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Abstract

Rapid Adaptation for Robot Control

by

Ashish Kumar

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Jitendra Malik, Chair

Once robots are deployed in the real world, they will inevitably encounter scenarios that they have
never seen before. Consequently, to develop robots that can help us in routine tasks, we need to
first make progress towards the problem of generalization in robotics, which asks the question: how
do we get robots to handle scenarios beyond what they have seen before? This thesis will present
an approach to achieve such generalization through the use of rapid adaptation. Concretely, the
proposed algorithm - Rapid Motor Adaptation (RMA) - allows robots to generalize by adapting
to new and unseen scenarios in fractions of a second. The proposed algorithm is developed in
the context of blind quadruped walking in complex terrain in the real world. Subsequently, it is
extended to quadruped walking with egocentric vision, enabling robots to cross very challenging
terrains, such as stepping stones, which are beyond the reach of blind systems. The same algorithm
is then applied to the task of in-hand rotation to develop a single controller capable of rotating a
diverse set of objects in the real world, as well as to bipedal robots.
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Chapter 1

Introduction

How can we build a robot capable of solving a general set of tasks – a single robot system that can
cook, clean, help in construction, factory assembly, search-and-rescue, elderly care, etc., and do so
in a very diverse set of environments? If we look at the state of robots today, we have indeed made
quite a bit of progress toward this goal. We have robots that can pick and place objects in factories,
drones that can do inspections, robot arms that pour water into a glass, and robots that can even
solve Rubik’s cube (in less than a second)! However, each of these requires a separate specialized
solution that fails to work on other tasks, or for that matter, even beyond the environment they
were designed for. Humans, on the other hand, are an existence proof that a single system capable
of solving a very general set of tasks in a very diverse set of environments can exist. Hence, we
humans are a lower bound to the level of generality and proficiency that can potentially be achieved
by an artificial system. However, what makes this really challenging is the sheer complexity of the
real world that will inevitably expose such a robot to a new and unseen scenario once it is deployed
in the real world. This makes it nearly impossible to anticipate all scenarios that the robot is likely
going to encounter once deployed. Consequently, to make significant advances toward truly general
robots, we need generalization – the ability to work in scenarios that are different than what was
encountered before.

This thesis presents a line of work that approaches generalization via rapid adaptation. The
key idea is to develop controllers that can adapt to new, unseen scenarios in fractions of a second
and hence can generalize to a new environment by Rapid Adaptation. I will first develop it in the
context of a blind quadruped for the task of walking on challenging terrains, and then show how the
same algorithm can enable a) an anthropomorphic hand to rotate a diverse set of objects in-hand
b) a biped robot to walk on challenging terrains and pull varying payloads. I will then scale this
idea of rapid adaptation to quadrupeds with visual sensing to achieve walking controllers capable of
crossing stepping stones and other challenging terrains which were beyond the reach of the blind
robot. The underlying algorithm for all these applications is RMA (Rapid Motor Adaptation), and
its design is driven by the following three important principles:

• Using large-scale data-driven search, instead of heuristics, to learn a controller in a principled
way. For example, most works employ simplified dynamics models and gait heuristics to
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develop a walking controller, whereas, we will use end-to-end reinforcement learning without
any heuristic priors to learn a walking policy in a principled data-driven way.

• Using energy minimization as our primary reward shaping to allow the robot to achieve
natural-looking behaviors, instead of a complex and heavily shaped reward.

• Developing an adaptive system that is aware of the environment it is dealing with and can
adapt to it in fractions of a second.

With these principles in mind, in chapter 2, we will describe the RMA algorithm in the context
of a blind quadruped robot that only has access to its own joint angles (proprioception). But how
far can we go with such a limited system? A blind system that can only feel its limbs (i.e. a
proprioception-only system) and has no knowledge of the terrain must walk conservatively to
avoid a fall, and can only traverse simple terrains. Instead of using a single conservative gait
for all scenarios, what we really want is an adaptive system that continuously estimates the local
environment to adjust its gait. But how can we estimate this for systems with only proprioception?
While walking on a slippery surface, our feet slip and move further than they are commanded to,
and this discrepancy between what was commanded and what actually happened leaks information
about the environment. Chapter 2 operationalizes this idea in the context of quadruped walking on
complex terrains and presents the details of the Rapid Motor Adaptation (RMA) algorithm [video].
In chapter 3, we will analyze the reward function that guides reinforcement learning in RMA. We
find that a reward function that simply penalizes the energy consumed by the robot while rewarding
the robot to track target velocities can lead to emergent walking gaits such as walking, trotting, and
galloping without the need for any pre-programming or gait heuristics [video]. In chapter 4, we will
extend the same design principles to a high dimensional input – egocentric onboard vision. We will
develop an end-to-end system that can jointly process visual and proprioceptive inputs to walk on
very complex terrains such as stairs almost as high as the robot, slippery slopes, debris, and stepping
stones (set up in my living room!) [video]. Our approach is in contrast to most learning-based and
classical approaches which use vision through intermediate terrain maps. Constructing these terrain
maps on the fly is a very challenging problem, and as we will demonstrate, also not necessary to
solve the downstream task of walking. On the contrary, we find that not relying on intermediate
terrain maps improves the overall performance of the system (chapter 4).

Since RMA algorithm makes no assumptions about the task of walking, or four-legged systems,
we can also apply it to other tasks in robotics. Concretely, we will apply it to the task of dexterous
manipulation to enable a four-fingered hand to rotate a diverse set of objects in the real world
(chapter 5) [video], to the task of drone flight and learn a single universal low-level controller
capable of flying drones with very diverse morphologies [200] and to bipeds (chapter 6) [video].

https://www.youtube.com/watch?v=nBy1piJrq1A
https://www.youtube.com/watch?v=OQN5W2IAb9k
https://www.youtube.com/watch?v=RLF07HVEg_k
https://www.youtube.com/watch?v=yH0e0l-H7-8
https://www.youtube.com/watch?v=HSdFHX0qQqg


3

Chapter 2

RMA: Rapid Motor Adaptation for Legged
Robots

In this chapter, we will formalize the idea of rapid adaptation and apply to the challenging
task of quadruped locomotion. Great progress has been made in legged robotics over the last forty
years through the modeling of physical dynamics and the tools of control theory [119, 146, 155,
55, 192, 203, 166, 80, 85, 10, 73]. These methods require considerable expertise on the part of
the human designer, and in recent years there has been much interest in replicating this success
using reinforcement learning and imitation learning techniques [72, 62, 136, 190, 102] which could
lower this burden, and perhaps also improve performance. The standard paradigm is to train an
RL-based controller in a physics simulation environment and then transfer to the real world using
various sim-to-real techniques [171, 137, 72]. This transfer has proven quite challenging, because
the sim-to-real gap itself is the result of multiple factors: (a) the physical robot and its model in
the simulator differ significantly; (b) real-world terrains vary considerably (Figure 2.1) from our
models of these in the simulator; (c) the physics simulator fails to accurately capture the physics
of the real world – we are dealing here with contact forces, deformable surfaces and the like – a
considerably harder problem than modeling rigid bodies moving in free space.

We will study this problem on a relatively cheap A1 robot from Unitree as our experimental
platform. Figure 2.1 shows some sample examples with in-action results in the video. Before
outlining our approach (Figure 2.2), we begin by noting that human walking in the real world entails
rapid adaptation as we move on different soils, uphill or downhill, carrying loads, with rested or
tired muscles, and coping with sprained ankles and the like. Let us focus on this as a central problem
for legged robots as well, and call it Rapid Motor Adaptation (RMA). We will posit that RMA
has to occur online, at a time scale of fractions of a second, which implies that we have no time to
carry out multiple experiments in the physical world, rolling out multiple trajectories and optimizing
to estimate various system parameters. It may be worse than that. If we introduce the quadruped
onto a rocky surface with no prior experience, the robot policy would fail often, causing serious

This chapter is based on joint work with Zipeng Fu, Deepak Pathak and Jitendra Malik [96]
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Figure 2.1: We demonstrate the performance of RMA on several challenging environments. The
robot is successfully able to walk on sand, mud, hiking trails, tall grass and dirt pile without a
single failure in all our trials. The robot was successful in 70% of the trials when walking down
stairs along a hiking trail, and succeeded in 80% of the trials when walking across a cement
pile and a pile of pebbles. The robot achieves this high success rate despite never having seen
unstable or sinking ground, obstructive vegetation or stairs during training. All deployment results
are with the same policy without any simulation calibration, or real-world fine-tuning. Videos
at https://ashish-kmr.github.io/rma-legged-robots/ .

damage to the robot. Collecting even 3-5 mins of walking data in order to adapt the walking policy
may be practically infeasible. Our strategy therefore entails that not just the basic walking policy,
but also RMA must be trained in simulation, and directly deployed in the real world. But, how?

Figure 2.2 shows that RMA consists of two subsystems: the base policy π and the adaptation
module ϕ, which work together to enable online real time adaptation on a very diverse set of
environment configurations. The base policy is trained via reinforcement learning in simulation
using privileged information about the environment configuration et such as friction, payload, etc.
Knowledge of the vector et allows the base policy to appropriately adapt to the given environment.
The environment configuration vector et is first encoded into a latent feature space zt using an
encoder network µ. This latent vector zt, which we call the extrinsics, is then fed into the base
policy along with the current state xt and the previous action at−1. The base policy then predicts
the desired joint positions of the robot at. The policy π and the environmental factor encoder µ are

https://ashish-kmr.github.io/rma-legged-robots/
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*Trainable Modules in Red

Base Policy ( )π
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  Terrain Height 
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Adaptation Module ( ) 
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ϕ ̂zt
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Figure 2.2: RMA consists of two subsystems - the base policy π and the adaptation module ϕ.
Top: RMA is trained in two phases. In the first phase, the base policy π takes as input the current
state xt, previous action at−1 and the privileged environmental factors et which is encoded into the
latent extrinsics vector zt using the environmental factor encoder µ. The base policy is trained in
simulation using model-free RL. In the second phase, the adaptation module ϕ is trained to predict
the extrinsics ẑt from the history of state and actions via supervised learning with on-policy data.
Bottom: At deployment, the adaptation module ϕ generates the extrinsics ẑt at 10Hz, and the base
policy generates the desired joint positions at 100Hz which are converted to torques using A1’s PD
controller. Since the adaptation module runs at a lower frequency, the base policy consumes the
most recent extrinsics vector ẑt predicted by the adaptation module to predict at. This asynchronous
design was critical for seamless deployment on low-cost robots like A1 with limited on-board
compute.
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jointly trained via RL in simulation.
Unfortunately, this policy cannot be directly deployed because we don’t have access to et in

the real world. What we need to do is to estimate the extrinsics at run time, which is the role of
the adaptation module ϕ. The key insight is that when we command a certain movement of the
robot joints, the actual movement differs from that in a way that depends on the extrinsics. So
instead of using privileged information, we might hope to use the recent history of the agent’s state
to estimate this extrinsics vector, analogously to the operation of a Kalman filter for state estimation
from history of observables. Specifically, the goal of ϕ is to estimate the extrinsics vector zt from
the robot’s recent state and action history, without assuming any access to et. That is at runtime,
but at training time, life is easier. Since both the state history and the extrinsics vector zt can
be computed in simulation, we can train this module via supervised learning. At deployment,
both these modules work together to perform robust and adaptive locomotion. In our experimental
setup with its limited on-board computing, the base policy π runs at 100 Hz, while the adaptation
module ϕ is slower and runs at 10Hz. The two run asynchronously in parallel with no central clock
to align them. The base policy just uploads the most recent prediction of the extrinsics vector zt
from the adaptation module to predict action at.

Our approach is in contrast to previous learning-based work in locomotion that adapt learned
policies via inferring the key parameters about the environment from a small dataset collected in
every new situation to which the robot is introduced. These could either be physical parameters like
friction, etc. [19] or their latent encoding [136]. Unfortunately, as mentioned earlier, collecting such
a dataset, when the robot hasn’t yet acquired a good policy for walking, could result in falls and
damage to the robot. Our approach avoids this because RMA, through the rapid estimation of zt
permits the walking policy to adapt quickly 1 and avoid falls.

Training of a base policy using RL with an extra argument for the environmental parameters
has also been pursued in [196, 136]. Our novel aspects are the use of a varied terrain generator and
“natural” reward functions motivated by bioenergetics which allows us to learn walking policies
without using any reference demonstrations [136]. But the truly novel contribution of this work
is the adaptation module, trained in simulation, which makes RMA possible. This, at deployment
time, has the flavor of system identification, but it is an on-line version of system identification,
based just on the single trajectory that the robot has seen in the past fraction of a second. One might
reasonably ask why it should work at all, but we can offer a few speculations:

• System identification is traditionally thought of as an optimization problem. But in many set-
tings researchers have found that given sample (input, output) pairs of optimization problems
with their solutions, we could use a neural network to approximate the function mapping the
problem to its solution [6, 59]. Effectively that is what ϕ is learning to do.

• We don’t need perfect system identification for the approach to work. The vector of extrinsics
zt is a lower-dimensional nonlinear projection of the environmental parameters. This takes
care of some identifiability issues where some parameters could covary with identical effects
on observables. Secondly, we don’t need this vector of extrinsics to be correct in some

1RMA takes less than 1s, whereas [136] need to collect 4− 8mins (50 episodes of 5− 10s) of data.
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“ground truth” sense. What matters is that it leads to the “right” action, and the end-to-end
training optimizes for that.

• The range of situations seen in training should encompass what the robot will encounter in
the real world. We use a fractal terrain generator which accompanied by the randomization of
parameters such as mass, friction etc. creates a wide variety of physical contexts in which the
walking robot has to react.

The most comparable work in terms of robust performance of RL policies for legged locomotion
in the real-world is that of [102] which, unlike our work, relies on hand-coded domain knowledge
of predefined trajectory generator [75] and motor models [72]. We evaluated RMA across a wide
variety of terrains in the real world (Figure 2.1). The proposed adaptive controller is able to walk on
slippery surfaces, uneven ground, deformable surfaces (such as foam, mattress, etc) and on rough
terrain in natural environments such as grass, long vegetation, concrete, pebbles, rocky surfaces,
sand, etc.

2.1 Rapid Motor Adaptation
We now describe each component of the RMA algorithm introduced earlier and summarized in
Figure 2.2. Following sections discuss the base policy, the adaptation module and the deployment
on the real-robot in order. We will use the same notation as introduced earlier.

Base Policy
We learn a base policy π which takes as input the current state xt ∈ R30, previous action at−1 ∈ R12

and the extrinsics vector zt ∈ R8 to predict the next action at. The predicted action at is the
desired joint position for the 12 robot joints which is converted to torque using a PD controller. The
extrinsics vector zt is a low dimensional encoding of the environment vector et ∈ R17 generated by
µ.

zt = µ(et) (2.1)
at = π(xt, at−1, zt) (2.2)

We implement µ and π as MLPs (details in Section 2.2). We jointly train the base policy π and
the environmental factor encoder µ end to end using model-free reinforcement learning. At time
step t, π takes the current state xt, previous action at−1 and the extrinsics zt = µ(et), to predict an
action at. RL maximizes the following expected return of the policy π:

J(π) = Eτ∼p(τ |π)

[
T−1∑
t=0

γtrt

]
,

where τ = {(x0, a0, r0), (x1, a1, r1)...} is the trajectory of the agent when executing policy π, and
p(τ |π) represents the likelihood of the trajectory under π.
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Stable Gait through Natural Constraints: Instead of adding artificial simulation noise, we train
our agent under the following natural constraints. First, the reward function is motivated from
bioenergetic constraints of minimizing work and ground impact [139]. We found these reward
functions to be critical for learning realistic gaits in simulation. Second, we train our policies on
uneven terrain (Figure 2.2) as a substitute for additional rewards used by [72] for foot clearance and
robustness to external push. A walking policy trained under these natural constraints transfers to
simple setups in the real world (like concrete or wooden floor) without any modifications. This is in
contrast to other sim-to-real work which either calibrates the simulation with the real world [169,
72], or fine-tunes the policy in the real world [136]. The adaptation module then enables it to scale
from simple setups to very challenging terrains as shown in Figure 2.1.

RL Rewards: The reward function encourages the agent to move forward with a maximum speed
of 0.35 m/s, and penalizes it for jerky and inefficient motions. Let’s denote the linear velocity as v,
the orientation as θ and the angular velocity as ω, all in the robot’s base frame. We additionally
define the joint angles as q, joint velocities as q̇, joint torques as τ , ground reaction forces at the
feet as f , velocity of the feet as vf and the binary foot contact indicator vector as g. The reward at
time t is defined as the sum of the following quantities:

1. Forward: min(vtx, 0.35)

2. Lateral Movement and Rotation: −∥vty∥2 − ∥ωtyaw∥2

3. Work: −|τ T · (qt − qt−1)|

4. Ground Impact: −∥f t − f t−1∥2

5. Smoothness: −∥τ t − τ t−1∥2

6. Action Magnitude: −∥at∥2

7. Joint Speed: −∥q̇t∥2

8. Orientation: −∥θtroll, pitch∥2

9. Z Acceleration: −∥vtz∥2

10. Foot Slip: −∥diag(gt) · vtf∥2

The scaling factor of each reward term is 20, 21, 0.002, 0.02, 0.001, 0.07, 0.002, 1.5, 2.0, 0.8
respectively.

Training Curriculum: If we naively train our agent with the above reward function, it learns to
stay in place because of the penalty terms on the movement of the joints. To prevent this collapse,
we follow the strategy described in [72]. We start the training with very small penalty coefficients,
and then gradually increase the strength of these coefficients using a fixed curriculum. We also
linearly increase the difficulty of other perturbations such as mass, friction and motor strength as
the training progresses. We don’t have any curriculum on the terrains and start the training with
randomly sampling the terrain profiles from the same fixed difficulty.
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Adaptation Module
The knowledge of privileged environment configuration et and its encoded extrinsics vector zt are
not accessible during deployment in the real-world. Hence, we propose to estimate the extrinsics
online using the adaptation module ϕ. Instead of et, the adaptation module uses the recent history of
robot’s states xt−k:t−1 and actions at−k:t−1 to generate ẑt which is an estimate of the true extrinsics
vector zt. In our experiments, we use k = 50 which corresponds to 0.5s.

ẑt = ϕ
(
xt−k:t−1, at−k:t−1

)
Note that instead of predicting et, which is the case in typical system identification, we directly
estimate the extrinsics zt that only encodes how the behavior should change to correct for the given
environment vector et.

To train the adaptation module, we just need the state-action history and the target value of zt
(given by the environmental factor encoder µ). Both of these are available in simulation, and hence,
ϕ can be trained via supervised learning to minimize: MSE(ẑt, zt) = ∥ẑt − zt∥2, where zt = µ(et).
We model ϕ as a 1-D CNN to capture temporal correlations (Section 2.2).

One way to collect the state-action history is to unroll the trained base policy π with the ground
truth zt. However, such a dataset will contain examples of only good trajectories where the robot
walks seamlessly. Adaptation module ϕ trained on this data would not be robust to deviations from
the expert trajectory, which will happen often during deployment.

We resolve this problem by training ϕ with on-policy data (similar to [151]). We unroll the base
policy π with the ẑt predicted by the randomly initialized policy ϕ. We then use this state action
history, paired with the ground truth zt to train ϕ. We iteratively repeat this until convergence. This
training procedure ensures that RMA sees enough exploration trajectories during training due to a)
randomly initialized ϕ, and b) imperfect prediction of ẑt. This adds robustness to the performance
of RMA during deployment.

Asynchronous Deployment
We train RMA completely in simulation and then deploy it in the real world without any modification
or fine-tuning. The two subsystems of RMA run asynchronously and at substantially different
frequencies, and hence, can easily run using little on-board compute. The adaptation policy is
slow because it operates on the state-action history of 50 time steps, roughly updating the extrinsic
vector ẑt once every 0.1s (10 Hz). The base policy runs at 100 Hz and uses the most recent ẑt
generated by the adaptation module, along with the current state and the previous action, to predict
at. This asynchronous execution doesn’t hurt performance in practice because ẑt changes relatively
infrequently in the real world.

Alternately, we could have trained a base policy which directly takes the state and action history
as input without decoupling them into the two modules. We found that this (a) leads to unnatural
gaits and poor performance in simulation, (b) can only run at 10Hz on the on-board compute, and (c)
lacks the asynchronous design which is critical for a seamless deployment of RMA on the real robot
without the need for any synchronization or calibration of the two subsystems. This asynchronous



CHAPTER 2. RMA: RAPID MOTOR ADAPTATION FOR LEGGED ROBOTS 10

Success TTF Distance

RMA 100 1 1

RMA w/o 
Adapt 20 1 0.6

A1 100 1 1

RMA 100 1 1

RMA w/o 
Adapt 0 1 0.25

A1 100 1 1

Success

RMA 100

RMA w/o 
Adapt 0

A1 60

RMA 100

RMA w/o 
Adapt 40

A1 80

RMA 60

RMA w/o 
Adapt 0

A1 20

RMA 80 0.9 0.9

RMA w/o 
Adapt 0 0.1 0.1

A1 20 0.36 0.36

Uneven Foam

Upward Incline

Mattress

Step Down-15

Step Up-6

Step Up-8

Su
cc

es
s 

(%
)

0

50

100

Payload (Kg)
0 5 8 12

TT
F

0

0.5

1

Payload (Kg)
0 5 8 12

Di
st

an
ce

0

0.5

1

Payload (Kg)
0 5 8 12

RMA RMA w/o Adapt A1

Payload 
Analysis

Figure 2.3: We evaluate RMA in several out-of-distribution setups in the real world. We compare
RMA to A1’s controller and RMA without the adaptation module. We find that RMA steps down
a height of 15cm with 80% success rate and walks over unseen deformable surfaces, such as a
memory foam mattress and a slightly uneven foam with 100% success rate. It is also able to
successfully climb inclines and steps. A1’s controller fails to walk over uneven foam. At the bottom,
we also analyze the payload carrying limits of the three methods. We see that the A1 controller’s
performance starts degrading at 8Kg payload capacity. RMA w/o adaptation fails to move for
payloads more than 8Kg, but rarely falls. For reference, A1 robot weights 12Kg. Overall, the
proposed method consistently dominates the baseline methods. The numbers reported are averaged
over 5 trials.

design is fundamentally enabled by the decoupling of the relatively infrequently changing extrinsics
vector with the quickly changing robot state.
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Figure 2.4: We analyze RMA as the robot walks over an oily plastic sheet with additional plastic
covering on its feet. We plot the torque of the knee and the gait pattern which indicates the contact of
the four feet (F/R denotes Front/Rear and R/L denotes Right/Left). The bottom plot shows median
filtered 1st and 5th components of the extrinsics vector ẑ predicted by the adaptation module. When
the robot enters the slippery patch we see a change in the two components of the extrinsics vector ẑ,
indicating that the slip event has been detected by the adaptation module. Note that post adaptation,
the recovered gait time period is similar to the original, the torque magnitudes have increased and ẑ
continues to capture the fact that the surface is still slippery. RMA was successful in 90% of the
runs over oily patch.
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Parameters Training Range Testing Range

Friction [0.05, 4.5] [0.04, 6.0]
Kp [50, 60] [45, 65]
Kd [0.4, 0.8] [0.3, 0.9]
Payload (Kg) [0, 6] [0, 7]
Center of Mass (cm) [-0.15, 0.15] [-0.18, 0.18]
Motor Strength [0.90, 1.10] [0.88, 1.22]
Re-sample Probability 0.004 0.01

Table 2.1: Ranges of the environmental parameters.

2.2 Experimental Setup

Environment Details
Hardware Details: We use A1 robot from Unitree for all our real-world experiments. A1 is a
relatively low cost medium sized robotic quadruped dog. It has 18 degrees of freedom out of which
12 are actuated (3 motors on each leg) and weighs about 12 kg. To measure the current state of the
robot, we use the joint position and velocity from the motor encoders, roll and pitch from the IMU
sensor and the binarized foot contact indicators from the foot sensors. The deployed policy uses
position control for the joints of the robots. The predicted desired joint positions are converted to
torque using a PD controller with fixed gains (Kp = 55 and Kd = 0.8).

Simulation Setup: We use the RaiSim simulator [71] for rigid-body and contact dynamics simula-
tion. We import the A1 URDF file from Unitree [177] and use the inbuilt fractal terrain generator to
generate uneven terrain (fractal octaves = 2, fractal lacunarity = 2.0, fractal gain = 0.25, z-scale =
0.27). Each RL episode lasts for a maximum of 1000 steps, with early termination if the height of
the robots drops below 0.28m, magnitude of the body roll exceeds 0.4 radians or the pitch exceeds
0.2 radians. The control frequency of the policy is 100 Hz, and the simulation time step is 0.025s.

State-Action Space: The state is 30 dimensional containing the joint positions (12 values), joint
velocities (12 values), roll and pitch of the torso and binary foot contact indicators (4 values). For
actions, we use position control for the 12 robot joints. RMA predicts the desired joint angles
a = q̂ ∈ R12, which is converted to torques τ using a PD controller: τ = Kp (q̂ − q)+Kd

(
ˆ̇q − q̇

)
.

Kp and Kd are manually-specified gains, and the target joint velocities ˆ̇q are set to 0.

Environmental Variations: All environmental variations with their ranges are listed in Table 2.1.
Of these, et includes mass and its position on the robot (3 dims), motor strength (12 dims), friction
(scalar) and local terrain height (scalar), making it a 17-dim vector. Note that although the difficulty
of the terrain profile is fixed, the local terrain height changes as the agent moves. We discretize the
terrain height under each foot to the first decimal place and then take the maximum among the four
feet to get a scalar. This ensures that the controller does not critically depend on a fast and accurate
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sensing of the local terrain, and allows the base policy to use it asynchronously at a much lower
update frequency during deployment.

Training Details
Base Policy and Environment Factor Encoder Architecture: The base policy is a 3-layer multi-
layer perceptron (MLP) which takes in the current state xt ∈ R30, previous action at−1 ∈ R12 and
the extrinsics vector zt ∈ R8, and outputs 12-dim target joint angles. The dimension of hidden
layers is 128. The environment factor encoder is a 3-layer MLP (256, 128 hidden layer sizes) and
encodes et ∈ R17 into zt ∈ R8.

Adaptation Module Architecture: The adaptation module first embeds the recent states and
actions into 32-dim representations using a 2-layer MLP. Then, a 3-layer 1-D CNN convolves
the representations across the time dimension to capture temporal correlations in the input. The
input channel number, output channel number, kernel size, and stride of each layer are [32, 32, 8, 4],
[32, 32, 5, 1], [32, 32, 5, 1]. The flattened CNN output is linearly projected to estimate ẑt.

Learning Base Policy and Environmental Factor Encoder Network: We jointly train the base
policy and the environment encoder network using PPO [158] for 15, 000 iterations each of which
uses batch size of 80, 000 split into 4 mini-batches. The learning rate is set to 5e−4. The coefficient
of the reward terms are provided in Section 2.1. Training takes roughly 24 hours on an ordinary
desktop machine, with 1 GPU for policy training. In this duration, it simulates 1.2 billion steps.

Learning Adaptation Module: We train the adaptation module using supervised learning with
on-policy data. We use Adam optimizer [87] to minimize MSE loss. We run the optimization
process for 1000 iterations with a learning rate of 5e−4 each of which uses a batch size of 80, 000
split up into 4 mini-batches. It takes 3 hours to train this on an ordinary desktop machine, with 1
GPU for training the policy. In this duration, it simulates 80 million steps.

2.3 Results and Analysis
We compare the performance of RMA with several baselines in simulation (Table 2.2). We
additionally compare to the manufacturer’s controller, which ships with A1, in the real world indoor
setups (Figure 2.3) and run RMA in the wild in a very diverse set of terrains (Figure 2.1). Videos
at https://ashish-kmr.github.io/rma-legged-robots/

Baselines: We compare to the following baselines:

1. A1 Controller: The default robot manufacturer’s controller which uses a force-based control
scheme with MPC.

2. Robustness through Domain Randomization (Robust): The base policy is trained without zt
to be robust to the variations in the training range [171, 137].

https://ashish-kmr.github.io/rma-legged-robots/
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Success TTF Reward Distance Samples Torque Smooth- Ground
(%) (m) ness Impact

Robust [171] 62.4 0.80 4.62 1.13 0 527.59 122.50 4.20
SysID [196] 56.5 0.74 4.82 1.17 0 565.85 149.75 4.03
AWR [136] 41.7 0.65 4.17 0.95 40k 599.71 162.60 4.02
RMA w/o Adapt 52.1 0.75 4.72 1.15 0 524.18 106.25 4.55
RMA 73.5 0.85 5.22 1.34 0 500.00 92.85 4.27

Expert 76.2 0.86 5.23 1.35 0 485.07 85.56 3.90

Table 2.2: Simulation Testing Results: We compare the performance of our method to baseline
methods in simulation. Our train and test settings are listed in Table 2.1. We resample the
environment parameters within an episode with a re-sampling probability of 0.01 per step during
testing. Baselines and metrics are defined in Section 2.3. The numbers reported are averaged
over 3 randomly initialized policies and 1000 episodes per random initialization. RMA beats the
performance of all the baselines, with only a slight degradation in performance compared to the
Expert.

3. Expert Adaptation Policy (Expert): In simulation, we can use the true value of the extrinsics
vector zt. This is an upper bound to the performance of RMA.

4. RMA w/o Adaptation: We can also evaluate the performance of the base policy without the
adaptation module to ablate the importance of the adaptation module.

5. System Identification [196]: Instead of predicting ẑt, we directly predict the system parame-
ters êt.

6. Advantage Weighted Regression for Domain Adaptation (AWR) [136]: Optimize ẑt offline
using AWR by using real-world rollouts of the policy in the testing environment.

Learning baselines were trained with the same architecture, reward function and other hyper-
parameters.

Metrics: We compare the performance of RMA against baselines using the following metrics: (1)
time-to-fall divided by maximum episode length to get a normalized value between 0− 1 (TTF); (2)
average forward reward, (3) success rate, (4) distance covered, (5) exploration samples needed for
adaptation, (6) torque applied, (7) smoothness which is derivative of torque and (7) ground impact
(details in the supplementary).

Indoor Experiments
In the real world, we compare RMA with A1’s controller and with RMA without the adaptation
module (Figure 2.3). We limit comparison to these two baselines to avoid damage to the robot
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hardware. We run 5 trials for each method and report the success rate, time to fall (TTF), and
distance covered. Note that if a method drastically failed at a task, we only run two trials and then
report a failure. This is done to minimize damage to the robot hardware. We have the following
indoor setups:

• n-kg Payload: Walk 300cm with n-kg payload on top.

• StepUp-n: Step up on an n-cm high step.

• Uneven Foam: Walk 180cm on a center elevated foam.

• Mattress: Walk 60cm on a memory foam mattress.

• StepDown-n: Step down an n-cm high step.

• Incline: Walk up on a 6-degrees incline.

• Oily Surface: Cross through an an oily patch.

Each trial of StepUp-n and StepDown-n is terminated after a success or a failure. Thus, we
only report the success rate for these tasks because other metrics are meaningless.

We observe that RMA achieves a high success rate in all these setups, beating the performance
of A1’s controller by a large margin in some cases. We find that turning off the adaptation module
substantially degrades performance, implying that the adaptation module is critical to solve these
tasks. A1’s controller struggled with uneven foam and with a large step down and step up. The
controller was destabilized by unstable footholds in most of its failures. In the payload analysis,
the A1’s controller was able to handle higher than the advertised payload (5Kg), but starts sagging,
and eventually falls as the payload increases. In contrast, RMA maintains the height and is able to
carry up to 12Kg (100% of body weight) with a high success rate. RMA w/o adaptation mostly
doesn’t fall, but also doesn’t move forward. We also evaluated RMA in a more challenging task
of crossing an oily path with plastic wrapped feet. The robot successfully walks across the oily
patch. Interestingly, RMA w/o adaptation was able to walk successfully on wooden floor without
any fine-tuning or simulation calibration. This is in contrast to existing methods which calibrate the
simulation [169, 72] or fine-tune their policy at test time [136] even for flat and static environments.

Outdoor Experiments
We demonstrate the performance of RMA on several challenging outdoor environments as shown in
Figure 2.1. The robot is successfully able to walk on sand, mud and dirt without a single failure
in all our trials. These terrains make locomotion difficult due to sinking and sticking feet, which
requires the robot to change the footholds dynamically to ensure stability. RMA had a 100% success
rate for walking on tall vegetation or crossing a bush. Such terrains obstruct the feet of the robot,
making it periodically unstable as it walks. To successfully walk in these setups, the robot has to
stabilize against foot entanglements, and power through some of these obstructions aggressively.
We also evaluate our robot on walking down some stairs found on a hiking trail. The robot was
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successful in 70% of the trials, which is still remarkable given that the robot never sees a staircase
during training. And lastly, we test the robot over construction debris, where it was successful 100%
of the times when walking downhill over a mud pile and 80% of the times when walking across a
cement pile and a pile of pebbles. The cement pile and pebbles were itself on a ground which was
steeply sloping sideways, making it very challenging for the robot to go across the pile.

Simulation Results
We compare the performance of our method to baseline methods in simulation (Table 2.2). We
sample our training and testing parameters according to Table 2.1, and resample them within an
episode with a resampling probability of 0.004 and 0.01 per step respectively for training and testing.
The numbers reported are averaged over 3 randomly initialized policies and 1000 episodes per
random initialization. RMA performs the best with only a slight degradation compared to Expert’s
performance. The constantly changing environment leads to poor performance of AWR which is
very slow to adapt. Since the Robust baseline is agnostic to extrinsics, it learns a very conservative
policy which loses on performance. Note that the low performance of SysID implies that explicitly
estimating et is difficult and unnecessary to achieve superior performance. We also compare to
RMA w/o adaptation, which shows a significant performance drop without the adaption module.

Adaptation Analysis
We analyze the gait patterns, torque profiles and the estimated extrinsics vector ẑt for adaptation
over slippery surface (Figure 2.4). We pour oil on the plastic surface on the ground and additionally
cover the feet of the robot in plastic. The robot then tries to cross the slippery patch and is able to
successfully adapt to it. We found that RMA was successful in 90% of the runs over oily patch.
For one such trial, we plot the torque profile of the knee, the gait pattern, and median filtered 1st

and 5th components of the extrinsics vector ẑt in Figure 2.4. When the robot first starts slipping
somewhere around 2s, the slip disturbs the regular motion of the robot, after which it enters the
adaptation phase. This is noticeable in the plotted components of the extrinsics vector which change
in response to the slip. This detected slip enables the robot to recover and continue walking over
the slippery patch. Note that although post adaptation, the torque stabilizes to a slightly higher
magnitude and the gait time period is roughly recovered, the extrinsics vector does not recover and
continues to capture the fact that the surface is slippery. See supplementary more such analysis.

2.4 Related Work
Conventionally, legged locomotion has been approached by using control-based methods [119,
146, 55, 192, 166, 80, 85, 10, 73, 13]. MIT Cheetah 3 [17] can achieve high speed and jump
over obstacles by using regularized model predictive control (MPC) and simplified dynamics [38].
The ANYmal robot [69] locomotes by optimizing a parameterized controller and planning based
on an inverted pendulum model [54]. However, these methods require accurate modeling of the
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real-world dynamics, in-depth prior knowledge of the robots, and manual tuning of gaits and
behaviors. Optimizing controllers, combined with MPC, can mitigate some of the problems [89, 20,
27], however they still require significant task-specific feature engineering [37, 54, 11].

Learning for Legged Locomotion Some of the earliest attempts to incorporate learning into
locomotion can be dated back to DARPA Learning Locomotion Program [203, 204, 149, 202, 81].
More recently, deep reinforcement learning (RL) offered an alternative to alleviate the reliance on
human expertise and has shown good results in simulation [158, 106, 120, 51]. However, such
policies are difficult to transfer to the real world [92, 127, 18]. One approach is to directly train in
the real world [62, 190]. However, such policies are limited to very simple setups, and scaling to
complex setups requires unsafe exploration and a large number of samples.

Sim-to-Real Reinforcement Learning To achieve complex walking behaviours in the real world
using RL, several methods try to bridge the Sim-to-Real gap. Domain randomization is a class of
methods in which the policy is trained with a wide range of environment parameters and sensor
noises to learn behaviours which are robust in this range [169, 171, 137, 183, 125]. However,
domain randomization trades optimality for robustness leading to an over conservative policy [108].

Alternately, the Sim-to-Real gap can also be reduced by making the simulation more accurate
[72, 169, 65]. [169] improve the motor models by fitting a piece-wise linear function to data from
the actual motors [169]. [72], instead, use a neural network to parameterize the actuator model [72,
102]. However, these approaches require initial data collection from the robot to fit the motor model,
and would require this to be done for every new setup.

System Identification and Adaptation Instead of being agnostic to physics parameters, the
policy can condition on these parameters via online system identification. During deployment
in the real world, physics parameters can either be inferred through a module that is trained in
simulation [196], or be directly optimized for high returns by using evolutionary algorithms [193].
Predicting the exact system parameters is often unnecessary and difficult, leading to poor perfor-
mance in practice. Instead, a low dimensional latent embedding can be used [136, 201]. At test
time, this latent can be optimized using real-world rollouts by using policy gradient methods [136],
Bayesian optimization [197], or random search [195]. Another approach is to use meta learning to
learn an initialization of policy network for fast online adaptation [47]. Although they have been
demonstrated on real robots [165, 28], they still require multiple real-world rollouts to adapt.

2.5 Summary
We presented the RMA algorithm for real-time adaptation of a legged robot walking in a variety of
terrains. Two notable aspects of the proposed design is that a) we do not use any predefined gaits
or reference motions to train, and b) the system is completely blind. In the next chapter, we will
delve deeper into the first aspect of letting gaits emerge from energy minimization instead of using
predefined gaits, and in the subsequent chapter, extend the RMA algorithm to enable visual walking.
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Chapter 3

Emergent walking gaits via Energy
Minimization

In our approach to legged walking introduced in the previous chapter, we did not rely on any
predefined gaits, or heuristic reference motions. This is in contrast to most common approaches to
understanding mammalian locomotion, which study it in terms of a set of discrete gaits. Seminal
works include [124]’s motion video of a galloping horse and [66]’s study of different gaits observed at
different speeds. This has inspired research on replicating these gaits in robots by pre-programming
them to achieve effective locomotion. This approach of pre-programming fixed gait patterns has
lead to immense progress in robotic locomotion [147, 113, 39, 38].

However, pre-programmed gaits limit the ability of legged systems to perform general loco-
motion in diverse terrains and at different speeds. Studies of motor control in both animals [] and
human infants [1] in the last few decades have shown that general locomotion in natural settings is
irregular and does not fit predefined fixed gaits. It is better defined in terms of bouts of steps than
periodic cycles [30, 93]. That being said, we do see consistent regular patterns in ideal conditions
when an animal is moving in a straight line over flat terrain at different speeds, e.g., walk, trot,
canter, gallop, etc. [66, 77, 2, 67] and these patterns are shared across species of diverse animals [8].
How do we reconcile these seemingly contradictory arguments about unstructured locomotion
patterns on complex terrains with that of regular patterns seen in flat terrains under the same rubric?

One way to make sense of these differences is to see them from the lens of minimizing energy
consumption. Locomotion consumes a significant fraction of an animal’s metabolic energy budget
which suggests that there would be evolutionary selection pressure for locomotion strategies that
minimize energy consumption. Indeed, this has been a focus of several studies in biomechanics and
energetics. [67] used energy minimization to explain why animals switch from one gait to another
as their speed increases. Similar studies explain gaits across different animals including humans [15,
140]. However, most of the biomechanics studies are limited to the straight-line motion of animals
in ideal flat terrains. Furthermore, these studies take gaits as given and offer an explanation for them

This chapter is based on joint work with Zipeng Fu, Jitendra Malik and Deepak Pathak [50]
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Figure 3.1: We demonstrate via analysis-by-synthesis approach that learning to move forward by
minimizing energy consumption plays a key role in the emergence of natural locomotion patterns in
quadruped robots. We do not pre-program any primitives for leg motions and the policy directly
output desired joint angles. Top: Bio-energetics driven learning on flat terrain leads to different
gaits namely walk, trot and bounce (similar to gallop) as the speed increases. Our high-speed
bounce gait displays an emergent flight phase despite low energy usage. This corresponds to the
nearest animals (sheep/horse) with similar Froude numbers. Bottom: The same pipeline on diverse
uneven terrains leads to unstructured gait as is true in general animal locomotion. website.

from an energy perspective without any statement about their synthesis.
In this work, we take an analysis-by-synthesis approach to show how energy minimization leads

to the emergence of structured locomotion gait patterns in flat terrains as well as unstructured gaits
in complex terrains. We use energetics to design an end-to-end learning framework and display the
resulting gait patterns in a real quadruped robot. We employ model-free reinforcement learning
as the optimizer to learn controllers to make the quadruped move forward while simultaneously
minimizing the bio-energetics constraints of minimizing work [139]. We train our policies on
simple fractal terrains with varying frequency of terrain heights instead of perfectly flat terrain. This
mimics the real world more closely and achieves efficient and robust gaits without the need for
artificial rewards for foot clearance or periodic external push during training. At low frequency, it
resembles the simple flat terrain settings and at high frequency, it simulates complex terrains. In

https://energy-locomotion.github.io
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addition, we present a learning pipeline that enables smooth gait transition given changing target
speeds by combining RL and knowledge distillation from trained expert gait policies. We then
transfer the policies onto the real robot by performing online adaptation [96].

We empirically demonstrate that minimizing energy consumption plays a key role in the
emergence of natural gait patterns in a quadruped legged robot. Our quadruped robot is closest to
sheep and horse in terms of physicality as determined by the Froude number [175] which is a scalar
metric characterizing gaits of quadrupeds (discussed more in Section 3.3). Therefore, energetics-
based training leads to similar three gaits in our robot as found in horses and sheep, namely, walk,
trot and gallop as the speed is gradually increased in flat terrains Figure 3.1. Interestingly, we
show that the gait selection is inherently linked with the speed of the robot. For instance, trotting
is only energy efficient around the medium speed of 0.9m/s. If we increase or decrease the speed
of the robot, it takes more energy for trot than to gallop (similar to bouncing gait) or walk as
shown in Figure 3.2. Finally, when the same pipeline is run in uneven complex terrains, it leads to
unstructured gaits as consistent with animal locomotion in usual diverse conditions [93, 30].

Prior works have used energy penalty to obtain energy-efficient gaits [169, 165] but have not
shown the correspondence to different gaits at different speeds. Furthermore, out of these works,
the ones which deploy these gaits on a real robot either use a predefined hand-coded gait library,
use reference motions [169], or only learn high-level contact sequences for a predefined swing
leg motion [191]. These approaches have some fundamental limitations in contrast to what we
propose. Firstly, the use of predefined foot motions never optimize for efficient swing leg motions,
and using reference trajectories gives gaits that look realistic, but are not necessarily energy-efficient
for the specific robot we have. Second, learning controllers end to end without the use of any priors
(reference motions or predefined motions) allows for the possibility of learning behaviors that don’t
follow any predefined gaits. We show the robustness of this complex terrain policy by successfully
deploying it in complex terrains in the real world.

3.1 Method
Claim: Energy Minimization leads to Emergence of Natural Gaits
We would like to validate that indeed certain gaits will emerge at certain speeds if we minimize the
energy consumption. To do so, on the right, we plot the energy consumption vs speed of the A1
robot in simulation for walk, trot and bounce (modification of gallop/canter) gaits. We use [38] to
achieve the different gaits by hard-coding the contact sequences for walk, trot and bounce. This plot
is qualitatively similar to the plot in [67], which shows the energy consumption of different horse
gaits across different speeds. We additionally plot the energy consumption of the three policies
we get at different speeds (0.375 m/s, 0.9 m/s, 1.5 m/s). This plot shows two things. First, it is
observed that certain gaits are only efficient at certain speeds and using them for other speeds is
suboptimal. For instance, walk is optimal at low speeds with transition to trot and bounce. Secondly,
we observe that our learning framework converges to the optimal gait at each of the speeds, and
beats the efficiency of MPC gaits from [38], which does not optimize the swing foot trajectory for
energy. Details of MPC method are in the supplementary.
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Figure 3.2: Energy consumed in moving 1m distance using our method and MPC shows why certain
gaits are stable at certain speeds. Videos on the website.

Learning Locomotion Policy
We learn the locomotion policy π which takes as input the current state xt ∈ R30, previous action
at−1 ∈ R12 to predict the next action at (Equation 3.1). The predicted action at is the desired joint
position for the 12 robot joints which is converted to torque using a PD controller.

at = π(xt, at−1) (3.1)

We implement π as MLPs (details in Section B.1) and train the base policy π end to end using
model-free reinforcement learning. At time step t, π takes the current state xt, previous action at−1

to predict an action at. RL maximizes the following expected return of the policy π:

J(π) = Eτ∼p(τ |π)

[
T−1∑
t=0

γtrt

]
, (3.2)

where τ = {(x0, a0, r0), (x1, a1, r1)...} is the trajectory of the agent when executing policy π, and
p(τ |π) represents the likelihood of the trajectory under π.

https://energy-locomotion.github.io
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Figure 3.3: Complex real-world behaviors at the low speed in 2 settings. Top: key frames on
rocky terrain. Bottom: Foot contact plots and key frames on unstable moving planks. Videos on
the website.

Stable Gait through Natural Constraints
Instead of adding artificial simulation noise, we train our agent under the following natural con-
straints. First, the reward function is motivated from bio-energetic constraints of minimizing
work [139]. We found these reward functions to be critical for learning realistic gaits in simulation.
Second, we train our policies on uneven terrain (Figure 3.1) as a substitute for additional rewards
used by [72] for foot clearance and robustness to external push. We see that these constraints are
enough to achieve all the gaits and results we demonstrate in this chapter.

Energy Consumption-Based Reward
Let’s denote the linear velocity as v and the angular velocity as ω, both in the robot’s base frame.
We additionally define joint torques as τ and joint velocities as q̇. We define our reward as sum of
the following three terms:

r = rforward + α1 ∗ renergy + ralive (3.3)

where, rforward = −α2 ∗ |vx − vtargetx | − |vy|2 − |ωyaw|2 (3.4)

renergy = −τ T q̇, (3.5)

rforward rewards the agent for walking straight at the specified speed, renergy penalizes energy
consumption and ralive is the survival bonus.

We use simple rules to set the hyper-parameters. At a given target linear speed vtargetx , the
survival bonus c is set to 20 ∗ vtargetx . We set α1 = 0.04, and α2 = 20 across all settings.

Notice that the actual energy consumption on the robot depending on the low-level hardware
design is not directly measurable. We estimate the unit energy consumption per time step by

https://energy-locomotion.github.io
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summing the instantaneous power of the 12 motors by multiplying the torque and the joint velocity
at each motor. Also notice that this reward is much more concise than those used in prior works.
We discuss the role of minimizing energy consumption in Section 3.3.

Sim to Real Transfer
For simulation to real transfer, we use RMA [96] which consists of the an adaptation module on top
of the base policy. During deployment, the adaptation module uses the state history to estimate the
vector of extrinsics (which contains environment information) online. This adaptation module is
trained in simulation using supervised learning after the base policy is learned using RL with the
true extrinsics parameters. The environment perturbations we train on is listed in Table 3.1.

3.2 Experimental Setup and Training Details
Hardware and Simulation: We use Unitree’s A1 robot as our hardware platform [177] and use
its A1 URDF [177] to simulate the A1 robot in RaiSim simulator [71]. The full details of terrain
and environment setup are provided in supplementary due to space constraints.

State-Action Space: The state is 30 dimensional containing the joint positions (12 values), joint
velocities (12 values), roll and pitch of the torso and binary foot contact indicators (4 values). The
action space is 12 dimensional corresponding to the target joint position for the 12 robot joints. The
predicted target joint angles a = q̂ ∈ R12 is converted to torques τ using a PD controller with target
joint velocities set to 0.

Parameters Normal Aggressive
Perturbation Perturbation

Friction Coeff. [0.6, 1.2] [0.05, 4.5]
Kp [50, 60] [50, 60]
Kd [0.4, 0.8] [0.4, 0.8]
Payload (kg) [0.0, 0.5] [0.0, 6.0]
Center of Mass (m) [-0.15, 0.15] [-0.15, 0.15]
Motor Strength [0.95, 1.05] [0.90, 1.10]
Re-sample Prob. 0.02 0.02

Table 3.1: Ranges of the environment parameters in simula-
tion. Normal perturbation is used for regular gait emergence.
Aggressive perturbation is used for unstructured gait emer-
gence.

Environmental Variations: All en-
vironmental variations with their
ranges are listed in Table 3.1. Poli-
cies with simple terrain and mild en-
vironment variations achieve walking,
trotting and bouncing gaits. To deploy
our robot in the complex terrain, we
use aggressive environment random-
ization with sharper fractal terrains
which gives us the unstructured walk-
ing terrain.

Policy Learning: The policy is a
multi-layer perceptron with 3 layers
which takes in the current state xt ∈
R30, previous action at−1 ∈ R12 and
outputs 12-dim target joint angles.
The hidden layers have 128 units. We
train the policy and the environment encoder network using PPO [158]. The training runs for
15, 000 iterations with a batch size of 100, 000 split into 4 mini-batches and learning rate = 5e−4.
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(a) Walking gait for a 10-second period (b) Walking gait for a 2-second period

(c) Trotting gait for a 10-second period (d) Trotting gait for a 2-second period

(e) Bouncing gait for a 10-second period (f) Bouncing gait for a 2-second period

Figure 3.4: Foot contact plots for walking, trotting and bouncing gait of A1 robot in the real world.
Bold color means the corresponding foot is in contact with the ground and the light color means the
foot is in the air. (RF: Right-Front foot, LF: Left-Front foot, RR: Right-Rear foot, LR: Left-Rear
foot)

We train for a total of 1.5 billion samples which takes roughly 24 hours on a desktop machine with
1 GPU.

3.3 Results and Analysis

Emergence of Locomotion Patterns in Complex Terrain
We analyze the performance of the walking policy on complex terrain with aggressive perturbations
in the real world (videos on website). We show two uneven terrain deployments of our method in
Figure 3.3. During the deployment of the robot in the rocky terrain, we see that the robot roughly
follows the walking gait which repeatedly gets obstructed by the rocks and has to step over rocks of
different heights, prematurely terminating the swing motion of the leg. Consequently, the gait we
observe is an unstructured walking gait. We further analyse this in another deployment on unstable
planks which move as the robot tries to cross it (see video). The foot contact plot for this setup is
not periodic and changes depending on the complexity of the terrain the policy needs to react to. In
the video, this can been seen when the front right foot of the robot steps on an unstable plank which
moves as a result, but the robot maintains stability and successfully crosses it.

https://energy-locomotion.github.io
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Method Walk (0.375 m/s) Trot (0.9 m/s) Bounce (1.5 m/s)
Speed (m/s) Energy Speed (m/s) Energy Speed (m/s) Energy

Ours 0.353 30.7 0.970 41.2 1.439 90.7
MPC [38] 0.360 87.0 0.953 77.2 1.482 93.9

Table 3.2: We show the actual speeds and energy consumed to move one meter of the our method
and convex MPC, which does not directly optimize for energy efficiency, for walking gait at target
speed 0.375 m/s, trotting gait at target speed 0.9 m/s, and bouncing gait at target speed 1.5 m/s in
simulation. Our method shows the advantages in energy consumption in all gaits.

Emergence of Walking, Trotting and Bouncing
Simulation Gaits: We train 3 separate policies for 3 target speeds - 0.375 m/s (low), 0.9 m/s
(median) and 1.5 m/s (high) in simulation. We use the same hyper-parameters across all target
speeds. We observe that the walking gait emerges at target speed 0.375 m/s, trotting emerges at 0.9
m/s and hopping emerges at 1.5 m/s in simulation. Note that we use RMA [96] (Section 3.1) to
transfer our policies to the real world without any fine-tuning. We observe the same foot contact
sequence in the real world as in simulation. In Table 3.2, we compare the performance of our
policies with MPC [38] and observe that our walking gait can achieve accurate speed tracking while
being 50% more energy efficient than the MPC baseline.

Real-World Behaviors: At the low speed (0.375 m/s), the robot demonstrates a quarter-off
walking gait with the following foot contact sequence: Right-Front (RF), Left-Rear (LR), Left-Front
(LF) and Right-Rear (RR). At the median speed (0.9 m/s), two beat trot gait emerges where diagonal
legs (RF & LR or LF & RR) are synchronized and hit the ground at the same time. At the high
speed (1.5 m/s), the policy converges to bouncing with approximately half the gait cycle as flight
phase. Key frames of the 3 gaits are shown in Supplementary and the foot contact plots in Figure
3.4. We use the foot contact sensor reading from the A1 robot to generate these plots.

We also measured the actual speed of the robot in the real world by taking the average of 3 trials
per target speed. In each trial, we log the total distance divided by total time taken to traverse. The
average real-world speeds are 0.396 m/s at target speed 0.375 m/s, 0.914 m/s at target speed 0.9
m/s, and 1.714 m/s at target speed 1.5 m/s. The average real-world speeds closely match the target
speeds in all settings. The standard deviation of speeds across 3 trials is negligible.

We test the robustness of the walking policies by adding a 1 Kg payload on the robot by strapping
two bottles with 500 ml water. In Figure 3.5, we show 4 key frames of trotting gait. Note that the
1 kg payload is outside the range of training perturbations (Table 3.1), but our policies with the
Sim-to-Real Adaptation in Section 3.1 learn to compensate the increase in weight by implicitly
predicting changes in dynamics via latent extrinsics. We didn’t test bouncing with payload, because
the extra 1 kg prevents the human operator from swiftly preempting the robot at high speed by
lifting.
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walk

trot

Figure 3.5: Trotting with 1 kg payload (two bottles of 500 ml water are strapped onto the robot). The
1 kg payload is out of the normal perturbation of environment parameters used in simulation training
shown in Table 3.1. We show qualitative and gait patterns for other two gaits in the appendix. We
find that the gait patters are robust and remain the same even in the presence of disturbances.

Gaits A1 Sheep [77] Horses [67] Dogs [77](Froude #)

Walk 0.059 0.05 0.07 0.10
Trot 0.316 0.30 0.61 0.50
Bounce 1.110 1.10 1.70 1.73

Table 3.3: We compare the Froude numbers of our emergent
gaits with other quadruped animals at their gait transition
boundaries. Our policies are closest to sheep in all gaits and
to horse in walking gait. Bounce includes canter and gallop.

Froude Number Analysis: In Biome-
chanics, Froude number F is a
scalar metric characterizing gaits of
quadrupeds and bipeds [175]. Con-
cretely, F = v2/gh, where v is the
linear speed, g is the gravitational ac-
celeration, and h is the height of the
hip joint from the ground. Existing
research shows that animals with a
similar morphology but with differ-
ent sizes tend to use the same gait
when walking with equal Froude num-
bers [7, 77]. We calculate the Froude numbers of our robot in the real world for the low, median and
high speeds, and compare them with the Froude numbers of quadrupeds in nature – dogs, horses
and sheep [67, 77]. We compare the Froude number of animals at the gait transition boundaries and
observe that our robot is closest to the sheep in Table 3.3.

Gait Transition via a Velocity-Conditioned Policy
We have shown walking, trotting and bouncing emerged at three different target speeds. To
demonstrate foot patterns at a continuous range of velocities, we propose a learning scheme
(Figure 3.6) for a velocity-conditioned policy that enables smooth gait transition when the command
velocity changes.

Naive Multi-Task Training Fails: We first tried the naive approach to train the velocity-conditioned
policy in a multi-task fashion by randomly sampling desired velocities and using the corresponding
velocity-conditioned reward (Section 3.1). However, this did not work and the resulting emerged
gaits collapse to only two modes: walking and trotting, but trotting at high speeds is not energy-
efficient (Figure 3.7). We believe the reason for failure is difficulty in optimization as the robot is
now tasked not only to learn to move forward but also do it by learning different gaits which causes
it to collapse.
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Figure 3.7: Energy consumption plot during training. Even though our reward function does not
include the hand-designed locomotion penalties that are commonly used in prior works (torque,
delta torque, foot slip, joint speed, and action), we show that all these penalties are minimized in
our training framework as a byproduct of minimizing energy consumption.

Learning via Distillation and RL: We sidestep this issue via stage-wise distillation approach. We
first train our fixed-velocity policies as described in this chapter which lead to walking, trotting and
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Figure 3.6: Learning scheme for smooth gait transition. Train-
able modules are in red. The blue path indicates forward and
backward passes for the L2 loss on action, whereas the green
path is for training by RL.

bouncing (galloping) gaits. We
then treat these policies as ex-
perts and collect demonstra-
tion data from them to self-
supervise and bootstrap the ini-
tial training phase of the velocity-
conditioned policy. These three
policies serve as experts at three
velocities at low (0.375 m/s), me-
dian (0.9 m/s) and high (1.5 m/s),
represented as three-dimensional
one-hot vectors, which are fed
into the velocity-conditioned pol-
icy as input. Expert supervisions
guide the velocity-conditioned
policy to follow the energy-
efficient gaits at the three expert
velocities. To learn motor skills and smooth gait transition at intermediate velocities in the continu-
ous range of 0.375 m/s to 1.5 m/s, the learning relies on the velocity-conditioned RL rewards only
without expert supervisions. To represent a randomly sampled target velocity to feed into the policy,
we use an interpolated vector based on the closest two experts’ one-hot velocity representations
(e.g. 1.2 m/s is represented as [0, 0.5, 0.5] and 0.5 m/s as [0.238, 0.762, 0]). We linearly anneal
the L2 supervision loss from the expert supervision (for the three velocity modes) as the training
progresses. Towards the end, the learning relies only on the velocity-conditioned RL loss for the
entire velocity range. Details are in the supplementary.

Real-World Smooth Gait Transition: We test our velocity-conditioned policy in the wild and
want to highlight the smooth gait transition happening at different speeds. Video is in the supple-
mentary.
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(a) Low target speed (b) Median target speed (c) High target speed

Figure 3.8: Resulting gait plots of policies without minimizing energy consumption. All policies
exhibit a high-frequency tapping behavior that is not energy-efficient and not transferable to robots
in the real world. In (c), the robot in simulation falls off the terrain after 4 seconds.

Ablation Studies
The two key components we use during policy training to get reliable walking gaits is an energy
based reward function, and a fractal terrain. We posit that these ingredients are minimal, and we
demonstrate this by ablating each of them below.

Minimizing Energy Consumption Also Minimizes Artificial Penalties: To demonstrate the
sufficiency of minimizing energy consumption, we plot the decreasing trend of the artificial penalties
during training in Figure 3.7, even though these artificial penalties are not included in our reward
function. These include Torque penalty, delta torque penalty, foot slip penalty, joint speed penalty,
and the action regularization [191, 197, 72, 53, 196]. A high positive correlation between energy
consumption and artificial penalties can be observed. All these artificial penalties are minimized in
our training framework as a byproduct of minimizing energy consumption. During training, the
robot first learns to stand still with a minimal energy consumption (around epoch 500), and then
starts moving forward with a slightly higher energy consumption.

Minimizing Energy Consumption: In Figure 3.8, we show the the resulting gaits of policies
trained without the unit energy consumption term in the reward function. All policies show high-
frequency tapping behaviors that are not natural and inefficient. The high-frequency joint movements
can burn the joint motors in the robot and are not transferable to the real hardware.

Fractal Terrain during Training: We train the policies with energy minimization (Section 3.1)
but on a flat terrain without fractal perturbations (Section 3.1). All training trials converge to
unnatural and unstable gaits. We found that adding fractal terrain also facilitates a larger foot
clearance and robustness which improves real-world hardware deployment. We show the key frames
of 2 example unnatural gaits in the supplementary.

3.4 Related Works
Model-Based Optimization for Gaits: Model-based controllers to generate gaits [38] optimize
for the stance legs for a given foot contact sequence. They use predefined swing leg motion
and show stable gait generation on a real robot system. One class of method is contact-implicit
optimization [111, 141, 122], optimizing contact forces along with sequences. However, these gaits
do not emerge as an energy-minimizing solution to moving at different speeds. [167] analyzes biped
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gaits by optimizing energy consumption, but uses a minimal mechanical model assuming point-mass
body and massless legs. In contrast, our swing leg motion, stance leg force and contact sequence,
all emerge from minimizing energy consumption of moving of a real robot. We take a functional
approach to gaits where we achieve them not as predefined movements, but as a consequence of
energy minimization.

Learning for Legged Locomotion and Gaits: Data-driven learning for legged locomotion has
shown robust controllers for quadrupedal robots [72, 102, 33, 63, 136]. Of these, [102, 72] focus
on a controller on complex terrains but do not synthesize and analyze leg patterns of the robot
across diverse gaits at different target speeds. [33] demonstrates a learning method to select gait
controllers, but the low-level gait controllers are predefined primitives. Concurrent work [191]
shows the learned gaits and gait transition, but their method relies on many human priors (e.g.
predefined cyclic motion priors), shows trotting at high speed with short periods of flight phase, and
requires powerful on-board computation power (Apple M1 chip) to solve online MPC optimization.
In graphics, [194] shows low energy also plays a role in generating natural locomotion animations.

3.5 Summary
This work demonstrates that energy consumption plays a key role in the emergence of natural
locomotion patterns in animals by following an analysis-by-synthesis approach of showing the
result in real quadruped robots. The allows generation of the straight line lab gaits, as well as
unstructured complex terrain gaits in animals. We perform thorough analysis of gait patterns, show
their robustness under disturbances, and propose a learning pipeline for smooth gait transition.
Interestingly, the gaits obtained by our robot are most similar to those in horses and sheep – the
animals which are close to it in terms of the Froude number metric space. In the next chapter, we
will apply this framework of emergent gaits along with rapid motor adaptation developed in the
previous chapter to the task of visual walking and show how a small robot dog can climb tall stairs
and walk on stepping stones from just onboard egocentric vision.
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Chapter 4

Legged Locomotion in Challenging Terrains
using Egocentric Vision

Of what use is vision during locomotion? Clearly, there is a role of vision in navigation – using
maps or landmarks to find a trajectory in the 2D plane to a distant goal while avoiding obstacles.
But given a local direction in which to move, it turns out that both humans [107] and robots [102,
96] can do remarkably well at blind walking. Where vision becomes necessary is for locomotion
in challenging terrains. In an urban environment, staircases are the most obvious example. In the
outdoors, we can deal with rugged terrain such as scrambling over rocks, or stepping from stone
to stone to cross a stream of water. There is a fair amount of scientific work studying this human
capability and showing tight coupling of motor control with vision [116, 133, 121]. In this chapter,
we will develop this capability for a quadrupedal walking robot equipped with egocentric depth
vision. We use a reinforcement learning approach trained in simulation, which we are directly able
to transfer to the real world. Figure 4.1 and the accompanying videos shows some examples of our
robot walking guided by vision.

Humans receive an egocentric stream of vision which is used to control feet placement, typically
without conscious planning. As children we acquire it through trial and error [1] but for adults
it is an automatized skill. Its unconscious execution should not take away from its remarkable
sophistication. The footsteps being placed now are based on information collected some time ago.
Typically, we don’t look at the ground underneath our feet, rather at the upcoming piece of ground
in front of us a few steps away[107, 116, 133, 121]. A short term memory is being created which
persists long enough to guide foot placement when we are actually over that piece of ground. Finally,
note that we learn to walk through bouts of steps, not by executing pre-programmed gaits [1].

We take these observations about human walking as design principles for the visually-based
walking controller for an A1 robot. The walking policy is trained by reinforcement learning
with a recurrent neural network being used as a short term memory of recent egocentric views,
proprioceptive states, and action history. Such a policy can maintain memory of recent visual

This chapter is based on joint work with Ananye Agarwal, Jitendra Malik and Deepak Pathak [3]
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information to retrieve characteristics of the terrain under the robot or below the rear feet, which
might no longer be directly visible in the egocentric view.

Figure 4.1: Our robot can traverse a variety of challenging terrain in indoor and outdoor environments, urban
and natural settings during day and night using a single front-facing depth camera. The robot can traverse
curbs, stairs and moderately rocky terrain. Despite being much smaller than other commonly used legged
robots, it is able to climb stairs and curbs of a similar height. Videos at https://vision-locomotion.
github.io

In contrast, prior locomotion techniques rely on the metric elevation map of the terrain around
and under the robot [118, 86, 78] to plan foot steps and joint angles. The elevation map is constructed
by fusing information from multiple depth images (collected over time). This fusion of depth images
into a single elevation map requires the relative pose between cameras at different times. Hence,
tracking is required in the real world to obtain this relative pose using visual or inertial odometry.
This is challenging because of noise introduced in sensing and odometry, and hence, previous
methods add different kinds of structured noise at training time to account for the noise due to pose
estimation drift [43, 117, 131]. The large amount of noise hinders the ability of such systems to
perform reliably on gaps and stepping stones. We use vision as a first class citizen and show all the
uneven terrain capabilities along with a high success rate on crossing gaps and stepping stones.

The design principle of not having pre-programmed gait priors turns out to be quite advantageous

https://vision-locomotion.github.io
https://vision-locomotion.github.io
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Figure 4.2: A smaller robot (a) faces challenges in climbing stairs and curbs due to the stair obstructing
its feet while going up and a tendency to topple over when coming down (b). Our robot deals with this by
climbing using a large hip abduction that automatically emerges during training (c).

for our relatively small robot 1 (fig. 4.2). Predefined gait priors or reference motions fail to generalize
to obstacles of even a reasonable height because of the relatively small size of the quadruped. The
emergent behaviors for traversing complex terrains without any priors enable our robot with a hip
joint height of 28cm to traverse the stairs of height upto 25cm, 89% relative to its height, which is
significantly higher than any existing methods which typically rely on gait priors.

Since our robot is small and inexpensive, it has limited onboard compute and sensing. It uses a
single front-facing D435 camera for exteroception. In contrast, AnymalC has four such cameras
in addition to two dome lidars. Similarly, Spot has 5 depth cameras around its body. Our policy
computes actions with a single feedforward pass and requires no tracking. This frees us from
running optimization for MPC or localization which requires expensive hardware to run in real-time.

Overall, this use of learning “all the way” and the tight coupling of egocentric vision with motor
control are the distinguishing aspects of our approach.

4.1 Method: Legged Locomotion from Egocentric Vision
Our goal is to learn a walking policy that maps proprioception and depth input to target joint
angles at 50Hz. Since depth rendering slows down the simulation by an order of magnitude, directly
training this system using reinforcement learning (RL) would require billions of samples to converge
making this intractable with current simulations. We therefore employ a two-phase training scheme.
In phase 1, we use low resolution scandots located under the robot as a proxy for depth images.
Scandots refer to a set of (x, y) coordinates in the robot’s frame of reference at which the height of
the terrain is queried and passed as observation at each time step (fig. 4.3). These capture terrain
geometry and are cheap to compute. In phase 2, we use depth and proprioception as input to an
RNN to implicitly track the terrain under the robot and directly predict the target joint angles at
50Hz. This is supervised with actions from the phase 1 policy. Since supervised learning is orders
of magnitude more sample efficient than RL, our proposed pipeline enables training the whole
system on a single GPU in a few days. Once trained, our deployment policy does not construct
metric elevation maps, which typically rely on metric localization, and instead directly predicts
joint angles from depth and proprioception.

1A1 standing height is 40cm as measured by us. Spot, ANYmalC both are 70cm tall reported here and here.

https://support.bostondynamics.com/s/article/Robot-specifications
https://www.anybotics.com/anymal-autonomous-legged-robot/
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One potential failure mode of this two-phase training is that the scandots might contain more
information than what depth can infer. To get around this, we choose scandots and camera field-of-
view such that phase 2 loss is low. We formally show that this guarantees that the phase 2 policy
will have close to optimal performance in Thm 4.1.1 below.

Theorem 4.1.1. M = (S,A, P, R, γ) be an MDP with state space S, action space A, transition
function P : S × A → S, reward function R : A × S → R and discount factor γ. Let V 1(s)
be the value function of the phase 1 policy that is trained to be close to optimal value function
V ∗(s), i.e., |V ∗(s)− V 1(s)| < ϵ ∀s ∈ S, and π1(s) be the greedy phase 1 policy obtained from
V 1(s). Suppose the phase 2 policy operates in a different state space S ′ given by a mapping
f : S → S ′ . If the phase 2 policy is close to phase 1 |π1(s)− π2(f(s))| < η ∀ s and R,P are
Lipschitz continuous, then the return of phase 2 policy is close to optimal everywhere, i.e., ∀s,∣∣∣V ∗(s)− V π2

(f(s))
∣∣∣ < 2ϵγ+ηc

1−γ where c ∝
∑

s∈S V
∗(s) is a large but bounded constant. (proof in

sec. C.1)

We instantiate our training scheme using two different architectures. The monolithic architecture
is an RNN that maps from raw proprioception and vision data directly to joint angles. The RMA
architecture follows [96, 143], and contains an MLP base policy that takes γt (which encodes the
local terrain geometry) along with the extrinsics vector zt (which encodes environment parameters
[96]), and proprioception xt to predict the target joint angles. An estimate of γt is generated
by an RNN that takes proprioception and vision as inputs. While the monolithic architecture is
conceptually simpler, it implicitly tracks γt and zt in its weights and is hard to disentagle. In
contrast, the RMA architecture allows direct access to each input (γt or zt) through latent vectors.
This allows the possibility of swapping sensors (like replacing depth by RGB) or using one stream
to supervise the other while keeping the base motor policy fixed.

Phase 1: Reinforcement Learning from Scandots
Given the scandots mt, proprioception xt, commanded linear and angular velocity ucmd

t =(
vcmd
x , ωcmd

z

)
we learn a policy using PPO without gait priors and with reward functions that

minimize energetics to walk on a variety of terrains. Proprioception consists of joint angles, joint
velocities, angular velocity, roll and pitch measured by onboard sensors in addition to the last
policy actions at−1. Let ot = (mt,xt,u

cmd
t ) denote the observations. The RMA policy also takes

privileged information et as input which includes center-of-mass of robot, ground friction, and
motor strength.

Monolithic The scandots mt are first compressed to γt and then passed with the rest of the
observations to a GRU that predicts the joint angles.

γt = MLP (mt) (4.1)

at = GRUt

(
xt,γt,u

cmd
t

)
(4.2)

the subscript t on the GRU indicates that it is stateful.
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Figure 4.3: We train our locomotion policy in two phases to avoid rendering depth for too many samples. In
phase 1, we use RL to train a policy π1 that has access to scandots that are cheap to compute. In phase 2, we
use π1 to provide ground truth actions which another policy π2 is trained to imitate. This student has access
to depth map from the front camera. We consider two architectures (1) a monolithic one which is a GRU
trained to output joint angles with raw observations as input (2) a decoupled architecture trained using RMA
[96] that is trained to estimate vision and proprioception latents that condition a base feedforward walking
policy.

RMA Instead of using a monolithic memory based architecture for the controller, we use an MLP
as the controller, pushing the burden of maintaining memory and state on the various inputs to the
MLP. Concretely, we process the environment parameters (et) with an MLP and the scandots (mt)
with a GRU to get zt and γt respectively which are given as input to the base feedforward policy.

γt = GRUt (mt) (4.3)
zt = MLP (et) (4.4)

at = MLP
(
xt,γt, zt,u

cmd
t

)
(4.5)

Both the phase 1 architectures are trained using PPO [158] with backpropagation through time
[179] truncated at 24 timesteps.

Rewards We extend the reward functions proposed in [96, 48] to simply penalizing the energy
consumption along with additional penalties to prevent damage to hardware on complex terrain
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(sec. C.2). Importantly, we do not impose any gait priors or predefined foot trajectories and let
optimal gaits that are stable and natural to emerge for the task.
• Absolute work penalty −|τ · q| where τ are the joint torques. We use the absolute value so that

the policy does not learn to get positive reward by exploiting inaccuracies in contact simulation.
• Command tracking vcmd

x −
∣∣vcmd
x − vx

∣∣− |ωcmd
z − ωz| where vx is velocity of robot in forward

direction and ωz is yaw angular velocity (x, z are coordinate axes fixed to the robot).
• Foot jerk penalty

∑
i∈F ∥f it − f it−1∥ where f it is the force at time t on the ith rigid body and F

is the set of feet indices. This prevents large motor backlash.
• Feet drag penalty

∑
i∈F I [f iz ≥ 1N] ·

(
|vix|+

∣∣viy∣∣) where I is the indicator function, and vix, v
i
y

is velocity of ith rigid body. This penalizes velocity of feet in the horizontal plane if in contact
with the ground preventing feet dragging on the ground which can damage them.

• Collision penalty
∑

i∈C∪T I [f i ≥ 0.1N] where C, T are the set of calf and thigh indices. This
penalizes contacts at the thighs and calves of the robot which would otherwise graze against
edges of stairs and discrete obstacles.

• Survival bonus constant value 1 at each time step to prioritize survival over following commands
in challenging situations.

Training environment Similar to [152] we generate different sets of terrain (fig. C.1) of varying
difficulty level. Following [96], we generate fractal variations over each of the terrains to get robust
walking behaviour. At training time, the environments are arranged in a 6× 10 matrix with each
row having terrain of the same type and difficulty increasing from left to right. We train with a
curriculum over terrain [152] where robots are first initialized on easy terrain and promoted to
harder terrain if they traverse more than half its length. They are demoted to easier terrain if they
fail to travel at least half the commanded distance vcmd

x T where T is maximum episode length. We
randomize parameters of the simulation (tab. C.2) and add small i.i.d. gaussian noise to observations
for robustness (tab. C.1).

Phase 2: Supervised Learning
In phase 2, we use supervised learning to distil the phase 1 policy into an architecture that only has
access to sensing available onboard: proprioception (xt) and depth dt.

Monolithic We create a copy of the recurrent base policy 4.2. We preprocess the depth map
through a convnet before passing it to the base policy.

d̃t = ConvNet (dt) (4.6)

ât = GRUt(xt, d̃t,a
cmd
t ) (4.7)

We train with DAgger [151] with truncated backpropagation through time (BPTT) to minimize
mean squared error between predicted and ground truth actions ∥ât − at∥2. In particular, we unroll
the student inside the simulator for N = 24 timesteps and then label each of the states encountered
with the ground truth action at from phase 1.
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RMA Instead of retraining the whole controller, we only train estimators of γt and zt, and use the
same base policy trained in phase 1 (eqn. 4.5). The latent γ̂, which encodes terrain geometry, is
estimated from history of depth and proprioception using a GRU. Since the camera looks in front of
the robot, proprioception combined with depth enables the GRU to implicitly track and estimate the
terrain under the robot. Similar to [96], history of proprioception is used to estimate extrinsics ẑ.

d̃t = ConvNet (dt) (4.8)

γ̂t = GRUt

(
xt,u

cmd
t , d̃t

)
(4.9)

ẑt = GRUt

(
xt,u

cmd
t

)
(4.10)

at = MLP
(
xt,u

cmd
t , γ̂t, ẑt

)
(4.11)

As before, this is trained using DAgger with BPTT. The vision GRU 4.9 and convnet 4.8 are jointly
trained to minimize ∥γ̂t − γt∥2 while the proprioception GRU 4.10 minimizes ∥ẑt − zt∥2.

Deployment The student can be deployed as-is on the hardware using only the available onboard
compute. It is able to handle camera failures and the asynchronous nature of depth due to the
randomizations we apply during phase 1. It is robust to pushes, slippery surfaces and large rocky
surfaces and can climb stairs, curbs, and cross gaps and stepping stones.

4.2 Experimental Setup
We use the Unitree A1 robot pictured in Fig. 4.2. The robot has 12 actuated joints. The robot
has a front-facing Intel RealSense depth camera in its head. The onboard compute consists of the
UPboard and a Jetson NX. The policy operates at 50Hz and sends joint position commands which
are converted to torques by a low-level PD controller running at 400Hz. Depth map is obtained
from a Intel RealSense camera inside the head of the robot. The camera captures images every
100ms± 20ms at a resolution of 480× 848. We preprocess the image by cropping 200 white pixels
from the left, applying nearest neighbor hole-filling and downsampling to 58× 87. This is passed
through a backbone to obtain the compressed d̃t 4.8, 4.6 which is sent over a UDP socket to the
base policy. This has a latency of 10± 10ms which we account for during phase 2.

We use the IsaacGym (IG) simulator with the legged_gym library [152] to train our walking
policies. We construct a large terrain map with 100 sub-terrains arranged in a 20× 10 grid. Each
row has the same type of terrain arranged in increasing difficulty while different rows have different
terrain.

Baselines We compare against two baselines, each of which uses the same number of learning
samples for both RL phase and supervised learning phase.
• Blind policy trained with the scandots observations mt masked with zeros. This baseline must

rely on proprioception to traverse terrain and helps quantify the benefit of vision for walking.
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Terrain
Average x-Displacement (↑) Mean Time to Fall (s)

RMA MLith Noisy Blind RMA MLith Noisy Blind

Slopes 43.98 44.09 36.14 34.72 88.99 85.68 70.25 67.07
Stepping Stones 18.83 20.72 1.09 1.02 34.3 41.32 2.51 2.49

Stairs 31.24 42.4 6.74 16.64 69.99 90.48 15.77 39.17
Discrete Obstacles 40.13 28.64 29.08 32.41 85.17 57.53 59.3 66.33

Total 134.18 135.85 73.05 84.79 278.45 275.01 147.83 175.06

Table 4.1: We measure the average displacement along the forward axis and mean time to fall for all methods
on different terrains in simulation. For each method, we train a single policy for all terrains and use that for
evaluation. We see that the monolithic (MLith) and RMA architectures of our method outperform the noisy
and blind baselines by 60-90% in terms of total mean time to fall and average displacement. Vision is not
strictly necessary for traversing slopes and the baselines make significant progress on this terrain, however,
MLith and RMA travel upto 25% farther. The difference is more stark on stepping stones where blind and
noisy baselines barely make any progress due to not being able to locate positions of the stones, while MLith
and RMA travel for around 20m. Noisy and blind make some progress on stairs and discrete obstacles, but
our methods travel upto 6.3 times farther.

• Noisy Methods which rely on elevation maps need to fuse multiple depth images captured over
time to obtain a complete picture of terrain under and around the robot. This requires camera
pose relative to the first depth input, which is typically estimated using vision or inertial odometry
[43, 131, 117]. However, these pose estimates are typically noisy resulting in noisy elevation
maps [118]. To handle this, downstream controllers trained on this typically add a large noise
in the elevation maps during training. Similar to [118], we train a teacher with ground truth,
noiseless elevation maps in phase 1 and distill it to a student with large noise, with noise model
from [118], added to the elevation map. We simulate a latency of 40ms in both the phases of
training to match the hardware. This baseline helps in understanding the effect on performance
when relying on pose estimates which introduce additional noise in the pipeline.

4.3 Results and Analysis
Simulation Results We report mean time to fall and mean distance travelled before crashing for
different terrain and baselines in Table 4.1. For each method, we train a single policy for all terrains
and use that for evaluation. Although the blind policy makes non trivial progress on stairs, discrete
obstacles and slopes, it is significantly less efficient at traversing these terrains. On slopes our
methods travel upto 27% farther implying that the blind baseline crashes early. Similarly, on stairs
and discrete obstacles the distance travelled by our methods is much greater (upto 90%). On slopes
and stepping stones the noisy and blind baselines get similar average distances and mean time to
fall and both are worse than our policy. This trend is even more significant on the stepping stones
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terrain where all baselines barely make any progress while our methods travel upto 20m. The blind
policy has no way of estimating the position of the stone and crashes as soon as it steps into the gap.
For the noisy policy, the large amount of added noise makes it impossible for the student to reliably
ascertain the location of the stones since it cannot rely on proprioception any more. We note that the
blind baseline is better than the noisy one on stairs. This is because the blind baseline has learnt to
use proprioception to figure out location of stairs. On the other hand, the noisy policy cannot learn
to use proprioception since it is trained via supervised learning. However, the blind baseline bumps
into stairs often is not very practical to run on the real robot. The noisy baseline works well in [118]
possibly because of predefined foot motions which make the phase 2 learning easier. However, as
discussed in the beginning of this chapter predefined motions will not work for our small robot.

Real World Comparisons We compare the performance of our methods to the blind baseline in
the real world. In particular we have 4 testing setups as shows in fig. 4.4: Upstairs, Downstairs, Gaps
and Stepping stones. While we train a single phase 1 policy for all terrain, for running baselines, we
obtain different phase 2 policies for stairs vs. stepping stones and gaps. Different phase 2 policies
are obtained by changing the location of the camera. We use the in-built camera inside the robot for
stairs and a mounted external camera for stepping stones and gaps. The in-built camera is less prone
to damage but the stepping stones are gaps are not clearly visible since it is horizontal. This is done
for convenience, but we also have a policy that traverses all terrain using the same mounted camera.

We see that the blind baseline is incapable of walking upstairs beyond a few steps and fails to
complete the staircase even once. Although existing methods have shown stairs for blind robots,
we note that our robot is relatively smaller making it a more challenging task for a blind robot. On
downstairs, we observe that the blind baseline achieves 100% success, although it learns to fall
on every step and stabilize leading to a very high impact gait which led to the detaching of the
rear right hip of the robot during our experiments. We additionally show results in stepping stones
and gaps, where the blind robot fails completely establishing the hardness of these setups and the
necessity of vision to solve them. We show a 100% success on all tasks except for stepping stone
on which we achieve 94% success, which is very high given the challenging setup.

Urban Environments We experiment on stairs, ramps and curbs (fig. 4.1). The robot was
successfully able to go upstairs as well as downstairs for stairs of height upto 24cm in height and
28cm as the lowest width. Since the robot has to remember terrain under its body from visual history,
it sometimes misses a step, but shows impressive recovery behaviour and continues climbing or
descending. The robot is able to climb curbs and obstacles as high as 26cm which is almost as
high as the robot 4.2. This requires an emergent hip abduction movement because the small size of
the robot doesn’t leave any space between the body and stair for the leg to step up. This behavior
emerges because of our tabula rasa approach to learning gaits without reliance on priors or datasets
of natural motion.

Gaps and Stepping Stones We construct an obstacle course consisting of gaps and stepping
stones out of tables and stools (fig. 4.4). For this set of experiments we use a policy trained on
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Figure 4.4: We show success rates and time-to-failure (TTF) for our method and the blind baseline on curbs,
stairs, stepping stones and gaps. We use a separate policy for stairs which is distilled to front camera, and use
a separate policy trained on stepping stones distilled to the top camera which we use for gaps and stepping
stones. We observe that our method solves all the tasks perfectly except for the stepping stone task in which
the robot achieves 94% success. The blind baseline fails completely on gaps and stepping stones. For upstairs,
it makes some progress, but fails to complete the entire staircase even once, which is expected given the small
size of the robot. The blind policy completes the downstairs task 100% success, although it learns a very high
impact falling gait to solve the task. In our experiments, the robot dislocates its real right leg during the blind
downstairs trials.

stepping stones on gaps, and distilled onto the top camera instead of the front camera. The robot
achieves a 100% success rate on gaps of upto 26cm from egocentric depth and 94% on difficult
stepping stones. The stepping stones experiment shows that our visual policy can learn safe foothold
placement behavior even without an explicit elevation map or foothold optimization objectives. The
blind baseline achieves zero success rate on both tasks and falls as soon as any gap is encountered.

Natural Environments We also deploy our policy on outdoor hikes and rocky terrains next to
river beds (fig. 4.1). We see that the robot is able to successfully traverse rugged stairs covered with
dirt, small pebbles and some large rocks. It also avoids stumbling over large tree roots on the hiking
trail. On the beach, we see that the robot is able to successfully navigate the terrain despite several
slips and unstable footholds given the nature of the terrain. We see that the robot sometimes gets
stuck in the crevices and in some cases shows impressive recovery behavior as well.

4.4 Related Work
Legged locomotion Legged locomotion an important problem which has been studied for decades.
Several classical works use model based techniques, or define heuristic reactive controllers to achieve
the task of walking [119, 146, 55, 192, 166, 80, 85, 10, 73, 13, 17, 69, 74].This method has led to
several promising results in the real world, although they still lack the generality needed to deploy
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them in the real world. This has motivated work in using RL for learning to walk in simulation [158,
106, 120, 51], and then successfully deploy them in a diverse set of real world scenarios [169,
171, 137, 183, 125, 72, 169, 65]. Alternatively, a policy learned in simulation can be adapted at
test-time to work well in real environments [196, 193, 136, 201, 197, 195, 165, 28, 96, 50, 164,
189]. However, most of these methods are blind, and only use proprioceptive signal to walk.

Locomotion from Elevation Maps To achieve visual control of walking, classical methods
decouple the perception and control aspects, assuming a perfect output from perception, such as
an elevation map, and then using it for planning and control [42, 132, 101, 100, 88]. The control
part can be further decoupled into searching for feasible footholds on the elevation map and then
execute it with a low-level policy [25]. The foothold feasibility scores can either be estimated
heuristically [180, 26, 78, 114, 44, 86, 5] or learned [91, 82, 178, 115, 109]. Other methods
forgo explicit foothold optimization and learn traversibility maps instead [187, 23, 61, 53]. Recent
methods skip foothold planning and directly train a deep RL policy that takes the elevation map
as input and outputs either low-level motor primitives [118, 173] or raw joint angles [152, 134,
135, 182]. Elevation maps can be noisy or incorrect and dealing with imperfect maps is a major
challenge to building robust locomotion systems. Solutions to this include incorporating uncertainty
in the elevation map [42, 14, 43] and simulating errors at training time to make the walking policy
robust to them [118].

Locomotion from Egocentric Depth Closest to ours is the line of work that doesn’t construct
explicit elevation maps and predicts actions directly from depth. [189] learn a policy for obstacle
avoidance from depth on flat terrain,[76] train a hierarchical policy which uses depth to traverse
curved cliffs and mazes in simulation,[40] use lidar scans to show zero-shot generalization to
difficult terrains. [198] train a policy to step over gaps by predicting high-level actions using depth
from the head and below the torso. Relatedly, [112] train a high-level policy to jump over gaps
from egocentric depth using a whole body impulse controller. In contrast, we directly predict target
joint angles from egocentric depth without constructing metric elevation maps.

4.5 Summary
In this work, we show an end-to-end approach to walking with egocentric depth. The proposed
approach does not rely on explicit mapping, predefined gaits, or any other heuristics. The entire
system is learned end to end in simulation and then deployed zero-shot in the real world. Once
deployed in the real world, it is capable of walking on a large variety of terrains including stairs,
gaps and stepping stones.
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Chapter 5

In-hand Rotation via Rapid Adaptation

In this and the following chapters, we will develop RMA in the context of other challenging tasks
in robotics, starting with dexterous manipulation. Humans are remarkably good at manipulating
objects in-hand – they can even adapt to new objects of different shapes, sizes, mass and materials
with no apparent effort. While several works have shown in-hand object rotation with real-world
multi-fingered hands for a single or a few objects [129, 130, 162, 123], truly generalizable in-hand
manipulation remains an unsolved challenge of robotics.

In this chapter, we demonstrate that it is possible to train an adaptive controller capable of
rotating diverse objects over the z-axis with the fingertips of a multi-fingered robot hand (Figure 5.1).
This task is a simplification of the general in-hand reorientation task, yet still quite challenging for
robots since at all times the fingers need to maintain a dynamic or static force closure on the object
to prevent it from falling (as it can not make use of any other supporting surface such as the palm).

Our approach is inspired by the recent advances in legged locomotion [102, 97] using reinforce-
ment learning. The core of these works is to learn a compressed representation of different terrain
properties (called extrinsics) for walking, which is jointly trained with the control policy. During
deployment, the extrinsics is estimated online and the controller can perform rapid adaptation to
it. Our key insight is that, despite the diversity of real-world objects, for the task of in-hand object
rotation, the important physical properties such as local shape, mass, and size as perceived by the
fingertips can be compressed to a compact representation. Once such a compressed representation
(extrinsics) of different objects is learned, the controller can estimate it online from proprioception
history and use it to adaptively manipulate a diverse set of objects.

Specifically, we encode the object’s intrinsic properties (such as mass and size) to an extrinsics
vector, and train an adaptive policy with it as an input. The learned policy can robustly and
efficiently rotate different objects in simulation environments. However, we do not have access to
the extrinsics when we deploy the policy in the real world. To tackle this problem, we use the rapid
motor adaptation [97] to learn an adaptation module which estimate the extrinsic vector, using the
discrepancy between observed proprioception history and the commanded actions. This adaptation

This chapter is based on joint work with Haozhi Qi, Roberto Calandra, Yi Ma, Jitendra Malik [143]
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module can also be trained solely in simulation via supervised learning. The concept of estimating
physical properties using proprioceptive history has been widely used in locomotion [102, 97, 49]
but has not yet been explored for in-hand manipulation.

Train in Simulation Directly Deploy in the Real World
195 g 48 g 5 g 181 g

30 g130 g55 g200 g

22 g 22 g 106 g 13 g

(5.9, 6.7) cm (5.0, 6.7) cm (5.0, 7.9) cm (5.5, 6.5) cm

(4.4, 4.5) cm (4.5, 5.7) cm (5.0, 6.0) cm (4.3, 5.4) cm

(7.0, 7.2) cm(4.5, 5.8) cm(5.6, 7.3) cm(6.5, 8.0) cm

198 g

(6.3, 8.7) cm

14 g

(4.8, 5.2) cm

25 g

(5.5, 6.7) cm

Figure 5.1: Left: Our controller is trained only in simulation on simple cylindrical objects of
different sizes and weights. Right: Without any real world fine-tuning, the controller can be
deployed to a real robot on a diverse set of objects with different shapes, sizes and weights (object
mass and the shortest/longest diameter axis length along the fingertips are shown in the figure) using
only proprioceptive information. Website: Emergence of natural stable finger gaits can be observed
in the learned control policy.

Experimental results on a multi-finger Allegro Hand [181] show that our method can successfully
rotate over 30 objects of diverse shapes, sizes (from 4.5 cm to 7.5 cm), mass (from 5 g to 200 g),
and other physical properties (e.g., deformable or soft objects) in the real world. We also observe
that an adaptive and smooth finger gait emerges from the learning process. Our approach shows
the surprising effectiveness of using only proprioception sensory signals for adaptation to different
objects, even without the usage of vision and tactile sensing. To further understand the underlying
mechanisms of our approach, we studied the estimated extrinsics when manipulating different
objects. We find interpretable extrinsic values that correlate to mass and scale changes, and
that a low-dimensional structure of the embedding does exist, both of which are critical to our
generalization ability.

https://haozhi.io/hora/
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5.1 Related Work
Classic Control for In-Hand Manipulation. Dexterous in-hand manipulation has been an active
research area for decades [128]. Classic control methods usually need an analytical model of the
object and robot geometry to perform motion planning for object manipulation. For example, [64,
156] rely on such a model to plan finger movement to rotate objects. [153] assumes objects are
piece-wise smooth and use finger-tracking to rotate objects. [12, 122] demonstrate reorientation
of different objects in simulation by generating trajectories using optimization. There have been
also attempts to deploy systems in the real-world. For example, [45] calculates precise contact
locations to plan a sequence of contact locations for twirling objects. [138] plans over a set of
predefined grasp strategies to achieve object reorientation using two multi-fingered hands. [52, 34]
use throwing or external forces to perturb the object in the air and re-grasp it. Recently, works such
as [170, 168] do in-grasp manipulation without breaking the contact. [123] demonstrates complex
object reorientation skills using a non-anthropomorphic hand by leveraging the compliance and
an accurate pose tracker. The diversity of the objects they can manipulate is still limited due to
the intrinsic complexity of the physical world. In contrast to traditional control approaches which
may use heuristics or simplified models to solve this task, we instead use model-free reinforcement
learning to train an adaptive policy, and use adaptation to achieve generalization.

Reinforcement Learning for In-Hand Manipulation. To get around the need of an accurate
object model and physical property measures, in the last few years, there has been a growing interest
in using reinforcement learning directly in the real-world for dexterous in-hand manipulation. [174]
learns simple in-grasp rolling for cylindrical objects. [98, 126] learns a dynamics model and plan
over it for rotating objects on the palm. [60, 99] use human demonstration to accelerate the learning
process. However, since reinforcement learning is very sample inefficient, the learned skills are
rather simple or have limited object diversity. Although complex skills such as re-orientating a
diverse set of objects [68, 24, 84] and tool use [148, 145] can be obtained in simulation, transferring
the results to real-world remains challenging. Instead of directly training a policy in the real world,
our approach learns the policy entirely in the simulator and aims to directly transfer to the real
world.

Sim-to-Real Transfer via Domain Randomization. Several works aim to train reinforcement
learning policies using a simulator and directly deploy it in a real-world system. Domain randomiza-
tion [171] varies the simulation parameters during training to expose the policy to diverse simulation
environments so that they can be robustly deployed in the real-world. Representative examples
are [129] and [130]. They leverage massive computational resources and large-scale reinforcement
learning methods to learn an agile object reorientation skills and solve Rubik’s Cube with a single
robot hand. However, they still focus only on manipulating a limited number of objects. [162] learns
a finger-gaiting behavior efficiently and transfers to a real robot when hand facing downwards, but
they do not only use fingertips and the objects considered are all cubes. Our approach focuses on
generalization to a diverse set of objects and can be trained within a few hours.

Sim-to-Real via Adaptation. Instead of relying on domain randomization which is agnostic to
current environment parameters, [83] performs system identification via initial calibration, or online
adaptive control to estimate the system parameters for Sim-to-Real Transfer. However, learning the
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Figure 5.2: An overview of our approach at different training and deployment stages. In Base Policy
Learning, we jointly optimize µ and π using PPO [158]. The observation ot only contains three past
joint positions and commanded actions. Next, in Adaptation Module Learning, we freeze the policy
π and use supervised learning to train ϕ which uses proprioception and action history to estimate
the extrinsics vector zt. During Deployment, the base policy π uses the extrinsics ẑt estimated and
updated online by ϕ.

exact physical values and alignment between simulation and real-world may be sub-optimal because
of the intrinsic inaccuracy of physics simulations. An alternative way is to learn a low dimensional
embedding which encodes the environment parameters [102, 97] which is then used by the control
policy to act. This paradigm has enabled robust and adaptive locomotion policies. However, it is
not straightforward to apply it on the in-hand manipulation task. Our approach demonstrates how to
design the reward and training environment to enable a natural and stable controller that can transfer
to the real world.

5.2 Rapid Motor Adaptation for In-Hand Object Rotation
An overview of our approach is shown in Figure 5.2. During deployment (Figure 5.2, bottom),
our policy infers a low-dimensional embedding of object’s properties such as size and mass from
proprioception and action history, which is then used by our base policy to rotate the object. We first
describe how we train a base policy with object property provided by a simulator, then we discuss
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how to train an adaptation module that is capable of inferring these properties.

Base Policy Training
Privileged Information. In this chapter, privileged information refers to the object’s properties
such as position, size, mass, coefficient of friction, center of mass of the object. This information,
denoted by a 9-dim vector et ∈ R9 at timestep t, can be accurately measured in simulation. We
provide this as an input to the policy, but instead of using et directly, we use an 8-dim embedding
(called extrinsics in [97]) zt = µ(et) which gives better generalization behavior as we show in
Section 5.4.

Base Policy. Our control policy π takes the current robot joint positions qt ∈ R16, the predicted
action at−1 ∈ R16 at the last timestep, together with the extrinsics vector zt ∈ R8 as input, and
outputs the target of the PD Controller (denoted as at). We also augment the observation to include
two additional timesteps to have the velocity and acceleration information. Formally, the base policy
output at = π(ot, zt) where ot = (qt−2:t,at−3:t−1) ∈ R96.

Reward Function. We jointly optimize the policy π and the embedding µ using PPO [158].
The reward function depends on several quantities: ω is the object’s angular velocity. k̂ is the
desired rotation axis (we use the z-axis in the hand coordinate system). qinit is the starting robot
configuration. τ is the commanded torques at each timestep. v is the object’s linear velocity. Our
reward function r (subscript t omitted for simplicity) to maximize is then

r
.
= rrot + λpose rpose + λlinvel rlinvel + λwork rwork + λtorque rtorque (5.1)

where rrot
.
= max(min(ω · k̂, rmax), rmin) is the rotation reward, rpose

.
= −∥q − qinit∥22 is the

hand pose deviation penalty, rtorque
.
= −∥τ∥22 is the torque penalty, rwork

.
= −τ T q̇ is the energy

consumption penalty, and rlinvel
.
= −∥v∥22 is the object linear velocity penalty. Note that in contrast

to [84] which explicitly encourages at least three fingertips to always be in contact with the object,
we do not enforce any heuristic finger gaiting behaviour. Instead, a stable finger gaiting behaviour
emerges from the energy constraints and the penalty on deviation from the initial pose.

Object Initialization and Dynamics Randomization. A good training environment has to pro-
vide enough variety in simulation to enable generalization in the real world. In this work we find
that using cylinders with different aspect ratios and masses provides such variety. We uniformly
sample different diameters and side lengths of the cylinder.

We initialize the object and the fingers in a stable precision grasp. Instead of constructing the
fingertip positions as in [84], we simply randomly sample the object position, pose, and robot joint
position around a canonical grasp until a stable grasp is achieved. We also randomize the mass,
center of mass, and friction of these objects (see appendix for the details).
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Adaptation Module Training
We cannot directly deploy the learned policy π to the real world because we do not directly observe
the vector et and hence we cannot compute the extrinsics zt. Instead, we estimate the extrinsics
vector ẑt from the discrepancy between the proprioception history and the commanded action
history via an adaptation module ϕ. This idea is inspired by recent work in locomotion [102,
97] where the proprioception history is used to estimate the terrain properties. We show that this
information can also be used to estimate the object properties.

To train this network, we first collect trajectories and privileged information by executing the
policy at = π(ot, ẑt) with the predicted extrinsic vectors ẑt = ϕ(qt−k:t,at−k−1:t−1). Meanwhile
we also store the ground-truth extrinsic vector zt and construct a training set

B = {(q(i)
t−k:t,a

(i)
t−k−1:t−1, z

(i)
t , ẑ

(i)
t )}Ni=1.

Then we optimize ϕ by minimizing the ℓ2 distance between zt and ẑt using Adam [87]. The
process is iterative until the loss converges. We apply the same object initialization and dynamics
randomization setting as the above section.

5.3 Experimental Setup and Implementation Details
Hardware Setup. We use an Allegro Hand from Wonik Robotics [181]. The Allegro hand is a
dexterous anthropomorphic robot hand with four fingers, with each finger having four degrees
of freedom. These 16 joints are controlled using position control at 20Hz. The target position
commands are converted to torque using a PD Controller (Kp = 3.0, Kd = 0.1) at 300Hz.

Simulation Setup. We use the IsaacGym [110] simulator. During training, we use 16384
parallel environments to collection samples for training the agent. Each environment contains a
simulated Allegro Hand and an cylindrical object with different shape and physical properties (the
exact parameters are in the supplementary material). The simulation frequency is 120Hz and the
control frequency is 20Hz. Each episode lasts for 400 control steps (equivalent to 20 s).

Baselines. We compare our method to the baselines listed below. We also compare with the
policy with access to privileged information (Expert), as the upper bound of our method (Figure 5.2,
top row).
1. A Robust Policy trained with Domain Randomization (DR): This baseline is trained with the

same reward function but without privileged information. This gives a policy which is robust,
instead of adaptive, to all the shape and physical property variations [129, 162, 130, 9].

2. Online Explicit System Identification (SysID): This baseline predicts the exact system parameters
et instead of the extrinsic vector zt during training the adaptation module.

3. No Online Adaptation (NoAdapt): During deployment, the extrinsics vector ẑt is estimated at
the first time step and stays frozen during the rest of the run. This is to study the importance of
online adaptation enabled by the adaptation module ϕ.

4. Action Replay (Periodic): We record a reference trajectory from the expert policy with privileged
information and run it blindly. This is to show our policy adapts to different objects and
disturbances instead of periodically executing the same action sequence.
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Within Training Distribution Out-of-Distribution

Method RotR (↑) TTF (↑) ObjVel (↓) Torque (↓) RotR (↑) TTF (↑) ObjVel (↓) Torque (↓)

Expert 233.71±25.24 0.85±0.01 0.28±0.05 1.24±0.19 165.07±15.65 0.71±0.04 0.42±0.06 1.24±0.16

Periodic 43.62±2.52 0.44±0.12 0.72±0.21 1.77±0.49 22.45±0.59 0.34±0.08 1.11±0.19 1.41±0.54

NoAdapt 90.89±4.85 0.65±0.07 0.44±0.11 1.34±0.12 54.50±3.91 0.51±0.06 0.63±0.13 1.34±0.11

DR 176.12±26.47 0.81±0.02 0.34±0.05 1.42±0.06 140.80±17.51 0.63±0.02 0.64±0.06 1.48±0.20

SysID 174.42±23.31 0.81±0.02 0.32±0.03 1.29±0.72 132.56±17.42 0.62±0.09 0.50±0.09 1.26±0.17

Ours 222.27±21.20 0.82±0.02 0.29±0.05 1.20±0.19 160.60±10.22 0.68±0.07 0.47±0.07 1.20±0.17

Table 5.1: We compare our method to several baselines in simulation in two settings: 1) Within Training
Distribution; 2) Out-of-Distribution. Our method with online continuously adaptation achieves the best
performance compared to all the baselines, closely emulating the performance of the Expert that has the
privileged information as the input.

Metrics. We use the following metrics to compare the performance of our method to baselines.
1. Time-to-Fall (TTF). The average length of the episode before the object falls out of the hand.

This value is normalized by the maximum episode length (20s in simulation experiments and
30s in the real world experiments).

2. Rotation Reward (RotR). This is the average rotation reward (ω · k̂) of an episode in simulation.
Note that we do not train with this reward. Instead, we use a clipped version of this reward
during training.

3. Radians Rotated within Episode (Rotations). Since angular velocity of the object is hard to
accurately measure in the real world, we instead measure the net rotation of the object (in
radians) achieved by the policy with respect to the world’s z-axis. This metric is only used in
the real world experiments.

4. Object’s Linear Velocity (ObjVel). We measure the magnitude of the linear velocity to measure
the stability of the object. This is only measured in simulation. The value is scaled by 100.

5. Torque Penalty (Torque). We measure the average ℓ1 norm of commanded torque per timestep
during execution to measure the energy efficiency.

5.4 Results and Analysis
In this section, we compare the performance of our method to several baselines both in simulation
and in real-world deployment. We also analyze what the adaptation module learns and how it
changes during policy execution and as the objects change. Finally, we focus on training a policy for
rotating an object along the negative z-axis with respect to the world coordinate. We also explore
the possibility of training a multi-axis policy (± z-axis) in the appendix. More qualitative results of
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our method and several ablations of our method are in our Project Website and the supplementary.

Generalization via Adaptation
Comparison in Simulation. We first compare our method with the baselines mentioned in Sec-
tion 5.3 in simulation. We evaluate all methods under two settings: 1) In the Within Training
Distribution setting, we use the same object set and randomization setting as in RL training; 2) In
the Out-of-Distribution setting, we use objects with a larger range of physical randomization range.
We also change 20% of the objects to be spheres and cubes. We compute the average performance
over 500K episodes with different parameter randomizations and initialization conditions. We report
the average and standard deviation over five models trained with different seeds.

The results in Table 5.1 show that our method with online adaptation achieves the best perfor-
mance compared to all the baselines. We see that adaptation to shape and dynamics of the object
not only enables a better performance in training, but also gives a much better generalization to
out-of-distribution object parameters compared to all the baseline methods. The Periodic baseline
(i.e., simply playback of the expert policy) does not give a reasonable performance. Although it
can rotate the exact same object with the same initial grasp and dynamic parameters, it fails to
generalize beyond this very narrow setup. This baseline helps us understand the difficulty of the
problem. The NoAdapt also performs poorly compared to our method which uses continuous online
adaptation. The weaker performance of this baseline is explained by the fact that it does not update
the extrinsics during the episode. This shows the importance of continuous online adaptation. The
DR baseline, although roughly matches or performs better than the other baselines in terms of RotR
and TTF, it is worse in other metrics related to object stability and energy efficiency. This is because
the DR baseline is unaware of the underlying object properties and needs to learn a single gait,
instead of an adaptive one, for all possible objects. The SysID baseline also performs worse than our
method in both of the evaluation distributions. This is because it is harder as well as unnecessary to
learn the exact values of the shape and dynamics parameters to adapt. This comparison shows the
benefit of learning a low-dimensional compact representation which has a coarse relative activation
for different physical properties instead of the exact value (see Figure 5.5 and Figure 5.6).

Real-World Comparisons. Next, we show real world comparisons of our policy to the baselines
on two set of challenging objects shown in Figure 5.3 and Figure 5.4. We exclude the Periodic
baseline because it does not work well even in Simulation and Expert because we cannot access
privileged information in the real world. We evaluate each method using 20 different initial grasping
positions and 6 different objects in each set. The maximum episode length is 30 s.

We first study the behavior of our policy and different baselines in a set of heavy objects (more
than 100 g) including a baseball, different fruits, vegetables, and a cup (Figure 5.3). Our method
performs significantly better in all metrics. Our method can achieves consistent rotation for almost
all trials without falling down with an average Rotations of 23.96 (with a equivalent rotation velocity
0.8 rad s−1). We find the DR baseline is very slow and conservative in all the trials since it is
unaware of object properties and needs to learn a single gaiting behaviour for all objects. As a result,
it has the lowest Rotations, although the TTF is higher than the SysID baseline. We also find the DR
could perform reasonably well on objects of larger sizes because they are easier to rotate and forms

https://haozhi.io/hora/
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181 g146 g 200 g106 g139 g165 g

Method Rotations (↑) TTF (↑) Torque (↓)

DR 9.67±4.33 0.72±0.34 2.03±0.36

SysID 10.36±2.32 0.61±0.33 1.88±0.38

NoAdapt N.A. 0.35±0.20 N.A.

Ours 23.96±3.16 0.98±0.08 1.84±0.24

Figure 5.3: Quantitative Evaluation on a diverse set of Heavy Objects (Left). Our method which uses
adaptation performs the best in terms of total rotated angle (in radians), Time To Fall (TTF), and Energy
efficiency (Torque). The DR baseline has a conservative policy which results in a slower angular velocity.
SysID has a more dynamic and agile policy but very unstable as can be seen in a lower TTF compared to DR
and ours. The NoAdapt baseline fails on the task showing the importance of continuous online adaptation.

a reasonable chunk of training distribution. The SysID baseline learns a more dynamic and agile
behavior, having a better Rotations metric, but a lower TTF and Rotations showing that precise
estimation of system parameters is both unnecessary and difficult. We find that it is particularly
hard for it to generalize to the small cup and the slightly soft tomato. Lastly, we observe a similar
behavior as in [97] that the NoAdapt baseline does not transfer successfully to the real world,
showing the importance of continuous online adaptation for successful real-world deployment.

We perform the same comparisons on a collection of irregular objects (Figure 5.4). It contains
a container with moving COM, objects with concavity, a cylindrical kiwi fruit, a shuttlecock, a
toy with holes, and a cube toy. Rotating the cube is particularly difficult because we only rely on
usage of fingertips. Although these variations are challenging for this task and are beyond what is
seen during training, our method still performs reasonably well, outperforming all the baselines.
We see that the DR baseline can perform stable but slow in-hand rotation for the container and the
shuttlecock, but largely fails for the other objects, indicating its difficulty in shape generalization.
For the SysID baseline, its stability is significantly lower than the DR baseline as well as our method,
despite having a higher angular velocity. The NoAdapt baseline performs similarly to what we
observed in Figure 5.3.

Understanding and Analysis
To understand how our method generalizes to a diverse set of objects, we design a few experiments
and visualization to help develop some insights.

Extrinsics over Time. We run one continuous evaluation episode in the real world in which we
replace the object in the hand every 30s for 6 objects. Note that during training, we never randomize
the objects within an episode. During the entire run, we record the estimated extrinsics and plot 2
out of the 8-dim extrinsics vector in Figure 5.5. The top plot shows the extrinsic value zt,0 which
responds to changes in object diameter. It has a lower value for smaller diameters and higher value
for larger diameters. The bottom plot shows that the extrinsic value zt,2 responds to variations in
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CylinderConcave Holes SquareHigh COM Soft

Method Rotations (↑) TTF (↑) Torque (↓)

DR 6.59±3.71 0.66±0.41 1.85±0.37

SysID 8.16±3.39 0.46±0.36 1.70±0.40

NoAdapt N.A. 0.12±0.05 N.A.

Ours 19.22±4.08 0.78±0.27 1.48±0.30

Figure 5.4: Quantitative Evaluation on a diverse set of Irregular Objects (Left). Our method can successfully
generalize to rotating a diverse set of objects including objects with holes, soft and deformable objects
(none of these were included in the training). Our method outperforms the baselines on all the metrics.
The DR baseline has the second highest TTF but low Rotations because it outputs very conservative and
slow trajectories. SysID achieves slightly faster but a very unstable policy. The superior performance of our
method over baselines shows the importance of adaptation via a low dimensional extrinsics estimation for
generalization in this task.
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Figure 5.5: Two of the 8-dim estimated extrinsics vector during one continuous run in which we change
the object in the hand every 30s for 6 objects. The top plot shows the extrinsic value zt,0 which responds to
changes in object diameter with smaller diameters leading to lower values. Since the perceived diameter of
the object changes during rotating an irregular shaped object, we see variations in this extrinsic value even
within the same object. The bottom plot shows the correlation between zt,2 and object mass: it attains higher
values for lighter objects and lower for heavier objects. See this link for the video.

object mass.
Extrinsic Clustering. Another way to understand the estimated extrinsics ẑ is by clustering the

extrinsics vector estimated while rotating different objects. In Figure 5.6, we visualize the estimated

https://haozhi.io/hora/#adapt
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Figure 5.6: We visualize the estimated extrinsics vector ẑt using t-SNE for rotating 6 different objects for 5
seconds each. We found that objects of different sizes and different weights tend to occupy separate regions.
For example, ẑ corresponding to smaller objects tend to cluster on the bottom left. The object with ID 1
(shown in the bottom left in the above figure) produces scattered ẑ because of its irregular shape, which results
in an equivalently varying scale of the object. This locality leads to the scattering of the extrinsics across the
t-SNE plot, and this locality is also what gives us generalization as evaluated in Table 5.1, Figure 5.3 and
Figure 5.4.

extrinsics vector using t-SNE for rotating 6 different objects. We find that objects of different sizes
and different weights tend to occupy separate regions as explained in Figure 5.6.

Emergent Finger Gaits. We find it important to use cylindrical objects for the emergence of a
stable and high-clearance gait. On our website, we compare the learned finger gaits when training
with cylindrical objects and with pure spherical objects. The latter training scheme leads to a policy
with a dynamic gait which works well on balls but fail to generalize to more complex objects.

Real World Qualitative Results
On our Project Website, we qualitatively compare our method with the baselines on 5 different
objects and further evaluate our method on 30 objects of different shapes and physical properties,
including porous objects and non-rigid objects. The diameter ranges from 4.5 cm to 7.5 cm and
the mass ranges from 5 g to 200 g. Note that we only use cylindrical objects of different sizes and
aspect ratios during training and show shape generalization in the real world with the use of rapid
adaptation. The key insight which allows this generalization is that the shape of the objects as
perceived by the fingertips of the hand can be compressed to a low dimensional space. We estimate
this low dimensional space from proprioceptive history, which allows us to generalize to objects

https://haozhi.io/hora/#gait
https://haozhi.io/hora/#baseline
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which are seemingly different in the real world but might look similar in the extrinsics space.

5.5 Summary
There are different levels of difficulty for general dexterous in-hand manipulation. The task
considered in this chapter (in-hand object rotation over the z-axis) is a simplification of the general
SO(3) reorientation problem. However, it is not a limiting simplification. With three policies for
rotation along three principle axes, we can achieve rotating the object to any target pose.

We show the feasibility of purely proprioceptive in-hand object rotation for a diverse set of
objects via rapid adaptation. We find most of our failure cases in the real-world experiments are due
to incorrect contact points which leads to unstable force closure. Since our method only relies on
the proprioceptive sensing, it is unaware of the precise contact positions between the objects and
the fingertips. Another failure case is when the object to be rotated is tiny (with diameter less than
4.0 cm). In this case the fingers will frequently collide with each other, making the robot not able to
maintain the grasp balance of the object. More extreme and sophisticated shapes are also harder to
manipulate. For those more challenging tasks, it might be necessary to incorporate tactile or visual
feedback.
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Chapter 6

RMA for Bipedal Locomotion

In this chapter, we study bipedal robots which are more sensitive to mismatches in simulation
and real. We find that the RMA algorithm, when applied as is, achieves a suboptimal performance
due to errors in learning the adaptation module. This makes it challenging to deploy it in the
real world. In contrast, several existing control theoretic methods have shown quite promising
results in the real world [176, 94, 142, 186, 46, 35, 58, 144, 32, 56, 57, 103, 150, 36]. However,
designing these controllers often requires expert parameter tuning for different terrain. Learning
based methods can get around this with the use of data and simulation.

In this chapter, our goal is to see how well a learning-based approach works for bipedal robots.
Unlike their quadruped or hexapod counterparts, bipeds are more dynamic and offer coverage
of more terrains at the cost of being more prone to instability. Although there have been several
investigations of applying learning methods to bipedal robots [104, 160], until now, the robustness
performance has not matched their quadruped counterparts in terms of robustness to scenarios not
seen during training (Figure 6.1).

We train our robot in simulation and start with Rapid Motor Adaptation (RMA) [96] as a baseline
for sim2real transfer to the Cassie biped. In contrast to the popular idea of training a terrain-invariant
policy [171], RMA trains an adaptive policy conditioned on latent extrinsics vector that encodes
terrain-specific information in simulation. After training this base policy, the extrinsic vector is
then estimated online by an adaptation module using the history of observed proprioceptive states.
However, we found that scaling RMA as-is to complex bipeds is faced with several challenges.

The first challenge is training the base policy from scratch using reinforcement learning. To
address this issue and learn naturally stable high-performance gaits, we bootstrap the base policy
from a set of reference motions generated using a gait library. The second challenge, however, is a
more fundamental one. For complex robots like bipeds, it is usually very challenging to precisely
estimate the privileged extrinsics at deployment just from the observable states. This creates a large
domain gap for the base policy at deployment which was trained with accurate extrinsics. The
higher the magnitude of extrinsics estimation error, the worse the base policy performs. We bridge

This chapter is based on joint work with Zhongyu Li, Jun Zeng, Deepak Pathak, Koushil Sreenath, Jitendra
Malik [95]
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Figure 6.1: We demonstrate the performance of A-RMA with a bipedal robot in several challenging
setups which includes slippery surfaces, foam, and pulling a payload. Some of these were never seen
during training and the policy was deployed without any calibration or real-world finetuning. Note
that bipeds are inherently more unstable compared to quadrupeds, which makes each of these much
more challenging than for a quadruped robot. Videos at https://ashish-kmr.github.io/
a-rma/

https://ashish-kmr.github.io/a-rma/
https://ashish-kmr.github.io/a-rma/
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this gap by another round of finetuning the base policy using the imperfect extrinsics estimated from
adaptation module instead of conditioning on the perfect extrinsics. We call our method A-RMA
due to the adaptation of RMA policy itself, as outlined in Figure 6.2. Similar to the base policy
and adaptation module in RMA, A-RMA policy adaptation step is also trained in simulation. We
evaluate A-RMA on a complex Cassie bipedal robot and show evaluations on several challenging
environments in both simulation and real world.

6.1 Related Work
Model-based Control for Bipedal Robots Locomotion of bipedal robots has been traditionally
approached via notions of gait stability such as ZMP criterion [176] or Capturability [142] using
robot’s reduced-order models [94, 186, 105, 46, 35, 56]. Although these methods can effectively
control humanoid robots with flat feet, they often walk conservatively. Alternatively, Hybrid Zero
Dynamics (HZD) [58, 32, 57, 103, 150] based techniques can also generate stable periodic walking
based on input-output linearization using robot’s full-order model. However, HZD-based controllers
for 3D robots typically need extensive parameter tuning in both simulation and in the real world,
and are hard to adapt to the environment changes. In this work, we use reinforcement learning to
learn our walking controllers, using the HZD-based walking gaits only as reference motions to
produce natural looking gaits. This allows us to generate more diverse and effective stable walking
behaviours since we don’t have hard constraints on periodicity and neither do we require a precise
model.

RL-based Control for Legged Robots Reinforcement learning for legged locomotion has shown
promising results in learning walking controllers that can be successfully deployed in the real
world [104, 96, 90, 72, 136]. Data-driven methods could either use reference motions [136, 104] to
learn walking behaviours, learn residuals over predefined foot motions [102, 75], or learn without
any motion priors and foot trajectory generators [96, 63, 72]. In this work, we use a hybrid approach
where we warm start the learning process using a HZD-based gait library, but subsequently reduce
the dependency on them by lowering the costs related to imitating the gait library.

Recent works have also built bipedal controllers using RL. Model-based RL in [22, 21] is used
to learn a walking controller on Cassie in simulation to track a velocity. Alternatively, work in
[184, 185] learns model free residuals over reference motions, while work in [79] learns walking
policies that can track a commanded planar velocity on Cassie in the real world. Although residual
control speeds up training, the corrections that can be applied to the reference trajectory is limited
which limits the diversity of behaviours of the controller. This can be addressed by learning policies
which don’t rely on reference motions during deployment, but instead add motion constraints during
training by either using reference motions or through foot fall constraints via reward terms [104,
159, 161]. We follow this general approach in this chapter. More specifically, we use reference
trajectories for imitation via reward terms, except that we only use them to warm start the learning
process and then reduce the dependency on them and use energy minimization [50] to allow for
diverse behaviors which can be more general than the reference motions.
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Figure 6.2: We show the training and deployment phases of A-RMA. The first two phases are
the same as RMA [96]. We additionally add a third phase in which the base policy is fine-tuned
again with PPO while keeping the adaptation module fixed, to account for imperfect estimation of
extrinsics. We found this to be critical for reliable performance in the real world.

Simulation to Real World Transfer Sim-to-real methods allow deployment of walking policies
in the real world after training them in simulation, which is a safe and inexpensive data source.
Parameters finetuning on the hardware is one way to bridge the gap for model-based methods [57,
103, 188]. Alternatively, several works use domain randomization which varies the system properties
in simulation in order to cover the uncertainty in the real world [154, 171, 137, 199, 195, 136, 104,
160, 159, 161]. These methods achieve robustness at the cost of optimality, where they try to learn a
single environment-agnostic behaviour for all deployment scenarios. Instead, we learn an adaptive
policy which enables transfer to widely varying deployment scenarios.

System Identification and Adaptation An adaptive policy conditions to environment variations
instead of being agnostic to them. These variations can be explicitly estimated during deployment
either through a module that is trained in simulation [196] or can be estimated by optimizing
for high returns using evolutionary algorithms [193]. Predicting the exact parameters is both
unnecessary and difficult, which in turn leads to poor empirical performance. Instead, a low
dimensional latent embedding can be used [96, 136, 201] which contains an implicit estimate
of the environment. At test time, this latent embedding can be optimized using policy gradients
from real-world rollouts [136], Bayesian optimization [197], or random search [195]. An alternate
approach is to use meta learning to learn to adapt online [47]. These methods tend to take multiple
rollouts to adapt in the real world [165, 28] which is prohibitive for several scenarios. In this work,
we follow the approach of [96] which learns a feed forward policy to estimate the latent environment
vector, enabling rapid adaptation in fractions of a second.
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6.2 General Walking Controller
Our walking controller contains a base policy which produces the target joint points for the robot,
and an adaptation module which uses proprioceptive history to continually estimate the extrinsics
vector. Such a vector contains information about the environment that can be used by the base
policy to adapt. In this section, we describe how we train the base policy for bipeds since trivially
training the policy from scratch results in unnatural gaits, unlike prior work in quadrupeds [96].
Instead we use reference motions to bootstrap learning but unlike prior methods which use reference
motions [102, 104], we reduce the dependence on these reference motions as training progresses to
learn optimal behaviors in a data driven way.

Walking Policy
We train an adaptive walking policy (π1) using model free reinforcement learning to learn a stable
walking policy while imitating reference motions generated using a HZD-based gait library. Here,
the gait library consists of a collection of periodic walking gaits at different walking velocities and
walking heights. The base walking policy (π) takes two arguments as input 1) the current state xt,
2) the extrinsics vector zt ∈ R8 and then predicts the next action at. The predicted action at is the
target position for the 10 actuated robot joints which is converted to torque using a PD controller.
The extrinsics vector zt is a compressed version of the environment vector et ∈ R147 generated by
µ. The environment vector et includes things such as friction, inertia, center of mass, etc (see Sec
III-C), but the extrinsics vector zt only retains as much information from et as is necessary for the
base policy to adapt. We thus have,

zt = µ(et), (6.1)
at = π1(xt, at−1, gt, zt). (6.2)

We implement µ and π1 as MLPs and jointly train them end-to-end using model-free reinforce-
ment learning to maximize the following expected return of the policy π:

J(π) = Eτ∼p(τ |π)

[
T−1∑
t=0

γtrt

]
,

where τ = {(x0, a0, r0), (x1, a1, r1)...} is the trajectory of the agent when executing policy π1, and
p(τ |π1) represents the likelihood of the trajectory under π1.

Reward Function
The reward function encourages the agent to track the goal commanded and to imitate the reference
motion from the gait library. Let’s denote the robot’s actual motor positions as q̂m, pelvis translation
position and velocity as q̂p and ˆ̇qp, the pelvis rotation and rotation velocity as ˆ̇qr and q̂r. Let the
corresponding quantities for the reference motion be denoted by qrm, qrp, q̇

r
p, q

r
r and q̇rr respectively.
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We additionally denote the robot’s torque as u and the robot’s ground reaction force as F . The
reward at each time step t is a weighted sum of:

1. Motor imitation: exp[−ρ1||qrm − q̂m||22]

2. Pelvis position imitation: exp[−ρ2||qrp − q̂p||22]

3. Pelvis velocity imitation: exp[−ρ3||q̇rp − ˆ̇qp||22]

4. Pelvis rotation imitation: exp[−ρ4(1− cos (qrr − q̂r)]

5. Rotational velocity imitation: exp[−ρ5||q̇rr − ˆ̇qr||22]

6. Torque penalty: exp[−ρ6||u||22]

7. Ground reaction force penalty: exp[−ρ7||F ||22],

where the corresponding weights of each of the reward terms are [0.3, 0.24, 0.15, 0.13, 0.06, 0.06, 0.06]T ,
and ρ1 to ρ7 are [5.0, 0.1, 5.0, 5.0, 1.0, 5e−7, 1.25e−5]). To stabilize the pelvis, we set the desired roll
and pitch velocity to 0, and the desired yaw velocity is from the user command c(t). We compute
the desired pelvis translational and rotational positions by integrating the corresponding desired
velocity. Moreover, we decay the coefficients of the imitation terms as the training progresses to
reduce the dependence on reference motions and learn optimal data driven behaviours.

Environment Variations and Terrains
During the learning of the walking policy, we vary the ground friction, robot’s motor friction, mass
and center of mass of the robot and robot links. We train over fractal terrain, flat terrain, slopes and
discrete terrains such as steps (see Table 6.1).

6.3 Walking Controller with Rapid Adaptation
Following the process described in the previous section, we now have a base policy which can use
the extrinsics vector to adapt. However, this extrinsics vector uses privileged simulation information
and is unavailable in the real world. To resolve this, we generalize the idea proposed in [96] of
learning an adaptation module using the history of commanded actions and robots proprioception to
estimate these extrinsics online. The insight is that the discrepancy between what was commanded
to the robot and the actual joint positions contains information about these extrinsics. However,
such an estimation could be noisy as the extrinsics vector might not be fully observable. To fix this,
we further finetune the base policy to learn to walk adaptively with an imperfect extrinsics vector.
We now describe this in detail below.
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Adaptation Module for Estimating Extrinsics
Privileged environment information et is not available in the real world, and consequently its
encoded extrinsics vector zt is not accessible during deployment. Similar to [96], we estimate the
extrinsics online from the proprioceptive history (xt−k:t−1, at−k:t−1) using the adaptation module ϕ.
In our experiments, we use k = 70 which roughly corresponds to 2s. The estimated extrinsic vector
is thus given by,

ẑt = ϕ
(
xt−k:t−1, at−k:t−1

)
.

We can train the adaptation module in simulation via supervised learning to minimize: MSE(ẑt, zt) =
∥ẑt − zt∥2, where zt = µ(et). We model ϕ as a 1-D CNN to capture temporal correlations.

We collect trajectories by unrolling the base policy π1 with the ẑt predicted by the randomly
initialized function ϕ, and then pair it with the ground truth zt to train ϕ. We iteratively repeat this
until convergence.

Finetuning with Estimated Extrinsics
For our setting, the extrinsics estimated by the adaptation module ϕ is imperfect since zt might not
be fully observable from the proprioception history. We observed this as the regression error to
estimate zt did not become low enough during the training of the adaptation module. This causes
the base policy π1 to experience a significant drop in performance since it is trained with perfect
extrinsics, and noisy estimation introduces a domain gap. To overcome this issue, we propose to
further finetune the base policy π1 with the imperfect extrinsics predicted by the adaptation module
ϕ trained in phase 2, see Fig. 6.2. The adaptation module is kept frozen and the base policy is
finetuned using model free reinforcement learning with the reward described in Section 6.2. This
gives us the final base policy π2 which is used in deployment.

6.4 Experimental Setup

Hardware
We use the Cassie robot for our experiments. It is a dynamic, life-sized, and underactuated bipedal
robot which has 20 DoFs and is introduced in details in [103, Sec. II]. It has 10 actuated rotational
joints qm = [q

L/R
1,2,3,4,7]

T (abduction, rotation, hip pitch, knee, and toe motors), and four passive joints
q
L/R
5,6 (shin and tarsus joints). Its floating base, the robot pelvis qp = [qx, qy, qz, qψ, qθ, qϕ]

T , has 6
DoFs for sagittal qx, lateral qy, vertical qz, roll qψ, pitch qθ, and yaw qϕ, respectively. The entire
robot coordinate q ∈ R20 includes all robot DoFs whereas the observable DoFs qo ∈ R17 excludes
the pelvis translational position qx,y,z which can not be reliably obtained by the sensors on the robot
hardware. There is an onboard Intel NUC on the robot, which runs our policy. The policy updates
at 30 Hz and the joint-level PD controller operates at 2 kHz.
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Parameter Range Unit
Link Mass [0.7,1.3] × default kg

Link Mass Center [0.7,1.3] × default m
Joint Damping [0.3,4.0] × default Nms/rad
Spring Stiffness [0.95,1.05] × default Nm/rad

Ground Friction Ratio [0.3, 3.0] 1
Fractal Terrain Height [0.0, 0.12] m

Table 6.1: The range of dynamics parameters that are extended from [104, Table II] and are varied
in the phase 1 of A-RMA.

Simulation Setup
We use the simulation environment for reinforcement learning on Cassie developed in [104], which
itself is based on an open source MuJoCo simulator[172, 4]. During training, each episode has a
maximum number of time steps of T=2500 (83 s). In each episode, we resample a new command
c(t) = [q̇dx q̇

d
y q

d
z , q̇

d
ϕ]
T and randomize the environment parameters every 8 s. The randomization

range of the command is between [−1.0,−0.3, 0.65,−30◦]T and [1.0, 0.3, 1.0, 30◦]T . The episode
will terminate early if the pelvis height falls below 0.55 m, or if the tarsus joints q

L/R
6 hit the

ground [104].

State-Action Space
Observation The observation xt = (qot−4:t,at−4:t−1, q

r
m,t, q

r
m,t+1, q

r
m,t+4, q

r
m,t+7, ct) at time t

consists of 4 parts. There are observable robot states qo = [qo, q̇o] at the current and the past 4 time
steps, and the actions a from the past 4 time steps. There is also reference motion qrm = [qrm, q̇

r
m]

which includes the reference motor position and motor velocity at current time t and future time steps
(next 1, 4, 7 time steps) obtained from a HZD-based gait library [104]. Moreover, the command ct
is also part of the observation. ct includes desired sagittal and lateral walking speed, walking height,
and turning yaw rate (ct = [q̇dx, q̇

d
y , q

d
z , q̇

d
ϕ]).

Action The action at = qdm is the target position for the 10 actuated motors on Cassie which are
first passed through a low-pass filter [104] before being sent to the PD controller to generate the
torque u for each motor.

Environment and Terrain variations
We randomize the environment parameters that includes robot modelling errors, sensor noise and
delay, and terrain variations during the training. Based on previous work [104], the range of the
randomization that is newly introduced is presented in Table. 6.1. Furthermore, we also introduce
fractal-like terrain variations to make the policies robust.
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Min Feasible Tracking
Friction Cmd Range Error

HZD Controller [103] 0.3 39/147 [0.1554, 0.0811]
Robust MLP [104] 0.3 147/147 [0.0869, 0.1150]
RMA [96] 0.2 147/147 [0.0908, 0.0965]
A-RMA (Ours) 0.2 147/147 [0.0849,0.0952]

Table 6.2: Comparison of A-RMA with baseline controllers in MATLAB Simulink. We
observe that all RL-controllers can track the entire command range. Of these, A-RMA and RMA
generalize beyond the training friction range, maintaining stability in as low as a 0.2 friction
coefficient. A-RMA has the best tracking performance in both [q̇dx, q̇

d
y ] compared to all the baseline

controllers.

Training Details
Base Policy and Environment Encoder The base policy (π) is a MLP with 2 hidden layers of
size 512 each. The environment encoder (µ) has 1 hidden layer of size 256, and output (z) size of 8.
We train the policy with PPO using a batch size of 65536 and minibatch size of 8192.

Adaptation Module The adaptation module (ϕ) contains 3 convolution layers (kernels sizes
8, 5, 5 and strides 4, 1, 1 respectively) followed by 1 hidden layer of size 256. The output layer (ẑ)
is 8 dimensional. We train the policy with Adam optimizer using the same batch size, for a total of
2000 iterations, resampling a new batch in every iteration.

Base Policy Finetuning Stage In the last finetuning stage of A-RMA, we freeze the adaptation
module and finetune the base policy using PPO with a batch size of 65536 and minibatch size of
8192 for 2000 iterations.

6.5 Results and Analysis
We first validate A-RMA in both MuJoCo and MATLAB Simulink (a high-fidelity simulator), and
then present the results of RMA deployed on a bipedal robot Cassie in the real world. All A-RMA
results in simulation and the real world are from the same policy which was only trained in MuJoCo
and was deployed in MATLAB Simulink and the real world without any finetuning during test
time. In this chapter, we focus more on the control performance with a nominal walking height
qz = 0.98 m, i.e., we do not change the walking height qz during the test though the policy is trained
with variable walking height.
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MTTF (s) Return Tracking Err Mean Jerk

A-RMA-static 7.1 158.5 0.79 0.64
RMA [96] 11.4 273.6 0.29 0.92
A-RMA 14.0 335.8 0.30 0.30

A-RMA-priv 14.2 340.0 0.27 0.28

Table 6.3: Comparison of A-RMA with baseline controllers in MuJoCo. We observe that
A-RMA’s performance is very close to A-RMA-priv, which has access to privileged simulation
information, and is better than all the baseline controllers for the metrics: MTTF (max episode
length = 20s), Returns and Mean Jerk experienced. The tracking performance (Mean Tracking
Error) is similar to RMA. Note that RMA experiences a large drop compared to A-RMA-priv
because of unobservability of the entire extrinsics vector from proprioception. A-RMA-static sees a
sharp drop in performance compared to A-RMA, validating the importance of a continually and
rapidly updating extrinsics vector.

Simulation Validation
The Simulink simulator provides us a safe validation environment to compare locomotion controllers
while providing very high fidelity dynamics which is much more accurate than MuJoCo. We
additionally show comparisons of A-RMA to its other adaptive variants in MuJoCo. Please note that
the agent has no access to the Simulink data during the policy training in MuJoCo. We benchmark
the A-RMA with the following locomotion controllers on Cassie as baselines: 1) a HZD-based
controller (HZD) developed in [103] based on [57], 2) a robust RL-based locomotion controller
represented by MLP (Robust MLP) developed in [104], 3) A-RMA-static in which we estimate the
latent in the first time step and then freeze it for the rest of the episode, 4) RMA [96]. Finally as
oracle, we also show the performance of A-RMA-priv which has access to privileged simulation
information for reference. Please note that, for all the RL-based controllers, we utilize the same
formulation of rewards and range of dynamics randomization presented in Sec. 6.4 during training.

We benchmark these controllers using the following metrics: 1) the converged return, 2)
command tracking performance on a nominal ground, 3) Minimum friction successfully handled,
4) Mean time to Fall (MTTF), 5) Mean Jerk of all the joints. In MuJoCo, the reported metrics are
computed over 10 episodes with an episodic timeout of 20s during which we randomize all the
parameters shows in Table 6.1.

Converged Return and MTTF We report the performance of A-RMA-priv to understand the
maximum achievable performance. As shown in Table 6.3, going from A-RMA-priv to RMA
shows a sharp performance fall in both the metrics. This sharp fall is a consequence of non-
negligible phase 2 regression loss as the extrinsics vector might not be fully observable from the
proprioception history. We show that the proposed A-RMA recovers this performance drop and
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approximately matches the performance of the A-RMA-priv. We additionally see that A-RMA-static
has a substantial performance fall indicating the importance of rapid online adaptation via estimated
extrinsics.

Command Tracking We compare the different locomotion controllers on command tracking
performance where we sample different desired sagittal walking speed q̇dx and lateral walking speed
q̇dy . The command tracking performance includes two parts: the range of the command for which
a controller is able to maintain gait stability (Feasible Command Set [104]), and tracking error
between the desired and actual robot walking velocities.

We test the range of command [q̇dx, q̇
d
y ]
T from [−1.0,−0.3]T to [1.0, 0.3]T with a resolution of

[0.1, 0.1]T with a nominal walking height qz = 0.98 on Cassie with different locomotion controllers
in simulation. These count for 147 different commands and a command is considered feasible
if the controller can maintain stability for 10 seconds. As demonstrated earlier in [104], HZD
controller is only able to stably track a limited number of commands at nominal walking height.
Specifically, the lateral walking speed cannot exceed 0.1m/s while walking forwards, and there are
only 39/147 feasible commands using the HZD controller. However, all of the RL-based controllers
can cover the entire range of the testing commands, i.e., there are 147/147 feasible commands using
locomotion controllers using Robust MLP, RMA, and A-RMA. In terms of the tracking errors, as
shown in Fig. 6.3, A-RMA manifests the least tracking errors with the only [0.0849, 0.0952]T m/s
compared to other RL-based controllers (Table. 6.2 and Table. 6.3). Moreover, as seen in Fig. 6.3,
RMA and A-RMA produce less oscillations than Robust MLP. A-RMA has an overall superior
performance in command tracking.

Mean Jerk We measure the jerk experienced in the motors in MuJoCo for the baseline controllers.
We observe in Table 6.3 that A-RMA almost matches the smoothness of the A-RMA-priv, while
RMA and A-RMA-static seem to do much worse. The additional phase 3 in A-RMA allows the
base policy to learn smooth behaviours while accounting for the imperfect extrinsics estimator.

Slippery Ground We use MATLAB Simulink to quantify the ability of locomotion controller to
maintain gait stability on slippery ground. Fig. 6.4 shows that both HZD and Robust MLP fail to
maintain robot balance when the ground friction coefficient is set to 0.2 while RMA and A-RMA
succeed to control the robot to walk forwards and backwards. We do a line search on friction values
and observe that the minimal ground friction for which HZD and Robust MLP can maintain stability
is 0.3 while RMA and A-RMA can go down to 0.2. This is significant because bipedal robots are
inherently unstable and become very hard to control as the coefficient of friction approaches zero.
Note that the RL-controllers were not trained for friction value of 0.2 (see Table 6.1), demonstrating
that RMA and A-RMA have better generalization at test time than Robust MLP. Furthermore, as
shown in Fig. 6.4d, Cassie does not deviate a lot in the lateral direction (with command q̇dy = 0)
when it walks backwards using A-RMA, while there exists a large drift to the right for RMA in
Fig. 6.4c. This showcases A-RMA’s superior tracking performance even on a slippery ground.
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Real World Experiments
We deploy A-RMA on a Cassie bipedal robot in the real world, and test in four scenarios: 1) tracking
variable commands on a nominal ground, 2) robot walking while towing a heavy load with cable,
3) slippery ground, and 4) rough terrain with variable softness. We use the same policy for all our
experiments which was trained in MuJoCo simulation and is deployed without any finetuning or
calibration. The results are demonstrated in Fig. 6.5. Videos are available at [41] and included in
the video attachment.

As shown in Fig. 6.5a, 6.5b, Cassie is able to track varying commands including forwards,
backwards, and sideways walking speed while maintaining gait stability and low ground impacts.

In the load carrying task, Cassie controlled by A-RMA is able to tow the load (around 40 kg
with wheels) while maintaining forward walking speed with no significant drift to other directions,
as shown in Fig. 6.5c. During the tests, the robot is able to stay robust to the pulling force from the
cable which fluctuates depending on the speed of the payload and the tension in the string making it
hard to model. Despite, slack/taut changes happening during the trials, the robot is able to maintain
stability against such hybrid mode switches.

During the slippery ground test, we cover the ground by a plastic sheet with water in between in
order to reduce the ground friction coefficient, as shown in Fig. 6.5d. When the robot steps onto the
plastic sheet, there are significant slips between the robot feet and ground, i.e., unexpected contact
changes which makes controlling a life-sized robot with such low ground traction very challenging.
However, the proposed policy is able to adapt to the changes in ground friction and contacts, and
therefore able to maintain gait stability on such a slippery ground while tracking varying commands
in both forward and lateral directions.

We also introduce challenging types of terrains and contacts in the tests presented in Fig. 6.5e,
where we randomly place soft foams and wooden planks on the ground and let the robot walk onto
that region. Such random changes of softness on the ground will change the contact type between
the robot feet and ground: the contact region is on the sole when robot steps on a rigid plank while
the contact can happens anywhere on the robot foot if it step into the soft foam, which making the
contact very hard to model. Cassie, using A-RMA, is not only able to step on the rigid plank but
also onto the soft foams without losing balance. Please note that the softness of the ground is not
randomized during training as simulating a soft contact with high fidelity is still an open question.
However, A-RMA is still able to generalize to the softness changes in the real world despite never
having seen it during training.

6.6 Summary
We demonstrate an extension of RMA (which we call A-RMA) on a life-sized bipedal robot, Cassie.
It extends the RMA algorithm by accounting for imperfect extrinsics estimation from the adaptation
module. This is done by adding an additional base policy finetuning phase using model-free RL
on the imperfect extrinsics. A-RMA, although only trained in simulatoin, shows generalization to
terrains beyond what is seen during training without additional real-world finetuning or calibration.
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(a) Robust MLP

(b) RMA

(c) A-RMA

Figure 6.3: Plot of tracking error in sagittal and lateral directions different controllers. RMA and
A-RMA produce less oscillations than the Robust MLP once the lateral velocity has stabilized.
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(a) HZD (b) Robust MLP (c) RMA (d) A-RMA

Figure 6.4: Trajectories of Cassie on slippery ground with friction coefficient of 0.2. We observe
that A-RMA has minimal lateral deviation and is more stable than RMA, which shows significant
deviation in the lateral walking direction.

(a) Nominal ground
(forward)

(b) Nominal ground
(sideways)

(c) Towing a ~40 kg payload on wheels

(d) Slippery ground
(e) Uneven ground with variable
softness

Figure 6.5: Real world deployment of Cassie walking on nominal ground, towing a payload,
walking on a slippery surface, and on rough terrain with variable softness of the ground. The
payload and rough terrain tests were repeated twice with consistent results. The same A-RMA
policy was deployed in all these scenarios without any real world fine-tuning, task specific tuning,
or calibration. We observe that A-RMA maintains stability in all of these deployment scenarios
despite never having seen some of them during training.
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Chapter 7

Conclusion

To summarize, this thesis takes a significant leap by demonstrating purely learning-based con-
trollers that can successfully control highly dynamic systems in the real world in a diverse set
of environments. The key benefit of learning-based methods over classical methods is that they
require minimal modifications to work on a task and have the promise of paving the path towards
the development of a robot generalist – capable of solving a diverse set of tasks in the real world
reliably. The algorithm proposed in this thesis is called Rapid Motor Adaptation (RMA), and its
design is guided by the following three principles:

• using a principled approach by using data-driven search via reinforcement learning,

• using energy efficiency as the penalty for learning natural behaviors,

• enabling rapid adaptation to new unseen scenarios in fractions of a second for real world
generalization.

RMA is first developed in the context of blind quadruped walking on challenging terrains in
the real world and then is later extended to visual walking to allow quadrupeds to traverse even
more complex terrains such as stepping stones that are beyond the reach of blind agents. Since the
core algorithm does not assume anything specific to walking, we show that it can also be applied to
in-hand rotation with a four-fingered anthropomorphic hand to rotate a diverse set of objects in the
real world. In the same spirit, we show how RMA can be used to learn a single universal controller
capable of flying drones of diverse morphologies, and finally for blind bipedal walking.
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Chapter 2 Supplementary Material

A.1 Metrics
We use several metrics (in SI units) to evaluate and compare the performance of RMA against
baselines:

• Success Rate: Average rate of successfully completing the task as defined in the next section.

• Time to Fall (TTF): Measures the time before a fall. We divide it by the maximum duration
of the episode and report a normalized value between 0 and 1.

• Reward: Average step forward reward plus lateral reward over multiple episodes as defined in
chapter 2 (RL Rewards) .

• Distance: Average distance covered in an episode. For real-world experiments, we report the
normalized distance, where we normalize by the maximum distance which is specific to the
task.

• Adaptation Samples: Number of control steps to explore in the testing environment needed
for the motor policy to adapt.

• Torque: Squared L2 norm of torques at every joint ∥τ t∥2.

• Jerk: Squared L2 norm of delta torques ∥τ t − τ t−1∥2.

• Ground Impact: Squared L2 norm of delta ground reaction forces at every foot ∥f t − f t−1∥2.

A.2 Additional Training and Deployment Details
The training pipeline is shown in Algorithm 1, and the deployment pipeline is shown in Algorithm
2.
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Algorithm 1 RMA Training
Phase 1 Randomly initialize the base policy π; Randomly initialize the environmental factor encoder
µ; Empty replay buffer D1 for 0 ≤ itr ≤ N1

itr do
for 0 ≤ i ≤ Nenv do

x0, e0 ← envs[i].reset() for 0 ≤ t ≤ T do
zt ← µ(et) at ← π(xt, at−1, zt) xt+1, et+1, rt ← envs[i].step(at) Store
((xt, et), at, rt, (xt+1, et+1)) in D1

end
end
Update π and µ using PPO [158] Empty D1

end

Phase 2 Randomly initialize the adaptation module ϕ parameterized by θϕ; Empty mini-batch D2

for 0 ≤ itr ≤ N2
itr do

for 0 ≤ i ≤ Nenv do
x0, e0 ← envs[i].reset() for 0 ≤ t ≤ T do

ẑt ← ϕ(xt−k:k, at−k−1:k−1) zt ← µ(et) at ← π(xt, at−1, ẑt) xt+1, et+1, _ ←
envs[i].step(at) Store (ẑt, zt) in D2

end
end
θϕ ← θϕ − λθϕ∇θϕ

1
TNenv

∑
∥ẑt − zt∥2 Empty D2

end

We use PPO [158] to train the base policy and the environmental factor encoder. We train for
total 15, 000 iterations. During each iteration, we collect a batch of 80, 000 state-action transitions,
which is evenly divided into 4 mini-batches. Each mini-batch is fed into the base policy and
the Environment Factor Encoder in sequence for 4 rounds to compute the loss and error back-
propagation. The loss is the sum of surrogate policy loss and 0.5 times the value loss. We clip
the action log probability ratios between 0.8 and 1.2, and clip the target values to be within the
0.8− 1.2 times range of the corresponding old values. We exclude the entropy regularization of
the base policy, but constrain the standard deviation of the parameterized Gaussian action space to
be large than 0.2 to ensure exploration. λ and γ in the generalization advantage estimation [157]
are set to 0.95 and 0.998 respectively. We use the Adam optimizer [87], where we set the learning
rate to 5e−4, β to (0.9, 0.999), and ϵ to 1e−8. The reference implementation can be found in the
RaisimGymTorch Library [70].

If we naively train our agent with the reward function aggregating all the terms, it learns to fall
because of the penalty terms. To prevent this collapse, we follow the strategy described in [72]. In
addition the scaling factors of all reward terms, we apply a small multiplier kt to the penalty terms
3− 10, as defined in chapter 2 (RL rewards). We start the training with a very small k0 set to 0.03,
and then exponentially increase the these coefficients using a fixed curriculum: kt+1 = k0.997

t , where
t is the iteration number. The learning process is shown in Figure A.1.
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Algorithm 2 RMA Deployment
Process 1 operating at 100 Hz t← 0 while not fall do

at ← π(xt, at−1, ẑasync) xt+1 ← env.step(at) t← t+ 1
end

Process 2 operating at 10 Hz while not fall do
ẑasync ← ϕ(xt−k:k, at−k−1:k−1)

end

A.3 Additional Real-World Adaptation Anaylsis
In addition to the oil-walking experiments in chapter 2, we also analyze the gait patterns and the
torque profile for the mass adaptation case, shown in Figure A.2. We throw a payload of 5kg on the
back of the robot in the middle of a run and plot the torque profile of the knee, gait pattern, and
the 2th and 7th components of the extrinsics vector ẑt as shown in Figure A.2. We observe that the
additional payload disturbs the regular motion of the robot, after which it enters the adaptation phase
and finally recovers from the disturbance. When the payload lands on the robot, it is noticeable that
the plotted components of the extrinsics vector change in response to the slip. Post adaptation, we
see that the torque stabilizes to a higher magnitude than before to account for the payload and the
gait time period is roughly recovered.

A.4 Additional Simulation Testings
In Figure A.3, we further test RMA in extreme simulated environments and show its performance
in three types of environment variations: the payloads added on the base of the A1 robot, the terrain
elevation variation (z-scale used in the fractual terrain generator, details chapter 2 (Simulation
Setup), and the friction coefficient between the robot feet and the terrain. We show the superiority
of RMA across all the cases in terms of Success Rate, TTF and Reward as defined in Section A.1.
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Figure A.1: We plot the average step reward during the total 15, 000 training iterations. We show
the converging trend of the reward aggregating all reward terms, forward + lateral reward, and sum
of penalty terms. It also shows the necessity of applying a small multiplier to the penalty terms
at the beginning of training; otherwise, the robot will only have negative experience initially and
unable to learn to walk quickly.
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Figure A.2: We analyze the change in behavior of RMA as we throw a payload of 5kg on the back
of the robot. As a note, we have flipped the images so that that movement appears from left to
right which is why the label on the sandbag appears to be 2Kg. We plot the torque profile of the
knee and the gait pattern. The bottom plot shows median filtered 2nd and 7th components of the
extrinsics vector ẑ predicted by the adaptation module. When the 5kg payload is thrown on the
back of the robot, we see a dip in the center of mass of the robot, which the adaptation module
subsequently recovers from. In the bottom plot, we see a jump in response in the plotted components
of the estimated extrinsics vector, indicating that the additional payload has been detected by the
adaptation module. Note that post adaptation, the recovered gait time period is roughly similar to
the original, the torque magnitudes have increased and the extrinsics vector continues to capture the
presence of the 5Kg payload on the back of the robot.
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Figure A.3: Simulation Generalization Results: We further compare the generalization perfor-
mance of our method to baseline methods in simulation. We pick three physics parameters that may
vary to a large degree in the real world: the payload on robot, the terrain height variation, and the
friction coefficient between the robot feet and the terrain. We set other environment parameters
according to the training range as described in chapter 2. Baselines and metrics are defined in
Section A.1. We report the mean and standard deviation of the performance of 3 randomly initialized
policies, which is characterized by the average of 100 testing trials in given settings. Despite no
testing environment samples, RMA performs the best, the closest to Expert’s performance. For
reference, A1 robot without additional payloads weighs 12 kg, and is 0.35 m tall. The static friction
coefficient between rubber and concrete is 1.00.
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B.1 Experimental Setup and Training Details
Hardware Details: We use Unitree’s A1 robot as our hardware platform [177]. A1 is a medium
sized quadruped with 18 DoFs out of which 12 are actuated. Its mass is about 12 kg. We measure
the joint positions and velocities of the 12 joints from the motor encoders and roll and pitch angles
from the IMU sensor. To sense the foot contacts with ground in the real world, the foot sensor
readings are taken on-board. The feet of the robot are deformable rubber membranes with filled
air and air pressure sensors attached. When the foot membranes are deformed, readings from the
pressure sensor will increase. We binarize the pressure reading by setting a threshold. Whenever
the pressure reading from a foot is above that threshold, we treat it as a foot contact. The deployed
policy uses position control for the joints of the robots. We use a PD controller to convert target
joint position to torque with fixed gains (Kp = 55 and Kd = 0.8).

Simulation Setup: We use the A1 URDF [177] to simulate the A1 robot in the RaiSim simulator
[71]. We generate complex terrains using the inbuilt fractal terrain generator (flat terrain
for structured gait emergence: number of octaves = 2, fractal lacunarity = 2.0, fractal
gain = 0.25, frequency = 10Hz, amplitude = 0.23m; uneven terrain for unstructured
gait emergence: number of octaves = 2, fractal lacunarity = 2.0, fractal gain = 0.25, frequency
= 20Hz, amplitude = 0.27m). We simulate each episode for a maximum of 1000 steps and terminate
the episode earlier if the height of the robot drops below 0.28m, magnitude of the body roll exceeds
0.4 radians or the pitch exceeds 0.2 radians. The control frequency of the policy is 100Hz, and the
simulation time step is 0.025s.

Environmental Variations: All environmental variations with their ranges are listed in chapter 3.
The environment information of et in RMA [96] includes center of mass position and the payload
(3 dimensions), motor strength (12 dimensions), friction (1 dimension), linear speed in x direction
vx (1 dimension), linear speed in y direction vy (1 dimension) and yaw speed ωyaw (1 dimension),
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making it a 19-dim vector. We smooth vx, vy and ωyaw by using exponential averaging with values
of history time steps and a smoothing factor of 0.2.

State Space: The state is 30 dimensional containing the joint positions (12 dimensions), joint
velocities (12 dimensions), roll and pitch angles of the torso, and binarized foot contact indicators (4
dimensions). We did not use any classical state estimator to measure the base velocity or orientation.

Action Space: The action space is 12 dimensional corresponding to the target joint position for
the 12 robot joints. The speed up policy learning, the policy network outputs the delta target joint
positions, which are converted to target joint positions by adding the joint angles of the initial
standing state. The delta target joint positions at HAA, HFE and KFE are restricted to [−0.15, 0.15],
[−0.4, 0.4] and [−0.4, 0.4] in radians respectively. The predicted 12-dim target joint angles a = q̂

is converted to torques τ using a PD controller: τ = Kp (q̂ − q) +Kd

(
ˆ̇q − q̇

)
. Kp and Kd are

manually-specified gains, and the target joint velocities ˆ̇q are set to 0.

Reward: We use the energy consumption-based reward throughout all settings. On uneven terrain
for unstructured gaits, we add the same extra natural penalties in [96] to explicitly minimize ground
impacts.

Hyperparameters of Policy Learning: PPO [158] and Adam optimizer [87] are used to train
the base policy and the environmental factor encoder in RMA [96]. The total number of training
epoch is 15, 000. During each epoch, a batch of 100, 000 state-action transitions, which is split into
4 mini-batches, is sampled from the current policy. Each mini-batch is used for 4 times to compute
the loss and backpropagation. The total loss is the surrogate policy loss plus half the value loss.
The action log probability ratio is clipped between 0.8 and 1.2, and the target value is clipped to
0.8− 1.2 times the range of the value that is computed in previous iteration. We lower bound the
standard deviation of the parameterized Gaussian action space to 0.2 to encourage exploration. We
set λ and γ in the generalization advantage estimation [157] to 0.95 and 0.998 respectively. We set
the learning rate of the optimizer to 5e−4, β to (0.9, 0.999), and ϵ to 1e−8.

B.2 Details of the MPC baseline
We use a reference implementation [31] of convex MPC [38] for Unitree A1. The parameters
for gait generation to enforce constraints on ground reaction forces are fine-tuned for walking
gait, trotting gait and bouncing gait. For the walking gait, we test at target speeds vtarget in the
range from 0.1m/s to 0.7m/s every 0.1m/s. We set the duty factors of 4 legs to [0.8, 0.8, 0.8, 0.8],
initial leg phases to [0, 0.25, 0.5, 0], and the stance duration to −0.5vtarget + 0.75 seconds. Only the
Rear-Left foot is initialized in swing phase. For the trotting gait, we test at target speeds vtarget in
the range from 0.5m/s to 1.5m/s every 0.1m/s. We set the duty factors of 4 legs to [0.6, 0.6, 0.6, 0.6],
initial leg phases to [0.9, 0, 0, 0.9], and the stance duration to −0.15vtarget + 0.325 seconds. The
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Figure B.1: Key frames of the walking gait, trotting gait and bouncing (galloping) gait. Red dots
indicate foot contacts.

walk

trot

Figure B.2: Walking with 1 kg payload (two bottles of 500 ml water are strapped on the back of
the robot). The 1 kg payload is out of the normal perturbation of environment parameters used in
simulation training.

Front-Right and Rear-Left feet are initialized in swing phase. For the bouncing gait, we test at target
speeds vtarget in the range from 1.0m/s to 2.0m/s every 0.1m/s. We set the duty factors of 4 legs to
[0.35, 0.35, 0.35, 0.35], initial leg phases to [0, 0, 0, 0], and the stance duration to 0.04 seconds. All
feet are initialized to the stand phase.
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B.3 Additional Experiment Results

Emergence of Walking, Trotting and Bouncing
In Figure B.1 of the Supplementary, we show four key frames of the walking at low target speed
(0.375 m/s), trotting at median target speed (0.9 m/s) and bouncing (galloping) gaits at high target
speed (1.5 m/s). At high speed, the robot gallops for the first few seconds, where the front two legs
leave the ground first and also contact the ground first after the flight phase. Then, it switches to
using bouncing gait where the four legs hit the ground at approximately the same time.

Robustness Tests
In addition to Figure 5 of the main text, Figure B.2 in the Supplementary shows the the key frames
of walking gait under 1 kg payload. The walking gait is robust to the extra payload that is out of the
normal perturbation of environment parameters used in simulation training.
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C.1 Proof of Theorem 3.1
Theorem. M = (S,A, P, R, γ) be an MDP with state space S , action spaceA, transition function
P : S × A → S, reward function R : A × S → R and discount factor γ. Let V 1(s) be the
value function of the phase 1 policy that is trained to be close to optimal value function V ∗(s), i.e.,
|V ∗(s)− V 1(s)| < ϵ for all s ∈ S, and π1(s) be the greedy phase 1 policy obtained from V 1(s).
Suppose the phase 2 policy operates in a different state space S ′ given by an invertible mapping
f : S → S ′ . If the phase 2 policy is close to phase 1 |π1(s)− π2(f(s))| < η ∀ s and R,P are
Lipschitz continuous, then the return of phase 2 policy is close to optimal everywhere, i.e., for all s,∣∣∣V ∗(s)− V π2

(f(s))
∣∣∣ < 2ϵγ + ηc

1− γ

where c ∝
∑

s∈S V
∗(s) is a large but bounded constant.

Proof. Since the function f maps the state spaces S,S ′, we can assume for convenience that both
policies π1, π2 operate in the same state space S. To obtain an action for s′ ∈ S ′, we can simply
query π2(f−1(s′)). Assume that the reward function R and transition function P are Lipschitz

|R(st, at)−R(st, a
′
t)| ⩽ LR |at − a′t| (C.1)

|P (st+1 | st, at)− P (st+1 | st, a′t)| ⩽ LP |at − a′t| (C.2)

for all states st, st+1 and actions at, a′t. We generalize the structure of proof for the upper bound on
the distance in approximate optimal-value functions [163, 16] to the teacher-student setting. Let s0
be the point where the distance between V ∗ and V πS is maximal

s0 = argmax
s

V ∗(s)− V πS

(s) (C.3)

Let QT be the Q-function corresponding to V T . πT is obtained by maximizing QT (s, a) over actions
πT (s) = argmaxaQ

T (s, a). Note that in general the value function V πT may be different from V T .
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Let a∗ be the action taken by the optimal policy at state s0, while aT = πT (s0) be the action taken
by the teacher. Then, the return of the teacher’s greedy action aT must be highest under teacher’s
value function QT ,

QT (s0, a
∗) ⩽ QT (s0, a

T ) (C.4)

We can expand each side of (C.4) above to get

R(s0, a
∗) + γ

∑
s∈S

P (s | s0, a∗)V T (s) ⩽ R(s0, a
T ) + γ

∑
s∈S

P (s | s0, aT )V T (s) (C.5)

Notice that
∣∣V ∗(s)− V T (s)

∣∣ < ϵ implies that V T (s) ∈ [V ∗(s)− ϵ, V ∗(s) + ϵ] which we can plug
into the inequality above to get

R(s0, a
∗)−R(s0, a

T )

⩽ γ
∑
s∈S

[
P (s | s0, aT )V ∗(s)− P (s | s0, a∗)V ∗(s) + ϵ

(
P (s | s0, aT ) + P (s | s0, a∗)

)]
⩽ γ

∑
s∈S

[
P (s | s0, aT )V ∗(s)− P (s | s0, a∗)V ∗(s)

]
+ 2ϵγ (C.6)

We can now write a bound for V ∗(s0)− V πS
(s0). Let aS be the action taken by the student policy

at state s0. Then,

V ∗(s0)− V πS

(s0)

= R(s0, a
∗)−R(s0, a

S) + γ
∑
s∈S

P (s | s0, a∗)V ∗(s)− P (s | s0, aS)V πS

(s) (substitute (C.1))

⩽ R(s0, a
∗)−R(s0, a

T ) + LR
∣∣aS − aT

∣∣+ γ
∑
s∈S

P (s | s0, a∗)V ∗(s)− P (s | s0, aS)V πS

(s)

⩽ R(s0, a
∗)−R(s0, a

T ) + LRη + γ
∑
s∈S

P (s | s0, a∗)V ∗(s)− P (s | s0, aS)V πS

(s)

We can now use (C.6) to write

V ∗(s0)− V πS

(s0)

⩽ 2ϵγ + LRη + γ
∑
s∈S

P (s | s0, aT )V ∗(s)− P (s | s0, aS)V πS

(s) (substitute (C.2))

⩽ 2ϵγ + LRη + γ
∑
s∈S

P (s | s0, aS)(V ∗(s)− V πS

(s)) + ηγLP
∑
s∈S

V ∗(s)

= 2ϵγ + LRη + γ(V ∗(s)− V πS

(s)) + ηγLP
∑
s∈S

V ∗(s)(
since s0 is the state with highest difference between V ∗ and V πS)
⩽ 2ϵγ + LRη + γ(V ∗(s0)− V πS

(s0)) + ηγLP
∑
s∈S

V ∗(s)
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Rearranging yields,

V ∗(s0)− V πS

(s0) ⩽
2ϵγ + η

(
LR + γLP

∑
s∈S V

∗(s)
)

1− γ

Since s0 is the state at which the difference between V ∗ and V πS is maximal, we can claim

V ∗(s)− V πS

(s) ⩽
2ϵγ + ηc

1− γ

for all states s ∈ S, where c =
(
LR + γLP

∑
s∈S V

∗(s)
)

C.2 Rewards
Previous work [96, 48] has shown that task agnostic energy minimization based rewards can lead to
the emergence of stable and natural gaits that obey high-level commands. We use this same basic
reward structure along with penalties to prevent behavior that can damage the robot on complex
terrain. Now onwards, we omit the time subscript t for simplicity.
• Absolute work penalty −|τ · q| where τ are the joint torques. We use the absolute value so that

the policy does not learn to get positive reward by exploiting inaccuracies in contact simulation.
• Command tracking vcmd

x −
∣∣vcmd
x − vx

∣∣− |ωcmd
z − ωz| where vx is velocity of robot in forward

direction and ωz is yaw angular velocity (x, z are coordinate axes fixed to the robot).
• Foot jerk penalty

∑
i∈F ∥f it − f it−1∥ where f it is the force at time t on the ith rigid body and F

is the set of feet indices. This prevents large motor backlash.
• Feet drag penalty

∑
i∈F I [f iz ≥ 1N] ·

(
|vix|+

∣∣viy∣∣) where I is the indicator function, and vix, v
i
y

is velocity of ith rigid body. This penalizes velocity of feet in the horizontal plane if in contact
with the ground preventing feet dragging on the ground which can damage them.

• Collision penalty
∑

i∈C∪T I [f i ≥ 0.1N] where C, T are the set of calf and thigh indices. This
penalizes contacts at the thighs and calves of the robot which would otherwise graze against
edges of stairs and discrete obstacles.

• Survival bonus constant value 1 at each time step to prioritize survival over following commands
in challenging situations.

The scales for these are −1e−4, 7,−1e−4,−1e−4,−1, 1. Notice that these reward functions do
not define any gait priors and the optimal gait is allowed emerge via RL. Target heading values
hcmd
t are sampled and commanded angular velocities is computed as

(
ωcmd
z

)
t
= 0.5 ·

(
hcmd
t − ht

)
where ht is the current heading value. When walking on terrain,

(
vcmd
x

)
t
= 0.35m/s and heading is

varied in hcmd
t ∈ [−10◦, 10◦]. On flat ground, one of three sampling modes are chosen uniformly

at random - curve following, in-place turning and complete stop. In the curve following regime(
vcmd
x

)
t
∈ [0.2m/s, 0.75m/s] while hcmd

t ∈ [−60◦, 60◦]. For in-place turning,
(
vcmd
x

)
t
= 0 and

hcmd
t ∈ [−180◦, 180◦]. In complete stop,

(
vcmd
x

)
t
= 0, hcmd

t = 0. This scheme is designed to mimic
the distribution of commands the robot sees during operation. We terminate if the pitch exceeds 90◦

or if the base or head of the robot collides with an object.
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Observation a b σ

Joint angles (left hips) 1.0 0.1 0.01
Joint angles (right hips) 1.0 -0.1 0.01

Joint angles (front thighs) 1.0 0.8 0.01
Joint angles (rear thighs) 1.0 1.0 0.01

Joint angles (calves) 1.0 -1.5 0.01
Joint velocity 0.05 0.0 0.05

Angular velocity 0.25 0.0 0.05
Orientation 1.0 0.0 0.02

Scandots height 5.0 0.0 0.07
Scandots horizontal location – – 0.01

Table C.1: During training, ground truth observations ot are shifted , normalized and noised to get
observations o′

t which are passed to the policy. o′
t = a(ot − b) + ϵ where ϵ ∼ N (0, σ). We tabulate

a, b, σ for each kind of observation above. a, b values for scandots horizontal locations are blank
since these locations are fixed with respect to the robot and not passed to the policy.

C.3 Experimental Setup and Implementation Details

Hardware
We use the Unitree A1 robot. The robot has 12 actuated joints, 3 per leg at hip, thigh and calf joints.
The robot has a front-facing Intel RealSense depth camera in its head. TThe compute consists of
a small GPU (Jetson NX) capable of ≈0.8 TFLOPS and an UPboard with Intel Quad Core Atom
X5-8350 containing 4GB ram and 1.92GHz clock speed. The UPboard and Jetson are on the same
local network. Since depth processing is an expensive operation we run the convolutional backbone
on the Jetson’s GPU and send the depth latent over a UDP socket to the UPboard which runs the
base policy. The policy operates at 50Hz and sends joint position commands which are converted
to torques by a low-level PD controller running at 400Hz with stiffness Kp = 40 and damping
Kd = 0.5.

Simulation Setup We use the IsaacGym (IG) simulator with the legged_gym library [152] to
develop walking policies. IG can run physics simulation on the GPU and has a throughput of around
2e5 time-steps per second on a Nvidia RTX 3090 during phase 1 training with 4096 robots running
in parallel. For phase 2, we can render depth using simulated cameras calibrated to be in the same
position as the real camera on the robot. Since depth rendering is expensive and memory intensive,
we get a throughput of 500 time-steps per second with 256 parallel environments. We run phase 1
for 15 billion samples (13 hours) and phase 2 for 6 million samples (6 hours).



APPENDIX C. CHAPTER 4 SUPPLEMENTARY MATERIAL 96

Figure C.1: Set of terrain we use during training

Name Range

Height map update frequency* [80ms, 120ms]
Height map update latency* [10ms, 30ms]

Added mass [−2kg, 6kg]
Change in position of COM [−0.15m, 0.15m]

Random pushes Every 15s at 0.3m/s
Friction coefficient [0.3, 1.25]

Height of fractal terrain [0.02m, 0.04m]
Motor Strength [90%, 110%]

PD controller stiffness [35, 45]
PD controller damping [0.4, 0.6]

Figure C.2: Parameter randomization in simulation. * indicates that randomization is increased to this value
over a curriculum.
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Figure C.3: The privileged baseline receives terrain information from all around the robot including
from around the hind feet.

Environment We construct a large elevation map with 100 sub-terrains arranged in a 20×10 grid.
Each row has the same type of terrain arranged in increasing difficulty while different rows have
different terrain. Each terrain has a length and width of 8m. We add high fractals (upto 10cm) on flat
terrain while medium fractals (4cm) on others. Terrains are shown in Figure C.1 with randomization
ranges described in Table C.2.

Policy architecture The elevation map compression module β consists of an MLP with 2 hidden
layers. The GRUs G1, G2 are single layer while the feed-forward networks F 1, F 2 have two hidden
layers with ReLU non-linearities. The convolutional depth backbone γ consists of a series of 2D
convolutions and max-pool layers.
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Appendix D

Chapter 5 Supplementary Material

D.1 Additional Results and Analysis

Per-Object Result Result Analysis.
In Figure D.1, we show an almost linear correlation between object mass and the average torque
commanded by our policy. This indicates our policy behave differently for objects with different
weights and commands smaller torque when object is lighter for energy efficiency.

In Section 5.3, we show the average performance over multiple challenging objects. To give
more insights about the working and failure cases of our approach, we analyze the performance on
each of the 33 objects we used in experiments. The results are shown in Figure D.2, Figure D.3,
and Figure D.4.

Our policy can achieve almost perfect stable and continuous in-hand rotation in 22 out of 33
objects. This set includes objects with different scale, mass, coefficient of frictions, and shapes.
Notably, for objects with very high center of mass (the plastic bottle and paper towel), the policy
can still perform stable and dynamic in-hand rotations. For more challenging objects including
cubes, heavy object with larger aspect ratio (Pear and Kiwi Fruit), and small objects, our policy can
still perform about 10 to 20 seconds in-hand rotations. The failure cases are mostly object falling
from the fingertips because of incorrect contact positions.

Multi-Axis In-Hand Object Rotation
We explore the possibility of using our approach to do multi-axis in-hand object rotation. We
qualitatively demonstrate preliminary results in the project website. We find this is a harder task
than single-axis training and needs about 1.5× training time. Our policy achieves a smooth gait
transition between rotation over different axes.

https://haozhi.io/hora/#multi
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D.2 Ablation Experiments
We analyze different design choices for our method in simulation.

Training with Different Randomization Parameters. Our approach applies a large range of
physical randomization during training. In Table D.1, we compare the performance difference with
our method but without physical randomization.

The No Rand entry in Table D.1 use the same reward as our method. However, we do not apply
any physical randomization during training. The object scale, mass, coefficient of friction, and other
physical properties are fixed. This method performs much worse than our method with physical
randomization, especially in the out-of-distribution case.

Within Training Distribution Out-of-Distribution

Method RotR (↑) TTF (↑) ObjVel (↓) Torque (↓) RotR (↑) TTF (↑) ObjVel (↓) Torque (↓)

No Rand 171.96±20.63 0.63±0.07 0.48±0.07 1.94±0.32 88.02±14.27 0.37±0.06 0.98±0.16 2.26±0.29

Ours 222.27±21.20 0.82±0.02 0.29±0.05 1.20±0.19 160.60±10.22 0.68±0.07 0.47±0.07 1.20±0.17

Table D.1: We report the performance of our method without physical randomization during training (the
No Rand entry). It performs much worse than our method, especially in the out-of-distribution case.

Length of Proprioceptive History. In Table D.2, we compare and report the performance
with different proprioceptive history length during training the adaptation module. We report the
performance a history length 10, 20, and 30. We observe the performance keeps increasing when
using a longer history, but saturates at about 30. Considering the efficiency during inference time,
we decide to use T=30 in final experiments.

Within Training Distribution Out-of-Distribution

Method RotR (↑) TTF (↑) ObjVel (↓) Torque (↓) RotR (↑) TTF (↑) ObjVel (↓) Torque (↓)

Ours-T10 215.81±17.55 0.80±0.02 0.30±0.04 1.19±0.16 150.58±7.07 0.61±0.05 0.51±0.08 1.18±0.14

Ours-T20 220.46±19.72 0.82±0.02 0.30±0.04 1.21±0.17 157.22±8.11 0.64±0.04 0.48±0.07 1.20±0.15

Ours-T30 222.27±21.20 0.82±0.02 0.29±0.05 1.20±0.19 160.60±10.22 0.68±0.07 0.47±0.07 1.20±0.17

Table D.2: We compare the effect of using different proprioceptive history length during training the
adaptation module. Our approach is not sensitive to this hyperparameter. The performance increases when
we increase the history length but saturates when the history length is long enough at T=30.

Additional Baseline for Robust Domain Randomization (DR). In the main text, the Robust
Domain Randomization (DR) baseline only receives ot as the input, which contains the robot joint
positions and actions in the past three timesteps. In Table D.3, we study the effect of including
longer robot observations.
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Within Training Distribution Out-of-Distribution

Method RotR (↑) TTF (↑) ObjVel (↓) Torque (↓) RotR (↑) TTF (↑) ObjVel (↓) Torque (↓)

Expert 233.71±25.24 0.85±0.01 0.28±0.05 1.24±0.19 165.07±15.65 0.71±0.04 0.42±0.06 1.24±0.16

DR-MLP-T3 176.12±26.47 0.81±0.02 0.34±0.05 1.42±0.06 140.80±17.51 0.63±0.02 0.64±0.06 1.48±0.20

DR-MLP-T5 165.26±30.66 0.76±0.04 0.37±0.05 1.26±0.09 115.13±16.59 0.57±0.06 0.59±0.08 1.27±0.08

DR-MLP-T10 140.95±13.66 0.72±0.06 0.39±0.09 1.52±0.41 98.32±10.79 0.54±0.05 0.57±0.06 1.51±0.39

DR-MLP-T20 42.86±3.66 0.20±0.02 0.62±0.03 1.84±0.19 60.21±5.19 0.34±0.05 0.82±0.09 1.95±0.20

DR-MLP-T30 49.83±32.35 0.31±0.19 1.32±1.04 1.52±0.41 36.33±20.21 0.24±0.14 1.75±1.28 2.03±0.40

DR-LSTM-T10 115.28±32.99 0.56±0.15 0.49±0.08 2.00±0.45 73.60±23.88 0.38±0.12 0.77±0.19 1.91±0.41

DR-LSTM-T20 94.33±33.78 0.44±0.10 0.57±0.08 1.93±0.28 60.18±17.85 0.28±0.06 0.91±0.15 1.85±0.27

DR-LSTM-T30 75.61±9.30 0.36±0.04 0.62±0.12 1.91±0.25 48.32±4.81 0.24±0.03 1.04±0.18 1.84±0.22

Ours 222.27±21.20 0.82±0.02 0.29±0.05 1.20±0.19 160.60±10.22 0.68±0.07 0.47±0.07 1.20±0.17

Table D.3: We compare the domain randomization baseline with extended temporal input. However, we find
that both the MLP and LSTM networks suffer optimization difficulty. The performance decreases when the
input contains longer observation sequences.

To fuse robot observations from multiple steps, we consider two different architectures. In MLP,
we flatten and concatenate the observations over the time dimension and directly feed it into the
policy network. We also explore to use an LSTM network to capture the temporal correlation of
input observations. The input will first pass through an LSTM network and then feed into the policy
network. The results are shown in Table D.3.

We find that the MLP network is hard to optimize via PPO when temporal length is higher. We
see a clear trend of decreasing performance when we increase the temporal length from 3 to 30.
LSTM performs better than MLP when the temporal length is larger but still suffer the optimization
difficulty.

We also consider a temporal convolution network but find it cannot be successfully optimize
and only produce random policies.

D.3 Implementation Details
Physical Randomization Parameter. We apply domain randomization during training the base
policy as well as the adaptation module. The parameters are listed in Table D.4 (Train Range).
During simulation evaluation, we use a larger randomization range to test the performance of
out-of-distribution generalization.

We use cylindrical objects for training. The cylindrical objects has a radius of 8 cm and a height
sampled from the following discretized list: [0.8, 0.85, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15, 1.2] cm. The
whole object will be scaled by the randomized object scale parameter specified in Table D.4.
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Following [129], we apply a random disturbance force to the object during training. The force
scale is 2m where m is the object mass. The force is decayed by 0.9 every 80ms following [129].
The force is re-sampled at each time-step with a probability 0.25. During out-of-distribution testing,
we increase the force scale to be 4m. We also add a noise to the joint position sampled from a
uniform distribution U(0, 0.005) to make it more robust to the real-world noisy joint readings.

Parameter Train Range Test Range

Object Shape Cylindrical Cylindrical, Cube, and Sphere

Object Scale [0.70, 0.86] [0.66, 0.90]

Mass [0.01, 0.25] kg [0.01, 0.30] kg

Center of Mass [-1.00, 1.00] cm [-1.25, 1.25] cm

Coefficient of Friction [0.3, 3.0] [0.2, 3.5]

External Disturbance (2, 0.25) (4, 0.25)

PD Controller Stiffness [2.9, 3.1] [2.6, 3.4]

PD Controller Damping [0.09, 0.11] [0.08, 0.12]

Table D.4: Randomization Range of Physics Parameters. We sample the value of Object Scale, Mass,
Center of Mass, Coefficient of Friction, Stiffness, and Damping from a uniform distribution where
the lower and upper values are specified in the table. The specification of External Disturbance is
specified in the text.

We also include 10% sphere objects and 10% cubes in the out-of-distribution evaluation. The
canonical sphere object is of diameter 8 cm and the cube object is of side length 8 cm. They are
also scaled by the randomized scale parameter.

Stable Precision Grasp Generation. Our approach assumes the object is grasped at the
beginning of the episode. To achieve this, we start from a canonical grasping position using fingers.
Then we add a relative offset to the joint positions sampled from U(−0.25, 0.25)rad. Then we
forward the simulation by 0.5 s. We save the grasping pose if all the following conditions are
satisfied:

1. The distance between the fingertip and the object should be smaller than 10 cm.
2. At lease two fingers are in contact with the object.
3. The object’s height should be above 14.5 cm higher than the center of the palm.

In practise, we discretized (each region is separated by 0.2) the scales specified in Table D.4 and
pre-sampled 50, 000 grasping poses for the robot hand and the object for each scale.

Reward Definition. Our reward function (subscript t omitted for simplicity) has the following
component:

1. rrot
.
= max(min(ω · k̂, rmax), rmin) is the rotation reward. k̂ is a desired rotation axis in

the world coordinate. In the experiment, we use k̂ = [0, 0, 1]⊤. We use rmax = 0.5 and
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rmin = −0.5 to clip the rotation reward.

2. rpose
.
= −∥q − qinit∥22 is the hand pose penalty. λpose = −0.3.

3. rtorque
.
= −∥τ∥22 is the torque penalty. λtorque = −0.1.

4. rwork
.
= −τ⊤q̇ is the energy consumption penalty. λwork = −2.0.

5. rlinvel
.
= −∥v∥22 is a object linear velocity penalty. λlinvel = −0.3.

Our final reward function is then defined as

r = rrot + λpose rpose + λlinvel rlinvel + λwork rwork + λtorque rtorque .

Discussion on Reward Choice. Our reward function contains a few different components. We
clip the rotation reward because otherwise the policy will learn to rotate as fast as possible ignoring
the stability requirement. Without the pose penalty, the policy performs worse because the learned
gait is unnatural and it does not learn to break and establish new contact. Please see an example in
this link. The energy penalty and linear velocity penalty greatly decrease the commanded torque
and object’s linear velocity. This helps encourage the policy to learn a more stable and smooth gait
to solve the task, and empirically yields better sim-to-real performance. To speed up training, we
terminate the episode when the object falls out of the fingertips (about 14.5 cm above the palm).
Note that this is different when we do evaluation where we reset the episode when the object falls
out of fingers (about 10.0 cm) which is more similar to the cases in the real-world.

Network Architecture. The base policy π is a multi-layer perceptron (MLP) which takes in
the state ot ∈ R96 and the extrinsics vector zt ∈ R8, and outputs a 16-dimensional action vector
at. There are four layers with hidden unit dimension [512, 256, 128, 16]. We use ELU [29] as the
activation function. The extrinsics encoder µ is also a three layer MLP with hidden unit dimension
[256, 128, 8] and encodes et ∈ R9 and output zt ∈ R8. We use ReLU as the activation function.

The input to the adaptation module is the robot joint position and actions in past 30 timesteps
(corresponding to 1.5 seconds). This module first encode the joint position and action pairs into a
32-dimensional representations for each timestep via a two-layer MLP (with hidden unit dimension
[32, 32]). Then, we apply three 1-D convolutional layers over the time dimension to capture
temporal correlations in the input. The input channel number, output channel number, kernel size,
and stride of each layer are [32, 32, 9, 2], [32, 32, 5, 1], [32, 32, 5, 1]. The flattened CNN output is
linearly projected by a linear layer to estimate ẑt. We use Adam optimizer [87] to minimize MSE
loss. The learning rate is 3e−4.

Optimization Details. During base policy training, We jointly optimize the policy π and the
object property encoder network µ using PPO [158]. In each PPO iteration, we collect samples
from 16,384 environments with 8 agent steps each (corresponding to 0.4 seconds). We train 5
epochs with a batch size 32,768, leading to 20 gradient updates on this dataset. The learning rate
is 5e−3. We optimize for 100,000 gradient updates. It takes about 500 million agent steps which
corresponds to roughly 7,000 hours real-world time. The advantage of our approach is that we can
utilize the huge amount of simulation samples to learn a complex behavior, which will be infeasible
in the real-world.

https://haozhi.io/hora
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Figure D.1: The relationship between object mass and commanded torque. This indicates our policy behave differently
for objects with different weights and commands smaller torque when object is lighter for energy efficiency.



APPENDIX D. CHAPTER 5 SUPPLEMENTARY MATERIAL 104

20

25

0

5

10

15

Rotations (↑) Metric for Each Object

M
at

ch
a 

W
hi

sk
 [1

21
g]

Re
ac

tio
n 

Ba
ll 

(L
3)

 [5
3g

]

Te
nn

is 
Ba

ll 
[5

9g
]

To
y 

Po
ly

he
dr

a 
[2

5g
]

Re
ac

tio
n 

Ba
ll 

(L
1)

 [5
5g

]

Ba
se

ba
ll 

[1
39

g]

Le
m

on
 [1

48
g]

Re
ac

tio
n 

Ba
ll 

(L
2)

 [4
9g

]

Sh
ut

tle
ro

ck
 [5

g]

Re
ac

tio
n 

Ba
ll 

(L
4)

 [4
8g

]

Sa
ke

 C
up

 [1
06

 g
]

H
ei

rlo
om

 T
om

at
o 

[1
65

g]

To
m

at
o 

[1
56

g]

N
ec

ta
rin

e 
[1

55
g]

Pl
as

tic
 B

ot
tle

 [3
7g

]

To
y 

Cu
be

 [2
2g

]

H
ou

rg
la

ss
–1

0m
in

 [1
02

g]

H
ou

rg
la

ss
–2

m
in

 [1
10

g]

H
ou

rg
la

ss
–5

m
in

 [1
10

g]

To
y 

w
ith

 H
ol

es
 [3

0g
]

To
y 

St
ar

 [2
5g

]

Pe
ar

 [1
95

g]

A
vo

ca
do

 [1
98

g]

So
ft 

To
y 

Cu
be

 [4
5g

]

To
y 

Fl
ow

er
 [1

3g
]

K
iw

i F
ru

it 
[1

22
g]

To
y 

Pe
nt

ag
on

 [1
4g

]

Ru
bi

k’
s C

ub
e 

[5
5g

]

To
y 

(D
ou

bl
e 

Co
ne

) [
25

g]

Th
or

n 
To

y 
Ba

ll 
[2

2g
]

W
oo

d 
Cu

be
 [3

5g
]

Pa
pe

r T
ow

el
 [4

9g
]

[5
.8

 c
m

, 6
.3

 c
m

]

[4
.0

 c
m

, 6
.1

 c
m

]

[5
.9

 c
m

, 7
.2

 c
m

]

[6
.4

 c
m

, 6
.4

 c
m

]

[5
.5

 c
m

, 6
.7

 c
m

]

[6
.6

cm
, 7

.3
cm

]

[7
.1

cm
, 7

.2
cm

]

[6
.0

cm
, 6

.3
 c

m
]

[6
.1

cm
, 7

.0
 c

m
]

[4
.5

cm
, 5

.8
 c

m
]

[5
.6

cm
, 7

.3
 c

m
]

[5
.0

cm
, 6

.0
 c

m
]

[6
.5

cm
, 7

.5
 c

m
]

[6
.7

cm
, 7

.0
 c

m
]

[6
.9

cm
, 7

.0
 c

m
]

[6
.7

cm
, 6

.9
 c

m
]

[4
.5

 c
m

, 5
.7

 c
m

]

[5
.0

 c
m

, 5
.0

 c
m

]

[5
.0

 c
m

, 5
.0

 c
m

]

[5
.0

 c
m

, 5
.0

 c
m

]

[5
.5

 c
m

, 6
.5

 c
m

]

[5
.5

 c
m

, 6
.7

 c
m

]

[6
.5

 c
m

, 8
.0

 c
m

]

[6
.3

 c
m

, 8
.7

 c
m

]

[4
.1

 c
m

, 6
.9

 c
m

]

[4
.3

 c
m

, 5
.4

 c
m

]

[4
.9

 c
m

, 7
.7

 c
m

]

[4
.8

 c
m

, 5
.2

 c
m

]

[5
.0

 c
m

, 6
.7

 c
m

]

Ic
e 

Ba
ll 

[1
11

g]

[4
.0

 c
m

, 4
.9

 c
m

]

[4
.4

 c
m

, 4
.5

 c
m

]

[4
.5

 c
m

, 6
.4

 c
m

]

[6
.0

 c
m

, 6
.0

 c
m

]

Figure D.2: The performance for each object in terms of the number of rotations achieved. Each object is
annotated with the mass and the shorted and longest diameter of the cross section with the fingertips. We find that
sphere and light objects are easier to rotate compared to irregular objects such as avocado, cube, pentagon, and toy
flower. The paper towel is with the lowest number of rotation because it keeps colliding with the fingers due to its size
(see the video for details).
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Figure D.3: The stability for each objects in terms of the normalized time-to-fall metric. Each object is annotated
with the mass and the shorted and longest diameter of the cross section with the fingertips. Our policy can keep more
than half of the objects stable for more than 30 seconds and rotate more than 15 seconds for all the objects. We also find
it’s easier to maintain the stability for spherical objects than the cube or pentagon objects.
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Figure D.4: The commanded torques during rotating different objects. Each object is annotated with the mass
and the shorted and longest diameter of the cross section with the fingertips. We find a general trend that the commanded
torques correlate with the mass of the object, which suggests our policy can adapt and command different torques
according to the estimated object mass.
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