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Abstract

Contributions to the Statistical Foundation of Data-driven Control

by

Alex R. Devonport

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Murat Arcak, Chair

we demonstrate several techniques to prove safety guarantees for robust control problems
with statistical structure; that is, for data-driven dynamical modeling or verification prob-
lems where uncertainty is modeled by probability. These guarantees are probabilistic in
nature, in accordance with the statistical nature of the uncertainty, and can be derived with
limited model assumptions. Indeed, some of the techniques require no more than measura-
bility. We focus on two data-driven control problems: estimation of forward reachable sets
from data, and robust control of time- and frequency-domain models defined by a Gaus-
sian process regression model. In the former, we apply scenario optimization and statistical
learning theory to obtain probabilistic guarantees of accuracy and confidence with minimal
system knowledge. In the latter, we apply the theory of suprema of Gaussian processes
to establish high-probability regions of attraction, L2 gain bounds, and integral quadratic
constraints for the uncertain system.
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Chapter 1

Introduction

If you’ll permit a little poetic license, control theory is that arcane calculus of feedback and
equilibrium that binds computers to reality. To the prosaic, control theory is the engineering-
oriented study of dynamical systems, centered around the question of how to adjoin to a
physical system a compensator—often but not always an information processing system—
that renders a stable, robust, and self-regulating interconnection. Data are a collected set of
measurements, often of a real system but just as often of a high-fidelity simulation. I have
no poetic interpretation for data, but its importance is self-evident if we want our theory to
bear any resemblance to reality. From these rudiments we come to a surprisingly difficult
question.

1.1 What do we mean when we say “data-driven

control?”

We have good reasons to want a precise answer. A California redwood’s worth of papers and
articles use the term; a conference is named after it; and this dissertation contributes to its
statistical foundations. It seems like a question that should be simple to answer, but if we
try, we quickly find ourselves repeating history.

Since feedback control seeks to reduce the effects of disturbances and plant
uncertainty, the question of the difference between feedback control and
adaptive control immediately arises.

A meaningful definition of adaptive control ... is still lacking. However, there
appears to be a consensus that a constant-gain feedback system is not an
adaptive system.

Åström and Wittenmark, Adaptive Control (1995) [8]
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This quote, from Åström and Wittenmark’s seminal book on adaptive control, describes
the struggle that adaptive control theorists faced when trying to answer the question of
what, precisely, constitutes an adaptive control system. It seems like a question that should
be simple to answer, especially by the people who are supposed to be the experts; on the
contrary, Åström and Wittenmark cite disagreements going back to 1961. Evidently no
satisfactory answer had been given in the three decades between 1961 and 1995, and I would
venture that no satisfactory answer has been given in the three decades (nearly) between
1995 and today. The problem is that if you answer “a control system that adapts to a
changing environment,” you deem every control system that employs feedback to be an
adaptive control system. This is why constant-gain feedback is excluded by fiat in the quote:
while adaptive by any reasonable definition of the word, it’s simply not what people mean
when they say “adaptive control”.

Now consider the question, “What is a data-driven control system?” The obvious re-
sponse, something along the lines of “a control system that uses data”, has essentially the
same problems as the obvious response for adaptive control systems. In fact, when it comes
to constant-gain feedback, it’s exactly the same problem: it doesn’t seem like constant-gain
feedback should be a data-driven control system, but it would be untrue to say that data
doesn’t play an integral role in its decision-making procedure. Moreover, there are many
subfields of control theory, now considered classical, that could compete for the title of
data-driven control; how could system identification, or adaptive control for that matter, be
considered anything but data-driven? Putting philosophy aside, the simple fact is that these
methods are not what data-driven control, in its modern meaning, is about.

In the last few years, papers on data-driven control tend to fall into two distinct cate-
gories. In the first category, we have papers that use a result known as “Willems’s Funda-
mental Lemma” and its extensions, a line of work summarized in the survey paper [31]. The
fundamental lemma allows for an exact representation of a dynamical system– originally a
behavioral model but in modern treatments typically a state-space representation– using the
data from a sufficiently information-rich sequence of trajectory data. From the perspective
of this category of data-driven control literature, a data-driven controller is one derived from
a system representation derived from extension of Willems’s fundamental lemma. This def-
inition is refreshingly direct, but too limited for our purposes, as there are many more ways
to apply data to control problems than just Willems’s fundamental lemma. In the second
category, we have papers that use a model for system behavior, often a dynamical model
or a value function, that can be modified using trajectory data [81, 50]. More often than
not, these models are borrowed from the literature of statistics and machine learning– neural
nets, Gaussian processes– distinguishing this line of work in technique, if not in spirit, from
the classical methods of system identification, adaptive control, and approximate dynamic
programming. In this category of work, a data-driven control system is one that makes use
of machine learning methods, either in its construction or in its analysis. This is closer in
spirit to what this dissertation investigates, particularly when it comes to GPs, but we will
just as often be interested in the methods that lie on the other side of the nebulous boundary
that divides machine learning and modern statistics.
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Figure 1.1: A reachable set (bright yellow) that we seek to estimate (red) from a set of
independent simulation samples (black). Left: how do we ensure that our estimate will
enclose a prescribed probability mass? Right: What is the likelihood of uninformative data?

Examples of Data-Driven Control

Choosing to learn from history, we will not endeavor to resolutely answer the question of
what data-driven control is. Let us instead proceed by example with the following resume of
problems that are popular both in the data-driven control literature and in practical control
engineering: they are the core problems that motivate the work in this dissertation.

First is the problem of data-driven reachability analysis, shown in Figure 1.1, which is
an important and widely-used heuristic in practical applications for verifying the safety of a
control system. You can think of it as a Monte Carlo approach to safety verification. From
the set of all possible system behaviors, we are are given a finite, random selection that we
use to estimate the set of behaviors that we didn’t see. We are not privy to any information
about the dynamics that generate the behavior, as if the system is testable but inscrutable–
as is all too often is in practice. Several questions immediately present themselves. To what
degree is it possible at all to generalize from the finite point set to the infinite set of unseen
behaviors? And if it is possible in some circumstances, what are the odds of getting an
uninformative data set? From finite data alone, these question cannot be answered. In other
words, there is some structural foundation that’s missing from the problem as we currently
have it.

Second is the problem of safe exploration of an unknown state-space system, shown in
Figure 1.2. Here, we wish to ascertain the presence of, and extend, a region of attraction; a
sphere of state space where we can always return to an equilibrium state. The objective is
to use data collected inside the region of attraction to improve our knowledge of the system,
make a new policy that extends the region of attraction, and then explore even further. But
how do we construct a Lyapunov function from data alone? And without some kind of model
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Figure 1.2: A region of attraction (blue) to be approximated (green) using a Lyapunov
function derived from from trajectory data (grey). What is the likelihood that the estimate
is really contained in the region of attraction?

structure, how do we assert its validity– in other words, that our estimate of the region of
attraction is a good estimate?

Third is the problem of robustly estimating a transfer function, shown in Figure 1.3.
Here, we are given frequency-domain data: a set of point evaluations of an unknown transfer
function at a set of known frequencies. Constructing a transfer function that fits the data is a
well known problem: a classical solution is Nevanlinna-Pick interpolation, which has multiple
uses in control theory. The problem is that there are infinitely many transfer functions that
interpolate a given set of frequency data: certainly some are more reasonable than others,
but how do we make that decision? And supposing we have, and we design a controller to
stabilize the system, how do we ensure that a large measure of that reasonable ensemble are
stable– in other words, how do we ensure that we have robustly stabilized the system against
our epistemic uncertainty?

These three examples share the following features:

1. The data “jump out of the system”, playing a part not only in the control system, but
in our design, and more crucially our analysis, of the system;

2. Information about the system, particularly quantitative model structure, is scarce;

3. As stated, there is insufficient structure to make a guarantee of safety.

The first two are likely inherent properties of data-driven control problems; but the third is
unacceptable. However, the second seems to imply the third: if we have so little knowledge of
the model, what other structure is to serve as the foundation for making safety guarantees?
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ejΩ ∆(ξ, ejΩ)

Frequency plane Response (“Nyquist”) plane

Figure 1.3: A set of frequency-domain data points (black) measured from an unknown
transfer function (black line), and an ensemble of candidate transfer functions (grey lines)
that fit the data. What is the likelihood that a fixed controller robustly stabilizes a reasonable
ensemble?

Probabilistic Structure as the foundation for Probabilistic
Guarantees

This dissertation explores how to use probabilistic structure as an addition to, or replacement
of, model structure as a foundation for making safety guarantees in data-driven control. This
amounts to treating data affected by the control system as random variables, or treating the
entire system as a random function, or both. When the data or model becomes proba-
bilistic, so do the safety certificates– reachable sets, regions of attraction, integral quadratic
constraints– and so does the corresponding safety guarantee. Thus the problem of estab-
lishing safety guarantees becomes a statistical problem: the problem of managing risk under
probabilistic uncertainty. As such, we say that these guarantees have a statistical foundation.

Generally, a probabilistic guarantee of safety makes two assertions: one about the accu-
racy of our claim of safety, and another about our confidence in the assertion of accuracy.
The situation is similar to that of a meteorologist asserting a “95% chance of a 50% chance”
of sunny skies: the latter percentage refers to the accuracy of the forecast, while the for-
mer percentage refers to the meteorologist’s confidence that the forecast is valid in the first
place. In the formal language of probability, “accuracy” is the assertion that the probability
of an event that we deem to represent safety obtains a probability greater than a prescribed
threshold: if S denotes this event, and P the probability measure corresponding to the prob-
lem’s probabilistic structure, then the guarantee is an assertion that P (S) ≥ 1− ε for some
prescribed ε ∈ (0, 1). The smaller ε is, the greater the probability mass of S, and therefore
the more accurate our assertion of safety. On the other hand, “confidence” is the assertion
that our data are sufficiently informative to make a valid claim about accuracy: if Pdata is
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the measure by which the data is distributed, and G is the event that the sampled data
x1, . . . , xN are sufficiently rich to furnish our desired certificate of safety, we obtain a 1 − δ
level of confidence if we can establish that PN

data(G) ≥ 1− δ.
Depending on the information available to us, we may be able to eliminate uncertainty

about the accuracy or confidence of our guarantee, effectively setting either ε or δ to zero.1

Thus we encounter three possible forms for probabilistic guarantees:

• Accuracy-confidence guarantees, where ε, δ > 0. These are known in the literature of
statistical learning theory as probably approximately correct (PAC) bounds, and we
will generally refer to them by that name in this thesis. These bounds arise when we
assume only qualitative knowledge about the control problem– such as measurability
or analyticity– and acquire all quantitative knowledge through data.

• Accuracy-only guarantees, where δ = 0. These bounds arise when we have quantitative
knowledge about the in the control problem, e.g. knowing the pdf or having a bound
on moments of a random variable. We will encounter these in Part II when we assume
that the system dynamics function is distributed as a Gaussian process.

• Confidence-only guarantees, where ε = 0. This type of bound asserts that, for suffi-
ciently rich data, we obtain a non-stochastic safety guarantee; as such, they require
stronger quantitative system knowledge than either of the other bounds. There is
a body of literature that investigates confidence-only guarantees– particularly works
that use results derived from [44] and its extensions– but confidence-only bounds do
not appear in this dissertation, as our primary motivation for considering probabilistic
structure is to minimize quantitative assumptions.

1.2 Outline

This dissertation comprises two parts, corresponding to two distinct data-driven control
theory problems that can be endowed with probabilistic structure and probabilistic guaran-
tees. Part I covers the probabilistic approach to data-driven reachability analysis. In the
model-driven reachability, the standard safety guarantee is to assert that one’s estimate con-
tains the set of all possible evolutions: in part I, we develop methods that obtain analogous
accuracy-confidence guarantees, where accuracy is determined with respect to a random vari-
able supported on the set of all possible evolutions. There is a surprising amount of depth
to this seemingly simple problem: the three parts of this chapter explore three distinct but
synoptic ways to view the problem, each of which leads to different analytical techniques,
different classes of estimator geometry, and different practical use cases. Chapter 3 takes
the viewpoint of chance-constrained optimization, which leads to estimators and guarantees
based on the theory of scenario optimization. Chapter 4 takes the viewpoint of classical

1Of course, with enough information we can set both to zero, but to do so is to recreate the condition of
non-probabilistic, model-driven control.
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frequentist statistical learning theory, which leads to estimators based on estimators and
bounds constrained by Vapnik-Chervonenkis dimension. Chapter 5 takes the viewpoint of
Bayesian PAC analysis, which leads to estimators based on prior and posterior distributions
over estimator classes and guarantees based on the PAC-Bayes theorem.

Part II covers a data-driven approach to robustness analysis of control systems based on
Gaussian Process dynamical models. Unlike data-driven reachability analysis, this thrust of
data-driven control contains an explicit learning-based element. The goal of this thrust is
to modify a standard Gaussian process regression model so as to be amenable to standard
control-theoretical safety guarantees when used as a Bayesian model of a dynamical system.
Chapter 8 explores the case of establishing a region of attraction for a nonlinear state-space
system modeled by a vector-valued process. Here, we specialize to the case of a process whose
realizations are polynomial functions that vanish at the equilibrium point: this polynomial
structure allows us to use sum-of-squares programming to synthesize control policies and
establish accuracy-confidence guarantees for a Lyapunov function that establishes an inner
approximation of the region of attraction. Chapter 9 investigates Gaussian processes in the
setting of robust control, namely as a transfer function model of an LTI uncertainty. This ap-
plication requires that the realizations of the process must be complex-valued functions that
inhabit the function space H∞: we call this type of process an H∞ process, and investigate
some sufficient conditions for constructing them. We then apply H∞ Gaussian processes to
learning and robustness, showing how to estimate transfer functions from frequency-domain
data and to prove accuracy-only guarantees that the uncertainty obeys an integral quadratic
constraint.

The work in this dissertation is based on the papers [34, 39, 38, 37, 36], of all of which I am
the primary author. This dissertation provides additional background, a unity of narrative
that exists between the works but is not immediately clear from individual readings, and
several significant technical advances not published elsewhere.
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Part I

Data-Driven Reachability Analysis
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Chapter 2

Background

The computation of reachable sets is an effective way to characterize and verify the behavior
of safety-critical cyber-physical systems. However, many systems of practical interest possess
high-dimensional, analytically intractable, and possibly unknown dynamics, which make the
computation of safe sets with formal guarantees difficult or impossible. This applies in par-
ticular to cyber-physical systems that incorporate high-fidelity computational models. For
example, suppose we wish to compute reachable sets for a system model that account for
the possibility of missing deadlines. Computational models with enough fidelity to capture
this phenomenon (such as a microarchitectural simulator) contain hybrid or discontinuous
elements that are not amenable to the standard techniques of model-based reachability anal-
ysis. In cases like this we can employ a data-driven approach to reachability analysis instead.
The data-driven approach uses a finite ensemble of sample trajectories to compute reachable
set estimates which are guaranteed to achieve high accuracy in a probabilistic sense.

Unlike earlier results on data-driven reachability which incorporate data-driven elements
into existing reachability approaches, e.g. [45, 71], we obtain an estimate directly from data,
thus eliminating intermediate steps that may introduce conservatism, and reducing the num-
ber of assumptions imposed on the system. In addition to being applicable to any system
which admits simulation, data-driven reachability is computationally straightforward: com-
putation is typically dominated by an a priori known number of trajectory simulations which
can be done in parallel.

We present three approaches to data-driven forward reachability analysis. The first ap-
proach, presented in Chapter 3, uses the tools of scenario optimization to construct reachable
set estimates as approximate solutions to chance-constrained optimization problems. Chap-
ter 3 is generalization of work begun in [34], with new examples and an examination of the
approach from an algorithmic perspective. The second approach, presented in Chapter 4
and investigated in [39], uses the tools of statistical learning theory to derive probabilistic
guarantees using combinatorial bounds on the range of estimator geometries permitted by
a particular reachability algorithm. The third approach, presented in Chapter 5 and begun
in [38], uses a Bayesian extension of PAC learning to derive probabilistic guarantees based
on relative entropy arguments.
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The Forward Reachability problem and its Probabilistic Extension

We consider a general dynamical system with state transition function Φ : X0 × D → Rnx

defined on an initial set X0 ⊆ Rnx and a set of disturbances D comprising disturbance
signals d : [t0, t1]→ Rnd . We assume, if the system has inputs, that a control policy has been
selected, yielding an autonomous system subject to a disturbance made up of a combination
of control deviation and exogenous disturbances.

In the forward reachability problem, we also consider a set X0 of initial states, and a set
D of disturbances. The forward reachable set is then defined as

R = {Φ(t1; t0, x0, d) : x0 ∈ X0, d ∈ D},

that is the set of all states to which the system can transition by time t1 with initial states
in X0 at initial time t0 and disturbances in D. The forward reachable set and the quantities
used to define it are illustrated in Figure 2.1.

Initial set
Transition Function

Forward Reachable Set

X0 Φ(t; t0, x0, d)

R

Disturbance set

D

Figure 2.1: Illustration of a transition function, an initial set, a set of disturbances, and a
time range giving rise to a forward reachable set.

We assume that our only access to Φ is through a black-box model: we can evaluate
Φ(t1; t0, x0, d) for a finite number of specific t0, t1, x0, and d, but we have no other information
about it. In particular, we do not have access to the side information typically required
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for computationally efficient reachability analysis, such as Jacobian matrices, discrepancy
functions, or mixed-monotone decomposition functions.

To estimate the reachable set by statistical means, we introduce probabilistic structure
to the problem. Our approach is to define a random variable that takes values on the
reachable set: by statistically estimating the values this random variable can take, we can
estimate the reachable set. We first define auxiliary random variables on the initial states
and disturbances. For the initial states, we introduce a random variable X0, whose support1

is X0. Similarly, we define a random variable D whose support is D.2 We may use X0 and
D to model genuinely random events in the problem at hand, but it is not necessary to do
so: indeed, the problem need not possess probabilistic elements. The main purpose of X0

and D is to provide a consistent rule for selecting sample points. Additionally, we require a
mild technical assumption on the measurability of the transition function Φ: Specifically, Φ
must be measurable in x0 and d with respect to the probability measures defined by X0 and
D respectively.

Using these random variables, and the black-box model for Φ, we define the random
variable R = Φ(t1; t0, x0, d). This random variable is well-defined, since Φ is measurable
with respect to X0 and D. Additionally, since the support of X0 and D are exactly X0 and
D respectively, the support of R is exactly R.

The Data-Driven Reachability Problem

Let PR denote the probability measure with respect to R. Since PR(R) = 1, and B ⊆ A
implies PR(A) ≥ PR(B), the measure PR(A) of a set A acts as a probabilistic measure of
how well A approximates R [33].3 Since we cannot directly evaluate PR(R̂) without more
knowledge of Φ, we cannot directly verify that a candidate reachable set estimate attains
high measure under PR with complete certainty. However, under certain conditions we can
use a finite number of evaluations of Φ to find an estimate that achieves a desired level of
probabilistic accuracy with high confidence. This motivates the following variation of the
reachability problem.

Problem 1 (Probabilistic Data-driven Reachability). Let X0 and D be random variables
supported on the set of initial states and set of disturbances respectively, and let R =
Φ(t1; t0, X0, D). Let ε ∈ (0, 1) denote an accuracy parameter, and δ ∈ (0, 1) a confidence
parameter. Let C ⊆ 2Rnx denote the class of admissible reachable set estimators.

1The support of a random variable is the range of values it can assume. If a random variable has a
probability density function, its support is the set of all points where the density function is nonzero.

2Since D is a set of functions, the random variable D is generally a function-valued random variable.
For instance, D may be taken as a stationary Gaussian process such as nd-dimensional Brownian motion. If
the disturbance is assumed to be constant-valued, then D reduces an ordinary random vector on Rnd .

3The measure PR(A) has an intuitive interpretation: if we take a sample from X0 and a sample from D
and apply them to Φ, the probability that the output of Φ lies in A is PR(A).
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Given a set of samples ri = φ(t1; t0, x0i, di), i = 1, . . . , N , where x01, . . . , x0N
i.i.d.∼

X0, d1, . . . , dN
i.i.d.∼ D, compute a compact estimate R̂ ∈ C of the reachable set such that

PN
R (PR(R̂) ≥ 1− ε) ≥ 1− δ, (2.1)

where PN
R denotes the product measure of N independent samples of the random variable R.

The double probability inequality (2.1) is an accuracy-confidence guarantee that R̂ covers
a certain amount ofRmeasured in terms of probability. The guarantee makes two assertions:

• Accuracy: the inner inequality asserts that R̂ attains probability mass of at least 1− ε
under PR.

• Confidence: The outer inequality asserts that R̂ attains 1−ε accuracy with probability
1 − δ with respect to the samples r1, . . . , rN . In other words, this inequality asserts
the probability of observing an N -tuple of samples informative enough to satisfy the
accuracy criterion is at least 1− δ.

A Reachable set estimate R̂ that provably solves Problem 1 is a probabilistically-certified
estimate, suitable for probabilistic safety verification and controller synthesis [35]. The
requirement that R̂ be compact precludes the trivial estimate R̂ = Rnx ; however, it does
not stop the estimate from being conservative. To reduce conservatism, we will typically
include some regularization on the volume of R̂. The algorithms presented in Part I can
solve Problem 1 for arbitrary ε, δ ∈ (0, 1), provided that N satisfies a known lower bound
depending on ε, δ, and the complexity of C in a sense that will be made precise.

Symbols, Abbreviations, and notation used in Part I

symbol definition

Reachability Analysis
Φ(t1; t0, x0, d) State transition function, evolving a state x0 at time t0

under disturbance d to a state at time t1
X0 Set of initial states
D Set of disturbances
t0, t1 Initial and final times
R Forward reachable set

R̂ Approximation of forward reachable set

C class of admissible estimators; R̂ ∈ C. Also called “Con-
cept class”

X0 Random variable supported on the initial set
D Random variable supported on the disturbance
R Reachability random variable; R = Φ(t1; t0, X0, D)

r1, . . . , rN
i.i.d.∼ R N iid samples distributed according to R
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PR Probability measure of the distribution of R
PN
R Probability measure of N iid samples from R
nx state dimension; R ⊆ Rnx

Scenario Optimization

g Parameterized Estimator function: R̂(θ) = {x :
g(x, θ) ≤ 0}

Θ Parameter space, θ ∈ Θ ⊆ Rnθ

Vol Volume proxy; Vol : Θ→ R+

Probability
E [·] Expected value of a random variable
P (·) Probability of an event defined in terms of random vari-

ables
DKL(P ||Q) Kullback-Leibler (KL) divergence from P to Q
Dber(p||q) KL divergence between Bernoulli distributions with pa-

rameters p and q
F1 CDF of the chi-square distribution with 1 degree of free-

dom
X Domain of X
PAC Probably Approximately Correct
iid Independent and Identically Distributed
ε,δ accuracy and confidence parameters in PAC guarantees
P ,Q Prior and posterior probability measures on C
WP , WQ Parametric representations of P and Q
CP , CQ Stochastic estimators: random variables on C dis-

tributed according to P , Q
c̄Q “central concept” of the posterior measure Q
`(c, x) statistical loss function comparing a concept c and a

datum x
r(c) risk: average of `(c, x) for x ∼ X
r̂(c) empirical estimate of r(c) from data x1, . . . , xN
rQ stochastic risk: average of `(c, x) for x ∼ X, c ∼ Q
r̂Q empirical estimate of rQ from data x1, . . . , xN

Christoffel Functions

Mm, M̂m Matrix of moments of degree ≤ m and its empirical
estimate

M̂m,σ0 Empirical moment matrix with diagonals modified by
σ0

zm(x) vector of monomials with degree≤ m evaluated at point
x

κ̂−1(x) Polynomial empirical inverse Christoffel function eval-
uated at x

κ̂−1(x) kernelized empirical inverse Christoffel function
C(x) Christoffel-based support set estimator, output of Al-

gorithms 4,5, and 6
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Gaussian Processes
m, k prior mean and covariance functions
mq, kq posterior mean and covariance functions
K kernel Gramian matrix, Kij = k(xi, xj)
kD vector of kernel evaluations on data, (kD(x))i = k(xi, x)
N (µ,Σ) Multivariate normal with mean µ and covariance Σ
GP(m, k) Gaussian process with mean and covariance functions

m, k
Table 2.1: Important symbols and acronyms used in
Part I.
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Chapter 3

The Scenario Optimization Approach

A simple strategy for selecting a reachable set estimate R̂ ∈ C from a class of admissible
estimators C using data is to select the smallest set in C that contains all of the data points.
Here, “small” can be with respect to a proxy for the volume, as directly computing the
Lebesgue measure is not computationally feasible in general. This leads to the following
heuristic:

1. Compute samples r1, . . . , rN
i.i.d.∼ R by sampling from X0 and D and applying the

black-box model for Φ.

2. Find the set R̂ ∈ C that minimizes the volume proxy subject to the constraint that
r1, . . . , rN ∈ R̂.

Step 1 is parallelizable, since the samples ri can be computed independently. Step 2 cor-
responds to a minimum-volume covering problem: special cases of this problem, such as
the minimum-volume covering ellipsoid, have been studied extensively, and in many cases
the problem can be solved by standard optimization packages. It sounds like a plausible
strategy, and it has the advantage of being straightforward to compute, but is it enough to
provably solve Problem 1? In other words, can this heuristic be endowed with a probabilistic
guarantee of the accuracy and confidence of its output? Under the right conditions it can,
and those conditions depend only on the nature of C, and not on the nature of Φ outside of
the measurability requirement mentioned above.

The step from a heuristic to an algorithm that provably solves Problem 1 is furnished by
convex scenario optimization, a randomized approach to approximating feasible solutions of
chance-constrained optimization problems. Convex scenario optimization replaces the prob-
abilistic constraint of the chance-constrained problem with a set of sampled-data constraints.
With a sufficient number of samples, the sampled-data solution satisfies the original prob-
abilistic constraint with high confidence: we review this in Section 3.1. In Section 3.2, we
show that the heuristic described above computes the solution to a scenario approximation
of a convex chance-constrained problem under a suitable convexity assumption: the proba-
bilistic guarantee of scenario optimization transfers to the heuristic, proving that it solves
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Problem 1. The convexity assumption is on a parametric representation of C: the reachable
set estimates themselves are not required to be convex. In Section 3.3, we consider examples
of scenario reachability for specific choices of C applied to a chaotic nonlinear system.

3.1 The Scenario Approach to Chance-Constrained

Convex Optimization

Scenario optimization is a technique to approximately solve chance-constrained convex op-
timization problems. Specifically, we consider the problem

minimize
θ

J(θ)

subject to PZ(g(Z, θ) ≤ 0) ≥ 1− ε
θ ∈ Θ,

(3.1)

where J and g are convex with respect to θ, PZ is a probability measure corresponding
to a random variable Z, ε ∈ (0, 1), and Θ ∈ Rnθ is convex and compact. The problem
admits great freedom in Z: no specific assumptions are made on the nature of Z, and g
does not need to be convex with respect to Z. Furthermore, we will ultimately not require
specific knowledge about Z, just the ability to sample from it. Directly computing a solution
to (3.1) is typically difficult due to the probabilistic constraint: it is difficult to verify outside
of certain special cases, and its feasible set is generally not convex despite the given convexity
assumptions.

To alleviate the difficulties caused by the probabilistic constraint, the technique of sce-
nario optimization replaces it with a collection of N sampled constraints, called scenarios,
where the random variable Z is replaced by a fixed sample z ∼ Z. This leads to the scenario
relaxation of the problem with N scenarios:

minimize
θ

J(θ)

subject to g(zi, θ) ≤ 0, i = 1, . . . , N,

θ ∈ Θ,

(3.2)

where z1, . . . , zN
i.i.d.∼ Z. The scenario relaxation is easier to solve than the original problem

for two important reasons. First, we no longer need to evaluate PZ : we only need to be
able to sample from Z to construct the scenario constraints before solving the problem.
Second, the scenarios are convex constraints, meaning that the scenario relaxation is a convex
optimization problem unlike the original problem.

In general we cannot be certain that a solution to the scenario relaxation is a feasible
solution to the original problem, since we cannot evaluate PZ . However, we can guarantee
that the probability of satisfying the original constraint, with respect to the distribution of
the samples z1, . . . , zN used to construct the scenarios, can be made arbitrarily close to 1
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when N is sufficiently large. The specific N depends on ε, nθ, and the desired confidence of
satisfying the constraint:

Theorem 1 ([83], Corollary 12.1). Let δ ∈ (0, 1) denote a confidence parameter. If N is
selected according to

N ≥ 1

ε

(
e

e− 1

)(
log

1

δ
+ nθ

)
, (3.3)

where e is the base of the natural logarithm, then a minimizer of (3.2), if it exists, is a
feasible solution to (3.1) with probability ≥ 1− δ with respect to the measure PN

Z .

We can interpret the confidence parameter δ as the probability of selecting a sample
z1, . . . , zN such that the solution of the scenario relaxation constructed from z1, . . . , zN does
not satisfy the probabilistic constraint. For example, if we take δ = 10−9, then the event
that we construct a scenario relaxation whose solution does not satisfy the original constraint
is a “one in a billion” event. This theorem ensures that, for sufficiently large (but always
finite) N , δ can be made arbitrarily small. Indeed, since δ only appears logarithmically in
the sample bound (3.3), we can typically choose δ ≤ 10−9 without greatly increasing the
number of samples required to construct the scenario relaxation.

3.2 The Scenario Reachability Algorithm

The heuristic described in the beginning of this section, where we take samples from the
reachable set and choose the smallest estimator in a set C that contains the samples, computes
the solution of a scenario relaxation of a chance-constrained optimization problem for certain
choices of C. Specifically, we consider classes of sets of the form

C = { {x ∈ Rnx : g(x, θ) ≤ 0} θ ∈ Θ}, (3.4)

where g : Rnx ×Θ→ R is convex in θ, and Θ ⊆ Rnθ is convex and compact. The class C is
a set of sublevel sets, one sublevel set {x ∈ Rnx : g(x, θ) ≤ 0} for each θ ∈ Θ. We denote
the sublevel set {x : g(x, θ) ≤ 0} for a specific choice of θ as R̂(θ). We also suppose that we
have a convex proxy Vol : Θ→ R for the volume of R̂(θ).

Now, consider the problem of finding the smallest set R̂ ∈ C, with respect to Vol, that
satisfies the accuracy condition of the PAC bound (2.1), that is the smallest R̂(θ), with
θ ∈ Θ, such that PR(R̂(θ)) ≥ 1− ε. The parameter corresponding to this set is the solution
of the optimization problem

minimize
θ

Vol(θ)

subject to PR(g(R, θ) ≤ 0) ≥ 1− ε
θ ∈ Θ.

(3.5)
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Minimize Vol( )

subject to PR( ) ≥ 1− ǫ

R(θ)

θ

subject to ∈

Minimize Vol( )
θ

Figure 3.1: Illustrations of the probabilistic forward reachability problem as a chance-
constrained optimization problem (left) and its scenario relaxation (right).

This is a chance-constrained convex optimization problem of the form (3.1), satisfying the
same requirements on the objective and probabilistic constraint. In (3.5), the generic ran-
dom variable Z is replaced by the random variable R defined on the reachable set: since
no conditions were placed on the random variable in the probabilistic constraint, and we
need only to be able to compute samples in order to construct the scenario relaxation, this
approach is admissible for any measurable black-box model Φ. The scenario relaxation of
the problem (3.5) with N scenarios is

minimize
θ

Vol(θ)

subject to g(ri, θ) ≤ 0, i = 1, . . . , N

θ ∈ Θ,

(3.6)

where r1, . . . , rN
i.i.d.∼ R, that is ri = Φ(t1; t0, x0, d), i = 1, . . . , N with x01, . . . , x0N

i.i.d.∼ X0,

d1, . . . , dN
i.i.d.∼ D. The solution to this problem is the minimum-volume set (with respect to

the proxy Vol) that contains the sample points r1, . . . , rN . The relationship between Prob-
lem 1, the chance-constrained problem (3.5), and its scenario relaxation (3.6) is illustrated
in Figure 3.1.

Algorithm 1 describes the procedure of constructing samples r1, . . . , rN
i.i.d.∼ R, and con-

structing and solving the scenario optimization problem (3.6). Since the sample size N used
in Algorithm 1 satisfies the sample bound (3.3) for the ε and δ in the input, the conditions
of Theorem 1 hold for the solution θ∗ given as the output of the algorithm. This means that
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Algorithm 1: Scenario Reachability.

Input: Black-box transition function model Φ(t1; t0, x0, d); State dimension nx;
Parameter dimension nθ; convex, compact parameter set Θ ⊆ Rnθ Sublevel
set function g(x, θ), convex for θ ∈ Θ; random variables X0 and D
supported on X0 and D respectively; time range [t0, t1]; accuracy and
confidence parameters ε, δ ∈ (0, 1).

Output: Parameter θ∗ corresponding to a reachable set estimate R̂(θ∗) that solves
Problem 1.

1 Set number of samples N =
⌈

1
ε

e
e−1

(
log 1

δ
+ nθ

)⌉
;

2 for all i ∈ {1, . . . , N} do
3 Take samples x0i ∼ X0, di ∼ D;
4 Evaluate ri = Φ(t1; t0, x0i, di);

5 end
6 Solve the convex problem

θ∗ =arg min
θ

Vol(θ)

subject to g(ri, θ) ≤ 0, i = 1, . . . , N

θ ∈ Θ,

and return θ∗;

PR({x : g(x, θ∗) ≤ 0}) ≥ 1− ε with probability 1− δ with respect to the samples r1, . . . , rN .
If we take R̂(θ∗) = {x : g(x, θ∗) ≤ 0} as the estimate of the reachable set, then we have that

PN
R (PR(R̂(θ∗)) ≥ 1− ε) ≥ 1− δ, (3.7)

which is precisely the condition (2.1) required for R̂(θ∗) to solve Problem 1.

Proposition 1. The reachable set estimate R̂(θ∗), where θ∗ is the output of Algorithm 1,
solves Problem 1.

Informally, Algorithm 1 comprises two steps:

1. Compute samples r1, . . . , rN
i.i.d.∼ R by sampling from X0 and D and applying the

black-box model for Φ.

2. Find the set R̂(θ) that minimizes the volume proxy subject to the constraint that
r1, . . . , rN ∈ R̂.

This is precisely the heuristic described in the beginning of this section: Algorithm 1 and
Proposition 1 show that this heuristic can in fact produce reachable set estimates with
arbitrarily high probabilistic accuracy and confidence.
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3.3 Examples of Scenario Reachability

The choice of the sublevel set function g(x, θ) determines the geometry of the reachable
set estimates. In a sense, Algorithm 1 comprises a family of algorithms for estimating
reachable sets from data, from which we fix a particular algorithm by choosing a particular
g. The geometric properties of R̂(θ∗), the sample complexity of the algorithm, and the
computational difficulty of solving the scenario relaxation (3.6) to find θ∗ all depend strongly
on the choice of g, so a meaningful computational analysis of scenario reachability is not
possible without examining specific choices of g.

In addition to examining the computational details for specific g, we will demonstrate
the performance of particular choices for g on a numerical example. The running example
will be to compute a forward reachable set for the Lorenz system

ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz

(3.8)

where x(t), y(t), z(t) ∈ R. We take σ = 10, β = 8/3, and ρ = 28. For these values, the system
exhibits chaotic behavior: indeed, it is the classical Lorenz attractor. For the reachability
problem, we take initial set X0 = [0, 1]3, time range [t0, tf ] = [0, 100], and no disturbance.
We will take the random variable X0 to be the uniform distribution on X0, and use accuracy
and confidence parameters ε = 0.05, δ = 10−9. All reported computation times are with
respect to a laptop with two 2.6 GHz physical cores running MATLAB. On this machine,
one evaluation of the state transition function takes approximately 45 milliseconds.

Scenario Reachability with p-Norm Balls

In this example, we consider the estimation of reachable sets using p-norm balls. Specifically,
we take

R̂(A, b) = {x ∈ Rnx : ‖Ax− b‖p ≤ 1}, (3.9)

where A = A> ∈ ΘA ⊆ Rnx×nx , b ∈ Θb ⊆ Rnx , with ΘA, Θb convex and compact,1

and ‖·‖p denotes the p-norm for p ∈ [1,∞)∪{∞}. For a fixed p, the class of norm balls is
of the form (3.4) for θ = (A, b), Θ = ΘA×Θb, g(x,A, b) = ‖Ax−b‖p−1. Since ‖Ax−b‖p−1
is convex in (A, b), this class of sets is suitable for scenario reachability. For the volume
proxy, we take Vol(A, b) = − log detA. This function is directly proportional to the volume
in the p = 2 case: by the equivalence of norms, it is proportional to an upper bound on the

1The compactness assumption is necessary to satisfy the compactness requirement of convex scenario
optimization. However, ΘA and Θb can typically be made large enough that its boundaries do not affect
computations.
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volume for general p. With this choice of g and Vol the scenario relaxation problem becomes

minimize
A,b

− log detA

subject to ‖Ari − b‖ ≤ 1, i = 1, . . . , N

A ∈ ΘA, b ∈ Θb.

This problem, which seeks to minimize a log determinant subject to norm constraints on A
and b, is readily solved by standard optimization packages for any p. For p = 2 this reduces to
the minimum-volume covering ellipsoid problem, for which there are more efficient specialized
algorithms [84]. The parameter vector θ = (A, b) comprises nx(nx + 1)/2 parameters in A
and nx parameters in b, yielding nθ = nx(nx + 3)/2 and a sample size of

N =

⌈
1

ε

e

e− 1

(
log

1

δ
+ 1

2
(n2

x + 3nx)

)⌉
(3.10)

in Algorithm 1. This shows that the p-norm ball instance of the scenario reachability algo-
rithm has quadratic sample complexity for fixed ε and δ.

O(1)O(nx)O(n2
x
)

A = σ I, b = 0A diagonal, any bA ≻ 0, any b

Figure 3.2: Illustration of the trade-off between orders of sample complexity and geometric
restriction for three classes of sparsity for 2-norm ball scenario reachability.

Quadratic sample complexity does not always scale well enough to allow for practical
computations. This can occur when the state dimension nx is large, or when the Φ is
computationally intensive model such as a high-fidelity simulation. For these cases, we can
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reduce the order of the sample complexity by placing sparsity constraints on the parameters
in A and b. For instance, restricting A to be diagonal reduces the number of parameters to
nθ = 2nx, yielding a sample complexity that scales linearly in nx when applied to (3.3). A
more severe example is to take A = σI, σ > 0, and b = 0: with just a single scalar parameter
regardless of state dimension, we attain constant sample complexity for fixed ε and δ. The
price paid for this reduction in sample complexity is a restriction on the geometry of the
norm balls. The diagonal A case leads to an “axis-aligned” geometry, where the semimajor
axes (or their equivalents for p 6= 2) are parallel to the standard basis vectors of Rnx . The
A = σI, b = 0 case restricts the norm ball to be centered on the origin and have equal width
in every direction. The trade-off between sample complexity and geometric restriction for
these two cases, compared to the unconstrained case, is illustrated in Figure 3.2.

Adding sparsity constraints to A and b can also reduce the computational burden of
solving the scenario relaxation, in some cases even allowing for an explicit solution. One
such case occurs when p = ∞ and A is restricted to be diagonal: R̂(A, b) takes the form
of an axis-aligned hyperrectangle, whose center is the point b and whose side length along
the ith direction is 2/Aii. The solution to (3.6) corresponds to the smallest axis-aligned
hyperrectangle containing r1, . . . , rN , which can be computed directly by taking the compo-
nentwise minimum and maximum of r1, . . . , rN . This instance of scenario reachability, which
requires only O(nx) samples and directly computes the explicit solution to (3.6), is described
in Algorithm 2.

Algorithm 2: Scenario reachability with axis-aligned hyperrectangles.

Input: Black-box transition function model Φ(t1; t0, x0, d); State dimension nx;
random variables X0 and D supported on X0 and D respectively; time range
[t0, t1]; accuracy and confidence parameters ε, δ ∈ (0, 1).

Output: Parameters A, b corresponding to an axis-aligned hyperrectangle
(expressed as an ∞-norm ball) that solves Problem 1.

1 Set number of samples N =
⌈

1
ε

e
e−1

(
log 1

δ
+ 2nx

)⌉
;

2 for all i ∈ {1, . . . , N} do
3 Take samples x0i ∼ X0, di ∼ D;
4 Evaluate ri = Φ(t1; t0, x0i, di);

5 end
6 Let r = mini ri, r = maxi ri, where min and max denote componentwise minimum

and maximum;
7 Let b = (r + r)/2, a = (r − r)/2;

8 return A = diag(a)−1, b;

Turning to the numerical example, we apply the p = 2 norm ball instance of Algorithm 1
and to the forward reachability problem defined for the Lorenz system. For this instance, we
consider three cases of sparsity: no constraint, A diagonal, and A = σI, b = 0. For ε = 0.05
and δ = 10−9, the unconstrained case uses N = 941 samples, the diagonal A uses N = 846
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Figure 3.3: Reachable set estimates produced by 2-norm scenario reachability for the Lorenz
system for three cases of sparsity in A and b, projected onto the (x, y) plane (top row) and
(x, z) plane (bottom row).
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samples, and the A = σI, b = 0 case uses N = 688 samples. The reachable sets produced
by these three cases of Algorithm 1, projected onto the (x, y) and (x, z) planes, are shown
in Figure 3.3: they took 70 seconds, 59 seconds, and 45 seconds to compute, respectively.

Scenario Reachability with Basis Functions

Since g(x,A, b) = ‖Ax − b‖p − 1 is convex with respect to x as well as θ, the reachable
set estimates made by scenario reachability with this choice of g are always convex. Since
reachable sets are often nonconvex, this restriction can introduce unwanted conservatism. A
simple way to construct a sublevel set function g(x, θ) that is convex in θ but not x is to
select a finite set of basis functions f1(x), . . . , fm(x) : Rnx → R not convex in x and take g to
be the weighted sum g(x, θ) =

∑m
i=1 θifi(x). Since this g is convex – indeed, affine – in the

parameter vector θ = (θ1, . . . , θm), it is a suitable function for scenario reachability, provided
that we can also find a suitable convex volume proxy, and where we can ensure that the
reachable set estimate is compact. In this section, we will use this approach to construct an
instance of scenario reachability that estimates the reachable set using a union of cells taken
from a partition of a compact region of the state space.

For this approach, we assume that R is known to be contained in a compact subset A ⊆
Rnx .2 We then select a partition of A into m cells, that is a collection of sets A1, . . . , Am such
that

⋃m
i=1Ai = A and Ai∩Aj = ∅ for i 6= j. Let 1 {Ai} denote the zero-one indicator function

for the set Ai, so that 1 {Ai} (x) = 1 if x ∈ Ai and 1 {Ai} (x) = 0 otherwise. Additionally,
let 1 {Ac} denote the zero-one indicator function for Ac, the set-theoretic complement of A
with respect to Rnx . We use these indicators as the basis functions for g, taking

g(x, θ) = 1 {Ac} (x) +
m∑
j=1

θj1 {Aj} (x). (3.11)

The reachable set estimates R̂(θ) = {x ∈ Rnx : g(x, θ) ≤ 0} ⊆ A generated by this g are
unions of the partition cells: Aj ∈ R̂(θ) if and only if θj ≤ 0. We also set Θ = [0, 1]m: while

respecting this constraint, Aj ∈ R̂(θ) if and only if θj = 0.

The exact volume of R̂(θ) is
∑m

j=1 1{θj = 0}VAj , where VAj is the volume of the cell
Aj. To derive a convex volume proxy from this expression, we remove the VAj factors and
replace 1{θj = 0} with the convex approximation 1− θj, yielding

Vol(θ) =
m∑
j=1

1− θj. (3.12)

We may further simplify Vol by removing the constant factors, since they do not affect the
outcome of the optimization problem. With this choice of g and Vol, the scenario relaxation

2If such a region is not known in advance, we can use a data-driven estimate. For example, we could use
the output of Algorithm 2 as the region A: the union-of-cells estimate for the reachable set would then act
as a refinement of the hyperrectangle estimate.
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is

minimize
θ

−
m∑
j=1

θj

subject to 1 {Ac} (x) +
m∑
i=1

θi1 {Ai} (x) ≤ 0, i = 1, . . . , N

θ ∈ [0, 1]m.

(3.13)

The scenario relaxation (3.13) can be solved directly. To satisfy the scenario constraints,
we set θj = 0 for all j such that ri ∈ Aj for at least one i ∈ {1, . . . , N}. To minimize the
objective while respecting θ ∈ [0, 1]m, we set θj = 1 for all other j. The reachable set estimate

R̂(θ∗) corresponding to the solution θ∗ to (3.13) is the union of the cells Aj that contain one
or more of the samples ri. This is in fact the minimum-volume union of cells that contains
r1, . . . , rN , so the convex volume proxy does not introduce any conservatism. The scenario
reachability algorithm based on the partition A1, . . . , Am is described in Algorithm 3.

Algorithm 3: Scenario reachability with a state-space partition.

Input: Black-box transition function model Φ(t1; t0, x0, d); State dimension nx;
Partition A1, . . . , Am of a region A ⊆ Rnx such that R ⊆ A; random
variables X0 and D supported on X0 and D respectively; time range [t0, t1];
accuracy and confidence parameters ε, δ ∈ (0, 1).

Output: Parameters θ1, . . . , θm corresponding a union of cells Aj such that

Aj ∈ R̂(θ) if and only if θ = 0.
1 Initialize θj = 1, j = 1, . . . ,m. Set number of samples N =

⌈
1
ε

e
e−1

(
log 1

δ
+m

)⌉
;

2 for all i ∈ {1, . . . , N} do
3 Take samples x0i ∼ X0, di ∼ D;
4 Evaluate ri = Φ(t1; t0, x0i, di);
5 for all j ∈ {1, . . . ,M} do
6 if ri ∈ Aj, set θj = 0.
7 end

8 end
9 Return θ1, . . . , θm;

To demonstrate partition-based scenario reachability, we apply it to the Lorenz reach-
ability problem. We take A to be the hyperrectangle A = [−30, 30] × [−30, 30] × [0, 50],
and take the partition of A to be the grid with 10 sides along each dimension. This yields
m = 1000, which for ε = 0.05, δ = 10−9 yields a sample size of N = 32296 in Algorithm 3.
The output of Algorithm 3 for this problem, which took 36 minutes to compute, is shown in
Figure 3.4.

The partition-based instance of scenario reachability can produce arbitrarily fine esti-
mates of the reachable set, depending on how refined the partition is. For example, when
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Figure 3.4: Reachable set (blue) computed by Algorithm 3 for the Lorenz system using a
grid-based partition and N = 32296 samples (grey), projected onto the (x, y) and (x, z)
planes.

A is a hyperrectangle as in the numerical example, we can use a regular grid with ` grid
cells along each dimension as the partition. The accuracy of the partition will increase as `
increases, but the number of required number of samples increases at a polynomial rate in `
and at an exponential rate in nx, as there are `nx parameters.

3.4 Alternatives to Convex Scenario Optimization

From an algorithmic standpoint, the scenario approach can be applied to any chance-
constrained optimization problem, whether it satisfies the convexity conditions or not: the
difficulty is proving that solving the scenario relaxation is not just a heuristic, but indeed
provides feasible solutions to the original problem with arbitrarily high probability. The
theory of scenario optimization is concerned with proving this for various classes of chance-
constrained problems, and for variants of the basic scenario relaxation described in Sec-
tion 3.1.

The earliest and strongest result in this theory is the probabilistic guarantee for convex
chance-constrained problems [18]. However, recent developments in the theory of scenario
optimization allow for similar guarantees for chance-constrained problems that are not con-
vex [23, 21]. However, the level of probabilistic accuracy guaranteed by the non-convex
bound is data-dependent and cannot be computed until after after the scenario relaxation
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has been solved. This means that a sample complexity bound cannot be established in ad-
vance, as it can be for convex scenario optimization: the only way to achieve a certain level
of probabilistic accuracy is to solve the scenario relaxation multiple times for an increasing
number of samples until the data-dependent bound attains the desired accuracy. While this
“wait-and-judge” approach to scenario optimization does not have a pre-specified stopping
time, it can work well in practice [22].

3.5 Limitation of the Scenario Approach

The scenario approach to reachability possesses a great deal of flexibility in the types of
reachable set estimates it can use, which allows it to provide probabilistic guarantees of
accuracy and confidence for many data-driven reachability algorithms. We have seen how
it can provide such guarantees for methods based on minimum-volume covering ellipsoids,
axis aligned rectangles, and grid-based state space partitions. However, there are several
limitations to this approach.

The first limitation is that the scenario approach is essentially limited to data-driven
algorithms of the minimum-volume covering type that admit a convex volume proxy. Any
algorithm which is not based on the heuristic of finding a set that covers a collection of
samples with minimal volume cannot be endowed with a probabilistic guarantee by the
scenario approach. There are useful algorithms which are not based on this heuristic, one of
which we will see in the next section.

The second limitation is that even if an algorithm is based on this heuristic, the class C
of estimators it considers must:

1. be parameterized by a finite number of parameters;

2. admit a convex volume proxy Vol(θ);

3. admit a representation as the zero-sublevel sets of a function g(x, θ) convex in θ.

These requirements rule out all nonparametric estimators, as well as several parametric
classes of estimators that are popular in reachability analysis. The class of zonotopes is
one example: they satisfy the first two requirements, but do not admit a convenient convex
parameterization.

3.6 Conclusion

The core message of this chapter is an affirmation that the problem laid out in Chapter 2 is
achievable: that computationally straightforward algorithms for estimating forward reach-
able sets from data can be endowed with guarantees of accuracy and confidence that hold
with arbitrarily high probability. Our strategy so far has been to rely on the perspective of
chance-constrained optimization and the scenario approach. This strategy allows us to prove
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probabilistic safety guarantees for algorithms based on the heuristic of finding a minimum-
volume cover for a set of points, but does not cover algorithms based on other principles. In
the next two chapters we will meet a class of algorithms, based on various types of Christoffel
functions, which are very effective at estimating reachable sets from data but nevertheless
do not follow the volume-minimizing heuristic. In order to extend our ability to prove safety
guarantees to a more general class of data-driven algorithms, and to methods based on
Christoffel functions in particular, we require a technique with greater generality than the
scenario approach.
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Chapter 4

The PAC Approach

So far, our analysis of data-driven reachability has been based on a re-framing of the prob-
abilistic variant of the forward reachability problem as a chance-constrained optimization
problem, which has allowed us to leverage the tools of scenario optimization theory. In this
chapter we consider a different framing, based on the notion of empirical risk minimiza-
tion from statistical learning theory, that addresses some of the limitations of the scenario
approach.

An empirical risk minimization problem, illustrated in Figure 4.1, comprises:

1. a collection of random observations x1 . . . , xN that are independent and identically
distributed according to an unknown probability measure PX ;

2. a domain X and a class of sets C ⊆ 2X , called the concept class;

3. a loss function ` : C × X → R.

In this framework, learning takes place by using the observations x1, . . . , xn to select
a concept c ∈ C. We would like to select the concept which minimizes the statistical risk
r(c) = E [`(c,X)], where X is distributed according to PX , but this is not possible since PX is
not known. We instead select a concept which minimizes empirical estimate r̂(c) of the risk.
Under certain conditions on ` and C, the difference between r(c) and r̂(c) can be uniformly
bounded with respect to C with high probability by any constant ε > 0 for a sufficiently large
N . A sufficient condition on ` is that it take on only the values zero and one, a condition
which holds for the loss function appropriate for reachability analysis. A sufficient condition
on C for this to be possible is that the Vapnik-Chervonenkis (VC) dimension1 of C be finite.

The uniform bound on empirical risk described above is of the accuracy-confidence type
described in Chapter 1, and is known in statistical learning theory as a Probably Approxi-

1 The VC dimension is a combinatorial measure of the expressive power of a class of sets in terms of
that class’s ability to distinguish arbitrary points. We will not define the VC dimension here: for details,
and rules to compute the VC dimension of several useful concept classes, we refer to [83, Chapter 10].
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x1, . . . , xN

P

c ∈ C

r( ) = 1− P ( )

`( , ) = 11{ /∈ }

Figure 4.1: An empirical risk minimization problem: finding a concept c minimizing the
empirical risk r̂(c) defined by data x1, . . . , xN . Here, the loss is zero for points inside the
concept, and one otherwise. P denotes the support of X.

mately Correct (PAC) bound.2 For an appropriate choice of loss function, the PAC bound
implies an accuracy-confidence bound on the probability mass covered by R̂: We call this
approach to solving the Problem 1 the PAC approach. Unlike the scenario approach, the
PAC approach places no restriction on how C is parameterized, nor on how R̂ is selected from
C. This means that the approach can be applied to any data-driven reachability technique
that draws R̂ from a class of finite VC dimension.

To demonstrate how the PAC approach works, we will spend this chapter developing, and
proving a probabilistic safety guarantee, for a data-driven reachability algorithm that uses
sublevel sets of the inverses of Christoffel functions to estimate the reachable set. These
sublevel sets make excellent estimators, but since the algorithm that derives them is not
of the minimum-volume covering form, the scenario approach does not apply. However,
the class of Christoffel function sublevel sets has finite VC dimension, so we are still able
to apply the PAC approach. In Section 4.1 we review the family of Christoffel functions
and their inverses; in Section 4.2 we introduce the algorithm to transform reachability data
into a Christoffel-based estimate of the reachable set; and in Section 4.3 we give a more
detailed review of PAC bounds and statistical learning theory, and prove the probabilistic

2The bound, and corresponding statistical framework, were invented and named by Leslie Valiant [85].
The name “Probably Approximately Correct” is an keen example of the British tendency to understate, for
no stronger guarantee can be made under the assumptions of Valiant’s framework.
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guarantee for the Christoffel-based reachability algorithm. Finally, in Section 4.4 we apply
the reachability algorithms to three numerical examples which demonstrates the ability of
the algorithm to provide accurate estimations of complicated reachable set geometries.

4.1 Christoffel Functions

Given a finite measure µ on Rnx and a positive integer m, the Christoffel function of order
k is defined as the ratio

κ(x) =
1

zm(x)>M−1zm(x)
, (4.1)

where M is the matrix of moments

M =

∫
Rnx

zm(x)zm(x)>dµ(x)

and zm(x) is the vector of monomials of degree ≤ m. We assume throughout that M is
positive definite, ensuring that M−1 exists. The Christoffel function has several important
application in approximation theory, where its asymptotic properties are used to prove the
regularity and consistency of Fourier series of orthogonal polynomials. For our purposes, it
is more convenient to use the inverse Christoffel function

κ(x)−1 = zm(x)>M−1zm(x), (4.2)

which is a polynomial of degree 2m. In Problem 1, and more generally in the problem of
estimating a probability distribution from samples, µ is a probability measure which we
do not a priori know– namely, the measure PR over the reachable set. In this case, we
instead use an empirical estimate of PR constructed from a collection of independently and
identically distributed (iid) samples ri, i = 1, . . . , N samples from PR, namely

P̂R =
1

N

N∑
i=1

δri ,

where δx is the Dirac measure satisfying
∫
f(y)dδx(y) = f(x). The measure P̂R itself defines

a Christoffel function, whose inverse

C(x) = κ̂−1(x) = zm(x)>M̂−1zm(x)

= zm(x)>

(
1

N

N∑
i=1

zm(ri)zm(ri)
>

)−1

zm(x),
(4.3)

is called the empirical inverse Christoffel function. The matrix M̂ is positive definite (and
hence M̂−1 exists) if N ≥

(
nx+m
nx

)
and the ri do not all belong to the zero set of a single

degree m polynomial.
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4.2 Christoffel Function Level Sets as Reachable Set

Approximations

Christoffel functions serve as approximations, to the degree possible by a polynomial, the
measures that define them. This means that level sets of Christoffel functions provide tight
approximations of the support of the measure, provided that the right level parameter can be
found. This support-approximating quality has motivated the use of Christoffel functions in
several statistical applications, such as density estimation [60, 61] and outlier detection [7].

Algorithm 4: Data-driven reachable set estimation by a sublevel set of an empirical
inverse Christoffel function.

Input: Transition function Φ of a system with state dimension n; random variables
X0 and D defined on X0 and D respectively; time range [t0, t1]; probabilistic
guarantee parameters ε and δ; Christoffel function order m.

Output: Set R̂ representing an ε-accurate reachable set estimate with confidence
1− δ.

1 Set number of samples

N =

⌈
5

ε

(
log

4

δ
+

(
nx + 2m

nx

)
log

40

ε

)⌉
. (4.4)

;
2 for all i ∈ {1, . . . , N} do
3 Take iid samples x0,i and di from X0 and D respectively;;
4 evaluate ri = Φ(t1; t0, x0,i, di).;

5 end

6 Compute the matrix M̂−1 and level parameter α, where

M̂ =
1

N

N∑
i=1

zm(ri)zm(ri)
>,

α = max
i=1,...,N

zm(ri)
>M̂−1zm(ri).

;
7 Record the set

R̂ = {x ∈ Rn : zm(x)>M̂−1zm(x) ≤ α}

as the reachable set estimate.;

Additionally, the level sets have been shown, using the plug-in approach [29], to converge
exactly to the support of the distribution (in the sense of Hausdorff measure) when the
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degree of the polynomial approaches infinity, and when the true probability distribution is
available [61]. When the true probability distribution is not known, as is the case here,
we can use the empirical Christoffel function instead. This is the essential idea behind
Algorithm 4, which computes an empirical inverse Christoffel function C(x) and a level
parameter α ∈ R, and returns the sublevel set R̂ = {x ∈ Rnx : C(x) ≤ α} as a proposed
solution to Problem 1. Of course, since we rely on the empirical inverse Christoffel function
of a fixed degree, constructed from finite data, the convergence results cited above do not
apply to Algorithm 4. This motivates us to look for an accuracy-confidence bound; while
the scenario approach is not able to provide such a guarantee, the PAC approach is up to
the task.

4.3 Classical PAC Analysis

PAC bounds originate in study of empirical risk minimization problems in statistical learning
theory. Our strategy to prove a PAC bound for Algorithm 4 is to express Problem 1 as an
empirical risk minimization problem and to then apply the tools of statistical learning theory.

In empirical risk minimization, the objective is to match a concept c ⊆ X from a pre-
specified concept class C ⊆ 2X to an unknown random variable X supported on X using only
a finite set of iid observations x1, . . . , xN of X. How well a concept matches X is quantified
by the statistical risk r(c) = E [`(c,X)] defined by a loss function ` : C × X → R+ and
the unknown measure PX : a lower risk indicates a better match. Since we do not know
PX , we cannot directly evaluate the statistical risk. However, we can use the empirical risk
r̂(c) = 1

N

∑N
i=1 `(c, xi) as a proxy for the true risk, and select a concept to match the data

on the basis of minimizing the empirical risk.
Whether empirical risk minimization actually selects a concept with low risk depends

on how much r̂(c) differs from r(c). A classical PAC bound provides a bound on the dif-
ference r(c) − r̂(c), or the absolute difference, that holds with high probability. We use
the following result from [5], which gives a quantitative sample bound that depends on
the Vapnik-Chervonenkis (VC) dimension [88] of the concept class. The VC dimension of
a concept is a combinatorial measure of its complexity based on the expressiveness of its
concepts.

Lemma 1 ([5], Corollary 4). Let C be a concept class of sets with VC dimension ≤ d, and
let ` : C × X → {0, 1} denote a {0, 1}-valued loss function. If

N ≥ 5

ε

(
log

4

δ
+ d log

40

ε

)
, (4.5)

and if r̂(c) = 0, then PN
X ({x1, . . . , xN : r(c) ≤ ε}) ≥ 1− δ.

A concept class with higher VC dimension generally provides greater-fidelity estimates
than one with lower VC dimension, but is also more prone to overfitting: informally, this is
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the reason why a concept class with higher VC dimension requires a larger sample bound
for the same accuracy and confidence than one with lower VC dimension.

To apply Lemma 1, we must show that the sublevel sets of a polynomial empirical inverse
Christoffel function belong to a concept class of bounded VC dimension. One such class is
the class of superlevel sets of degree 2k polynomials: the following Lemma from [42], provides
a bound on the VC dimension.

Lemma 2 ([42], Theorem 7.2). Let V be a vector space of functions g : Rn → R with
dimension v. Then the class of sets Pos(V ) = { {x : g(x) ≥ 0}, g ∈ V } has VC dimension
≤ v.

The PAC bound, and hence the validity of Algorithm 4 follows from Lemmas 2 and 1 by
framing the support estimation problem as one of empirical risk minimization.

Theorem 2. The support set estimate produced by Algorithm 4, that is the set {x ∈ X :
C(x) ≤ α} where C(x) = zm(x)>M̂−1

m,σ0
zm(x), α = maxiC(xi), satisfies the PAC bound

PN
R ({x1, . . . , xN : PR({x ∈ X : C(x) ≤ α}) ≥ 1− ε}) ≥ 1− δ, and thereby solves Problem 1

with parameters ε, δ.

Proof. Let C = Pos(R[x]n2m), and `(c, x) = 1 {x /∈ c}. Note that the set {x ∈ Rn : C(x) ≤ α}
is a member of Pos(R[x]n2m), since it can be expressed as c = {x ∈ Rn : α − C(x) ≥ 0}.
Since the dimension of R[x]nx2m is

(
nx+2m
nx

)
, the VC dimension of Pos(R[x]nx2m) is ≤

(
nx+2m
nx

)
=

v by Lemma 2. For `(c, x) = 1 {x /∈ c}, the statistical risk is r(c) = E [1 {x /∈ c}] =
1 − PX(c), and its empirical counterpart is r̂(c) =

∑N
i=1 1 {xi /∈ c}. The empirical risk

is zero for any set c that encloses x1, . . . , xN . The set {x ∈ Rn : C(x) ≤ α} encloses
x1, . . . , xN by construction, meaning that r̂({x ∈ Rn : C(x) ≤ α}) = 0. By applying

Lemma 1 for this choice of C, `, and m, we find that if N ≥ 5
ε

(
log 4

δ
+
(
nx+2m
nx

)
log 40

ε

)
, then

PN
R ({x1, . . . , xN} : 1− PR({x ∈ Rn : C(x) ≤ α}) ≤ ε}) ≥ 1 − δ. Since Algorithm 4 selects

N to be the smallest integer such that N ≥ 5
ε

(
log 4

δ
+
(
nx+2m
nx

)
log 40

ε

)
, it follows that the

stated PAC bound holds for the output of Algorithm 4.

Since Algorithm 4 isn’t based on a minimum-volume covering heuristic, it isn’t immedi-
ately clear whether or not its approximations will be conservative; in fact, as the sublevel
set of a polynomial, it’s not even clear that R̂ will be bounded. Fortunately, Algorithm 4
always produces bounded estimates, since R̂ is a sublevel set of the sum-of-squares polyno-
mial z(x)>M̂−1z(x). Furthermore, the level parameter α can equivalently be defined as the
solution to the optimization problem

arg min
α>0

α

subject to zk(x
(i))>M−1zk(x

(i)) ≤ α, i = 1, . . . , N.

In this problem, α acts as a penalty term for the volume of the sublevel set, since the volume
increases monotonically with increasing α.
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Remark 1. In some reachability problems, we are only interested in computing a reachable
set for a subset of the state variables. For example, suppose the state is (x1, . . . , xn) ∈ Rn,
and we wish to verify a safety specification involving only the states x1, . . . , xm, where m < n:
a reachable set for the states x1, . . . , xm would suffice for this problem. In cases like this,
Algorithm 4 can be modified to use only the first m elements of the samples ri. The output
of the algorithm is then an empirical inverse Christoffel function with domain Rm whose
sublevel set R̂ estimates the reachable set for the reduced set of states. In the sequel, we refer
to this application of Algorithm 4 as the reduced-state variant of Algorithm 4.

4.4 Examples

This section demonstrates Algorithm 4’s ability to make accurate estimates of forward reach-
able sets with three numerical examples. We demonstrate how the parallel nature of the
algorithm can be leveraged to improve computation times by running all experiments on
two computing platforms: (i) a laptop with 4 2.6 GHz cores; and (ii) an instance of the AWS
EC2 computing platform c5.24xlarge, a virtual machine with 96 3.6 GHz cores.

Chaotic Nonlinear Oscillator

The first example is a reachable set estimation problem for the nonlinear, time-varying
system with dynamics

ẋ = y

ẏ = −αy + x− x3 + γ cos(ωt),
(4.6)

with states x, y ∈ R and parameters α, γ, ω ∈ R. This system is known as the Duffing
oscillator, a nonlinear oscillator which exhibits chaotic behavior for certain values of α, γ,
and ω, for instance

α = 0.05, γ = 0.4, ω = 1.3. (4.7)

The initial is the interval such that x(0) ∈ [0.95, 1.05], y(0) ∈ [−0.05, 0.05], and we take X0

to be the uniform random variable over this interval. The time range is [t0, t1] = [0, 100].
We use Algorithm 4 to compute a reachable set for (4.6) using an order k = 10 empirical

inverse Christoffel function with accuracy and confidence parameters ε = 0.05, δ = 10−9.
With these parameters, (4.4) states that N = 156, 626 samples are required to ensure that
Theorem 2 holds for the reachable set estimate. Total computation times for this example
were 39 minutes on the laptop, and 41 seconds on c5.24xlarge.

Figure 4.2 shows the reachable set estimate for the Duffing oscillator system with the
problem data given above, and the point cloud of 156, 626 samples used to compute the
empirical inverse Christoffel function and the level parameter α. The reachable set estimate
is neither convex nor simply connected, closely following the boundaries of the cloud of points
and excluding an empty region within the cloud of points.
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Figure 4.2: Left : reachable set estimate for the Duffing oscillator system (blue contour), the
cloud of 156,626 samples used to compute the empirical inverse Christoffel function (grey
points), and the initial set (black box). Right : enlarged version of the region in the left plot
enclosed by the red box, showing the region excluded from the reachable set.

To experimentally verify that the assertion of Proposition 2 holds for the reachable set
estimate, we compute an a posteriori estimate of the accuracy of the empirical inverse
Christoffel function sublevel set. To do this, we first compute a new set of sample points
of size Nap. Denoting by Nout the number of new samples that lie outside of the reachable
set estimate, we can compute the empirical accuracy of a reachable set approximation as
1−Nout/NAP . We use NAP = 46,052 sample points to make the a posteriori estimate. This
sample size ensures that a one-sided Chernoff bound holds, which guarantees that empiri-
cal accuracy is within 1% of the true with 99.99% confidence. The a posteriori empirical
accuracy computed with this sample is 1 − (2 × 10−5), ensuring that the true accuracy of
the reachable set estimate is at least 0.99− 2× 10−5 with 99.99% confidence. This is well in
excess of the 0.95 accuracy guaranteed by Theorem 2.

Planar Quadrotor Model

The next example is a reachable set estimation problem for horizontal position and altitude
in a nonlinear model of the planar dynamics of a quadrotor used as an example in [66, 17].
The dynamics for this model are

ẍ = u1K sin(θ)

ḧ = −g + u1K cos(θ)

θ̈ = −d0θ − d1θ̇ + n0u2,

(4.8)

where x and h denote the quadrotor’s horizontal position and altitude in meters, respectively,
and θ denotes its angular displacement (so that the quadrotor is level with the ground at
θ = 0) in radians. The system has 6 states, which we take to be x, h, θ, and their first
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derivatives. The two system inputs u1 and u2 (treated as disturbances for this example)
represent the motor thrust and the desired angle, respectively. The parameter values used
(following [17]) are g = 9.81, K = 0.89/1.4, d0 = 70, d1 = 17, and n0 = 55. The set of initial
states is the interval such that

x(0) ∈ [−1.7, 1.7], ẋ(0) ∈ [−0.8, 0.8],

h(0) ∈ [0.3, 2.0], ḣ(0) ∈ [−1.0, 1.0],

θ(0) ∈ [−π/12, π/12], θ̇(0) ∈ [−π/2, π/2],

the set of inputs is the set of constant functions u1(t) = u1, u2(t) = u2 ∀t ∈ [t0, t1], whose
values lie in the interval

u1 ∈ [−1.5 + g/K, 1.5 + g/K], u2 ∈ [−π/4, π/4],

and we take X0 and D to be the uniform random variables defined over these intervals.
The time range is [t0, t1] = [0, 5]. We take probabilistic parameters ε = 0.05, δ = 10−9.
Since the goal of this example is to estimate a reachable set for the horizontal position and
altitude only, we are interested in a reachable set for a subset of the state variables, namely
x and h. As mentioned in Remark 2, Algorithm 4 can be used to estimate a reachable
set for x and h in two ways: we can either compute a Christoffel function estimate for the
reachable set and take the “shadow projection” of the estimate onto x and h, or we could
compute a Christoffel function estimate for x and h directly using the reduced-state variant
of Algorithm 4 with the (x, h) components of the reachable set data. To compare the relative
accuracy and computational expense of these methods, we compute a reachable set estimate
for (x, h) using both methods.

Figure 4.3 shows the reachable set estimates computed using both methods using order
k = 4 inverse empirical Christoffel functions. Both reachable estimates turn out to be similar,
though the estimate using the modification of Remark 2 is slightly tighter and significantly
less computationally expensive. Running Algorithm 4 with the full state dimension n = 6
and order k = 4 with the ε and δ above requires N = 2,009,600 samples: using the reduced-
state variant brings the effective state dimension to n = 2, and the sample size to N = 32,292.
The computation times in the full-state case were 77 minutes on the laptop and 2 minutes on
c5.24xlarge; in the reduced-state case, computation times were 78 seconds on the laptop
and 2 seconds on c5.24xlarge. This shows that Algorithm 4’s ability to work on subsets
of the state space can speed up computations in cases where only a subset of state variables
are of interest.

Monotone Traffic Model

The final example is a special case of a continuous-time road traffic analysis problem used as
a reachability benchmark in [28, 65, 40]. This problem investigates the density of traffic on a
single lane over a time range over four periods of duration T using a discretization of the cell
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Figure 4.3: Reachable set estimates for the horizontal position and altitude of the planar
quadrotor model, computed by projecting the output of Algorithm 4 onto (x, h) (blue) and
using the modification of Algorithm 4 mentioned in Remark 2, where the algorithm is run
using only the (x, h) components of the data (orange).

transmission model that divides the road into n equal segments. The spatially discretized
model is an n-dimensional dynamical system with states x1, . . . , xn, where xi represents the
density of traffic in the ith segment. Traffic enters segment through x1 and flows through
each successive segment before leaving through segment n. The state dynamics are

ẋ1 =
1

T
(d−min(c, vx1, w(x− x2)))

ẋi =
1

T

(
min(c, vxi−1, w(x− xi))

−min(c, vxi, w(x− xi+1))
)
, (i = 2, . . . , n− 1)

ẋn =
1

T
(min(c, vxn−1, w(x− xn)/β)−min(c, vxn))) ,

(4.9)

where v represents the free-flow speed of traffic, c the maximum flow between neighboring
segments, x̄ the maximum occupancy of a segment, and w the congestion wave speed. The
input u represents the influx of traffic into the first node. For the reachable set estimation
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problem, we use a model with n = 6 states, and take T = 30, v = 0.5, w = 1/6, and x̄ = 320.
The initial set is the interval such that xi(0) ∈ [100, 200], i = 1, . . . , n, the set of disturbances
is the set of constant disturbances with values in the range range d ∈ [40/T, 60/T ], and X0

and D are the uniform random variables over these sets. The time range is [t0, t1] = [0, 4T ].
The system dynamics (5.24) are monotone, or order-preserving, meaning that if two initial

conditions x(1)(0), x(2)(0) and disturbances d(1), d(2) satisfy x(1)(0) ≤ x(2)(0) (where ≤ is the
standard partial order) and d(1)(t) ≤ d(2)(t), t ∈ [0, T ], then x(1)(T ) ≤ x(2)(T ). This mono-
tonicity allows for a convenient interval over-approximation of the reachable set. If x, x are
the lower and upper bounds of the interval of initial states, and d, d are the lower and upper
bounds on the values admitted by the disturbance signal, then [Φ(t1; t0, x, d),Φ(t1; t0, x, d)]
is the smallest interval that contains the entire reachable set. While this over-approximation
is easy to compute, and the best possible over-approximation by an interval, it is in general
a conservative over-approximation because reachable set may only occupy a small volume of
the interval. Since the empirical Inverse Christoffel function method can accurately detect
the geometry of the reachable set, we use this method to compare the shape of the reachable
set to the best interval over-approximation. In particular, we use the reduced-state variant
of Algorithm 4 to compute a reachable set for the traffic densities x5 and x6 at the end of
the road, using an order k = 10 empirical inverse Christoffel function with accuracy and
confidence parameters ε = 0.05, δ = 10−9. Computation times for this example were 10
minutes on the laptop and 2 minutes on c5.24xlarge.

Figure 4.4 compares the reachable set estimate computed with Algorithm 4 to the pro-
jection of the tight interval over-approximation computed using the monotonicity property
of the traffic system. The figure indicates that the tight interval over-approximation of the
reachable set is a somewhat conservative over-approximation, since the reachable set has
approximately the shape of a parallelotope whose sides are not axis-aligned.

4.5 Conclusion

Algorithm 4 demonstrates that Christoffel functions, in addition to being useful in data anal-
ysis, provide a powerful technique for data-driven reachability. Algorithm 4’s probabilistic
safety guarantee, presented in Theorem 2, demonstrates that statistical learning theory is
a powerful technique for data-driven control theory in general, in this case presenting a
significant generalization over the scenario approach to data-driven reachability. The only
essential limit to the PAC approach is the requirement that C have a finite VC dimension.
While this condition is sufficient for many classes of estimator geometry—certainly a greater
number than are permitted by the scenario approach– but a surprising number of simple
geometries have infinite VC dimension. Convex hulls of point clouds are a simple and par-
ticularly striking example of this phenomenon. More practically, we find that the sublevel
sets of a kernelized variation of Christoffel functions exhibits this property. Although we
have defined the Christoffel function using the standard monomial basis vector zk(x), the
Christoffel function is in fact invariant to changes in polynomial coordinates. For instance,
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Figure 4.4: Reachable set estimate for the monotone traffic model with an order 10 empirical
inverse Christoffel function (blue), compared to the tight interval over-approximation (red).
The reachable set estimate was computed with Algorithm 4 using samples projected onto
states x5 and x6.

zk(x) could be replaced with the feature vector φk(x) of the polynomial kernel (1 + x>x)k,
that is the monomial vector φk(x) such that φ(x)>φ(x) = (1 + x>x)k. By an application of
the kernel trick, this approach can be extended to kernels with infinite-dimensional feature
spaces, as in [7]. However, the proof of Theorem 2 does not extend to the infinite-dimensional
case, so we find ourselves once again on the search for more generality.
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Chapter 5

The Bayesian PAC Approach

This chapter investigates how to apply Bayesian PAC analysis techniques to prove proba-
bilistic safety guarantees for data-driven reachability algorithms meet neither the heuristic
and parametric requirements of the scenario approach, nor the VC dimension condition re-
quired by the PAC approach of the PAC approach. Bayesian PAC obviates the need for VC
dimension bounds by applying additional probabilistic structure to the class of reachable set
estimators. The technique works by constructing prior and posterior measures P and Q over
C, where Q is allowed to depend on observations. The relative entropy between P and Q,
rather than VC dimension, provides the geometric restriction required for the probabilistic
safety guarantee to hold.

As in Chapter 4, we will focus on a single example in this chapter, namely a data-driven
reachability algorithm that uses the kernel extension of empirical Christoffel functions alluded
to in Section 4.5. The Bayesian PAC approach actually provides two benefits to the theory
of Christoffel-based data-driven reachability. First, it allows for the construction of finite-
sample guarantees for kernel inverse Christoffel functions, which have an infinite number of
parameters: this would have been an impossible feat for the techniques of Chapters 3 and 4.
Second, Bayesian PAC can improve matters in the finite-parameter case: when applied to
polynomial empirical inverse Christoffel function estimators, the examples in Section 5.4
demonstrate that Bayesian PAC analysis can provide guarantees of probabilistic accuracy
and confidence with much greater sample efficiency than the finite-sample bounds provided
by classical VC dimension bound arguments.

Section 5.1 reviews how kernel Christoffel functions are derived from the polynomial
Christoffel functions described in Section 4.1. Section 5.2 presents the kernel extension of
Algorithm 4; unlike its predecessor, Algorithm 5 is sequential in nature, as Bayesian PAC
does not provide an a priori sample bound. Section 5.3 reviews the theory of Bayesian
PAC analysis and constructs the probabilistic safety guarantee for Algorithm 5 and its de-
scendants. Finally, Section 5.4 tests the algorithms of this chapter on the same numerical
examples as the last chapter, and compares their relative performance.
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5.1 Kernel Christoffel Functions

Recall from Section 4.1 that the empirical inverse Christoffel function for data r1, . . . , rN is

κ̂−1(x) = zm(x)>M̂−1
m,σzm(x), (5.1)

where

M̂m,σ = σ2I +
1

N

N∑
i=1

zm(xi)zm(xi)
>. (5.2)

The dyadic sum 1
N

∑N
i=1 zm(xi)zm(xi)

> can be expressed as the matrix product 1
N
ZZ>,

where Z ∈ R(n+mn )×N is the matrix Z = [zm(xi) . . . zm(xN)] of polynomial features. By
expressing the dyadic sum this way, we can apply the matrix inversion lemma to express the
inverse of the empirical moment matrix as

M̂m,σ =
(
σ2I + 1

N
ZZ>

)−1

= σ−2
(
I − Z

(
σ2NI + Z>Z

)−1
Z>
)
.

(5.3)

This expression for M̂mσ allows us to rewrite the empirical inverse Christoffel function as

κ̂−1(x) = Nσ−2
0 zm(x)>zm(x)

−Nσ−2
0 zm(x)>Z

(
σ2

0I + Z>Z
)−1

Z>zm(x),
(5.4)

where we have made the change of variables σ2 = σ2
0/N . The vector zm enters (5.4)

only through the inner products zm(xi)
>zm(xj): The matrix Z>Z ∈ RN×N has elements

(Z>Z)ij = zm(xi)
>zm(xj), and the matrix-vector product Z>zm(x) has elements

(Z>zm(x))i = zm(xi)
>zm(x).

By replacing the inner product zm(xi)
>zm(xj) with an arbitrary positive definite1 function

k : Rn × Rn → R and rescaling by a factor of σ2
0/N , we obtain the kernelized variant of the

empirical inverse Christoffel function,

κ−1(x) = k(x, x)− kD(x)>
(
σ2

0I +K
)−1

kD(x), (5.5)

where K ∈ RN×N and kD(x) ∈ RN are defined as

Kij = k(xi, xj), (kD(x))i = k(xi, x). (5.6)

5.2 Kernel Christoffel Function as an Estimator of

Support

1Here, and throughout the paper, we mean positive definite in the sense of reproducing kernel Hilbert
spaces and kernel machines, which is that a square matrix K with elements (K)ij = k(xi, xj) is a positive
definite matrix.
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Algorithm 5: To estimate a support set by a kernelized empirical inverse Christoffel
function satisfying a Bayesian PAC bound.

inputs: random variable X with support in X ; positive definite kernel function k; PAC
parameters ε, δ ∈ (0, 1); noise parameter σ2

0 ∈ R++; initial sample size N0; batch size Nb;
threshold η.
N ← N0

D ← (x1, . . . , xN)
i.i.d.∼ X

i← 0
ε0 ← 1
while εi > ε do
i← i+ 1
append

(rN+1, . . . , rN+Nb)
i.i.d.∼ R to D

N ← N +Nb

Kσ0 ← σ2
0I +K

define C : X → R+ to be C(x) = k(x, x)− kD(x)K−1
σ0
kD(x);

Evaluate r as in (5.15)

εi ←
r̄+ 2

N
log(π

2i2

6δ
)

1−F1(1)
, F1 as in (5.14)

end while
return 1 {C(x) ≤ η}

Algorithm 5 is a procedure to estimate the support of a random variable with a sublevel
set of an kernel empirical inverse Christoffel function, where the only information needed
from the random variable is a collection of iid samples. The algorithm is designed to satisfy
a Bayesian PAC bound which is developed in Section 5.3. Unlike the classical PAC bound
provided for Algorithm 4, this Bayesian PAC bound is applicable to all kernelized empirical
inverse Christoffel functions, including those whose sublevel sets have infinite VC dimension.
When applied to polynomial empirical inverse Christoffel functions as a special case, we find
that it is more sample-efficient than the classical PAC bound: in some of the examples in
Section 5.4, the Bayesian PAC bound requires an order of magnitude fewer samples to achieve
the same accuracy and confidence as that guaranteed by the classical PAC bound. The
disadvantages of the Bayesian PAC approach is that the required number of samples is not
known a priori, since certain terms in the bound depend on the data. Algorithm 5 therefore
takes an iterative approach, taking samples in batches and re-evaluating the Bayesian PAC
bound after each batch until it reaches the desired level of accuracy.

Remark 2. In some reachability problems, we are only interested in computing a reachable
set for a subset of the state variables. For example, suppose the state is (x1, . . . , xn) ∈ Rn,
and we wish to verify a safety specification involving only the states x1, . . . , xs, where s < n:
a reachable set for the states x1, . . . , xs would suffice for this problem. In cases like this, the
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algorithms presented in this section can be modified to use only the first s elements of the
samples. The output of the algorithm is then an empirical inverse Christoffel function with
domain Rs whose sublevel set R̂ estimates the reachable set for the reduced set of states. In
the sequel, we refer to this variation of the algorithms in this section as their reduced-state
variations.

5.3 Bayesian PAC Analysis

Much like the classical PAC analysis explored in Chapter 4, Bayesian PAC is a technique
to bound the deviation between true risk and empirical risk for the problem of selecting a
concept c ∈ C that minimizes a risk function defined by a random variable X. What sets
Bayesian PAC analysis apart from its classical counterpart is that it bounds the deviation
of the expected values of the true and empirical risks with respect to a data-dependent
probability measure defined over C, instead of bounding it uniformly. Given a prior measure
P over C and a posterior measure Q derived from the prior and the observations, we define

the expected risk rQ = E [`(c,X)] and empirical expected risk r̂Q = E
[

1
N

∑N
i=1 `(c, xi)

]
where c ∼ Q. Equivalently, P and Q define random variables CP , CQ supported on C, called
the prior and posterior stochastic estimators : rQ and r̂Q are the true and empirical risks
of CQ. A Bayesian PAC bound is a bound on the deviation between rQ and r̂Q. Bayesian
PAC bounds can be used to provide an error bound for a single classifier which captures the
central behavior of Q, which we call the central concept and denote as c̄Q. To verify that
Algorithms 5 provides a valid solution to Problem 1, we show that its output is the central
concept of a posterior stochastic estimator and use a Bayesian PAC bound (with X = R, of
course) to show that a bound of the form (2.1) holds.

The most common tool to construct Bayesian PAC bounds is the PAC-Bayes theorem
developed by McAllester [63], Seeger [77] and others [59]. We use the variation due to
Seeger. This theorem assumes that the concept class admits a parameterization which can
be infinite-dimensional.

Theorem 3 (PAC-Bayes Theorem, adapted from [77, 59]). Consider a concept class C
admitting a parametrization by w ∈ W. Let the loss function be zero-one valued, that is
` : C×X → {0, 1}. The following bound holds for all measures P , Q over the concept class C
defined by measures WP and WQ over W such that WQ is absolutely continuous with respect
to WP :

PN
X ({x1, . . . , xN : Dber(r̂Q||rQ) ≤ γ}) ≥ 1− δ, (5.7)

where γ = (DKL(WQ||WP ) + log N+1
δ

)/N . Here, DKL(WP ||WQ) denotes the Kullback-
Leibler (KL) divergence between WP and WQ, and Dber(q||p) denotes the KL divergence
between two Bernoulli distributions with parameters q and p, given by the formula

Dber(q||p) = q log
q

p
+ (1− q) log

1− q
1− p

. (5.8)
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For a given set of data x1, . . . , xN , confidence parameter δ, and a prior measure P chosen
independently of the data, the inequality (5.7) provides a family of Bayesian PAC bounds,
one for each posterior measure Q.

We use the PAC-Bayes theorem in the proof of Theorem 4, which asserts the validity
of Algorithm 5. First, we construct prior and posterior stochastic estimators CP and CQ,
corresponding to measures P , Q over a concept class, which admit a sublevel set of the
empirical inverse Christoffel function as a central concept; namely c̄Q = {x : κ−1(x) ≤ η}
for a given positive η. Next, we express a formula to compute the empirical stochastic risk
r̂Q of CQ from the data. Then, we establish a bound on the true stochastic rQ in terms of
r̂Q using the PAC-Bayes theorem. Finally, we prove a bound on the true risk r(c̄Q) of the
central concept in terms of rQ. This sequence of bounds combines to yield a bound of the
form (2.1) computable in terms of known data.

Theorem 4. Denote Ci as the inverse Christoffel function constructed during the ith it-
eration of Algorithm 3.2. We have the following PAC bound on all the inverse Christoffel
functions constructed during the algorithm:

P(∀i ≥ 1, PR({x : Ci(x) ≤ η}) ≥ 1− εi) ≥ 1− δ. (5.9)

Thus, with confidence δ, upon the termination condition of Algorithm 3.2, we are left with a
support set estimate of probability mass ≥ 1− ε.

In addition to verifying the validity of the terminal output of Algorithm 5, Theorem 4
justifies the use of Algorithm 5 in an “any time algorithm” fashion, that is as an algorithm
whose output is verified even if execution is stopped prematurely. The execution of Algo-
rithm 5 will terminate as long as the growth of DKL(N

(
0, (σ−1

0 I +K−1)−1
)
||N (0, K)) is

o(N): determining the conditions under which this growth condition holds is a topic for
future research.

We now develop the constructions used in the proof, starting with the prior and posterior
stochastic estimators for the kernel case. We take

CP = {x : gp(x)2 ≤ η}, CQ = {x : gq(x)2 ≤ η}, (5.10)

where gp and gq are the prior and posterior of a general Gaussian process regression model
with prior kernel k, conditioned on the observations x1, . . . , xN , y1 = . . . = yN = 0 with
observation noise level σ2

0. 2 The corresponding concept class is the class of η-sublevel sets
of functions in the support of gp, which depends on the choice of kernel. According to (5.25),
gq has posterior mean mq = 0 and variance

Vargq (x) = k(x, x)− k(r, x)>
(
σ2IN +K

)−1
k(r, x), (5.11)

2Appendix 5.6 provides background on the theory of Gaussian process regression models.
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where K denotes the kernel Gramian matrix of x1, . . . , xN . We take the posterior central
concept to be c̄Q = {x : E [gq(x)2] ≤ η}. Since E [gq(x)] = mq(x) = 0 for all x ∈ X , we know
E [gq(x)2] = Vargq (x). This means that the posterior central concept is

c̄Q = {x : k(x, x)

− k(r, x)>
(
σ2IN +K

)−1
k(r, x) ≤ η}

= {x : κ−1(x) ≤ η}
(5.12)

as desired.
Next, we construct the sequence of bounds, starting with the formula for the empirical

stochastic risk of CQ in terms of known data.

Lemma 3. For the zero-one membership loss `(c, x) = 1 {x /∈ c}, the empirical stochastic
risk of the posterior stochastic estimators CQ defined in (5.10) is

r̂Q =
1

N

N∑
i=1

1− F1

(
η

κ−1(xi)

)
, (5.13)

where F1 is the CDF of the chi-square distribution with one degree of freedom, that is

F1(x) = P
(
Z2 ≤ x

)
where Z ∼ N (0, 1) . (5.14)

The proofs of this Lemma and the other Lemmas in this section are deferred to Ap-
pendix 5.7.

Next, we use the PAC-Bayes theorem to bound the stochastic risk rQ by the empirical
stochastic risk r̂Q.

Lemma 4. Let x1, . . . , xN
i.i.d.∼ X denote a set of observations used to construct CQ from CP

in (5.10). The stochastic risk rQ is bounded by r ∈ (0, 1), where

r = sup {β : Dber(r̂Q||β) ≤ γk} (5.15)

with confidence 1− δ, where

γk =
(DKL(N

(
0, (K−1+σ−2

0 I)−1
)
||N (0, K))+log N+1

δ

N
.

Since Dber(q||p) is convex in (q, p) and equal to zero for q = p, the set in (5.15) is an
interval containing r̂Q. Once r̂Q and the right-hand side of the inequality in (5.15) are
evaluated, the supremum r can be computed using a scalar root-finding procedure to solve
Dber(r̂Q||β) − (DKL(N

(
0, (K−1 + σ−2

0 I)−1
)
||N (0, K)) + log N+1

δ
)/N = 0 over the interval

β ∈ [r̂Q, 1).
Finally, we relate the statistical risk of r(c̄Q) to rQ.
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Algorithm 6: To estimate a support set by a polynomial empirical inverse Christof-
fel function satisfying a Bayesian PAC bound.

inputs: random variable R with support in X ; Christoffel function order m; PAC
parameters ε, δ ∈ (0, 1); noise parameter σ2

0 ∈ R++; initial sample size N0;
batch size Nb.
N ← N0

D ← (x1, . . . , xN)
i.i.d.∼ R

i← 0
ε0 ← 1
while εi > ε do
i← i+ 1
append

(xN+1, . . . , xN+Nb)
i.i.d.∼ R to D

N ← N +Nb

define C : X → R+ to be
C(x) = zm(x)>M̂−1

m,σ0
zm(x);

evaluate r as in (5.18)

εi ←
r̄+ 2

N
log(π

2i2

6δ
)

1−F1(1)
, F1 as in (5.14)

end while
return 1 {C(x) ≤ η}

Lemma 5. The statistical risk r(c̄η) of the posterior central concept and the stochastic risk
rQ of the posterior stochastic estimator satisfy the bound r(c̄Q) ≤ 1

1−F1(1)
rQ ≈ 3.15rQ.

When combined, the sequence of bounds, the sequence of bounds above provide a bound
of the form (2.1) that holds independently for each iteration of Algorithm 4. Applying a
union bound argument to provide a guarantee that holds uniformly over iterations forms the
central argument of the proof of Theorem 4.

Proof (of Theorem 4). The bound is trivially satisfied at the beginning of execution, since
ε0 ← 1. Next, let i > 0, and let Ci

Q denote the stochastic classifier {giQ(x)2 ≤ η}, where
giQ(x) ∼ N (0, k(x, x) − kDi(x)>(σ2

0I + Ki)kDi(x)), with the i superscripts signifying using
the dataset accumulated so far at iteration i. Let riQ denote the risk of Ci

Q. By Lemma 3.7,

we have ∀i ≥ 1, P(riQ > (1−F1(1))εi) ≤ 6δ
π2i2

. By a union bound, P(∃i, riQ > (1−F1(1))εi) ≤∑
i≥1

6δ
π2i2

= δ. Thus, with probability at least 1−δ, every riQ ≤ εi. On this event, by Lemma

3.8, we have ∀i ≥ 1, PX({x : Ci(x) > η}) ≤ riQ
1−F1(1)

= εi as desired.

Bayesian PAC Analysis: the Polynomial Case
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With the general kernel case settled, we now consider the polynomial case in particular.
Since the kernel case reduces to the polynomial case by the kernel k(x, y) = zm(x)>zm(y),
we have in a sense already provided a bound for the polynomial empirical inverse Christoffel
function by means of Bayesian PAC analysis. However, we can construct a prior and posterior
stochastic estimator for the polynomial case which avoids direct use of the N × N kernel
Gramian, which can be computationally advantageous. The special prior and posterior
stochastic estimators are

CP = {x : (W>
P zm(x))2 ≤ η},

CQ = {x : (W>
Q zm(x))2 ≤ η},

(5.16)

where WP ∼ N
(
0, σ−2

0 I
)
, WQ ∼ N

(
0, M̂−1

m,σ0

)
.

Notice that W>
P zm and W>

Q zm are Gaussian processes: indeed, they correspond to the
prior and posterior of a general Gaussian process regression model with prior kernel k(x, y) =
zm(x)>zm(y), conditioned on the observations x1, . . . , xN , y1 = . . . = yN = 0 with observation
noise level σ2

0. We take the central concept c̄Q of CQ to be the η-sublevel set

c̄Q = {x : E
[
(W>

Q zm(x))2
]
≤ η}

= {x : zm(x)>M̂−1
m,σ0

zm(x) ≤ η},
(5.17)

that is the η-sublevel set of the polynomial empirical inverse Christoffel function. Applying
the PAC-Bayes theorem to this construction yields the following alternative to Lemma 4.

Lemma 6. Let x1, . . . , xN
i.i.d.∼ X denote a set of observations used to construct CQ from CP

in (5.16). The stochastic risk rQ is bounded by r ∈ (0, 1), where

r = sup {β : Dber(r̂Q||β) ≤ γp} , (5.18)

where

γp =
1

N

(
DKL(N

(
0, (σ2

0I + M̂m,σ0)
−1
)
||N

(
0, σ−2

0 I
)
)

+ log
N + 1

δ

)
Using this alternative lemma, we obtain a validation for Algorithm 6.

Corollary 1. At each stage i of execution, the empirical inverse Christoffel function con-
structed in Algorithms 6 satisfies the PAC bound (5.9).

Proof. The argument to verify Algorithm 4 is identical to that used in the proof of Theorem 4,
except that Lemma 6 is used instead of Lemma 4.

Remark 3. Algorithms 5 and 6 require that a threshold parameter η be selected a priori based
on the kernel. For instance, if a squared exponential kernel k(x, y) = exp(−‖x− y‖2/(2`)2)
is used in Algorithm 5, the resulting empirical inverse Christoffel function will always have
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values in [0, 1], with values generally smaller close to data points: thus choosing a value
between 0 and 1 is a suitable choice, with smaller values yielding finer approximations of the
support set. For Algorithm 6, a reasonable heuristic is to select η =

(
n+2m
n

)
/ε: one can show

that the expected value of the true inverse Christoffel function of order m is
(
n+2m
n

)
when

the input is distributed according to X, so by Markov’s inequality the probability mass of the(
n+2m
n

)
/ε-sublevel set of the true inverse Christoffel function is at least 1− ε.

Numerical Considerations for Large Datasets

As the sample sizeN grows, the calculations in Algorithm 5 involving the kernel matrixK can
become computation- and memory-intensive. In particular, evaluating κ−1(x) to compute
the support set estimate and computing the KL divergence that appears in (5.15) both
require the construction of an N×N matrix and an O(N3) matrix inversion. Computational
difficulties related to the size of the K matrix are well known in the field of kernel machines;
in response, a wealth of approximation techniques have been developed to reduce compute
and memory requirements at the cost of fidelity. These approximation techniques can be used
to improve the efficiency of evaluating the kernelized empirical inverse Christoffel function
and its construction via Algorithm 5.

For example, to reduce the speed and memory requirements of evaluating κ−1(x), we
can replace the kernel matrix K with its rank-r Nyström approximation [91]. The Nyström
approximation is a method to construct low-rank approximations of Gramian matrices, such
as the kernel matrix K, which has a simple expression in terms of block submatrices of the
original matrix. Specifically, the rank-r Nyström approximation of the kernel matrix K has
the form

K̃ = KNrK
−1
rr KNr, (5.19)

where KNr ∈ RN×r, Krr ∈ Rr×r are submatrices of K whose i, j elements are k(xi, xj).
Making the substitution K 7→ K̃ and applying the matrix inversion lemma to κ−1(x) yields

κ̃−1(x) = k(x, x)

− kD(x)>(σ−2
0 I +KNrK

−1
rr KNr)

−1kD(x)

= k(x, x)

− σ−2
0 kD(x)>kD(x)− kD(x, x)>V kX(x),

(5.20)

where
V = KNr(σ

2
0Krr +KrNKNr)

−1KrN

To numerically compute the final expression, we need only invert an r× r matrix instead of
an N ×N one; indeed, we do not need to explicitly construct an N ×N matrix at all.

Next, we consider a method to over-approximate the KL divergence based on the r
largest eigenvalues of K. Since the KL divergence DKL(Z0||Z1) between N -dimensional
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normal random variables Z0 ∼ N (µ0,Σ0) and Z1 ∼ N (µ1,Σ1) has the expression

DKL(Z0||Z1) = 1
2

log det Σ1Σ−1
0

+ 1
2
trΣ−1

1

(
(µ0−µ1)(µ0−µ1)>+ Σ0

)
− N

2
.

(5.21)

For Σ0 = (σ−2
0 I +K−1)−1, Σ1 = K, µ0 = µ1 = 0, (5.21) reduces to

1
2

log det(I + σ−2
0 K) + 1

2
tr
(
(I + σ−2

0 K)−1
)
− N

2
. (5.22)

Since log(1 + σ−2
0 x) and 1/(1 + σ−2

0 x) are analytic for x ≥ 0, we can apply the spectral
mapping theorem [20, Sec. 4.7] to (5.22) to obtain an expression for the KL divergence in
terms of the eigenvalues λ1, . . . , λN of K, namely

=
1

2

N∑
i=1

(
log(1 + σ−2

0 λi) +
1

1 + σ−2
0 λi

− 1

)
. (5.23)

Numerically computing the KL divergence with the expression 5.22 requires an explicit
construction of the K matrix, and the inverse of an N × N matrix: this requires O(N3)
operations and O(N2) memory. Using (5.23) instead of (5.22) to compute the KL divergence
with the full set of eigenvalues does not generally yield an improvement, since computing the
eigenvalues of K is also O(N3). However, since K is a symmetric positive definite matrix,
the eigenvalues are all positive, and the m largest eigenvalues can be computed in less than
O(N3) time, for instance by a Lanczos-type algorithm [86, ch. 9]. Let λp denote the pth

largest eigenvalue: Since (5.23) is a nondecreasing function in each λi, the approximation
λi ≈ λp for λi such that λi < λp yields an upper bound on the KL divergence that can be
computed in less than O(N3) time.

5.4 Examples

This section demonstrates how Algorithms 5 and 6 can be used to make accurate estimates of
forward reachable sets, and how they compare to Algorithm 4 of Chapter 4. These examples
were run on Savio, a high-performance computing cluster managed by the University of
California at Berkeley. Specifically, each experiment used a single savio2 bigmem node
comprising 20 CPUs running at 2.3 GHz and 128 GB of memory. In all experiments, we use
the parameters ε = 0.1, δ = 10−9 for all three algorithms, and in Algorithm 5, we use the
squared exponential kernel k(x, y) = exp(−‖x− y‖2/(2`)2). The values for m and ` used in
experiments is listed in Table 5.1. To select thresholds in Algorithms 5 and 6, we follow the
advice of Remark 3, using η = 0.15 for Algorithm 5 and η =

(
n+2m
n

)
/ε for Algorithm 6. For

Algorithm 4, we use an initial sample size of 20, 000 and a batch size of 5, 000 samples. For
Algorithm 6, we use an initial sample size and batch size of 1, 000 samples.
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Figure 5.1: Results of Algorithms 4, 5 and 6 on the Duffing oscillator reachability problem.
Black contour: output of Algorithm 4. Green contour: output of Algorithm 6. Red contour:
output of Algorithm 5. Blue contour: output of Algorithm 5, over-approximated using the
Nyström approximation with 1,000 samples. Blue dots: samples used in Algorithm 6.
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Example
Alg. 4 Alg. 6 Alg. 5

m time N m time N ` time N

Oscillator 10 39 70307 10 13 11000 1/4 506 30000
Quadrotor 4 3 14587 4 4 6000 1/4 488 35000
Traffic 10 16 70307 10 11 10000 1/4 325 30000

Table 5.1: Computation times, sample sizes, and Christoffel function parameters for nu-
merical experiments. All times in seconds. Algorithms 4 and 6 used polynomial order m,
and Algorithm 5 used k(x, y) = exp(−‖x − y‖2/(2`)2), with m, ` as given in the table. All
experiments use ε = 0.1, δ = 10−9.

Chaotic Nonlinear Oscillator

The first example is a reachable set estimation problem for the nonlinear, time-varying
system with dynamics ż = y, ẏ = −αy + z − z3 + γ cos(ωt), with states x = (z, y) ∈ R2

and parameters α, γ, ω ∈ R. This system is known as the Duffing oscillator, a nonlinear
oscillator which exhibits chaotic behavior for certain values of α, γ, and ω, for instance
α = 0.05, γ = 0.4, ω = 1.3. The initial set is the interval such that z(0) ∈ [0.95, 1.05],
y(0) ∈ [−0.05, 0.05], and we take X0 to be uniform over this interval. The time range is
[t0, t1] = [0, 100].

We use Algorithms 4 and 6 to compute reachable set estimates using an order k = 10
empirical inverse Christoffel function with accuracy and confidence parameters ε = 0.10,
δ = 10−9. Additionally, we use Algorithm 5 to compute a kernelized empirical inverse
Christoffel function using the squared exponential kernel k(x, y) = exp(‖x− y‖2/(2`2)) with
` = 0.25. Figure 5.1 shows the reachable set estimate for the Duffing oscillator system with
the problem data given above produced by all three algorithms: for Algorithm 5, both the
full kernelized Christoffel function estimator and its Nyström approximation with r = 2000.
The cloud of points are the 11, 000 samples used in Algorithm 6. The reachable set estimate
is neither convex nor simply connected, closely following the boundaries of the cloud of points
and excluding an empty region. In particular, all estimates exhibit a hole in a region of the
state space devoid of samples.

Planar Quadrotor

The next example is a reachable set estimation problem for horizontal position and altitude
in a nonlinear model of the planar dynamics of a quadrotor used as an example in [66, 17].
The dynamics for this model are p̈x = u1K sin(θ), p̈h = −g + u1L cos(θ), θ̈ = −d0θ − d1θ̇ +
n0u2, where px and ph denote the quadrotor’s horizontal position and altitude in meters,
respectively, and θ denotes its angular displacement (so that the quadrotor is level with the
ground at θ = 0) in radians. The system has 6 states, which we take to be x, h, θ, and their
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first derivatives. The two system inputs u1 and u2 (treated as disturbances for this example)
represent the motor thrust and the desired angle, respectively. The parameter values used
(following [17]) are g = 9.81, L = 0.64, d0 = 70, d1 = 17, and n0 = 55. The set of initial
states is the interval such that px(0) ∈ [−1.7, 1.7], ṗx(0) ∈ [−0.8, 0.8], ph(0) ∈ [0.3, 2.0],
ṗh(0) ∈ [−1.0, 1.0], θ(0) ∈ [−π/12, π/12], θ̇(0) ∈ [−π/2, π/2], the set of inputs is the set
of constant functions u1(t) = u1, u2(t) = u2 ∀t ∈ [t0, t1], whose values lie in the interval
u1 ∈ [−1.5 + g/L, 1.5 + g/L], u2 ∈ [−π/4, π/4], and we take X0 and D to be the uniform
random variables defined over these intervals. The time range is [t0, t1] = [0, 5]. We take
probabilistic parameters ε = 0.10, δ = 10−9. Since the goal of this example is to estimate a
reachable set for the horizontal position and altitude only, we are interested in a reachable
set for a subset of the state variables, namely px and ph. Following Remark 2, we use the
reduced-state variations of Algorithms 4, 5, to compute reachable set estimates using only
data for the (px, ph) states, effectively reducing the dimension of the problem from 6 to
2. Figure 5.2 shows the reachable set estimate for the planar quadrotor system with the
problem data given above produced by all three algorithms and the Nyström-approximated
Algorithm 5 with r = 2000. The reachable set estimates displayed in Figure 5.2, and the
computation times reported in Table 5.1, use the reduced-state variation.

Monotone Traffic

This example is a special case of a continuous-time road traffic analysis problem used as
a reachability benchmark in [28]. This problem investigates the density of traffic on a sin-
gle lane over a time range over four periods of duration T using the Cell Transmission
Model [30] that divides the road into n equal segments. The spatially discretized model is
an n-dimensional dynamical system with states x1, . . . , xn, where xi represents the density of
traffic in the ith segment. Traffic enters segment through x1 and flows through each succes-
sive segment before leaving through segment n. The system dynamics (5.24) are monotone,
i.e. order-preserving: this property allows us to compute an interval containing the reachable
set by evaluating the dynamics at the extreme points of the intervals defining the initial set
and the set of disturbances. While this interval over-approximation is easy to compute, and
is the best possible over-approximation by an interval, it is in general a conservative over-
approximation because the reachable set may only occupy a small volume of the interval.
Since the empirical Inverse Christoffel function method can accurately detect the geometry
of the reachable set, we use this method to compare the shape of the reachable set to the
best interval over-approximation.
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Figure 5.2: Results of Algorithms 4, 5, and 6 on the planar quadrotor reachability prob-
lem, restricting the reachability analysis to the (px, ph) plane. Green contour: polynomial
Christoffel function of order k = 10. Blue contour: kernelized inverse Christoffel function
with squared exponential kernel. Red contour: Nyström approximation (m = 10, 000) of the
kernelized inverse Christoffel function with squared exponential kernel.
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The state dynamics are

ẋ1 =
1

T
(d−min(c, vx1, w(x− x2)))

ẋi =
1

T

(
min(c, vxi−1, w(x− xi))

−min(c, vxi, w(x− xi+1))
)
, (i = 2, . . . , n− 1)

ẋn =
1

T
(min(c, vxn−1, w(x− xn)/β)−min(c, vxn))) ,

(5.24)

where v represents the free-flow speed of traffic, c the maximum flow between neighboring
segments, x̄ the maximum occupancy of a segment, and w the congestion wave speed. The
input u represents the influx of traffic into the first node. For the reachable set estimation
problem, we use a model with n = 6 states, and take T = 30, v = 0.5, w = 1/6, and x̄ = 320.
The initial set is the interval such that xi(0) ∈ [100, 200], i = 1, . . . , n, the set of disturbances
is the set of constant disturbances with values in the range d ∈ [40/T, 60/T ], and X0 and D
are the uniform random variables over these sets. The time range is [t0, t1] = [0, 4T ].

We use the reduced-state variant of Algorithms 4, 5, and 6 to compute a reachable set for
the traffic densities x5 and x6 at the end of the road, using an order k = 10 empirical inverse
Christoffel function with accuracy and confidence parameters ε = 0.10, δ = 10−9. Figure 5.2
compares the reachable set estimates for the traffic system produced by all three algorithms,
and the Nyström-approximated Algorithm 5 with r = 2000, with the projection of the tight
interval over-approximation computed using the monotonicity property of the traffic system.
The figure indicates that the tight interval over-approximation of the reachable set is a
somewhat conservative over-approximation, since the reachable set has approximately the
shape of a parallelotope whose sides are not axis-aligned.

5.5 Conclusion

The Bayesian PAC approach is the most general approach to proving safety bounds for data-
driven reachability that we will cover in this thesis. This approach has no inherent restrictions
on either the magnitude of the class of sets from which R̂ may be selected, nor on how R̂ is
selected. However, this generality comes at a significant burden to the analyst: Bayesian PAC
may yield a bound, but only if one can find a suitable prior and posterior measure over C,
compute the relative entropy and the associated stochastic risks, and can apply a procedure
to pass from the posterior to a central concept. The technical developments in Section 5.3
demonstrate that this analysis can be carried out, even for very sophisticated estimators
like empirical kernel Christoffel functions, thanks to the formal connection between kernel
Christoffel functions and Gaussian process regression models. The examples in Section 5.4
demonstrate that our Bayesian PAC is worth the effort: not only does it provide bounds
where other methods cannot, it yields an improvement in sample efficiency over classical
PAC bounds.



CHAPTER 5. THE BAYESIAN PAC APPROACH 56

Figure 5.3: Results of Algorithms 4, 5, and 6 on the six-state monotone traffic reachability
problem, restricting the reachability analysis to the (x5, x6) plane. Green contour: polyno-
mial Christoffel function of order k = 10. Blue contour: kernelized inverse Christoffel func-
tion with squared exponential kernel. Red contour: Nyström approximation (m = 10, 000)
of the kernelized inverse Christoffel function with squared exponential kernel.
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Improvements to the general theory can advance in step with advances in Bayesian
PAC analysis. For instance, there are new results in theory of derandomizing Bayesian
PAC bounds, which could offer sample efficiency improvements over the argument used in
Lemma 5 to apply the Bayesian PAC bound to the central concept. Furthermore, domain-
specific knowledge could be applied to the GP prior used to construct the Christoffel func-
tions. For instance, in reachability problems and estimate of the system sensitivity matrix
could be used to intelligently select length-scales in the kernel, along with other algorithm
hyper-parameters such as the initial sample size and batch size.

5.6 Appendix: Background on Gaussian Process

Models

A Gaussian process g is a stochastic process such that vectors (g(x1), . . . , g(xm)) of point
evaluations are multivariate Gaussian distributions. Similar to how a Gaussian random
variable is completely characterized by its mean and variance, a Gaussian process is com-
pletely characterized by a mean function m, defined pointwise as m(x) = E [g(x)], and
a positive semidefinite covariance function k, defined on all pairs of points x, y ∈ X as
k(x, y) = E [g(x)g(y)].

Gaussian processes can also be defined according to a finite set of basis functions, admit-
ting a direct construction as a finite weighted sum. For an m-dimensional space of functions
with basis b1, . . . , bm : X → R, we form the stochastic weighted average

∑m
i=1wibi, where

w = (w1, . . . , wm) ∼ N (0,Σ). This weighted average is a Gaussian process whose support
is the span of b1, . . . , bm, with mean m(x) = 0 and covariance k(x, y) =

∑m
i=1 b(x)>Σb(y),

where b(·) = (b1(·), . . . , bm(·))>.
The Gaussian process regression model is Bayesian regression model that uses a Gaussian

process as the prior over regression functions. In our case, we take the mean of the prior
process to be zero. The data is assumed to be of the form g(xi) = hi+ε, where ε is a Gaussian
noise term with variance σ2. Under these conditions, the posterior for the unknown function
is also a Gaussian process, whose mean and covariance are given by the formulas

mq(x) = kD(x)>
(
σ2IN +K

)−1
h, (5.25)

kq(x, y) = k(x, y)− kD(x)>
(
σ2IN +K

)−1
kD(y). (5.26)

From the expression for the posterior covariance, we get the posterior variance

Vargq (x) = kq(x, x)

= kp(x, x)

− kD(x)>
(
σ2IN +K

)−1
kD(X, x),

(5.27)

which is precisely the kernelized empirical inverse Christoffel function with kernel k for the
data D = (x1, . . . , xN) evaluated at the point x. In the finite-dimensional case, the posterior
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process has mean and covariance functions

mq(x) = σ−2b(x)>
(
Σ−1 + σ2BB>

)−1
By (5.28)

kq(x, y) = b(x)>(Σ−1 + σ−2BB>)
−1
b(x), (5.29)

where B ∈ Rm×N is the matrix formed by evaluating the basis functions on the data,
that is B = [b(x1) · · · b(xN)]. Taking b = zk, Σ = σ−2

0 I, σ = N−1/2, yields the posterior

variance Vargq (x) = zm(x)>
(
σ2

0I + 1
N

∑n
i=1 zm(xi)zm(xi)>

)−1
zm(x), which is precisely the

polynomial empirical inverse Christoffel function of order k for the data x1, . . . , xn evaluated
at the point x.

5.7 Appendix: Proofs of Lemmas in Section 5.3

Proof of some Lemma 3

We consider the kernel case, since the polynomial case follows by the appropriate choice of
kernel function. Recall that κ−1(x) is the variance of gp by construction. Evaluating gp at
a single point x yields the normal random variable gp(x) ∼ N (0, κ−1(x)). It follows that

gp(x)/
√
κ−1(x) ∼ N (0, 1), and that gp(x)2/κ−1(x) ∼ χ2

1, that is that gp(x)2/κ−1(x), is a
chi-square random variable with one degree of freedom. The average loss over CP for a fixed
point x is then

E [`(CQ, x)] = E [1 {x ∈ CQ}]
= 1− P

(
gp(x)2 ≤ η

)
= 1− P

(
gp(x)2

κ−1(x)
≤ η

κ−1(x)

)
= 1− F1

(
η

κ−1(x)

)
.

(5.30)

Averaging this expression over the data points yields (5.13).

Proof of Lemma 6

We apply the Seeger PAC-Bayes Theorem 3 to the prior and posterior measures P and Q
induced by CP and CQ as defined in (5.16). Recall that these prior and posterior measures

are defined by the random vectors WP ∼ N
(
0, σ−2

0 I
)
, WQ ∼ N

(
0, (σ−2

0 I + M̂m,σ0)
−1
)

,

which act as parameters. Applying this choice of Wp and Wq to equation (5.7) of Theorem 3
yields the inequality

PN
X ({x1, . . . , xN : Dber(r̂Q||rQ) ≤ γ}) ≥ 1− δ, (5.31)



CHAPTER 5. THE BAYESIAN PAC APPROACH 59

where

γ =
DKL(N

(
0,(σ2

0I+M̂m,σ0)
−1
)
||N

(
0, σ−2

0 I
)
)+log N+1

δ

N

Suppose the data set x1, . . . , xN is one such that the inner inequality Dber(r̂Q||rQ) ≤ γ
holds: then rQ, the true stochastic risk, lies in the set {β : Dber(r̂Q||β) ≤ γ}. The function
Dber(r̂Q||β) is convex in β and covers the range [0,∞), attaining 0 for β = r̂Q and approaching
∞ for β → 0 and β → 1. By these properties, {β : Dber(r̂Q||β) ≤ γ} is a closed convex
subset of (0, 1) for any positive γ. As such, it attains a supremum, meaning that r as defined
in (5.18) is well-defined. Thus we have, with confidence 1− δ, that r is an upper bound on
the stochastic risk rQ.

Proof of Lemma 4

As in the proof of Lemma 6 we apply the Seeger PAC-Bayes Theorem 3, this time to the
prior and posterior measures P and Q induced by CP and CQ as defined in (5.10). These
measures are defined by the Gaussian processes gp and gq which act as the concept class
parameters WP and WQ respectively in the statement of Theorem 3. To compute the KL
divergence between WP and WQ, we use another result due to Seeger, described in Section
2.2 of [77], which states that the KL divergence between a prior Gaussian process gp and the
posterior Gaussian processes gq obtained after conditioning on data x1, . . . , xN is equal to the
KL divergence between the restriction of the two Gaussian processes to the data points, that
is the KL divergence between the multivariate normal random vectors (gp(x1), . . . , gp(xN))
and (gq(x1), . . . , gq(xN)). The mean and covariance of these random variables are simply the
restrictions of the mean and covariance functions of their defining processes to (x1, . . . , xN).
Both random vectors have mean zero. The covariance matrix of the prior random vector
(gp(x1), . . . , gp(xN)) is Kp(X,X) = K(X,X) as discussed in Section 5.6. By (5.25) and an
application of the matrix inversion lemma, the covariance of the posterior random vector
(gq(x1), . . . , gq(xN)) is

Kq(X,X) = K(X,X)

−K(X,X)
(
σ2

0I +K(X,X)
)−1

K(X,X)

=
(
K(X,X)−1 + σ−2

0 I
)−1

.

(5.32)
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Proof of Lemma 5

Consider a point x ∈ X outside of the central concept, that is such that c̄η(x) = E [(g(x)2] >
η. The probability that W>

Q zm(x) also exceeds η is bounded as

P
(
(g(x)2 ≥ η

)
≤ P

(
(g(x)2 ≥ E

[
(g(x)2

])
(5.33)

= P
(

(g(x)2

E [(g(x)2]
> 1

)
(5.34)

= 1− F1(1). (5.35)

Next, let us consider the risk of the stochastic estimator, that is rQ = P ((g(X)2 > η).
Applying the law of total probability with respect to the random variable X, we divide rQ
into two integrals according to whether the central concept exceeds η:

P
(
(g(X)2 > η

)
=

∫
X
P
(
(g(x)2 > η

)
dPx(x) (5.36)

=

∫
X
P
(
(g(x)2 > η

)
1
{
E
[
(g(x)2

]
> η
}
dPx(x) (5.37)

+

∫
X
P
(
(g(x)2 > η

)
1
{
E
[
(g(x)2

]
≤ η
}
dPx(x). (5.38)

We have that P ((g(X)2 > η) ≥
∫
X P ((g(x)2 > η)1 {E [(g(x)2] > η} dPx(x), since all three

integrands are nonnegative. To find an upper bound on this probability in terms of the
empirical classifier, we combine the two inequalities above to find

P
(
(g(X)2 > η

)
=

∫
X
P
(
(g(x)2 > η

)
dPx(x) (5.39)

≥
∫
X
P
(
(g(x)2 > η

)
1
{
E
[
(g(x)2

]
> η
}
dPx(x) (5.40)

≥ (1− F1(1))

∫
X
1
{
E
[
(g(x)2

]
> η
}
dPx(x) (5.41)

= (1− F1(1))P
(
E
[
(g(x)2

]
> η
)

(5.42)

= (1− F1(1))r(ĉη), (5.43)

which we rearrange to yield r(c̄η) ≤ 1
1−F1(1)

rQη .
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Chapter 6

Afterword: In Data-Driven
Reachability, You Can Pick Two

Efficiency

Simplicity Generality

Efficiency

Simplicity Generality

Efficiency

Simplicity Generality

Figure 6.1: Each of the three techniques of Part I excel in two qualities but suffer in a third.
To choose among the methods for a particular application, decide which quality you can
sacrifice.

Chapters 3, 4, and 5 follow an upward arc of analytic generality. The method of interest
in each chapter answers some obstacle insurmountable to the methods of the last, until we
meet, in Chapter 5, a method with essentially no restrictions as long as one is willing to put
in enough analytic elbow grease. This narrative framing might suggest that each method
completely succeeds the previous, so that the Bayesian PAC method of Chapter 5 is the
only admissible choice for data-driven reachability, but this is not the case. Indeed, the core
method of each chapter—scenario optimization, classical PAC analysis, and Bayesian PAC
analysis—is the best method to use under some circumstances. To get a sense of when to
use each method, let’s compare their relative utility by three qualities:

• Ease of use, How much calculation is required to establish a probabilistic safety guar-
antee;
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• Generality, the range of estimator geometries to which the method can be applied;

• Sample complexity, the amount of data required by each method to furnish a proba-
bilistic guarantee for a fixed estimator geometry.

The technique of Chapter 3, the scenario approach, is the least general; but for estimator
geometries that are compatible with its requirements, it is by far the easiest path to a
probabilistic guarantee. Indeed, one needs only form the convex program (3.6),1 and the
guarantee proves itself via Proposition 1.

The technique of Chapter 4, the classical PAC approach, is more general than the scenario
approach, but requires somewhat more work to use. To use classical PAC, one must provide
a bound on the VC dimension of the class of admissible estimators, which is generally more
work than formulating a convex program. The advantage, of course, is that one is no
longer restricted to estimators that can be expressed in the rather particular form of being a
solution to a program like (3.6). There is a second cost to this generality: when an estimator
is amenable to both techniques, the classical PAC approach tends to have greater sample
complexity. In other words, it requires more data to prove the same bound as the scenario
approach—by a factor of about 5 in my experiments, as the coefficients in (4.5) suggest—so
when both methods apply, the tie goes to the scenario approach.

The technique of Chapter 5, as we’ve already covered, is the most general. It provides a
probabilistic safety guarantee for any concept class for which you can find appropriate prior
and posterior distributions, and whose stochastic risk and relative entropy can be practically
computed. The cost, of course, is that the PAC-Bayes theorem is not constructive in this
regard: the onus lies on the analyst to find the appropriate distributions and to work out the
necessary calculations. A cursory review of Chapters 3 and 5 demonstrates that the degree
of analytical elbow grease required by the Bayesian PAC approach single class of estimators,
empirical kernel Christoffel functions, is immense compared to that required by the scenario
approach for all compatible estimators. On the other hand, Bayesian PAC manages to be the
most sample efficient of the three, in many cases offering an order of magnitude improvement
over classical PAC.

From this qualitative review, we can see that each method possesses two of the qualities
but lacks the third, as illustrated in Figure 6.1. The way to choose an estimator, then, is to
decide which quality you can do without. If your desired estimator geometry admits convex
parameterization with a volume proxy, then the scenario approach is by far the best choice.
If your desired geometry doesn’t satisfy this requirement, and the computations required to
find prior and posterior distributions (and their related risks and relative entropy) appear
impractical, then the classical PAC approach is a good fit. On the other hand, if maximal
sample efficiency is critical, then the Bayesian PAC approach may be a better choice.

1Actually solving the program is another question, but a question irrelevant to how easy it is to prove
the bound. The good news is that (3.6) is always convex, which makes it likely that an efficient solver is
around the corner.
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Part II

Robustness Analysis with Gaussian
Process Models
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Chapter 7

Background

In this part, we turn our attention to the part of data-driven control that intersects with
learning-based control theory; in particular, the problem of how to design controllers and
prove safety certificates for dynamical models that contain a learning component. Unlike in
the previous part, where we assumed no system knowledge beyond measurability, we will
make use of a dynamical model, factored into a fully known nominal part and a partially
known uncertainty. As this thesis is concerned with probabilistic guarantees, we will repre-
sent this uncertainty using the formalism of probability; in other words, the nominal part of
the model will be a fixed function, while the uncertainty will be a random function. Fixing
such a model structure, our goal is twofold: to devise a method to refine the unknown part
of the model using data, and to prove safety guarantees for the learned model.

As the title of this part suggests, we consider specifically the use of Gaussian processes
as the stochastic model for the uncertain part of the model. The reason for this is that GPs
are particularly well-suited to solving two fundamental challenges of learning-based control
theory. The first challenge is the need for quantified uncertainty. The role of quantified
uncertainty in our formulation of the learning-based control problem is evident from the
name; it constitutes the uncertain part of the dynamical model. However, many popular
learning models do not provide such a quantification. Take the case of a neural net: although
it enjoys universal approximation properties under quite mild conditions, without some ad-
ditional structure (e.g. Bayesian weights, dropout, committee models, &c.) it provides us
no means by which to assess the accuracy of its approximation. There has been incredible
progress recently in providing safety guarantees for neural dynamical models [93, 54], but
these guarantees are made under the same proviso as ordinary model-driven control theory:
any model inaccuracies are sufficiently small that feedback will correct for them. GPs, on the
other hand, come with uncertainty quantification built-in: the standard interpretation of a
GP regression model is that the posterior mean constitutes the approximate dynamics while
the posterior variance quantifies the accuracy of approximation. This convenient quantifica-
tion of uncertainty is what has driven GP models to experience a renaissance among control
theorists in recent years, with a number of large conferences hosting workshops and special
sessions exclusively for GP learning-based control.
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The second challenge is a sort of “no free lunch” problem: the better a model is at learning
general dynamics, the harder it is to prove safe, since there is no control-theoretic method
to analyze arbitrary nonlinear dynamics without introducing a great deal of conservatism.
Take stability for example: the only method with universal application is to search for a
Lyapunov function, but finding a valid Lyapunov function for a general learning-based model
is essentially the problem of establishing that a black-box function is everywhere negative (or
at least negative in some region of the state space), a problem that is practically infeasible.
The solution to this challenge, the balancing act to be performed between the two ends of the
fundamental tension, is to find a learning model that provides sufficient analytical structure
to feasibly establish safety guarantees while still being sufficiently general learning model to
adapt to the unknowns we expect to face. Thus, while a technique to learn system dynamics
can be as universal as their underlying function approximators, our ability to analyze the
safety of a controller developed with one of these methods must to an extent be done on a
case-by-case method. Our best hope for universality, then, is to find a learning model that
can easily incorporate the structure of specific control problems. GPs are in a good position
to solve this problem as well, since it’s easy to add analytical structure to a GP model. The
functional structure of a GP regression model is determined entirely by the structure of the
prior covariance function: thus GP models can be made functionally compatible with many
types of special structure simply by imposing that structure on the prior covariance. Classical
examples of this phenomenon are continuity and differentiability properties of the covariance
function being conferred to realizations of the process, and in the following chapters we will
see examples that are more germane to the task of safety verification.

Polynomial GPs for State-space Uncertainties

Consider the case of a nonlinear state-space model, over a state space X and input space U ,
with additive uncertainty: then our dynamical model is of the form ẋ = f(x, u) + ∆ξ(x, u),
where f : X × U → X represents the nominal part and ∆ : Ξ × X × U represents the
uncertainty with the help of a probability space (Ξ,X ,P). If we impose a likelihood model
on some available data (taken from a trajectory roll-out or replay buffer, for instance), we can
refine ∆ by conditioning on the data to yield a posterior uncertainty model. Establishing
that we can carry this learning procedure out without exposing the system to danger is
a Bayesian, state-space instance of the problem of safe learning [53, 89, 26, 27, 4, 25].
The “safe” part of safe learning is effected by the usual state-space functional certificates–
Lyapunov functions for stability [14, 13, 15, 74, 55, 48, 56], barrier functions for positive
invariance [90, 82, 3, 46], Hamilton-Jacobi analysis for reach-avoid specifications [47, 4].

GPs have been a popular candidate for safe learning for a number of years due to their
aforementioned property of uncertainty quantification; For example, [14, 13] use a Lyapunov
approach to guarantee that a partially unknown system with a fixed policy is stable with high
probability, and to compute a region of attraction. This approach works by verifying that the
Lyapunov condition holds with high probability for the GP model over a grid of points in the
state space. A theorem in [79] implies under certain conditions that this guarantee on the GP
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Region of Attraction (ROA)

ROA Inner-approximation

Trajectory data

Figure 7.1: The problem of estimating an inner-approximation of a region of attraction from
a GP dynamical model conditioned on trajectory data.

model holds for the true dynamics as well. While this approach is effective for verifying the
stability of the learned model, it requires a base stabilizing policy and Lyapunov function.
The policy and Lyapunov function stay fixed, and cannot be improved as a more accurate
model is learned. One difficulty that stymied these initial works is a lack of structure in
the covariance of the GP models; by allowing arbitrary covariances, only the most general
techniques– in this case a quasi-Monte Carlo search over the state space– are available for
analysis.

In Chapter 8, we investigate how the addition of polynomial structure can benefit safe
learning techniques through the use of polynomial covariance functions that vanish at the
origin, based on work begun in [37]. When applied to a GP model for additive uncertain-
ties in a polynomial state space model, this structure allows us to synthesize stabilizing
controllers and provide accuracy-only guarantees for an inner approximation of a region of
attraction, as illustrated in Figure 7.1. While it places a significant restriction on the choice
of covariance, polynomial structure is sufficient for learning local system dynamics, making
it suitable for safely learning an inner approximation of a region of attraction. The benefit of
polynomial structure is that it allows for the use of sum-of-squares analysis techniques [52]
to construct a stabilizing policy that seeks to maximize the size of the region of attraction
while simultaneously establishing a probabilistic guarantee that the inner approximation is
valid.
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∆

G

Figure 7.2: Signal flow diagram of a typical robust control system, comprising a nominal
plant G in a feedback interconnection with an uncertainty ∆. Ordinarily ∆ is treated as an
ensemble; in Chapter 9, we investigate how to model ∆ as a GP that can be refined with
data.

H∞ Gaussian Processes: A Learning Model Bespoke for Robust
Control

Robust control theory is the study of the stability and sensitivity of systems subject to
ensembles of uncertainty. In a standard robust control model, such as the one shown in the
signal flow diagram in Figure 7, the system of interest is partitioned into three subsystems
according to epistemology and control authority: a nominal LTI plant G that models what
we know, and models our epistemic uncertainty with the uncertain LTI system ∆. G is taken
to be fixed, known system, since it comprises our sphere of knowledge and authority. On
the other hand, ∆ must have a more indefinite structure in order to model the fact that our
knowledge of the system is only partial.

Standard robust control theory uses an ensemble model for uncertainty: ∆ is assumed
to lie in a set that captures all systems consistent with our limited knowledge. A simple,
and common, example of such an ensemble is the set of all ∆ such that ‖∆‖ < u for some
u > 0, where ‖·‖ denotes an operator norm. The literature of robust control demonstrates
that the ensemble structure is well suited for modeling and analysis of uncertainty in the
context of control. Unfortunately, ensemble models are not amenable to refinement from
data beyond schemes that discard uncertainties that are inconsistent with data. Essentially,
there is too little structure for inference. Chapter 9 uses the probabilistic structure of a
GP uncertainty model to allow for both learning and probabilistic robustness analysis. The
central idea is to use a GP as a model for ∆ instead of an ensemble: the uncertainty can
then be refined using GP regression, and the robustness of the overall system can still be
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ascertained probabilistically.
The use of GP models to estimate LTI systems (both in the time domain [70, 24] and fre-

quency domain [62, 80]) and robust control of LTI systems with probabilistic uncertainty [57,
10, 16, 78, 19] are popular, but generally independent, streams of research. A union of these
independent streams would be a significant advance for learning-based control– a transfer
function learned with Bayesian techniques could be made provably safe using probabilistic
robustness techniques. Chapter 9 provides conditions under which a GP transfer function
model can effect such a union, expanding on the work begun in [36] Specifically, we provide
conditions under which realizations of a complex Gaussian process of a complex variable
correspond to the z-transform of an LTI, causal, BIBO stable, and real system with proba-
bility one. Since an LTI, causal, and BIBO stable system is characterized by a z-transform
that resides in the Hardy space H∞, we refer to such processes as H∞ GPs. The utility
of H∞ GPs is that they simultaneously support learning through a complex extension of
standard GP regression, and robustness through probabilistic accuracy-only guarantees that
the behaviors of the model are covered by an integral quadratic constraint.

symbol definition

GP Gaussian process
RKHS Reproducing kernel Hilbert space
SOS sum of squares
IQC integral quadratic constraint
k covariance function for real GPs; Hermitian covariance for com-

plex GPs
k̃ complementary covariance function for complex GPs;
mq, kq posterior mean and covariance functions
K kernel Gramian matrix
N (µ,Σ) Multivariate normal with mean µ and covariance Σ

CN
(
µ,Σ, Σ̃

)
Complex normal with mean µ, Hermitian covariance Σ, and com-
plementary covariance Σ̃

R[ζ] Polynomials in ζ with real coefficients
R[ζ]m Polynomial vectors in ζ with real coefficients
R[ζ]m×n Polynomial matrices in ζ with real coefficients
Σ[ζ] sum-of-squares polynomials in ζ
f , g Nominal system components
∆ System uncertainty
D data set used in GP regression
σ2
n GP regression noise variance
V , γ Lyapunov function candidate and sublevel parameter
R Region of attraction
κ stabilizing control policy
sV , sdi , sγ S-procedure certificates
βN probabilistic upper bound on V ar
η upper bound on βN
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H∞ Space of functions C→ C bounded on |z| = 1, analytic on |z| > 1
H2 Space of functions C → C with integrable modulus on |z| = 1,

analytic on |z| > 1
k, K Augmented covariance function; augmented kernel Gramian
`1 space of square-summable sequences
Nu number of u-level gain upcrossings
Pu(f) u-level gain bound violation probability of an H∞ GP f

Table 7.1: Important symbols and acronyms used in
Part II.
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Chapter 8

Polynomial Gaussian Processes for
State-Space Uncertainties

We begin our investigation into robustness analysis of GP uncertainty models by exploring
the case of a state-space model with an additive uncertainty, as this modeling approach is
by far the most common in the GP control literature. Specifically, this chapter continues
the investigation into safe learning problem introduced in Chapter 7; namely to estimate a
region of attraction for a dynamical model of the form

ẋ(t) = f(x(t)) + g(x(t))u(t) + ∆(x(t)) (8.1)

when f and g are fixed functions and ∆ is a GP. Our specific approach, which sets this
work apart from the literature reviewed in Chapter 7, is the introduction of polynomial
structure: this structure allows us to perform certain computations that would otherwise
be practically infeasible, such as simultaneously searching for a stabilizing policy and ROA
inner-approximation with a probabilistic guarantee using SOS programming [52].

Our analysis has three goals. The first is to use data collected from system trajectories
to model the unknown part of the dynamics. Section 8.1 lays out the specific model and
structural assumptions required for polynomial GP analysis. Section 8.2 reviews GP models
for state-space dynamics, introduces a class of polynomial covariance functions suitable for
estimating unknown dynamics about a known equilibrium, and establishes that the assump-
tions laid out in Section 8.1 are sufficient to provide an accuracy-confidence bound on the
GP estimator.

The second goal is to use the learned model to synthesize a stabilizing controller for the
system and a ROA inner-approximation which holds for the true dynamics with high prob-
ability. In Section 8.3, we develop the theoretical results that make this possible: a theorem
establishing an accuracy-confidence guarantee of the validity of an ROA inner approxima-
tion for a control policy and a Lyapunov function candidate compatible with the uncertainty
bound of the previous section, and an SOS program to automatically construct such a policy
and Lyapunov function if any exist.
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The third goal is to design an exploration controller to maximize the information collected
during the exploration trajectory while maintaining it inside the ROA. Section 8.4 introduces
this controller, which is built on the stabilizing policy synthesized in the previous section.
This auxiliary exploration controller guides the system state to regions with high variance
under the GP model, thus providing informative new data. The overall learning/robustness
procedure is laid out in Algorithm 7: the key idea is to collect data with the exploration
controller, update the GP model, update the stabilizing policy and ROA approximation, and
repeat. In Section 8.6, this approach is demonstrated on a nonlinear inverted pendulum,
demonstrating Algorithm 7’s ability to improve a conservative initial approximation for the
ROA by judicious collection of data.

Notation

The subscript xi denotes the ith element of the vector x. The superscript x(i) with parentheses
denotes the data point in the data set D with index i. The superscript xi without parentheses
denotes an object associated with the ith iteration of an algorithm.

When applied to vectors, the orders >, ≤ are applied elementwise. The operator E[·]
denotes expectation with respect to a probability distribution.

For ζ ∈ Rn, R[ζ] represents the set of polynomials in ζ with real coefficients, and Rm[ζ]
and Rm×p[ζ] denote all vector- and matrix-valued polynomial functions. The subset Σ[ζ] :=
{π =

∑M
i=1 π

2
i : π1, ..., πM ∈ R[ζ]} of R[ζ] is the set of SOS polynomials in ζ.

8.1 Model Structure and Assumptions

Consider a continuous-time nonlinear system of the form

ẋ(t) = f(x(t)) + g(x(t))u(t) + ∆(x(t)), (8.2)

with state x(t) ∈ Rnx and input u(t) ∈ Rnu . The system dynamics comprise a known nominal
control-affine part, f and g, and an uncertainty ∆ which we aim to learn.

We will assume the true model has a known equilibrium at the origin, so that a stabilizing
policy and region of attraction (ROA) can be constructed.

Assumption 1. The origin (x = 0, u = 0) is an equilibrium of (8.2), that is f(0) = w(0) =
0.

To allow for sum-of-squares (SOS) analysis, we make the following assumption:

Assumption 2. The known dynamics are polynomials: f(x) ∈ Rnx [x] and g(x) ∈ Rnx×nu [x].

The true dynamics need not be polynomial, as the non-polynomial terms can be absorbed
into ∆. We also assume that the unknown term can be approximated by a polynomial-kernel
Gaussian process (GP).
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Assumption 3. The term ∆(x) can be approximated by a polynomial in a region X ∈ Rnx

containing the origin. Specifically, for a given ε > 0 there is a polynomial q(x) such that
‖∆(x)− q(x)‖ ≤ ε for all x ∈ X .

For example, if ∆ is analytic in a ball B containing the origin, then Taylor’s theorem
ensures that Assumption 3 holds in B.

Aside from any prior knowledge, our information about the system will come from mea-
surements of the form (x(i), u(i), ẋ(i)). Typically ẋ itself is not directly measurable, and
is estimated using a finite-difference approximation from measurements of x. The finite-
difference approximation will be a noisy estimate of ẋ, and the measurements of x may in
practice be noisy as well.

Assumption 4. We have access to measurements of ẋ which are corrupted by noise which
is uniformly bounded by σn.

Remark 4. In (8.2), we assume ∆ depends only on x. If it depends both on x and u, we
introduce an auxiliary input state xu(t) ∈ Rnu for u, and design the new input v(t) ∈ Rnu

for xu. This leads to the augmented system

ẋ(t) = f(x(t)) + g(x(t))xu(t) + ∆(x(t), xu(t))

ẋu(t) = v(t),

which recovers the form in (8.2). This formulation is demonstrated in Section 8.6.

8.2 Estimating the Unmodeled Dynamics

To estimate the unknown term in a Bayesian framework, we must choose a prior distribution
for the system dynamics. The prior model is a probability distribution of candidate functions
for w, which represents what we know about the system prior to seeing any data. From
Assumption 3 we know that the system can be approximated by a polynomial in a region
about the equilibrium, so we will choose a prior over polynomial functions. Assumption 2
implies that f(x) + g(x)u is an estimate for the true dynamics: assuming this is the best
estimate we can make without data, we will take the prior mean for w to be zero.

We will use a GP as our prior distribution. A GP h is a probability distribution over
functions which is completely characterized by its mean m(x) = E[h(x)] and covariance
k(x, y) = E[(h(x) − m(x))(h(y) − m(y))]. The covariance of a GP prior is also called the
kernel function of the process. The kernel function determines the class of functions over
which the distribution is defined. When k(x, y) is polynomial in x and y, the distribution will
be over a space of polynomial functions. We will therefore choose k(x, y) to be a polynomial.

Typically, GPs are presented as distributions of scalar-valued functions. Since the un-
known term w is vector-valued, we will model each entry wi with a separate scalar-valued
GP of functions with domain Rnx . We write our prior distribution for the dynamics as

ẋ(t) = f(x(t)) + g(x(t))u(t) + ∆̂(x(t)), (8.3)
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where ∆̂(x) is a vector of GPs ∆̂i, each with mean zero and kernel ki.
As we collect data from a system trajectory, we condition the prior distribution on the

data to obtain the posterior distribution. Like the prior, the posterior is a distribution over
functions. For a GP prior, the posterior will also be a GP, but with a different mean and
covariance which more accurately represent the ground truth than the prior.

GPs with polynomial kernels

Consider a scalar GP prior h with mean zero and kernel k(x, y), and a data set D =
{(x(i), y(i))}Ni=1 of states x(i) ∈ Rnx and labels y(i) ∈ R. Then the posterior distribution,
that is the prior conditioned on the data, is also a GP, whose mean and variance have
closed-form solutions [73]. The posterior mean has the form

miq(x) = E[h(x)|D] = y>(K + σnI)−1k∗ (8.4)

where K is the kernel Gramian matrix with elements (K)ij = k(x(i), x(j)), k∗ is the vector
with elements (k∗)i = k(x, x(i)), and y is the vector with yi = y(i). Letting c = y>(K+σnI)−1,
we can re-express the mean as

m(x) =
N∑
i=1

cik(x, x(i)). (8.5)

When k(x, y) is a polynomial in x and y, (8.5) shows that m(x) is also a polynomial, of the
same degree as the kernel.

The posterior variance has the form

σ2
q (x) = E[(h(x)−m(x))2|D]

= k(x, x)− k>∗ (K + σnI)−1k∗.
(8.6)

The posterior variance is a polynomial when k(x, y) is a polynomial, whose degree is twice
the degree of the posterior mean owing to the quadratic dependence on the prior covariance.

Choice of polynomial kernel

The spaces of polynomials from which the mean and variance are drawn depend on the
specific choice of polynomial kernel. In particular, the mean is drawn from the reproducing
kernel Hilbert space (RKHS) H(k) of the kernel k. The kernel must be chosen so that the
functions in H(k) satisfy the Assumptions outlined in Section 9.1, in particular Assumption
1. The most common choices for polynomial kernels are the homogeneous polynomial kernel
k(x, y) = α2(x>y)p, and the inhomogeneous polynomial kernel k(x, y) = α2(x>y+ 1)p. Here,
α2 and p are hyperparameters: α2 is a scaling parameter, and p sets the polynomial degree.
In order for our estimate to satisfy Assumption 1, the mean of the GP must satisfy m(0) = 0.
Since functions from the RKHS of the inhomogeneous kernel are generally not zero at the
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origin (due to the constant term), they do not satisfy this assumption. To construct a
suitable kernel, we use two classic results which follow from [6]:

Proposition 2. The RKHS H(k) of the homogeneous polynomial kernel k(x, y) = α2(x>y)p

is spanned by the monomials of degree p, that is by monomials
∏d

i=1 x
pi
i such that

∑
i pi = p.

Here, α2 and p are hyperparameters: α2 is a scaling factor, and p sets the polynomial
degree.

Proposition 3. Let k1 and k2 be two kernels of finite-dimensional RKHSs. Then k1 + k2

is also a kernel, and H(k1 + k2) is spanned by the concatenation of the spans of H(k1) and
H(k2).

For example, the function (x>y)2 + (x>y)3 is a kernel function whose RKHS is spanned
by the monomials of degrees 2 and 3. This motivates the following choice of kernel:

k(x, y) = α2
1(x>y) + α2

2(x>y)2 + . . .+ α2
p(x
>y)p. (8.7)

By Propositions 2 and 3, the RKHS of this kernel is spanned by all monomials of degree ≤ p
except for degree zero. In other words, the RKHS spans all polynomials q of degree ≤ p that
satisfy q(0) = 0.

In Section 8.2 we will see that the range of possible unknown terms admitted by the prior
model is bounded with high probability by a multiple of σq, so that a higher variance admits
a larger class of functions for the unknown term. Therefore, any prior knowledge about the
general form of the unknown term or the range of values it can take on should be used to
select the kernel. While keeping the form (8.7), this information can be used to choose the
hyperparameters α2

i . For instance, if the baseline f and g are known to be accurate up to
degree 2, then α2

1 and α2
2 can be set to small values, while the other αi are set to high values.

Another example is if the dynamics are known a priori to be even (or odd); then, the prior
kernel need only contain terms of even (or odd) degree.

Probabilistic Bounds on the GP Model

The following inequality from [79] provides a probabilistic bound on the values that the
functions in the distribution of a GP can take over its domain.

Lemma 7 (Theorem 6 of [79]). Suppose we have data {x(i), y(i)}Ni=1 from a function h ∈ H(k)
that satisfies ‖h‖k ≤ ∞, where ‖·‖k is the norm of H(k). The data may be corrupted with
noise uniformly bounded by σn. Let βN = 2‖h‖2

k+300γN log3(N/δ), where γN is the maximum
mutual information that can be obtained for the GP prior with N samples corrupted with
noise bounded by σn. Let δ ∈ (0, 1). Then the inequality

|h(x)−mĥ(x)| ≤
√
βNσĥ(x) (8.8)

holds with probability ≥ 1− δ, where mĥ(x) and σĥ(x) are the mean and standard deviation

of the GP ĥ with kernel function k conditioned on the data.
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The inequality (8.8) transforms the problem of providing a probabilistic guarantee for a
GP into the problem of providing a guarantee over functions with a given upper and lower
bound. In Section 8.3, we will show that for GPs with polynomial kernels, this further
transforms into a problem that may be solved with SOS programming.

The assumptions we have made on the system allow us to use this inequality in our
analysis.

Proposition 4. For a kernel k(x, y) of the form (8.7) with sufficiently high degree p, mea-
surements of ∆ can be used to construct a GP model which satisfies the inequality in Lemma
7.

Proof. By Assumption 3, we know that in a region X containing the origin, each ∆i can
be approximated by a polynomial qi with uniform error ε. The measurements of ∆i are
effectively measurements of ∆i corrupted by this uniformly-bounded noise. Let pqi be the
degree of this polynomial, and let ki(x, y) be a kernel of the form (8.7) with p ≥ pqi . Then
qi ∈ H(ki), by Propositions 2 and 3. Since H(ki) is finite-dimensional, the norm ‖qi‖ki is
finite. By assumption 4, the measurements of ∆i are also subject to an additional noise
uniformly bounded by σn. Since the measurements of wi act as measurements of qi with
noise uniformly bounded by σn + ε, and ‖qi‖ki ≤ ∞, the function qi and the kernel ki satisfy
the assumptions of Lemma 7.

The quantity γN is difficult to compute exactly for most kernels, and differs for each
data set size N . However, for many commonly-used kernels it has a sublinear dependence
on N , and can be effectively approximated up to a constant [79]. Following [15], we will
assume through the rest of the paper that the quantity

√
βN can be bounded by a constant

parameter η. The parameter η is higher for smaller values of δ, i.e. for probabilistic bounds
of higher confidence.

8.3 Estimating the Region of Attraction

For safe learning with a GP model we must ensure that there is a region of state space which
we are confident can be explored safely. To do this, we will synthesize a memoryless, state
feedback control policy κ and a Lyapunov function V which guarantee that the closed-loop
system

ẋ(t) = f(x(t)) + g(x(t))κ(x(t)) + ∆(x(t)) (8.9)

is stable around the origin with high confidence according to our model. By this, we mean
that the closed-loop system satisfies the inequality

∂V (x)
∂x
· (f(x) + g(x)κ(x) + ∆(x)) < 0 (8.10)

with probability ≥ 1− δ, with δ ∈ (0, 1), for all points in a set A\0, where

A = {x ∈ Rnx|V (x) ≤ γ}, for some γ > 0. (8.11)
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This set is an inner-approximation of the origin’s ROA, which we will labor to make as large
as possible.

We can ensure that the inequality (8.10) holds with high probability on the true dynamics
by ensuring it holds for the deterministic bounds |∆i(x) − mi(x)| ≤ ησi(x), i = 1, . . . , nx,
which follow from Lemma 7. The link between the deterministic bound on the GP model
and the probabilistic guarantee of stability for the true dynamics is stated in the following
theorem.

Theorem 5. Suppose the true dynamics satisfy the assumptions outlined in Section 9.1.
Let η be a bound on the parameter

√
βN such that Lemma 7 holds for each ∆i with a given

δ ∈ (0, 1). Let σ be the vector of standard deviations comprising the standard deviations
σqi of the GPs ∆̂i. Given f, g defined in (8.2), and γ > 0, if there exists a control law
κ : Rnx → Rnu, and a C1 function V : Rnx → R, such that V (0) = 0 and V (x) > 0 for all
x ∈ Rnx\0, and

∂V (x)
∂x
· (f(x) + g(x)κ(x) +mq(x) + d(x)) < 0 (8.12)

holds in a bounded region A\0 ⊂ Rnx for all vector functions d bounded by −ησ(x) ≤ d(x) ≤
ησ(x), then A is an inner-approximation to the ROA of (8.2) with probability ≥ 1− δ over
the GP distribution.

Proof. Proposition 4 establishes that Lemma 7 holds for the true dynamics and the GP
model. Therefore, the bounds |∆i(x) − mqi(x)| ≤ ησi(x), and equivalently the bound
−ησ(x) ≤ d(x) ≤ ησ(x), hold with probability ≥ 1 − δ. Since V guarantees that (8.12)
holds for −ησ(x) ≤ d(x) ≤ ησ(x), it follows by Lemma 7 that the same V ensures that
(8.10) holds with probability ≥ 1 − δ for x ∈ A\0. This ensures that A is a ROA inner-
approximation for the true dynamics with probability ≥ 1− δ.

We restrict decision variables V and κ to be polynomials in order to use SOS analysis [52]
to synthesize them such that the condition (8.12) holds. The condition (8.12) is a set
containment constraint, and the generalized S-procedure [67] can be used to derive the
corresponding SOS constraint for it. To do this, we must express the bound −ησ(x) ≤
d(x) ≤ ησ(x) as a semi-algebraic set. The bound can be described by a number of nx
quadratic constraints: for i = 1, ..., nx,

η2σi(x)2 − d2
i (x) = η2σ2

qi(x)− d2
i (x) ≥ 0 ∀x, (8.13)

which use the polynomial V ar directly. Define polynomials pd,i(x, d) = η2σ2
qi(x) − d2

i for
i = 1, ..., nx. By choosing the volume of A as the reward function to be maximized, and
applying the generalized S-procedure to (8.12), we obtain the following SOS optimization
problem:

sup
V,κ,s

Volume(A)

s.t. sV , sd,i ∈ Σ[(x, d)],
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V − ε1x>x ∈ Σ[x], κ ∈ Rnu [x], (8.14a)

− (∂V
∂x
· (f + gκ+mq + d) + ε2[x; d]>[x; d])

+ (V − γ)sV −
nx∑
i=1

sd,ipd,i ∈ Σ[(x, d)], (8.14b)

where ε1 and ε2 are small positive numbers. The optimization (8.14) is a non-convex problem,
since it is bilinear in two sets of decision variables V and (sV , κ). It can be handled by
alternating the search over these two sets of decision variables, since holding one set fixed
while optimizing over the other results in a convex problem. The procedure is summarized
in Algorithm 8 in Appendix 8.8.

8.4 Exploring the Region of Attraction

In order to increase the information gained from the trajectory data, we would like for each
trajectory to explore a different region of the state space while remaining in the ROA inner-
approximation. While the policy κ synthesized from SOS programming ensures that system
stays in the inner-approximation, it does not ensure that new areas of the state space will be
explored. Therefore, as an alternative to the control policy κ(x), we propose an exploration
policy κe(x) which guides the system to areas of the state space with little data.

The posterior variances σqi(x) of the GPs ∆̂i can be used to track which areas of the
state space have not been visited. In regions close to a data point, σ2

qi(x) will be close to the
noise level σ2

n; in regions far from any data, σ2
qi(x) will be close to the prior variance k(x, x).

Therefore, guiding the system to areas of high variance will lead it to areas which have not
been explored. We can ensure this by choosing κe to increase σ2

qi(x(t)), the variance of ∆̂i

at the current state, over time. To account for each Σ̂i, we will try to increase the sum∑
i σ

2
qi(x(t)).

The exploration policy will choose a control action by solving an optimization problem.
The problem will be to maximize the time derivative of

∑
i σ

2
qi(x(t)), the sum of the variances

at the present system state. The derivative is

d
dt

nx∑
i=1

σ2
qi =

nx∑
i=1

∂σ2
qi

∂x
ẋ

=

(
nx∑
i=1

∂V ari
∂x

)
(f + gκe + ŵ).

(8.15)

To maximize this expression using κe(x) as a decision variable, we need only consider the

(
∑

i

∂σ2
qi

∂x
)gκe term.
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At the same time, κe(x) must not take the system outside of the ROA. Therefore, κe
must satisfy

V̇low = ∂V
∂x
· (f + gκe +m− ησ) ≤ 0, (8.16)

V̇up = ∂V
∂x
· (f + gκe +m+ ησ) ≤ 0. (8.17)

To ensure a unique solution, we will also include a quadratic regularizing term on κe in the
objective. The form of the exploration policy κe is then

κe(x) = arg max
u

(
nx∑
i=1

∂σ2
qi

∂x

)
gu− λu>u

s.t. ∂V
∂x
· (f + gu+m− ησ) ≤ 0

∂V
∂x
· (f + gu+m+ ησ) ≤ 0,

(8.18)

where λ > 0 is a regularization parameter. The policy (8.18) is a quadratic program, since
for a fixed x the objective is quadratic and the constraints linear in u. Since quadratic
programs can be efficiently solved in real time, the exploration policy is suitable for online
use.

When the policy κ from (8.14) exists, u = κ(x) is a feasible solution to (8.18). This
means that (8.18) is feasible when (8.14) is feasible.

8.5 An Algorithm for Safe Learning

Algorithm 7 below shows how the results of sections 8.2, 8.3, and 8.4 can be combined to
perform safe exploration and robust policy synthesis.

The first step is to establish the prior information available for the system dynamics and
encode it into a prior model. This comprises choosing the terms f and g in the control-affine
base model, and selecting a prior kernel k(x, y) for the unknown term. The base model f
and g may come, for example, from a linearized model of the system. The kernel should be
chosen so as to capture any further knowledge about the unknown part of the dynamics.

With the prior model in place, the next step is to synthesize a prior control policy κ0, a
prior Lyapunov function V 0 and a prior γ0 by solving the SOS program (8.14) using Algo-
rithm 8. The prior Lyapunov function acts as a certificate that κ0 stabilizes the equilibrium
with high probability, that is for a large probability mass of candidates for w admitted by
the prior model. Sublevel sets of V 0 also act as inner-approximations of the ROA created
by κ0. We take the prior ROA as the sublevel set A0 = {x ∈ Rnx|V 0(x) ≤ γ0}.

After synthesizing the prior ROA inner-approximation, the next step is to collect data
to form the posterior model. This data will come from a system trajectory whose initial
condition we may choose. In order to collect data safely, we choose an initial condition
inside the prior ROA estimate (step 4), so that the system is guaranteed to eventually
return to the origin. Rather than use the prior policy κ0, we will use the exploration policy
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κe to guide the trajectory of the system during data collection (step 5). This will ensure
that the system trajectory visits regions where model variance (i.e. uncertainty) is high.

After collecting data, the next step (step 6) is to compute the posterior model using
(8.4) and (8.6). With the posterior model, we can solve the SOS program (8.14) using the
posterior model (step 7) to synthesize a posterior policy κ1 and posterior Lyapunov function
V 1, and compute an inner-approximation of the ROA for the posterior policy. Since κ1 and
V 1 are computed using a more accurate model of the dynamics, the posterior ROA estimate
will generally be larger than the one for the prior policy.

With the posterior policy in place, we can repeat steps 4 through 7 to update the posterior
model any number of times before stopping. Supposing that we perform T iterations of this
process, the final output of the algorithm will be the posterior model, the posterior policy
κT , and the posterior ROA estimate AT .

Algorithm 7: Bayesian Safe ROA Learning with a polynomial GP model

Input: Base model f(x) + g(x)u; prior kernel degree p and hyperparameters
{α2

i }
p
i=1; GP regression noise parameter σ2

n; number T of iterations.
Output: Posterior control policy κT ; posterior Lyapunov function V T ; posterior

ROA AT = {x ∈ Rnx |V T (x) ≤ γT}
1 Construct the prior model ẋ = f(x) + g(x)u+ ∆̂(x), where ∆̂(x) is a GP with mean

zero and kernel k(x, y) = α2
1(x>y) + . . .+ α2

p(x
>y)p. Construct an empty data set

D0 = {} ;
2 Solve the SOS program described in (8.14) using the prior model to compute the

prior policy κ0, prior Lyapunov function V 0, and prior ROA A0 ;
3 for i ∈ {1, . . . , T} do
4 Select an initial condition xi−1

0 ∈ Ai−1 ;

5 Collect data {x(j)}N i

j=1 and {ẋ(j)}N i

j=1 of N i points from a trajectory on the true

dynamics with initial condition xi−1
0 , using the exploration policy κie defined in

(8.18). Add this to the data set, setting Di = Di−1 ∪ {(x(j), ẋ(j))}N i

j=1 ;

6 Use (8.4) and (8.6) to compute the mean and variance of the GP with the data
set Di ;

7 Solve the SOS program described in (8.14) using the posterior model to compute
the posterior policy κi, posterior Lyapunov function V i, and posterior ROA Ai ;

8.6 Example: Inverted Pendulum with Input

Saturation

In this section, we demonstrate Algorithm 7 by using it to investigate the dynamics near
the unstable equilibrium of a two-state inverted pendulum model. The pendulum model,
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adapted from [14], includes an input saturation which prevents the system from being globally
stabilized. Reference [14] analyzes the stability of this system for a fixed policy and Lyapunov
function determined from a linearized model, and uses a GP with a non-polynomial kernel
to verify a sublevel set of the fixed Lyapunov function as a ROA estimate. For our analysis,
we do not need a prior safe policy and Lyapunov function to be given: we instead take a
prior model (also based on a linearization) and a kernel function, and use it to synthesize
a prior controller and a ROA inner-approximation. We then collect a trajectory inside the
prior ROA using the exploration policy, and use this data to compute a posterior model and
synthesize a new policy and ROA.

The true system dynamics for the pendulum are

ẋ1 = x2

ẋ2 = g
`

sin(x1)− µ
M`2

x2 + 1
M`2

Sat(u),
(8.19)

where M is the mass of the pendulum, ` is its length, and g is gravitational acceleration. The
coordinates are chosen so that x1 = 0, x2 = 0 is the unstable equilibrium. The Sat(·) function
limits the input action to stay within the range [−Mg` sin(30◦),Mg` sin(30◦)]. With this
input saturation in place, the inverted pendulum cannot return to the upright position once
it deviates from upright by more than 30 degrees.

The input saturation also means that this system is not input-affine. To remedy this, we
use the formulation from the Remark in Section 9.1: we introduce an auxiliary input state
xu and augment (8.19) to

ẋ1 = x2

ẋ2 = g
`

sin(x1)− µ
M`2

x2 + 1
M`2

Sat(xu)

ẋu = v.

(8.20)

We start the algorithm with the linearization of (8.20); that is, we take

f(x) =

[
x2

g
`
x1 − µ

M`2
x2 + 1

M`2
xu

0

]
, g(x) =

[
0
0
1

]
(8.21)

as the inputs f and g to Algorithm 7. For the prior kernel, we use the degree 3 kernel

k(x, y) = α2
1(x>y) + α2

2(x>y)2 + α2
3(x>y)3. (8.22)

Since the dynamics of x1 are purely kinematic, we can assume that the given model is
accurate. Similarly, since xu is a constructed state, we can assume its dynamics are ac-
curate. Therefore, we assume that the vector of unknown dynamics has the form ∆(x) =
[0 ∆2(x) 0]>, requiring only one GP model for the unknown dynamics of x2.

To complete the prior model, we select kernel hyperparameters for ∆2(x). We will take
as prior knowledge that our linearization is accurate, and that the nonlinear terms contain
a strong odd component. We incorporate this knowledge into the prior model by setting α2

1
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and α2
2 to a small value, namely α2

1 = α2
2 = 0.075. Since we have no further prior knowledge

of the third-order term, we will set α2
3 to be larger than α1 and α2, namely α2

3 = 1.5. We
will also assume that our ẋ measurements, taken from a finite-difference approximation on
the observed states, are reasonably accurate, and use this knowledge by setting the GP
regression noise parameter σ2

n to a low value value, namely σ2
n = 0.01.
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Figure 8.1: The prior ROA computed using the prior system (8.21) and prior kernel (8.22),
projected onto x1 and x2. Two trajectories are also shown using the two prior control
policies, the base SOS policy v(t) = κ(x(t)) and the exploration policy v(t) = κe(x(t)). The
exploration policy visits more of the state space than the base policy.

Figure 8.1 shows the results of lines 2, 4, and 5 of Algorithm 7 using the selected f , g, and
k. The decision variables in the SOS analysis—V 0, κ0, and the S-procedure certificates—
sV , sd,i, sγ are degree 4 polynomials, and we take η = 3. The prior ROA certifies that the prior
policy κ0 can restore angle deviations in the range of about ±4.5 degrees, starting from rest,
in the presence of any w2 that is bounded above and below by −ησ2(x) ≤ ∆2(x) ≤ ησ2(x),
where σ2(x) =

√
k(x, x) is the prior variance.

For step 4, we select an initial condition which starts from rest with an initial angle
deviation of 3◦; that is, we take x1 = 3π/180, x2 = xu = 0. Figure 8.1 shows data from two
trajectories on the true dynamics with this initial condition. One trajectory, following step
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5 of Algorithm 7, uses the exploration policy v(t) = κe(x(t)). This trajectory will be used
as the data set D0 for the next step. The other trajectory uses the prior policy κ0, from
the same initial condition chosen in step 4. The exploration policy provides data from a
wider area of the prior ROA before settling to the equilibrium, by allowing more transients
to remain than the prior policy.
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Figure 8.2: The posterior ROA, projected onto x1 and x2. The posterior model incorporates
the data collected by the exploration trajectory from iteration i = 1 of Algorithm 7.

Figure 8.2 shows the posterior ROA A1 computed by step 7 of Algorithm 7. The posterior
model was computed using the data set D0 comprising the x data points from the prior
trajectory with the exploration policy and finite-difference approximations for ẋ. With T =
1, this is the final step of the algorithm. By incorporating the trajectory data, the posterior
analysis successfully extends the size of the ROA. In particular, the range of safe angle
deviations from rest is extended to ±16.5 degrees.

There are two mechanisms which allow the posterior ROA to be larger. First, the poste-
rior model more closely matches the true dynamics than the prior, since it includes higher-
order terms that are fit from data. Second, the posterior variance is less than the prior
variance at all points in the state space. Since the variance determines the constraints on
w in the SOS problem, the posterior controller can be robust against a smaller class of
unknowns than the prior model while upholding the same probabilistic guarantee.
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Figure 8.3: The exploration trajectory from iteration i = 2 of Algorithm 7, projected onto
x1 and x2. The objective of (8.18) encourages the exploration policy to avoid the data from
previous trajectories.

Though only one trajectory is needed to complete one iteration of Algorithm 7, we demon-
strate how the exploration policy responds to data from previous iterations by simulating
an exploration trajectory for the i = 2 iteration. To that end, we pick an initial condition
in the posterior ROA, starting from rest with an initial angle deviation of 14◦, and simu-
late a trajectory on the true dynamics using the exploration policy guided by the posterior
variance.

The resulting trajectory is shown in Figure 8.3. Recall that, by maximizing the objective
in (8.18), the exploration policy is encouraged to increase the total variance of states that
the system visits. The exploration policy increases the information gained by the i = 2
trajectory in two ways. First, it avoids the i = 1 trajectory as much as possible, so that it
does not collect data in parts of the state space that have already been visited. Second, it
adds several excitations into the trajectory—once at the start of the trajectory, and again
near (x1 = .075, x2 = 0)– where it briefly reverses direction, increasing the amount of time
the system can explore before settling into the equilibrium.
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8.7 Conclusion

The proposed method can take an initial prior model for the dynamics of a system and
improve the model using data, while ensuring that the process of collecting takes place in a
safe ROA. Since the GP model learns an estimate for the system dynamics in closed-form
with quantified uncertainty, the learned model can be guaranteed safe with high confidence.
The proposed method lifts two limitations faced by earlier work in safe learning with GPs.
First, we are not restricted to a fixed, given policy and Lyapunov function: using polynomial
kernel functions allows for policies and Lyapunov functions to be synthesized by SOS analysis.
Second, we do not need to assume the existence of an a priori safe controller to initialize
the safe learning process: by establishing prior information into a Bayesian prior model, we
can compute an exploration controller which is guaranteed to be safe on the prior model
dynamics.

However, the restriction to polynomial kernels places a limit on the types of unknown
dynamics the system can learn. In particular, the condition that the unknown dynamics
be well-approximated by a polynomial prohibits the method from learning dynamics with
discrete transitions or discontinuities. Extending the method to work on a larger class of
dynamics would increase the utility of the method. Another useful extension would be to
allow for the synthesis of other types of safety guarantees than ROAs for learned systems,
for instance barrier certificates or reachable sets.

A more fundamental limitation of the method proposed in this chapter is the restriction
to static additive uncertainties. We have implicitly assumed– as many data-driven state-
space methods do– that our chosen state space is rich enough to capture the full dynamical
state of the system. If we have in fact “missed” some states, this chapter does not tell us
how to learn of their existence and add them to the model, since we can only refine the
dynamics of the same state variables that have been there from the start. Now, unmodeled
dynamics can still be modeled as an uncertainty, but not an additive one: they hail from the
class of feedback uncertainties. While the GP-based method of this chapter cannot model
feedback uncertainties, this is not true of GP models in general. In the next chapter, we will
investigate a class of GPs explicitly designed to model feedback uncertainties, specifically
as a nonparametric frequency-domain that is capable of learning feedback uncertainties of
arbitrary dynamical order.

8.8 Appendix: Iterative algorithm for solving the

SOS problem (8.14)

A linear state feedback for the linearization of f and g about the origin is used to compute
the initial iterate, V̄ .



CHAPTER 8. POLYNOMIAL GAUSSIAN PROCESSES FOR STATE-SPACE
UNCERTAINTIES 85

Algorithm 8: Iterative method for solving (8.14)

Input: function V̄ such that constraints (8.14) are feasible by proper choice of
sV , sd,i, κ, γ.

Output: (κ, γ, V ) such that with the volume of A having been enlarged.
1 for j ∈ {1, ..., Niter} do
2 γ-step: decision variables (sV , sd,i, κ, γ). Maximize γ subject to (8.14) using

V = V̄ . This yields (s̄V , κ̄) and optimal reward γ̄.
3 V -step: decision variables (sγ, sd,i, V ); Maximize the feasibility subject to (8.14)

as well as sγ ∈ Σ[x], and

(γ̄ − V ) + (V̄ − γ̄)sγ ∈ Σ[x], (8.23)

using γ = γ̄, sV = s̄V , κ = κ̄. This yields V̄ .
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Chapter 9

H∞ Gaussian Processes for
Frequency-domain Uncertainties

This chapter develops the foundational theory for a class of GPs designed to serve as non-
parametric, frequency-domain, input-output models for feedback uncertainties. The defining
property of this class is that realizations of the process are always H∞ functions (i.e. transfer
functions of stable, causal systems), so we call it the class of H∞ Gaussian processes.

Probabilistic models of input-output dynamical systems, where the input-output relation-
ship itself contains probabilistic elements separate from input noise or measurement error,
have important applications both in system identification and probabilistic robust control.
In system identification, probabilistic systems act as models of prior belief in Bayesian es-
timates of the system dynamics. In robust control, probabilistic models form the core of
probabilistic robustness analysis: the objective is then to verify, or design a controller such
that, the ensemble of uncertainties for which the system is stabilized has high probability.

These two lines of research– Bayesian system identification and probabilistic robust
control– have generally been developed separately, and use different types of probabilis-
tic models. This chapter investigates a class of probabilistic models for uncertain systems
that is amenable in equal parts to both, allowing for safe learning and to robustness analysis
in the framework of linear robust control. As discussed in Section 7, this is the class of
H∞ Gaussian processes. An uncertain system modeled by an H∞ Gaussian process admits
refinement through data through Bayesian regression: By conditioning on point observa-
tions in the frequency domain, the model becomes more accurate, though still uncertain in
unobserved frequency ranges. On the other hand, an H∞ Gaussian process model admits
robustness analysis by virtue of the fact that it represents an ensemble of systems, precisely
as in robust control, with the additional structure of a weight (the probability measure) over
members of the ensemble.

The analysis in this chapter has three goals. The first goal is to provide a mathemati-
cal foundation for the class of H∞ Gaussian Processes. Section 9.1 introduces the system
setup, reviews background information on complex-valued random variables and stochastic
processes, and introduces the classes of H∞ GPs. Section 9.2 then provides a set of sufficient
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conditions (Theorem 6 and Proposition 6) for a complex-valued GP to be an H∞ GP. In
addition to the general conditions, we provide a complete characterization (Theorem 7) of
the covariance structure of a special class of H∞ Gaussian process, namely those whose Her-
mitian covariance is stationary. Each Hermitian stationary H∞ process is parameterized by
a summable sequence of nonnegative reals, which lead to computationally tractable closed
forms for certain choices of sequences.

The second goal is to establish how to refine an H∞ GP using data. Section 9.3 reviews
widely linear and strictly linear complex estimators for complex Gaussian process regression
and presents numerical examples of Bayesian system identification. Contrary to other recent
work in Bayesian system identification, we choose to use the strictly linear estimator for our
Gaussian process models instead of the widely linear estimator. Although the widely linear
estimate is superior for general processes, we find that for H∞ Gaussian process models the
strictly linear estimator works nearly as well while being simpler and more stable to compute
than the widely linear estimator. To verify the utility of H∞ GP models for Bayesian transfer
function estimation, we apply the technique to two second-order systems using a mixture
of a Hermitian stationary H∞ processes constructed with Theorem 7 and an H∞ process
designed to model resonance peaks.

The final goal is to establish probabilistic guarantees of robustness for system models
that use an H∞ GP as a feedback uncertainty. In Section 9.4, we shall see that establish-
ing accuracy-only probabilistic guarantees for a number of several robustness certificates–
particularly those based on small-gain arguments and IQCs– comes down to establishing an
inequality of the form P (‖f‖∞ < u) ≥ 1 − δ for some H∞ Gaussian process f with known
mean and covariance functions. Bounds of this form, in turn, can be established by com-
puting the expected number of gain upcrossings of f , which can be carried out by means of
Belyaev formulas.

Notation

For a complex vector or matrix X, X∗ denotes the complex conjugate and XH denotes the
conjugate transpose. We denote the exterior of the unit disk as E = {Z ∈ C : |z| > 1}, and
its closure as Ē = {Z ∈ C : |z| ≥ 1}. L2 is the Hilbert space of functions f : C → C such
that

∫ π
−π |f(RejΩ)|2dΩ <∞, equipped with the inner product 〈f, g〉2 =

∫ π
−π f(ejΩ)g∗(ejΩ)dΩ.

H2 is the Hilbert space of functions f : C→ C that are bounded and analytic for all z ∈ E
and

∫ π
−π |f(RejΩ)|2dΩ <∞, equipped with the inner product 〈f, g〉2 =

∫ π
−π f(ejΩ)g∗(ejΩ)dΩ.

It is a vector subspace of L2. H∞ is the Banach space of functions f : Ē → C that
are bounded and analytic for all z ∈ E and supΩ∈[−π,π] |f(ejΩ)| < ∞, equipped with the

norm ‖f‖∞ = supΩ∈[−π,π] |f(ejΩ)|. `1 is the space of absolutely summable sequences, that is
sequences {an}∞n=0 such that

∑∞
n=0 |an| <∞. N (µ,Σ) denotes a Gaussian distribution with

mean µ and covariance Σ; likewise, CN
(
µ,Σ, Σ̃

)
denotes a complex Gaussian distribution

with mean µ, Hermitian covariance Σ, and complementary covariance Σ̃.
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9.1 Preliminaries

H∞ Gaussian processes are nonparametric statistical models for causal, LTI, BIBO stable
systems in the frequency domain. Since our main focus will be the probabilistic aspects of the
model, we restrict our attention to the simplest dynamical case: a single-input single-output
system in discrete time. Thus, our dynamical systems are frequency-domain multiplier op-
erators Hf : L2 → L2 whose output is defined pointwise as (Hfu)(ω) = f(ω)u(ω), where
f : C→ C is the system’s transfer function. Thanks to the bijection Hf ↔ f , we generally
mean the function f when we refer to “the system”.

Since our aim is to construct a probabilistic model for the system that is not restricted
to a finite number of parameters, we must work directly with random complex functions of a
complex variable: this is a special type of complex stochastic process that we call a z-domain
process.

Definition 1. Let (Ξ, F,P) denote a probability space. A z-domain stochastic process with
domain D ⊆ C is a function f : Ξ×D → C.

Note that each value of ξ ∈ Ξ yields a function fξ = f(ξ, ·) : D → C, which is called either
a “realization” or a “sample path” of f . If we take ξ to be selected at random according
to the probability law P, then fξ represents a “random function” in the frequentist sense.
Alternatively, if we have a prior belief about the likelihood of some fξ over others, we may
encode this belief in a Bayesian sense using the measure P. We drop the dependence of f on
ξ from the notation outside of definitions, as it will be clear when f(z) refers to the random
variable f(·, z) or when f stands for a realization fξ.

Complex Random Variables and Stochastic Processes

Complex random variables and processes are essentially no different from real ones, but
certain statistical descriptions for real random variables do not extend to the complex case
unless suitably augmented. The following is an example of what can go wrong.

Example 1. A real Gaussian random variable is completely determined by its mean and
variance. However, this is not true for complex Gaussian random variables. Consider the

random variables Z = X+jY , and W = j
√

2X, where X, Y
i.i.d.∼ N (0, 1). These are distinct

random variables, as evidenced by the fact that they have different supports; however, their
means are E [Z] = E [W ] = 0, and their variances are E [ZZ∗] = E [WW ∗] = 2.

We have defined the variance of a mean-zero complex random variable Z to be E [ZZ∗]:
this is required in order for the variance to be a real nonnegative number, and specializes to
the standard variance in the purely real case.

What statistic, not required in the real case, distinguishes Z and W? It turns out to be
the “real” variance E [Z2]; in the example, we have E [Z2] = 0 and E [W 2] = −2. In general,
a complex Gaussian Z is completely specified by E [Z], E [ZZ∗], and E [Z2]. We call the
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statistic σ2 = E [ZZ∗] the Hermitian variance, and σ̃2 = E [Z2] the complementary vari-
ance.1 We carry this nomenclature to stochastic processes, assigning to a z-domain process
the Hermitian covariance function k(z, w) = E [f(z)f ∗(w)] and complementary covariance
function k̃(z, w) = E [f(z)f(w)].

Definition 2. A Gaussian z-domain process is a z-domain process f such that, for any
n, the random vector (f(z1), . . . , f(zn)) is complex multivariate Gaussian-distributed for all
(z1, . . . , zn) ∈ Dn.

Analogous to the way that a real Gaussian process is determined by its mean and co-
variance, a Gaussian z-domain process is completely specified by its mean m : D → C,
Hermitian covariance k : D ×D → C, and complementary covariance k̃ : D ×D → C.

A complex random variable f = x + jy may also be represented in its augmented form
f = (f, f ∗). This form is useful despite being redundant, as it yields a convenient expression
of the second-order statistics in terms of an augmented covariance matrix

Kf = E
[[
f
f ∗

]
[f ∗ f ]

]
=

[
Kf K̃f

K̃∗f K∗f

]
(9.1)

where Kf , K̃f are the Hermitian and complementary covariances of f . We use the augmented
form in some proofs in the following section. Similarly, the second-order statistics of a
complex process can be expressed by the augmented covariance function

k(z, w) = E
[[
f(z)
f ∗(z)

]
[f ∗(w) f(w)]

]
=

[
k(z, w) k̃(z, w)
k̃∗(z, w) k∗(z, w)

]
(9.2)

Generally, an underline denotes an augmented representation, either of a process or of a
covariance function or matrix.

H∞ Gaussian Processes

Consider a deterministic input-output operator Hg with transfer function function g : D →
C. The condition that Hg belong to the operator space H∞ of LTI, causal, and BIBO stable
systems is that g belong to the function space H∞. Now suppose we wish to construct a
random operator Hf using the realizations of a z-domain process f as its transfer function:
the analogous condition is that the realizations of f lie in H∞ with probability one.

Definition 3. A z-domain process is called an H∞ process when the set {ξ ∈ Ξ : fξ ∈ H∞}
has measure one under P.

1Other names for the complementary (co)variance in the literature of complex random variables and
stochastic processes are the pseudo(co)variance and relation.
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Less formally, an H∞ process is a z-domain process f such that P(f ∈ H∞) = 1. Having
fξ ∈ H∞ implies that Ē ⊆ D: we usually take D = Ē. If we also require that Hg give real
outputs to real inputs in the time domain, g must satisfy the conjugate symmetry relation
g(z∗) = g∗(z) for all z ∈ D. The analogous condition for Hf is to require that f satisfy the
condition with probability one.

Definition 4. A z-domain process f is called conjugate symmetric when the set {ξ ∈ Ξ :
fξ(z

∗) = f ∗ξ (z), ∀z ∈ D} has measure one under P.

Combining definitions 2, 3, and 4, we arrive at our main object of study: conjugate-
symmetric H∞ Gaussian processes.

Example 2 (“Cozine” process). The random transfer function

f(z) =
X − a(X cos(ω0)− Y sin(ω0))z−1

1− 2a cos(ω0)z−1 + a2z−2
, (9.3)

where X, Y
i.i.d.∼ N (0, 1), a ∈ (0, 1), ω0 ∈ [0, π], is a z-domain Gaussian process. From the

form of the transfer function, we see that H is bounded on the unit circle, analytic on E,
and conjugate symmetric with probability one, from which it follows that f is a conjugate
symmetric H∞ process. Since f corresponds to the z-transform of an exponentially decay-
ing discrete cosine with random magnitude and phase, we call it a “cozine” process. Its
Hermitian and complementary covariances are

k(z, w) =
1− a cos(ω0)(z−1 + (w∗)−1) + a2(zw∗)−1

(1− 2a cos(ω0)z−1 + a2z−2)(1− 2a cos(ω0)(w∗)−1 + a2(w∗)−2)
,

k̃(z, w) =
1− a cos(ω0)(z−1 + w−1) + a2(zw)−1

(1− 2a cos(ω0)z−1 + a2z−2)(1− 2a cos(ω0)w−1 + a2w−2)
.

(9.4)

As a Bayesian prior for an H∞ system, this process represents a belief that the transfer
function exhibits a resonance peak (of unknown magnitude) at ω0. Knowing ω0 in advance
is a strong belief, but it can be relaxed by taking a hierarchical model where ω0 enters as a
hyperparameter. When used as a prior, the hierarchical model represents the less determinate
belief that there is a resonance peak somewhere, whose magnitude can be made arbitrarily
small if no peak is evident in the data.

The construction in Example 2, where properties of conjugate symmetry and BIBO
stability can be checked directly, may be extended to random transfer functions of any finite
order. However, the technique does not carry to the infinite-order H∞ processes required for
nonparametric Bayesian system identification, or more generally for applications that do not
place an a priori restriction on the order of the system. We are therefore motivated to find
conditions under which a z-domain process is a conjugate-symmetric H∞ Gaussian process
expressed directly in terms of k and k̃.
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9.2 Constructing H∞ Gaussian Processes

In this section, we consider a z-domain Gaussian process f with zero mean, Hermitian
covariance function k, and complementary covariance function k̃. Taking zero mean implies
no loss in generality: to lift any of these conditions to a process with nonzero mean, we
simply ask that the desired property (inhabiting H∞, possessing conjugate symmetry, or
both) also hold for the mean.

Our first step towards finding conditions under which a z-domain process is a conjugate-
symmetric H∞ process is the observation that all functions in H∞ are also in H2: ‖f‖∞ <∞
implies that

∫ π
−π |f(RejΩ)|2dΩ converges for all R ≥ 1. Indeed, f ∈ H∞ precisely when

f ∈ H2 and ‖f‖∞ <∞. Our general strategy for proving that a z-domain process is an H∞
process f is to show that fξ ∈ H2 and ‖fξ‖∞ < ∞ hold for realizations fξ of the process
with probability one.

To show when f ∈ H2 with probability one, we use the fact that H2 is a reproducing
kernel Hilbert space.

Definition 5. A reproducing kernel Hilbert space (RKHS) is a Hilbert space of functions on
a domain D for which the evaluation functionals Ez, defined pointwise as Ezf = f(z), are
bounded in the sense that Ezf ≤M(z)‖f‖ for some nonnegative function M(z).

Applying the Riesz representation theorem to the evaluation functionals, which are linear
and by assumption bounded, we recover the reproducing kernel k that satisfies 〈k(z, ·), f〉 =
f(z) and that k(z, z) is the least M(z) such that Ezf ≤M(z)‖f‖ holds. The form of k can
be derived from an orthonormal basis for the RKHS using the following result.

Lemma 8 ([68], Theorem 2.4). Let H be an RKHS with reproducing kernel k. If e0, e1, . . .
form an orthonormal basis for H, then k(z, w) =

∑∞
n=0 en(z)e∗n(w) where the series converges

pointwise.

Discrete-time H2 is a type of Hardy class, which is a space of complex functions that
are analytic on a domain of the complex plane and satisfy a bounded-growth condition on
the boundary. When this domain is a half-plane or the interior of the unit disk, it is well
known that these spaces are RKHSs. It is therefore not surprising that the same is true
when the domain is the exterior of the unit disk, as it is for our H2. However, we are not
aware of a citable proof of this fact, nor of formula for its kernel, so we provide both here
for completeness.

Proposition 5. Discrete-time H2 is a reproducing kernel Hilbert space with kernel function

k(z, w) =
zw∗

zw∗ − 1

and orthonormal basis {en}∞n=0, en(z) = z−n.
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Proof. The first step is to compute the orthonormal basis. We begin with the standard fact
(see [94, theorem 13.3]) that en(z) = z−n, n ∈ Z form an orthonormal basis for L2. Since
H2 is a subspace of L2, we can take the orthogonal projection of z−n, n ∈ Z onto H2 to
yield a sequence that spans H2. For n < 0, z−n is unbounded on the exterior of the unit
disk, so P (en) = 0 for n < 0. On the other hand, z−n ∈ H2 for n ≥ 0, so P (en) = en for
n ≥ 0. Discarding the zeros, we have that H2 = span({en}∞n=0). Since L2 and H2 have the
same norm, we already know that en, n ≥ 0 are orthonormal in H2. The combined facts of
orthonormality and spanning the space ensure (e.g. by [49, chapter 2, §8, Theorem 3]) that
en, n ≥ 0 form an orthonormal basis for H2.

Now we establish that the evaluation functionals Ez(f) = f(z) are bounded. Let f ∈ H2:
from the paragraph above, we expand f as f(z) =

∑∞
n=0 anz

−n. By the Parseval identity
‖f‖2 =

∑∞
n=0 |an|2, we have

|f(z)| =

∣∣∣∣∣
∞∑
n=0

anz
−n

∣∣∣∣∣ ≤
∞∑
n=0

|an||z|−n ≤

√√√√ ∞∑
n=0

|an|2

√√√√ ∞∑
n=0

(|z|−2)n = ‖f‖2
1√

1− |z|−2
. (9.5)

Since Ez(f) ≤ M(z)‖f‖2 for M(z) = 1/
√

1− |z|−2, it follows that H2 is an RKHS. This
allows us to apply Lemma 8 to compute

k(z, w) =
∞∑
n=0

en(z)e∗n(w) =
∞∑
n=0

z−n(w∗)−n =
1

1− (zw∗)−1
=

zw∗

zw∗ − 1
. (9.6)

The fact that H2 is an RKHS allows us to use Driscoll’s zero-one theorem to establish if
the realizations of a z-domain Gaussian process belong to H2.

Lemma 9 ([41]). Let f be a mean zero Gaussian process on a parameter set T with co-
variance function k. Let r be the reproducing kernel of an RKHS of functions with domain
T . Let t1, t2, . . . denote a countably dense set of points in T , and define Kn, Rn ∈ Rn×n as
(Kn)ij = k(ti, tj), (Rn)ij = r(ti, tj). Then the realizations of f are in the RKHS with kernel
k with probability either zero or one, according respectively to whether

∑
n traceKnR

−1
n is

infinite or finite.

To ensure that ‖f‖∞ < ∞, we need a sufficient condition under which the realizations
of f are bounded on the unit circle. The following result provides a sufficient condition in
terms of the continuity of the covariance.

Lemma 10 ([2], Theorem 1.4.1). Let f be a real-valued Gaussian process with mean zero
defined on a compact parameter set T ⊆ Rn. If there exist positive constants C, α, and δ
such that the covariance function k satisfies

k(s, t) = k(s, s) + k(t, t)− 2k(s, t) ≤ C

| log |θ − φ||1+α
(9.7)
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for s, t ∈ T such that |s− t| < δ, then

P

(
sup
t∈T
|f(t)| <∞

)
= 1. (9.8)

We are now prepared to return to H∞ Gaussian processes. The following result provides
the general test to determine if f is an H∞ Gaussian process, by establishing with probability
one that fξ ∈ H2 and ‖fξ‖∞ <∞.

Theorem 6. Let f be a z-domain Gaussian process with mean zero and continuous Hermi-
tian covariance k and complementary covariance k̃. Let kr = 1

2
Re[k + k̃], ki = 1

2
Re[k − k̃]

denote the covariance functions of the real and imaginary parts of f respectively. Then f is
an H∞ process under the following conditions:

1. There exist positive, finite constants Cr, Ci, αr, αi, δr, δi, such that kr and ki, restricted
to the unit circle, satisfy the following continuity conditions:

kr(e
jθ, ejθ) + kr(e

jφ, ejφ)− 2kr(e
jθ, ejφ) ≤ Cr

| log |θ − φ||1+αr
∀|θ − φ| < δr

ki(e
jθ, ejθ) + ki(e

jφ, ejφ)− 2ki(e
jθ, ejφ) ≤ Ci

| log |θ − φ||1+αi
∀|θ − φ| < δi.

(9.9)

2. Let {zn}∞n=1 be a countable dense sequence of points in E. For n ∈ N, define the
Gramian matrices Kn

r , K
n
i , R

n ∈ Rn×n as (Kn
r )jl = kr(zj, zl), (Kn

i )jl = ki(zj, zl), and
(Rn)jl = r(zj, zl), where r(zj, zl) = ziz

∗
j /(ziz

∗
j − 1). Kn

r , Kn
i , and Rn satisfy

sup
n∈N

traceKn
r (Rn)−1 <∞ and sup

n∈N
traceKn

i (Rn)−1 <∞. (9.10)

Proof. To apply Lemmas 9 and 10, we work separately with the real and imaginary parts of
the process. To that end, we write f = x + jy, where x and y are real Gaussian processes
with covariance functions kr and ki.

First, suppose that both conditions hold. Since r is the reproducing kernel of H2 by
Proposition 5, condition (9.10) ensures by Lemma 9 that the sample paths of x and y lie
in H2 with probability one, ensuring the same for f . Since kr and ki satisfy the hypotheses
of Lemma 10, it follows that x and y are bounded with probability one, which implies the
same for f .

Remark 5. According to Driscoll’s theorem, the probability that f ∈ H2 is either zero or one.
(Zero occurs when either supremum in condition (9.10) is infinite.) Similarly, the realizations
of a Gaussian process are bounded with probability zero or one ([58]). This means that the
realizations of a z-domain Gaussian process are either almost surely H∞ functions or almost
surely not: there are no “part-time H∞” Gaussian processes.
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Remark 6. Condition (9.10) is necessary and sufficient for f to inhabit H2 with probability
one. On the other hand, condition (9.9) is sufficient but not necessary for ‖f‖∞ to be
bounded. Indeed, necessary and sufficient conditions for a stochastic process to be almost
surely bounded are generally not available even for real-valued Gaussian processes except in
special cases. Fortunately, covariance functions in practice often satisfy a stronger condition
that implies (9.9) ([1, eq. 2.5.17]), namely that k(s, t) = k(s, s) − q(s − t) + O(|s − t|2+δ),
for small |s− t|, where q is a positive definite quadratic form and δ > 0.

The general condition for a process to be conjugate symmetric is given by the following
result.

Proposition 6. Let f be a z-domain Gaussian process with domain D, covariance k, and
complementary covariance k̃. Then f is conjugate-symmetric if and only if k and k̃ satisfy
the conditions

k(z, z) = k(z∗, z∗), k(z, z) = k̃(z, z∗) (9.11)

for all z ∈ D.

Proof. For a fixed z ∈ D, consider the random vector (f ∗(z), f(z∗)). This is a multivariate
complex normal whose augmented covariance matrix is

E


 f

∗(z)
f(z∗)
f(z)
f ∗(z∗)

 [f ∗(z) f(z∗) f(z) f ∗(z∗)]

 =


k∗(z, z) k̃∗(z, z∗) k̃∗(z, z) k∗(z, z∗)
k̃(z∗, z) k(z∗, z∗) k(z∗, z) k̃(z∗, z∗)
k̃(z, z) k(z, z∗) k(z, z) k̃(z, z∗)
k∗(z∗, z) k̃∗(z∗, z∗) k̃∗(z∗, z) k∗(z∗, z∗)

 .
(9.12)

Since augmented covariance matrices have the form[
K K̃
K̃∗ K∗

]
(9.13)

where K and K̃ are the Hermitian and complementary covariances, the Hermitian and
complementary covariances of (f ∗(z), f(z∗)) are

K =

[
k∗(z, z) k̃∗(z, z∗)
k̃(z∗, z) k(z∗, z∗)

]
, K̃ =

[
k̃∗(z, z) k∗(z, z∗)
k(z∗, z) k̃(z∗, z∗)

]
. (9.14)

Since (f ∗(z), f(z∗)) is Gaussian with mean zero, this means that[
f ∗(z)
f(z∗)

]
∼ CN

([
0
0

]
,

[
k∗(z, z) k̃∗(z, z∗)
k̃(z∗, z) k(z∗, z∗)

]
,

[
k̃∗(z, z) k∗(z, z∗)
k(z∗, z) k̃(z∗, z∗)

])
. (9.15)

Under the conditions given on k and k̃, this reduces to[
f ∗(z)
f(z∗)

]
∼ CN

([
0
0

]
, k(z, z)

[
1 1
1 1

]
, k̃(z, z)

[
1 1
1 1

])
, (9.16)
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from which it follows that

f ∗(z)− f(z∗) = [1 −1]

[
f ∗(z)
f(z∗)

]
∼ CN (0, 0, 0) . (9.17)

This means that f ∗(z)− f(z∗) = 0, or equivalently f ∗(z) = f(z∗), with probability one, for
all z ∈ D. On the other hand, if the conditions in (9.11) are not met, then for at least one
z ∈ D, the reduction from (9.15) to (9.16) is not possible, in which case f(z∗) = f ∗(z) does
not hold.

Together, Theorem 6 and Proposition 6 give sufficient conditions on the covariance func-
tions of a general mean-zero z-domain Gaussian process in order for it to be a conjugate-
symmetric H∞ Gaussian process. While Conditions (9.9) and (9.11) can be verified in prac-
tice, Condition (9.10) generally cannot. We are therefore motivated to find special cases of
z-domain Gaussian processes for which (9.10) can be replaced by a more tractable condition.
The broadest such case that we have found is where, in addition to satisfying Conditions (9.9)
and (9.11), the Hermitian covariance function is stationary when restricted to the unit circle.

Definition 6. A z-domain Gaussian process is Hermitian stationary when its Hermitian
covariance function satisfies k(ejθ, ejφ) = k(ej(θ−φ), 1) for all θ, φ ∈ [−π, π).

Using a stationary process as a prior is common practice in machine learning and control-
theoretic applications of Gaussian process models. Stationary processes are useful for con-
structing regression priors that do not introduce unintended biases in their belief about the
frequency response: since f(ejθ) has the same Hermitian variance across the entire unit circle,
a sample path from a Hermitian stationary H∞ process is just as likely to exhibit low-pass
behavior as it is high-pass or band-pass.2 We can obtain a “partially informative” prior by
adding an H∞ process encoding strong beliefs in one frequency range (such as the presence
of a resonance peak) to an H∞ process encoding weaker beliefs across all frequencies. The
sum, also an H∞ process, encodes a combination of these beliefs.

Under the additional condition of Hermitian stationarity, it turns out that the H∞ process
is characterized by a sequence of nonnegative constants.

Theorem 7. Let f be a Hermitian stationary, conjugate-symmetric z-domain Gaussian
process with continuous Hermitian covariance k and complementary covariance k̃. Then f
is an H∞ process if and only if k and k̃ have the form

k(z, w) =
∞∑
n=0

a2
n(zw∗)−n, k̃(z, w) =

∞∑
n=0

a2
n(zw)−n, (9.18)

where {an}∞n=0 is a nonnegative real `1 sequence. Furthermore, f may be expanded as

f(z) =
∞∑
n=0

anwnz
−n, (9.19)

2To be truly “noninformative” in the sense of zero correlation, the complementary covariance should be
stationary. However, this is not possible while satisfying (9.11).
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where wn
i.i.d.∼ N (0, 1).

Proof. First, we show that f having the form (9.19) with positive {an}∞n=0 ∈ `1 implies that
f is a Hermitian stationary H∞ process satisfying (9.11) with the given covariances. Suppose
that f(z) =

∑∞
n=0 anwnz

−n. We can readily see that

k(z, w) = E [f(z)f ∗(w)] = E

[(
∞∑
n=0

anwnz
−n

)(
∞∑
m=0

amwm(w)−m

)∗]

= E

[
∞∑

n=0,m=0

anamwnwmz
−n(w∗)−n

]
=
∞∑
n=0

a2
n(zw∗)−n,

(9.20)

where the cross terms vanish by the independence of the wn. Note also that k(z, z) =
k(z∗, z∗), which is the first part of condition (9.11). A similar calculation yields

k̃(z, w) = E [f(z)f(w)] =
∞∑
n=0

a2
n(zw)−n = k(z, w∗), (9.21)

showing that both parts of condition (9.11) are satisfied, and that f has real impulse response
hf (n) = wnan. Recall that a SISO system is BIBO stable if its impulse response is absolutely
summable. To that end, consider the sequence

MT =
T∑
n=0

|hf (n)| =
T∑
n=0

an|wn| (9.22)

of partial sums: if limT→∞MT converges to a random variable that is finite with probability
one, then the impulse response is absolutely summable with probability one. Since the wn
are independent and 0 < an|wn| < ∞ for all n, it follows that MT is a submartingale and
that E [MT ] increases monotonically. Using the summability condition on the an and the
fact that E [|wn|] =

√
2/π (as |wn| follows a half-normal distribution), we have

E

[
∞∑
n=0

|hf (n)|

]
=
∞∑
n=0

an|wn| =
√

2

π

∞∑
n=0

an <∞, (9.23)

which means supT E [MT ] <∞ by monotonicity. SinceMT is a submartingale and supT E [MT ]
is finite, it follows by the Martingale convergence theorem [43, Theorem 4.2.11] that the limit
of MT converges to a random variable that is finite with probability one. This shows that
hf is absolutely summable with probability one, implying BIBO stability and that f ∈ H∞
with probability one.

Next, we show that a Hermitian stationary, conjugate-symmetric H∞ Gaussian process
f must have Hermitian and complementary covariances of the form (9.18), and that this in
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turn implies that f has the form (9.19). Since f ∈ H∞, we can use the fact that z−n, n ≥ 0
is a basis for H∞ to expand f as

f(z) =
∞∑
n=0

hnz
−n, (9.24)

where the coefficients hn = 〈f, z−n〉2 are an infinite sequence of random variables. Since f is
Gaussian and conjugate symmetric, the hn are real Gaussian random variables that may be
correlated. From this form, we can express the Hermitian and complementary covariance as

k(z, w) =
∞∑
n=0

∞∑
m=0

E [hnhm] z−n(w∗)−m

k̃(z, w) =
∞∑
n=0

∞∑
m=0

E [hnhm] z−n(w)−m,

(9.25)

which shows that k̃(z, w) = k(z, w∗) for z, w ∈ E2. Restricting the covariance functions to
the unit circle, we have

k(ejθ, ejφ) =
∞∑
n=0

∞∑
m=0

E [hnhm] e−j(nθ−mφ)

k̃(ejθ, ejφ) =
∞∑
n=0

∞∑
m=0

E [hnhm] e−j(nθ+mφ).

(9.26)

By the assumption of Hermitian stationarity, we know that k(ej(θ−φ), 1) is a positive definite
function whose domain is the unit circle. We can therefore apply Bochner’s theorem [75,
section 1.4.3] to obtain a second expansion

k(ej(θ−φ), 1) = k(ejθ, ejφ) =
∑
n∈Z

a2
ne
−jn(θ−φ), (9.27)

where an are real and nonnegative. In order for the expansion of k in (9.26) and the expansion
in (9.27) to be equal, the positive-power terms in (9.27) must vanish, and the cross-terms
in (9.26) must vanish.

This means that E [hnhm] = 0 for m 6= n, from which it follows that the covariances have
the form

k(z, w) =
∞∑
n=0

E
[
h2
n

]
(zw∗)−n =

∞∑
n=0

a2
n(zw∗)−n

k̃(z, w) =
∞∑
n=0

E
[
h2
n

]
(zw)−n =

∞∑
n=0

a2
n(zw)−n

(9.28)
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where we identify a2
n = E [h2

n], and that the hn are independent. Returning to the expanded
form of the process and expressing E [h2

n] = a2
n, we have

f(z) =
∞∑
n=0

wnanz
−n (9.29)

where wn
i.i.d.∼ N (0, 1).

Evidently, the impulse response hf has the same form as before, so the expected ab-

solute sum of the impulse response is E [
∑∞

n=0 |hf (n)|] =
√

2
π

∑∞
n=0 an. Since f ∈ H∞

by assumption, it follows that
∑∞

n=0 |hf (n)| almost surely converges, and therefore that
E [
∑∞

n=0 |hf (n)|] < ∞ by the Kolmogorov three-series theorem ([43, Theorem 2.5.8], condi-
tion (ii)), showing that {an}∞n=0 ∈ `1.

Theorem 7 provides a useful tool for constructing conjugate-symmetric H∞ Gaussian
processes: all we need to do is select a summable sequence of nonnegative numbers.

Example 3 (Geometric H∞ process). Take a2
n = αn with α ∈ (0, 1); this yields a conjugate-

symmetric H∞ Gaussian process with Hermitian covariance kα(z, w) =
∑∞

n=0 α
n(zw∗)−n =

zw∗

zw∗−α and complementary covariance k̃α(z, w) = zw
zw−α .

Example 4 (Exponential H∞ process). Take a2
n = 1

n!
; this yields a conjugate-symmetric

H∞ Gaussian process with Hermitian covariance k(z, w) =
∑∞

n=0
(zw∗)−n

n!
= e−zw

∗
and com-

plementary covariance k̃(z, w) = e−zw.

9.3 Gaussian Process Regression in the Frequency

Domain

Let H∆ ∈ H∞ denote a system uncertainty whose transfer function ∆ ∈ H∞ we wish to iden-
tify. While not necessarily stochastic, ∆ is unknown, and we represent both our uncertainty
and our prior beliefs in a Bayesian fashion with an H∞ Gaussian process with Hermitian
and complementary covariances k and k̃. To model our prior beliefs, the distribution of
∆ should give greater probability to functions we believe are likely to correspond to the
truth, and should assign probability zero to functions ruled out by our prior beliefs. As an
example of the latter, the fact that P (∆ ∈ H∞) = 1 encodes our belief that ∆ ∈ H∞, which
demonstrates the importance of H∞ Gaussian processes for prior model design.

We suppose that our data consists of n noisy frequency-domain point estimates yi =

∆(zi)+ei, where ei
i.i.d.∼ N (0, σ2

n), zi ∈ Ē. If our primary form of data is a time-domain trace
of input and output values, we first convert this data into an empirical transfer function
estimate (ETFE). There are several well-established methods to construct ETFEs from time
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traces, such as Blackman-Tukey spectral analysis, windowed filter banks, or simply dividing
the DFT of the output trace by the DFT of the input trace. In our numerical examples, we
will use windowed filter banks.

Our approach is essentially the same procedure as standard Gaussian process regression
as described in [73] extended to the complex case. We take the mean of the prior model to
be zero without loss of generality. To estimate the transfer function at a new point z, we
note that ∆(z) is related to (y1, . . . , yn) under the prior model as[

∆(z)
y

]
∼ CN

(
0,

[
Kxx Kxy

KH
xy Kyy

]
,

[
K̃xx K̃xy

K̃H
xy K̃yy

])
; (9.30)

where y ∈ Cn, Kyy ∈ Cn×n, Kxy ∈ Cn×1, and Kxx ∈ C are defined componentwise as

(y)i = yi, (Kyy)ij = k(zi, zj) + σ2
nδij, (Kxy)ij = k(z, zi), Kxx = k(z, z) + σ2

n, (9.31)

and the components of the complementary covariance matrix are defined analogously.
By conditioning ∆(z) on the data y according to the prior model, we obtain the posterior

distribution of ∆(z). According to the conditioning law for multivariate complex Gaussian
random variables [76, §2.3.2], this is ∆(z)|y ∼ CN

(
µ, σ2

p, σ̃
2
p

)
, where

µq = (Kxy − K̃xy(K
∗
yy)
−1K̃∗yy)P

−1y + (K̃xy −KxyK
−1
yy K̃yy)(P

∗)−1y∗

σ2
q = kzz −KxyP

−1KH
xy + K̃xyK

−1
yy K̃yy(P

∗)−1KH
xy

− K̃xy(P
∗)−1K̃H

xy +KxyK
−1
yy K̃yy(P

∗)−1K̃H
xy

σ̃2
p = k̃zz −KxyP

−1(K̃∗xy)
H + K̃xyK

−1
yy K̃yy(P

∗)−1(K̃∗xy)
H

− K̃xy(P
∗)−1(K∗xy)

H +KxyK
−1
yy K̃yy(P

∗)−1(K∗xy)
H

(9.32)

and where P denotes the Schur complement P = Kyy − K̃yy(K
∗
yy)
−1K̃∗yy. The predictive

mean µp is the minimum mean-square error widely linear estimator of ∆(z) given y, where
“widely linear” means that µp is a linear combination of both y and y∗. A strictly linear
estimator, on the other hand, uses only y. Under the same circumstances as above, the
minimum least-square strictly linear estimator for ∆(z) given y and its error variance are
respectively

∆̂(z) = KH
xyK

−1
yy y, σ2

∆(z) = Kzz −KH
xyK

−1
yy kxy, (9.33)

which are identical to the posterior mean and variance of a real Gaussian process regression
model (cf. Equation (2.19) in [73]) except that Kxx, Kxy, and Kyy are complex-valued.

The widely linear estimator can only be an improvement on the linear estimator, since an
estimate made using y can certainly be made using (y, y∗). The improvement is measured
by the Schur complement P defined above, which is the error covariance of statistically
estimating y∗ from y, or equivalently estimating the real part given the imaginary part. In
particular, when P = 0, the strictly linear and widely linear estimators coincide, and the
expressions in (9.32) become ill-defined. One case where this holds is when the covariances
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are maximally improper, in which case the imaginary part can be estimated from the real
with zero error.

In our experiments with real-impulse H∞ processes, we have found that P tends to be
close to singular, and small in induced 2-norm and Frobenius norm relative to Kyy and
K̃yy. This makes the mean and variance computations in (9.32) numerically unstable while
also implying that the strictly linear estimator will perform similarly to the widely linear
estimator. We believe this is due to the symmetry condition imposed on k and k̃ by having
real impulse response. This condition implies that the imaginary part can be computed
exactly from the real part by the discrete Hilbert transform [72, §2.26]. The covariance
matricesKyy and K̃yy will not themselves be maximally improper, since the Hilbert transform
requires knowledge over the entire unit circle; however, our experiments suggest that they
are close to maximally improper, and we conjecture that they become maximally improper
in the limit of infinite data. This suggests that the strictly linear estimator will perform well
for conjugate-symmetric H∞ priors. For this reason, as well as the numerical instability of
the widely linear estimator when P is close to singular, we use the strictly linear estimator
in our numerical experiments.

For z ∈ D and η > 0, define the confidence ellipsoid Eη(z) = {w ∈ C : |w − ∆̂(z)|2 ≤
η2σ2

∆(z)}. By Markov’s inequality, we know that ∆(z) ∈ Eη(z) with probability ≥ 1− 1/η2.
This implies bounds on the real and imaginary parts by projecting the confidence ellipsoid
onto the real and imaginary axes: from these we can construct probabilistic bounds on the
magnitude and phase of ∆(z) via interval arithmetic, which we will see in the numerical
examples.

Let θ ∈ Θ denote the hyperparameters of a covariance function kθ, so that Kyy becomes a
function of θ: then the log marginal likelihood of the data under the posterior for the strictly
linear estimator is L(θ) = −1

2

(
yHKyy(θ)

−1y + log detKyy(θ) + n log 2π
)
. Keeping the data

y and input locations zi fixed, L(θ) measures the probability of observing data y when the
prior covariance function is kθ. By maximizing L with respect to θ, we find the covariance
among kθ, θ ∈ Θ that best explains the observations.3

To summarize, the regression process is as follows:

1. Select a family of H∞ Gaussian process models indexed by a hyperparameter set Θ;

2. observe point estimate data, typically by an empirical transfer function estimate;

3. Select θ ∈ Θ that maximizes the log likelihood L(θ);

4. Use the strictly linear estimator (9.33) to obtain an estimate ∆̂ and predictive variance
σ∆.

We now demonstrate the process by identifying two second-order systems.

3Although it seems contradictory to choose prior parameters based on posterior data, it can be justified
as an empirical-Bayes approximation to a hierarchical model with θ as hyperparameter.
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Examples: Identifying Second-order Systems

Figure 9.1: Bode plot of the second-order resonant system (orange), and its estimate (blue)
using H∞ Gaussian process regression from an empirical transfer function estimate (black
points) with η = 3 confidence ellipsoid bounds (grey).

We apply the strictly-linear H∞ Gaussian process regression method described above to
the problem of identifying two second-order systems. The first test system is a second-order
system that exhibits a resonance peak. The system is specified in continuous time, with
canonical second-order transfer function

g(s) =
ω2

0

s2 + 2ξω0s+ ω2
0

, (9.34)

where ω0 = 20π rad/s, and ξ = 0.1, and converted to the discrete-time transfer function
g(z) using a zero-order hold discretization with a sampling frequency of fs = 100 Hz. We
suppose that we know a priori that there is a resonance peak, but not about its location
or half-width, and we have no other strong information about the frequency response. For
this prior belief, an appropriate prior model is a weighted mixture of a cozine process and
a Hermitian stationary process. In particular, we use the family of H∞ processes with
covariance functions

k(z, w) = σ2
gkg(z, w) + σ2

ckc(z, w), k̃(z, w) = σ2
g k̃g(z, w) + σ2

c k̃c(z, w), (9.35)

where kg is the covariance of the geometric H∞ process defined in Example 3, and kc is the
covariance of the cozine process, and likewise for the complementary covariance. σ2

g and σ2
c

are weights that determine the relative importance of the two parts of the model. This family
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of covariances has five hyperparameters: kg ∈ [0,∞), α ∈ (0, 1), kc ∈ [0,∞), ω0 ∈ [0, π], and
a ∈ (0, 1).

We suppose that an input trace u(n) of Gaussian white noise with variance σ2
u = 1/fs is

run through Hg yielding an output trace y(n); our observations comprise these two traces,
corrupted by additive Gaussian white noise of variance σ2 = 10−4/fs. To obtain an empirical
transfer function estimate, we run both observation traces through a bank of 25 windowed
1000-tap DFT filters. The impulse responses of the filter bank are hi(n) = ejωinw(n) for
i = 1, . . . , 25, with Gaussian window w(n) = exp(−1

2
(σw(n−500)/1000)2) for n = 0, . . . , 999,

and w(n) = 0 otherwise, with window half-width σw = 0.25. Let ui, yi denote the outputs
of filter hi with inputs u, y respectively: yi(n)/ui(n) gives a running estimate of g(ejωi),
whose value after 1000 time steps we take as our observation at zi = ejωi . Figure 9.1
shows the regression from the strictly linear estimator (9.33) after tuning the covariance
hyperparameters via maximum likelihood, along with predictive error bounds based on η = 3
confidence ellipsoids.

The second is a second-order allpass filter. This system is specified in discrete time with
the transfer function

g(z) =
|z0|2 − 2 Re [z0] + 1

1− 2 Re [z0] + |z0|2
, (9.36)

where z0 = 0.5e±jπ/4 are the system’s poles, with sampling frequency fs = 100 Hz. For this
system we assume that we do not have a priori information on the structure of the frequency
response, so we use a Hermitian stationary H∞ process as the prior model. In particular,
we take the family of geometric H∞ process, indexed by hyperparameter α ∈ (0, 1). To
construct the empirical transfer function estimate, we use the same data model and filter
bank as the previous example. Figure 9.2 shows the strictly linear regression after tuning
the covariance hyperparameters, again with predictive error bounds from η = 3 confidence
ellipsoids.

9.4 Robustness Analysis with H∞ Gaussian Processes

Now that we have explored how to refine an H∞ GP model from online data, we move to
a second and equally important problem: how to establish probabilistic robustness guar-
antees for H∞ processes. Our goal is to establish accuracy-only probabilistic guarantees of
robustness; in other words, establishing that a given certificate of robustness is obtained with
probability ≥ 1 − ε for a prescribed ε ∈ (0, 1). For several classical robustness certificates,
this reduces to the problem of bounding the gain excursion probability

Pu(f) = P

(
sup

Ω∈[0,π)

|f(ejΩ)| > u

)

of a general H∞ GP f , which measures how likely the L2 gain of Hf is to exceed the level
u. A simple example of how excursion problems arise is the problem of extending small-gain
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Figure 9.2: Bode plot of the second-order allpass system (orange), and its estimate (blue)
using H∞ Gaussian process regression from an empirical transfer function estimate (black
points) with η = 3 confidence ellipsoid bounds (grey).

arguments to the probabilistic case with an H∞ GP uncertainty, as in Figure 7. Consider a
nominal plant G in feedback with an uncertainty ∆ modeled by an H∞ GP. According to the
small-gain theorem [32, Theorem III.2.1], the interconnection will be stable if the gain of G∆
is less than unity: thus bounding P1(G∆) ≤ ε amounts to proving that the interconnection
is stable for an ensemble of realizations with probability ≥ 1− ε.

A more general example is the problem of proving an accuracy-only probabilistic guar-
antee that an H∞ GP satisfies an integral quadratic constraint (IQC). In the discrete time
SISO setting, an IQC with multiplier Π is a behavioral constraint of the form [51]∫ π

−π

[
v(ejΩ)
Hv(ejΩ)

]∗
Π(ejΩ)

[
v(ejΩ)
Hv(ejΩ)

]
dΩ ≥ 0 (9.37)

where v ∈ H2, H : H2 → H2, Π : [−π, π)→ C2×2. A system (represented by H) satisfies the
IQC with multiplier Π if (9.37) is satisfied for all conjugate-symmetric v ∈ H2. IQCs are able
to express a wide range of behavioral properties, and knowing that an uncertainty satisfies a
particular IQC is a powerful tool for constructing controllers that are robust against it [64,
87].

If ∆ is an LTI operator, then under fairly mild conditions, the question of whether the
system upholds a given IQC reduces to a pointwise quadratic constraint on its transfer
function; constrained either to lie within a frequency-dependent circle, outside a frequency-
dependent circle, or on either side of a frequency-dependent half-space. We shall focus on
the first case, but an analogous theory can be developed for any case.
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Lemma 11 (adapted from [69], Lemma 1 (i)). Suppose that an LTI system with transfer
function ∆ satisfies an IQC with continuous, conjugate-symmetric multiplier Π. Then for
each Ω ∈ [−π, π), H(ejΩ) lies in a circle in the Nyquist plane with center Π21(ejΩ) and radius√

Π11(ejΩ) + |Π21(ejΩ)|2.

This condition is evidently equivalent to the condition that

|∆(ejΩ)− Π21(ejΩ)|√
Π11(ejΩ) + |Π21(ejΩ)|2

≤ 1 ∀Ω ∈ [−π, π). (9.38)

Thus the problem of establishing that H∞ satisfies an IQC with probability ≥ 1−ε– in other
words, establishing an accuracy-only probabilistic guarantee holds– reduces an excursion
probability problem on the gain of an H∞ GP, namely proving that

P

(
sup

Ω∈[−π,π)

∣∣∣∣∣ ∆(ejΩ)− Π21(ejΩ)√
Π11(ejΩ) + |Π21(ejΩ)|2

∣∣∣∣∣ ≥ 1

)
≤ ε, (9.39)

or in other words that

P1

(
∆(ejΩ)− Π21(ejΩ)√

Π11(ejΩ) + |Π21(ejΩ)|2

)
≤ ε. (9.40)

Bounding the excursion probability

Having established how gain excursion probabilities arise in proving probabilistic safety
guarantees for H∞ uncertainties, we turn to the problem of how to control these probabilities.
It is not generally possible to directly compute Pu(f); however, we can bound it from above
using a related quantity, the expected number of gain upcrossings.

Associated to any H∞ Gaussian process is its gain process |f(ejΩ)|,Ω ∈ [0, 2π). Assuming
that the gain process is differentiable with respect to Ω, a gain upcrossing at level u is a
value Ωc such that |f(ejΩ)| = u and ∂

∂Ω
|f(ejΩ)| > 0. Under the assumptions given so far,

there can be at most finitely many upcrossings, so the random variable Nu = #{t ∈ T :
|f(ejΩ)| = u and ∂

∂Ω
|f(ejΩ)| > 0} is well-defined and its expectation E [Nu] is almost surely

finite. A simple application of Markov’s inequality yields the bound

P

(
sup

Ω∈[−π,π)

|f(ejΩ)| > u

)
= P

(
|f(ej0)| > u

)
+ P

(
|f(ej0)| ≤ u,Nu ≥ 1

)
≤ P

(
|f(ej0)| > u

)
+ E [Nu] .

(9.41)

The reason that we consider a bound for Pu rather than a direct computation is that direct
computation of Pu is only possible in the simplest cases. On the other hand, E [Nu] can
be computed with a closed-form (though sometimes complicated) expression as long as the
process is differentiable.
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The lack of Gaussian structure in |f(ejΩ)| would make it difficult to compute this formula
directly from f (e.g. by applying a Rice formula like [9, Theorem 3.4]). To overcome the
difficulty, we reframe the problem as a vector crossing problem on the vector Gaussian
process g(Ω) = (x(ejΩ), y(ejΩ)) formed from the real and imaginary parts: the gain process
|f(ejΩ)| crosses from ≤ u to > u precisely when the vector process g(Ω) crosses from the
interior of the circle x2 + y2 = u2 to the exterior. By taking this perspective, we relinquish
the topological simplicity of the scalar crossing problem in order to retain the Gaussian
structure of the stochastic process. While we cannot apply Rice formulas in the vector
setting, there are analogous results for counting vector crossings. We use the following result
due to Belyaev.

Theorem 8 (first-order Belyaev formula [12]). Let f : Ξ × [0, T ] → Rn be a vector-valued
stochastic process and Φ : Rn → R a boundary function satisfying the following conditions:

1. f is continuously differentiable with probability one, and the random variables f(t),
t ∈ T all possess densities pf(t);

2. The conditional densities p(x|y) exist for x = f(t), y = f ′(t), and the densities depend
continuously on x.

3. Φ is continuously differentiable, and to each ε-neighborhoods of the surface SΦ = {x ∈
Rn : Φ(x) = 0} we can associate the coordinate system (φ, ζ1, . . . , ζn−1), where φ =
infy∈Sφ ||x− y||2;

Let Nφ denote the number of times a realization fξ of f exits the surface Sφ: then

E [NΦ] =

∫ T

0

∫
Sφ

E
[
n((x)>f(t))+|f ′(t) = x

]
pf(t)(x)ds(x)dt, (9.42)

where n(x) is the unit normal vector of Sφ at the point x.

Applying the first-order Belyaev formula to the real and imaginary parts of an H∞ GP
and the surface x2 + y2 = u2 yields the following formula for the expected number of gain
upcrossings.

Theorem 9. Consider an H∞ Gaussian process f with mean mx + jmy and Hermitian
and complementary covariances k, k̃. Let Nu denote the integer-valued random variable that
counts the number of u-level gain upcrossings of f . Suppose that mx(e

jΩ) and my(e
jΩ) are

differentiable with respect to Ω and that k(ejΩ1 , ejΩ2) and k̃(ejΩ1 , ejΩ2) are thrice differentiable
with respect to Ω1 and Ω2. Then the expected number of gain upcrossings between frequencies
0 and π is is

E [Nu] =

∫ π

0

∫ 2π

0

u

2π

(
σz(θ)(Ω)√

2π
e−

1
2

(µz(θ)(Ω)/σz(θ)(Ω))2 +
1

2
µz(θ)(Ω)

(
1 + erf

(
µz(θ)(Ω)√
2σz(θ)(Ω)

)))
× det Σ(Ω,Ω)−1/2e−

1
2

(z(θ)−m(Ω))>Σ(Ω,Ω)−1(z(θ)−m(Ω)dθdΩ,
(9.43)
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where

µz(Ω) = u−1z>m(Ω)′ + u−1z>C(Ω,Ω)Σ(Ω,Ω)−1(z −m(Ω)) (9.44)

σz(Ω) = u−2z>(Σ′(Ω,Ω)− C(Ω,Ω)(Σ(Ω,Ω)−1C(Ω,Ω)>)z (9.45)

Σ(Ω,Ω) =

[
kx(Ω,Ω) kc(Ω,Ω)
kc(Ω,Ω) ky(Ω,Ω)

]
(9.46)

Σ′(Ω,Ω) =

[
k12
x (Ω,Ω) k12

c (Ω,Ω)
k12
c (Ω,Ω) k12

y (Ω,Ω)

]
, (9.47)

C(Ω,Ω) =

[
k1
x(Ω,Ω) k1

c (Ω,Ω)
k2
c (Ω,Ω) k1

y(Ω,Ω)

]
, (9.48)

kx(Ω1,Ω2) = 1
2

Re
[
k(ejΩ1 , ejΩ2) + k̃(ejΩ1 , ejΩ2)

]
(9.49)

ky(Ω1,Ω2) = 1
2

Re
[
k(ejΩ1 , ejΩ2)− k̃(ejΩ1 , ejΩ2)

]
(9.50)

kc(Ω1,Ω2) = 1
2

Im
[
k̃(ejΩ1 , ejΩ2)− k(ejΩ1 , ejΩ2)

]
(9.51)

m(Ω) =

[
mx(e

jΩ)
my(e

jΩ)

]
, (9.52)

and where the superscripts denote derivatives of the covariance functions, e.g.

k12
x = ∂2kx/∂Ω1Ω2.

Proof. To apply Belyaev’s formula, we must first establish that the conditions of Theorem 8
are satisfied by the vector GP g composed of the real and imaginary parts of f . That g(ejΩ)
and g′(ejΩ)|g(ejΩ) have distributions is given by the fact that g is a Gaussian process: g(ejΩ)
is Gaussian-distributed by definition; the derivative of a Gaussian process is itself a Gaussian
process; and a Gaussian random variable conditioned on another Gaussian random variable
is itself Gaussian. The given conditions on differentiability ensure that g is differentiable: a
mean-zero process with thrice-differentiable covariances is at least once-differentiable, and
adding a differentiable mean to the process preserves this property. Finally, the surface
x2 +y2−u2 = 0 satisfies the third condition, as an ε-neighborhood of Sφ is simply an annulus
in the plane with inner radius u− ε and outer radius u+ ε, which can be parameterized using
polar coordinates.

With these conditions established, we know that the expected number of u-level gain
upcrossings of f is given by (9.42) with g = (x, y) and Φ(x, y) = x2 + y2 − u2; all that
remains is to show how to express (9.42) in terms computable from k, k̃, and m, that is
to derive (9.43). First, there is the matter of integration over SΦ: this can be handled by
integrating over its circular parameterization SΦ = {(u cos θ, u sin θ), θ ∈ [−π, π)} in which
case

z = z(θ) = (u sin θ, u cos θ), ds(z) = udθ. (9.53)
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To obtain the distribution pg(Ω), we require the first- and second-order statistics of g. Since
the real and imaginary parts of f are Gaussian, it follows that g is a vector Gaussian process.
Its mean and variance are

E
[
g(ejΩ)

]
=

[
E
[
x(ejΩ)

]
E
[
y(ejΩ)

]] = m(Ω), (9.54)

Σ(Ω1,Ω2) =[
E [(x(Ω1)−mx(Ω1))(x(Ω2)−mx(Ω2))] E [(x(Ω1)−mx(Ω1))(y(Ω2)−my(Ω2))]
E [(y(Ω1)−my(Ω1))(x(Ω2)−mx(Ω2))] E [(y(Ω1)−my(Ω1))(y(Ω2)−my(Ω2))]

]
=

[
kx(Ω1,Ω2) kc(Ω1,Ω2)
kc(Ω1,Ω2) ky(Ω1,Ω2)

]
,

(9.55)

which can be verified by substituting

x(ejΩ) =
1

2
(f(ejΩ) + f̄(ejΩ)),

y(ejΩ) =
1

2j
(f(ejΩ)− f̄(ejΩ)),

(9.56)

and working out the expectations. From this, it follows that

pf(Ω)(z) = (2π)−1Σ(Ω,Ω)e−
1
2

(z−m(Ω))>Σ(Ω,Ω)(z−m(Ω)). (9.57)

To compute the conditional expectation, we also require the joint distribution of g(Ω) and
its derivative g′(Ω): this is another multivariate normal with mean and covariance

E


x
′(Ω)
y′(Ω)
x(Ω)
y(Ω)


 =

m
′
x(Ω)

m′y(Ω)
mx(Ω)
my(Ω)

 (9.58)

E


x
′(Ω)−mx(Ω)
y′(Ω)−my(Ω)
x(Ω)−mx(Ω)
y(Ω)−my(Ω)


x
′(Ω)−mx(Ω)
y′(Ω)−my(Ω)
x(Ω)−mx(Ω)
y(Ω)−my(Ω)


>
 =

[
Σ′(Ω,Ω) C(Ω,Ω)
C>(Ω,Ω) Σ(Ω,Ω)

]
, (9.59)

We next compute the conditional distribution of g given g′ = z; this is again a multivariate
normal: dropping Ω from the submatrices for brevity, we have

g(Ω)|g′(Ω) = z ∼ N
(
m′ + CΣ−1(z −m),Σ′ − CΣ−1C>

)
. (9.60)

The normal vector nΦ(z) for Φ—a circle with center zero and radius u– is simply u−1. Thus
the linear mapping (g(Ω)|g′(Ω) = z) 7→ nΦ(z)>(g(Ω)|g′(Ω) = z) gives us the distribution

nΦ(z)>(g(Ω)|g′(Ω) = z) ∼ N
(
u−1z>m′ + u−1z>CΣ−1(z −m), u−2z>(Σ′ − C(Σ−1C>)z

)
∆
= N

(
µz(Ω), σ2

z(Ω)
)
.

(9.61)
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The remaining step is to compute the expectation of the positive part. Since

nΦ(z)>(g(Ω)|g′(Ω) = z) (9.62)

is a Gaussian scalar, the positive part is a rectified Gaussian, whose mean is

E
[
(nΦ(z)>(g(Ω))+|g′(Ω) = z)

]
=
σz(Ω)√

2π
e−

1
2

(µz(Ω)/σz(Ω))2 +
1

2
µz(Ω)

(
1 + erf

(
µz(Ω)√
2σz(Ω)

))
.

(9.63)
Finally, applying (9.53), (9.56), and (9.62) to the Belyaev formula (9.42) yields the expres-
sion (9.43).

Example: Bounding the gain of a geometric H∞ Process

Figure 9.3: Evaluating the Belyaev formula and the excursion gain bound on a geometric
H∞ process with α = 0.5. Left: Numerical comparison of (9.42) with an empirical estimate
(N = 100, 000) of E [Nu]. Right: Numerical comparison of (9.41) with an empirical estimate
(N = 100, 000) of Pu(f).

To demonstrate the validity of the Belyaev formula (9.42) and to test the tightness of
the bound (9.41), we use them to numerically evaluate E [Nu] and a bound for Pu(f) for
a geometric H∞ GP f with α = 0.5 over a range u ∈ [1, 4]. The expected H2 norm of a
geometric H∞ process is 1, so it’s reasonable to expect E [Nu] and Pu(f) to be relatively high
near u = 1, and to taper off relatively quickly. Figure 9.3 shows the results of the numerical
evaluation of Equations (9.42), (9.41) and compares the results to empirical approximations
of E [Nu] and Pu(f) made using N = 100, 000 process realizations. We can conclude from the
figure that (9.42) accurately computes E [Nu] as expected. Furthermore, we see that (9.41)
indeed upper bounds Pu(f); while the bound is conservative in regions where Pu(f) is high,
it quickly becomes tighter where Pu(f) is small, levelling off to overestimate Pu(f) by ∼ 10%
for u > 2.5. Since we will generally engineer Pu(f) to be tight in applications, the experiment
shows that (9.41) is not a conservative bound in regions of practical interest.
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9.5 Conclusion

This chapter has three principal contributions: how to construct H∞ GPs, how to refine
an H∞ GP model with data, and how to prove robustness guarantees for systems with H∞
feedback uncertainties. There are significant improvements to be made in all three.

Regarding construction of H∞ GPs, the general existence conditions are difficult to eval-
uate in practice; while the Hermitian stationary case provides a convenient workaround, it
would be better to have more convenient general conditions. The Driscoll zero-one condition
can likely be replaced by a direct appeal to the analyticity of the covariance, as in [11].

Regarding regression, the regression-based refinement method described in Section 9.3
depends strongly on the method used to convert time-domain data to frequency-domain,
many of which (such as filter banks and ETFEs) are sensitive to measurement noise. A more
direct application of time-domain data to the frequency-domain model, perhaps effected by a
projected-process regression [73, §8.3.4]. Even within the regime of refinement via frequency-
domain data, there remains some mystery around the performance gap between strictly
linear and widely linear estimators. The strictly linear estimator, which is suboptimal for
general complex Gaussian process priors, appears to provide transfer function estimates that
are close to optimal for conjugate-symmetric H∞ priors. We have numerical evidence that
suggests that as the number of frequency data points increases, the covariance becomes
maximally improper, a case in which the strictly linear is indeed optimal.

Regarding robustness, there is not a clear path to extend the Belyaev-based excursion
probability bounds to the MIMO case. In this case, we would seek to bound the maximum
singular value (over all frequencies) of a matrix of random transfer functions; in this case,
restoring Gaussian structure would be more difficult than in the SISO case.
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Chapter 10

Afterword: A Bespoke Learning
Model for Robust Control

To conclude Part II, I’d like to remind you of a fundamental contradiction of learning-based
control that we identified in Chapter 7: A dynamical model that is better for learning is
necessarily “worse” for control, in the sense that our ability to synthesize controllers and
establish safety certificates diminishes as the complexity and generality of the dynamical
model increases. In the light of this contradiction, I would venture that there is no singular
“best” model for safe, learning-based control. At least, there are no such models currently
in the literature. If we wish one to exist, we must make it; that is, we must make a
bespoke learning model for robust control. The models we’ve explored in Part II demonstrate
promising directions to navigating the fundamental contradiction and finding such a bespoke
model, though they fall short of perfection in their current forms. In a break from much
of the learning-based control literature, which uses GP models and neural nets directly as
they are used in general machine learning tasks and then beat the control analysis to fit,
these directions elect weaken the power of the learning model in order to retain more of the
control-theoretic structure, so that we can retain as many of the tools of robust control as
possible.

In Chapter 8, we took an existing ML model, a GP regression model with polynomial
covariance, and with very little modification added it1 to an existing control model, a polyno-
mial control-affine state-space system. This type of modeling, wherein we adjoin essentially
independent learning and control models, is far and away the most common approach in
literature. Rather than retain complete freedom of covariance structure and try to figure
out what control analysis and synthesis tools will still work (the answer is very few), our
approach was to select a tool at the outset and restrict the covariance structure so that the
model is compatible by design. The tool was SOS analysis, and the corresponding structure
was polynomial structure. By altering the model to fit the tool, we achieved a model suitable
for both learning and robustness. This was obtained at the cost of a considerable reduction

1Literally, as an additive uncertainty.
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of the flexibility of the model, but in some cases (e.g. learning dynamics in the neighborhood
of an equilibrium) this limitation is acceptable.

In Chapter 9, we designed a learning model expressly for the control task of interest.
The control task of interest was robust control of H∞ linear dynamical systems in frequency
domain, and the learning model we constructed was the H∞ Gaussian process. By their very
construction, H∞ GPs fit nicely into the paradigm of robust control. Specifically, a number of
established methods for proving robust stability and other behavioral constraints—small-gain
arguments and integral quadratic constraints, for instance—have clear extensions for H∞
GPs. Furthermore, the way to prove the corresponding probabilistic robustness guarantees is
straightforward, reducing to the problem of bounding the supremum of a stochastic process.
We can even find closed-form, if perhaps cumbersome, expressions for bounds on these
probabilities using only the covariance structure of the GP.

Despite being designed from the ground up with robust control in mind, the class of H∞
GPs constructed in Chapter 9 is not universally appropriate for modeling uncertain systems.
First there is the fact that the theory is so far only developed for SISO systems. Formally
extending to a MIMO model presents no difficulty; if nothing else, one can form a transfer
function matrix whose components are H∞ GPs. Regression extends to this case rather
easily, but robustness does not. In particular, the criterion for robustness becomes more
complicated, changing from the supremum of a single H∞ process to the supremum of the
singular values of a matrix of H∞ processes, which lacks the structure to effectively compute
the terms of the Belyaev formula. There is no obvious way to recover this structure, so
establishing robustness of MIMO H∞ processes remains an open problem.

A curious property of H∞ processes is that the loci of their poles —always a subset of
the unit disk, of course—are fixed by their covariance, and are the same for all realizations.
Only the location of the zeros differ among realizations. This is due to the fact that the
gain at a particular frequency is a series of independent Gaussians, and such series converge
either with probability zero or probability one. That is not to say that the model cannot
adapt to the poles of the ground truth: both Bayesian regression and hyperparameter tuning
will alter the poles by altering the covariance structure. Nevertheless, it demonstrates an
asymmetry that I believe is fundamental to Gaussian transfer function models: zeros are
parameters, and poles are hyperparameters.
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[51] Bin Hu, Márcio J Lacerda, and Peter Seiler. “Robustness analysis of uncertain discrete-
time systems with dissipation inequalities and integral quadratic constraints”. In: In-
ternational Journal of Robust and Nonlinear Control 27.11 (2017), pp. 1940–1962.

[52] Zachary Jarvis-Wloszek et al. “Controls Applications of Sum of Squares Program-
ming”. In: Positive Polynomials in Control. Vol. 312. Springer, Berlin, Heidelberg,
2005.

[53] Ming Jin and Javad Lavaei. “Stability-certified reinforcement learning: A control-
theoretic perspective”. In: arXiv preprint arXiv:1810.11505 (2018).

[54] Guy Katz et al. “Reluplex: An efficient SMT solver for verifying deep neural net-
works”. In: Computer Aided Verification: 29th International Conference, CAV 2017,
Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I 30. Springer. 2017, pp. 97–
117.



BIBLIOGRAPHY 116

[55] S Mohammad Khansari-Zadeh and Aude Billard. “Learning control Lyapunov function
to ensure stability of dynamical system-based robot reaching motions”. In: Robotics
and Autonomous Systems 62.6 (2014), pp. 752–765.

[56] S. Mohammad Khansari-Zadeh and Aude Billard. “Learning control Lyapunov function
to ensure stability of dynamical system-based robot reaching motions”. In: Robotics
and Autonomous Systems 62.6 (2014), pp. 752 –765. issn: 0921-8890.

[57] Sven Khatri and Pablo A Parrilo. “Guaranteed bounds for probabilistic µ”. In: Pro-
ceedings of the 37th IEEE Conference on Decision and Control (Cat. No. 98CH36171).
Vol. 3. IEEE. 1998, pp. 3349–3354.

[58] Henry J Landau and Lawrence A Shepp. “On the supremum of a Gaussian process”.
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