has n eigenvalues, tr(A
ℓ

G)
1/ℓ is a good

“soft-max” proxy for ∥AG∥, and we will obtain high-probability bounds.
We now explain why properties of random walks on Sd−1 naturally arise when applying

the trace method. Concretely, tr(A
ℓ

G) is a sum over products of entries of AG corresponding
to closed walks of length ℓ in the complete graph Kn on n vertices:

tr
(
A
ℓ

G

)
=

∑
i0,...,iℓ−1∈[n]

ℓ−1∏
t=0

(AG)itit+1 modℓ
,

The walk i0, i2, . . . , iℓ−1, i0 can be represented as a directed graph. When we take the expec-
tation, the symmetry of the distribution means that all sequences i0, . . . , iℓ−1 which result
in the same graph (up to relabeling) give the same value. That is, letting Wℓ be the set of
all such graphs, and for each W ∈ Wℓ letting NW be the number of ways it can arise in the
sum above,

E tr
(
A
ℓ

G

)
=
∑
W∈Wℓ

NW · E
∏

(i,j)∈W

(AG)ij. (3.2)

To bound this sum, we must bound the expectation contributed by each W ∈ Wℓ. For the
sake of this overview we will consider only the case when W = Cℓ, the cycle on ℓ vertices,
as it requires less accounting than the other cases; however it is reasonable to restrict our
attention to this case for now, as bounding it already demonstrates our main ideas, and
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because this term roughly dominates the sum with NCℓ ≫ NW ′ for all other W ′ ∈ Wℓ at
ℓ = poly log n and pn≫ poly log n.4

We now bound the expectation for the case W = Cℓ; readers uninterested in the finer
details may skip to the conclusion in (3.4). We expand the product using that (AG)ij =
Aij − p (since E[Aij] = p):

E
ℓ∏
i=1

(Ai,i+1−p) =
∑
T⊆[ℓ]

(−p)ℓ−|T | E
∏
i∈T

Ai,i+1 =
∑
T⊆[ℓ]

(−p)ℓ−|T | Pr[{(i, i+1) : i ∈ T} is subgraph of G].

(3.3)
and thus our focus is to understand subgraph probabilities in a random geometric graph. It is
not too hard to see that when the edges specified by T form a forest, its subgraph probability
is p|T |, identical to its counterpart in an Erdős–Rényi graph; the nontrivial correlations
introduced by the geometry only play a role when T has cycles. Hence, the sum (3.3)
simplifies,

E
ℓ∏
i=1

(AG)i,i+1 =
∑
T⊊[ℓ]

(−p)ℓ−|T |p|T |+Pr[Cℓ is subgraph of G] = Pr[Cℓ is subgraph of G]−pℓ,

(3.4)
where we used that the binomial sum is equal to (p− p)ℓ = 0.

Hence it remains to estimate the subgraph probability of a length-ℓ cycle. We will now
see how subgraph probabilities are related to the mixing rate of a random walk on Sd−1.

Subgraph probability of a cycle in a random geometric graph. For the cycle Cℓ =
0, 1, . . . , ℓ− 1, 0, by Bayes’ rule:

Pr[Cℓ ∈ G] =
ℓ−1∏
i=0

Pr[(i, i+ 1) ∈ G | ∀j < i, (j, j + 1) ∈ G] = pℓ−1 ·Pr[(ℓ− 1, 0) ∈ G | 0, 1, . . . ℓ− 1 ∈ G],

since in all but the step i + 1 = ℓ, the graph in question is a forest. Identifying each i with
a point xi on Sd−1, for any choice of x0 the above probability can equivalently be written as

pℓ−1 ·Pr[⟨xℓ−1,x0⟩ ⩾ τ | ⟨xi,xi+1⟩ ⩾ τ : 0 ⩽ i ⩽ ℓ− 2].

Denoting with P the transition kernel of the random walk we alluded to earlier, where in
one step we walk from a point x to a uniformly random point in capp(x), we can write the
distribution of xℓ | {x0, ⟨xi,xi+1⟩ ⩾ τ : 0 ⩽ i ⩽ ℓ− 2} as P ℓ−1δx0 where δx0 refers to the
point mass probability distribution supported at x0. In turn, we can write the subgraph
probability as:

pℓ−1 · Pr
xℓ−1∼P ℓ−1δx0

[
xℓ−1 ∈ capp(x0)

]
.

4Briefly, this is because whenever i0, . . . , iℓ−1 are all distinct elements of [n], the resulting walk’s graph is
a cycle, and when ℓ = poly log n, ℓ indices sampled at random from [n] are all distinct with high probability.
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If xℓ−1 were sampled from the uniform distribution ρ on Sd−1 then the probability of landing
in capp(x0) would be p, which lets us upper bound the subgraph probability by:

pℓ−1 ·
(
p+ dTV

(
P ℓ−1δx0 , ρ

))
.

The terms for more complicated subgraphs W ′ ∈ Wℓ also similarly depend on the mixing
properties of P via subgraph probabilities. Our next goal then is to understand the mixing
properties of P .

Remark 3.1.15. To prove Theorem 3.1.11 about random restrictions, the same strategy is
used to relate subgraph probabilities with mixing rate of the random walk on the original
graph we start with.

Mixing properties of P . We show that the walk over Sd−1 with transition kernel P
contracts the TV distance by coupling this discrete walk with the continuous Brownian
motion Ut over Sd−1. Then via a known log-Sobolev inequality for Brownian motion on
spheres, we can prove the following contraction property for P .

Theorem 3.1.16 (Informal version of Theorem 3.4.6). For any probability measure α over
Sd−1 and integer k ⩾ 0,

dTV

(
P k
p α, ρ

)
⩽ ((1 + odτ2(1)) · τ)k−1 ·

√
1

2
log

1

p
,

where Pp denotes the transition kernel in which every x ∈ Sd−1 walks to a uniformly random
point in the measure-p cap around it and odτ2(1) denotes a function that goes to 0 as dτ 2 →
∞.

We leave the details to Section 3.4, but in brief, the reason we are able to execute this
coupling is that the probability mass in Pδx0 concentrates around shell=τ (x0), and most of
the ( 1

d−1
log 1

τ
)-step Brownian motion starting from x0 concentrates at shell=τ (x0), so when

t = 1
d−1

log 1
τ
the operators P and Ut have similar action.

We can now apply Theorem 3.1.16 to bound dTV

(
P ℓ−1δx0 , ρ

)
with α = δx0 and k = ℓ−1:

dTV

(
P ℓ−1δx0 , ρ

)
⩽ ((1 + o(1))τ)ℓ−2

√
1
2
log 1

p
.

Spectral norm of random geometric graph. We now return to bounding the expected

trace of A
ℓ

G; putting together the above, we have the bound

E
∏

(i,j)∈Cℓ

(AG)ij ⩽ Pr[Cℓ ∈ G]−pℓ ⩽ pℓ−1
(
p+ dTV

(
P ℓ−1δx0 , ρ

))
−pℓ ⩽ pℓ−1((1+o(1))τ)ℓ−2

√
1
2
log 1

p
.

The coefficient NCℓ in front of the W = Cℓ term in (3.2) is the number of sequences
i1, . . . , iℓ ∈ [n] which yield an ℓ-cycle graph; this happens if and only if all of the indices are
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distinct, so NCℓ = ℓ! ·
(
n
ℓ

)
⩽ nℓ. Hence the contribution of the ℓ-cycle to the sum is at most

((1 + o(1))npτ)ℓ−2 · poly(n) when p > 1/n. By a careful accounting similar to the above
for all graphs W ∈ Wℓ, one can show that in the parameter regime pn ≫ poly log(n) and
ℓ = poly log n, the term W = Cℓ contains (1 − o(1)) of the total value of this sum, so we
obtain the bound[

E tr(A
ℓ

G)
]1/ℓ

⩽
(
(1 + o(1)) · ((1 + o(1))npτ)ℓ−2 · poly(n)

)1/ℓ
= (1 + o(1))npτ,

when we choose ℓ = ω(log n). Applying Markov’s inequality we conclude that ∥AG∥ ⩽
(1+ o(1))npτ with high probability, and normalizing by the degrees (which concentrate well
around np) we conclude our upper bound of τ in Theorem 3.1.8.

Adapting the spectral norm bound to links. Up until now, we have pretended that
the link of iw is a random geometric graph, where the vertices are identified with vectors
in shell=τ (w), rather than cap⩾τ (w). While it is true that most of the probability mass in
cap⩾τ (w) is close to the boundary, some 1

poly(m)
-fraction of the vertices j in the link will

have ⟨vj, w⟩ = κj > (1 + δ)τ for some δ > 0. And within the link, these vertices will have
higher expected degree: for vi,vj having ⟨vi, w⟩ = κi and ⟨vj, w⟩ = κj, following a similar
calculation to the one above,

qij := Pr[i ∼ j] = Pr
ui,uj∼Sd−2

[
⟨ui,uj⟩ ⩾ τ−κiκj√

(1−κ2
i )(1−κ2

j )

]
(3.5)

And this quantity is ≫ q = Prui,uj∼Sd−2 [⟨ui,uj⟩ ⩾ τ
1+τ

] when κi > (1 + δ)τ and κj ⩾ τ .
Hence, vertex degrees are not as well concentrated within each link as they are (around pn)
in the entire graph H .

As a result, if we let Gw now stand for the link and AGw now stand for the adjacency
matrix of the link, it is no longer the case that ∥AGw − EAGw∥ is small: EAGw still has
every entry equal to q, but the top eigenvector of AG will not be close to the all-1 vector.

To contend with this, we analyze the spectral norm of AG conditioned on the shells
that the points in capp(w) are in. Letting κ ∈ [τ, 1]m be such that κi = ⟨vi, w⟩, vertex
degrees concentrate in Gw conditioned on κ, and we can readily bound the spectral norm of
AGw | κ = AGw | κ− E[AGw | κ].

The analysis of the spectral norm of AGw is then not so different from that of AG for
G a random geometric graph; the main difference is that now, instead of working with the
walk P in which we walk from ui to a random point in cap⩾τ (ui), at each step of the walk
we must adjust the volume of the cap: when considering the probability that the edge i, j is
present, we apply the operator Pqij for qij(κi,κj) as defined in (3.5), which walks from ui to
a random point in capqij(ui). This requires some additional accounting, but one can show
that the slowest mixing occurs when κi = κj = τ and qij =

τ
1+τ

, from which we obtain the

desired bound on ∥AGw | κ∥. For details, see Section 3.5.
One additional complication is that EAGw | κ is not a rank-1 matrix, so bounding

∥AGw | κ∥ does not directly imply a bound on the second eigenvalue of AGw . However, it
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turns out that EAGw | κ is sufficiently close to a rank-1 matrix RGw (the matrix whose
(i, j)th entry is the product of the expected degrees conditioned on κ) that we can apply
the triangle inequality:

∥(AGw −RGw) | κ∥ ⩽ ∥AGw | κ− E[AGw | κ]∥+ ∥E[AGw | κ]−RGw | κ∥,

the first term we bound using the trace method as described above. The second term we
bound via more-or-less direct calculation: because all but an o(1) fraction of κi ≈ τ , when
ignoring an o(1) fraction of rows and columns, the rows of EAGw | κ are almost constant
multiples of each other, and further these o(1) fraction of rows and columns represent an o(1)
fraction of the total absolute value of E[AGw | κ]. (This is because the high-degree vertices
in Gw represent an o(1) fraction of the total edges in Gw.) Now, thinking of E[AGw | κ] as
a transition operator of a Markov chain, we are able to use this to argue that the Markov
chain mixes so rapidly that E[AGw | κ] must be close to RGw | κ, yielding the desired bound.
For details, see Section 3.6.

3.2 Preliminaries

Notation. For a self-adjoint matrix M , we denote its eigenvalues in decreasing order as
λ1(M) ⩾ . . . ⩾ λn(M), the absolute values of its eigenvalues as |λ|1(M) ⩾ . . . ⩾ |λ|n(M),
and λmax(M) and |λ|max(M) to denote λ1(M) and |λ|1(M) respectively. Given a sequence
of matrices M1, . . . ,MT we use

∏T
i=1Mi to denote the matrix MT ·MT−1 · · ·M1.

For a graph G, we use V (G) to refer to its vertex set and E(G) to refer to its edge set.
For a vertex v ∈ V (G), we use N(v) to denote the set of neighbors of v.

For a probability distribution D, we use ΦD(x) to denote the CDF of D at x, and
ΦD(x) := 1 − ΦD(x) to denote the tail of D at x. For any point x, we use δx to denote the
delta distribution at x .

3.2.1 Linear algebra

The following articulates how one gets a handle on the second eigenvalue of a matrix after
subtracting a rank-1 term, which will be used in Section 3.3 and Section 3.5.

Fact 3.2.1. For any n × n symmetric matrix M and rank-1 PSD matrix R, |λ|2(M) ⩽
∥M −R∥.

Proof. By Cauchy’s interlacing theorem, λ2(M) ⩽ λ1(M − R) ⩽ ∥M −R∥ and −λn(M) ⩽
−λn(M−R) ⩽ ∥M −R∥. The desired inequality is then true since |λ|2(M) ⩽ max{λ2(M),−λn(M)}.

Establishing second eigenvalue bounds in Section 3.3 and Section 3.5 also involves bound-
ing the spectral norm of some matrices via the “trace method” articulated below.
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Claim 3.2.2 (Trace Method). Let M be a symmetric (random) matrix. Then for any even
integer ℓ ⩾ 0,

Pr

[
∥M∥ ⩾ eε · E

[
tr
(
(M )ℓ

)]1/ℓ]
⩽ exp(−εℓ).

Proof. By Markov’s inequality, Pr [∥M∥ ⩾ t] ⩽ t−ℓE
(
∥M∥ℓ

)
. The claim then follows

because for any self-adjoint matrix M , λmax

(
M ℓ
)
⩽ tr(M ℓ) when ℓ is even.

We will also require the following bound on the spectrum of a matrix, which is a special
case of the Gershgorin circle theorem.

Claim 3.2.3 (Row sum bound). For any matrix M , |λ|max(M) ⩽ maxi∥M [i, ∗]∥1.

Proof. Let v be the eigenvector achieving λ = |λ|max(M). Then letting k be the index
maximizing |vk|, we have

|λvk| = |(Mv)k| =

∣∣∣∣∣∑
j

Mkjvj

∣∣∣∣∣ ⩽ |vk|
∑
j

|Mkj| ⩽ |vk|max
i

∥M [i, ∗]∥1,

and dividing through by |vk| gives the conclusion.

3.2.2 Probability

Definition 3.2.4. The total variation distance between probability distributions µ and ν is
defined as:

dTV (µ, ν) := max
E

|µ(E)− ν(E)|.

Fact 3.2.5. When ρ is a nonnegative measure such that µ and ν are absolutely continuous
with respect to ρ, then:

dTV (µ, ν) =
1

2

∫ ∣∣∣∣dµdρ (x)− dν

dρ
(x)

∣∣∣∣ dρ(x) = ∫ (dµdρ (x)− dν

dρ
(x)

)
· 1
[
dµ

dρ
(x) >

dν

dρ
(x)

]
dρ(x).

When µ and ν are supported on [n], then:

dTV (µ, ν) =
1

2
∥µ− ν∥1 =

n∑
i=1

(µ(i)− ν(i)) · 1[µ(i) > ν(i)]

where µ and ν are the vectors of probabilities.

We describe a Markov chain via its transition operator P where P (i, j) denotes the
probability of transitioning from state i to state j.

We call the joint distribution ω(µ, ν) a coupling between two distributions µ and ν if
µ = ω(·, ν) and µ = ω(µ, ·). In other words, the marginals of ω correspond to µ and ν.
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Fact 3.2.6. Let x and y be two arbitrary states in a Markov chain over state space Ω with
transition operator P , and sample X ∼ P (x, ·) and Y ∼ P (y, ·), where P (z, ·) denotes
the distribution over Ω given by a single step of the walk starting from state z. Then,
there exists a coupling of X and Y such that X = Y with probability 1 − ε if and only if
dTV (P (x, ·), P (y, ·)) ⩽ ε.

3.2.3 The uniform distribution over the unit sphere

We use ρ to denote the uniform distribution on Sd−1.
Let v ∈ Sd−1 and w ∼ ρ. Then the distribution Dip(d) of ⟨w, v⟩ is invariant under the

choice of v, is supported on [−1, 1] and has probability density function:

ψd(x) =
Γ
(
d
2

)
Γ
(
d−1
2

)√
π
·
(
1− x2

)(d−3)/2
.

Henceforth, we use Zd to denote the normalizing constant
Γ( d2)

Γ( d−1
2 )

√
π
.

Fact 3.2.7. Zd ⩽ O(
√
d).

In addition, we will rely heavily on the following sharp estimate of the tail of Dip(d).

Lemma 3.2.8. Let ΦDip(d)(t) := PrX∼Dip(d)[X ⩾ t]. Then, when t ⩾ 0:

Zd
t(d− 1)

·
(
1− t2

)(d−1)/2 ·
(
1− 4 log(1 + d · t2)

d · t2

)
⩽ ΦDip(d)(t) ⩽

Zd
t(d− 1)

·
(
1− t2

)(d−1)/2
.

Proof. It suffices to upper and lower bound
∫ 1

t
(1 − x2)(d−3)/2. We first obtain an upper

bound. ∫ 1

t

(
1− x2

)(d−3)/2
dx =

1

t

∫ 1

t

t
(
1− x2

)(d−3)/2
dx

⩽
1

t

∫ 1

t

x
(
1− x2

)(d−3)/2
dx

= − 1

t(d− 1)
·
(
1− x2

)(d−1)/2

∣∣∣∣∣
1

t

=
1

t(d− 1)
·
(
1− t2

)(d−1)/2

Now we prove the lower bound. For any ε > 0 such that t ·
√

1− ε+ ε
t2

⩽ 1, and defining
δ := ε

t2
− ε, we have the following.∫ 1

t

(1− x2)(d−3)/2dx ⩾
1

t
√
1 + δ

∫ t
√
1+δ

t

(
t
√
1 + δ

)(
1− x2

)(d−3)/2
dx
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⩾
1− δ

t

∫ t
√
1+δ

t

x
(
1− x2

)(d−3)/2
dx

= − 1− δ

t(d− 1)
·
(
1− x2

)(d−1)/2

∣∣∣∣∣
t
√
1+δ

t

=
1− δ

t(d− 1)
·
(
1− t2

)(d−1)/2 ·
(
1− (1− ε)(d−1)/2

)
where the second inequality uses 1√

1+δ
⩾ 1 − δ and the last equality uses 1 − t2(1 + δ) =

(1− t2)(1− ε). Choosing ε =
2 log(1+dt2)

d−1
yields:∫ 1

t

(
1− x2

)(d−3)/2
⩾

1

t(d− 1)
·
(
1− t2

)(d−1)/2 ·
(
1− 4 log(1 + dt2)

dt2

)
.

We use Dip(d)|⩾τ to represent Dip(d) conditioned on lying in [τ, 1].

Definition 3.2.9. For a vector y, we use capp(y) and cap⩾τ(p)(y) interchangeably to denote
the measure-p spherical cap around y:

capp(y) = cap⩾τ(p)(y) :=
{
u : ⟨u, y⟩ ⩾ τ(p), u ∈ Sd−1

}
.

We use capp(y) and cap⩾τ(p)(y) to denote the uniform measure over the set capp(y). We
denote the boundary of capp(y) by shellp(y) or shell=τ(p)(y). That is,

shellp(y) :=
{
u : ⟨u, y⟩ = τ(p), u ∈ Sd−1

}
.

3.3 The second eigenvalue of random restrictions

In this section we prove Theorem 3.1.11. Let X be a (possibly infinite) vertex-transitive
graph with a unique stationary measure ρ. Let G ∼ RRn(X) be a random restriction of X
as defined in Definition 3.1.10, and let p = PrG∼RRn(X)[(i, j) ∈ E(G)] be the marginal edge
probability in G. Suppose furthermore that

∃C, λ with C ⩾ 1 and
1

√
pn

⩽ λ ⩽ 1 s.t. for any distribution α on V (X), dTV

(
Xkα, ρ

)
⩽ Cλk.

(3.6)
We overload notation and use X to denote the transition operator for the simple random
walk on X, and for H ⊆ V (X) we also use H to denote the indicator vector of the set H.

We denote its adjacency matrix by AG, the diagonal degree matrix by DG, the centered
adjacency matrix by AG = AG − EAG, and the normalized adjacency matrix by ÂG =
D

−1/2
G AGD

−1/2
G . Then we’ll show the following.
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Theorem 3.3.1. As long as pn ≫ C6 log8 n, for any constant γ > 0, with probability at
least 1− n−γ,

|λ|2
(
ÂG

)
⩽ (1 + o(1)) ·max

(
λ,

log4 n
√
pn

)
.

Proof. By Fact 3.2.1, for any rank-1 PSD matrix R, |λ|2
(
ÂG

)
⩽
∥∥∥ÂG −R

∥∥∥. Thus we

turn our attention to bounding
∥∥∥ÂG −R

∥∥∥ for appropriately chosen R. Setting RG =

pD
−1/2
G JD

−1/2
G where J is the all-ones matrix and using submultiplicativity of the opera-

tor norm, we see: ∥∥∥ÂG −RG

∥∥∥ ⩽
∥∥∥D−1/2

G

∥∥∥2 · ∥AG − pJ∥.

Now, observe that
∥∥∥D−1/2

G

∥∥∥2 = ∥∥D−1
G

∥∥. To bound this quantity, we’ll use the concentration

of the vertex degrees (the entries of the diagonal of DG). For every vertex, the marginal
distribution of the degree is Binom(n, p). So by Hoeffding’s inequality and the union bound,

when pn ≫ log8 n, for any fixed γ > 0, |(DG)ii − pn| ⩽
√
pn log2 n for all i ∈ [n] with

probability at least 1 − nγ. So with probability at least 1 − n−γ, D−1
G = 1

pn
I + ∆ for ∆ a

diagonal matrix with entries with absolute value of order
√
log2 n/(pn)3. Thus,

∥∥D−1
G

∥∥ ⩽

1
pn

·
(
1 + logn√

pn

)
.

Next, ∥AG − pJ∥ ⩽
∥∥AG

∥∥+ p, where recall AG = AG − EAG. We will show:∥∥AG

∥∥ ⩽ (1 + o(1)) ·max
{
λpn,

√
pn log4 n

}
.

Putting these bounds together gives:

|λ|2
(
ÂG

)
⩽ (1 + o(1)) ·max

{
λ,

log4 n
√
pn

}
.

Finally, we devote the rest of the proof to bounding
∥∥AG

∥∥. By Claim 3.2.2, it suffices to

bound E tr((AG)
ℓ) for a large enough even ℓ.

For an n×n matrixM , tr(M ℓ) can be written as a sum over length-ℓ closed walks on the
complete graph Kn, with each walk W weighted according to

∏
(i,j)∈W Mij. The exchange-

ability of entries in AG means that the walks can be partitioned into equivalence classes
based on their topology as graphs, where the members of each class contribute identically
to the summation.

Definition 3.3.2. We use Wℓ to denote the collection of length-ℓ walks in Kn, the complete
graph on n vertices. For W ∈ Wℓ, we use G(W ) = (V (W ), E(W )) to denote the simple
graph induced by edges walked on in W . We let the multiplicity of e in W , m(e), be the
number of times e occurs in W .
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We can then write:

E tr
(
(AG − EAG)

ℓ
)
=
∑
W∈Wℓ

E
∏

e∈E(W )

(1[e ∈ G]− p)m(e) (3.7)

We now focus on understanding each term of the above summand in terms of the properties
of G(W ). Our first step is to handle leaves.

Definition 3.3.3. We use G2(W ) = (V2(W ), E2(W )) to denote the 2-core of G(W ), the
graph obtained by recursively deleting degree-1 vertices from G(W ). We denote the graph
induced on the edges deleted in this process as G1(W ).

Observation 3.3.4. We have G(W ) = G1(W ) ∪ G2(W ). Further, every vertex in G2(W )
has degree at least 2, and G1(W ) is a forest where each connected component has at most
one vertex in G2(W ).

Notice that if F is a forest, then Pr[F ∈ G] = p|E(F )|, and further if F is a forest sharing
at most one vertex with a graph H, then the events {H ∈ G} and {F ∈ G} are independent.
Hence, with the above decomposition in hand, we can “peel off” the one-core and for any
W ∈ Wℓ we can write:

(3.7) = E
ui

i∈V2(W )

E
uj

j∈V1(W )\V2(W )

∏
e∈E(W )

(1[e ∈ G]− p)m(e)

=
∏

e∈E1(W )

E
(
(1[e ∈ G]− p)m(e)

)
· E

ui
i∈V2(W )

∏
e∈E2(W )

(1[e ∈ G]− p)m(e)

=
∏

e∈E1(W )

E
(
1[e ∈ G]

(
(1− p)m(e) − (−p)m(e)

)
+ (−p)m(e)

)
· E

ui
i∈V2(W )

∏
e∈E2(W )

(1[e ∈ G]− p)m(e)

⩽

∣∣∣∣∣∣
∏

e∈E1(W )

(
p(1− p)m(e) + (1− p)(−p)m(e)

)∣∣∣∣∣∣ ·
∣∣∣∣∣∣ E
ui:i∈V2(W )

∏
e∈E2(W )

(1[e ∈ G]− p)m(e)

∣∣∣∣∣∣,
(3.8)

where in the third line we’ve used that (1[e ∈ G]−p)k = 1[e ∈ G]((1−p)k− (−p)k)+(−p)k.
It now remains to handle the 2-core G2(W ). To simplify the expression, we’ll exploit the

following fact: if J is a subset of vertices in G2(W ), conditional on an assignment of ui for
all i ∈ J , the existence of edges in regions of G2(W ) separated by J are independent. We’ll
take advantage of this fact by splitting G2(W ) into regions separated by the set of vertices
in G2(W ) of degree at least 3, leaving us to bound a collection of paths and cycles.

Definition 3.3.5 (Junction vertices). We use J(W ) to denote the set of junction vertices
of G2(W ), which are vertices with degree-⩾ 3 in G2(W ), or in the case that G2(W ) only has
vertices of degree-2, we choose an arbitrary vertex ot G2(W ) and add it to J(W ). We use
GJ(W ) = (J(W ), EJ(W )) to denote the junction graph of G2(W ), which is a multigraph
obtained by starting with G2(W ) and contracting to an edge all walks γ = u0 . . . ut satisfying
the following conditions:
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1. u0 and ut are (possibly identical) junction vertices,

2. u1, . . . , ut−1 are distinct vertices with degree-2 in G2(W ).

For an edge f ∈ EJ(W ), we use γ(f) = u0, . . . , ut to identify the walk from which f arose
in G2(W ), s(f) to denote the “start” vertex u0 of γ(f), and t(f) to denote the “terminal”
vertex ut of γ(f).

Then we can bound the contribution of the 2-core in terms of the contribution of the
walk γ(f) corresponding to each edge f in the junction graph:∣∣∣∣∣∣ E

ui
i∈V2(W )

∏
e∈E2(W )

(1[e ∈ G]− p)m(e)

∣∣∣∣∣∣ =
∣∣∣∣∣∣ E
ui:i∈J(W )

E
ui:i/∈J(W )

∏
e∈E2(W )

(1[e ∈ G]− p)m(e)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ E
ui:i∈J(W )

∏
f∈EJ(W )

E
ui:i∈γ(f)\J(W )

∏
e∈γ(f)

(1[e ∈ G]− p)m(e)

∣∣∣∣∣∣
⩽ E

ui:i∈J(W )

∏
f∈EJ(W )

∣∣∣∣∣∣ E
ui:i∈γ(f)\J(W )

∏
e∈γ(f)

(1[e ∈ G]− p)m(e)

∣∣∣∣∣∣.
(3.9)

We now focus on understanding the innermost expected value, the expectation over the
internal vertices along a path, conditioned on the endpoints. Again using (1[e ∈ G]− p)k =
1[e ∈ G]((1− p)k − (−p)k) + (−p)k,∣∣∣∣∣∣ E
ui:i∈γ(f)\J(W )

∏
e∈γ(f)

(1[e ∈ G]− p)m(e)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ E
ui:i∈γ(f)\J(W )

∏
e∈γ(f)

(
1[e ∈ G] ·

(
(1− p)m(e) − (−p)m(e)

)
+ (−p)m(e)

)∣∣∣∣∣∣,
=

∣∣∣∣∣∣
∑

T⊆γ(f)

E
ui:i∈γ(f)\J(W )

∏
e∈T

1[e ∈ G] ·
(
(1− p)m(e) − (−p)m(e)

) ∏
e∈γ(f)\T

(−p)m(e)

∣∣∣∣∣∣
Now, using the independence of edges in a forest, we can bound terms where T ̸= γ(f)
simply, and the term T = γ(f) in terms of the probability that a |γ(f)|-length walk in X
starting at us(f) ends at ut(f) (which is where properties of the random walk in X will enter
into the bound):

=

∣∣∣∣∣ ∑
T⊆γ(f)
T ̸=γ(f)

∏
e∈T

p ·
(
(1− p)m(e) − (−p)m(e)

)
·
∏

e∈γ(f)\T

(−p)m(e)
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+
∏
e∈γ(f)

(
(1− p)m(e) − (−p)m(e)

)
· p|γ(f)|−1 ·

〈
N(us(f)), X

|γ(f)|−1δut(f)

〉∣∣∣∣∣,
where N(us(f)) is the neighborhood of us(f) in X, and δut(f) is the point mass at ut(f). Now

adding and subtracting
∏

e∈γ(f)
((
(1− p)m(e) − (−p)m(e)

)
+ (−p)m(e)

)
·p|γ(f)|, we complete the

first summation and from the triangle inequality we obtain the bound

⩽

∣∣∣∣∣∣
∏
e∈γ(f)

(
p(1− p)m(e) + (1− p)(−p)m(e)

)∣∣∣∣∣∣
+

∣∣∣∣∣∣
∏
e∈γ(f)

(
(1− p)m(e) − (−p)m(e)

)
· p|γ(f)|−1 ·

(〈
N(us(f)), X

|γ(f)|−1δut(f)

〉
− p
)∣∣∣∣∣∣.

(3.10)

We bound (3.10) based on the graphical properties of γ(f).

Definition 3.3.6. We say an edge e is a singleton edge if m(e) = 1 and a duplicative edge
otherwise.

If γ(f) contains any singleton edges, then the first term of (3.10) is 0; otherwise it is
bounded by ∏

e∈γ(f)

(p(1− p)2 + (1− p)p2) ⩽
∏
e∈γ(f)

p(1− p) ⩽ p|γ(f)|.

The second term can always be bounded by∏
e∈γ(f)

(
(1− p)m(e) + pm(e)

)
·p|γ(f)|−1·

∣∣∣〈N(us(f)), X
|γ(f)|−1δut(f)

〉
− p
∣∣∣ ⩽ p|γ(f)|−1·

∣∣∣〈N(us(f)), X
|γ(f)|−1δut(f)

〉
− p
∣∣∣.

Using DJ(W ) to denote the collection of edges f in GJ such that γ(f) contains no singleton
edges, and SJ(W ) to use the collection of edges f in GJ such that γ(f) contains a singleton
edge, and plugging the above bounds into (3.9) tells us:

(3.9) ⩽ E
ui

i∈J(W )

∏
f∈DJ (W )

p|γ(f)|−1 ·
(∣∣∣〈N(us(f)), X

|γ(f)|−1δut(f)

〉
− p
∣∣∣+ p

)
·

∏
f∈SJ (W )

p|γ(f)|−1 ·
∣∣∣〈N(us(f)), X

|γ(f)|−1δut(f)

〉
− p
∣∣∣.

IfGJ(W ) were a tree, we could recursively take the expectation over leaf vertices to bound the
quantity above, as we did to get rid of G1. However, it is not a tree, so we’ll pick an arbitrary
spanning tree TJ(W ) of GJ(W ), and bound edges outside of the spanning tree directly. For
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f ∈ EJ(W ) \ TJ(W ), we use Assumption 3.6 to conclude that dTV

(
X |γ(f)|−1δut(f) , ρ

)
⩽

Cλ|γ(f)|−1, which thus implies that∣∣∣〈N(us(f)), X
|γ(f)|−1δut(f)

〉
− p
∣∣∣ ⩽ Cλ|γ(f)|−1, (3.11)

because
〈
N(us(f)), X

|γ(f)|−1δut(f)

〉
represents the probability that a point sampled at random

from the measure X |γ(f)|−1δut(f) lands in N(us(f)), which is a set of measure p under ρ. We
now prove the following by induction.

Claim 3.3.7. We have the following bound on the contribution of f ∈ TJ(W ):

E
ui:i∈J(W )

∏
f∈TJ (W )

p|γ(f)|−1 ·
(∣∣∣〈N(us(f)), X

|γ(f)|−1δut(f)

〉
− p
∣∣∣+ p · 1[f ∈ DJ(W )]

)
⩽

∏
f∈TJ (W )

p|γ(f)| ·
(
2Cλ|γ(f)| + 1[f ∈ DJ(W )]

)
.

Proof. We fix an order for i ∈ J(W ), i0, . . . , it such that ij is a leaf in T
(j)
J (W ), the graph

obtained by taking TJ(W ) and deleting ij+1, . . . , it. We use fj to denote the unique edge

incident to ij in T
(j)
J (W ). Then if we define

aj := E
ui:i∈V (T

(j)
J (W ))

∏
f∈T (j)

J (W )

p|γ(f)|−1 ·
(∣∣∣〈N(us(f)), X

|γ(f)|−1δut(f)

〉
− p
∣∣∣+ p · 1[f ∈ DJ(W )]

)
Because fj is independent of fj′ for j

′ < j we can write:

aj := E
ui0

· · · E
uij−1

∏
f∈T (j−1)

J (W )

p|γ(f)|−1 ·
(∣∣∣〈N(us(f)), X

|γ(f)|−1δut(f)

〉
− p
∣∣∣+ p · 1[f ∈ DJ(W )]

)
·

E
uij

p|γ(fj)|−1 ·
(∣∣∣〈N(us(fj)), X

|γ(fj)|−1δut(fj)

〉
− p
∣∣∣+ p · 1[fj ∈ DJ(W )]

)
Without loss of generality we can assume ij = t(fj), and because N(us(fj)) = pXδus(fj) ,

E
uij

∣∣∣〈N(us(fj)), X
|γ(fj)|−1δut(fj)

〉
− p
∣∣∣ = E

uij

∣∣∣〈N(us(fj)), X
|γ(fj)|−1δuij

〉
− p
∣∣∣

= p E
uij

∣∣∣〈X |γ(fj)|δus(fj) , δuij

〉
− 1
∣∣∣

= 2p · dTV

(
X |γ(fj)|δus(fj) , ρ

)
⩽ p · 2Cλ|γ(fj)|.

This gives us the inequality:

αj ⩽ αj−1 · p
(
2Cλ|γ(fj)| + 1[fj ∈ DJ(W )]

)
.

The above inequality combined with the fact that α0 = 1 yields the claim.
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We use e(W ) to denote |E(W )| and sing(W ) to denote the number of singleton edges
in G2(W ),5. For any graph H we use exc(H) to denote the excess of H, which is |E(H)| −
|V (H)|+ 1, the number of edges H has over a tree.

Observation 3.3.8. exc(G(W )) = exc(G2(W )) = exc(GJ(W )). Thus, we denote this quan-
tity as exc(W ).

Observation 3.3.9. |EJ(W )| ⩽ 3exc(W ).

Proof. We use Observation 3.3.8 to write:

2exc(W )− 2 = 2|EJ(W )| − 2|VJ(W )| =
∑
v∈VJ

(degG(J)(v)− 2) ⩾ |VJ(W )| − 1,

where the degree a self-loop incurs on a vertex is 2, and the −1 on the right-hand side is
to capture the possibility that |J(W )| = 1 when G2(W ) has no degree-3 vertices. Adding
exc(W ) to both sides gives:

3exc(W ) ⩾ |EJ(W )|.

Using the bound on the non-tree edges from (3.11) and Claim 3.3.7, we get:

(3.9) ⩽
∏

f∈TJ (W )

p|γ(f)| ·
(
2Cλ|γ(f)| + 1[f ∈ DJ(W )]

)
·

∏
f∈EJ (W )\TJ (W )

p|γ(f)|−1 ·
(
Cλ|γ(f)|−1 + p · 1[f ∈ DJ(W )]

)
Now, we bound separately the contribution of singleton and duplicative edges. For each
f ∈ SJ(W ), we pull out a factor of (pλ)|γ(f)|2C if the edge was in the tree, and a factor
(pλ)|γ(f)|−1C if the edge was not in the tree; this fully accounts for the contributions of
singleton edges. For each f ∈ DJ(W ), we upper bound its contribution by p|γ(f)|3C if the
edge was in the tree, and a factor p|γ(f)|−13C otherwise; this is potentially loose because we
don’t keep the factors of λ, but it is a valid upper bound because C ⩾ 1 and p, λ ⩽ 1. We
thus have a factor of p from |E2(W )| − exc(W ) edges, a factor of λ from sing(W )− exc(W )
edges, and a factor of at most 3C from each edge in EJ(W ). Summarizing,

⩽ p|E2(W )|−exc(W )λsing(W )−exc(W ) · (3C)|EJ (W )|,

and by Observation 3.3.9, the above is bounded by:

⩽ p|E2(W )|−exc(W )λsing(W )−exc(W ) · (3C)3exc(W ).

Sincem(e) ⩾ 2 for every edge in e ∈ E1 (otherwise the walk cannot be closed), by an analysis
identical to that of the first term of (3.10), we have:

(3.8) ⩽ p|E1(W )| · p|E2(W )|−exc(W )λsing(W )−exc(W ) · (3C)3exc(W ) = pe(W )−exc(W )λsing(W )

(
27C3

λ

)exc(W )

.

5Note sing(W ) is the same as the number of singleton edges in G(W ) since G1(W ) cannot have singleton
edges, as it is the multigraph induced by a closed walk of length ℓ.
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Finally, we can bound the trace power (3.7) as follows.

(3.7) ⩽
∑
W∈Wℓ

pe(W )−exc(W )λsing(W )

(
27C3

λ

)exc(W )

=
ℓ∑

a=1

ℓ∑
b=1

ℓ∑
c=1

∑
W∈Wℓ

e(W )=a, sing(W )=b, exc(W )=c

pa−cλb
(
27C3

λ

)c

=
ℓ∑

a=1

ℓ∑
b=1

ℓ∑
c=1

pa−cλb
(
27C3

λ

)c
· |{W ∈ Wℓ : e(W ) = a, sing(W ) = b, exc(W ) = c}|

(3.12)

To finish bounding the trace power, it remains to count length-ℓ closed walks with a specified
number of edges, excess edges, and singleton edges.

Claim 3.3.10. The number of walks W such that e(W ) = a, sing(W ) = b, and exc(W ) = c
is at most:

na−c+1 · ℓ2(ℓ−b) · ℓ2c.

Proof. Observe that W has a − c + 1 vertices. Then the following information about W is
sufficient to reconstruct it:

• The labels of the visited vertices in [n] in the order in which they are visited. There
are at most na−c+1 labelings.

• The timestamps when the edge walked on is not a singleton edge. There are at most
ℓℓ−b possibilities.

• The timestamps when W takes a step uv such that the edge {u, v} has not been
previously covered by W , but v has been previously visited, along with the timestamp
of when v was visited for the first time. There are c such steps, and hence there are at
most ℓ2c possibilities.

• The timestamps whenW takes a step uv such that the edge {u, v} has been previously
covered by W along with the timestamp of when {u, v} was covered the first time.
There are at most ℓ−b

2
such steps, and hence there are at most ℓℓ−b possibilities.

Putting the above bounds together completes the proof.

Observation 3.3.11. Any walk with b singleton edges and c excess edges has at most ℓ+b
2

edges.

Proof. Each nonsingleton edge must be visited at least twice. There are at most ℓ− b non-
singleton steps. So, there are at most ℓ−b

2
nonsingleton edges, and the total number of edges

is at most ℓ+b
2
.
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Now we can continue bounding the trace power.

(3.12) ⩽
ℓ∑

a=1

ℓ∑
b=1

ℓ∑
c=1

pa−cλb
(
27C3

λ

)c
· na−c+1 · ℓ3(ℓ−b) · ℓ2c

= n

ℓ∑
a=1

ℓ∑
b=1

ℓ∑
c=1

(pn)aλb
(
27C3ℓ2

λpn

)c
· ℓ2(ℓ−b)

⩽ nℓ ·max

{
1,

(
27C3ℓ2

λpn

)ℓ}
·

ℓ∑
a=1

ℓ∑
b=1

(λpn)b · (pn)a−b · ℓ2(ℓ−b)

By Observation 3.3.11 and the assumption on λ from Assumption 3.6, we can bound the
total edges a and hence the below.

⩽ nℓ ·max

{
1,

(
27C3ℓ2
√
pn

)ℓ}
·

ℓ∑
a=1

ℓ∑
b=1

(λpn)b · (pn)
ℓ−b
2 · ℓ2(ℓ−b)

⩽ nℓ3 ·max

{
1,

(
27C3ℓ2
√
pn

)ℓ}
max

{
(λpn)ℓ, (pnℓ4)ℓ/2

}
By Claim 3.2.2,

Pr

[
∥AG∥ ⩾ eε ·

(
n1/ℓℓ3/ℓ

)
max

{
1,

27C3ℓ2
√
pn

}
max

{
λpn,

√
pnℓ2

}]
⩽ exp(−εℓ),

and choosing ℓ = log2 n, ε = log log n/ log n, for any constant γ, we get:

∥AG − EAG∥ ⩽ (1 + o(1)) ·
(
1 +

27C3 log4 n
√
pn

)
·max

{
λpn,

√
pn log4 n

}
(3.13)

with probability at least 1− n−γ. Now, by the assumption of the theorem, pn ≫ C6 log8 n,

so 1 + 27C3 log4 n√
pn

= 1 + o(1).

3.4 Analyzing the discrete walk with Brownian

motion

In this section we quantify the extent to which convolving a measure α over Sd−1 with a
spherical cap of measure p brings α closer to uniform, provided that α satisfies a certain
monotonicity property. We now define this monotonicity property, establishing a couple of
additional definitions along the way.
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Definition 3.4.1. We say a distribution on Sd−1 with relative density α is symmetric about
y ∈ Sd−1 if there exists a function ℓα : [−1, 1] → R such that α(z) = ℓα(⟨z, y⟩). We note that
ℓα is also the density α projected onto the line defined by y relative to the projection of the
uniform distribution, so that

ℓα(t) =

∫
Sd−1 1[⟨z, y⟩ = t] · ℓα(t) dρ(z)∫

Sd−1 1[⟨z, y⟩ = t] dρ(z)
=

∫
Sd−1 1[⟨z, y⟩ = t] · α(z) dρ(z)∫

Sd−1 1[⟨z, y⟩ = t] dρ(z)
.

Notice that ℓρ = 1.

Definition 3.4.2. A measure α over Sd−1 which is symmetric about some y ∈ Sd−1 is said
to be spherically monotone if ℓα is monotone non-decreasing.

An alternate characterization of spherically monotone distributions is that their relative
densities can be written as a non-negative combination of spherical caps. Recall that we use
capp(y) and cap⩾τ(p)(y) interchangeably to denote the uniform measure over capp(y).

Claim 3.4.3. A density α : Sd−1 → R which is symmetric about y ∈ Sd−1 is spherically
monotone if and only if there is a distribution r on [−1, 1] such that:

α =

∫
cap⩾θ dr(θ).

We call the above way of writing α as the cap decomposition of α. Further, ℓα =
∫
ℓcap⩾θ dr(θ).

We give the straightforward proof later. Notice that in writing the expression for ℓα we
have replaced ℓcap⩾θ(y) with ℓcap⩾θ ; this is because ℓcap⩾θ(y) does not depend on y.

Definition 3.4.4. Given a measure µ over Sd−1 which is symmetric about some y ∈ Sd−1,
its spherical kernel Pµ is the transition operator of the random walk on Sd−1 where a single
step, starting from x ∈ Sd−1, samples a ∼ ℓµ and then walks from x to a uniformly random
w ∈ Sd−1 satisfying ⟨w, x⟩ = a. Equivalently, the density of Pµα is µ ∗ α for ∗ denoting
convolution.

Remark 3.4.5. For brevity, we will use Pp as a shorthand for Pcapp
.

The main result of this section, proved after developing some tools, is the following:

Theorem 3.4.6. If a probability distribution α over Sd−1 is symmetric and spherically mono-
tone, then for any integer k ⩾ 0,

dTV

(
P k
p α, ρ

)
⩽ ((1 + odτ2(1)) · τ)k ·

√
1
2
D(α∥ρ),

where odτ2(1) denotes a function that goes to 0 as dτ 2 → ∞.
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As an immediate corollary, we obtain the following version which can be used in conjunction
with Theorem 3.1.11 to conclude a bound on the second eigenvalue of random geometric
graphs.

Corollary 3.4.7. For any probability distribution α over Sd−1,

dTV

(
P k
p α, ρ

)
⩽ ((1 + odτ2(1)) · τ)k−1 ·

√
1

2
· log 1

p
.

Proof. We write α as a convex combination of (symmetric, spherically monotone) point
masses δx. Then we apply Theorem 3.4.6 in conjunction with the triangle inequality and the
fact that P k

p δx = P k−1
p capp(x) and D(capp(x)∥ρ) = log 1

p
.

Our proof of Theorem 3.4.6 will relate the action of Pp to the action of the Brownian
motion kernel.

Definition 3.4.8 (Brownian motion on Sd−1). Let (Bt)t⩾0 be standard Brownian motion
in Rd. We define Brownian motion on Sd−1 starting at some point V0 ∈ Sd−1 as the process
(Vt)t⩾0 via the following stochastic differential equation:

dVt =
√
2
(
1− VtV

⊤
t

)
dBt − (d− 1)Vt dt.

Definition 3.4.9. For any t ⩾ 0, let the time-t Brownian motion kernel Ut be the transition
operator of a random walk on Sd−1 where a single step samples runs a time-t Brownian motion
on the sphere. Equivalently, Ut = Pβt for βt the (spherically symmetric) density of a t-step
Brownian motion.

For any y ∈ Sd−1, Ppy is highly concentrated near the boundary of the cap of measure p
around y. As we will show in Section 3.4.1, the same is true for Uty; it is highly concentrated
near the boundary of a cap of measure q = q(t) around y. So, choosing T > 0 so that
q(T ) ≈ p, we will argue that UT and Pp have similar action on spherically monotone measures.

We can then take advantage of the contractive properties of UT in order to prove that Pp
is contractive. The Brownian motion kernel satisfies the following mixing condition (which
can be obtained, e.g., as a corollary of [8, Theorem 5.2.1] and [33, Corollary 2]):

Theorem 3.4.10 (Mixing of Brownian motion on Sd−1). For any probability distribution ϕ
on Sd−1,

D(Utϕ ∥ ρ) ⩽ exp(−2(d− 1)t) ·D(ϕ ∥ ρ)

As a corollary of the above and Pinsker’s inequality, for any t > 0 and measure α over
Sd−1,

2 (dTV (Utα, ρ))
2 ⩽ D(Utα ∥ ρ) ⩽ exp(−2(d− 1)t) ·D(α ∥ ρ). (3.14)

Armed with (3.14), we can pass to working exclusively with the 1-dimensional projection
of the measures in question onto the direction y.
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Claim 3.4.11. For any spherically symmetric distribution with relative density γ, dTV (γ, ρ) =
dTV (ℓγ, ℓρ).

Proof. We express the total variation distance in terms of the ℓ1 norm:

2dTV (γ, ρ) =

∫
z∈Sd−1

|γ(z)− 1| dρ(z) =
∫
z∈Sd−1

|ℓγ(⟨z, y⟩)− 1| dρ(z)

=

∫
t∈[−1,1]

|ℓγ(t)− 1| dℓρ(t) = 2dTV (ℓγ, ℓρ) .

Note that if α is spherically symmetric about y then so is Utα, by the rotational invariance
of Brownian Motion on the sphere. Hence combining Claim 3.4.11 with (3.14), we have that

dTV (ℓUtα, ℓρ) ⩽

√
1

2
· exp(−(d− 1)t) ·D(α∥ρ).

Now, we’ll show that for a well-chosen T > 0, ℓUTα nearly stochastically dominates ℓPpα,
and that Ppα and UTα are both spherically monotone, and that this furthermore implies that
dTV (ℓUTα, ℓρ) and dTV

(
ℓPpα, ℓρ

)
are related. Specifically, we show the following lemmas:

Lemma 3.4.12. If ν and µ are spherically monotone densities and ℓν ⪯st ℓµ, then
6

dTV (ℓν , ℓρ) ⩽ dTV (ℓµ, ℓρ) .

We prove the lemma below, but intuitively, a spherically monotone distribution can be
realized as a non-negative combination of spherical caps; the uniform distribution has all
of its mass on the largest cap (of measure 1). If ℓν ⪯st ℓµ, then the total probability mass
within any radius θ of the mode of µ exceeds that of ν, witnessing a larger total variation
distance.

Lemma 3.4.13. Let µ, ν, α be spherically monotone densities over Sd−1, with ℓν ⪯st ℓµ.
Then

1. Pµα is spherically monotone (as is Pνα),

2. ℓPαν ⪯st ℓPαµ, and

3. ℓPνα ⪯st ℓPµα.

We will prove this lemma below as well; the crux of the proof of Part 1 is to realize that
because α, µ are spherically monotone, they can be decomposed as a non-negative combina-
tion of spherical caps. Then, by linearity of Pµ and by the commutativity of convolution,
Part 1 reduces to showing that the convolution of two spherical caps is spherically monotone

6As will be apparent from the proof, one may replace ℓν , ℓµ with any monotone non-decreasing densities
on [−1, 1].
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(this is a statement that we find intuitive, and it is easy to verify by directly examining the
expression for ℓP⩾θcap⩾ψ

). To show Part 2, we observe that by decomposing α in its cap de-
composition, it is then enough to compare ℓP⩾θν with ℓP⩾θµ for each θ. Here, when ℓµ ⪰st ℓν ,
a straightforward coupling demonstrates that ℓP⩾θµ ⪰st ℓP⩾θν . Part 3 is a consequence of
Part 2 and commutativity of convolution.

Our aim is to now apply these lemmas with ν ≈ capp(y) and µ = βT (note that Pνα = Ppα
and Pµα = UTα). We now verify that these densities meet the conditions above. The density
capp(y) is spherically monotone because it is the same as ρ conditoned on being closer to y;
we now show that βt is indeed spherically monotone.

Claim 3.4.14. The density of a time-t Brownian motion, βt, is spherically monotone.

Proof. Since Brownian motion on Sd−1 can be realized as a sequence of random steps within
spherical caps of infintesimally small measure ds, the measure of a t-step Brownian motion
starting from y ∈ Sd−1 is achieved by iteratively applying Pcapds

to the point mass at y. The
proof is then complete by noting that ℓcapp is spherically monotone for every p, then applying
Part 1 of Lemma 3.4.13.

Next, we argue that for T = T (p), there is some small δ for which (1−δ)ℓcapp+δℓρ ⪯st ℓβT ;
that is, the linear projection of the p-cap is almost stochastically dominated by the linear
projection of Brownian motion run for the proper amount of time. In order to do this, we
first establish that almost all of the probability mass of βT is in a cap of radius close to p.
In Section 3.4.1, we’ll prove the following lemma:

Lemma 3.4.15. Let (Vt)t⩾0 be a Brownian motion on Sd−1 starting at V0. Then for any
time t ⩾ 0,

Pr [|⟨V0,Vt⟩ − exp (−(d− 1)t)| ⩾ x] ⩽ 2 exp

(
−d−1

2

x2

1− e−2(d−1)t

)
.

From this lemma, we can show that almost all of the mass of the cap decomposition of
ℓβT is contained inside a (⩾ τ)-cap:

Claim 3.4.16. Let ν > 0, T := 1
d−1

(
log 1

ν
− 2ε

)
, and ε ∈

[
0, 1

2
log 1

ν

]
. Then the total mass

of ℓβT outside of cap⩾(1+ε)ν(V0) for V0 the starting point of the Brownian motion is bounded:∫ (1+ε)τ

−1

dℓβT (x) ⩽ δ(ε) := 2 exp

(
−(d− 1)ε2ν2

2(1− ν2)

)
.

Proof. We let (Vt)t⩾0 be a Brownian motion on the sphere, At = ⟨Vt, V0⟩, and At =
exp (−(d− 1)t) +Rt. At time T , we have

AT = exp (−(d− 1) · T ) +RT = ν · exp (2ε) +RT

⩾ ν · (1 + 2ε) +RT ⩾ ν · (1 + 2ε) +RT .
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The event that AT ⩽ ν · (1 + ε) implies RT < −εν, so it suffices to upper bound the
probability that |RT | > εν. Applying Lemma 3.4.15,

Pr[|RT | ⩾ εν] ⩽ 2 exp

(
−d−1

2

ε2ν2

1− e−2(d−1)·T

)
= 2 exp

(
−ε

2ν2(d− 1)

2(1− ν2)

)
Now, we are ready to establish the stochastic domination of the combination.

Claim 3.4.17. Let p ∈
(
0, 1

2

)
and ν = τ(p) + 4√

d
. For T = 1

d−1
(log 1

ν
− 2ε) with ε ∈[

5
(d−1)ν2

, 1
2
log 1

ν

]
,

ℓβT ⪰st (1− 2δ(ε))ℓcapp + 2δ(ε)ℓρ,

for δ(ε) as defined in the statement of Claim 3.4.16.

Proof. Using Claim 3.4.3, we write βT =
∫ 1

−1
cθ · ℓcap⩾θdθ, with

∫
cθdθ = 1. Let τ ′ ∈ [−1, 1]

be such that ∫ τ ′

−1

cθdθ = 2δ(ε), and

∫ 1

τ ′
cθdθ = 1− 2δ(ε). (3.15)

The proof strategy is to show that the conclusion follows if τ ′ ⩾ τ(p), and then establish
that inequality.

First observe that if α and {γx}x∈X are measures satisfying γx ⪰st α for all x ∈ X, then a
convex combination

∫
cxγxdx ⪰st α as well, from which the conclusion follows. Now, writing

βT =

∫ τ ′

−1

cθ · ℓcap⩾θdθ +
∫ 1

τ ′
cθ · ℓcap⩾θdθ,

we see that the first term on the right-hand-side stochastically dominates 2δ(ε) · ℓcap⩾−1
=

2δ(ε) · ℓρ since for every θ ∈ [−1, τ ′], θ ⩾ −1 and therefore ℓcap⩾θ ⪰st ℓcap⩾−1
= ℓρ. By

identical reasoning, the second term stochastically dominates ℓcap⩾τ(p) since for every θ ∈
[τ ′, 1], θ ⩾ τ(p) and therefore ℓcap⩾θ ⪰st ℓcap⩾τ = ℓcapp .

We now show that the τ ′ satisfying (3.15) is at least τ , for which it is sufficient to show
τ ′ ⩾ ν. Let κ =

∫ ν
−1
cθ dθ; τ

′ ⩾ ν is equivalent to showing that κ ⩽ 2δ(ε). Using Claim 3.4.16,
we know that Prv∼βT [v ∈ cap⩾(1+ε)ν(V0)] ⩾ 1− δ(ε).

1− δ(ε) ⩽ Pr
v∼βT

[
v ∈ cap⩾(1+ε)ν(V0)

]
=

∫ (1+ε)ν

−1

cθ · Pr
x∼ℓcap⩾θ

[x ⩾ (1 + ε)ν] dθ +

∫ 1

(1+ε)ν

cθ dθ

⩽
∫ ν

−1

cθ · Pr
x∼ℓcap⩾θ

[x ⩾ (1 + ε)ν] dθ +

∫ 1

ν

cθ dθ

⩽

(
max
θ∈[−1,ν]

Pr
x∼ℓcap⩾θ

[x ⩾ (1 + ε)ν]

)
· κ+

∫ 1

ν

cθ dθ = Pr
x∼ℓcap⩾ν

[x ⩾ (1 + ε)ν] · κ+

∫ 1

ν

cθ dθ.
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Using Lemma 3.2.8 and ν ⩾ 4/
√
d,

Pr
x∼ℓcap⩾ν

[x ⩾ (1 + ε)ν] =
ρ(cap⩾(1+ε)ν)

ρ(cap⩾ν)

⩽
3ν (1− ((1 + ε)ν)2)

(d−1)/2

2ν(1 + ε) (1− ν2)(d−1)/2

⩽
3

2
·
(
1− (1 + ε)2ν2

1− ν2

)(d−1)/2

=
3

2
·
(
1− 2εν2 + ε2ν2

1− ν2

)(d−1)/2

⩽
3

2
·
(
1− 2εν2

)(d−1)/2
⩽

3

1 + (d− 1)εν2
.

The final quantity is smaller than 1
2
given our lower bound on ε, and

∫ 1

τ
cθ dθ = 1 − κ.

Plugging into the above, we have that

1− δ(ε) ⩽
1

2
κ+ 1− κ =⇒ κ ⩽ 2δ(ε),

which completes the proof.

Finally, we will need the following claim to transfer the statement about the stochastic
domination of a linear combination of ℓPpα and ℓρ to just ℓPpα:

Lemma 3.4.18. Suppose µ and ν are spherically monotone distributions, then for any η ∈
[0, 1),

dTV (ℓµ, ℓρ) ⩽
1

1− η
dTV ((1− η)ℓµ + ηℓν , ℓρ) .

Proof. Let s ∈ [−1, 1] be such that:

dTV (ℓµ, ℓρ) =

∫ 1

s

(ℓµ(x)− 1)dρ1D =

∫ s

−1

(1− ℓµ(x))dρ1D,

where ρ1D is the density of the 1-dimensional projection of cap1(y). The choice of s satisfying
the above is the one satisfying ℓµ(s) = 1. If ℓν(s) ⩾ 1, by spherical monotonicity ℓν(x) ⩾ 1
on [s, 1] and:

dTV ((1− η)ℓµ + ηℓν , ℓρ) ⩾
∫ 1

s

((1− η)(ℓµ(x)− 1) + η(ℓν(x)− 1)) dρ1D

⩾ (1− η)

∫ 1

s

(ℓµ(x)− 1)dρ1D = (1− η) · dTV (ℓµ, ℓρ) .

On the other hand, if ℓν(s) ⩽ 1, by an identical argument we know:

dTV ((1− η)ℓµ + ηℓν , ℓρ) ⩾ (1− η)

∫ s

−1

(1− ℓµ(x))dρ1D = (1− η) · dTV (ℓµ, ℓρ) .

The desired statement follows from rearranging the above inequality.
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We are now ready to prove Theorem 3.4.6, following the reasoning above, in combination
with induction on k, the number of applications of Pp. We state and prove a more refined
version of Theorem 3.4.6 below.

Theorem 3.4.19. If a probability distribution α over Sd−1 is symmetric and spherically
monotone, then for any integer k ⩾ 0 and for ν = τ(p, d) + 4√

d
,

dTV

(
P k
p α, ρ

)
⩽ νk

 exp
(

4
(d−1)1/4

√
ν

)
√

1− 2 exp(−ν
√
d− 1)

.
Note that when τ 2d→ ∞, the parenthesized term is 1 + o(1) and ν = τ · (1 + o(1)).

Proof. Suppose τ(p) ⩾ 1 − 1/(d − 1)1/4, then the statement is vacuously true. Thus, we
assume from now on τ(p) < 1− 1/(d− 1)1/4.

Let ν = τ(p) + 4/
√
d, let t = 1

d−1

(
log 1

ν
− 2ε

)
, and δ = 2 exp

(
− (d−1)ε2ν2

2(1−ν2)

)
for ε =

√
2−2ν2

(d−1)1/4
√
ν
; note that for d sufficiently large, ε ∈

[
5

(d−1)ν2
, 1
2
log 1

ν

]
. For convenience’s sake,

define Pp,δ = (1− 2δ)Pp + 2δP1. We will prove that

ℓPkp,δα ⪯st ℓUkt α, and Uk
t α, P

k
p,δα are spherically monotone. (3.16)

Given this, the proof of the theorem will follow: by the linearity of the projection onto the
line defined by y, and by the commutativity of convolution,

ℓPkp,δα =
k∑
j=0

(1− 2δ)k−j(2δ)j
(
k

j

)
ℓPk−jp P j1α

,

So from Claim 3.4.11, Lemma 3.4.18, (3.16), and Lemma 3.4.12,

dTV

(
P k
p α, ρ

)
= dTV

(
ℓPkp α, ℓρ

)
⩽

1

(1− 2δ)k
dTV

(
ℓPkp,δα, ℓρ

)
⩽

1

(1− 2δ)k
dTV

(
ℓUkt α, ℓρ

)
.

(3.17)

Then we can apply Claim 3.4.11 to get that

dTV

(
ℓUkt α, ℓρ

)
= dTV

(
Uk
t α, ρ

)
, (3.18)

and finally using that Uk
t = Uk·t in conjunction with Lemma 3.4.10, we have that

dTV

(
Uk
t α, ρ

)
= dTV (Uk·tα, ρ) ⩽

√
1

2
exp(−2(d− 1)tk) ·D(α∥ρ), (3.19)
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So combining (3.17), (3.18), and (3.19), we have that

dTV

(
P k
p α, ρ

)
⩽

√
1

2(1− 2δ)k
exp(−2(d− 1)tk) ·D(α∥ρ).

In our case, δ = exp(−ν
√
d− 1), t = 1

d−1

(
log 1

ν
−

√
2−2ν2

(d−1)1/4
√
ν

)
, so combining these estimates,

dTV

(
P k
p α, ρ

)
⩽ νk ·

 exp
(

4
(d−1)1/4

√
ν

)
√
1− 2 exp(−ν

√
d− 1)

k

·
√

1
2
D(α∥ρ),

as desired.
Now we prove (3.16). The proof is by induction on k; when k = 0, there is nothing to

prove. Suppose now that the statement holds true for k; we shall prove it for k + 1. By
Claim 3.4.14, the density of a time-t spherical Brownian motion βt is spherically monotone
about its starting point, and clearly, any convex combination of caps is spherically monotone.
Hence we can apply Lemma 3.4.13, Part 1 in conjunction with the induction hypothesis to
conclude that both P k+1

p,δ α = Pp,δ(P
k
p,δα) and Uk+1

t α = Ut(U
k
t α) are spherically monotone,

giving the second part of the induction hypothesis.
By our induction hypothesis Uk

t α and P k
p,δα are spherically monotone with ℓUkt α ⪰st ℓPkp,δα,

and so we can apply Lemma 3.4.13, Part 2 in conjunction with Claim 3.4.14 to conclude
that

ℓUk+1
t α = ℓPβt (Ukt α) ⪰st ℓPβt (Pkp,δα),

and then apply Lemma 3.4.13, Part 3 in conjunction with Claim 3.4.17 to conclude that

ℓPβt (Pkp,δα) ⪰st ℓPp,δ(Pkp,δα) = ℓPkp,δα,

completing the proof.

Now, we fill in the proofs of the lemmas from above.

Claim (Restatement of Claim 3.4.3). A density α : Sd−1 → R which is symmetric about
y ∈ Sd−1 is spherically monotone if and only if there is a distribution r on [−1, 1] such that:

α =

∫
cap⩾θ dr(θ).

We call the above way of writing α as the cap decomposition of α. Further, ℓα =
∫
ℓcap⩾θ dr(θ).

Proof of Claim 3.4.3. We first prove the “only if” direction. Since α is spherically symmetric
about y, α(v) = ℓα(⟨v, y⟩). Let dℓα be the distributional derivative of ℓα, and set dr(θ) =
ρ(cap⩾θ(y)) dℓα(θ).∫
(cap⩾θ(y))(v) dr(θ) =

∫
1[⟨v, y⟩ ⩾ θ]

ρ(cap⩾θ(y))
· ρ(cap⩾θ(y)) dℓα(θ) =

∫
1[⟨v, y⟩ ⩾ θ] dℓα(θ) = α(v).
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To see that the measure dr indeed gives a probability distribution, first observe that dr(θ) ⩾ 0
for every θ due to the monotonicity of ℓα, and next observe that

1 =

∫
v∈Sd−1

α(v) dρ(v) =

∫
v∈Sd−1

∫ 1

−1

(cap⩾θ(y))(v) dr(θ) dρ(v)

=

∫ 1

−1

∫
v∈Sd−1

(cap⩾θ(y))(v) dρ(v) dr(θ) =

∫ 1

−1

dr(θ).

In summary, since r is a positive measure which integrates to 1, it is a probability distribution.
The claim regarding ℓα follows because the line projection onto y is a linear operation.

Now we prove the converse. Suppose α =
∫ 1

−1
cap⩾θ(y) dr(θ). By linearity of projection

onto the line defined by y, ℓα =
∫ 1

−1
ℓcap⩾θ dr(θ). Since ℓcap⩾θ is monotone for every θ,

and a non-negative combination of monotone functions is monotone, ℓα is also monotone,
concluding the proof.

Lemma (Restatement of Lemma 3.4.12). If ν and µ are spherically monotone densities and
ℓν ⪯st ℓµ, then

7

dTV (ℓν , ℓρ) ⩽ dTV (ℓµ, ℓρ) .

Proof of Lemma 3.4.12. First, observe that ℓν ⪰st ℓρ and ℓµ ⪰st ℓρ by the assumption that
µ, ν are spherically monotone. Thus, ℓµ ⪰st ℓν ⪰st ℓρ. Further, if measures a, b on [−1, 1]
satisfy a ⪰st b, then their CDFs Ga and Gb satisfy Ga(s) ⩽ Gb(s) for every s. Hence,

Gℓµ(s) ⩽ Gℓν (s) ⩽ Gℓρ(s) ∀s ∈ [−1, 1].

By definition of the total variation distance, for any non-decreasing density γ : [−1, 1] → R,

dTV (γ, ℓρ) = max
s∈[−1,1]

Gℓρ(s)−Gγ(s).

Thus,
dTV (ℓν , ℓρ) = Gℓρ(s

∗)−Gℓν (s
∗) ⩽ Gℓρ(s

∗)−Gℓµ(s
∗) ⩽ dTV (ℓµ, ℓρ) ,

which completes the proof.

We’ll now prove Lemma 3.4.13.

Lemma (Restatement of Lemma 3.4.13). Let µ, ν, α be spherically monotone densities over
Sd−1, with ℓν ⪯st ℓµ. Then

1. Pµα is spherically monotone (as is Pνα),

7As will be apparent from the proof, one may replace ℓν , ℓµ with any monotone non-decreasing densities
on [−1, 1].
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2. ℓPαν ⪯st ℓPαµ, and

3. ℓPνα ⪯st ℓPµα.

Proof of Lemma 3.4.13. We first prove Part 1. We can write α and µ in terms of their cap
decompositions as shown in Claim 3.4.3, α =

∫ 1

−1
cap⩾θ(y) dr(θ) and µ =

∫ 1

−1
cap⩾ψ(z) ds(ψ)

for some z ∈ Sd−1. Pµ is a linear operator, so Pµα =
∫
Pµcap⩾θ(y) dr(θ). Further, by

the commutativity of convolution, Pµcap⩾θ(y) = P⩾θµy, where µy denotes the version of µ
centered at y. Hence,

Pµα =

∫
Pµcap⩾θ(y)dr(θ) =

∫
P⩾θµy dr(θ) =

∫ ∫
P⩾θcap⩾ψ(y) ds(ψ) dr(θ).

Each P⩾θcap⩾ψ(y) is clearly spherically symmetric about y. Since the projection onto the
line defined by y is a linear operation, ℓPµα =

∫ ∫
ℓP⩾θcap⩾ψ

ds(ψ)dr(θ), and because a non-
negative combination of monotone functions is monotone, it suffices to prove that for any
θ, ψ ∈ [−1, 1], ℓP⩾θcap⩾ψ

is monotone. By definition,

ℓP⩾θcap⩾ψ(y)
(t) = E

v∼ρ

[(
P⩾θcap⩾ψ(y)

)
(v) | ⟨v, y⟩ = t

]
= E

v∼ρ

[
E

w∼cap⩾θ(v)

[(
cap⩾ψ(y)

)
(w)

]
| ⟨v, y⟩ = t

]
= E

v∼ρ

[
E

w∼cap⩾θ(v)

[
1[⟨w,y⟩⩾ψ]
ρ(cap⩾ψ)

]
| ⟨v, y⟩ = t

]
=

Prv,w∼ρ [⟨w, y⟩ ⩾ ψ | ⟨w,v⟩ ⩾ θ, ⟨v, y⟩ = t]

Prw∼ρ [⟨w, y⟩ ⩾ ψ]
.

This ratio is monotone increasing in t, completing the proof of (1).
Now we show Part 2. Claim 3.4.3 shows that by the spherical monotonicity of α, we can

express α in its cap decomposition,

α =

∫ 1

0

capq dr(q),

and now by the linearity of convolution, Pα =
∫ 1

0
Pcapq

dr(q), and Pαµ =
∫
Pqµ dr(q), Pαν =∫

Pqνdr(q). So, to show that ℓPαµ ⪰st ℓPαν , it suffices to argue “slice-by-slice” that for every
q ∈ [0, 1], ℓPqµ ⪰st ℓPqν .

This follows from the following coupling argument: we sample (x,y) from (ℓPqµ, ℓPqν) in
a coupled manner as follows: first, sample (aµ,aν) ∼ (ℓµ, ℓν) in a coupled manner so that
aµ ⩾ aν ; such a coupling is guaranteed because ℓµ ⪰st ℓν . Next, choose (vµ,vν) at random
in Sd−1 conditioned on ⟨vµ, y⟩ = aµ and ⟨vν , y⟩ = aν . Now, let θµ be the random variable
⟨y,uµ⟩ for uµ ∼ capq(vµ), and θν = ⟨y,uν⟩ for uν ∼ capq(vν). Note that the marginal
over θµ is ℓPqµ and the marginal over θν is ℓPqν . The probability Pr[θµ > t] is proportional
to the measure of the intersection of cap⩾t(y) and capq(uµ), and similarly the probability
Pr[θν > t] is proportional to the measure of the intersection of cap⩾t(y) and capq(uν). By
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our choice of coupling, the angle between uµ and y is smaller than the angle between uν and
y, so for every t ∈ [−1, 1],

Pr[θµ > t] ⩾ Pr[θν > t],

and hence we may couple θµ and θν so that θµ ⩾ θν always. Taking x = θµ and y = θν in
this coupling gives our conclusion.

Finally, observe that by the commutativity of convolution, Pµα = Pαµ and Pνα = Pαν,
and so Part 3 follows from Part 2.

3.4.1 Concentration of spherical Brownian Motion within a cap

In this section, we study the concentration of Brownian Motion on Sd−1 in the spherical cap
around its starting point.

Lemma (Restatement of Lemma 3.4.15). Let (Vt)t⩾0 be a Brownian motion on Sd−1 starting
at V0. Then for any time t ⩾ 0,

Pr [|⟨V0,Vt⟩ − exp (−(d− 1)t)| ⩾ x] ⩽ 2 exp

(
−d−1

2

x2

1− e−2(d−1)t

)
.

Proof of Lemma 3.4.15. Letting At = ⟨V0,Vt⟩ be the correlation of the motion at step t
with the starting point, (Bt)t⩾0 be standard Brownian motion on Rd, (B′

t)t⩾0 be standard
Brownian motion on R, and θ = d− 1,

dAt = ⟨V0, dVt⟩ = −θ ·At dt+
√
2
〈
V0,
(
1− VtV

⊤
t

)
dBt

〉
= −θ ·At dt+

√
2
〈(
1− VtV

⊤
t

)
V0, dBt

〉
= −θ ·At dt+

√
2
√

1−A2
t dB

′
t

The solution to the deterministic differential equation dxt = −θxt with initial condition
x0 = 1 is xt = exp(−θt). To this end, it’s convenient to split At up into a deterministic and
a random part:

At = exp (−θt) +Rt,

with the initial condition R0 = 0. Then via calculation,

dRt = −θRtdt+
√
2
√

1−A2
t dB

′
t. (3.20)

We now relateRt to a stochastic process without drift, as is done, for example, in the analysis
of the Ornstein-Uhlenbeck process. Consider Rt exp(θt). Note that

d(Rt exp(θt)) = exp(θt) dRt +Rt θ exp(θt) dt

= −Rt θ exp(θt) dt+
√
2 exp(θt)

√
1−A2

t dB
′
t +Rt θ exp(θt) dt

=
√
2 exp(θt)

√
1−A2

t dB
′
t,

a process without drift.
The following version of the Azuma–Hoeffding inequality will allow us to argue that this

driftless process concentrates.
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Lemma 3.4.20. Let (Xt)t⩾0 ⊂ R be a stochastic process adapted to the filtration Ft with
E[er dXt | Ft] < exp (r2σ2

t dt) , for all t, r. Then for all s, x > 0,

Pr[|Xs −X0| ⩾ x] ⩽ 2 exp

(
−x2

4
∫ s
0
σ2
t dt

)
.

Versions of this lemma are known (c.f. [21] and references therein).
We apply Lemma 3.4.20 to prove that

Pr[|Rs| ⩾ x] ⩽ 2 exp

(
−C ′ · x2dθ

1− exp(−θs)

)
.

Indeed, Rt exp(θt) is a stochastic process without drift and satisfies that

E[exp(r d(Rt exp(θt)))] = E
[
exp

(√
2r exp(θt)

√
1−A2

t dB
′
t

)]
⩽ exp

(
r2 exp(2θt) ·

(
1−A2

t

)
dt
)

⩽ exp
(
r2 exp(2θt) dt

)
,

Since At is real-valued. So we can apply Lemma 3.4.20 to the process and derive that

Pr[|Rs| ⩾ x] = Pr[|Rs exp(θs)| ⩾ x exp(θs)]

⩽ 2 exp

(
− x2 exp(2θs)

4
∫ s
0
exp(2θt)dt

)
= 2 exp

(
− θx2

2 · (1− exp(−2θs))

)
,

and plugging in θ = d− 1 concludes the proof.

3.5 The second eigenvalue of links

In this section we analyze the links of the random geometric complex. Each link is a
random geometric graph in a cap centered around some w ∈ Sd−1 on m vertices where
m ∼ Binom(n, p). We are interested in obtaining a high probability bound on the second

eigenvalue of ÂG := D
−1/2
G AGD

−1/2
G , the normalized adjacency matrix of link graph G, where

AG and DG denote its adjacency matrix and diagonal degree matrix. Since the number of
vertices m concentrates well in our setting, throughout this section we treat the number
of vertices m as fixed and handle the variation in m in Section 3.7. We also specialize the
parameters to the regime relevant in proving Theorem 3.1.6 in Section 3.7 — in particular,
the relationship between n, p and d is such that limn→∞ τ(p, d) is a constant in (0, 1), np is
a polynomially large function of n, and d = Ω(log n).
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Theorem 3.5.1. Let 0 < τ < 1 be a constant. Let v1, . . . ,vm ∼ cap⩾τ (w) and G :=

ggτ (v1, . . . ,vm). Then for q := ΦDip(d)

(
τ

1+τ

)
, suppose qm ≫ log8m · log3/2 1

q
·
(
1+τ
τ

)3
and

d ⩾ C · logm for any constant C > 0, then for any constant γ > 0,

Pr

[
|λ|2
(
ÂG

)
>

τ

1 + τ
+ od,m(1)

]
⩽ O

(
m−γ).

To prove Theorem 3.5.1, by Fact 3.2.1 it suffices to bound
∥∥∥ÂG −R

∥∥∥ for any rank-1 PSD

matrix R. For a given G, the minimizing R for
∥∥∥ÂG −R

∥∥∥ is R = RG =
D

1/2
G JD

1/2
G

tr(DG)
where J

is the all-ones matrix.
One challenge in directly performing the trace method on ÂG −RG is that the degree of

any vertex i is a random variable that depends on the locations of all the vectors, and hence
introduces extra correlations. In Section 3.3, this issue was resolved because the degrees
concentrated very well, and hence D

−1/2
G and D

1/2
G were close to scalar multiples of identity.

However, in the links the degrees of vertices in G no longer concentrate around a single
value, and even the behavior of the expected degree of vertex i depends on which “shell” vi
is contained in around w, ⟨vi, w⟩. To better control the degrees, we will study the spectral

norm of ÂG −RG|κ conditioned on the shells κ := {κi := ⟨w,vi⟩}mi=1.
Let Dκ ∈ Rm×m be the conditional expected diagonal degree matrix with Dκ[i, i] =

E[degG(i) | κ]. Then we define the new normalized matrix AG = Dκ
−1/2AGDκ

−1/2 and the

new conditional rank-1 PSD matrix Rκ = Dκ
1/2JDκ

1/2

tr(Dκ)
. Then by optimality of RG:∥∥∥ÂG −RG

∥∥∥ ⩽
∥∥∥ÂG −

(
D

−1/2
G Dκ

1/2
)
Rκ

(
Dκ

1/2D
−1/2
G

)∥∥∥
=
∥∥∥(D−1/2

G Dκ
1/2
)
(AG −Rκ)

(
Dκ

1/2D
−1/2
G

)∥∥∥
⩽ ∥AG −Rκ∥ ·

∥∥∥D−1/2
G Dκ

1/2
∥∥∥2.

Since
∥∥∥D−1/2

G Dκ
1/2
∥∥∥2 = ∥∥D−1

G Dκ

∥∥, this is equivalent to bounding

∥AG −Rκ∥ ·
∥∥D−1

G Dκ

∥∥ ⩽ ∥AG −Rκ∥ ·max
i∈[m]

Dκ[i, i]

DG[i, i]

Now, in the trace method it is convenient to work with AG − E[AG] | κ, which is not a
rank-1 matrix. So, applying the triangle inequality,

⩽ (∥AG − E[AG | κ]∥+ ∥E[AG | κ]−Rκ∥) ·max
i∈[m]

Dκ[i, i]

DG[i, i]
, (3.21)

It then suffices to bound ∥E[AG | κ]−Rκ∥, maxi∈[m]
Dκ[i,i]
DG[i,i]

, and ∥AG − E[AG | κ]∥ to com-
plete the proof of Theorem 3.5.1.

In Section 3.6 we’ll show that E[AG | κ] is close to RG in spectral norm:
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Lemma 3.5.2. If d ⩾ C · logm for some constant C > 0 and the constant τ ∈ (0, 1) satisfies
qm≫ log8m, then

∥E[AG | κ]−Rκ∥ ⩽ O

√ log2 d

d


with probability at least 1− o(m−γ) for any constant γ > 0.

And the remainder of this section will be devoted to bounding the other two quantities,
as follows:

Lemma 3.5.3. For any 0 < α < 1,

max
i∈[m]

Dκ[i, i]

DG[i, i]
⩽

1

1− α
,

with probability at least 1−m · exp
(
−α2q(m−1)

4

)
.

Lemma 3.5.4. For any κ, q and m and qm≫ log8m · log3/2 1
q
·
(
1+τ
τ

)3
∥AG − E[AG | κ]∥ ⩽ (1 + om(1)) ·

τ

1 + τ
.

In service of proving Lemma 3.5.2, Lemma 3.5.3 and Lemma 3.5.4, we need the fol-
lowing fact that arises in studying random geometric graphs with shifted edge-connectivity
thresholds.

Definition 3.5.5. We define the bivariate function T (x, y) := τ−xy√
(1−x2)(1−y2)

as the shifted

threshold function, defined so that

Pr
x,y∼Sd−2

[⟨x,y⟩ ⩾ T (x, y)] = Pr
u,v∼Sd−1

[⟨u,v⟩ ⩾ τ | ⟨u, w⟩ = x, ⟨v, w⟩ = y] .

Claim 3.5.6. The shifted threshold function T (x, y) := τ−xy√
(1−x2)(1−y2)

on the domain x, y ∈
[τ, 1] is maximized when x = y = τ , and achieves value τ

1+τ
. Additionally ∂xT (x, y) and

∂yT (x, y) are both negative.

Proof. The derivatives ∂yT (x, y) = τ√
1−x2 · g(y) − x√

1−x2 · h(y) and ∂xT (x, y) = τ√
1−y2

·

g(x)− y√
1−y2

· h(x), where g(z) := z
(1−z2)3/2 and h(z) := 1√

1−z2 +
z2

(1−z2)3/2 . Since g(z) < h(z)

for z ∈ (0, 1], then for x, y ⩾ τ we deduce that ∂yT, ∂xT < 0. Therefore, T achieves the

maximum value τ−τ2
1−τ2 = τ

1+τ
when x = y = τ .

Now we prove Lemma 3.5.3.
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Proof of Lemma 3.5.3. For any α ∈ (0, 1), consider the event that maxi∈[m]
Dκ[i,i]
DG[i,i]

> 1
1−α .

We can bound the probability that this event happens by union bound and Bernstein’s
inequality:

Pr [∃i ∈ [m], DG[i, i] ⩽ (1− α)Dκ[i, i]] ⩽
m∑
i=1

Pr[DG[i, i] ⩽ (1− α)Dκ[i, i]]

⩽ m ·max
i

exp

(
−1

2
· α2Dκ[i, i]

2

(α + 1)Dκ[i, i]

)
⩽ m ·max

i
exp

(
−α

2Dκ[i, i]

4

)
Observe that Dκ[i, i] =

∑
j ̸=iΦDip(d−1)(T (κi, κj)). By Claim 3.5.6, T (κi, κj) ⩽ τ

1+τ
, so

ΦDip(d−1)(T (κi, κj)) ⩾ ΦDip(d−1)

(
τ

1+τ

)
= q. Consequently, Dκ[i, i] ⩾ q(m − 1) from which

the desired statement follows.

3.5.1 Spectral norm bound for centered links

In the rest of the section, we prove Lemma 3.5.4 by bounding the expected traceE
[
tr
(
(AG − E[AG | κ])ℓ

)]
,

for κ ∈ [τ, 1]m a fixed configuration of shells. The proof will be almost identical to the one
in Section 3.3, but here we have to deal with the fact that the graph is not vertex-transitive.

Proof of Lemma 3.5.4. First observe:

E
[
tr
(
(AG − E[AG | κ])ℓ

)]
= E

[
tr

((
Dκ

−1/2AGDκ
−1/2 −Dκ

−1/2E[AG|κ]Dκ
−1/2

)ℓ)]
= E

[
tr
((
Dκ

−1AG −Dκ
−1E[AG|κ]

)ℓ)]
.

We rewrite the expression in terms of Dκ
−1AG which approximates the transition matrix of

the random walk on G.8 Next, we expand the expression in terms of walks in Km.
Following the convention of Section 3.3, we use Wℓ to denote the collection of length-ℓ

walks in Km. For every W ∈ Wℓ, use G(W ) = (V (W ), E(W )) to denote the multigraph
obtained by the vertices and edges used in W . Use m(e) to denote the number of times that
an edge e appears in the walk W .

Definition 3.5.7. We also introduce the following notation. Let dW (κ) :=
∏

(it,it+1)∈W Dκ
−1[it, it]

denote the normalization constant along the pathW conditioned on the shells κ. Also define
pe = E[1[e ∈ G] | κ] to be the probability that an edge e exists conditioned on κ.

8If Dκ were not the expected degree matrix but rather the exact degree matrix of G, we would have a
true transition matrix here.
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Then:

E
[
tr
(
(AG − E[AG | κ])ℓ

)
| κ
]
=
∑
W∈Wℓ

dW (κ) · E

 ∏
e∈E(W )

(1[e ∈ G]− pe)
m(e) | κ

 (3.22)

Next we apply the decomposition in Section 3.3 to G(W ) and obtain the 2-core graph
G2(W ) and the forest graph G1(W ). Since conditioned on the vectors vi ∈ V2(W ) the events
e ∈ G are independent for all e ∈ E1(W ), the expectation in (3.22) can be decomposed into
two parts:

E

 ∏
e∈E(W )

(1[e ∈ G]− pe)
m(e) | κ


=

∏
e∈E1(W )

E
[
(1[e ∈ G]− pe)

m(e) | κ
]

E
vi

i∈V2(W )

 ∏
e∈E2(W )

(1[e ∈ G]− pe)
m(e) | κ

 (3.23)

We bound the contribution from the edges in E2(W ) by further spliting G2(W ) into paths
consisting of degree-2 vertices and the junction graph GJ(W ) = (J(W ), EJ(W )) as defined
in Definition 3.3.5. As in Section 3.3 the key observation here is that conditioned on vertices
in J(W ) the contributions from the paths of degree-2 vertices are all independent from each
other:∣∣∣∣∣∣ E

vi
i∈V2(W )

 ∏
e∈E2(W )

(1[e ∈ G]− pe)
m(e) | κ

∣∣∣∣∣∣ ⩽ E
vi

i∈J(W )

∏
f∈EJ(W )

∣∣∣∣∣∣ E
vi

i∈γ(f)\J(W )

 ∏
e∈γ(f)

(1[e ∈ G]− pe)
m(e) | κ

∣∣∣∣∣∣
(3.24)

Now, let Xκ,κ′ be the transition operator for the random step that walks from vector v in
shell=κ(w) to a uniformly random vector v′ in shell=κ′(w) ∩ cap⩾τ (v) . Like in Section 3.3,
we use γ(f) = (f0, f1, . . . , fℓ(f)) to identify the walk in G2(W ) corresponding to the edge
f ∈ EJ(W ). We denote the edge (fi, fi+1) with γi(f). We simplify the contribution from each
path γ(f) where f ∈ EJ(W ) as follows:∣∣∣∣∣∣ E

vi:i∈γ(f)\J(W )

 ∏
e∈γ(f)

(1[e ∈ G]− pe)
m(e) | κ

∣∣∣∣∣∣
=

∣∣∣∣∣∣ E
vi:i∈γ(f)\J(W )

 ∏
e∈γ(f)

(
1[e ∈ G] ·

(
(1− pe)

m(e) − (−pe)m(e)
)
+ (−pe)m(e)

)
| κ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

T⊆γ(f)

E
vi:i∈γ(f)\J(W )

∏
e∈T

1[e ∈ G] ·
(
(1− pe)

m(e) − (−pe)m(e)
) ∏
e∈γ(f)\T

(−pe)m(e) | κ

∣∣∣∣∣∣
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⩽

∣∣∣∣∣∣
∏
e∈γ(f)

(
pe(1− pe)

m(e) + (1− pe)(−pe)m(e)
)∣∣∣∣∣∣

+

∣∣∣∣∣∣
∏
e∈γ(f)

(
(1− pe)

m(e) − (−pe)m(e)
)
·
ℓ(f)−2∏
i=0

pγi(f) ·

〈ℓ(f)−2∏
i=0

Xκfi ,κfi+1
δvf0 , cappγℓ(f)−1(f)

(vfℓ(f))

〉
− pγℓ(f)−1(f)

∣∣∣∣∣∣
(3.25)

Let SJ(W ) ⊆ EJ(W ) be the set of edges f such m(e) = 1 for some e ∈ γ(f), and
DJ(W ) = EJ(W ) \ SJ(W ). For any f ∈ SJ(W ) the first term in (3.25) vanishes, while for
any f ∈ DJ(W )∣∣∣∣∣∣

∏
e∈γ(f)

(
pe(1− pe)

m(e) + (1− pe)(−pe)m(e)
)∣∣∣∣∣∣ ⩽

∏
e∈γ(f)

(
pe(1− pe)

2 + (1− pe)p
2
e

)
⩽
∏
e∈γ(f)

pe.

Therefore we can derive the following bound on the contribution from the 2-core graph.

(3.24) ⩽ E
vi

i∈J(W )

 ∏
f∈DJ (W )

ℓ(f)−2∏
i=0

pγi(f) ·

∣∣∣∣∣∣
〈
ℓ(f)−2∏
i=0

Xκfi ,κfi+1
δvf0 , cappγℓ(f)−1(f)

(vfℓ(f))

〉
− pγℓ(f)−1(f)

∣∣∣∣∣∣+ pγℓ(f)−1(f)

·

∏
f∈SJ (W )

ℓ(f)−2∏
i=0

pγi(f) ·

∣∣∣∣∣∣
〈
ℓ(f)−2∏
i=0

Xκfi ,κfi+1
δvf0 , cappγℓ(f)−1(f)

(vfℓ(f))

〉
− pγℓ(f)−1(f)

∣∣∣∣∣∣ | κ


To bound the absolute value terms, we take an arbitrary spanning tree TJ(W ) of GJ(W ),
and bound the absolute value differently depending on whether f ∈ TJ(W ) or not.

To bound this expectation, let TJ(W ) be a spanning tree of GJ(W ). For every edge not

in TJ(W ), we apply a worst-case bound. To state this bound, we define C :=
√

1
2
log 1

q
·
(
1+τ
τ

)
and λ := τ

1+τ
.

Claim 3.5.8. For every shell configuration κ ∈ [τ, 1]m and non-tree edge f ∈ EJ(W )\TJ(W )
, we have that∣∣∣∣∣∣

〈
ℓ(f)−2∏
i=0

Xκfi ,κfi+1
δvf0 , cappγℓ(f)−1(f)

(vfℓ(f))

〉
− pγℓ(f)−1(f)

∣∣∣∣∣∣ ⩽ C · λℓ(f)−1

Proof. To prove the claim, we first need to understand the random variable〈
ℓ(f)−2∏
i=0

Xκfi ,κfi+1
δvf0 , cappγℓ(f)−1(f)

(vfℓ(f))

〉
.
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Recall that at time step i the operator Xκfi ,κfi+1
denotes the random step that takes a vector

vfi = κfi ·w+
√

1− κ2fi · zi and outputs vfi+1
:= κfi+1

·w+
√

1− κ2fi+1
· zi+1 where zi+1 is a

uniformly random unit vector orthogonal to w such that〈
vfi ,vfi+1

〉
⩾ τ.

This is equivalent to

κfiκfi+1
+
√

(1− κ2fi)(1− κ2fi+1
) · ⟨zi, zi+1⟩ ⩾ τ,

which can then be rearranged as

⟨zi, zi+1⟩ ⩾ T
(
κfiκfi+1

)
:=

τ − κfiκfi+1√
(1− κ2fi)(1− κ2fi+1

)
.

In particular, we are choosing zi+1 in the pγi(f)-cap of zi within the d− 2 dimensional unit

sphere orthogonal to w. So the operator
∏ℓ(f)−2

i=0 Xκfi ,κfi+1
can be decomposed into its action

in the span of w and that in the space orthogonal to w. The action in the span of w
conditioned on κ is deterministic. Orthogonal to w, it is the operator

∏ℓ(f)−2
i=0 Ppγi(f) on Sd−2.

Thus the quantity we are interested in understanding is the same as〈
ℓ(f)−2∏
i=0

Ppγi(f)δz0 , cappγℓ(f)−1
(zℓ(f))

〉
.

Now, observe that:∣∣∣∣∣∣
〈
ℓ(f)−2∏
i=0

Ppγi(f)δz0 , cappγℓ(f)−1
(zℓ(f))

〉
− pγℓ(f)−1

∣∣∣∣∣∣ ⩽ dTV

ℓ(f)−2∏
i=0

Ppγi(f)δz0 , ρ

 .

Recall that pγi(f) = ΦDip(d−1)

(
τκi,κi+1

)
, which by Claim 3.5.6 is minimized when τκi,κi+1

= τ
1+τ

,
which means pγi(f) ⩾ q. Thus, by Claim 3.4.11, Lemma 3.4.13, and Lemma 3.4.12, which
make concrete the intuition that applying Pq should only mix slower than applying Pq′ for
q′ ⩾ q, we have:∣∣∣∣∣∣
〈
ℓ(f)−2∏
i=0

Ppγi(f)δz0 , cappγℓ(f)−1
(zℓ(f))

〉
− pγℓ(f)−1

∣∣∣∣∣∣ ⩽ dTV

(
P ℓ(f)−1
q δz0 , ρ

)
= dTV

(
1

q
P ℓ(f)−2
q capqz0, ρ

)
.

Then by Theorem 3.4.6, the above is

⩽

√
1

2
log

1

q
·
(

τ

1 + τ

)ℓ(f)−2

=

√
1

2
log

1

q
· 1 + τ

τ
·
(

τ

1 + τ

)ℓ(f)−1

= C · λ|γ(f)|−1,

which completes the proof.



CHAPTER 3. 2-DIM EXPANDERS FROM RANDOM GEOMETRIC GRAPHS 72

Next we bound the contribution of a tree edge f ∈ TJ(W ) using the following claim
whose proof is identical to that of Claim 3.3.7.

Claim 3.5.9. For every shell vector κ and tree edge f ∈ TJ(W ) , we have that

E
vi

i∈J(W )

∏
f∈TJ (W )

ℓ(f)−2∏
i=0

pγi(f) ·

∣∣∣∣∣∣
〈
ℓ(f)|−1∏
i=0

Xκfi ,κfi+1
δvf0 , cappγℓ(f)−1(f)

(vfℓ(f))

〉
− pγℓ(f)−1(f)

∣∣∣∣∣∣+ pγℓ(f)−1(f) · 1[f ∈ DJ(W )]


⩽

∏
f∈TJ (W )

ℓ(f)−1∏
i=0

pγi(f) ·
(
2Cλℓ(f) + 1[f ∈ DJ(W )]

)
.

Combining the two bounds for different edges in GJ(W ) to obtain the simplified bound for
(3.24):

(3.24) ⩽
∏

f∈TJ (W )

ℓ(f)−1∏
i=0

pγi(f)
(
2Cλℓ(f) + 1[f ∈ DJ(W )]

)
·

·
∏

f∈EJ (W )\TJ (W )

ℓ(f)−2∏
i=0

pγi(f) ·
(
Cλℓ(f)−1 + pγℓ(f)−1(f)−11[f ∈ DJ(W )]

)
We now recall some notation from Section 3.3. We use e(W ) to denote |E(W )|, sing(W )

for the number of singleton edges in G2(W ), and exc(G) for |E(G)| − (|V (G)| − 1), the
number of edges G has more than a tree. The relations between these variable are already
shown in Observation 3.3.9 and Claim 3.3.10. So here we directly apply these results to get
that

(3.24) ⩽
∏

e∈E2(W )

pe ·
∏

f∈EJ (W )\TJ (W )

p−1
γℓ(f)−1(f)

· λsing(W )−exc(W ) · (3C)|EJ (W )|

⩽
∏

e∈E2(W )

pe ·
∏

f∈EJ (W )\TJ (W )

p−1
γℓ(f)−1(f)

· λsing(W )−exc(W ) · (3C)3exc(W ) by Observation 3.3.9

Therefore

(3.23) ⩽
∏

e∈E1(W )

E
[
(1[e ∈ G]− pe)

m(e) | κ
]
·
∏

e∈E2(W )

pe ·
∏

f∈EJ (W )\TJ (W )

p−1
γℓ(f)−1(f)

· λsing(W )−exc(W ) · (3C)3exc(W )

⩽
∏

e∈E1(W )

pe ·
∏

e∈E2(W )

pe ·
∏

f∈EJ (W )\TJ (W )

p−1
γℓ(f)−1(f)

· λsing(W )−exc(W ) · (3C)3exc(W )

⩽
∏

e∈E(W )

pe ·
∏

f∈EJ (W )\TJ (W )

p−1
γℓ(f)−1(f)

· λsing(W )

(
27C3

λ

)exc(W )

(3.26)

Before finally bounding the trace power, we make the following observations.
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Observation 3.5.10. As a consequence of Claim 3.5.6 for all i ∈ [m], the expected degree
of vertex i satisfies

Dκ[i, i] = E[degG(i) | κ] ⩾ (m− 1) · q
We define Strucℓ to be the set of distinct unlabelled walks of length ℓ. Then as a corollary

of Claim 3.3.10, we have

Corollary 3.5.11. The number of unlabelled walks U ∈ Strucℓ such that e(U) = a, s(U) = b,
and exc(U) = c is at most:

ℓ3(ℓ−b) · ℓ2c.
The result follows by observing that since U is unlabelled, we can remove the ma−c+1

term that counts the number of distinct labelings in Claim 3.3.10.
For an unlabeled walk U and labeled walk W , we say W ∼ U if W is a labeling of U in

[m].

Claim 3.5.12. For any unlabelled walk U we have that∑
W∼U

dW (κ)
∏

e∈E(W )

pe ·
∏

f∈EJ (W )\TJ (W )

p−1
γℓ(f)−1(f)

⩽ (m · q)−exc(U)− ℓ−s(U)
2

Proof. For eachW ∼ U we use i1, . . . , ia ∈ [m] to denote the label of each vertex inW in the
order of visit. Then we construct the canonical spanning tree T (W ) by adding each directed
edge in the order of W as long as the edge goes to an unvisited vertex. Use Par(ij) to denote
the parent of vertex ij. Then the j-th edge of T (W ) is (Par(ij+1), ij+1), and use T (W )(j) to
denote the tree consisting of the first j edges of T (W ). Then ij+1 is always a leaf in T (W )(j).

T (W ) gives rise to a canonical spanning tree TJ(W ) in the contracted graph GJ(W ): an
edge f is in TJ(W ) if and only if every edge in the path γ(f) is in T (W ). From this fact we
can deduce that

T (W ) = E(W ) \
{
γℓ(f)−1(f) : f ∈ EJ(W ) \ TJ(W )

}
.

Therefore, using Observation 3.5.10 we can take a loose upper bound on the contribution of
edges outside of T (W ) and write∑

W∼U

dW (κ)
∏

e∈E(W )

pe ·
∏

f∈EJ (W )\TJ (W )

p−1
γℓ(f)−1(f)

⩽
∑
W∼U

((m− 1) · q)−ℓ+(|V (U)|−1)
∏

(i,j)∈T (W )

pi,j
Dκ[i, i]

⩽ ((m− 1) · q)−ℓ+(|V (U)|−1)
∑

i1,...,ia∈[m]

a∏
j=2

pPar(ij),ij
Dκ[Par(ij),Par(ij)]

(3.27)

where a = |V (U)|. Next we show by induction on a that∑
i1,...,ia

a∏
j=2

p(Par(ij),ij)

Dκ[Par(ij),Par(ij)]
= 1
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The base case a = 1 is true by definition. Suppose this is true for a− 1. Then:∑
i1,...,ia

a∏
j=2

p(Par(ij),ij)

Dκ[Par(ij),Par(ij)]
=

∑
i1,...,ia−1

a−1∏
j=2

p(Par(ij),ij)

Dκ[Par(ij),Par(ij)]
·

m∑
ia=1

p(Par(ia),ia)
Dκ[Par(ia),Par(ia)]

By definition
∑

ia

p(Par(ia),ia)

Dκ[Par(ia),Par(ia)]
= 1, so we have:

=
∑

i1,...,ia−1

a−1∏
j=2

p(Par(ij),ij)

Dκ[Par(ia),Par(ia)]
· 1 = 1

Finally, observe that ℓ − (|V (U)| − 1) ⩾ exc(U) + ℓ−s(U)
2

is at least the number of steps
that use a previously walked-on edge. The way to see this is to observe that the quantity
ℓ− (|V (U)| − 1) counts the number of steps to a previously visited vertex. Such a step can
either (1) use an excess edge for the first time, of which there are exc(U) steps, or (2) use a
previously walked-on edge, which must be at least half the steps that do not use a singleton
edge, i.e. at least ℓ−s(U)

2
steps. Thus we conclude that (3.27) ⩽ ((m− 1) · q)−ℓ+(|V (U)|−1) ⩽

((m− 1) · q)−exc(U)− ℓ−s(U)
2 .

Now we are finally already to bound the expected trace power. Plugging (3.26) into (3.22)
gives:

(3.22) =
∑

U∈Strucℓ

∑
W∼U

dW (κ)
∏

e∈E(W )

pe ·
∏

f∈EJ (W )\TJ (W )

p−1
γℓ(f)−1(f)

· λsing(W )

(
27C3

λ

)exc(W )

⩽
∑

U∈Strucℓ

((m− 1) · q)−exc(U)− ℓ−s(U)
2 · λs(U)

(
27C3

λ

)exc(U)

by Claim 3.5.12

=
ℓ∑

a=1

ℓ∑
b=1

ℓ∑
c=1

∑
U∈Strucℓ

e(U)=a, s(U)=b, exc(U)=c

((m− 1) · q)−
ℓ−b
2 · λb

(
27C3

λq(m− 1)

)c

=
ℓ∑

a=1

ℓ∑
b=1

ℓ∑
c=1

((m− 1) · q)−
ℓ−b
2 · λb

(
27C3

λq(m− 1)

)c
· ℓ2(ℓ−b) · ℓ2c by Claim 3.5.11

= ℓ
ℓ∑
b=1

ℓ∑
c=1

(
ℓ2√

(m− 1) · q

)ℓ−b

· λb
(

27C3ℓ2

λq(m− 1)

)c

= ℓ3max

(
1,

(
27C3ℓ2

λq(m− 1)

)ℓ)
·max

λℓ,( ℓ2√
(m− 1) · q

)ℓ


By choosing ℓ = log2m, we can conclude that with probability at least 1−m−γ,

∥AG − E[AG | κ]∥ ⩽ (1 + o(1)) ·
(
1 +

27C3 log4m

λqm

)
·max

{
λ,

log4m
√
qm

}
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Since qm≫ log8m · log3/2 1
q
·
(
1+τ
τ

)3
, we have:

∥AG − E[AG | κ]∥ ⩽ (1 + o(1)) · λ.

3.6 The second eigenvalue of the shell walk

The goal of this section is to prove Lemma 3.5.2, and in particular bound ∥E[AG | κ]−Rκ∥
where κ ∼ (Dip(d)⩾τ )

⊗m is a configuration of m shells, and we have conditioned on κi =
⟨w,vi⟩ for all i ∈ [m].

To make the matrix more amenable to analysis via the coupling-based techniques we use
here, we first observe that the spectral norm we are interested in bounding is equal to the
largest eigenvalue of E[Dκ

−1AG | κ]− 1⃗π⊤ where π := Dκ

tr(Dκ)
1⃗ is the stationary distribution

of the Markov chain described by the transition matrix E[Dκ
−1AG | κ]. Indeed:

∥E[AG | κ]−Rκ∥ = |λ|max(E[AG | κ]−Rκ) = |λ|max

(
E[Dκ

−1AG | κ]− 1π⊤)
where the first equality uses symmetry of the matrix and the second equality uses the fact
that the spectra of M and Dκ

−1/2MDκ
1/2 are identical. For convenience, let Q = E[AG | κ]

and let Q = Dκ
−1Q. The following main result of this section implies Lemma 3.5.2.

Lemma 3.6.1. There exists a constant C > 0 such that for any d ⩾ C logm, any threshold
τ ∈ (0, 1) such that q := ΦDip(d)

(
τ

1+τ

)
≫ log8m/m, and any constant γ > 0, with probability

at least 1− o(m−γ) over the shells κ ∼ (Dip(d)⩾τ )
⊗m,

|λ|max

(
Q− 1⃗π⊤

)
⩽ O

√ log2 d

d

.
In service of proving Lemma 3.6.1, we show:

Lemma 3.6.2. There exists a constant C > 0 such that for any d ⩾ C logm, any threshold
τ ∈ (0, 1) such that qm≫ log8m, and any constant γ > 0, with probability at least 1−o(m−γ)
over the shells κ ∼ (Dip(d)⩾τ )

⊗m,

max
i,j∈[n]

∥∥∥(Q2
)
i,∗ −

(
Q2
)
j,∗

∥∥∥
1
⩽ O

(
log2 d

d

)
,

where
(
Q2
)
i,∗ denotes the i-th row of the matrix Q2.

We show how to prove Lemma 3.6.1 using Lemma 3.6.2 and then dedicate the rest of the
section to proving Lemma 3.6.2.
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Proof of Lemma 3.6.1. First, observe that |λ|max

(
Q− 1⃗π⊤

)
=

√
|λ|max

(
Q2 − 1⃗π⊤

)
. Via

the row sum bound for the largest magnitude eigenvalue of a matrix (Claim 3.2.3), Lemma 3.6.2
and the fact that π is the stationary distribution of Q:

|λ|max

(
Q2 − 1⃗π⊤

)
⩽ max

i∈[n]

∥∥∥(Q2
)
i,∗ − π⊤

∥∥∥
1

= max
i∈[n]

∥∥∥∥∥∥(Q2
)
i,∗ −

∑
j∈[n]

πj
(
Q2
)
j,∗

∥∥∥∥∥∥
1

= max
i∈[n]

∥∥∥∥∥∥
∑
j∈[n]

πj

((
Q2
)
i,∗ −

(
Q2
)
j,∗

)∥∥∥∥∥∥
1

⩽ max
i,j∈[n]

∥∥∥(Q2
)
i,∗ −

(
Q2
)
j,∗

∥∥∥
1
.

3.6.1 Coupling for the shell walk

In this section we give the proof of Lemma 3.6.2 assuming a few key lemmas. The proofs for
the key lemmas are deferred to the next section.

3.6.1.1 A high-probability condition for κ

To simplify the upcoming computations for Lemma 3.6.2, we will condition on the following
high-probability event Eγ over the sample space of the shells κ:

Definition 3.6.3. Let Eγ be the event that for all m shells κi ∈ κ in the link, κi ⩽ η, where

η = τ
(
m−2γ−1 · ΦDip(d)(τ), d

)
.

Note that the outermost τ(·) refers to the threshold function, rather than the value of the
threshold such that ΦDip(d)(τ) = p.

Claim 3.6.4. The event Eγ occurs with probability at least 1−m−2γ.

Proof. By definition, for any shell κi: Prκi∼Dip(d)|⩾τ [κi ⩾ η] ⩽ m−2γ−1. Our conclusion follows
from taking a union bound over all m shells.

The conditioning on Eγ can be folded into high-probability guarantee over κ in Lemma 3.6.2.
Thus, for the remainder of the section, we can assume that κ obeys event Eγ. This will be
especially relevant in the analysis of the outlier shells (Section 3.6.2.2).

Claim 3.6.5. If d ⩾ C logm for some constant C > 0, then η ⩽ 1 − εγ, where εγ > 0 is a
constant depending only on γ.
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Proof. Since τ is a constant bounded away from 1, and d = Ω(logm), by the lower bound
in Lemma 3.2.8, the quantity m−2γ−1 ·ΦDip(d)(τ) is at least exp(−Cγd) for some constant Cγ
depending on γ. By the upper bound in Lemma 3.2.8, there is a constant εγ > 0 such that
ΦDip(d)(1− εγ) ⩽ exp(−Cγd). Since ΦDip(d) is a decreasing function, η ⩽ 1− εγ.

3.6.1.2 “Typical” and “outlier” shells

In the proof of Lemma 3.6.2, we analyze the contributions of “typical” and “outlier” shells
separately.

Definition 3.6.6. We say that a shell κi is “typical” if κi ∈ [τ, τ(1+α)], for α = 36 log d
τ2(d−3)(1−η) .

Remark 3.6.7. α is chosen so that Q, when restricted to typical rows and columns, will
resemble a rank-1 matrix. For our eventual choices of d and m, the event that every shell
is typical does not occur with high probability; we will inevitably need to deal with outlier
shells.

3.6.1.3 Total variation bound from similarity of typical rows and scarcity of
outlier columns

To obtain the desired row-sum bound in Lemma 3.6.2, we will prove the following two lemmas
about the matrix Q. The first shows that outlier columns do not contribute much to the
total row sum of any row:

Lemma 3.6.8. For any d ⩾ C logm for some constant C > 0 and any τ ∈ [0, 1] such that
qm≫ log8m, if κi ⩽ η,

m∑
k=1

Q
i,k

· 1[k outlier] ⩽ O

(
1

d

)
with probability 1− o(m− logm).

The second shows that typical rows are similar at indices corresponding to typical columns:

Lemma 3.6.9. For any dimension d and any threshold τ ∈ (0, 1), if κi, κj correspond to
typical shells, then for all ℓ such that κℓ is typical,

Q
i,ℓ

∈
(
1±O

(
log2 d

d

))
Q
j,ℓ

These lemmas are both proven by direct calculation, and we leave their proofs to Sec-
tion 3.6.2.2 and Section 3.6.2.3 respectively.

To illustrate these statements, we provide a schematic of the matrix Q below, organized
into its typical and outlier rows and columns. Lemma 3.6.9 states that the sub-rows in area
(I) of the matrix are all nearly equal to each other. Lemma 3.6.8 says that the sum of its
entries in area (II) or area (IV) is a O

(
1
d

)
fraction of the total row sum.
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(I) (II)

(III) (IV)




 typical {outlier typical
} outlier

One straightforward corollary of Lemma 3.6.9 and Lemma 3.6.8 is that the ℓ1 norms of

the differences between any two typical rows of Q is at most O
(

log2 d
d

)
. More formally:

Corollary 3.6.10. For any d ⩾ C logm for some constant C > 0 and any threshold 0 <
τ ⩽ 1 such that qm ≫ log8m, let i, j be rows of Q corresponding to typical shells κi, κj.
Then: ∥∥∥(Q)

i,∗ −
(
Q
)
j,∗

∥∥∥
1
⩽ O

(
log2 d

d

)
with probability 1− o(m− logm).

Proof. We split
∥∥∥(Q)

i,∗ −
(
Q
)
j,∗

∥∥∥
1
based on its contributions from typical columns and out-

lier columns. ∥∥∥(Q)
i,∗ −

(
Q
)
j,∗

∥∥∥
1
=

∑
ℓ typical

∣∣∣Q
i,ℓ
−Q

j,ℓ

∣∣∣+ ∑
ℓ outlier

∣∣∣Q
i,ℓ
−Q

j,ℓ

∣∣∣
Lemma 3.6.8 and the triangle inequality tell us that with probability 1− o(m− logm):∑

ℓ outlier

∣∣∣Q
i,ℓ
−Q

j,ℓ

∣∣∣ ⩽ ∑
ℓ outlier

∣∣∣Q
i,ℓ

∣∣∣+ ∑
ℓ outlier

∣∣∣Q
j,ℓ

∣∣∣ ⩽ O

(
1

d

)
Lemma 3.6.9 tells us that for some constant C > 0:∑

ℓ typical

∣∣∣Q
i,ℓ
−Q

j,ℓ

∣∣∣ ⩽ ∑
ℓ typical

[
1 +

(
C log2 d

d
− 1

)]
Q
j,ℓ

=
C log2 d

d

∑
ℓ typical

Q
j,ℓ

⩽
C log2 d

d

Combining the bounds on
∑

ℓ typical

∣∣∣Q
i,ℓ
−Q

j,ℓ

∣∣∣ and ∑ℓ outlier

∣∣∣Q
i,ℓ
−Q

j,ℓ

∣∣∣ gives the desired

result.

We can furthermore use Lemma 3.6.8, Corollary 3.6.10, and a coupling argument, to prove
Lemma 3.6.2.
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Proof of Lemma 3.6.2. We may assume event Eγ (that all shells κi ⩽ η), and the outcomes
of Lemma 3.6.8 and Corollary 3.6.10. The union of these three events occur with probability
1− o(m−γ +m− logm).

Let (X
(t)
a )t⩾0 be the trajectory of Markov chain Q starting at vertex a. For any pair

of vertices i, j ∈ [n], we couple X
(2)
i and X

(2)
j such that they are equal with probability

1−O
(

log2 d
d

)
, and so by Fact 3.2.6:

∥∥∥pmf
(
X

(2)
i

)
− pmf

(
X

(2)
j

)∥∥∥
TV

=
1

2

∥∥∥(Q2
)
i,∗ −

(
Q2
)
j,∗

∥∥∥
1
⩽ O

(
log2 d

d

)
from which the desired result follows.

We now exhibit such a coupling between X
(2)
i and X

(2)
j . Observe that X

(1)
i and X

(1)
j

are distributed according to
(
Q
)
i,∗ and

(
Q
)
j,∗. When κi and κj are both typical shells, we

can couple X
(1)
i and X

(1)
j such that they are equal with probability 1 − O

(
log2 d
d

)
using

Corollary 3.6.10 and Fact 3.2.6. As a result X
(2)
i and X

(2)
j can be coupled so that they

agree with probability 1 − O
(

log2 d
d

)
. When either κi or κj is an outlier shell, though X

(1)
i

and X
(1)
j may have TV distance greater than O

(
log2 d
d

)
, by Lemma 3.6.8 for both random

variables 1−O
(
1
d

)
-fraction of the probability mass is over the typical shells. Due to that, we

can couple X
(2)
i and X

(2)
j with probability

(
1−O

(
1
d

))
·
(
1−O

(
log2 d
d

))
by Lemma 3.6.8.

Thereby we complete the proof.

3.6.2 Relating typical rows and bounding outlier columns

Our next step is to prove Lemma 3.6.8 and Lemma 3.6.9. Throughout this section, instead
of working with Q, we will work with Q = E[AG | κ]; it will be simpler to operate on the
entries of Q and later relate them to Q. We first characterize the entries of Q using the
Dip(d− 1) distribution.

3.6.2.1 The conditional expected adjacency matrix

For each pair of vertices i, j ∈ [m], we have

Qi,j = qκi(κj) := Pr
vi,vj∼ρw

[⟨vi,vj⟩ ⩾ τ | ⟨vi, w⟩ = κi, ⟨vj, w⟩ = κj] .

Though qx(y) is symmetric in its inputs x, y, we choose this notation because we will often
work with the function qx(·), where the input is any value in [τ, 1].

Claim 3.6.11. The quantity qx(y) is exactly a tail probability of the Dip(d− 1) distribution:

qx(y) = ΦDip(d−1)(T (x, y))
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Proof. Conditional on ⟨vi, w⟩ = x and ⟨vj, w⟩ = y, vi and vj are distributed as vi =

x · w +
√
1− x2 · ui and vj = y · w +

√
1− y2 · uj, for ui,uj uniformly random unit

vectors orthogonal to w. Now, observe that the condition ⟨vi,vj⟩ ⩾ τ is equivalent to
⟨ui,uj⟩ ⩾ τ−xy√

(1−x2)(1−y2)
, and thus the desired statement follows since ui and uj are sampled

from a space isometric to Sd−2.

3.6.2.2 The contribution of outlier columns

The goal of this section is to prove Lemma 3.6.8.

Lemma (Restatement of Lemma 3.6.8). For any d ⩾ C logm for some constant C > 0 and
any τ ∈ [0, 1] such that qm≫ log8m, if κi ⩽ η,

m∑
k=1

Q
i,k

· 1[k outlier] ⩽ O

(
1

d

)
with probability 1− o(m− logm).

The lemma statement is equivalent to the following about Q: for all i ∈ [m],∑m
k=1Qi,k · 1[k outlier]∑m

k=1Qi,k

⩽ O

(
1

d

)
with probability 1− o(m− logm). Recalling that we use Z to denote the normalizing constant
from Section 3.2.3, we can define:

N(x) :=

∫ 1

τ(1+α)

qx(y) · Z−1(1− y2)(d−3)/2dy = Z−1

∫ 1

τ(1+α)

(1− y2)(d−3)/2 · ΦDip(d−1) (T (x, y)) dy

D(x) := Z−1

∫ 1

τ

qx(y) · (1− y2)(d−3)/2dy = Z−1

∫ 1

τ

(1− y2)(d−3)/2 · ΦDip(d−1) (T (x, y)) dy

By our definitions of N(x) and D(x), and recalling that we condition on Eγ (Definition 3.6.3)
throughout this section,

N(κi) = E
κℓ
[Qi,ℓ · 1[ℓ outlier]], D(κi) = E

κℓ
[Qi,ℓ]

The Z−1(1− y2)(d−3)/2 expression in each integrand comes from the probability density over
shells.

First, when κi ⩽ η, we establish that the ratio of the expected sum of outlier Qi,k and
typical Qi,k is of the desired magnitude of O

(
1
d

)
.

Lemma 3.6.12. For any d ⩾ C logm for some constant C > 0, any constant τ ∈ [0, 1], and
any x ⩽ η,

N(x)

D(x)
⩽ O

(
1

d

)
.
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The proof is omitted here and can be found in Appendix B of [84]. We are now ready to
prove Lemma 3.6.8.

Proof of Lemma 3.6.8. For convenience, we use N and D as shorthand for N(κi) and D(κi).
We compute a high probability lower bound for the numerator

∑m
k=1Qi,k · 1[k outlier] and a

high probability upper bound for the denominator
∑m

k=1Qi,k.

Concentration of the numerator: We first show that
∑m

k=1Qi,k ·1[k outlier] concentrates
around Nm. First, each Qi,k ⩽ 1. Then, Var(Qi,k) ⩽ E[Q2

i,k · 1[k outlier]] ⩽ E[Qi,k ·
1[k outlier]] = N . Applying Bernstein’s Inequality, we obtain:

Pr

[
m∑
k=1

Qi,k · 1[k outlier] ⩾ Nm+
(√

Nm+ 1
)
log2m

]
⩽ exp

−

(√
Nm+ 1

)2
log4m

1
2
·Nm+ 1

3
·
(√

Nm+ 1
)
log2m

 ⩽ m− logm

Concentration of the denominator: We next show that
∑m

k=1Qi,k concentrates around
Dm. Using a similar bound on variance as above, and applying Bernstein’s inequality again:

Pr

[
m∑
k=1

Qi,k ⩽ Dm−
(√

Dm+ 1
)
logm

]
⩽ exp

−

(√
Dm+ 1

)2
log2m

1
2
·Dm+ 1

3
·
(√

Dm+ 1
)
logm

 ⩽ m− logm

Thus, with probability greater that 1− 2m− logm, the ratio
∑n
k=1Qi,k·1[k outlier]∑m

k=1Qi,k
is at most

Nm+
(√

Nm+ 1
)
log2m

Dm−
(√

Dm+ 1
)
logm

We can upper bound this by ⩽ O
(
1
d

)
, as Lemma 3.6.12 tells us N

D
⩽ O

(
1
d

)
, and since

Dm ⩾ qm≫ log8m the first terms in the ratio dominate.

3.6.2.3 Relating typical rows

Our goal for this section is to prove:

Lemma (Restatement of Lemma 3.6.9). For any dimension d and any threshold τ ∈ (0, 1),
if κi, κj correspond to typical shells, then for all ℓ such that κℓ is typical,

Q
i,ℓ

∈
(
1±O

(
log2 d

d

))
Q
j,ℓ

We will translate Lemma 3.6.9 into a statement about Q first. Let Qi,∗ and Qj,∗ be rows
of Q corresponding to typical shells κi, κj. We will prove that Qi,∗ and Qj,∗, when restricted
to typical columns, are nearly constant scalings of each other. Formally, we will prove:
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Lemma 3.6.13. For any dimension d and any threshold τ ∈ (0, 1), let κi, κj, κℓ be typical
shells. Then,

qκi(κℓ)

qκj(κℓ)
·
(
qκi(τ)

qκj(τ)

)−1

∈ 1±O

(
log2 d

d

)
In other words, this establishes that for any typical shells κi, κj, κℓ,

qκi(κℓ)

qκj(κℓ)
≈ qκi(τ)

qκj(τ)
,

where the quantity on the right is a constant cij depending only on κi and κj (not κℓ).

Proof of Lemma 3.6.9 using Lemma 3.6.13. By the definition of Q,

Q
i,ℓ

=
Qi,ℓ∑m
k=1Qi,k

, Q
j,ℓ

=
Qj,ℓ∑m
k=1Qj,k

It suffices to prove that
Q
iℓ

Q
j,ℓ

is close to 1. Expanding
Q
iℓ

Q
j,ℓ

, we can upper bound:

Q
i,ℓ

Q
j,ℓ

=
Qi,ℓ∑m
k=1Qi,k

·
∑m

k=1Qj,k

Qj,ℓ

=
Qi,ℓ

Qj,ℓ

·
∑m

k=1Qj,k∑m
k=1Qi,k

⩽

(
1 +

C log2 d

d

)(
qκi(τ)

qκj(τ)

)
·
∑

k typicalQj,k +
∑

k outlierQj,k∑
k typicalQi,k +

∑
k outlierQi,k

⩽

(
1 +

C log2 d

d

)(
qκi(τ)

qκj(τ)

)
·
(
1 + C′

d

)∑
k typicalQj,k∑

k typicalQi,k

⩽

(
1 +

C log2 d

d

)(
qκi(τ)

qκj(τ)

)
·

(
1 + C′

d

) (
1 + C log2 d

d

)∑
k typical

(
qκj (τ)

qκi (τ)

)
·Qi,k∑

k typicalQi,k

⩽ 1 +
C ′′ log2 d

d

The first inequality uses Lemma 3.6.13 to bound
Qi,ℓ
Qj,ℓ

. The second inequality uses the fact

that the outlier entries of Qi,∗ and Qj,∗ only occupy an O
(
1
d

)
fraction of the ℓ1 norm of each

row (Lemma 3.6.8). The third inequality again comes from an application of Lemma 3.6.13
to relate Qi,k to Qj,k when k is typical. The lower bound follows analogously.

Proof of Lemma 3.6.13. By definition:

qκi(κℓ)

qκj(κℓ)
·
(
qκi(τ)

qκj(τ)

)−1

=
ΦDip(d−1) (T (κi, κℓ))

ΦDip(d−1) (T (κj, κℓ))
·
ΦDip(d−1) (T (κj, τ))

ΦDip(d−1) (T (κi, τ))
(3.28)
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Since κi, κj, κℓ ∈ [τ, τ(1 + α)], by Claim 3.5.6, all terms of the form T (x, y) in the above
are lower bounded by T (τ(1 + α), τ(1 + α)), which is lower bounded by a constant for large
enough d. Thus, by Lemma 3.2.8:

(3.28) =

(
1±O

(
log d

d

))
· T (κj, κℓ) · T (κi, τ)
T (κi, κℓ) · T (κj, τ)

·
(
A

B

)(d−1)/2

where A := (1− T (κi, κℓ)
2) (1− T (κj, τ)

2) and B := (1− T (κj, κℓ)
2) (1− T (κi, τ)

2) . We
show: ∣∣∣∣T (κj, κℓ) · T (κi, τ)T (κi, κℓ) · T (κj, τ)

− 1

∣∣∣∣ ⩽ O(α2) (3.29)∣∣∣∣AB − 1

∣∣∣∣ ⩽ O(α2) (3.30)

where (3.29) and (3.30) are proved in Appendix C of [84]. Consequently,

qa(x)

qb(x)
· qb(τ)
qa(τ)

=

(
1±O

(
log d

d

))
·
(
1±O(α2)

)
·
(
1±O(dα2)

)
The term of order dα2 dominates, and because α = O( log d

d
) we conclude the desired result.

3.7 2-dimensional expansion of the random geometric

complex

In this section we prove Theorem 3.1.6.

Theorem 3.7.1. For every 0 < ε < 1, 0 < η < 2ε and d = η log4/3 n, ifH ∼ Geo
(2)
d (n, n−1+ε),

then every link of H is a
(
1
2
− δ
)
-expander, and its 1-skeleton is a

(
1− 4δ

1+2δ

)
-expander with

high probability where δ = 1
2
·
1−

√
1−exp(−2 log 4

3
·(1−ε)/η)

1+
√

1−exp(−2 log 4
3
·(1−ε)/η)

− on(1).

One of the ingredients in the proof of Theorem 3.7.1 is the spectral expansion of random
geometric graphs, which is a corollary of Theorem 3.1.11 and Corollary 3.4.7:

Theorem (Restatement of Theorem 3.1.8). Let G ∼ Geod(n, p) and τ := τ(p, d). Then with
high probability G is a µ-expander, where

µ := (1 + o(1)) ·max

{
(1 + odτ2(1)) · τ,

log4 n
√
pn

}
,

where odτ2(1) denotes a function that goes to 0 as d · τ(p, d)2 → ∞.
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The second ingredient is a bound on the second eigenvalue of the links, proved in Section 3.5:

Theorem (Restatement of Theorem 3.5.1). Let 0 < τ < 1 be a constant. Let v1, . . . ,vm ∼
cap⩾τ (w) and G := ggτ (v1, . . . ,vm). Then for q := ΦDip(d)

(
τ

1+τ

)
, suppose qm ≫ log8m ·

log3/2 1
q
·
(
1+τ
τ

)3
and d ⩾ C · logm for any constant C > 0, then for any constant γ > 0,

Pr

[
|λ|2
(
ÂG

)
>

τ

1 + τ
+ od,m(1)

]
⩽ O

(
m−γ).

Proof of Theorem 3.7.1. To show that the links expand, we apply Theorem 3.5.1 in combi-
nation with a union bound over all links. The second eigenvalue bound for the 1-skeleton is
then proved using Theorem 3.1.3, the trickling-down theorem. Let p = n−1+ε, d = η log4/3 n
and τ = τ(p, d).

Let G := ggτ (v1, . . . ,vn) to denote the geometric graph of the collection of vectors used
to generate H . The number of vertices that fall in the neighborhood of a vertex v within G
is mv ∼ Binom(n, p), and hence mv ⩾ m := pn−2

√
pn log n except with probability o(1/n).

For the rest of the proof, we condition on the event that mv ⩾ m for all v, which happens
with probability 1− o(1) by the union bound.

The link Hv of a vertex v is obtained by taking Gv, the subgraph of G induced by the
neighborhood of v, and then removing the isolate vertices. Note that the isolated vertices
need to be removed since when sampling a random complex, we remove all edges that are
not in any triangles. Our goal is to control the second eigenvalue of all the links in H , and
we do so by showing bounds on the second eigenvalue of Gv for all v. The second eigenvalue
bounds show that with high probability, for all v, the graph Gv is connected, and hence
has no isolated vertices. Consequently, Hv is in fact equal to Gv and the second eigenvalue
bounds port over.

As a first step, we show that Gv satisfies the hypothesis of Theorem 3.5.1. In particular,
we show for q := ΦDip(d−1)

(
τ

1+τ

)
q ·mv ≫ log4mv · log2

1

q
·
(
1 + τ

τ

)4

. (3.31)

Using Lemma 3.2.8 and the fact that the tail function of a probability distribution is mono-
tone decreasing, we can lower bound q:

q ⩾ ΦDip(d−1)

(
1

2

)
⩾

2Zd−1

d− 2
·
(
3

4

)(d−2)/2

·
(
1− 16 log d

d− 1

)
⩾ Ω

(
1√
d

)
· n−η/2,

where the first inequality holds since τ ∈ (0, 1], and the last inequality holds by definitions
of d and Zd. We now lower bound τ by a constant. By Lemma 3.2.8:

ΦDip(d)

√1− exp

(
−
(1− ε) log 4

3

η

) ⩾ Ω

(
1√
d

)
· √p ·

(
1−O

(
log d

d

))
⩾ p = ΦDip(d)(τ),
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where the first inequality holds by definition of Zd. Since ΦDip(d) is a decreasing function,

τ ⩾

√
1− exp

(
−
(1− ε) log 4

3

η

)
.

Consequently:

log4mv · log2
1

q
·
(
1 + τ

τ

)4

⩽ log6 n.

On the other hand, qmv ⩾ Ω
(

1√
d

)
· nε−η/2 ≫ log6 n, which establishes (3.31). By (3.31) and

Theorem 3.5.1 with γ = 2/ε, with probability at least 1−O(1/n2):

|λ|2
(
ÂGv

)
⩽

τ

1 + τ
+ on(1).

By the union bound over all vertices, with probability 1−O(1/n):

|λ|2
(
ÂGv

)
⩽

τ

1 + τ
+ on(1) ∀v ∈ [n].

Henceforth, we condition on the above. Since τ
1+τ

< 1, for all v ∈ [n], each Gv is connected
and has no isolated vertices and hence Hv = Gv. Consequently

|λ|2
(
ÂHv

)
⩽

τ

1 + τ
+ on(1) ∀v ∈ [n].

Assuming the 1-skeleton H(1) is connected, by the trickling-down theorem (Theorem 3.1.3)
it satisfies:

|λ|2
(
ÂH(1)

)
⩽

τ
1+τ

+ on(1)

1− τ
1+τ

− on(1)
= τ + on(1).

It remains to bound τ , τ/(1+τ) and show H(1) is connected. By Lemma 3.2.8, the following
inequality must be satisfied:

p ⩽
Zd

τ(d− 1)
·
(
1− τ 2

)(d−1)/2
.

Since the right hand side of the above is a decreasing function of τ and plugging in

√
1− exp

(
−2(1−ε) log 4

3

η

)
yields a value smaller than p, we know:

τ ⩽

√
1− exp

(
−
2(1− ε) log 4

3

η

)
= 1− 4δ

1 + 2δ
. (3.32)
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The function τ/(1 + τ) is an increasing function and hence:

τ

1 + τ
⩽

√
1− exp

(
−2(1−ε) log 4

3

η

)
1 +

√
1− exp

(
−2(1−ε) log 4

3

η

) + on(1) =
1

2
− δ.

Finally, to show H(1) is connected, it suffices to illustrate H̃(1), a reweighted version of
H(1), whose normalized adjacency matrix has a spectral gap. We use G as our reweighting
of H(1), which is valid since all edges in G occur in H(1) with probability 1− on(1). Indeed,
for every vertex v and neighbor w the vertex w has some neighbor w′ withinGv, which means
{v, w, w′} is a triangle in H causing {v, w} to appear in H(1). By our choice of parameters,
the lower and upper bounds on τ shown in (3.7) and (3.32) respectively, and Theorem 3.1.8,
we know |λ|2(AG) < τ + on(1) < 1, which implies H(1) is connected, which completes our
proof.

3.8 Tightness of the tricking-down theorem

In this section we will show that the trickle-down theorem is tight:

Proposition (Restatement of Proposition 3.1.9). For each λ ∈ (0, 1
2
] and η > 0 there exists

a 2-dimensional expander in which all vertex link eigenvalues are at most λ for which the
1-skeleton is connected with eigenvalue at least λ

1−λ − η.

We prove the proposition by showing that a random geometric graph’s adjacency matrix
(when weighted in a regular way) has second eigenvalue at least τ , and then prove that the
random geometric complex indeed satisfies that regularity condition.

Lemma 3.8.1. Let G ∼ Geod(n, p) generated by vectors v1, . . . ,vn, and let W be the transi-
tion matrix of any time-reversible Markov chain on G with stationary distribution π. Then
with high probability λ2(W ) ⩾ τ − on(1)−O(dTV (π, Un)

2) where Un is the uniform distribu-
tion on [n].

Proof. When dTV (π, Un) ⩾ 0.1, the statement is vacuously true. Thus, we assume dTV (π, Un) <
0.1 for the rest of this proof. We see that:

1− λ2(W ) = min
f :V (G)→Rd
f non-constant

Ex∼W y∥f(x)− f(y)∥2

Ex,y∼π∥f(x)− f(y)∥2
⩽

Ex∼W y∥vx − vy∥2

Ex,y∼π∥vx − vy∥2
⩽

2(1− τ(p, d))

Ex,y∼π∥vx − vy∥2

(3.33)
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where the last inequality uses that for adjacent x, y, ⟨vx,vy⟩ ⩾ τ(p, d). To lower bound the
denominator, observe:

E
x,y∼π

∥vx − vy∥2 =
∑
x,y∈[n]

π(x)π(y)(2− 2⟨vx,vy⟩) = 2

1−
∑
x,y∈[n]

⟨π(x)vx, π(y)vy⟩


= 2

1−

∥∥∥∥∥∥
∑
x∈[n]

π(x)vx

∥∥∥∥∥∥
2 = 2

1−

∥∥∥∥∥∥
∑
x∈[n]

1

n
vx +

∑
x∈[n]

(
π(x)− 1

n

)
vx

∥∥∥∥∥∥
2

⩾ 2

1−

∥∥∥∥∥∥ 1n
∑
x∈[n]

vx

∥∥∥∥∥∥
2

− 4

∥∥∥∥∥∥ 1n
∑
x∈[n]

vx

∥∥∥∥∥∥ · dTV (π, Un)− 4dTV (π, Un)
2

.
By standard concentration arguments,

∥∥∥ 1
n

∑
x∈[n] vx

∥∥∥ is on(1) with high probability. Plugging

in the lower bound into (3.33) tells us:

1− λ2(W ) ⩽ 1− τ(p, d) + on(1) +O
(
dTV (π, Un)

2),
which can be rearranged into the desired inequality.

Armed with this lemma we can prove Proposition 3.1.9.

Proof of Proposition 3.1.9. Let τ = λ
1−λ , which is in (0, 1) for λ ∈

(
0, 1

2

)
. Using the bounds

from Lemma 3.2.8 we can choose n and d = Θ(log n) such that for p = ΦDip(d)(τ), we have
np2

2
≫ poly log n.

Let H ∼ Geo
(2)
d (n, p). Since each link contains Binom(n− 1, p) vertices, and (n− 1)p≫

poly log n, every link has (n−1)p(1±on(1)) ⩾ m := np/2 vertices with probability 1−O(n−1).

Also, ΦDip(d)

(
τ

1+τ

)
⩾ ΦDip(d)(τ), so m ·ΦDip(d)

(
τ

1+τ

)
⩾ np2

2
≫ poly logm, and so the conditions

of Theorem 3.5.1 are met so that by a union bound we can conclude that all links have
second eigenvalue at most τ

1+τ
+ o(1) = λ+ o(1).

Simultaneously, for any pair of vertices the number of triangles they participate in are
within a multiplicative factor of 1 ± logn√

p2n
= 1 ± on(1) of each other, as we argue in the

next paragraph. Since the stationary distribution π of the random walk on G weighted
according to H(1), the 1-skeleton of H , puts mass on vertex v proportional to the number
of triangles v participates in, it must be the case that π(v) = (1± on(1)) · 1

n
. Consequently,

dTV (π, Un) = on(1), and by Lemma 3.8.1, λ2(H
(1)) ⩾ τ − on(1) =

λ
1−λ − on(1).

We now show concentration for the number of triangles that contain a vertex. Indeed,
the number of triangles that a vertex v participates in is equal to the number of edges in
its link. Using, mv to denote the number of vertices in the link of v, deg(u) to denote the
degree of a vertex u within the link of v, and κ to denote the collection of shells that vertices
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in the link of v lie in, we have:

|E(Link(v))| = 1

2

mv∑
i=1

degv(u).

Henceforth we condition on mv achieving some value in (1 ± on(1))p(n − 1). The average

degree of a vertex u within the link of v is at least np2

2
, and hence by Bernstein’s inequality

each degv(u) = (1 ± on(1))E[degv(u)|κu] except with probability O(n−4) since degv(u)|κu
is a sum of independent indicator random variables. The random variables E[degv(u)|κu]
are independent and distributed as p(κu)mv where p(κu) is the probability that a uniformly
random vector in capp(v) falls in capp(u) where ⟨u, v⟩ = κu. We can show with Bernstein’s
inequality that:

mv∑
u=1

E[degv(u)|κu] = (1± o(1))E[p(κu)]m
2
v

except with probability O(n−4). By the union bound, with probability O(n−1) for all v ∈ [n],

|E(Link(v))| = 1± on(1)

2
E[p(κu)]m

2
v,

which completes the proof.
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Chapter 4

Hypercontractive inequalities over
epsilon product spaces

In this chapter, we focus on analysis of Boolean functions on high dimensional expanders,
whose systematic study was recently initiated by Dikstein et al. [23]. This continues a long
line of investigation of Fourier analysis of Boolean functions on extended domains beyond
the Boolean hypercube, such as the Boolean slice [96, 42, 43, 46], the Grassmann scheme [29,
72, 36], the symmetric group [45, 40, 20], the p-biased cube [35, 78, 41], and the multi-slice
[44, 12]. The foregoing extended domains arise naturally throughout theoretical computer
science, and indeed, the study of analysis of Boolean functions on extended domains has
recently led to a breakthrough regarding the unique games conjecture [71, 30, 29, 72].

4.1 Problem background and summary of results

Hypercontractive inequalities are amongst the most powerful technical tools in Fourier anal-
ysis, yielding a plethora of applications in algorithms, complexity, learning theory, statistical
physics, social choice, and beyond (see [94] and references therein). Loosely speaking, such
statements assert that functions of low Fourier degree are “well behaved” in terms of their
distribution around their mean. Concretely, in the Boolean hypercube, the simplest exam-
ple of a hypercontractive inequality is Bonami’s lemma, which states that for every function
f : {0, 1}n → R of Fourier degree at most d, it holds that ∥f∥4 ⩽

√
3d∥f∥2.

Alas, in the setting of high dimensional expanders, where the domain is not a product
space and the induced measure is biased, general strong hypercontractivity cannot hold. The
heart of the problem is that some highly local functions, such as dictators (i.e., f(x) = xi),
provide strong counterexamples to hypercontractivity. A similar phenomenon also occurs in
several prominent extended domains, such as the p-biased cube and the Grassmann scheme.

Fortunately, as observed in the setting of the p-biased cube [70], all of the aforementioned
examples are local, in the sense that a small number of coordinates can significantly influence
the output of the function. This led to the definition of ‘global’ functions. For Boolean



CHAPTER 4. HYPERCONTRACTIVE INEQUALITIES OVER EPSILON PRODUCT
SPACES 90

valued functions, these are functions wherein a small number of coordinates can change the
output of the function only with a negligible probability. For real valued functions, this is
captured by the 2-norm remaining roughly the same when restricting O(1) coordinates of
the input. More precisely, consider the setting of a general product measure. Let (Vi, µi)
be probability spaces, let VS =

∏
i∈S Vi and equip VS with the product measure, which we

denote by µS. Every function f ∈ L2
(
V[k], µ

)
is equipped with an orthogonal decomposition∑

S⊆[n] f
=S known as the Efron–Stein decomposition. The function f=S in the Efron–Stein

decomposition plays a similar role to the function f̂ (S)χS in the Boolean cube. Using that
analogy we write

f⩽d =
∑
|S|⩽d

f=S,

and f is said to be of degree d if f = f⩽d. Keevash et al. [69] introduced the following
notions. The Laplacians of f are given by

LS [f ] =
∑
T⊇S

(−1)|T | f=T .

For x ∈ VS the derivatives are given by restricting the laplacians

DS,xf = LS [f ] (x, ·) ,

and the (S, x)-influence of f is defined as

IS,x [f ] = ∥DS,x [f ] ∥22.

In this setting, a function f is (r, δ)-global if ∥f (x, ·) ∥22,µ[n]\S ⩽ δ for each |S| ⩽ r.We remark

that here, being (r, δ)-global for a small δ > 0 is, in a sense, equivalent to having IS,x [f ] ⩽ δ′

for a small δ′ for all |S| ⩽ r and all x. In fact, δ, δ′ can be taken to be within a factor of 2r

of one another.
In [69], it was shown that if f ∈ L2 (V, µ) is of degree d, then the following hypercontrac-

tive inequality holds:

∥f∥44 ⩽ 1000d
∑
S

Ex∼µSIS,x [f ]
2 . (4.1)

This allowed them to deduce if a function f of degree d is (d, δ)-global, then

∥f∥44 ⩽ δ8000d∥f∥22.

Here when setting δ = 100∥f⩽d∥22 one gets the statement ∥f∥4 ⩽ Cd∥f∥2, which replicates
the behavior in the Boolean cube. Moreover, the statement is useful even for larger values
of δ.

In this work, we raise the following question.

Does hypercontractivity hold for high dimensional expanders?
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4.1.1 Main results

We answer the question above in the affirmative. Namely, our main contribution is a hy-
percontractive inequality for functions on the k-faces of an ϵ-HDX. We denote by X(k) the
k-faces of a simplicial complex X, and denote by µ the uniform measure on its k-faces.
We define the influences I⩽dS,x and the degree restriction operator (·)⩽d analogously to their
definition on the p-biased cube (see Section 4.4 for precise definition). We then prove the
following hypercontractive statement for high dimensional expanders in the spirit of (4.1).

Theorem 4.1.1. Let X be an ϵ-HDX, and let f ∈ L2 (X(k), µ). We have

∥f⩽d∥44 ⩽ 20d
∑
|S|⩽d

(4d)|S| Ex∼µSI
⩽d
S,x [f ]

2 +Ok

(
ϵ2
)
∥f∥22∥f∥2∞.

In the setting of ϵ-HDX, we say that a function f is (d, δ)-global if for each |S| ⩽ d, we
have ∥f (x, ·) ∥L2(Vx,µx) ⩽ δ.We show that we can bound the infinity norm of global functions
and obtain the following strong hypercontractive inequality for global functions on ϵ-HDX.

Corollary 4.1.2. For each ζ, d, k > 0, there exists ϵ0 = ϵ0 (ζ, k, d) , δ0 = δ0 (ζ, d), such that
the following holds. Let ϵ ⩽ ϵ0, δ ⩽ δ0, let X be an ϵ-HDX, and let f ∈ L2 (X(k), µ). If f is
(d, δ)-global, then we have

∥f⩽d∥44 ⩽ ζ∥f∥22.

We remark that, in fact, we prove our results in a slightly more general setting, to which
we refer as ϵ-product measures. See Section 4.7 for details.

4.1.2 Applications

As corollaries of our hypercontractive inequality for high dimensional expanders, we obtain
several applications, which we discuss below. See Section 4.8 for more details.

4.1.2.1 Fourier spectrum concentration theorem

Fourier concentration results are widely useful in complexity theory and learning theory. Our
first application is a Fourier concentration theorem for HDX. Namely, the following theorem
shows that global Boolean functions on ϵ-HDX are concentrated on the high degrees, in
the sense that the 2-norm of the restriction of a function to its low-degree coefficients only
constitutes a tiny fraction of its total 2-norm.

Theorem 4.1.3. For each ζ, d, k > 0, there exists ϵ0 = ϵ0 (ζ, k, d) , δ0 = δ0 (ζ, d), such that
the following holds. Let ϵ ⩽ ϵ0, δ ⩽ δ0, let X be an ϵ-HDX, and let f : X(k) → {0, 1} be
(d, δ)-global. Then

∥f⩽d∥22 ⩽ ζ∥f∥22.
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4.1.2.2 Small set expansion theorem

Small set expansion is a fundamental property that is prevalent in combinatorics and com-
plexity theory. In the setting of the ρ-noisy Boolean hypercube, the small set expansion
theorem of Kahn, Kalai, and Linial [63] gives an upper bound on Stabρ(1A) = ⟨1A, Tρ1A⟩ for
indicators 1A of small sets A. The noise stability Stabρ(1A) captures the probability that a
random edge (x, y) of the ρ-noisy hypercube has both its endpoints in A. Hence, an inequal-
ity of the form Stabρ(1A) ⩽ ζ∥1A∥22 for an arbitrarily small ζ and sufficiently small A implies
that that small sets are expanding in the sense that the random walk makes you leave them
with probability ⩾ 1− ζ. Our second application is a small set expansion theorem for global
functions on ϵ-HDX, captured via bounding the natural noise operator in this setting. Let
ρ ∈ (0, 1) be a noise-rate parameter. The noise operator is given by

Tρf (x) :=
∑
S⊆[k]

ρ|S| (1− ρ)k−|S| Ey∼µ [f (y) |yS = xS] .

In other words, Tρ corresponds to the random walk that starts with x chooses a ρ-biased
random S ⊆ [k], keeps xS, and re-randomises x given xS. Our small set expansion theorem
tells us that if we start with a small subset A ⊆ X (k) and we apply one step of the random
walk, then we leave A with probability 0.99.

Theorem 4.1.4. For each ζ, d, k > 0, there exists ϵ0 = ϵ0 (ζ, k, d) , δ0 = δ0 (ζ, d), such that
the following holds. Let ϵ ⩽ ϵ0, δ ⩽ δ0, and let X be an ϵ-HDX. If f : V[k] → {0, 1} is
(d, δ)-global, then

∥Tρf∥22 ⩽ ζ∥f∥22.

4.1.2.3 Kruskal–Katona theorem

Our last application is an analogue of the Kruskal–Katona theorem in the setting of high
dimensional expanders. The Kruskal-Katona theorem is a fundamental and widely-applied
result in extremal combinatorics, which gives a lower bound on the size of the lower shadow
∂ (A) of a k-uniform hypergraph A on n vertices. The lower shadow is defined to be the
family of all (k − 1)-sets that are contained in an edge of A. More generally, if A ⊆ X (k),
then we similarly let ∂ (A) be the family of all k − 1-faces that are contained in a k-face of
A.

Filmus et al. [45] used their hypercontractivity theorem to prove a stability result for the
Kruskal–Katona theorem. We prove a similar stability result for ϵ-HDX.

Theorem 4.1.5. Let X be an ϵ-HDX, for a sufficiently small ϵ > 0. Let δ ⩽ (200d)−d , and
let A ⊆ X (k − 1) be (d, δ)-global. Then

µ (∂ (A)) ⩾ µ (A)

(
1 +

d

2k

)
.
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4.1.3 Techniques

Conceptually, one can view the theory of expanders and pseudorandom graphs in the follow-
ing perspective: Given a pseudorandom regular graph G = (V,E) and (x, y) ∼ E, the goal
is to show that x, y behave similarly to independent random variables x, y ∼ V , i.e., as an
approximation of a product space.

In the theory of high dimensional expanders, we are given a distribution µ on (k+1)-tuples
by choosing a random k-face (x1, . . . , xk+1) of a sparse simplicial complex, and the goal is
again to show that the variables {xi} approximately behave as though they were independent.
Thus, our main objective is to generalise results from the product space setting, where the
xi’s are independent, to the setting of HDX, where we only have local spectral information
about the links. However, such a generalisation yields significant challenges.

One of the fundamental tools for studying the product space setting is the aforementioned
Efron–Stein decomposition. Its role in the analysis of product spaces is that it allows us
to easily generalise techniques from the Boolean cube by replacing the Fourier expression
f̂ (S)χS with the function f=S.

Our high-level proof strategy is to develop new Efron–Stein decompositions for HDX. We
show that despite the more involved setting, and despite the fact that we only have mere
local spectral information, we can still obtain similar structural properties as in product
spaces. We now list a few of the challenges that we are facing, which require fundamentally
new ideas and techniques.

Dikstein et al. [23] gave a decomposition of the form f =
∑k

d=0 f
=d. We provide a new

decomposition
{
f=S

}
S⊆[k]

such that f =
∑

S⊆[k] f
=S, and despite not having orthogonality,

we can still show that the inner product
〈
f=S, f=T

〉
is negligible compared to ∥f∥22. This

allows us to generalise the Laplacians, derivatives and influences, but we have to deal with
the following problems:

• Let F ⊆ [k] be a small set. We would like to say that g =
∑

S∈F f
=S is supported

on F , but we have no way of knowing that looking at
{
g=S
}
S⊆[k]

, as g=S may be

nonzero even for S /∈ F . This leads to the problem of how to even define the degree of
a function. We would like to say that f⩽d :=

∑
|S|⩽d f

=S is of degree at most d, and

that f is of degree d if f = f⩽d. Alas, according to this definition the function f⩽d is
not of degree d.

• We can and do define the derivatives DS,x to be the restrictions of the Laplacians. In
the product case the derivatives decrease the degree by |S|, and this is a very desirable
property as our proof goes by induction on d. However, this is no longer true in the
HDX setting.

• We may define the influences by taking 2-norms of the derivatives. However, now it is
no longer true that having small influences is equivalent to being global. This leads us
to the following problem which is the source for all of the difficulty.
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• The spectral information tells us that HDX should behave similarly to product spaces
with respect to the L2-norm. However, we care about L4 information when bounding
∥f∥4, and we deal with L∞-hypothesis as the globalness notion is about all the restric-
tions. There is no reason for HDX to behave well with respect to L4 and even more so
for L∞.

At first, the above, and especially the last point, seem as fundamental barriers to this
approach.

Nevertheless, we overcome this barrier by developing an alternative notion, which we call
the approximate Efron–Stein decomposition. Our new notion has the following properties
that fix all of the above problems.

• If {fS}S⊆[k] is an approximate Efron–Stein decomposition, then crucially, {fS}S∈F is

an approximate Efron–Stein decomposition for
∑

S∈F f
=S.

• If f is approximately of degree d, in the sense that {fS} is an approximate Efron-
Stein decomposition for f , then the derivative DS,x [f ] may be L4-approximated by

DS,x [f ]
⩽d−|S| .

• We find a way of proving an inequality of the form

Ex∼µSI
2
S,x [f ] ⩽ δEx∼µSIS,x [f ] ,

without having the traditional hypothesis maxx IS,x [f ] ⩽ δ at our disposal.

• We show that we may move freely between different approximate Efron–Stein decom-
position up to a small L4-norm error term.

We believe that our approximate Efron–Stein decomposition provides the desired comfortable
platform for analysing functions on HDX in the same way one would analyze a product space.

See Section 4.4 for a detailed exposition of our approximate Efron–Stein decomposition,
and see Section 4.5 for a more detailed proof overview of our main hypercontractivity results,
which build on the aforementioned decomposition.

4.1.4 Related work

Simultaneously and independently to this work, Bafna, Hopkins, Kaufman, and Lovett [7]
also obtained hypercontractive inequalities for high dimensional expanders. We remark that
while the main hypercontractive inequalities in both papers achieve essentially the same pa-
rameters, the techniques are completely different. Namely, in [7] the proof strategy follows
the approach of analogous results in the setting of the Grassmann graph, whereas our ap-
proach generalises Efron–Stein decompositions and hypercontractivity for general product
spaces. We further note that our approximate Efron–Stein decomposition extends approxi-
mate Fourier decompositions that appeared in several recent works [67, 68, 23, 1, 61].
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4.1.5 Organisation

The rest of the paper is organised as follows. We start in Section 4.2, where we recall the
notions of hypercontractivity and globalness in general product spaces, as well as provide an
alternative proof of a slightly weaker hypercontractive inequality that is more amenable for
generalisation to non-product spaces. In Section 4.3, we present the framework of ϵ-product
spaces, of which high dimensional expanders are a special case, and we also define key opera-
tors in this setting and show some basic properties they satisfy. Next, in Section 4.4, which is
introducing a new approximate Efron–Stein decomposition and developing a framework for
proving hypercontractivity results using this decomposition. Then, in Section 4.5, we give a
detailed proof overview of our hypercontractive inequalities for high dimensional expanders,
which build on the foregoing framework. In Section 4.6, we define the notions of laplacians,
derivatives and influences in the setting of ϵ-measures, give bounded approximated Efron–
Stein decompositions related to the Laplacians, define globalness, and show that it implies
small influences.. Then, we provide the full proof of our main hypercontractivity results
in Section 4.7. Finally, in Section 4.8, we show how to derive the applications from our
hypercontractive inequalities.
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4.2 Recalling globalness and hypercontractivity in

the product space setting

We begin by recalling the Efron–Stein decomposition, as well as derivatives and Laplacians
in the setting of general product spaces, and state the hypercontractivity inequalities for
product spaces that were shown in [69]. We then give a proof, inspired by [36], of a slightly
weaker hypercontractivity inequality that we will later generalise to approximate product
spaces.

4.2.1 Efron-Stein decomposition

Let (V1, µ1) , . . . , (Vk, µk) be a probability space. Let µ be the corresponding product measure
µ1⊗· · ·⊗µk. For a set S ⊆ [k], we write VS =

∏
i∈S Vi, and we write µS for the product measure µS =⊗

i∈S µi. The Efron–Stein decomposition is a decomposition of L2
(
V[k], µ

)
into 2k orthog-

onal spaces {WS}S⊆[k] . Every function f ∈ L2
(
V[k], µ

)
can then be decomposed as f =∑

S⊆[k] f
=S, where f=S is the projection of f to WS. The Efron–Stein decomposition is char-



CHAPTER 4. HYPERCONTRACTIVE INEQUALITIES OVER EPSILON PRODUCT
SPACES 96

acterised by the orthogonality of {WS}, the fact that
∑

SWS = L2 (V, µ), and the fact that
the space WS is composed of functions depending only on S.

The functions f=S also have an explicit formula for x ∈ VS, where we denote

ASf (x) = Ey∼(VS ,µS) [f (x, y)] ,

where S̄ = [k] \ S. We then write

f=S =
∑
T⊆S

(−1)|S\T |ATf.

The function AS [f ] then has the following neat Efron–Stein decomposition

AS [f ] =
∑
T⊆S

f=T .

See [94, Chapter 8] for more details.

4.2.2 Notations

We write a = b ± ϵ to indicate that a ∈ (b− ϵ, b+ ϵ) . We use a ⩽ O (b) to denote that the
inequality holds up to an absolute constant, and a ⩽ Ok (b) to denote that the inequality
holds up to a constant only depending on k.

4.2.3 Derivatives and Laplacians

Let µ = µ1 ⊗ · · · ⊗ µk be a product measure. Let f ∈ L2
(
V[k], µ

)
, S ⊆ [n]. The Laplacian

is given by the formula

LS [f ] =
∑
T⊇S

f=T =
∑
T⊆S

(−1)|T |A[k]\Tf.

For S ⊆ [n] and x ∈ VS the derivative DS,x ∈ L2 (VS, µS) is defined by

DS,xf = LS [f ] (x, ·) .

For convenience, we also write D∅f = f. The (S, x)-influence of f is defined as

IS,x [f ] = ∥DS,x [f ] ∥22.

This includes the case S = ∅, where we have I∅ [f ] := ∥f∥22.
We now state a few facts from [69] that we generalise. The following lemma, which

appears in [69], shows that the notion of small influences corresponds to small 2-norms of
the restriction of f .
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Lemma 4.2.1. Suppose that IS,x [f ] ⩽ δ for each set S of size at most r. Then ∥f (x, ·) ∥22,µ[n]\S ⩽

δ4r for each S and x ∈ VS. Conversely, if ∥f (x, ·) ∥22,µ[n]\S ⩽ δ for each |S| ⩽ r and x ∈ VS,

then IS,x [f ] ⩽ δ4r for each S of size at most r and x ∈ VS.

For the above reason they gave the following definition.

Definition 4.2.2. A function f is said to be (r, δ)-global if IS,x [f ] ⩽ δ for each |S| ⩽ r.

The degree of a function is the largest S, such that f=S ̸= 0. The derivatives decrease
the degrees for the following reason.

Lemma 4.2.3. DS,x

[
f=T

]
is 0 unless S ⊆ T , and if S ⊆ T , then

DS,x

[
f=T

]
∈ W T\S.

Consequently, if f =
∑

|S|⩽d f
=S is of degree d, then DS,x [f ] is of degree d− |S| .

4.2.4 Hypercontractivity

The following result is by [69].

Theorem 4.2.4. If f ∈ L2 (V, µ) is of degree d, then

∥f∥44 ⩽ 1000d
∑
S

ExIS,x [f ]2 .

To show the implication of the theorem for global functions they use the following in-
equality.

Lemma 4.2.5. ∑
S

ExIS,x [f ] ⩽ 2d∥f∥22.

Proof. The right hand side is equal to∑
S

∥LS [f ] ∥22 =
∑
S

∑
T⊇S,|T |⩽d

∥f=T∥22 ⩽ 2d
∑
T

∥f=T∥22 = 2d∥f∥22.

Combining Theorem 4.2.4 and Lemma 4.2.5, we obtain the following corollary.

Corollary 4.2.6. If f of degree d is (d, δ)-global. Then ∥f⩽d∥44 ⩽ δ2000d∥f∥22.
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Proof. We have

∥f⩽d∥44 ⩽ 1000d
∑
S⊆[n]

Ex∼µS∥IS,x [f ] ∥42

⩽ δ1000d
∑
S

Ex∼µS∥IS,x [f ] ∥22

⩽ δ2000d∥f∥22.

4.2.5 An alternative proof of hypercontractivity on product
spaces

We give an alternative proof of the following slightly weaker version of Theorem 4.2.4. The
proof is inspired by a future work by Ellis, Kindler, and the second author [36], who show
that the same idea works in the Grassmann setting. In this paper we show that it generalises
to HDX as well.

Theorem 4.2.7. Let f ∈ L2 (V, µ) be of degree d. Then

∥f∥44 ⩽ 2 · 9d
∑
|T |⩽d

(9d)|T | Ex
[
IS,x [f ]

2] .
4.2.5.1 Proof overview.

Before providing the full proof, we first describe the high-level approach for proving Theorem
4.2.7. The strategy is to first show a lemma that gives the following bound

∥f∥44 ⩽ Cd∥f∥42 +
∑
S⊆[n]

(4d)|S| ∥LS [f ] ∥44, (4.2)

for a constant C. Using this lemma, we can give an inductive proof by first noting
that ∥LS [f ] ∥44 = Ex∥DS,x∥44, and then applying induction using the fact that DS,x is of
degree d − |S|. Finally, using the fact that DS,xDT,y = DS∪T,(x,y), we can get our desired
hypercontractive statement.

Hence, the key step is to prove the aforementioned lemma. To this end, we first use the
fact that

E
[
f 4
]
=
∑
S

∥
(
f 2
)=S ∥22.

We then expand the summands of (f 2)
=S

as sums of terms of the form
(
f=T1f=T2

)=S
.

Next, we note that the nonzero terms either satisfy T1 ∩ T2 ∩ S ̸= ∅ or satisfy T1∆T2 = S.
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Terms of the first kind are cancelled out by Li [f ]
4 for an i ∈ T1 ∩ T2 ∩ S on the right hand

side of (4.2). (The terms ∥LS [f ] ∥44 appear because of over counting, which we resolve by
inclusion exclusion.) Terms of the latter kind correspond to the situation in the Boolean

cube where f=T = f̂ (T )χT and χTχS = χT∆S. We then upper bound ∥
(
f=T1f=T2

)=S ∥2 by
∥f=T1∥2∥f=T2∥2. This allows us to translate the problem of upper bounding the terms of
the first kind to the problem of upper bounding the 4-norm of a low degree function on the
Boolean cube. Namely, the function ∑

|T |⩽d

∥f=T∥2χT .

Finally, we use hypercontractivity to upper bound the 4-norm by its 2-norm, which is equal
to the 2-norm of f . This concludes the proof overview.

4.2.5.2 Proof of hypercontractivity on product spaces

We now give a formal proof of Theorem 4.2.7. We shall first need the following key lemma,
which admits the inductive approach.

Lemma 4.2.8. Let f ∈ L2 (V, µ) be of degree d. Then

1

2
∥f∥44 ⩽ 9d∥f∥42 +

∑
T ̸=∅

(4d)|T | ∥LT [f ] ∥44.

We are now ready to prove the lemma.

Proof of Lemma 4.2.8. By Parseval we have

∥f∥44 =
∑

∥
(
f 2
)=S ∥22.

We bound each term ∥ (f 2)
=S ∥22 individually. By expanding and using the linearity of the

·=S operator we have (
f 2
)=S

=
∑
T1,T2

(
f=T1f=T2

)=S
.

We now divide the pairs (T1, T2) into three sums.

1. We let I1 be the set of pairs (T1, T2) such that T1 ∩ T2 ∩ S ̸= ∅. If i is in T1 ∩ T2 ∩ S,
then the summand

(
f=T1f=T2

)=S
appears as a summand when expanding

(
Li [f ]

2)=S .
This explains the role of the Laplacians in the right hand side.

2. We let I2 be the set of pairs such that T1∆T2 = S. These kind of pairs have a similar
behavior to the one in the Boolean cube. There f=S = f̂ (S)χS and

f=Sf=T = f̂ (S) f̂ (T )χS∆T .

We show that the contribution from the pairs in I2 is ⩽ Cd∥f∥22.
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3. We let I3 = (T1, T2) such that either (T1∆T2) \ S ̸= ∅ or S \ (T1 ∪ T2) ̸= ∅. We show

that in this case
(
f=T1f=T2

)=S
= 0.

It is easy to verify that each pair (T1, T2) belongs to at least one of the sets I1, I2, I3. We
additionally have I1 ∩ I2 = ∅.

Upper bounding the contribution from I1

Let us start by upper bounding the contribution from pairs corresponding to I1. For a
nonempty T ⊆ S write I1 (T ) for the pairs (T1, T2), such that T1 ∩ T2 ⊇ T. Then(

LT [f ]
2)=S =

∑
(T1,T2)∈I1(T )

(
f=T1f=T2

)=S
.

Now I1 =
⋃
i∈S I1 (i) , so as a multiset inclusion-exclusion shows that we have

I1 =
∑
T⊆S

(−1)|T |−1
⋂
i∈T

I1 (i) =
∑
T⊆S

(−1)|T |−1 I1 (T ) .

We therefore have the equality:∑
(T1,T2)∈I1

(
f=T1f=T2

)=S
=

∑
T⊆S,T ̸=∅

(−1)|T |−1 (LT [f ]2)=S .
By the triangle inequality and Cauchy–Schwarz, we obtain that

∥
∑

(T1,T2)∈I1

(
f=T1f=T2

)=S ∥22 ⩽
 |S|∑

i=1

(
|S|
i

)
(4 |S|)−i

(∑
T⊆S

(4 |S|)|T | ∥
(
LT [f ]

2)=S ∥22
)

⩽
∑
T⊆S

(4 |S|)|T | ∥
(
LT [f ]

2)=S ∥22.
Summing over all S we have∑

S

∥
∑

(T1,T2)∈I1

(
f=T1f=T2

)=S ∥22 ⩽∑
T

(4d)|T | ∥LT [f ] ∥44.

Upper bounding the contribution from I2

We now upper bound the contribution from I2. Let T1∆T2 = S. Then for each S ′ ⊊ S, we
assert that AS′

(
f=T1f=T2

)
= 0. Let i ∈ S \ S ′. Then i ∈ T1∆T2. Assume without loss of

generality that i ∈ T1. Then

AS′∪T2
(
f=T1f=T2

)
= f=T2AS′∪T2f

=T1 = 0.
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This shows that AS′
[
f=T1f=T2

]
= 0. Hence,(

f=T1f=T2
)=S

= AS
(
f=T1f=T2

)
=
〈
f=T1 (x, ·) , f=T2 (x, ·)

〉
L2(µS)

.

By Cauchy–Schwarz we have

∥
∑

(T1,T2)∈I2

(
f=T1f=T2

)=S ∥22 = ∑
T1∆T2=T3∆T4=S

〈(
f=T1f=T2

)=S
,
(
f=T3f=T4

)=S〉
⩽

∑
T1∆T2=T3∆T4=S

∥∥∥(f=T1f=T2
)=S∥∥∥

2

∥∥∥(f=T3f=T4
)=S∥∥∥

2
.

Now, for each (T1, T2) ∈ I2 we have∥∥∥(f=T1f=T2
)=S∥∥∥2

2
= Ex∼µS

〈
f=T1 (x, ·) , f=T2 (x, ·)

〉2
L2(µS)

⩽ Ex∼µS
[
∥f=T1 (x, ·) ∥2

L2(µS)
∥f=T2

x ∥2
L2(µS)

]
= Ex∼µS∥f=T1

x ∥22Ex∼µS∥f=T2
x ∥22

= ∥f=T1∥22∥f=T2∥22,

where in the second equality we used the fact that ∥f=T (x, ·) ∥2
L2(µS)

depends only on xT∩S,

so these are independent for T = T1 and T = T2. This establishes

E
[(
f=T1f=T2

)=S (
f=T3f=T4

)=S]
⩽ ∥f=T1∥2∥f=T2∥2∥f=T3∥2∥f=T4∥2

Summing over all S, we obtain

∑
S

∥
∑

(T1,T2)∈I2

(
f=T1f=T2

)=S ∥22 ⩽ E(
{0,1}n,µ 1

2

)
∑
S⊆[n]

∥f=S∥2χS

4

⩽ 9dE
[
(
∑

∥f=S∥2χS)2
]2

= 9d∥f∥42.

Here the first inequality follows by expanding both terms and the second is a well known
consequence of hypercontractivity in the uniform cube.

Showing that there is no contribution from I3

We recall that I3 consist of the pairs with either (T1∆T2)\S ̸= ∅ or S \ (T1 ∪ T2) ̸= ∅. Then
we claim that

(
f=T1f=T2

)=S
= 0. If T1 ∪ T2 does not contain S, then

f=T1f=T2 = AT1∪T2
(
f=T1f=T2

)
=
∑
S′⊆S

(
f=T1f=T2

)=S′
.
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The uniqueness of the Efron–Stein decomposition shows that
(
f=T1f=T2

)=S
= 0. Suppose

now that there exists i ∈ (T1∆T2) \ S. Without loss of generality i ∈ T1. We then have

A[k]\{i}
(
f=T1f=T2

)
= f=T2 · A[k]\{i}f

=T1 = 0.

In particular,
(
f=T1f=T2

)=S
= 0 as for each S ⊆ [k] \ {i} we have(

f=T1f=T2
)=S [

A[k]\{i}
(
f=T1f=T2

)]=S
= 0

Combining the contributions from I1 and I2.

The lemma now follows by Cauchy–Schwarz. We have

∥f∥44 ⩽
∑
S

∥
(
f 2
)=S ∥22

⩽
∑
S

2
∑

(T1,T2)∈I1

∥
(
f 2
)=S ∥22 + 2

∑
(T1,T2)∈I2

∥
(
f 2
)=S ∥22


⩽ 2

∑
T

(4d)|T | ∥LT [f ] ∥44 + 2 · 9d∥f∥42.

Finally, using Lemma 4.2.8, we can derive Theorem 4.2.7 as follows.

Proof of Theorem 4.2.7. The proof is by induction on d. Assume the theorem holds for all
degrees ⩽ d− 1. Since DT,x [f ] is of degree d− |T | ⩽ d− 1, we have

1

2
∥f∥44 ⩽ 9d∥f∥42 +

∑
T ̸=∅

(4d)|T | ∥LT [f ] ∥44

= 9d∥f∥42 +
∑
T ̸=∅

(4d)|T | Ex∼µT ∥DT,x [f ] ∥44

⩽ 9d∥f∥42 +
∑
T ̸=∅

2 · 9d−|T | (4d)|T |
∑

T ′⊆[n]\T

(8d)|T
′| Ex∼µT∪T ′I

2
T∪T ′,x

= 9d∥f∥42 +
∑

T∩T ′=∅

2|T
′|+19d−|T | (4d)|T∪T

′| Ex∼µT∪T ′∥DT ′∪T,x [f ] ∥42

⩽ 9d
∑
T⊆S

(9d)|T | Ex∼µT I
2
T,x.
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4.3 Epsilon product spaces and the projection

operators

In this section, we present the framework of ϵ-product spaces, of which high dimensional
expanders are a special case. We also define key operators in this setting and show some
basic properties that they satisfy.

4.3.1 Complexes having ϵ-pseudorandom links.

It is useful for us to consider measures on V1×· · ·×Vk rather than pure (k− 1)-dimensional
complexes, which can be identified with subsets S ⊆ V k. Instead we identify a set with the
uniform measure over it.

Projected complexes

Let µ be a probability measure on V1 × · · · × Vk. We say that µ is a, weighted k-partite,
(k−1)-dimensional complex. Let S ⊆ [k] we write µS for the projection of µ on S. We write
µi rather than µ{i}. We write VS for the support of µS inside

∏
i∈S Vi. We write S for the

complement of S.

Restricted complexes

Let x ∈ VS. We write µx for the measure on VS given by

µx (y) =
µ (x, y)

µS (x)
.

We write Vx for the support of µx. We refer to (Vx, µx) as the link of µ on x.

ϵ-pseudorandom weighted graphs

Let V1, V2 be finite sets. A measure µ on V1 × V2 can be thought of as a weighted bipartite
graph. We say that µ is ϵ-pseudorandom if for each f1 : V1 → R, f2 : V2 → R we have∣∣E(x1,x2)∼µ [f1 (x1) f2 (x2)]− Ex1∼µ1 [f1 (x1)]Ex2∼µ2 [f2 (x2)]

∣∣ ⩽
ϵ
√
Varx1∼µ1 [f1 (x1)] Varx2∼µ2 [f2 (x2)].

We let A12 be the operator from L2 (V1, µ1) to L
2 (V2, µ2) given by

A12f (x) = Ey∼µx [f (y)] .

We have the following standard lemma.
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Lemma 4.3.1. The following are equivalent.

1. µ is ϵ-pseudorandom

2. ∥A12 − E∥2→2 ⩽ ϵ.

3. The second eigenvalue of A∗
12A12 is ⩽ ϵ2.

ϵ-pseudorandom links

Now let µ on V1× · · ·×Vk. We say that µ has ϵ-pseudorandom skeletons if for each S of size
2 the measure µS is ϵ-pseudorandom.

We say that µ is ϵ-product if for each S ⊆ [k] of size ⩽ k− 2 and each x ∈ VS the link µx
has ϵ-pseudorandom skeletons.

In all that follows we assume that µ is an ϵ-product measure on V1 × · · · × Vk.

Inheritance

The definition of ϵ-product makes it easy for inductive type argument for the following
reason.

Lemma 4.3.2. Let µ on
∏k

i=1 Vi be ϵ-product. Let S, T ⊆ [k] be disjoint. Then for each
x ∈ VS, the probability measure (µx)T = (µS∪T )x is ϵ-product.

Proof. All the skeletons of links of (µS→x)T are also skeletons of links of µ.

Pseudorandomness as a measure of independence

Let S, T ⊆ [n]. Then we have an operator AS,T : L2 (VS, µS) → L2 (VT , µT ) . The operator is
given by

AS,Tf (y) = Ex∼µ [f (xS) |xT = y] .

We write AµS,T to stress that the operator is taken with respect to µ. We write AS for A[k],S,
the operator given by restricting S and taking expectation.

When S, T are disjoint we expect AS,Tf to be close to E [f ] , as in the product case AS,T
is equal to the expectation. In fact, we do have the following.

Lemma 4.3.3. Let µ be ϵ-product. Let S, T ⊆ [k] be disjoint, and let f ∈ L2 (VS, µS). We
have

∥AS,Tf − E [f ] ∥22 ⩽ |S| |T | ϵ2∥f∥22

Proof. We prove it by induction on k. The case where k = 2 is Lemma 4.3.1, so we assume
k > 2. Given a probability space (Ω, µ) we write 1⊥ for the subspace of L2 (Ω, µ) consisting
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of functions that are orthogonal to the constant function 1. We write ∥̃AS,T ∥̃ for the L2

operator norm of AS,T as an operator from 1⊥ to 1⊥. I.e.

∥̃AS,T ∥̃ = max
f∈1⊥

∥AS,Tf∥2
∥f∥2

.

Our goal is to show that

∥̃AS,T ∥̃ ⩽
√

|S| |T |ϵ.

Discarding the trivial cases

If T = ∅, then AS,T = E and the result is trivial. If S ∪ T ̸= [k] the result follows by

working with the space (VS∪T , µS∪T ) rather then
(
V[k], µ[k]

)
. We also have ∥̃AS,T ∥̃ = ∥̃A∗

S,T ∥̃
as AS,T1 = 1. As A∗

S,T = AT,S we may assume that |T | ⩽ |S| . As k > 2 we may therefore
assume that |T | ⩾ 2.

Completing the proof in the case where |T | > 1

Assume without loss of generality that 1 ∈ T .
Let f ∈ 1⊥. Using the fact that the equality

∥X∥22 = E [X]2 + ∥X − E [X] ∥22

holds for every random variable X we have

∥AS,Tf∥22 = Ey∼µTE
2
x∼µy [f (xS)]

= Ea∼µ1∥A
µa
S,T\{1}f∥

2
2

= Ea∼µ1
[
E2
µaf + ∥AµaS,T\{1}f − Eµaf∥22

]
.

= Ea∼µ1
[
AS,1f

2 (a) + ∥AµaS,T\{1}f − Eµaf∥22
]

By induction we may upper bound the right hand side we have

RHS ⩽ Ea∼µ1
[
AS,1f

2 (a) + |S| |T − 1| ϵ2∥f∥2L2(µa)

]
.

= ∥AS,1f∥22 + |S| |T − 1| ϵ2∥f∥22.
⩽ |S|+ |S| |T − 1| ϵ2∥f∥22
= |S| |T | ϵ2∥f∥22
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Understanding the operators AS,T and their compositions

We now deduce that we have a similar upper bound of the form

∥AS,T − AS,S∩T∥2→2 ⩽
√

|S| |T |ϵ.
Corollary 4.3.4. Let S, T ⊆ [k], and let f ∈ L2 (µS). Then

∥AS,Tf − AS,S∩Tf∥22 ⩽ |S| |T | ϵ2∥f∥22.
Proof. Lemma 4.3.3 covers the case S ∩ T = ∅. This shows that the corollary is true in µx
for each x ∈ VS∩T . Therefore

∥AS,Tf − AS,S∩Tf∥22 = Ex∼µS∩T ∥A
µx
S\T,T\Sf − AµxS\T,∅f∥

2
L2(µx)

⩽ |S| |T | ϵ2Ex∥f∥2L2(µx)

= |S| |T | ϵ2∥f∥22.

We now show that compositions behave similarly to the product space setting.

Lemma 4.3.5. We have

∥AT2AT1 − AT1∩T2∥2→2 ⩽ |T1| |T2| ϵ.

Proof. We may assume that T1 ∩ T2 = ∅. Indeed, if the lemma holds for T1 ∩ T2 = ∅ then
it holds in general. Indeed, write

T̃1 = T1 \ T2, T̃2 = T2 \ T1, A = [k] \ (T1 ∩ T2) .
Let x ∈ VT1∩T2 . Then we have

(AT2AT1f) (x, ·) =
(
Aµx
T̃2
Aµx
T̃1

)
(f (x, ·))

and
AT1∩T2f (x, ·) = Ey∼µx [f (x, y)] .

Therefore once we prove the case T1 ∩ T2 = ∅ it would imply that for each x

Ey∼µx (AT2AT1f (x, y)− AT1∩T2f (x, y))
2 ⩽ |T1| |T2| ϵ2Ey∼µxf (x, y)

2 .

The lemma will then follow by taking expectations over x.
Let us now settle the case T1 ∩ T2 = ∅. Write T = AT2AT1 . Then

T = AT1,T2AT1 .

Write g = AT1f . We have ∥g∥2 ⩽ ∥f∥2 by Cauchy–Schwarz. By Lemma 4.3.3 we have

∥Tf − E [f ] ∥22 = ∥AT1,T2g − Eg∥22
⩽ |T1| |T2| ϵ2∥g∥22
⩽ |T1| |T2| ϵ2∥f∥22.
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4.4 Efron–Stein decompositions for link expanders

In this section, we introduce a new approximate Efron–Stein decomposition for high dimen-
sional expanders. In fact, it is more convenient to state and prove our results in the more
general setting of ϵ-product spaces, of which high dimensional expanders are a special case.
We proceed to discuss this setting below.

We first define the Efron–Stein decomposition via the usual formula for it.

Definition 4.4.1. Let f ∈ L2 (V, µ) and S ⊆ [n] . We write

f=S =
∑
T⊆[S]

(−1)|S\T |ATf.

The functions f=S are defined in terms of the operators AT . L
2-wise the composition of

the operators {AT}T⊆[k] behave similarly to the compositions in the product case setting.
We satrt this section by making use of that and showing that many known facts from the
product setting generalize to the ϵ-product setting up to a small error.

4.4.1 L2-approximations for the Efron–Stein decomposition

Thinking of ϵ as tending to 0 in a much quicker pace than 1
k
. Our goal is now to show that

if µ is ϵ-product, then we have:

1. ∣∣∣∣∣∣∥f∥22 −
∑
S⊆[k]

∥f=S∥22

∣∣∣∣∣∣ = o
(
∥f∥22

)
,

2. and more generally ∣∣∣∣∣⟨f, g⟩ −∑
S

〈
f=S, g=S

〉∣∣∣∣∣ = o (∥f∥2∥g∥2) .

One main tool involves the notion of a junta. We say that g : V → R is a T -junta if g (x)
depends only on xT . Equivalently, g is a T -junta if ATg = g.

Our first step towards the proof is a near orthogonality result between f=T and g=S for
T ̸= S.

We start by a Fourier formula that holds exactly, this is unlike most of the results in this
section that only generalize the situation from the product space setting up to a small error
term.

Lemma 4.4.2. We have
AS [f ] =

∑
T⊆S

f=T (x) .

In particular f =
∑

S⊆[k] f
=S.
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Proof. We have ∑
T⊆S

f=T =
∑
T⊆S

∑
T ′⊆T

(−1)|T\T
′|AT ′f

=
∑
T ′⊆S

AT ′f
∑

T ′⊆T⊆S

(−1)|T\T
′|

= ASf,

where the last equality follows from the fact that whenever T ′ ̸= S and i ∈ S \ T ′ the pairs

(T, T∆ {i})

contribute opposing signs to the sum
∑

T ′⊆T⊆S (−1)|T\T
′| . The ‘in particular’ part follows by

taking S = [k] .

The following lemma holds even without assuming that µ is ϵ-product.

Lemma 4.4.3. We have ∥AS,T∥2→2 ⩽ 1 and

∥f=S∥2 ⩽ 2|S|∥f∥2.

Proof. The triangle inequality implies that it suffices to prove the former claim. Now by
Cauchy–Schwarz we have

∥AS,Tf∥22 = Ex∼µTAS,Tf (x)
2

= Ex∼µT
(
Ey∼(µx)T

f (y)
)2

⩽ Ex∼µTEy∼(µx)T
f (y)2

= ∥f∥22.

Lemma 4.4.4. Let f : V → R, T be a set not containing S, and g be a T -junta. Then〈
f=S, g

〉
⩽ ϵ
√

|S| |T |2|S|∥f∥2∥g∥2.

Proof. As AT is the dual to the inclusion operator L2 (VT ) → L2
(
V[k]
)
we have〈

f=S, g
〉
=
〈
ATf

=S, g
〉
.

By Cauchy–Schwarz it is sufficient to show that

∥ATf=S∥2 ⩽ ϵ |S| |T | 2|S|∥f∥2.

Now
ATf

=S =
∑
S′⊆S

(−1)|S\S
′|ATAS′f.
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Roughly speaking, we rely on Lemma 4.4.2, which says that ∥ATAS′ − AT∩S′∥2→2 is small
together with the fact that ∑

S′⊆S

(−1)|S\S
′|AT∩S′f = 0. (4.3)

The equality follows by choosing an arbitrary i ∈ S\T and noting that the sets (S ′, S ′∆ {i})S′⊆S
correspond to the same term A[k],T∩S′ , while appearing with opposite signs. This shows that
we have

ATf
=S =

∑
S′⊆S

(−1)|S\S
′| (ATAS′f − AT∩S′f) .

By Lemma 4.3.5 we have

∥ATAS′f − AT∩S′f∥2 ⩽
√

|T | |S|ϵ∥f∥2 ⩽
√

|S| |T |ϵ∥f∥2.

Hence,
∥ATf=S∥2 ⩽

√
|S| |T |2|S|ϵ.

Proof of our near orthogonality result

Corollary 4.4.5. Let T ̸= S. Then
〈
f=S, g=T

〉
⩽ 22|S|+2|T |ϵ∥f∥2∥g∥2.

Proof. The function g=T is a T -junta. By Lemmas 4.4.4 and 4.4.3 we therefore have the
following chain of inequalities if T does not contain S.〈

f=S, g=T
〉
⩽ ϵ
√

|S| |T |2|S|∥f∥2∥g=T∥2 ⩽ ϵ22|S|+2|T |∥f∥2∥g∥2.

A similar chain of inequalities holds when S does not contain T.

Parseval holds approximately for the Efron–Stein decomposition

Lemma 4.4.6. We have∣∣∣∣∣∣⟨f, g⟩ −
∑
S⊆[k]

〈
f=S, g=S

〉∣∣∣∣∣∣ ⩽ 24kϵ∥f∥2∥g∥2.

Moreover, if f is a T -junta, then∣∣∣∣∣⟨f, g⟩ −∑
S⊆T

〈
f=S, g=S

〉∣∣∣∣∣ = 24|T |ϵ∥f∥2∥g∥2.
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Proof. We have ⟨f, g⟩ =
∑

S⊆[k]

〈
f=S, g=S

〉
+
∑

S ̸=T
〈
f=S, g=T

〉
. By corollary 4.4.5 we have∑

S ̸=T

〈
f=S, g=T

〉
⩽ 24kϵ∥f∥2∥g∥2.

For the ‘moreover’ part note that if f is a T -junta, then

⟨f, g⟩ = ⟨f, ATg⟩L2(µT )
.

We may then apply the first part of the lemma in µT noting that (ATg)
=T ′

= g=T
′
for each

T ′ ⊆ T .(
f=S

)=S
is L2-close to f=S.

In the product space setting we have
(
f=S

)=T
=

{
f=S T = S

0 T ̸= S
. Here we have the following

instead:

Lemma 4.4.7. Let g = f=S. Then:

1. If S ̸= T , then
∥g=T∥22 ⩽ 28kϵ2∥f∥22

2.
∥g=S − g∥22 ⩽ 210kϵ2∥f∥22.

Proof. We have

g=T =
∑

T ′⊆T,S′⊆S

(−1)|S\S
′|+|T\T ′|AT ′AS′f.

Write
h =

∑
T ′⊆T,S′⊆S

(−1)|S\S
′|+|T\T ′|AT ′∩S′f.

By Lemma 4.3.4 we therefore have

∥h− g=T∥2 ⩽ 22kmax
T ′,S′

∥AT ′AS′ − AT ′∩S′∥2→2∥f∥2 ⩽ 24kϵ∥f∥2.

Now we claim that h = 0. Indeed, assume without loss of generality that T is not contained
in S and let i ∈ T \ S. Then the terms AT ′∩S′ appears with opposing sums for the pairs T ′

and T ′∆ {i}.
(2)-follows by the fact that

∥g=S − g∥2 =

∥∥∥∥∥∑
T ̸=S

g=T

∥∥∥∥∥
2

⩽
∑
T ̸=S

∥g=T∥2 ⩽ 25kϵ∥f∥2.
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4.4.2 Approximate Efron-Stein decomposition

Again think of ϵ as tending to 0 much more quickly than 1
k
. We now define a notion of

(α, ϵ′)-approximate Efron–Stein decomposition. We show that a version of Lemma 4.4.6 still
holds for these approximate Efron–Stein decompositions.

Motivation

One reason that demonstrates our need for an approximate Efron–Stein decomposition is as
follows. Let f⩽d =

∑
|S|<d f

=S. Then we do not have

(
f⩽d
)=S

=

{
f=S |S| ⩽ d

0 |S| > d
,

but we would nevertheless like to work with the decomposition
{
f=S

}
|S|⩽d as an approximate

Efron–Stein decomposition for f . We capture that notion as follows.

Defining the (α, ϵ′)-approximate Efron–Stein decomposition

Definition 4.4.8. We say that {fS}S⊆[k] is an (α, ϵ′)-approximate Efron–Stein decomposi-
tion if

1. ∥f∥2 ⩽ α.

2.
∥f −

∑
S

fS∥2 < ϵ′,

3. For each S there exists hS with ∥hS∥2 ⩽ α and

∥h=SS − fS∥2 ⩽ ϵ′.

It turns out that we have an approximate Parseval theorem for every approximate Efron–
Stein decomposition.

Lemma 4.4.9. Let α1, α2, ϵ1, ϵ2 > 0. Suppose that f has an (α1, ϵ1)-bounded approximate
Efron–Stein decomposition {fS} and g has an (α2, ϵ2)-bounded Efron–Stein decomposition
{gS} . Then ∣∣∣∣∣⟨f, g⟩ −∑

S

⟨fS, gS⟩

∣∣∣∣∣ ⩽ 26k (ϵ1α2 + ϵ2α1 + ϵα1α2) .



CHAPTER 4. HYPERCONTRACTIVE INEQUALITIES OVER EPSILON PRODUCT
SPACES 112

Proof. For each S ⊆ [k] let f̃S, g̃S be with ∥f̃S∥2 ⩽ α1, ∥g̃S∥2 ⩽ α2

∥f̃=S
S − fS∥2 ⩽ ϵ1,

and
∥g̃=SS − gS∥2 ⩽ ϵ2.

Let
f ′
S = f̃=S

S , g′S = g̃=SS ,

f ′ =
∑
S⊆[k]

f ′
S

and
g′ =

∑
S⊆[k]

g′S.

By Lemma 4.4.5 we have

⟨f ′, g′⟩ =
∑
S

⟨f ′
S, g

′
S⟩+

∑
S ̸=T⊆[k]

⟨f ′
S, g

′
T ⟩

=
∑
S

⟨f ′
S, g

′
S⟩ ± 26kϵα1α2.

Now by Cauchy–Schwarz

⟨f, g⟩ = ⟨f ′, g′⟩+ ⟨f ′, g − g′⟩+ ⟨f − f ′, g⟩

=
∑
S

⟨f ′
S, g

′
S⟩ ±

(
26kϵα1α2 + ∥f ′∥2∥g − g′∥2 + ∥f − f ′∥2∥g∥2

)
=
∑
S

⟨f ′
S, g

′
S⟩ ±

(
26kϵα1α2 + 22kα1ϵ2 + ϵ1α2

)
,

where the last equality used

∥f ′∥2 ⩽
∑

∥f ′
S∥2 ⩽ 2k+|S|α1 ⩽ 22kα1,

which follows from Lemma 4.4.3.
To complete the proof we note that we similarly have

⟨f ′
S, g

′
S⟩ = ⟨fS, gS⟩ ± ∥fS∥2∥gS − g′S∥2 + ∥f ′

S − fS∥2∥g′S∥2
= ⟨fS, gS⟩ ± αϵ2 + 2kϵ1α2.
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The above approximate Efron–Stein decomposition works well when we care about L2-
norms. We actually care about closeness in higher norms specifically 4-norms. Our strategy
when wishing to upper bound ∥f − f ′∥4 is to use the inequality

∥f − f ′∥44 ⩽ ∥f − f ′∥22 (∥f∥∞ + ∥f ′∥∞) .

Where we hope that the L2-closeness is sufficient to overcome the loss of using infinity norms.
We would therefore like everything to have a relatively small infinity norm.

Definition 4.4.10. We say that {fS} is a (β, α, ϵ′)-bounded approximate Efron-Stein de-
composition if it is an (α, ϵ′)-approximate Efron–Stein decomposition and moreover for each
S:

∥h=SS ∥∞, ∥fS∥∞, ∥f∥∞
are all ⩽ β. Here h=SS is as in Definition 4.4.8.

We now show that the different Efron–Stein decompositions of a function f are all close
in L4.

Lemma 4.4.11. Suppose that {fS} , {f ′
S} are (β, α, ϵ′)-bounded approximate Efron–Stein

decompositions for f. Then

1.
∥fS − f ′

S∥22 ⩽ Ok (ϵ
′)
2
+Ok

(
ϵα2
)
,

2.
∥fS − f ′

S∥44 ⩽ Ok

(
ϵ′2β2

)
+Ok

(
ϵα2β2

)
,

3.
∥
∑
S

(fS − f ′
S) ∥44 ⩽ Ok

(
ϵ′2β2

)
+Ok

(
ϵ2α2β2

)
,

4. and

∥f −
∑
S⊆[k]

fS∥44 ⩽ Ok

(
ϵ2β2

) (
α2 + ∥f∥22

)
.

Proof. (3) is an immediate corollary of (2). (4) also follows immediately from (3) by setting
f ′
S = f=S while applying it with 2kβ rather than β. Indeed, ∥f=S∥∞ ⩽ 2k∥f∥∞ ⩽ 2kβ.
Therefore

{
f=S

}
S⊆[k]

is a
(
2kβ, α, 0

)
-approximate Efron–Stein decomposition for f . (2)

follows immediately from (1) as we have

∥fS − f ′
S∥44 ⩽ ∥fS − f ′

S∥22∥fS − f ′
S∥2∞

and ∥fS − f ′
S∥2∞ ⩽ 4β2.

We now prove (1).
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Reducing to the case that f ′S = f=S

First we assert that we may assume that f ′
S = f=S for each S. Indeed,

{
f=S

}
is a (β, α, 0)-

Efron–Stein decomposition. By the triangle inequality we have

∥fS − f ′
S∥2 ⩽ ∥fS − f=S∥2 + ∥f=S − f ′

S∥2,

which implies (by Hólder) that

∥fS − f ′
S∥22 ⩽ 2∥fS − f=S∥22 + 2∥f=S − f ′

S∥22.

This shows that it is sufficient to prove the theorem when {fS} =
{
f=S

}
and when

{f ′
S} =

{
f=S

}
. Without loss of generality we may assume that f ′

S = f=S.

Reducing to the case that fS = h=S
S

Let hS be with ∥hS∥2 ⩽ α and ∥fS − h=SS ∥2 < ϵ′. Setting f̃S = h=SS we obtain by the

triangle inequality that
{
f̃S

}
S⊆[k]

is a
(
β, α,

(
2k + 1

)
ϵ′
)
-bounded approximate Efron–Stein

decomposition for f . We have

∥fS − f=S∥22 ⩽ 2∥f̃S − fS∥22 + 2∥f̃S − f=S∥2 ⩽ 2ϵ′ + 2∥f̃S − f=S∥2.

Therefore it is sufficient to prove (1) when fS is replaced by f̃S.

Proving the lemma when fS = h=S
S and f ′S = f=S

By Cauchy–Schwarz and Corollary 4.4.5 we have:〈
fS − f=S, f

〉
=
∑
T⊆[k]

〈
fS − f=S, f=T

〉
=
〈
fS − f=S, f=S

〉
+
∑
T ̸=S

〈
f=S − h=SS , f=T

〉
=
〈
fS − f=S, f=S

〉
+Ok

(
ϵα2
)
.

Again by Corollary 4.4.5 and Cauchy–Schwarz we have:〈
fS − f=S, f

〉
=

〈
fS − f=S,

∑
T

fT

〉
+

〈
fS − f=S, f −

∑
T

fT

〉
=
〈
fS − f=S, fS

〉
+Ok

(
ϵα2
)
+ ∥fS − f=S∥2ϵ′.

Rearranging we obtain,

∥fS − f=S∥22 ⩽ Ok (ϵ
′)
(
∥f=S − fS∥2

)
+Ok

(
ϵα2
)
.

This shows that
∥fS − f=S∥22 ⩽ Ok (ϵ

′)
2
+Ok

(
ϵα2
)
.
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4.5 Proof overview

Building on the framework we established in Section 4, we can now give a proof overview
for our hypercontactive inequality on high dimensional expanders. Recall that in the setting
of direct products, we first prove a key lemma, (Lemma 4.2.8) and then use it to derive the
theorem via an inductive argument. We now give a sketch of how to generalise this approach
to the ϵ-product setting.

4.5.1 Generalising Lemma 4.2.8

Recall that we would like to show a lemma of the form

∥f∥44 ⩽ Cd∥f∥42 +
∑
S

(4d)|S| ∥LS [f ] ∥44.

We instead show a similar lemma that holds up to a small error term of Ok (ϵ∥f∥22∥f∥2∞):

1

2
∥f⩽d∥44 ⩽ 9d∥f⩽d∥42 + 4

∑
0<|T |⩽d

(4d)|T | ∥L⩽d
T [f ] ∥44 +Ok (ϵ) ∥f∥22∥f∥2∞. (4.4)

However, first note that we do not have a useful notion of a low degree function. Instead
we work with

f⩽d =
∑
|S|⩽d

f=S.

In turn, instead of LS [f ] we have

L⩽d
S [f ] =

∑
T⊇S,|T |⩽d

f=T .

We show that when expanding((
f⩽d
)2)=S

=
∑
T1,T2

(
f=T1f=T2

)=S
,

there are three kinds of terms: (1) terms that vanish in the product space setting, but here
they do not; (2) terms with T1 ∩ T2 ∩ S ̸= ∅; and (3) terms with T1∆T2 = S.

Our high-level approach is to show that the same proof as in the setting of product
spaces works up to an error term. We accomplish that by expressing everything in terms
of our operators {AS}, and we then replace equalities that hold in the product space by
L2-approximation of the form

∥ASAT − AS∩T∥2→2 ⩽ Ok (ϵ) .

At first glance, it might appear that this approach would not suffice, as we eventually would
like to upper bound 4-norms of terms, or 2-norms of expressions involving the product of two
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functions such as
(
f=T1f=T2

)S
. Nevertheless, we are able to accomplish that via inequalities

of the form
∥f∥44 ⩽ ∥f∥22∥f∥2∞.

We then use the fact that all our terms are bounded byOk (∥f∥∞), and our L2-approximations
involve ϵ, and therefore beat the Ok (1)-terms. This allows us to generalise Lemma 4.2.8 and
prove (4.4).

4.5.2 Applying induction

After having an inequality of the form

∥f⩽d∥44 ⩽ Cd∥f⩽d∥22 +
∑
S

(4d)|S| ∥L⩽d
S [f ] ∥44,

we would like to use a similar idea to the one we used in the product space setting; that
is, restrict S to some x ∈ VS, and then apply induction for the function L⩽d

S [f ] (x, ·) . The
problem is that the restricted function L⩽d

S [f ] (x, ·) is no longer of degree d− |S|, and hence
we can no longer use induction.

We overcome this problem by using the notion of our approximate Efron–Stein decompo-
sitions. Namely, we show that L⩽d

S has two different approximate Efron–Stein decomposition.
The first one is {

f=T
}
T⊇S,|T |⩽d ,

and the other one replaces f=T by the function fT

(x, y) 7→ (LS [f ] (x, ·))=T\S (y) .

We then obtain that
∑

|T |⊇S,|T |⩽d fT (x, ·) is of the form D
⩽d−|S|
S,x , which allows us to use

induction similarly as in the product space setting.
After applying induction we get the compositions of two derivatives, and we are again

able to translate them back to expressions of the form Ex∼µSI2S,x by showing that DS,xDT,y

and DS∪T,(x,y) are both approximate Efron–Stein decompositions of the same expression.
The remaining step is to upper bound the influences. We achieve that by generalising

the inequality
Ex∼µS

[
I2S,x
]
⩽ δ∥LS [f ] ∥22

from the product space setting, where crucially, we obtain that without upper bounding
∥IS,x∥∞.
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4.6 Laplacians, influences, and globalness on epsilon

measures

In this section, we define the notions of laplacians, derivatives and influences in the set-
ting of ϵ-measures, give bounded approximated Efron–Stein decompositions related to the
Laplacians, define globalness, and show that it implies small influences.

4.6.1 Defining the Laplacians, derivatives and influences

Definition 4.6.1. We define the Laplacians via the formula

Li [f ] = f − A[k]\{i}f.

Lemma 4.6.2. We have

Li [f ] =
∑
S∋i

f=S.

Proof. This follows immediately from Lemma 4.4.2, which shows that

A[k]\{i} [f ] =
∑

S⊆[k]\{i}

f=S.

Definition 4.6.3. We define LS [f ] =
∑

T⊇S f
=T . Alternatively,

LS [f ] =
∑
T⊆S

(−1)|T |A[k]\Tf.

Let x ∈ VS. We let DS,x = LS [f ] (x, ·), i.e. the function in L2 (Vx, µx) obtained by plugging
in x in the S coordinates. We let

IS,x [f ] = ∥DS,x [f ] ∥L2(Vx,µx).

4.6.2 Bounded approximated Efron–Stein decompositions
related to the Laplacians

Lemma 4.6.4. . There exists C = Ok (1), such that
{
f=T

}
T⊇S is a (C∥f∥∞, C∥f∥2, 0)-

bounded approximate Efron–Stein decomposition for LS [f ] .

Proof. We have

∥f=S∥∞ ⩽
∑
T⊆S

∥ATf∥∞ ⩽ 2|S|∥f∥∞
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and
∥LS [f ] ∥∞ ⩽

∑
T⊆S

∥ATf∥∞ ⩽ 2|S|∥f∥∞.

The other properties are easy to verify.

Let f ∈ L2
(
V[k], µ[k]

)
and let gT ∈ L2 (VT , µT ) be given by

gT (x) = IT,x [f ] .

Then gT can be interpreted interms of the Laplacians and the averaging operators as

gT = AT
(
LT [f ]

2) .
Suppose that {fS}S⊆[k] is a (β, α, ϵ′)-bounded approximate Efron–Stein decompositions for

f and set L̃T [f ] =
∑

S⊇T fS. The following lemma essentially shows that the function

AT

(
L̃T [f ]

2
)

is a good L2-approximation for the function gT . This can be interpreted by

saying that the generalised influences could be computed via any (β, α, ϵ′)-bounded approx-
imate Efron–Stein decomposition for f .

Lemma 4.6.5. Let {fS} and {f ′
S} be (β, α, ϵ′)-bounded Efron-Stein decompositions for f.

Then

∥AT

(∑
S⊇T

fS

)2

∥22 ⩽ 2∥AT

(∑
S′⊇T

f ′
S

)2

∥22 +Ok

(
ϵ′2β2

)
+Ok

(
ϵα2β2

)
.

Proof. By Cauchy–Schwarz we have(∑
S⊇T

fS

)2

⩽ 2

(∑
S⊇T

f ′
S

)2

+ 2

(∑
S⊇T

f ′
S − fS

)2

.

Therefore

∥AT

(∑
S⊇T

fS

)2

∥22 ⩽ 2∥AT

(∑
S′⊇T

f ′
S

)2

∥22 + 2∥AT

(∑
S⊇T

f ′
S − fS

)2

∥22.

Now since AT contracts 2-norms (Lemma 4.4.3). We have

2∥AT

(∑
S⊇T

f ′
S − fS

)2

∥22 ⩽ 2∥
∑
S⊇T

f ′
S − fS∥44.

Lemma 4.4.11 now completes the proof.
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We now show that Lemma 4.6.4 is a special case of a more general phenomenon. When-
ever {fS}S⊆[k] is a (β, α, ϵ

′)-bounded approximate Efron–Stein decomposition for f , we obtain

that {fT}T⊇S is a
(
β̃, α̃, ϵ̃

)
-bounded approximate Efron–Stein decomposition for suitable

values of β̃, α̃, ϵ̃. We show the following.

Lemma 4.6.6. There exists C = Ok (1), such that the following holds. Suppose that
{fT}T⊆[k] is a (β, α, ϵ′)-Approximate Efron–Stein decomposition for f . Then {fT}T⊇S is

a (Cβ, α, C (ϵ′ + α
√
ϵ))-Approximate Efron–Stein decomposition for LS [f ] .

Proof. The only requirements that are not automatically inherited from f are the upper
bounds on ∥LS [f ] ∥∞, and on ∥LSf −

∑
T⊇S fT∥2. The former inequality follows from the

inequality
∥LS [f ] ∥∞ ⩽ 2|S|∥f∥∞ ⩽ 2kβ.

While the latter follows from Lemma 4.4.11 and the triangle inequality:

∥LSf −
∑
T⊇S

fT∥2 = ∥
∑
T⊇S

(
f=T − fT

)
∥2.

⩽
∑
T⊇S

∥f=T − fT∥2

⩽ Ok (ϵ
′) +Ok

(
α
√
ϵ
)
.

4.6.3 Low degree functions and truncations

Definition 4.6.7. We define the low degree part of f by setting

f⩽d =
∑
|S|⩽d

f=S

we define the low degree Laplacians of f by setting

L⩽d
T [f ] =

∑
S⊇T,|S|⩽d

f=T .

We now show that if {fT}T⊆[k] is a (β, α, ϵ′)bounded approxiate Efron–Stein decomposi-

tion for f , then we may turn it into an Efron–Stein decomposition for f⩽d and L⩽d
S [f ] in the

obvious way.

Lemma 4.6.8. There exists C = Ok (1), such that the following holds. Suppose that
{fT}T⊆[k] is a (β, α, ϵ′)-Approximate Efron–Stein decomposition for f . Then



CHAPTER 4. HYPERCONTRACTIVE INEQUALITIES OVER EPSILON PRODUCT
SPACES 120

1. The functions {fT}|T |⩽d are a (Cβ, α, Cϵ+ Cϵ′)-approximate Efron–Stein decomposi-

tion for f⩽d.

2. the functions {fT}|T |⊇S,|T |⩽d are a (Cβ, α, Cϵ+ Cϵ′)-approximate Efron–Stein decom-

position for L⩽d
S [f ] .

Proof. It is sufficient to prove (2) as (1) is the special case where S = ∅. By Lemma 4.4.11,
we have

∥fT − f=T∥2 ⩽ Ok (ϵ
′) +Ok

(√
ϵα
)
.

Hence, by the triangle inequality we have

∥L⩽d
S [f ]−

∑
T⊇S,|T |⩽d

fT∥2 ⩽
∑

T⊇S,|T |⩽d

∥f=T − fT∥2

= Ok (ϵ
′) +Ok

(√
ϵα
)
.

Moreover,

∥L⩽d
S [f ] ∥∞ =

∥∥∥∥∥∥
∑

T⊇S,|T |⩽d

f=T

∥∥∥∥∥∥
∞

⩽ 2kmax
S

∥f=S∥∞

⩽ 4k∥f∥∞ ⩽ 4kβ.

4.6.4 Globalness

Unlike the product space setting the two possible definitions of globalness are not equivalent.
It turns out to be more convenient to work with the notion concerning the restrictions.

Definition 4.6.9. We say that f is (d, δ)-global if for each |S| ⩽ d and each x ∈ VS we have

∥f (x, ·) ∥L2(Vx,µx) ⩽ δ.

Claim 4.6.10. If f is (d, δ)-global and ϵ is sufficiently small, then for each T of size ⩽ d we
have

∥f=T∥∞ ⩽ 2|T |δ.

Proof. This follows from the triangle inequality once we show that ∥AT ′f∥∞ ⩽ δ for each
T ′ ⊆ T . Indeed, for each x we have

AT ′f (x) = E(Vx,µx)f (x, ·) ⩽ ∥f (x, ·) ∥L2(Vx,µx) ⩽ δ.
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Lemma 4.6.11. Suppose that f is (d, δ)-global. Then
{
f=S

}
|S|⩽d is a

(
kdδ, ∥f∥2, 0

)
-bounded

Efron–Stein decomposition for f⩽d.

Proof. We have ∥f=S∥∞ ⩽ 2dδ by Claim 4.6.10. We also have

∥f∥∞ ⩽
∑

∥f=S∥∞ ⩽ kdδ.

The rest of the conditions hold automatically.

Definition 4.6.12. We say that f is of (β, α)-degree d if f =
∑

|S|⩽d fS and fS = h=SS where

∥hS∥2 ⩽ α, ∥h=SS ∥∞ ⩽ β and ∥f∥2 ⩽ α, ∥f∥∞ ⩽ β.

If f =
∑

|S|⩽d fS is of (β, α)-degree d as above, then {fS} is one (β, α, 0)-bounded Efron–

Stein decomposition for f. We now show that in this case the canonical
{
f=S

}
|S|⩽d is also

(β′, α′, ϵ′)-bounded Efron–Stein decomposition for the right parameters.

4.6.5 Other approximate Efron-Stein decompositions for
LT [f ] , L

⩽d
T [f ]

Definition 4.6.13. We define the low degree derivatives for T ⊆ [k] and x ∈ VT

D⩽d
T,x : L

2 (µ) → L2 (Vx, µx)

via
D⩽d
T,x [f ] = L⩽d

T [f ] (x, ·)

The low degree influences for T ⊆ [n] and x ∈ VT are defined by

I⩽dT,x [f ] = ∥L⩽d
T [f ] (x, ·) ∥2L2(Vx,µx)

.

We now move on to the critical lemma for our inductive approach. In the product space
setting our inductive approach relied on the fact that DT,xf is of degree ⩽ d− |T | whenever
f is of degree d. Here we show that LT [f ] has an alternative (β, α, ϵ)-bounded approximate
Efron–Stein decompositions {fS}S⊇T that gives rise to a function

L̃⩽d
T [f ] =

∑
S⊇T,|S|⩽d

f=S

with the property that for each x L̃⩽d
T [f ] (x, ·) is of degree d− |T |.

Lemma 4.6.14. Let fS (x, y) = D
=S\T
T,x [f ](y). Then for each f :

1. The set {fS}S⊇T is a (C∥f∥∞, C∥f∥2, Cϵ∥f∥2)-bounded approximate Efron–Stein de-
composition for LT [f ] .
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2. The set {fS}S⊇T,|S|⩽d is a (C∥f∥∞, C∥f∥2, Cϵ∥f∥2)-bounded approximate Efron–Stein

decomposition for L⩽d
T [f ] .

3. If T ′ ⊇ T , then the set {fS}S⊇T ′ is a (C∥f∥∞, C∥f∥2, Cϵ∥f∥2)-bounded approximate
Efron Stein decomposition for LT ′ [f ] .

4. The set {fS}S⊇T ′,|S|⩽d is a (C∥f∥∞, C∥f∥2, Cϵ∥f∥2)-bounded approximate Efron–Stein

decomposition for L⩽d
T ′ [f ] .

5. If f is (d, δ)-global. Then {fS}S⊇T ′,|S|⩽d is a (Cδ,C∥f∥2, Cϵ∥f∥2)-bounded approximate

Efron–Stein decomposition for L⩽d
T ′ [f ] .

Proof. Due to Lemma 4.6.8 (1) implies (2)-(4). By Lemma 4.4.3 all the operators AI contract
∞-norms. We therefore have

∥fS∥∞ ⩽ max
x

2|S\T |∥DT,xf∥∞ = 2|S\T |∥LTf∥∞ ⩽ 2|S|∥f∥∞.

To complete the proof it is sufficient to show that

∥fS − f=S∥2 ⩽ Ok (ϵ∥f∥2)
as this will also imply that

∥
∑
S⊇T

fS − LT [f ] ∥2 = ∥
∑
S⊇T

fS −
∑
S⊇T

f=S∥2

= Ok (ϵ∥f∥2) .
We have

fS =
∑
S′⊆S

(−1)|S\S
′|AS′LTf.

=
∑
S′⊆S

∑
T ′⊆T

(−1)|S\S
′|+|T ′|AS′A[k]\T ′f.

Write

h =
∑
S′⊆S

∑
T ′⊆T

(−1)|S\S
′|+|T ′|AS′\T ′f

Then by Lemma 4.3.4 we have

∥fS − h∥2 ⩽ Ok (ϵ) ∥f∥2.
We then observe that whenever S ′ ̸⊇ T the inner sum corresponding to it is 0. In this case
there is some i ∈ T \S ′ and T ′, T ′ ∪{i} appear with alternating signs and correspond to the
same term AS′\T ′ . Therefore we have

h =
∑

T⊆S′⊆S

∑
T ′⊆T

(−1)|S\S
′|+|T ′|AS′\T ′f =

∑
S′′⊆S

(−1)|S\S
′′|AS′′f = f=S.

This shows that ∥fS − f=S∥2 ⩽ Ok (ϵ) ∥f∥2, which completes the proof.
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4.6.6 Globalness implies small influences

In the product space setting we had ∥IT,x∥∞ ⩽ 4dδ2 and we used it via the inequality

Ex∼µT
[
I2T,x
]
⩽ Ex∼µT [IT,x] 4

dδ2 = 4dδ2∥LT [f ] ∥22. (4.5)

See the proof of Corollary 4.2.6. Here we find a convoluted way of proving an analogue of
(4.5) without having any upper bound on ∥IT,x∥∞ at our disposal.

Lemma 4.6.15. Suppose that f : V[k] → R is (d, δ)-global, and let |T | ⩽ d. Then

Ex∼µT
[
(IT,x [f ])

2] ⩽ 2d+1δ2Ex∼µT IT,x +Ok

(
ϵ2∥f∥44

)
.

Proof. Write g (x) = IT,x [f ] . Then g = AT
[
(LT [f ])

2] . We would like to upper bound
∥g∥22. We accomplish that by upper bounding ∥g∥22 by E [gg′′] for a function g′′ with a small
∞-norm.

By Cauchy–Schwarz we have

LT [f ]
2 ⩽ 2|T |

∑
T ′⊇T

AT ′ [f ]2 .

This shows that
g ⩽ 2|T |

∑
T ′⊆T

AT
[
(AT ′f)2

]
, (4.6)

on all x. Let us denote by g′ the right hand side of 4.6. Also let

g′′ = 2|T |
∑
T ′⊆T

AT∩T ′
[
(AT ′f)2

]
.

Then in the product space setting the functions g′, g′′ would have been equal. Here we have
an L2−approximation between them.

Claim 4.6.16. ∥g′ − g′′∥2 ⩽ Ok (ϵ) ∥f∥24.

Proof. As (AT ′f)2 is a T ′-junta we have

(AT ′f)2 = AT ′
[
(AT ′f)2

]
.

By Lemma 4.3.4 we have
∥ATAT ′ − AT∩T ′∥2→2 ⩽ Ok (ϵ) .

We therefore have

∥AT
[
(AT ′f)2

]
− AT∩T ′

[
(AT ′f)2

]
∥22 ⩽ Ok

(
ϵ2
)
∥ (AT ′f)2 ∥22

⩽ Ok

(
ϵ2
)
∥f∥44,

as AT ′ contracts 4-norms. Therefore,

∥g′ − g′′∥2 ⩽ Ok (ϵ) ∥f∥24.
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As 0 ⩽ g ⩽ g′ we have

E
[
g2
]
⩽ E [g′g] ⩽ E [g′′g] + E [(g′ − g′′) g] .

By Cauchy–Schwarz we have

E [(g′ − g′′) g] ⩽ ∥g′ − g′′∥2∥g∥2 ⩽ Ok (ϵ) ∥f∥24∥g∥2.

Now either
E
[
g2
]
⩽ 2E [g′′g] (4.7)

or
E
[
g2
]
⩽ 2E [(g′ − g′′) g] ⩽ Ok (ϵ) ∥f∥24∥g∥2.

In the latter case we have
∥g∥22 ⩽ Ok

(
ϵ2
)
∥f∥44. (4.8)

after rearranging. We can now sum the upper bounds of (4.7) and (4.8) corresponding to
each of the cases to obtain the upper bound

E
[
g2
]
⩽ 2E [g′′g] +Ok

(
ϵ2
)
∥f∥44.

that is true in both cases. The following claim completes the proof.

Claim 4.6.17. ∥g′′∥∞ ⩽ 2dδ2.

Proof. By Cauchy–Schwarz we point-wise have (AT ′f)2 ⩽ AT ′ (f 2) . We therefore have

AT∩T ′
[
(AT ′f)2

]
⩽ AT∩T ′AT ′

(
f 2
)
= AT∩T ′

(
f 2
)
⩽ δ2.

This shows that ∥g′′∥∞ ⩽ 2dδ2.

The same proof works for the truncated influences.

Lemma 4.6.18. Suppose that f : V[k] → R is (d, δ)-global. Suppose additionally that ϵ ⩽
ϵ0 (k). Then we have

Ex∼µT
[(
I⩽dT,x [f ]

)2]
⩽ 2d+4δ2Ex∼µT

[
I⩽dT,x
]
+Ok

(
ϵ2∥f∥2∞∥f∥22

)
.

Proof. Write
g1 (x) = ∥ (DT,x [f ])

⩽d−|T | ∥22.

We now proceed with the following steps.
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Upper bounding Ex∼µT

[(
I⩽d
T,x [f ]

)2]
in terms of g1

By Lemma 4.6.14 the functions {
DT,x [f ]

=S
}

|S|⩽d−|T |
,

is an alternative (Ok∥f∥∞, Ok∥f∥2, Ok (ϵ∥f∥2))-bounded approximate Efron–Stein decompo-
sition for L⩽d

T [f ]. Therefore by Lemma 4.6.5 we have

Ex∼µT
[
I⩽dT,x [f ]

2] ⩽ 2Ex∼µT
[
g1 (x)

2]+Ok

(
ϵ∥f∥22∥f∥2∞

)
. (4.9)

Repeating the proof of Lemma 4.6.18

Now by Lemma 4.4.9 we have g1 (x) ⩽ 2IT,x for each x, provided that ϵ is sufficiently small.
Write g2 (x) = IT,x [f ] . Similarly to the proof of Lemma 4.6.18 we let

g′2 = 2|T |
∑
T ′⊆T

AT
[
(AT ′f)2

]
and let

g′′2 = 2|T |
∑
T ′⊆T

AT∩T ′
[
(AT ′f)2

]
.

By Cauchy–Schwarz we have

∥g1∥22 ⩽ 2E [g1g2] ⩽ 2E [g1g
′
2] ⩽ 2E [g1g

′′
2 ] + 2E [g1 (g

′
2 − g′′2)] .

Now either
∥g1∥22 ⩽ 4E [g′′2g1] ,

which would imply
∥g1∥22 ⩽ 4E [g′′2g1] ⩽ 2d+2δE [g1]

by Claim 4.6.17, or

∥g1∥22 ⩽ 4E [g1 (g
′
2 − g′′2)] ⩽ 4∥g1∥2∥g′2 − g′′2∥2

and rearranging, we obtain

∥g1∥22 ⩽ 16∥g′2 − g′′2∥22 ⩽ Ok

(
ϵ2∥f∥44

)
by Claim 4.6.16. This shows that

∥g1∥22 ⩽ 2d+2δE [g1] +Ok

(
ϵ2∥f∥44

)
. (4.10)
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Moving back from g1 to I⩽d
T,x

By Lemmas 4.6.14 we have

∥ (DT,x [f ])
⩽d−|T | −D⩽d

T,x [f ] ∥
2
2 ⩽ Ok

(
ϵ2∥f∥22

)
yielding

E [g1] ⩽ 2∥D⩽d
T,x [f ] ∥

2
2 +Ok

(
ϵ2∥f∥22

)
(4.11)

= 2Ex∼µT I
⩽d
T,x [f ] +Ok

(
ϵ2
)
∥f∥22

by the triangle inequality and Cauchy–Schwarz. By combining (4.9), (4.10) with (4.11) we
obtain

Ex∼µT
[
I⩽dT,x [f ]

2] ⩽ 2∥g1∥22 +Ok

(
ϵ∥f∥22∥f∥2∞

)
.

⩽ 2d+3δ2E [g1] +Ok

(
ϵ2∥f∥22∥f∥2∞

)
+Ok

(
ϵ2∥f∥44

)
⩽ 2d+3δ2E [g1] +Ok

(
ϵ2∥f∥22∥f∥2∞

)
.

The lemma now follows by putting everything together.

4.7 Proving hypercontractivity for epsilon product

measures

We suggest revisiting Section 2 before reading this section. Our strategy is the same as in
the product case, and we deal with the differences by appealing to the tools developed in
Sections 3-6.

4.7.1 Upper bounding ∥f⩽d∥44 by 4-norms of non-trivial
Laplacians and ∥f⩽d∥42

We now move on to preparing the ground for the proof of our hypercontractive inequality.

Lemma 4.7.1. Let f be (d, δ)-global. Suppose that ϵ ⩽ ϵ0 (k). Then we have

1

2
∥f⩽d∥44 ⩽ 9d∥f⩽d∥42 + 4

∑
0<|T |⩽d

(4d)|T | ∥L⩽d
T [f ] ∥44 +Ok (ϵ) ∥f∥22∥f∥2∞.

Proof. Let g = f⩽d. By Lemma 4.4.9 we have

∥g∥44 ⩽ 2
∑
S

∥
(
g2
)=S ∥22.
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We now upper bound ∥ (g2)=S ∥22. We have(
g2
)=S

=
∑

|T1|⩽d,|T2|⩽d

(
f=T1f=T2

)=S
.

Let

1. I1 = {(T1, T2) : T1 ∩ T2 ∩ S ̸= ∅} .

2. I2 = ((T1, T2) : T1∆T2 = S)

3. I3 = (T1∆T2) \ S ̸= ∅ or S \ (T1 ∪ T2) ̸= ∅.

Our first step is to show that the contribution from I3 is negligible. This is to be expected
as in the product space setting we were able to show that the contribution from I3 is 0.

Claim 4.7.2. Let (T1, T2) ∈ I3. Then

∥
(
f=T1f=T2

)=S ∥22 ⩽ Ok

(
ϵ2
)
∥f∥22∥f∥2∞.

Proof. Suppose first that (T1∆T2) \ S ̸= ∅. Then without loss of generality we may assume
that there is some i ∈ T1 \ (T2 ∪ S) . By Lemma 4.4.9 we have

∥
(
f=T1f=T2

)=S ∥22 ⩽ 2∥A[k]\{i}
(
f=T1f=T2

)
∥22.

Now
A[k]\{i}

(
f=T1f=T2

)
=
(
A[k]\{i}

(
f=T1

))
f=T2 .

By Lemma 4.4.7 we have

∥A[k]\{i}f
=T1∥2 ⩽

∑
T ′ ̸∋i

∥
(
f=T1

)=T ′
∥2 ⩽ Ok (ϵ) ∥f∥2.

This shows that

∥A[k]\{i}
(
f=T1f=T2

)
∥22 ⩽ ∥A[k]\{i}f

=T1∥22∥f=T2∥2∞
⩽ Ok

(
ϵ2
)
∥f∥2∞∥f∥22.

Suppose now that S \ (T1 ∪ T2) ̸= ∅. Let i ∈ S \ (T1 ∪ T2) . Then the function g = f=T1f=T2

is a T1 ∪ T2-junta. This shows that g = AT1∪T2g.
Hence by Lemma 4.4.7 and the triangle inequality we have

∥g=S∥2 = ∥ (AT1∪T2g)
=S ∥2

⩽ ∥
∑

T⊆T1∪T2

(
g=T

)=S ∥2
⩽ Ok (ϵ) ∥g∥2.

It now remains to note that ∥g∥2 ⩽ ∥f=T1∥2∥f=T2∥∞ ⩽ 22k∥f∥2∥f∥∞.
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We now move on to our next step of upper bounding the contribution from the pairs in
I1.

Claim 4.7.3.
∑

(T1,T2)∈I1

(
f=T1f=T2

)=S
=
∑

T⊆S (−1)|T |+1 ∥
(
L⩽d
T [f ]2

)=S ∥22.
Proof. The proof is exactly the same as in the product case so we omit it.

It now remains to consider the contribution from I2, i.e. the case T1∆T2 = S . Here just
like the product case it is sufficient to show the following claim

Claim 4.7.4. Let T1∆T2 = S. Then we have

∥
(
f=T1f=T2

)=S ∥2 ⩽ 2∥f=T1∥2∥f=T2∥2 +Ok (ϵ) ∥f∥2∥f∥∞,

provided that ϵ is sufficiently small.

Proof. First let S ′ ⊊ S. As T1∆T2 = S, there exists i ∈ (T1∆T2) \ S ′. Without loss of
generality i ∈ T1. By Lemmas 4.4.9, 4.4.7, and 4.4.2 we have

∥AS′
(
f=T1f=T2

)
∥2 ⩽ 2∥AS′∪T2

(
f=T1f=T2

)
∥2

⩽ 2∥AS′∪T2f
=T1∥2∥f=T2∥∞

⩽ Ok (ϵ) ∥f∥2∥f∥∞.

By the triangle inequality this shows that

∥
(
f=T1f=T2

)=S ∥2 ⩽∑
S′

(−1)|S\S
′|AS′

(
f=T1f=T2

)
.

⩽ ∥AS
(
f=T1f=T2

)
∥2 +Ok (ϵ) ∥f∥2∥f∥∞

We now upper bound ∥AS
(
f=T1f=T2

)
∥2.

By Cauchy–Schwarz for x ∈ VS we have

AS
(
f=T1f=T2

)
(x) =

〈
f=T1 (x, ·) , f=T2 (x, ·)

〉
L2(Vx,µx)

⩽ ∥f=T1 (x, ·) ∥L2(Vx,µx)∥f=T2 (x, ·) ∥L2(Vx,µx).

This shows that

∥AS
(
f=T1f=T2

)
∥22 ⩽ Ex∼µS

[
∥f=T1 (x, ·) ∥2L2(Vx,µx)

∥f=T2 (x, ·) ∥2L2(Vx,µx)

]
. (4.12)

We have
∥f=T1 (x, ·) ∥2L2(Vx,µx)

= AS

[(
f=T1

)2]
= ASAT1

(
f=T1

)2
By Lemma 4.3.4

∥ASAT1 − AS∩T1∥2→2 ⩽ Ok (ϵ) .
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Hence,

∥ASAT1
(
f=T1

)2 − AS∩T1

[(
f=T1

)2] ∥22 ⩽ Ok

(
ϵ2∥f=T1∥44

)
⩽ Ok

(
ϵ2∥f∥22∥f∥2∞

)
.

By Cauchy–Schwarz this shows that

RHS of (4.12) =
〈
ASAT1

(
f=T1

)2
, AS

(
f=T2

)2〉
L2(VS ,µS)

=
〈
AS∩T1

(
f=T1

)2
, AS

(
f=T2

)2〉
L2(VS ,µS)

+Ok (ϵ∥f∥2∥f∥∞) ∥AS
(
f=T2

)2 ∥2.
As we have

∥AS
(
f=T2

)2 ∥22 ⩽ Ok

(
∥f∥44

)
⩽ Ok

(
∥f∥22∥f∥2∞

)
.

Therefore,

∥AS
(
f=T1f=T2

)
∥22 ⩽

〈
AS∩T1

(
f=T1

)2
, AS

(
f=T2

)2〉
L2(VS ,µS)

+Ok

(
ϵ∥f∥22∥f∥2∞

)
=
〈
AS∩T1

(
f=T1

)2
, AS∩T1

(
f=T2

)2〉
L2(µ)

+Ok

(
ϵ∥f∥22∥f∥2∞

)
.

Now
AS∩T1

(
f=T2

)2
= AS∩T1AT2

(
f=T2

)2
and ∥AS∩T1AT2 − E∥2→2 ⩽ ϵ by Lemma 4.3.4. Therefore we similarly have〈

AS∩T1
(
f=T1

)2
, AS∩T1

(
f=T2

)2〉
L2(µ)

=
〈
AS∩T1

(
f=T1

)2
, ∥f=T2∥22

〉
+Ok

(
ϵ∥f∥22∥f∥2∞

)
.

= ∥f=T1∥22∥f=T2∥22 +Ok

(
ϵ∥f∥22∥f∥2∞

)
.

This completes the proof of the claim.

The rest of the proof is the exactly the same as in the product case setting.

Now the only thing to remains is to apply the inductive hypothesis.

Theorem 4.7.5. We have ∥f⩽d∥44 ⩽ 20d
∑

|S|⩽d (4d)
|S| Ex∼µSI

⩽d
S,x [f ]

2 +Ok (ϵ
2) ∥f∥22∥f∥2∞.

Proof. The proof is by induction on d. By Lemma 4.7.1 we have

∥f⩽d∥44 ⩽ 2 · 9d∥f⩽d∥42 + 2 ·
∑
S ̸=∅

(4d)|S| ∥L⩽d
S [f ] ∥44 +Ok (ϵ) ∥f∥22∥f∥2∞. (4.13)

Write gS,x (y) = (DS,x [f ])
⩽d−|T | (y) . Then by Lemma 4.6.14 and Lemma 4.4.11 we have:

Ex∥D⩽d
S,x [f ] ∥

4
4 ⩽ 2Ex∥gS,x∥44 +Ok

(
ϵ2
)
∥f∥22∥f∥2∞.
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By induction, we have

∥gS,x∥44 ⩽ 20d−|S|
∑

T∩S=∅,|T |⩽d−|S|

(4d)|T | Ey∼µT I
2
T,y [gS,x] +Ok (ϵ) ∥gS,x∥22∥gS,x∥2∞. (4.14)

By Lemma 4.6.14 we have ∥gS,x∥∞ = Ok (∥f∥∞). By Lemmas 4.6.14, 4.4.11, and 4.4.9 we
have

Ex∼µS∥gS,x∥22 ⩽ 2Ex∼µS∥D
⩽d
S,xf∥

2
2 +Ok

(
ϵ2
)
∥f∥22 (4.15)

⩽ Ok

(
∥f∥22

)
Taking expectations over (4.14), and plugging in (4.15) we obtain:

Ex∥gS,x∥44 ⩽ 2
∑

T∩S=∅,|T |⩽d−|S|

(4d)|T | E(x,y)∼µS∪T I
2
T,y [gS,x] +Ok (ϵ) ∥f∥22∥f∥2∞.

By Lemmas 4.6.14 and 4.4.11 we have

E(x,y)∼µS∪T I
2
T,y [gS,x] = Ez∼µT∪SI

2
T∪S,z [g] +Ok

(
ϵ2
)
∥f∥22∥f∥2∞.

Hence,

Ex∥gS,x∥44 ⩽ 20d−|S|
∑

S′⊇S|S′|⩽d

(4d)|S
′\S| Ez∼µS′

(
I⩽dS′,z [f ]

)2
+Ok (ϵ) ∥f∥22∥f∥2∞.

This gives

Ex∥D⩽d
S,x [f ] ∥

4
4 ⩽ 2 · 20d−|S|

∑
S′⊇S|S′|⩽d

(4d)|S
′\S| Ez∼µS′

(
I⩽dS′,z [f ]

)2
+Ok (ϵ) ∥f∥22∥f∥2∞

The proof is now completed by plugging this inequality in (4.13). Indeed, we have

∥f⩽d∥44 ⩽ 2 · 9d∥f∥42 +Ok

(
ϵ∥f∥22∥f∥2∞

)
+

∑
0<|S|⩽d

(4d)|S| · 2 · 20d−|S|
∑

S′⊇S|S′|⩽d

(4d)|S
′\S| Ez∼µS′

(
I⩽dS′,z [f ]

)2
⩽ 20d

∑
|S′|⩽d

(4d)|S| Ez∼µS′
(
I⩽dS′,z [f ]

)2
+Ok

(
ϵ∥f∥22∥f∥2∞

)
.

4.7.2 The case where ∥f∥∞ is large

Here we show a hypercontractive inequality whose error term does not include the factor
∥f∥∞. This may be useful when ∥f∥∞ is significantly larger than δ.
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Theorem 4.7.6. Suppose that f is (d, δ)-global, then

∥f⩽d∥44 ⩽ 20d+1
∑
|S|⩽d

(4d)|S| Ex∼µSI
⩽d
S,x [f ]

2 +Ok

(
ϵ2δ2

)
∥f∥22.

Proof. By applying Theorem 4.7.7 with f⩽d rather then f and using ∥f⩽d∥∞ ⩽ δ we obtain

∥
(
f⩽d
)⩽d ∥44 ⩽ 20d

∑
|S|⩽d

(4d)|S| Ex∼µSI
⩽d
S,x

[
f⩽d
]2

+Ok

(
ϵδ2
)
∥f∥22.

The theorem now follows from Lemmas 4.6.11, 4.4.11 and 4.6.5.

Theorem 4.7.7. Let ϵ ⩽ ϵ0 (k) be sufficiently small. Suppose that f is (d, δ)-global. Then
we have

∥f⩽d∥44 ⩽ (100d)d δ2∥f⩽d∥22 +Ok

(
δ2ϵ2∥f∥22

)
.

Proof. By Theorem 4.7.6, Lemma 4.6.18, and 4.4.9 we have

∥f⩽d∥44 ⩽ 20d
∑
|S|⩽d

(4d)d Ex∼µS
(
I⩽dS,x [f ]

)2
+Ok

(
ϵ2∥f∥22∥f∥2∞

)
⩽ 20d

∑
|S|⩽d

(8d)d+2 δ2Ex
[
I⩽dS,x [f ]

]
+Ok

(
ϵ∥f∥22∥f∥2∞

)
⩽ 20d

∑
|S|⩽d

(8d)d+2 δ2
∑

T⊇S,|T |⩽d

∥f=T∥22 +Ok

(
ϵ∥f∥22∥f∥2∞

)
⩽ (40d)d δ2

∑
|T |⩽d

∥f=T∥22 +Ok

(
ϵ∥f∥22∥f∥2∞

)
⩽ 2 (40d)d δ2∥f⩽d∥22 +Ok

(
ϵ∥f∥22∥f∥2∞

)
.

4.8 Applications

In this section, we show our applications of the hypercontractive inequality on high dimen-
sional expanders, which we have shown in the previous section. The applications follow in a
fairly straightforward way, and hence we present them with brevity.

4.8.1 Global Boolean functions are concentrated on the high
degrees.

Fourier concentration results are widely useful in complexity theory and learning theory. Our
first application is a Fourier concentration theorem for HDX. Namely, the following theorem
shows that global Boolean functions on ϵ-HDX are concentrated on the high degrees, in
the sense that the 2-norm of the restriction of a function to its low-degree coefficients only
constitutes a tiny fraction of its total 2-norm.
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Corollary 4.8.1. If f : V[k] → {0, 1} is (d, δ)-global and ϵ is sufficiently small. Then

∥f⩽d∥22 ⩽
(
Ok

(√
ϵ
)
+ (200d)d δ

1
2

)
∥f∥22.

Proof. By Lemma 4.4.9 we have

∥f⩽d∥22 =
〈
f⩽d, f

〉
−Ok (ϵ) ∥f∥22.

We also have by Theorem 4.7.7〈
f⩽d, f

〉
⩽ ∥f⩽d∥4∥f∥ 4

3

⩽ (100d)d δ
1
2

√
∥f⩽d∥2∥f∥ 4

3
+Ok

(√
ϵ∥f∥

1
2
2 ∥f∥

1
2∞∥f∥ 4

3

)
.

⩽ 2 (100d)d δ
1
2

√
∥f∥2∥f∥ 4

3
+Ok

(√
ϵ∥f∥22

)
⩽ (200d)d δ

1
2∥f∥22 +Ok

(√
ϵ∥f∥22

)

The Corollary completes the proof of Theorem 4.1.3.

4.8.2 Small-set expansion theorem

Small set expansion is a fundamental property that is prevalent in combinatorics and com-
plexity theory. In the setting of the ρ-noisy Boolean hypercube, the small set expansion
theorem gives an upper bound on Stabρ(1A) = ⟨1A, Tρ1A⟩ = E[1A(x)1A(y)] for indicators
1A of small sets A, which captures the probability that a random walk starting at a point
x ∈ A remains in A, hence showing that small sets are expanding. Our second application
is a small set expansion theorem for global functions on ϵ-HDX, captured via bounding the
natural noise operator in this setting.

Definition 4.8.2. Let ρ ∈ (0, 1) . Given x ∈ V[k] we let Nρ (x) be the distribution where
y ∼ Nρ (x) is chosen by choosing a random set S where each i is in S independently with
probability ρ, then choosing z ∼ µxS and setting y = (xS, z) . We then set

Tρf (x) = Ey∼Nρ(x)f.

Alternatively we can use the averaging operators to give the following equivalent definition:

Tρ :=
∑
S⊆[k]

ρ|S| (1− ρ)k−|S|AS [f ] .

We have the following formula for the noise operator, which is similar to the one in the
product space setting.
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Claim 4.8.3. We have Tρf =
∑

S ρ
|S|f=S.

Proof. We have

Tρf =
∑
S⊆[k]

ρ|S| (1− ρ)k−|S|AS [f ]

=
∑
S⊆[k]

ρ|S| (1− ρ)k−|S|
∑
T⊆S

f=T

=
∑
T⊆[k]

∑
S⊇T

ρ|S| (1− ρ)k−|S|

=
∑
T⊆[k]

ρ|T |f=T .

Via a standard argument we have the following bound on the noise operator.

Lemma 4.8.4. We have

∥Tρf∥22 ⩽ ∥f⩽d∥22 +
(
ρd +Ok (ϵ)

)
∥f∥22.

Proof. This is immediate from Lemmas 4.8.3 and 4.4.9.

Our small set expansion applications are as follows.

Corollary 4.8.5 (Small set expansion theorem). If f : V[k] → {0, 1} is (d, δ)-global. Then

∥Tρf∥22 ⩽
(
ρd + (100d)d δ2 +Ok

(√
ϵ
))

∥f∥22.

Proof. This follows immediately from Lemma 4.8.4 and Corollary 4.8.1.

4.8.3 Kruskal–Katona theorem

Our last application is an analogue of the Kruskal–Katona theorem in the setting of high
dimensional expanders. The Kruskal-Katona theorem is a fundamental and widely-applied
result in algebraic combinatorics, which gives a lower bound on the size of the lower shadow
of a set A, denoted ∂(A) = {x : y ≺ x, for some y ∈ A}.

We first consider the natural up-down walk in our setting.

Definition 4.8.6. The operator corresponding to up-down random walk is

T =
1

k

k∑
i=1

A[k]\{i} [f ] =
∑
S

k − |S|
k

f=S.

By applying the approximate Parseval inequality (Lemma 4.4.9), we obtain the following
claim.
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Claim 4.8.7. We have

⟨f − Tf, f⟩ ⩾ d

k
∥f⩾d∥22 −Ok (ϵ) ∥f∥22.

By our Fourier concentration theorem, (Corollary 4.8.1), we have the following lower
bound on the 2-norm of the high degree part of f .

Claim 4.8.8. Let δ ⩽ (200d)−2d , and ϵ ⩽ ϵ0 (k) be sufficiently small. If f : V[k] → {0, 1} is
(d, δ)-global. Then

∥f⩾d∥22 ⩾
1

2
∥f∥22.

Combining the above claims we get the following.

Claim 4.8.9. Let δ ⩽ (200d)−2d . We have

⟨f − Tf, f⟩ ⩾ d

2k
∥f∥22

We are now ready to prove the Kruskal–Katona theorem in the setting of high dimensional
expanders.

Corollary 4.8.10. Let X be an ϵ-HDX, for a sufficiently small ϵ > 0. Let δ ⩽ (200d)−d ,
and let A ⊆ X (k − 1) be (d, δ)-global. Then

µ (∂(A)) ⩾ µ (A)

(
1 +

d

2k

)
.

Proof. Let f = 1A. We have

⟨f − Tf, f⟩ = Pr
σ∼X(k−1)

Pr
τ1,τ2⊃σ

[τ1 ∈ A, τ2 /∈ A] .

⩽ Pr [σ ∈ ∂(A), f (τ2) /∈ A]

= µ (∂(A))− µ (A) .
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Chapter 5

Conclusion and future directions

So far in the thesis we explore the geometry of HDXes by constructing HDXes from random
complexes with latent geometry and showing isoperimetric inequalities for HDXes. In this
chapter we look at a few open directions related to geometry and applications of HDXes.

5.1 Geometry and high-dimensional expansion

5.1.1 Other manifolds/complexes

In Chapter 3, the random geometric model over Sd−1 fits in the broader framework of random
restrictions of simplicial complexes: starting with a dense high-dimensional expander X, we
sample a subset of vertices S of X to produce the sparser induced complex X[S].

We have shown that X[S] inherits the spectral properties of X itself, and we’ve lever-
aged this to show that for any polynomial average degree, one can produce a 2-dimensional
expander by taking a random restriction of X the sphere in a particular dimension and
with a particular connectivity distance. We hope that this framework might help us identify
additional natural distributions over sparser and/or higher-dimensional complexes. More
specifically,

Is there a simplicial complex X whose random restrictions yield high-dimensional
expanders whose links have eigenvalue < 1

2
, of sub-polynomial or polylogarithmic

degree?

5.1.2 Other approaches to discretization

One interpretation of the construction in Chapter 3 is that the random geometric model
Geod(n, p) gives a random discretization of high-dimensional spheres that preserves local
and global expansions of the continuous spaces.

However this random discretization approach fails to give bounded-degree local-spectral
expanders. Even to ensure that the resulting random discrete graphs are connected, we need
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to set the average degree of this model to polylogarithmic in the number of vertices. The
average degree needs to be even higher to further guarantee global and local expansions.

Another drawback of this approach is the hardness in generalizing the spectral analysis to
dimensions greater than 2. In order to bound the local expansion of 2-dimensional complexes,
we have to carefully use concentration of random points in a geodesic ball. Extending the
analysis to higher-dimensional links would require showing similar concentrations for more
complicated shapes. So we ask,

Are there randomized or deterministic constructions of local-spectral expanders
that avoid the two problems above?

5.2 Coboundary and cosystolic expanders

Just as local-spectral expanders are the generalization of spectral expansion to simplicial
complexes, coboundary expanders are the generalization of combinatorial expansion to sim-
plicial complexes. Although there are many known examples of coboundary expanders such
as the complete complexes, spherical buildings, and random clique complexes, all these d-
dimensional coboundary expanders are polynomially dense when d > 2.

Can we construct bounded-degree d-dimensional coboundary expanders for any
constant d?

Many known coboundary expanders are face-transitive. Current technique for showing
coboundary expansion hinges on both this symmetry and the fact that these complexes have
poly(n) average degree. So to prove the property over asymmetric constructions and/or
sparser complexes, one should consider new approaches for such problems. One natural
question is

Do any of the known constructions of local-spectral expanders have non-trivial
coboundary expansion? For instance, does the random geometric model yield
2-dimensional coboundary expanders?

Cosystolic expansion is a relaxation of coboundary expansion that turns out to be useful
for constructing codes and explicit hard instances for Sum-of-Square algorithms [28, 99, 75,
27, 25, 59]. Many of the known algebraic constructions of sparse local-spectral expanders
are also known to be cosystolic expanders [90, 66].

One known connection between different types of HDXes is that a d-dimensional simplicial
complex is a cosystolic expander if it is a local-spectral expander and every vertex’s link is
a (d − 1)-dimensional coboundary expander [37]. Some applications in testing require a
complex to have both local-spectral expansion and cosystolic expansion. One open question
is

Is there a simpler characterization for complexes with both expansion properties?
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5.3 Beyond constant-dimensional simplicial

complexes

5.3.1 Superconstant dimension

We have mentioned many constructions of HDXes. So far when computing sparsity and
expansion, we have treated the dimension parameter d as a constant. Thus by “bounded-
degree complex”, we mean that the number of d-dimensional faces in the complex is Od(n).
However, when considering using HDXes to construct tests for relations over superconstant
size alphabet, one needs to take into consideration the dependency on d. The question here
is

For d = polylog(n), are there d-dimensional local-spectral or coboundary ex-
panders with nO(k) k-dimensional faces for every k ∈ {0, . . . , d}?

5.3.2 Chain complexes

Simplicial complexes have been the focus of this thesis. However, high-dimensional expansion
can be easily defined for more general chain complexes. One such instance is the Grassmann
complexes. Recall that in a complete simplicial complex χ, the face set χ(i) is all size-
(i + 1) subsets of {1, . . . , n}. In a Grassmann complex X, the face set X(i) is all (i + 1)-
dimensional subspaces of a vector space Fdp. We call any subcomplex of a Grassmann complex
a Grassmann-type complex. Notions defined on simplicial complexes such as link and local-
spectral expansion generalize to Grassmann-type complexes.

Grassmann-type complexes have a natural correspondence with polynomial codes. Indeed
sparse Grassmann-type complexes with local-spectral expansions are candidates of locally
testable polynomial codes with good rate and distance. In this direction the major open
question is

Can we find locally testable polynomial codes with constant rate, relative distance,
and arity via constructing locally expanding Grassmann-type complexes?
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