
Compositional Proofs of Information Flow Properties

for Hardware-Software Platforms

Kevin Cheang
Adwait Godbole
Yatin A. Manerkar
Sanjit A. Seshia

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-204

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-204.html

August 9, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Compositional Proofs of Information Flow
Properties for Hardware-Software Platforms

Kevin Cheang1, Adwait Godbole1, Yatin A. Manerkar2, and Sanjit A. Seshia1

1 University of California, Berkeley,
2 University of Michigan

Abstract. While agile hardware design flows have led to performant computa-
tion platforms, hardware security vulnerabilities pose a threat to security-critical
software running on these platforms. Verifying programs running on such plat-
forms w.r.t. security properties faces two major challenges: (a) vulnerable soft-
ware is often nested within large pieces of code, and (b) security properties re-
quire more fine-grained platform models (compared to functional properties),
leading to complex verification queries. Our work is motivated by these chal-
lenges. To address (a) we develop SymboTaint, a Hoare-style proof system that
allows the decomposition of monolithic security specifications over large pro-
grams into smaller verification conditions. For challenge (b), we develop Infor-
mation Flow State Machines (IFSMs), a modeling framework that provides com-
positionality properties. As a case study, we develop a speculative microprocessor
model called Speculative Abstract Platform (SAP) which captures hardware de-
signs with a wide range of microarchitectural features. As an evaluation, we use
IFSMs to model SAP and verify observational determinism on a broad class of
attack programs running on SAP.

1 Introduction

The rise of user-friendly, high-level hardware design frameworks [3, 25, 30] has made
agile development and optimization of hardware computation platforms more accessi-
ble. These designs range from general-purpose computers and domain-specific compu-
tation engines (accelerators), to platforms designed with security as the guiding prin-
ciple [1, 2, 13, 17, 18, 26, 27, 33]. The usage of ever more efficient hardware systems,
however, has been plagued by the existence of hardware execution attacks [6, 8, 9, 29,
34, 42, 51–53]. Formal methods can provide strong security guarantees about system
behaviour in the context of these attacks, thus building trust in the system.

Most hardware execution attacks exploit microarchitectural features such as caches,
branch predictors, and load/store buffers. While reasoning over the architectural state
(e.g., program counter, registers) suffices for proving functional correctness of software,
one also has to account for the microarchitectural state when proving security proper-
ties. Since the microarchitectural state is more detailed than the architectural state, soft-
ware semantics at the microarchitectural result in especially challenging verification
queries. This problem is made more severe given that vulnerable software fragments
are typically nested in large pieces of code. In this work, we develop a concerted ap-
proach to make verification of information-flow-style properties scale. On the software

1

side, our approach uses Hoare-style reasoning tailored to security properties, while on
the hardware side we leverage compositionality of the platform model.

Fundamental contributions such as Hoare-logic [23], interpolants [35] have enabled
techniques such as interpolation-based reasoning [37], and invariant inference (e.g. [11,
15]) which have improved the scalability of software verification. These techniques
have been predominantly used for checking single-trace properties such as safety and
functional correctness. Security properties such as non-interference [12] on the other
hand are hyperproperties defined over sets of traces. While some hyperproperties can
be compiled to single-trace safety properties (over the self-composition), and hence
permit the above approaches, such encodings do not make use of the specialized nature
of security properties. This informs our first research question:

(RQ1) How can we tailor Hoare-style proof techniques to better scale verification
of information-flow-based properties such as non-interference?

We answer this question by developing a proof system called SymboTaint, which
combines the symbolic representation of state, with taint-like equivalences over system
variables. These equivalences align with security properties such as non-interference
which prescribe equivalence between two executions w.r.t. certain variables. The sym-
bolic state allows for more precise reasoning than pure taint analysis.

Security verification of software is closely tied with the microarchitectural seman-
tics of the underlying hardware. Additionally, the capabilities of an adversary also
vary with the microarchitecture, as some microarchitectural features create new side
channels [49], leading to modified security specifications. While microarchitectural se-
mantics are much more detailed, verification can benefit from frameworks that lever-
age compositionality of hardware. The choice of modelling framework also impacts
whether one is able to easily instrument the model with proofs. Hence, we ask:

(RQ2) What modeling formalisms allow compositionality and parameterizability,
and connect better with the software-side proof techniques?

We answer this question by developing an abstract operational model called the In-
formation Flow State Machine (IFSM). Intuitively, an information flow state machine
augments the underlying platform model with the joint symbolic-taint analysis from
the proof system. This enables better interoperability between the proof and the model.
Additionally, under some conditions, the transition relation of an IFSM can be decom-
posed. This allows the proof to reason about only those components of the platform that
are relevant to the security property.

To evaluate the efficacy of our approach, we introduce a speculative platform model
and verify the security of several safe and vulnerable programs. These are represen-
tative of a broad class of transient execution attacks [8, 24] targeting various microar-
chitectural features. Our verification approach is based on IFSMs which instrument
the speculative platform with the proof. We compare the performance of our technique
with prior work on verifying transient execution attacks [10] and observe improved per-
formance across safe and unsafe examples. In summary, we make the following main
contributions:

1. SymboTaint Proof System. We introduce SymboTaint, a sound proof system that
specializes pre/post-conditions from Hoare-style proofs to capture invariants com-
mon to security proofs for programs.

2

2. Information Flow State Machines. We introduce IFSMs, an operational model
that allows us to connect proofs from SymboTaint with the platform model. We de-
velop conditions under which IFSMs can be decomposed for more efficient analysis
of security properties.

3. Speculative Abstract Platform Model. We introduce the SAP parameterized plat-
form model which abstractly models a speculative microprocessor. The model cap-
tures a wide combination of microarchitectural features and attack vectors, beyond
what models in the literature capture. We use IFSMs in this modelling, demonstrat-
ing the compositionality of microarchitectural features.

4. Evaluation on Transient Execution Attacks. We evaluate our methodology - the
model and proof system - by verifying transient execution attacks on the SAP
model. We check a broad class of transient execution attack examples against the
secure speculation [10, 21] property. We observe performance improvements over
the monolithic proof approach from [10].

Outline. In §2 we motivate the problem by considering an example of an attack
vector. In §3 we introduce the platform and attacker model, and security properties of
interest. In §4 we develop the SymboTaint proof-system which enables Floyd-Hoare-
style proofs for verification of security properties. In §5, we introduce IFSMs, an oper-
ational formalism that allows instrumenting the platform model with proofs written in
SymboTaint. We also develop a notion of composition for IFSMs that enable concise
proofs. In §6 we present a speculative abstract platform (SAP) model that is capable of
capturing a broad class of transient execution attacks from [8, 24] and perform experi-
mentation on this model in §7. We discuss related work in §8 and conclude in §9.

2 Motivation

We motivate our methodology and abstractions with the problem of verifying classes of
transient execution attacks. In recent literature, secure speculation [10] has been consis-
tently used to capture speculation dependent vulnerabilities in micro-architectures. This
property is an extension of observational determinism [55] which itself is a flavor of the
non-interference property [12]. Our work is based on using non-interference style prop-
erties to identify a broad class of transient execution attacks. We begin by presenting a
motivating example of such an attack.

Fig. 1 illustrates victim func, a function that is owned by a victim process and
is callable by an adversary process. Ignoring for the moment the first two segments
labelled A and B (lines 2-5), segment C (lines 7-9) shows the first discovered transient
execution attack called Spectre V1 (bounds check bypass) [29]. The way Spectre V1
works is that the adversary can train the branch predictor to mispredict the condition
(x < N), thereby coercing the processor to transiently execute line 9. This results in
an access to a potential victim’s secret using a[x] and then a secret dependent access
arr2[a[x] * 512]. This access leaves observable side effects in the data cache
covert channel. The adversary can observe these side-effects and hence infer the secret.

Complexity in software. A vulnerable code segment such as the one above does not
often appear in isolation. It may appear alongside other complex code segments, such as

3

1 int victim_func(int x) {
2 // A: Init secret pointer
3 int* a = &secret;
4 // B: Secret dependent code
5 ...
6 // C: Spectre V1 / BCB
7 a = arr1;
8 if (x < N)
9 tmp = arr2[a[x] * 512];

10 }

Fig. 1. Victim program executing in the
trusted user’s domain with input x which is
adversary controlled. This function is vul-
nerable to Spectre V1 (BCB), Spectre V4
(store-bypass), their combination and leak-
age from segment B.

1 // C1: lines 7-8
2 addi a3, gp, -88
3 store a3, s0, -24
4 bge a0, a1, END
5 // C2: line 9, a[x]
6 load a3, s0, -24;
7 load a3, a3, 0
8 add a4, a0, a3
9 load a4, a4, 0

10 // C3: line 9, arr2[a[x]*512]
11 muli a4, a4, 512
12 addi a3, gp -48
13 load a3, a3, 0
14 add a4, a4, a3
15 load a5, a4, 0

Fig. 2. Instruction level translation of lines 4-6
of the program in Figure 1.

A and B in Fig. 1. Segment A may non-trivially interact with segment C, with potential
security implications. For example, even if the adversary was unable to mistrain the
branch predictor, a faulty store-to-load forwarding of the secret address a from line 3 to
line 9 could result in a variation of the Spectre V4 (speculative store bypass) attack [8].
Similarly, segment B can contribute its own secret dependent effects to an exploitable
side-channel, such as the line fill buffer [42], resulting in data leakage. This example
illustrates the challenges in verifying large pieces of code monolithically and motivates
approaches that decompose the proof. In §4 we develop such an approach which takes
the form of a proof system. In §6 we apply this proof system to an abstract speculative
microprocessor model that can execute assembly-like code.

Fig. 3. Different levels of
modeling detail.

Complexity in hardware. Another aspect that compli-
cates the verification of software such as victim func
is the necessity to model the hardware at the microarchi-
tectural level, resulting in a massive model. Hence, devel-
oping modeling approaches which facilitate composition-
ality is desirable. While this is true, reasoning over sub-
sets of components in an unguarded manner can lead to
false guarantees. Figure 3, illustrates such an example in-
spired by the CacheOut attack [43], This attack exfiltrates
in-flight data (potentially containing secrets) from the line-
fill-buffer (LFB) into the cache, which then serves as the
side-channel. An analysis on the model in Fig. 3A, sans the LFB, can be imprecise.
Hence, compositionality though useful requires care. In §5.1, we present an operational
modeling framework which enables composition under certain conditions. The specu-
lative platform model from §6.1 has a wide range of microarchitectural components,
yet satisfies these conditions, resulting in efficient verification.

4

2.1 Approach Overview: Efficient Proofs with Interpolants

Security properties such as non-interference [19] are based on a notion of observation
that identifies when two states are considered to be equivalent. Non-interference in par-
ticular requires that two executions which start in equivalent states must also end in
equivalent states. One prominent approach [10] used to verify such properties for a pro-
gram is bounded model checking (BMC) [36]. This is presented in Eq. 1, which is a
relation over traces of two instances of the same transition system. It states that if the
two instances of the system start in some initial states (say q

(0)
1 of the first instance and

q
(0)
2 of the second) that are low-equivalent (q(0)1 ≈L q

(0)
2), and each instance takes k

steps (i.e., δk(q(0), q(k)) = δ(q(0), q(1)) ∧ ... ∧ δ(q(k−1), q(k))) to transition from the
initial states to the final states (q(k)1 , q

(k)
2), then the final states should be low-equivalent

(q(k)1 ≈L q
(k)
2).

q
(0)
1 ≈L q

(0)
2 ∧ δk(q

(0)
1 , q

(k)
1) ∧ δk(q

(0)
2 , q

(k)
2)⇒ q

(k)
1 ≈L q

(k)
2 (1)

However, a monolithic proof of non-interference (such as a direct translation of the
Eq. 1 into a BMC query) results in a large verification query. One way to address the
complexity of a monolithic proof is to decompose it into smaller proofs, using inter-
mediate properties, or what we refer to as interpolants, to connect them. This can be
intuitively conceptualized through the following three equations.

q01 ≈L q02 ∧ δ(q01 , q
1
1) ∧ δ(q02 , q

1
2)⇒ J1(q

1
1 , q

1
2) (2)

∀i ∈ {1, ..., k − 1}. Ji(qi1, qi2) ∧ δ(qi1, q
i+1
1) ∧ δ(qi2, q

i+1
2)⇒ Ji+1(q

i+1
1 , qi+1

2) (3)

Jk(q
k
1 , q

k
2)⇒ qk1 ≈L qk2 (4)

Instead of a single query, one may break down the proof into a set of smaller veri-
fication conditions. This is possible by identifying intermediate conditions J1, · · · , Jk
such that: (a) the initial conditions and transition constraints implies J1 (Eq. 2), (b) Ji
and transition constraints imply Ji+1 (Eq. 3), and (c) the final interpolant Jk(qk1 , q

k
2)

implies that the final states are low-equivalent (Eq. 4).
So far this is just standard interpolant-based reasoning. The crux of effectively using

this approach to address the complexity issues mentioned lies in the shape of the inter-
polants Ji used, and how the system model (i.e., δ) is represented. One type of property
that can naturally serve as part of these interpolants Ji for non-interference-style proper-
ties, is the class of relational properties of variables between the two system instances in
a non-interference proof. Namely, this is the information described by the set of equality
constraints {qi1(v) = qi2(v)}v∈Vi for Vi ⊆ V , where q(v) denotes the value of variable
v in state q. One can view this as a summary of which variables between the two in-
stances are still low-equivalent after the i-th step. This intuition is formalized in §4 as
the SymboTaint proof system. On the modeling side, it is highly desirable to be able to
decompose or separate a system into simpler components. Exploiting the simpler proof
obligations from Eq. 2-4, one can then hope that a smaller system recomposed from the
decomposed components is sufficient for sound analysis of the property. This intuition
is materialized in §5.1 as Information State Flow Machines.

5

3 Security Model

In this section we begin by introducing our programming model in §3.1 followed by the
attacker model in §3.2. We provide background on security properties in §3.3. We con-
sider in this work the following security properties: non-interference [19], observational-
determinism [55], and trace-property observational determinism [10].

3.1 Programming Model

We start by developing the system model based on which security properties are defined.
We adopt a standard state-transition system, M = ⟨Q, I, δ⟩ with states Q, initial states
I ⊂ Q and transition relation δ ⊆ Q× Op×Q with transitions labelled by operations
from Op. It is often useful to view states as assignments to the variables in the system.
In this view, q ∈ Q is map from variables v ∈ V to values from some domain D:
q : V → D.

1 // Core variables and operations
2 core {
3 // System state variables
4 var pc : word_t;
5 var regs : [regindex_t]word_t;
6 ...
7

8 // Operations
9 operation add (rs1, rs2, rd) {

10 regs[rd] = regs[rs1] + regs[rs2];
11 }
12

13 operation load(rs1, rd, imm) {
14 // regs[rd] = mem[regs[rs1]+imm];
15 var addr = regs[rs1]+imm;
16 regs[rd] = mem.load(addr);
17 }
18 }

Fig. 4. A simple platform

A program is a word over Op
(i.e. P ∈ Op∗) which generates an
execution. The execution on a pro-
gram P = op1 · · · opn is a trace of
states πP = q(0)...q(n) ∈ Tr(M),
where the initial state belongs to I
and (b) consecutive states q(i), q(i+1)

have a valid transition under opi+1:
δ(q(i), opi+1, q

(i+1)). For trace π,
we write π(i) for the i-th state of the
trace. Tr(M) represents valid traces
of M (across programs in Op∗),
while TrP (M) represents traces cor-
responding to program P . A pro-
gram can lead to several traces (e.g. if the system is non-deterministic).

Example 1 (Simple platform model). Figure 4 illustrates a simple platform model. The
model state variables consist of the register file and the memory. The model consists of
operations add and load. The load operation accesses the memory through the mem.load

function. Throughout our exposition, we add more detail to this model (e.g. a cache,
branch predictor, etc.), leading up to the SAP model in §6.1. The modelling syntax
loosely follows UCLID5 [40] which we use to implement the verification techniques
discussed later.

3.2 Adversary Model

In this section, we characterize the capabilities of the adversary/attacker by defining
a parameterized adversary model. The adversary model determines which behaviours
constitute a vulnerability and hence influence the security specification. A common ad-
versary model [10,31,47] is one that can passively observe and actively write to subsets

6

of variables. Our approach additionally endows the adversary with the ability to trans-
mit data between variables. This choice is motivated by microarchitectural mechanisms
that move data between variables without necessarily making it visible, as illustrated in
Example 2.

Example 2. In Fig. 5, we illustrate how a transmit operation can abstractly model the
effect of adversary code in the case of the Lazy-FP [46] vulnerability. In Lazy-FP, the
flow of information from the secret to cache state made possible by the adversary’s
capability to leak information from the xmm register to the general purpose register rax
using the advflow(xmm,rax) operation (and eventually the observable cache) indicated
by the solid red arrows. The victim program enables information flow from the secret
to the xmm register (indicated by the dotted line).

secret cachexmm rax

Fig. 5. Information flow in the Lazy-FP vulnerability.

Formally, we characterize our adversary as a triple, A = ⟨VO, VT , F ⟩. The com-
ponents indicate the set of observable state variables VO ⊆ VL, tamperable variables
VT ⊆ V and a set of transmitting pairs F ⊆ V × V . Observable variables deter-
mine when two states are considered to be distinguishable. The tampering operations
OpT = {optamp(v) | v ∈ VT } change the value of the tampered variable to an arbitrary
value: δ(q, optamp(v), q

′) ⇐⇒ ∃x ∈ D. q′ = q[v ← x]. Our adversary model aug-
ments these tampering operations from [32, 47] with transmitting operations Opflow =
{advflow(v1, v2) | (v1, v2) ∈ F}. A transmitting operation advflow(v1, v2) establishes a
flow of data from v1 to v2: δ(q, advflow(v1, v2), q

′) ⇐⇒ q′ = q[v2 ← q(v1)]. These ad-
versary operations are a subset of the complete operation set: OpO∪OpT∪Opflow ⊂ Op.
The adversary executes asynchronously with the system using interleaving semantics3.

3.3 Security Properties

Observation. We base our security properties on a notion of observation that dictates
when two states lead to different observations (e.g. timing/power-based side-channels
[48]). Our instantiation of observation identifies a subset of variables VL ⊆ V denoted
as low variables. These are required to have equivalent values in the two states:

q1 ≈VL q2
.
= ∀v ∈ VL. q1(v) = q2(v) (5)

In the context of an entire execution, the adversary-visible §3.2 should be tagged as low.
Using this definition we define the standard non-interference property.

Definition 1 (Non-Interference). A system M executing program P satisfies non-interference
(w.r.t. low variables VL) if

∀π1, π2 ∈ TrP (M). π
(0)
1 ≈VL π

(0)
2 ⇒ π

(n)
1 ≈VL π

(n)
2 (6)

3 Note that the adversary and system can take an arbitrary number of steps.

7

In words, this property requires that states which start out being observationally equiv-
alent should end up being observationally equivalent after executing P .

We also consider observational determinism [55] which states that executing pro-
gram P from indistinguishable states should result in indistinguishable states at every
step. We first extend the definition of low-equivalence to traces: π1 ≈VL π2

.
= ∀i ∈

N. π
(i)
1 ≈VL π

(i)
2 . Observational determinism can be formalized as follows:

Definition 2 (Observational Determinism). A system M executing program P satis-
fies observational-determinism (OD) w.r.t low variables VL if

∀π1, π2 ∈ TrP (M). π
(0)
1 ≈VL π

(0)
2 ⇒ π1 ≈VL π2 (7)

An extension of observational determinism [10] captures trace property-dependent
violations of observational determinism. While OD requires that any two traces that are
initially equivalent be always equivalent, Trace-Property Observational Determinism
(TPOD) relaxes this condition in two ways. First, TPOD restricts these traces (π3, π4)
to a trace set T2. Secondly, TPOD only enforces their equality when two other traces
(π1, π2) from trace set T1 are equivalent. We refer the reader to [10] for details.

Definition 3 (TPOD). Given trace properties T1 ⊂ TrP (M) and T2 ⊂ TrP (M), a
system M satisfies trace property-dependent observational determinism when executing
program P if

∀π1, π2 ∈ T1.π3, π4 ∈ T2.
(
π1 ≈VL π2 ∧ π

(0)
3 ≈VL π

(0)
4

)
⇒ π3 ≈VL π4 (8)

Taint contexts Taint analysis [44] is an approach that can perform an approximate
(typically over-approximate) analysis of the system w.r.t. security properties. These ap-
proaches generally consider a set L of security labels [14, 41]. A taint-context Γ maps
variables to taint-labels, Γ : V → L. When the label set consists of two labels low and
high, {L,H}, we can view Γ (v) = L to mean that the variable v is untainted (by any
high - H - values). Consequently, this interpretation of taint can be related to the notion
of equivalence of variables. In particular, when the taint assigned to v is low at some
point in the execution, Γ (v) = L, v only depends on variables that had initially had L
taint. If the latter were observationally equal then v is as well. Hence, the taint can be
thought of as a relational property marking variables that take identical values across
executions. We make use of this when developing the SymboTaint proof system. We
can define indistinguishability in terms of the taint-context:

q1 ≈Γ q2
.
= ∀v ∈ V. Γ (v) = l⇒ q1(v) = q2(v) (9)

Eq. 5 relates to this as: q1 ≈{v | Γ (v)=L} q2 ⇐⇒ q1 ≈Γ q2. We also use δτ as the
transition relation over taint-contexts: δτ ⊆ Q× (V → L)× Op× (V → L).

4 The SymboTaint Proof System

In this section, we develop a methodology to verify a given program running on a plat-
form model with respect to security properties from §3.3. Our technique is a proof-
system based on Hoare-logic [23] and interpolant-based reasoning [37]. Standard Hoare-
logic inductively builds a proof for a program by composing Hoare-triples defined for

8

atomic statements to get a pre-post condition for the full program. The pre-post condi-
tions are typically state sets (predicates) that over-approximate the actual set of states
reached. This is adequate when one is concerned with proving properties over individual
executions. However, the security properties of interest (§3.3) are hyperproperties de-
fined over pairs of executions. This requires us to augment the shape of the interpolants
used in the proof-system, which we now discuss.

4.1 Joint Symbolic-Taint Interpolants

Our proof system uses interpolants of the form {S, Γ} where S is a set of states and Γ
is a collection of relation equality constraints. While standard Hoare-logic/interpolant-
based approaches use formulae that hold over individual states, {S, Γ} holds on a pair
of states. This is defined through a judgement (q1, q2) |= {S, Γ} (where q1, q2 ∈ Q):

(q1, q2) |= {S, Γ}
.
= (q1 ∈ S) ∧ (q2 ∈ S) ∧ q1 ≈Γ q2

We define the SymboTaint-triple {S, Γ}M(op) {S′, Γ ′} over an individual operation
op similar to Hoare-logic. If two states satisfying {S, Γ} transition on op, then any pair
of post-states satisfy {S′, Γ ′}:

{S, Γ}M(op) {S′, Γ ′} .
= ∀q1, q2, q′1, q′2.

((q1, q2) |= {S, Γ} ∧ δ(q1, op, q
′
1) ∧ δ(q2, op, q

′
2)) =⇒ (q′1, q

′
2) |= {S′, Γ ′}

We observe that the symbolic-taint interpolants can be composed, giving us proof
rules for sequential composition and iteration similar to Hoare-logic. We provide the full
set of proof rules in the Appendix. Then starting with the triple for a single operation
as the base case, we can build proofs for larger programs. This key feature allows us
to decompose proofs for large programs into a set of verification conditions (VC) over
small sequences of operations. Each of these VCs can be discharged more effectively
than a single VC for the full program.

Self-composition vs. SymboTaint. Hyper-properties such as non-interference can be
thought of as (single trace) safety properties over the self-composition of the sys-
tem [12]. Following this observation, one could build a self-composition of the system
and use interpolants defined over two copies of the variables. However, this approach
defines symbolic constraints on twice the variables, putting strain on the underlying
model-checker. We develop a different route.

Our choice of interpolants is based on the observation that the properties in §3.3
mention equality over pairs of variables from the copies of the system. We encode this
as a taint-context Γ : V → L which marks whether a variable takes equal values. When
Γ (v) = L then v takes the same value across both executions.

Example 3. In Fig. 6 we depict a snippet from a model extending Ex. 1. In this model,
before a load operation invokes mem.load to fetch an address from the memory
it checks for the address in the cache (cache.is hit). The model performs cache
partitioning [28] by dividing the cache into partitions each of which is only accessible

9

1 core {
2 ...
3 operation load(rs1, rd, imm) {
4 // mem[regs[rs1]+imm] = rd;
5 var addr = regs[rs1]+imm;
6 // Redefined model semantics
7 if (cache.is hit(addr, dom))
8 regs[rd] = cache.load(addr, dom)
9 else

10 regs[rd] = mem.load(addr);
11 }
12 ...
13 }

14

15 // Cache component
16 cache {
17 var mdata : [set_index_t]word_t;
18 var data : [set_index_t]word_t;
19 // Internal functions
20 get_index(addr, dom): set_index_t =
21 addr[63:22] ++ dom;
22 get_tag(addr) : tag_t = addr[21:8];
23 is_hit(addr,dom): bool = get_tag(addr

)
24 == mdata[get_index(addr, dom)];
25 }

Fig. 6. Modified platform model from Fig. 4 with a partitioned cache.

by a single process domain (dom). The model partitions the cache by set-index (line 19);
the index depends on the address and the process domain. Suppose the victim domain
0 is allocated indices ≤ k while the attacker domain 1 is allocated the rest.

An access made by the victim (domain 0) on address addr, results in the satisfac-
tion of the Hoare-triple {Q,Γ0} M(load) {S1, Γ1} where Γ0 = [λi > k.i ← L] is
the taint-context with domain 1 accessible indices marked low. Additionally, the sym-
bolic state captures the fact that domain 0 is making the access. Then following the
partitioning semantics encoded in M(load), we can infer a post-judgement where
Γ1 = Γ0. That is after performing the load operation, domain 1 visible state remains
low-equivalent. This proves that a victim executed load does not modify attacker-
visible state.

4.2 Connecting the Proof System with Security Properties

In this section, we connect the proof system developed in §4.1 with security properties.
This connection is based on the fact that we can develop SymboTaint-triples which,
under some conditions, are sound with respect to the properties defined in §3.3. We
now discuss these conditions, starting with non-interference.

Non-interference: When proving non-interference with respect to the low variables
VL and program P , we generate a valid triple of the form: {I, Γ0}M(P) {Q,Γf} with
the following condition, denoted as CondNI:

CondNI : ∀v ̸∈ VL. Γ0(v) ̸= L ∧ ∀v ∈ VL. Γf (v) = L (10)

In the pre-condition, we allow a low (L) assignment to variables in VL. This ensures
that the antecedent of the non-interference property is implied. We require that the final
taint-context Γf assign L to VL, which implies the consequent of non-interference.

Observational-determinism: The difference between observational determinism
and non-interference is that in the former, all taint-contexts must assign L to VL. Hence,
in this case, we want to generate valid triples where CondObsDet holds:

{I, Γ0}M(op1) {S1, Γ1}M(op2) · · · {Sn, Γn}
CondObsDet : ∀v ̸∈ VL. Γ0(v) ̸= L ∧ ∀i ∈ [1..n]. ∀v ∈ VL. Γi(v) = L (11)

10

The first judgement (pre-condition) is identical to the case of non-interference. How-
ever, in this case, we need to choose the intermediate interpolants such that each of the
taint-contexts assign the L label to the variables in VL.

TPOD: While non-interference and observational determinism are properties over
two traces, TPOD is over four traces. This requires us to consider a self-composition
of the platform transition system. Additionally, TPOD only enforces observational-
equivalence when the traces belong to T1 and T2. This allows us to strengthen the proof
system for TPOD with auxiliary invariants that over-approximate T1 and T2. We call
these invariants cover-invariants. We now briefly discuss these concepts.

Self composition of M The self-composition of M is the transition system M2 =
⟨Q2, δ2, I2⟩. The new state space is Q2 = Q×Q, the transition relation δ2 enforces δ on
both the first and second copies of the state, and I2 = I×I . We also consider the paired
state as an assignment to two copies of variables: V 1 = {v1}v∈V and V 2 = {v2}v∈V .

Cover invariants for trace-properties In order to capture the trace-properties T1, T2

that TPOD enforces, we allow invariants I tpod
1 , I tpod

2 ⊆ Q that are implied by T1 and T2

respectively. That is, if π ∈ T1 then ∀i. πi ∈ I tpod
1 , and similarly for T2 and I tpod

2 . While
cover invariants can just be True, tighter invariants can lead to stronger proofs.

For TPOD, we require the following valid triples to hold over the self-composed
system M2 and program P = op1 · · · opn such that CondTPOD holds:

{S0, Γ0}M(op1) {S1, Γ
′
1}, {S1, Γ1}M(op2) {S2, Γ

′
2}, · · · , {Sn−1, Γn−1}M(opn) {Sn, Γ

′
n}

CondTPOD : S0 = (I ∩ I tpod
1)× (I ∩ I tpod

2) ∧ (12)

∀i. ∀v ̸∈ V 1
L . Γi(v) ̸= L ∧ ∀v ̸∈ V 2

L . Γ0(v) ̸= L ∧
∀i ∈ [1..n]. ∀v ∈ V 2

L . Γ ′
i (v) = L ∧ ∀i ∈ [1..(n− 1)]. ∀v ∈ V 2. Γi(v) = Γ ′

i (v)

Theorem 1 (Soundness). If there is a Hoare-triple for M under program P that is
valid w.r.t. conditions CondNI (resp. CondObsDet, CondTPOD) then the system M
satisfies non-interference (resp. observational-determinism, TPOD) on program P .

5 IFSMs: Operational Encoding of SymboTaint

In this section, we discuss an operational approach to encode the proof-based reasoning
developed in §4. This allows us to represent proofs in the form of executions of a stan-
dard symbolic transition system. This has the following prominent advantages. Firstly,
it is easier to connect (by way of instrumentation) an operationally encoded proof
with a platform model that is represented as a transition system. Then, off-the-shelf
model-checking tools can be used to perform verification on the proof-instrumented
platform model (e.g. bounded/unbounded model checking, invariant inference, etc.).
We apply this to secure and insecure cases in §7 where we analyze an abstract platform
model. Additionally, an operational encoding allows us to perform structural composi-
tion (§5.2) of parts of the platform. In particular, this allows projecting away compo-
nents that are not relevant to the proof of a certain property. This is advantageous since
platforms (over which we evaluate our techniques) are built hierarchically.

11

5.1 Information Flow State Machine

At a high level, an IFSM is a state-transition system that encodes a joint symbolic-taint
({S, Γ}) judgement in its state. This encoding is performed by augmenting the state
from the system §3.1 with a taint-context (Γ : V → L). Consequently, IFSM creation
can be thought of as instrumenting a platform model with taint-tracking variables.

The transitions of the IFSM update the system state following the transition rela-
tion δ from §3.1, and update the taint-context following its transition relation, δτ . If
a transition is allowed in the IFSM, then the corresponding Hoare-triple holds in the
proof system of §4. This key feature implies the soundness of safety proofs that use
IFSMs. The IFSM is also parameterized by the initial taint-context, Γ0. The choice
of initial taint context depends on the property being proved. For example, if one is
concerned with proving non-interference with VL as the set of low variables, the ini-
tial taint-context assigning H to all non-low variables provides the correct antecedent:
Γ0 = [VL → L, VH → H]. We now formally define an IFSM.

Definition 4 (Information Flow State Machine). An IFSM is a transition system
⟨Q, ∆, I⟩, with a set of configurations Q, the transition relation ∆, and a set of initial
states I. Each configuration pairs a platform state with a taint context: Q = Q× (V →
L). The transition relation combines the platform variable updates with taint transi-
tions: ∆((q1, Γ1), op, (q2, Γ2)) ⇐⇒ δ(q1, op, q2) ∧ δτ ((q1, Γ1), op, Γ2). where δ is
the platform transition relation and δτ is the taint-context transition relation. Finally
the set of initial configurations is defined as: I = I × Γ0.

5.2 Composing IFSMs

In this section, we discuss structural compositionality of IFSMs. Our notion of compo-
sition is based on the observations that (a) hardware platforms are typically hierarchical
in nature and (b) only some components in the design hierarchy transition for certain
operations. We define a composition of two IFSMs as follows.

Definition 5 (Composition of IFSMs). The composition of M1 = ⟨Q, ∆1, I1⟩ and
M2 = ⟨Q, ∆2, I2⟩ is M1||M2 = ⟨Q, ∆, I⟩, where: ∆ = ∆1 ∧∆2 and I = I1 ∧ I2.

The composition conjoins transition relations and starting states of M1 and M2. The
new transition relation enforces constraints from both component IFSMs. This may lead
to the new IFSM not having any valid transitions (e.g. when M1, M2 require conflicting
updates to a variable). We identify the conditions under which this does not happen.

Separability. To allow composability, we require that the overall transition relation
is separable into per-variable components: δ(q, op, q′) ⇐⇒ ∧v δv(q, op, q′(v)). Intu-
itively, the relation δv ⊆ Q×Op×D localizes the effect of δ on an individual variable v.
The post-values admitted by all individual δvs can be combined to generate valid next-
state assignments. We define δvτ similarly, by replacing δ with δτ , q with (q, Γ), and q′

with Γ ′ in the above equation: δτ ((q, Γ), op, Γ ′) ⇐⇒
∧

v δvτ ((q, Γ), op, Γ ′(v)).
Projection. In addition to separating the effects of a transition, we also need to

identify when a particular component drives a certain variable. We denote this by the

12

guard predicate Cv(q, op) which is true when v is driven by the component and false
otherwise. Formally, we can write this as follows:

Cv(q, op) ∨ ∀x ∈ D. δv(q, op, x) (13)

When Cv is true, the component enforces specific next values for variable v. Oth-
erwise, δv holds for all next values, i.e. the component does not enforce any constraints
on the new value. When composing two or more components, we require that at each
step the guard of at most one component be true. This ensures non-conflicting updates.

5.3 Compositional Verification with IFSM

Compositionality allows us to view the full platform model as a set of separable con-
straints imposed on each variable. We can make full use of this separability, by com-
posing constraints from only necessary models. Consider the task of verifying the com-
position M = M1||...||MN . Then it suffices to compose only those components that
drive some variable v. For operation op, we denote such components as I(op) .

= {i ∈
[N] | ∃q ∈ Q, v ∈ V. Cv

i (q, op)}. Then we have the following corollary.

Corollary 1 (Minimal Composition). If each IFSM of a composition satisfies Eq. 13
and the guards of each IFSM model are disjoint, we have (where I(op) = {j1, · · · , jk}):

{S, Γ}M(op) {S′, Γ ′} ⇐⇒ {S, Γ} (Mj1 ||Mj2 || · · · ||Mjk) (op) {S′, Γ ′} (14)

In the following sections, we utilize this notion of minimal composition when verifying
transient execution attacks on platform model of a microprocessor.

6 Verifying Speculative Platforms with IFSMs

Existing works on modeling and verifying security properties for processor platforms
commonly develop the platform model based on speculative semantics [10, 16, 21, 22].
These platform models specify instruction semantics at the microarchitectural-level.
These mappings from instructions to micro-architectural effects are often hard-coded
making extensions to these semantics difficult. A modeling language that allows flexible
specification of micro-architectural features can address these challenges. We present
Speculative Abstract Platform (SAP) that models a general class of microprocessor de-
signs. The SAP model is implemented using the modeling and verification language
UCLID5 [40] which allows for parameterization and composition of model compo-
nents. While we model a wide range of microarchitectural features, for space rea-
sons, we only present the cache and branch prediction components of the SAP model
in this section. For full details, we refer the reader to the repository at https://
github.com/ifsm-sp2023/sap and Appendix §B.

6.1 The Speculative Abstract Platform

13

https://github.com/ifsm-sp2023/sap
https://github.com/ifsm-sp2023/sap

Model State Var. Description

CPU

pc The program counter.
regs Registers.
mem Physical memory.
excp Exception register.
pid Current executing process.

Cache
cache valid Cache index to valid bit.
cache tag Cache index to entry tag.

Branch
prediction

pht Pattern history table.
btb Branch target buffer.

Fig. 7. CPU, cache, and branch prediction components of
the SAP model.

The SAP model consists of sev-
eral abstract components repre-
sented as IFSMs. The model in-
cludes a CPU core, a data cache,
a line fill buffer, load and store
buffers, a page table, a trans-
lation lookaside buffer, a pat-
tern history table, a branch tar-
get buffer and a power state. We
note that the SAP model serves
as an initial abstraction which
one may use for the analysis of
speculative programs. To exem-
plify our methodology, we describe the following three IFSM components of the SAP
in more detail and describe their composition: the CPU, cache and branch predictor
models. We omit details about virtualization from this example for simplicity.

Abstract CPU model. The CPU model Mcore, is an abstraction of architectural states,
which include the variables in the first row of Table 7. The program counter, registers,
physical memory, and exception registers4 are denoted by pc, regs, mem, excp re-
spectively. We use pid to denote the domain of the executing process (adversary or
victim). The set of operations (Op) define the transition relation semantics δ. For the
CPU, these operations are load (load), store (store), conditional branch (bge), add
(add), jump (jmp) and other instructions containing only the ISA level semantics. This
model was described earlier as Fig. 4.

1 // Cache model continued
2 cache {
3 ...
4 operation load(addr, dom) {
5 return data[get_index(addr, dom)];
6 }
7 guard load(addr, dom) {
8 return is_hit(addr, dom);
9 }

10 }

Fig. 8. Continued cache model from Fig. 6 with
the load operation and guard.

Abstract cache model. The second row
in Table 7 describes the cache model
Mcache, which contains a map of cache
indexes to valid bits and tags of cache
lines (this is abstracted away in Fig-
ure 6). In addition to the internal func-
tions as shown in Figure 6, the cache
model contains the load operation
which reads from data variable. The
cache model redefines the semantics of
the CPU’s load operation and thus we associate the guard Cregs[rd](q,load) :=
is hit(addr,pid), where addr := q.regs[rs1] + imm. Fig. 8 expands on
Fig. 6 to illustrate this.

4 We note that the number of exceptions is not comprehensive and only includes page faults,
abort pages and device-not-available exceptions to accommodate the variants we verify.

14

1 // Branch prediction
2 branch_prediction {
3 var pht : [addr_t]counter_state_t;
4

5 // internal functions
6 ctr_to_dir(ctr_state) : boolean;
7 predict_dir(addr) : boolean =
8 ctr_to_dir(pht[addr]);
9 ...

10

11 operation bge(rs1, rs2, addr) {
12 // speculatively predict branch
13 if (predict_dir(pc)) {
14 pc = pc + 4;
15 } else {
16 pc = addr;
17 }
18 }
19

20 guard bge() { return *; }
21 ...
22 }

Fig. 9. Branch prediction in the SAP model.

Abstract branch predictor model. The
abstract branch predictor MBP , redefines
branch instructions with speculative se-
mantics by using a pattern history table
(pht). It takes the conventional always
mispredict semantics common in existing
models [16, 21]. For example, the branch-
if-greater-equal (bge) operation makes a
branch decision based on the pht using an
uninterpreted function ctr to dir. This
takes as argument the state of the counter
for a given address and returns a branch
direction. The guard associated to this op-
eration, Cpc

BP (q,bge) := ∗, allows the
model to non-deterministically choose (in-
dicated by ∗) between executing bge in the
branch prediction or the core.

6.2 Composing IFSM Models.

Composing SAP components. To verify our properties efficiently, we compose the
abstract models from §6.1 using Def. 5. In addition, the models are designed such that
the transitions satisfy Eq. 13 and the collection of guards are disjoint. Subsequently,
we make use of Cor. 1 to verify “minimal” compositions with the interpolant-based
approach. To illustrate this, consider the task of verifying non-interference for Figure 2.
Figure 10 shows the program component that contains three operations corresponding
to the blocks in Figure 2. Each instruction level operation within the block corresponds
to a composition of the operations from Mcore, Mcache and MBP .

1 // Branch prediction
2 program {
3 operation block_C1() {
4 addi(a3, gp, -88);
5 store(a3, s0, -24);
6 bge(a0, a1, END);
7 }
8 ...
9 operation block_C3() {

10 ...
11 load(a3, a3, 0);
12 add(a4, a4, a3);
13 load(a5, a4, 0);
14 }
15 }

Fig. 10. Program composed with
the SAP model.

Executing the victim program on the SAP model.
First, by construction, our models Mcore, Mcache

and MBP satisfy Eq. 13 because when the guard
of a variable v evaluates to false, we do not up-
date variable v. Second, each guard is written to be
disjoint. This allows us to use Corollary 1 to com-
pose only the necessary models for computing the
symbolic-taint interpolants. For example, computing
the post-interpolant for block C1(), the compo-
sition Mcore||Mcache||MBP is used because of the
store and bge instructions. On the otherhand, com-
puting the post-interpolant of block C3() only re-
quires Mcore||Mcache. This results in a shorter com-
pilation time of the models for each computation of an interpolant and smaller model
to reason about.

15

7 Case Studies

While several approaches [10,21,38] perform verification w.r.t. secure speculation, vul-
nerabilities such as ÆPIC [7] transcend secure speculation, due to which we check
observational determinism (Eq. 11), which in turn implies secure speculation.

Transient execution attacks and their adversary model parameterization.
Execution VO VT F Spec. Feature Exploited

Vu
ln

er
ab

ili
ty

A
sy

nc
hr

on
ou

s
E

nt
ry

Po
in

ts
L

1D
AV

X
2

Po
w

er
PH

T
R

SB
/B

T
B

Pa
ge

Ta
bl

es
St

or
e

B
uf

fe
r

L
1D

C
ac

he
L

oa
d

Po
rt

L
FB

v
1

v
2 B
ra

nc
h

Pr
ed

.
B

T
B

/R
SB

Pr
ed

.
ST

L
Fo

rw
ar

d
R

eg
. P

er
m

.
M

em
. P

er
m

.

Spectre v1 [29] × × × × ×
Spectre v2 [29] × × × × ×
Spectre v4 [29] × × × × ×
Meltdown [34] × × × ×
Foreshadow [51] × × × × ×
LVI [52] × × × × × × × × × × ×
NetSpectre [45] × × × × × ×
LazyFP [46] × × × XMM L1D ×
RIDL [42] × × × × × LFB L1D ×

Table 1. The execution column indicates whether the adversary is allowed to execute asyn-
chronously or only before and after the victim program (at entry points). VO , VT and F represent
the observable states, tamperable states and the flow transmit pairs (§3.2) of the adversary.

7.1 Speculative Examples

Table 1 shows the list of transient execution attacks that we check for observational
determinism when executing on the SAP model. The execution column indicates the
setting in which the vulnerabilities may occur: either when the adversary executes asyn-
chronously (e.g., using simultaneous multi-threading) or only before and after the vic-
tim program execution (entry points). We try to choose asynchronous execution when-
ever possible because it is a more restrictive model. The three columns VO, VT and F
describe our parameterization of the adversary model (§3.2) used to capture the attacks.
VO shows two covert channels that are used in the list of attacks, which include the L1D
cache and the AVX2 power state. VT indicates the states that we consider tamperable.
Lastly, F describes the adversary’s capability to leak information from the state in col-
umn v1 to the state in column v2. For example, in the case of the LazyFP vulnerability,
we assume the setting in which the adversary can leak information from the XMM reg-
isters to the L1D cache, and for the MDS-based attacks, we assume that the adversary
can leak information from the line fill buffer (LFB) to the L1D cache. The remaining
column indicates the speculative features being exploited at a high level. We note that
these columns are not intended to be exhaustive of the speculative features, buffers and
covert channels that can potentially be exploited. We emphasize that the table stresses
the need for a more holistic approach that considers all components of the platform and
an adversary model that can parameterize the system state. Each vulnerability shown

16

only exploits a specific combination of speculative features and covert channels, yet
there is potentially a combinatorial space of features one could exploit and thus sound
analysis would require reasoning about all these combinations in a scalable manner.

Verifying Observational Determinism on the SAP Model

Vulnerability OD (BMC) TOD (BMC) TOD (Interpolants)
Insecure Part. $ Insecure Part. $ Insecure Part. $

Spectre v1 150.7 125.9 7.1 35.3 5.2 6.2
Spectre v2 223.0 242.8 8.2 25.3 4.2 4.3
Spectre v4 20.8 49.2 5.6 6.872 4.2 4.0
Meltdown 12.7 92.1 4.1 4.1 3.8 3.7

Foreshadow 11.9 81.7 4.5 9.3 3.9 3.8
LVI 15.1 33.6 7.0 5.1 4.0 4.3

NetSpectre 17.6 - 7.0 - 3.7 -
LazyFP 6 - 3.7 - 3.8 -
RIDL 14.37 20.2 4.3 3.5 4.3 3.9

Spectre v1 (St.=4) TLE TLE 94.7 155.0 4.8 4.3
Spectre v1 (St.=5) TLE TLE 466.2 297.2 5.8 4.7
Spectre v1 (St.=6) TLE TLE 874.8 TLE 6.1 5.7

Table 2. Time (in seconds) to verify OD using the 2-safety encoding with BMC, the trace property
encoding of OD (TOD) with BMC and TOD with interpolants. Examples are checked using
UCLID5, and marked with TLE (time limit exceeded) if it takes longer than 15 minutes.

7.2 Verification Results
We model instruction-level program snippets representative of the transient execution
attack vulnerabilities from Table 1 and verify the programs by composing it with the
SAP. The results of the approaches used are described in Table 2. Specifically, we
first verify that the program snippets violate the secure speculation property using (1)
bounded model checking (BMC) with the 2-safety observational determinism-based en-
coding (OD), (2) using bounded model checking with the symbolic taint analysis (TOD)
encoding (which is a trace property with taint contexts modeled using ghost variables as
explained in §5.1) and (3) using the interpolant-based approach with the symbolic taint
analysis encoding. For the interpolant-based approach, we prove pre-post properties
corresponding to the taint context. These results are listed under the insecure columns.
We also verify that the programs are secure with an abstract partitioned cache [28]
model, with the exception of NetSpectre and LazyFP because the model of the former
leaks to the AVX2 side-channel and the latter leaks secrets into cache after the execution
of the victim. These results are listed under the columns labeled Part. $. We note that
the disparity in runtimes between the different vulnerabilities can be explained by the
number of atomic blocks we separate the program P into (and hence require more steps
for BMC), the number of instructions and varying platform model complexity. The last
three examples are extensions of the Spectre v1 attack where the system takes a varying
number of steps (annotation (St.=i) means the system takes i steps). As expected, the
interpolant-based approach outperforms BMC because each check is localized to small
sequences of instructions. The experiments were run on a 2.6 GHz 6-Core Intel Core i7
machine with 16 GB RAM.

17

8 Related Work

Our main contribution in this work is demonstrating two forms of composition: (a) tem-
poral composition which builds Hoare-style proofs for sequences of instructions, and
(b) spatial composition which allows reasoning only over relevant slices of the hard-
ware design. This is most closely related to work on information flow checking; more
specifically, lazy self-composition [54]. The SymboTaint proof system used in tempo-
ral composition combines symbolic state with taint-based relational atoms. Lazy self-
composition develops an abstraction-refinement approach, also using relational atoms.
However, their core focus is on performing symbolic reasoning lazily (by default relying
only on taint-based relational atoms). In contrast, our focus is on proof decomposition.
Consequently, a lazy self-composition-based approach can be used with ours for iden-
tifying optimal interpolants. Additionally, lazy self-composition does not consider the
modeling and compositional reasoning of the hardware platform.

Other related works that combine program and platform models to verify security
include Covern [39] which defines composition over a specific type of shared resource
system with locks, compositional information flow-aware refinement [5] which intro-
duces the notion of ignorance-preservation, is developed over an abstract system which
can be used our formalisms to develop more accurate models. Lastly, work on model-
ing hardware platforms using happens-before graphs [38, 50] proposes a pattern-based
approach for checking security, however, non-interference is beyond the scope of this
work.

The emergence of transient execution attacks has also led to the use of informa-
tion flow checking for proving the security of programs [20–22], but they are limited
in their ability to extend to different attacker and platform models and lack a system-
atic method of spatial composition. While previous work [16] provides a systematic
approach to combine speculative attacks, they are attack-centric and retrospective, re-
quiring knowledge about the precise attack mechanisms, and are limited in their ability
to combine attacks.

9 Conclusion

In this work, we considered the problem of verifying information-flow-based security
properties for software running on hardware platforms. This is challenging owing to
complex microarchitectural-level system models and vulnerable code fragments nes-
tled within large software. We introduced SymboTaint, a proof-system that specializes
Hoare-style reasoning to properties such as non-interference and observational deter-
minism. We developed Information Flow State Machines as an operational framework
that allows parameterizable modeling of microarchitectural features. Additionally, IF-
SMs allow instrumenting the platform model with SymboTaint based proofs. We pre-
sented an abstract model of a speculative microprocessor called the Speculative Ab-
stract Platform (SAP) with several microarchitectural features. We use our methodol-
ogy to verify observational- determinism for a broad class of transient execution attacks
beyond what is possible with existing approaches.

18

References

1. ARM TrustZone. https://www.arm.com/products/security-on-arm/
trustzone (2013)

2. Intel Trust Domain Extensions. https://www.intel.com/content/dam/
develop/external/us/en/documents/tdx-whitepaper-v4.pdf (2020)

3. Bachrach, J., Vo, H.D., Richards, B.C., Lee, Y., Waterman, A., Avizienis, R., Wawrzynek,
J., Asanović, K.: Chisel: Constructing hardware in a scala embedded language. DAC Design
Automation Conference 2012 pp. 1212–1221 (2012)

4. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org (2016)

5. Baumann, C., Dam, M., Guanciale, R., Nemati, H.: On compositional information flow aware
refinement. In: 2021 IEEE 34th Computer Security Foundations Symposium (CSF). pp. 1–16
(2021). https://doi.org/10.1109/CSF51468.2021.00010

6. Borrello, P., Kogler, A., Schwarzl, M., Lipp, M., Gruss, D., Schwarz, M.: ÆPIC Leak: Archi-
tecturally leaking uninitialized data from the microarchitecture. In: 31st USENIX Security
Symposium (USENIX Security 22) (2022)

7. Borrello, P., Kogler, A., Schwarzl, M., Lipp, M., Gruss, D., Schwarz, M.: ÆPIC Leak: Archi-
tecturally leaking uninitialized data from the microarchitecture. In: 31st USENIX Security
Symposium (USENIX Security 22) (2022)

8. Canella, C., Bulck, J.V., Schwarz, M., Lipp, M., von Berg, B., Ortner, P., Piessens, F., Ev-
tyushkin, D., Gruss, D.: A systematic evaluation of transient execution attacks and defenses.
In: 28th USENIX Security Symposium (USENIX Security 19). pp. 249–266. USENIX As-
sociation, Santa Clara, CA (Aug 2019), https://www.usenix.org/conference/
usenixsecurity19/presentation/canella

9. Canella, C., Genkin, D., Giner, L., Gruss, D., Lipp, M., Minkin, M., Moghimi, D., Piessens,
F., Schwarz, M., Sunar, B., Van Bulck, J., Yarom, Y.: Fallout: Leaking data on meltdown-
resistant cpus. In: Proceedings of the ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS). ACM (2019)

10. Cheang, K., Rasmussen, C., Seshia, S., Subramanyan, P.: A formal approach to secure spec-
ulation. In: 2019 IEEE 32nd Computer Security Foundations Symposium (CSF). pp. 288–
28815 (2019). https://doi.org/10.1109/CSF.2019.00027

11. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Infinite-state invariant checking with ic3 and
predicate abstraction. Formal Methods in System Design 49, 190–218 (2016)

12. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: Proceedings of the 2008 21st IEEE
Computer Security Foundations Symposium. p. 51–65. CSF ’08, IEEE Computer So-
ciety, USA (2008). https://doi.org/10.1109/CSF.2008.7, https://doi.org/10.1109/
CSF.2008.7

13. Costan, V., Devadas, S.: Intel sgx explained. Cryptology ePrint Archive, Report 2016/086
(2016)

14. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19, 236–243
(1976)

15. Dillig, I., Dillig, T., Li, B., McMillan, K.L.: Inductive invariant generation via abductive
inference. Proceedings of the 2013 ACM SIGPLAN international conference on Object ori-
ented programming systems languages & applications (2013)

16. Fabian, X., Patrignani, M., Guarnieri, M.: Automatic detection of speculative execution com-
binations. In: Proceedings of the 29th ACM Conference on Computer and Communications
Security. CCS 2022, ACM (2022)

19

https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://doi.org/10.1109/CSF51468.2021.00010
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://doi.org/10.1109/CSF.2019.00027
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1109/CSF.2008.7

17. Feng, E., Lu, X., Du, D., Yang, B., Jiang, X., Xia, Y., Zang, B., Chen, H.: Scalable mem-
ory protection in the PENGLAI enclave. In: 15th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 21). pp. 275–294. USENIX Association (Jul 2021),
https://www.usenix.org/conference/osdi21/presentation/feng

18. Ferraiuolo, A., Baumann, A., Hawblitzel, C., Parno, B.: Komodo: Using verification to dis-
entangle secure-enclave hardware from software. In: Proc. of Symposium on Operating Sys-
tems Principles (SOSP) (2017)

19. Goguen, J.A., Meseguer, J.: Unwinding and inference control. 1984 IEEE Symposium on
Security and Privacy pp. 75–75 (1984)

20. Guanciale, R., Balliu, M., Dam, M.: Inspectre: Breaking and fixing microarchitectural vul-
nerabilities by formal analysis. In: Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security. p. 1853–1869. CCS ’20, Association for Com-
puting Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3372297.3417246,
https://doi.org/10.1145/3372297.3417246

21. Guarnieri, M., Köpf, B., Morales, J.F., Reineke, J., Sánchez, A.: Spectector: Principled de-
tection of speculative information flows. In: 2020 IEEE Symposium on Security and Privacy,
SP 2020, San Francisco, CA, USA, May 18-21, 2020. pp. 1–19. IEEE (2020)

22. Guarnieri, M., Köpf, B., Reineke, J., Vila, P.: Hardware-software contracts for secure spec-
ulation. In: 2021 IEEE Symposium on Security and Privacy (SP). pp. 1868–1883 (2021).
https://doi.org/10.1109/SP40001.2021.00036

23. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12, 576–580
(1969)

24. Hu, G., He, Z., Lee, R.B.: Sok: Hardware defenses against speculative execution attacks.
In: 2021 International Symposium on Secure and Private Execution Environment Design
(SEED). pp. 108–120 (2021). https://doi.org/10.1109/SEED51797.2021.00023

25. Ikarashi, Y., Bernstein, G.L., Reinking, A., Genç, H., Ragan-Kelley, J.: Exocompilation for
productive programming of hardware accelerators. Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implementation (2022)

26. Kaplan, D.: AMD SEV-ES. http://support.amd.com/TechDocs/
ProtectingVMRegisterStatewithSEV-ES.pdf (2017)

27. Kaplan, D., Powell, J., Woller, T.: http://amd-dev.wpengine.netdna-cdn.com/
wordpress/media/2013/12/AMD Memory Encryption Whitepaper v7-
Public.pdf (2016)

28. Kiriansky, V., Lebedev, I., Amarasinghe, S., Devadas, S., Emer, J.: Dawg: A defense
against cache timing attacks in speculative execution processors. In: 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). pp. 974–987 (2018).
https://doi.org/10.1109/MICRO.2018.00083

29. Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M.,
Mangard, S., Prescher, T., Schwarz, M., Yarom, Y.: Spectre attacks: Exploiting specula-
tive execution. In: 2019 IEEE Symposium on Security and Privacy (SP). pp. 1–19 (2019).
https://doi.org/10.1109/SP.2019.00002

30. Koul, K., Melchert, J., Sreedhar, K., Truong, L., Nyengele, G., Zhang, K., Liu, Q., Set-
ter, J., Chen, P.H., Mei, Y., Strange, M., Daly, R.G., Donovick, C., Carsello, A., Kong, T.,
Feng, K., Huff, D., Nayak, A., Setaluri, R., Thomas, J.J., Bhagdikar, N., Durst, D., Myers,
Z., Tsiskaridze, N., Richardson, S., Bahr, R., Fatahalian, K., Hanrahan, P., Barrett, C.W.,
Horowitz, M., Torng, C., Kjolstad, F., Raina, P.: Aha: An agile approach to the design of
coarse-grained reconfigurable accelerators and compilers. ACM Transactions on Embedded
Computing Systems (TECS) (2022)

31. Kozyri, E., Chong, S., Myers, A.C.: Expressing information flow properties. Foundations
and Trends in Privacy and Security 3(1), 1–102 (2022). https://doi.org/10.1561/3300000008,
https://doi.org/10.1561/3300000008

20

https://www.usenix.org/conference/osdi21/presentation/feng
https://doi.org/10.1145/3372297.3417246
https://doi.org/10.1145/3372297.3417246
https://doi.org/10.1109/SP40001.2021.00036
https://doi.org/10.1109/SEED51797.2021.00023
http://support.amd.com/TechDocs/ProtectingVMRegisterStatewithSEV-ES.pdf
http://support.amd.com/TechDocs/ProtectingVMRegisterStatewithSEV-ES.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://doi.org/10.1109/MICRO.2018.00083
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1561/3300000008
https://doi.org/10.1561/3300000008

32. Lee, D., Cheang, K., Thomas, A., Lu, C., Gaddamadugu, P., Vahldiek-Oberwagner, A., Vij,
M., Song, D., Seshia, S.A., Asanovic, K.: Cerberus: A formal approach to secure and effi-
cient enclave memory sharing. In: Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security. p. 1871–1885. CCS ’22, Association for Com-
puting Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3548606.3560595,
https://doi.org/10.1145/3548606.3560595

33. Lee, D., Kohlbrenner, D., Shinde, S., Asanović, K., Song, D.: Keystone: An open frame-
work for architecting trusted execution environments. In: Proceedings of the Fifteenth Eu-
ropean Conference on Computer Systems. EuroSys ’20, Association for Computing Ma-
chinery, New York, NY, USA (2020). https://doi.org/10.1145/3342195.3387532, https:
//doi.org/10.1145/3342195.3387532

34. Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J., Mangard, S.,
Kocher, P., Genkin, D., Yarom, Y., Hamburg, M.: Meltdown: Reading kernel memory from
user space. In: 27th USENIX Security Symposium (USENIX Security 18) (2018)

35. Lyndon, R.: An interpolation theorem in the predicate calculus. Pacific Journal of Mathemat-
ics 9, 129–142 (1959)

36. McMillan, K.L.: Symbolic model checking. In: International Conference on Computer Aided
Verification (1993)

37. McMillan, K.L.: Interpolation and sat-based model checking. In: International Conference
on Computer Aided Verification (2003)

38. Mosier, N., Lachnitt, H., Nemati, H., Trippel, C.: Axiomatic hardware-software contracts
for security. In: Proceedings of the 49th Annual International Symposium on Computer
Architecture. p. 72–86. ISCA ’22, Association for Computing Machinery, New York, NY,
USA (2022). https://doi.org/10.1145/3470496.3527412, https://doi.org/10.1145/
3470496.3527412

39. Murray, T., Sison, R., Engelhardt, K.: Covern: A logic for compositional verification of in-
formation flow control. In: 2018 IEEE European Symposium on Security and Privacy (Eu-
roS&P). pp. 16–30 (2018). https://doi.org/10.1109/EuroSP.2018.00010

40. Polgreen, E., Cheang, K., Gaddamadugu, P., Godbole, A., Laeufer, K., Lin, S., Manerkar,
Y.A., Mora, F., Seshia, S.A.: Uclid5: Multi-modal formal modeling, verification, and syn-
thesis. In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification. pp. 538–551. Springer
International Publishing, Cham (2022)

41. Sandhu, R.S.: Lattice-based access control models. Computer 26, 9–19 (1993)
42. van Schaik, S., Milburn, A., Österlund, S., Frigo, P., Maisuradze, G., Razavi, K., Bos, H.,

Giuffrida, C.: RIDL: Rogue in-flight data load. In: S&P (May 2019)
43. van Schaik, S., Minkin, M., Kwong, A., Genkin, D., Yarom, Y.: Cacheout: Leaking data

on intel cpus via cache evictions. 2021 IEEE Symposium on Security and Privacy (SP) pp.
339–354 (2020)

44. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about dynamic
taint analysis and forward symbolic execution (but might have been afraid to ask). 2010
IEEE Symposium on Security and Privacy pp. 317–331 (2010)

45. Schwarz, M., Schwarzl, M., Lipp, M., Gruss, D.: Netspectre: Read arbitrary memory over
network. ArXiv abs/1807.10535 (2018)

46. Stecklina, J., Prescher, T.: Lazyfp: Leaking FPU register state using microarchitectural side-
channels. CoRR abs/1806.07480 (2018), http://arxiv.org/abs/1806.07480

47. Subramanyan, P., Sinha, R., Lebedev, I., Devadas, S., Seshia, S.A.: A formal foundation for
secure remote execution of enclaves. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. p. 2435–2450. CCS ’17, Association for Com-
puting Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3133956.3134098,
https://doi.org/10.1145/3133956.3134098

21

https://doi.org/10.1145/3548606.3560595
https://doi.org/10.1145/3548606.3560595
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1145/3470496.3527412
https://doi.org/10.1145/3470496.3527412
https://doi.org/10.1145/3470496.3527412
https://doi.org/10.1109/EuroSP.2018.00010
http://arxiv.org/abs/1806.07480
https://doi.org/10.1145/3133956.3134098
https://doi.org/10.1145/3133956.3134098

48. Szefer, J.: Survey of microarchitectural side and covert channels, attacks, and defenses. Jour-
nal of Hardware and Systems Security pp. 1–16 (2016)

49. Szefer, J.: Survey of microarchitectural side and covert channels, attacks, and defenses. Jour-
nal of Hardware and Systems Security pp. 1–16 (2018)

50. Trippel, C., Lustig, D., Martonosi, M.: Checkmate: Automated synthesis of hard-
ware exploits and security litmus tests. In: 2018 51st Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO). pp. 947–960 (2018).
https://doi.org/10.1109/MICRO.2018.00081

51. Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F., Silberstein,
M., Wenisch, T.F., Yarom, Y., Strackx, R.: Foreshadow: Extracting the keys to the Intel SGX
kingdom with transient out-of-order execution. In: Proceedings of the 27th USENIX Security
Symposium. USENIX Association (August 2018), see also technical report Foreshadow-NG

52. Van Bulck, J., Moghimi, D., Schwarz, M., Lipp, M., Minkin, M., Genkin, D., Yuval, Y.,
Sunar, B., Gruss, D., Piessens, F.: LVI: Hijacking Transient Execution through Microarchi-
tectural Load Value Injection. In: 41th IEEE Symposium on Security and Privacy (S&P’20)
(2020)

53. Weisse, O., Van Bulck, J., Minkin, M., Genkin, D., Kasikci, B., Piessens, F., Silberstein,
M., Strackx, R., Wenisch, T.F., Yarom, Y.: Foreshadow-NG: Breaking the virtual memory
abstraction with transient out-of-order execution. Technical report (2018), see also USENIX
Security paper Foreshadow

54. Yang, W., Vizel, Y., Subramanyan, P., Gupta, A., Malik, S.: Lazy Self-composition for Se-
curity Verification: 30th International Conference, CAV 2018, Held as Part of the Federated
Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II, pp. 136–
156 (07 2018)

55. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program security.
16th IEEE Computer Security Foundations Workshop, 2003. Proceedings. pp. 29–43 (2003)

22

https://doi.org/10.1109/MICRO.2018.00081

Supplementary Material

In this section we provide additional examples and proofs that support the main text.

A Proof System

A.1 Proof rules

We provide the full set of proof rules in Fig. 11. In addition to sequential composi-
tion of the proof rules, we can also have a proof rule for for strengthening the pre-
condition/weaking the postcondition. This is analogous to the consequence rule in the
classical Floyd-Hoare system (e.g. [23]). We denote this as rule (3) in Fig. 11.

(RBASE)
∀q1, q2, q′1, q′2. ((q1, q2) |= {S, Γ} ∧ δ(q1, op1 · · · opn, q

′
1) ∧ δ(q2, op1 · · · opn, q

′
2)) =⇒ (q′1, q

′
2) |= {S′, Γ ′}

{S, Γ}M(op1 · · · opn) {S
′, Γ ′}

(RSEQ)
{S, Γ}M(op1 · · · opk) {S

′′, Γ ′′} {S′′, Γ ′′} M(opk+1 · · · opn) {S
′, Γ ′}

{S, Γ}M(op1 · · · opn) {S
′, Γ ′}

(RCONS)
(S1 ⊆ S′

1 ∧ Γ1 ⊑ Γ ′
1) (S′

2 ⊆ S2 ∧ Γ ′
2 ⊑ Γ2) {S′

1, Γ
′
1}M(op1 · · · opn) {S

′
2, Γ

′
2}

{S1, Γ1} M(op1 · · · opn) {S2, Γ2}

Fig. 11. Proof rules for joint symbolic-taint judgements.

A.2 Proof of Theorem 1

We now provide a proof for Theorem 1.

Proof (Proof sketch). In the case of non-interference (NI), if 10 holds then, we also
have

{I, Γ ∗}M(P) {Q,Γf} (15)

where Γ ∗ = [VL → L, VH → H] (by RCONS). Now consider any pair of traces π1, π2 ∈
TrP (M). If π(0)

1 ≈VL π
(0)
2 (precondition of NI, Defn. 6) then (π

(0)
1 , π

(0)
2) |= {I, Γ ∗}.

Consequently (by Eq. 15), every pair of final states satisfy (π
(n)
1 , π

(n)
2) |= {Q,Γf}.

Then, by the condition on Γf (in Eq. 10), we get π(n)
1 ≈VL π

(n)
2 as desired. The proof

for OD is similar, however, we use the intermediate taint-contexts to show equivalence
π
(i)
1 ≈VL π

(i)
2 for each step i.

We now provide a proof sketch for TPOD. Suppose there exist traces π1, π2, π3, π4 ∈
TrP (M) that satisfy the preconditions of TPOD. That is (A) π1, π2 ∈ T1, (B) π3, π4 ∈
T2, (C) π1 ≈VL π2 and (D) π(0)

3 ≈VL π
(0)
4 . Then we proceed by induction to show that

((π
(i)
1 , π

(i)
3), (π

(i)
2 , π

(i)
4)) |= {Si, Γi} holds for each i. The base case follows by (Eq.

12) since π
(0)
1 , π

(0)
2 ∈ I ∩ I tpod

1 (since I tpod
1 is a cover invariant for T1), and similarly

π
(0)
3 , π

(0)
4 ∈ I ∩ I tpod

2 .

23

Now assume (inductive case) that it holds for some i. The ((π(i+1)
1 , π

(i+1)
3), (π

(i+1)
2 , π

(i+1)
4)) |=

{Si+1, Γ
′
i+1} holds by (F) and RBASE. Now, the fact that Γi and Γ ′

i agree on V 2
L and

that (π(i)
1 ≈V 1

L
π
(i)
2) implies ((π(i+1)

1 , π
(i+1)
3), (π

(i+1)
2 , π

(i+1)
4)) |= {Si+1, Γi+1}. This

shows the inductive case. Finally, this implies π(i)
3 ≈V 2

L
π
(i)
4 for each i since Γi(v) = L

for v ∈ V 2
L .

B SAP Model

B.1 Assumptions

We first state some of the assumptions of the SAP model that affected some of the
design decisions of the model.

Program Reachability Transient execution depends on the execution path that a pro-
gram takes both non-speculatively and speculatively. Existing methods have used an
always mispredict [16] model to explore the possible paths of program execution. We
assume the same model and assume direct branches can speculatively execute in either
direction. As for indirect branches, we assume that an arbitrary location is chosen as an
(over-)approximation.

Page Tables and Memory Accesses Our model assumes static page table mappings.
In addition, there are two partitions of memory initially, one partition contains only
low-labelled data fragments and the second partition contains one high-labelled data
fragment (representative of secret memory). The idea behind this is that if the adver-
sary is able to exfiltrate information about a single secret, then the same program with
additional secrets still results in a leak. Lastly, our model assumes memory consistency.

Forgoing Speculative Save States Lastly, our model does not include a notion of save
states unlike prior formal models [10, 16, 21]. We find that even without speculative
save states, a wide range of vulnerabilities can still be captured by our model. More-
over, speculative save states are often encoded as arrays of the architectural state, further
increasing the complexity of the formal model. We note that we use symbolic model
checking in our case study and these assumptions allow us to model a speculative mi-
croprocessor abstractly and simplify the model in a way that avoids quantification in
the underlying SMT [4] formula. Under these assumptions, we formulate the specula-
tive semantics of our model as the following.

In this section we describe the components of the SAP model in more detail. Fig-
ure 12 illustrates the components of the SAP model and their operations.

B.2 The Speculative Abstract Platform Model

In this section, we describe the SAP model in more detail.

24

Abstract CPU Model The CPU model is an abstraction of architectural states, which
include the variables in the first row of Table 13. The pc is the program counter which
is a virtual address type V A. The registers regs is a map from integers N to words
W . The memory mem is a map from physical addresses PA to words W . excp is the
exception register that is of type E 5, representing a set of exception types. In addition
to the state variables there are a set of operations (Op) that define the transition rela-
tion semantics ∆. For the CPU, these operations are the load (load), store (store),
conditional branch (bge), add (add), multiply (mul, and jump (jmp) instructions con-
taining only the ISA level semantics. As an example, the semantics of the load operation
(without virtualization) is described in Example 1.

Speculative Abstract Platform Model

Branch Prediction Unit

Branch Target Buffer

Pattern History Table

Return Stack Buffer

Virtualization
Page Table

TLB

CPU + ISA
load

bge
add

store

jmp

CPU

Memory Pipeline

Data
Cache

Line
Fill
Buffer

cload_guard
cload

fload_guard
fload

Out-of-order Engine

Store
Buffer

Load
Buffer

lload_guard
lload

sload_guard
sload

sstore_guard
sstore

Power States
CU

Fig. 12. The Speculative Abstract Platform. Each rectangle represents an IFSM module along
with their operation wrappers indicated by tags, of which only a subset have been displayed.

Abstract Cache Model The second row in Table 13 describes the cache model, which
extends the CPU model with a map of cache indexes (of type CA) to cache valid bits
(of type boolean Bool) and a map of cache indexes (of type CA) to cache tags (mod-
elled as physical addresses PA). Here, the cache index is an uninterpreted type and an
uninterpreted function lidx is used to index into the cache line based on the address.
We choose this formulation to capture a class of cache replacement policies. Note that
the model assumes cache coherency, thus there is no need to create a separate variable
for the data value in the cache.

Abstract Line Fill Buffer Model The line fill buffer is kept fairly abstract and only
contains a hit map lfb hit that returns whether a given physical address results in a

5 We note that the number of exceptions is not comprehensive and only includes page faults,
abort pages and device-not-available exceptions to accommodate the variants we verify.

25

Model State Var. Type Description

CPU

pc V A The program counter.
regs N → W Registers.
mem PA → W Physical memory.
excp E Exception register.
pid Pid Current executing process.

Cache
cache valid CA → Bool Cache index to valid bit.
cache tag CA → PA Cache index to entry tag.

LFB lfb hit PA → Bool PA to hit/miss value.

OoO
Engine

sb valid SI → Bool SB index to valid bit.
sb data SI → W SB index to data.
lb valid LI → Bool LB index to valid bit.
lb data LI → W LB index to data.

Page
table

addr map V A → PA Virtual to physical addr. map.
addr perm V A → ACL VA permissions and pres. bit.
owner PA → Pid PA to owner (PID).

TLB
tlb valid TI → Bool TLB set index to valid bit.
tlb tag TI → PA TLB set index to tag.

Branch
predictors

pht V A → Bool Pattern history table.
btb V A → V A Branch target buffer.

Power
states

cu Bool Power state of a computational unit.

Fig. 13. The Speculative Abstract Platform Model: State variables, along with their types and
description, separated by individual IFSM components.

hit (which then returns the appropriate data value) or a miss. Despite the simplicity of
the model, it is sufficient to capture the ineffectiveness of cache flushes in preventing
micro-architectural data sampling attacks (MDS). Similar to the cache model, the line
fill buffer contains wrappers for the load operation as shown in Figure 12.

Abstract Out-of-Order Engine Model The out-of-order (OoO) engine contains the
store buffer and load buffer variables. sb valid and sb data are maps from the
store buffer indices SI (of uninterpreted type) to the entry’s valid bit and data value
(of type word W) respectively. The load buffer is modelled similarly with the variables
lb valid and lb data.

Abstract Page Table Model The page table model contains a virtual to physical ad-
dress map addr map and a permission map addr perm where each virtual address
is associated with a permission bit for read, write and execute and a present bit (e.g.
ACL

.
= {R,W,X,P}, where R,W,X,P are boolean types). It also contains an owner

map owner that determines which process owns a physical address. More interestingly,
the operations for this model include address translation operations which are used in
the load and store operations.

Abstract Translation Lookaside Buffer Model The translation lookaside buffer is mod-
elled similarly to the cache, which includes a map from TLB indices TI (of uninter-
preted type) to a valid bit and physical address (of type PA). The operations of the
TLB model contain wrappers for the address translation operations defined in the ab-
stract page table model.

26

Abstract Branch Predictor Model The abstract branch predictor uses an uninterpreted
function to determine the branch direction of conditional direct branches based on a
pattern history table state pht, which stores the previously predicted direction for each
address. It also contains a branch target buffer state btb, which is a map from vir-
tual addresses to the target address prediction. In other words, it takes the conventional
always mispredict semantics common in existing speculative semantics [16, 21].

Abstract Power State Model Lastly, a boolean valued state cu is used to represent
the power state of a computational unit such as the AVX2 unit. The state is set to true
whenever an associated instruction (which is in the set of operations) that uses the unit
is executed.

C Discussion

In this section, we describe some of the limitations of our proof system, verification
methodology, and formal models.

C.1 Limitations

Compositional Verification of CondTPOD. While CondNI (Eq. 10) and CondObsDet
(Eq. 11) can be checked by checking each Floyd-Hoare triple locally, CondTPOD
(Eq. 12) requires checking trace properties over entire traces. Consequently, this means
we lose the ability to check each Floyd-Hoare triple locally for general trace properties.
However, trace properties that can be expressed as invariants over the triples naturally
does allow our proof system to also check whether the system satisfies the trace prop-
erties in a localized manner. In fact, many useful properties, including the ones used
to instantiate TPOD to derive secure speculation [10], can indeed be written as invari-
ants (e.g. whether a program is allowed to speculate). Thus we defer the exploration of
compositionally checking trace properties to existing and future work.

In-order Execution of Programs. Similar to existing approaches [10, 16, 21] that use
symbolic execution, our verification methodology using the SAP model only considers
in-order program instruction fetch. Thus, there may exist vulnerabilities on an out-of-
order microprocessor that are not captured using our model alone. Proving properties
about fully out-of-order processors would thus require modeling a component akin to a
reorder buffer. Alternatively, one could potentially synthesize sound abstractions such
that any violation of an information flow property in the out-of-order implementation
model is preserved by the abstraction.

C.2 Soundness of Abstractions

While the SAP model is capable of capturing a broad class of attacks, we emphasize
that every component is necessary for sound verification of any system. Thus while
our SAP model is capable of capturing a broad class of vulnerabilities on a class of

27

micro-architectures, ideally each micro-architecture should tailor the model to accom-
modate all components that could potentially be exploited. For more fine-grain analysis,
one should use sound abstract models derived from the RTL implementation, as direct
formal verification of RTL often does not scale.

28

	Compositional Proofs of Information Flow Properties for Hardware-Software Platforms

