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Abstract

Aligning Robot Representations with Humans

by

Andreea Bobu

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Associate Professor Anca Dragan, Chair

Robots are becoming increasingly weaved into the fabric of our society, from self-driving

cars on our streets to assistive manipulators in our homes. To act in the world, robots rely

on a representation of salient features of the task: for example, to hand me a cup of coffee,

the robot considers movement efficiency and cup orientation in its behavior. However, if

we want robots to act for and with people, their representations must not be just functional

but also reflective of what humans care about, i.e. their representations must be aligned
with humans’. What’s holding us back from successful human-robot interaction is that

these representations are often misaligned, resulting in anything from miscoordination and

misunderstandings, to learning and executing dangerous behaviors.

To learn the human’s representation of what matters in a task, typical methods rely on data

sets of human behavior but this data cannot reflect every individual, environment, and

task the robot will be exposed to. This dissertation advocates that we should instead treat

humans as active participants in the interaction not as static data sources: robots must
engage with humans in an interactive process for finding a shared representation. We

formalize the representation alignment problem as a joint search for a common representation.

Then, rather than hoping that representations will naturally be aligned, we propose having

humans directly teach them to robots with representation-specific input. Next, we enable

robots to automatically detect representation misalignment with the human by estimating a

confidence over how much the robot’s representation can explain the human’s behavior.

We demonstrate how human-aligned representations can lead to novel human behavior
models with broad implications beyond robotics, to econometrics and cognitive science.

Finally, this thesis concludes by asking “How can robots help the human-robot team converge
to a shared representation?” and discusses opportunities for future work in expanding

representation alignment for seamless human-robot interaction.
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Figure 1.1: Thesis overview contextualizing the dissertation chapters in the broader space of representation

alignment in human-robot interaction.

Robots are increasingly weaved into the fabric of society, from self-driving cars in

cities to personal robots on space stations to assistive arms at home. Despite this rise of

autonomous system integration, seamless robot interaction with people remains elusive:

autonomous cars still cause crashes in unconventional situations [202], flight control sys-

tems create tug of war scenarios in spite of conflicting pilot interventions [105], and, as we

will see in this thesis, personal robots move objects uncomfortably close to their users [43].

What is the reason underlying these failure modes in human-robot interaction? What’s

still missing in the way our robots currently decide how to behave around people?

To act in the world, robots rely on a representation of salient features of the task: for

instance, to hand a user a cup of coffee, the robot may consider movement efficiency and

cup orientation in its behavior. In this simple example, it’s relatively easy to anticipate what

the robot’s representation should be: almost every system designer will be able to think



CHAPTER 1. INTRODUCTION 2

ahead of time of efficiency and joint orientations as features important for general robot

motion. However, human preferences for how robots should behave around them can be

vastly more complex, varying between individuals, environments, and tasks. In the above

example, a user might care about how close to them the robot moves or whether it carries

the mugful of coffee around their expensive laptop, and what “close” or “around” means

will differ from person to person and be context-dependent. This makes enumerating all

the features that could matter to people much more challenging, even impossible.

This example illustrates that if we want robots to act for and with people, their repre-

sentations must not be just functional but also reflective of what humans care about, i.e.

their representations must be aligned with humans’. Once we adopt this perspective, we

see that what’s holding us back from successful human-robot interaction is that these

representations are often misaligned. Without an understanding of personal space, the

assistive robot moves the user’s cup inches away from their face [43]. Without knowing

about jaywalking pedestrians, the autonomous car cannot properly detect them and fatally

crashes into them [202]. Without recognizing that the pilot is not aware of a new design

feature, the flight control system enters a tug of war, nose diving into the ocean [105].

In this dissertation, we advocate that solving interaction starts with aligning robot
representations with humans. Typical methods attempt to learn the human’s representation

of what matters in a task from aggregated data sets of human behavior, but this data

will also not reflect every individual, environment, and task the robot will be exposed to.

Instead, we suggest that we should treat humans as active participants in the interaction

not as static data sources. Since humans have personalized representations of their tasks,

they are uniquely equipped to communicate to the robot what they care about. This leads

to the core insight of this dissertation:

successful human-robot interaction requires robots to engage with humans in an
interactive process for finding a shared representation of what’s salient for the task.

Overall, this thesis approaches interaction by explicitly tackling representation align-

ment, rather than hoping it will naturally emerge. This lets us unify cognitive models of

human behavior with machine learning methods in a way that’s scalable, accessible, and

robust, and develop practical algorithms for reliable and transparent human-aligned inter-

action. Throughout this dissertation we evaluate our methods in robot experiments with

real human participants. Our key contributions are primarily demonstrated in interaction

contexts like assistive and personal robotics, but our insights have broad implications to

other application areas like self-driving, aircraft flight control systems, delivery quad-

copters, and semi-autonomous surgical robots.

Fig. 1.1 provides a visual overview of the four main parts of the thesis (which we

briefly motivate below) and how they fit in the broader space of representation alignment

in human-robot interaction. We conclude this dissertation with a discussion outlining a

few future research directions towards more seamless human-robot interaction.
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Part I: Formalizing Representation Alignment. We have motivated that building robots

that act for and with people necessitates representations that are not just functional but

also reflective of what humans care about, i.e. that are aligned. However, it remains unclear

how to study, analyze, or innovate upon representation alignment in the broader robotics

and robot learning fields. In this first part, we present a unifying lens on aligning robot and

human representations that serves as the foundation on top of which the remaining three

parts of the thesis are built. In Chapter 2, we first identify the four key desiderata for the

idealized human-aligned representation: recoverability, minimality, ease of recovery, and

explainability. Based on these, we then mathematically operationalize the representation

alignment problem in robotics. This allows us to situate current methods within this uni-

fied formalism, identify their strengths and weaknesses, and draw key takeaways to help

discern directions for future work. We survey over 100 works on learning representations

in robotics, and categorize, compare, and contrast them under this lens.

Part II: Learning Representations from Representation-Specific Input. Representation

alignment demands a mechanism by which robots can quickly and efficiently learn, ex-

pand, or modify their representations from human input whenever necessary. The stan-

dard data-driven mechanism uses task-specific data sets of how people solve their tasks

in hopes of implicitly recovering representations compatible with what humans want. In-

stead, here we explicitly include humans in the alignment process and directly ask them for

representation-specific input to teach the robot about their representations. Chapter 3 pro-

poses learning the human’s representation one feature at a time, allowing non-expert users

to hone into every feature. To reduce the amount of data necessary for teaching a feature,

we maximize informativeness while minimizing human teaching burden by introducing a

new type of representation-specific input: feature traces – trajectories that exhibit a mono-

tonic evolution of the human’s internal feature value. By exploiting this monotonicity

property, we can efficiently train each feature from just a few traces. Chapter 4 provides

an extension for teaching perceptual features – features that map from high-dimensional

sensor input spaces, e.g. images or point clouds. Under this setting, learning a perceptual

feature that is robust across the input space is very data-inefficient with standard super-

vised methods. To address that, we bootstrap the representation learning process by first

training a proxy feature that operates on a low-dimensional transformation of the sensor

space (e.g. geometries), and then treating it as an automatic labeler for a large and diverse

set of high-dimensional observations in simulation. By breaking up the training process

in this way, the robot can now learn perceptual features with much less data.

So far, we assumed that the human can identify every individual feature of the rep-

resentation they wish to teach, but that’s not always easy. Imagine you want the robot

to understand what comfort means or learn a representation for emotion. How would

you even explicate such a feature representation? In Chapter 5, rather than thinking of

and teaching each feature one at a time, we observe that cognitive science grounds certain

representations in well-studied structures, for which we can then ask the human for labels.

We use as motivation generating robot motion that is expressive and we focus on one
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such structure that centers around representing emotion. By defining a known feature

structure for emotion, the robot only has to learn how to map various of its motions to it,

which is something a person can feasibly provide labels for. We show that, when trained

this way, a variety of robots can now produce a vast array of expressive motions, from

happy skipping to fearful tip toeing. Unfortunately, though, most human representations

do not have extensive prior research on known feature structures. As such, in Chapter 6

we try to learn the human’s representation all features at once by designing representation-

specific tasks – proxy tasks intended for learning an embedding of everything that matters

from the person’s behavior on that task. We investigate a behavior similarity task where

people decide whether robot behaviors are similar to one another. The intuition is that

if a person decides two robot behaviors are similar, they must also internally represent

them similarly, enabling us to extract their representation. With our approach, we recover

representations that are much closer to the human’s than the state-of-the-art, which we

also show leads to more generalizable reward learning.

Part III: Detecting Representation Misalignment. Representation alignment has impor-

tant implications for learning the right human-intended tasks. With the wrong represen-

tation, the robot may incorrectly anticipate what the person will do or misinterpret their

guidance for how to do the task, resulting in undesired behaviors and poor coordination.

For instance, if a manipulation robot does not know about the user’s personal space, it

may misunderstand their push to stay away as a correction for something else like holding

mugs at an angle, accidentally causing a spill. In this third part, we enable the robot to

automatically detect when its representation is misaligned with the human’s and fix it.

Chapter 7 proposes that the robot should be introspective and estimate a confidence in how

much to trust its representation: if the person’s behavior seems inexplicable under the

robot’s current representation, then that representation must be misaligned. This gives

the robot a fast and principled way to monitor misalignment, and it can even overcome it:

once the robot knows its representation is wrong, it can re-learn or expand it to be aligned

with the human’s. We demonstrate that the robot can still learn from behavior it under-

stands, but is now robust to misinterpretation and ultimately learns what humans want.

While this chapter showcases this insight in learning from physical demonstrations or

corrections, Chapter 8 applies it even more broadly to teleoperation in shared autonomy.

In that setting, the confidence parameter can additionally be used to arbitrate the degree

of control the robot has during the task execution: if representations are aligned, higher

confidence signals to the robot that it can take more of the control burden and assist the

human user; however, if they are misaligned, low confidence naturally makes the robot

relinquish control authority to the human so that it doesn’t assist for the wrong goal.

Part IV: Using Aligned Representations to Interpret Human Behavior. Human behavior

is not random – it is intentional and reflective of internal goals and preferences. To interpret

and learn from it, robots rely on a model of how people act: they often assume humans trade

off what matters for the task – the representation – and behave to achieve that trade-off.

Once we agree that representations should not be just functional but also human-aligned,
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we can also fundamentally rethink how robots model people internally, and, thus in turn,

interpret their behavior. In this final part, we propose a novel human behavior model that

makes use of aligned representations. We observe that when humans make decisions,

their representation affects how they view the options amongst which they are choosing.

For example, although there are many paths around an obstacle, humans may group

them into “left” and “right” when deciding between them. Instead of seeing human

decisions as a choice from a set of behaviors, as current models do, our model reinterprets

the available choices from the lens of the human-aligned representation. We demonstrate

that this better reflects how humans make decisions, and that robots make better inferences

if they interpret human input as such. Crucially, our model has wide-reaching impacts

beyond robotics, to artificial intelligence, econometrics, and cognitive science.



6

Part I

Formalizing Representation Alignment

Part I serves as the formal foundation on top of which the rest of the thesis is built.

In this dissertation, we advocate that robots that act for and with people necessitate

representations that are not just functional but also reflective of what those people care

about, i.e. that are aligned. Unfortunately, current learning approaches suffer from

representation misalignment, where the robot’s learned representation does not capture

the human’s representation. We suggest that because humans are the ultimate evaluator

of robot performance, it is critical that we explicitly focus our efforts on aligning learned

representations with humans, in addition to learning the downstream task. We advocate

that representation learning approaches in robotics should be studied from the perspective

of how well they accomplish the objective of representation alignment. We mathematically

operationalize the representation alignment problem, identify its key desiderata, and

situate current methods within this formalism.
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Chapter 2

Aligning Robot and Human
Representations

This chapter is based on the paper “Aligning Robot and Human Representations” [39], written in
collaboration with Andi Peng, Pulkit Agrawal, Julie Shah, and Anca Dragan.

Laptop

Table

Mug

on Hand
on

in

…

Observations Feature Sets

Embeddings Graph Structures

Human	
Representation

Possible	Robot	Representations

Representation	
Alignment

Figure 2.1: We formalize representation alignment as the search for a robot representation that is easily able
to capture the true human task representation. We review four categories of current robot representations.

In robot learning, we aspire to build robots that perform tasks that human users want

them to perform. To do so, robots need good representations of salient task features. For

example, in Fig. 2.1, to carry a coffee mug, the robot considers efficiency, mug orientation,

and distance from the user’s possessions in its behavior. There are two paradigms for

learning representations: one that explicitly builds in structure for learning features, e.g.

feature sets or graphs, and one that implicitly extracts features by mapping input directly to
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desired behavior, e.g. end-to-end approaches [179, 244]. While explicit structure is useful

for capturing relevant task features, it’s often impossible to comprehensively define all

features that may matter to the downstream task; meanwhile, implicit methods circumvent

this problem by allowing neural networks to automatically extract representations, but

they are prone to capturing spurious correlations [179], resulting in potentially arbitrarily

bad robot behavior under distribution shift between train and test conditions [223].

Our observation is that many failures in robot learning, including the ones above, often

result from a mismatch between the human’s representation and the one learned by the

robot; in other words, their representations are misaligned. From this perspective, these

failures illuminate that if we truly wish to learn good representations – if we truly want

robots that do what human users want – we must explicitly focus on the foundational

problem: aligning robot and human representations. We offer a unifying lens for the robot

learning community to view existing and future solutions to this problem.

We review over 100 papers in the representation learning literature in robotics from

this perspective. We first define a unifying mathematical objective for an aligned rep-

resentation based on four desiderata: value alignment, generalizable task performance,

reduced human burden, and explainability. We then conduct an in-depth review of four

common representations (Fig. 2.1): the identity representation, feature sets, feature em-

beddings, and graphical structures – illustrating the deltas each falls short in with respect

to the desiderata. From situating each representation in our formalism, we arrive at

the following key takeaway: a better structured representation affords better alignment

and therefore better task performance, but always with the unavoidable tradeoff of more

human effort. This effort can be directed in three ways: 1) representations that operate

directly on the observation space, e.g. end-to-end methods, direct effort at increasing task

data to avoid spurious correlations; 2) representations that build explicit task structure,

e.g. graphs or feature sets, direct effort at constructing and expanding the representa-

tion; and 3) representations that learn directly from implicit human representations, e.g.

self-supervised models, direct effort at creating good proxy tasks.

This chapter is much like a survey, except there is little work that directly addresses

the representation alignment problem we pose. Instead, we offer a retrospective on works

that focus on learning task representations in robotics with respect to our desiderata.

Our review provides a unifying lens to think about the current gaps present in the robot

learning literature as defined by a common language, or in other words, a roadmap for

thinking about challenges present in current and future solutions in a principled way.

2.1 The Desired Representation
We start off by building intuition for the desiderata defining aligned representations.

Value Alignment. Learning human-aligned representations can aid with value align-
ment [14], enabling robots to perform well under the human’s desired objective rather

than optimize misspecified objectives that lead to unintended side-effects. In “reward
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hacking” scenarios, the reward function may capture an ill-defined or misleading rep-

resentation of the human’s intent [14]. In the canonical example of a robot tasked with

sweeping dust off the floor [248], an optimal policy for the reward "maximize dust col-

lected off the floor" leads the robot to dump dust just to immediately sweep it up again.

In this case, the reward is defined on top of a representation that is under-specified, e.g. the

amount of dust that is collected, and fails to capture other important features, e.g. covering

the whole house, not adding dust on the floor, etc. Explicitly learning a representation

that is aligned to the human’s could ensure that causal features for accomplishing the

desired objective are fully captured.

Generalizable Task Learning. A human-aligned representation may afford more gener-

alizable task learning [91, 20]. A central problem in robot learning is our ability to learn

diverse behaviours across different environments and user preferences [179, 223]. While

domains like natural language or vision have elicited impressive performance across many

tasks by leveraging large-scale datasets [234, 53, 229], robot learning is bottlenecked by our

ability to collect diverse data that captures the complexity of the world. Without it, neural

networks may learn non-causal correlates in the input space [143, 121]. Thus, learning

objectives that operate directly on high-dimensional input spaces suffer from spurious cor-
relations, where the implicit representation may contain features that are irrelevant to the

task [8]. Consequently, the learned network may be based on these correlated irrelevant

features that appear causal in-distribution, but fail under distribution shift. Explicitly

aligning robot representations with those used by humans may afford more generalizable

and robust task learning under distribution shift.

Reducing Human Burden. Operating on human-aligned representations may reduce

teaching burden. In our above scenarios where human guidance is either task demon-

strations or specified rewards, if we had unlimited human time and effort, we would be

able to provide a perfect task representation, i.e. a demonstration of the task in every

environment for every user [94], or a reward function that specifies every feature any user

may find relevant for performing the task in any environment [124], and then fit the data

with an arbitrarily complex function such as a neural network. In practice, both scenarios

are computationally intractable with low sample complexity, and therefore motivate the

need for representations that align with humans on the task abstraction level [3, 137, 4].

Explainability. We want representations that enable system transparency for ethical,

legal, safety, or usability reasons [108, 11]. Current methods range from generating post-

hoc explanations [108, 33], text descriptions of relational MDPs [130, 253], or saliency

maps [113] for explaining behavior. However, system interpretability should not only be

considered during deployment, but also be embedded within the design process itself [104,

116]. Explicitly aligning representations with humans’ can create a more streamlined

process for ensuring that representations are primed for human understanding [245].

Desideratum 1: The representation should capture all relevant task features, i.e., the

human’s true objective should be realizable when using the representation for task learning.



CHAPTER 2. ALIGNING ROBOT AND HUMAN REPRESENTATIONS 10

Desideratum 2: The representation should not capture irrelevant features of the desired

task, i.e., the representation should not be based on spurious correlations.

Desideratum 3: Human guidance for learning the representation should demand minimal
time and effort, i.e., the human’s representation should be easily recoverable from data.

Desideratum 4: The representation should enable system interpretability and explainability,

affording safe, transparent systems that can integrate with human users in the real world.

We henceforth refer to these desiderata as D1-4, mathematically operationalize them

in the context of learning robot representations from human input, and situate how prior

works relate to these goals.

2.2 The Representation Alignment Problem Formulation
Setup. We consider cases where a robot 𝑅 seeks to learn how to perform a task desired by

a human 𝐻. The two agents live in state 𝑠 ∈ 𝒮 and execute actions 𝑎𝐻 ∈ 𝒜𝐻 and 𝑎𝑅 ∈ 𝒜𝑅.

The robot’s goal is to learn a task expressed via a reward function 𝑟∗ : 𝒮 → R capturing the

human’s preference over states. The human knows the desired task, and, thus, implicitly

knows 𝑟∗ and how to act accordingly via a policy 𝜋∗(𝑎𝐻 | 𝑠) ∈ [0, 1], but the robot does not

and has to learn that from the human.

We consider two popular robot learning approaches: imitation learning, where we

learn the human’s policy for solving the task, and reward learning, where we learn the

reward function describing the task. The approaches have different trade-offs: imitation

learning does not require modeling the human and simply replicates their actions [219, 2],

but in doing so it also replicates their suboptimality and can’t generalize well to changing

dynamics or state distributions [179, 276]; meanwhile, reward learning attempts to capture

why a specific behaviour is desirable and, thus, can generalize better to novel scenarios [2]

but requires assuming a human model and large amounts of data [102, 241].

Partial Observability and Representations. In theory, the state 𝑠 could comprehensively

capture the “true” components of the world down to their atomic elements, but in practice

such a hypothetical state is neither fully observable nor useful. Instead, we assume

that neither agent has the full state but they each observe it via observations 𝑜𝐻 ∈ 𝒪𝐻 and

𝑜𝑅 ∈ 𝒪𝑅. The robot’s observations 𝑜𝑅 come from its (possibly noisy and non-deterministic)

sensors 𝑃(𝑜𝑅 | 𝑠), e.g. robot joint angles, RGB-D images, object poses and bounding boxes,

etc. The human also senses observations 𝑜𝐻 via their “sensors”, e.g. retinal inputs, audio

signals, etc., which we could model according to 𝑃(𝑜𝐻 | 𝑠). Due to partial observability,

both the robot and the human use the history of 𝑡 observations o𝑅 = (𝑜1

𝑅
, ..., 𝑜𝑡

𝑅
) ∈ 𝒪𝑡

𝑅
and

o𝐻 = (𝑜1

𝐻
, ..., 𝑜𝑡

𝐻
) ∈ 𝒪𝑡

𝐻
, respectively, as a proxy for the state – or sequence of states – they

observe s = (𝑠1, ..., 𝑠𝑡) ∈ 𝒮𝑡 . We assume that o𝑅 and o𝐻 correspond to the same s.

Literature suggests that humans don’t estimate the state directly from the complete

o𝐻 [35]. Instead, people focus on what’s important for their task, often ignoring task-

irrelevant attributes [59], and build a task-relevant representation to help them solve the
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task [46]. We, thus, assume that when humans think about how to complete or evaluate

a task, they operate on a representation 𝜙𝐻(o𝐻) given by the transformation 𝜙𝐻 : 𝒪𝑡
𝐻
→

Φ𝐻 , which determines which information in o𝐻 to focus on and how to combine it into

something useful for the task. For example, to determine if two novel objects have the

same shape, a human might first look around both of them (gather a sequence of visual

information o𝐻) to build an approximate 3D model (representation 𝜙𝐻(o𝐻)). Intuitively,

we can think of such a representation as an estimate of the task-relevant components of the

state, in lieu of the true unknown state. We can, thus, model the human as approximating

their preference ordering 𝑟∗with a reward function 𝑟𝐻 : Φ𝐻 → R, and their policy mapping

𝜋∗ with 𝜋𝐻(𝑎𝐻 | 𝜙𝐻(o𝐻)) ∈ [0, 1].
The robot can similarly hold representations 𝜙𝑅(o𝑅) given by 𝜙𝑅 : 𝒪𝑡

𝑅
→ Φ𝑅. The most

general 𝜙𝑅 is the identity function, where the robot uses the raw observations directly, but

Sec. 2.4 will also inspect more structured representations. For example, representations

can be instantiated as handcrafted feature sets, where the designer distills their prior

knowledge by pre-defining a set of representative aspects of the task [25, 214, 123], or

as neural network embeddings, where the network tries to implicitly extract such prior

knowledge from data demonstrating how to do the task [96, 257, 296].

Imitation Learning. Here, the robot’s goal is to learn a policy 𝜋𝑅 that maps from its

representation to a distribution over actions 𝜋𝑅(𝑎𝑅 | 𝜙𝑅(o𝑅)) telling it how to successfully

complete the task. To do so, the robot receives task demonstrations from the human and

learns to imitate the actions they take at every state [219, 276]. Let the human demon-

stration be a state trajectory � = (𝑠0, . . . , 𝑠𝑇) of length 𝑇. Importantly, the human and the

robot perceive this trajectory differently: the human observes �𝐻 = (𝑜0

𝐻
, . . . , 𝑜𝑇

𝐻
) and the

robot �𝑅 = (𝑜0

𝑅
, . . . , 𝑜𝑇

𝑅
). Because the demonstrator is assumed to produce trajectories with

high reward 𝑟𝐻(𝜙𝐻(�𝐻)), i.e. be a task expert, the intuition is that directly imitating their

actions should result in good behaviour without the need to know the reward.

The issue with this approach is that the human’s policy 𝜋𝐻(𝑎𝐻 | 𝜙𝐻(o𝐻)) produces

actions based on 𝜙𝐻(o𝐻), whereas the robot’s actions are based on 𝜙𝑅(o𝑅). By directly

imitating the human, the method, thus, implicitly assumes that 𝜙𝐻(o𝐻) is accurately

captured by – or easily recoverable from – whatever 𝜙𝑅(o𝑅) was chosen to be. In other

words, it assumes the robot and human’s representations of what matters for the task are

naturally aligned. If this assumption does not hold, the robot might not recover the right

policy, and, thus, execute the right actions at the right state.

Reward Learning. Here, the robot’s goal is to recover a parameterized estimate of the hu-

man’s reward function 𝑟� : Φ𝑅 → R, from either demonstrations [311, 96], corrections [25],

teleoperation [145], comparisons [71], trajectory rankings [50] etc. The intuition here is

that the human’s input can be interpreted as evidence for their internal reward function

𝑟𝐻 , and the robot can use this evidence to find its own approximation of their reward 𝑟�.

Given a learned 𝑟�, the robot can find an optimal policy 𝜋𝑅 by maximizing the expected

total reward E𝜋𝑅[
∑∞
𝑡=0

𝑟�(𝜙𝑅(o𝑅))].
Similar to imitation, because the human internally evaluates the reward function 𝑟𝐻
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based on 𝜙𝐻(o𝐻), their input is also based on 𝜙𝐻(o𝐻), whereas the robot interprets it

as if it were based on 𝜙𝑅(o𝑅). Hence, if the two representations 𝜙𝑅(o𝑅) and 𝜙𝐻(o𝐻) are

misaligned, the robot may recover the wrong reward function, and, thus, produce the

wrong behaviour when optimizing it [38, 100].

The Problem of Misaligned Representations. In this thesis, we reflect on the traditional

assumptions that robot learning are built on and encourage not taking representation

alignment for granted:

In the real-world, we cannot assume that robot and human representations will naturally align.

We see this in our examples of robot representations 𝜙𝑅(o𝑅). The identity “represen-

tation” which maps o𝑅 onto itself should, in theory, capture everything in 𝜙𝐻(o𝐻) so long

as o𝑅 has enough information, but the high-dimensionality of 𝒪𝑡
𝑅

makes this represen-

tation impractical: learning a reward or policy that is robust across the input space and

generalizes across environments would require a massive amount of diverse data – an

expensive ask when working with humans [241, 102]. A set of feature functions is lower

dimensional, but pre-specifying all features that may matter to the human is unrealistic,

inevitably leading to representations 𝜙𝑅(o𝑅) that lack aspects in 𝜙𝐻(o𝐻) [38]. Learning

neural network embeddings 𝜙𝑅(o𝑅) that map from the history o𝑅 while robustly and

generalizably covering all o𝑅 (and, thus, o𝐻) requires a lot of highly diverse data, similar

to how reward and policy learning on the identity representation would. In summary,

whether it’s insufficient knowledge of what matters for the task or insufficient resources

for exhaustively demonstrating the task, the robot’s representation will more often than

not be misaligned with the human’s.

2.3 A Formalism for Representation Alignment
How can we mathematically operationalize representation alignment? While it is

impossible for the robot and the human to perceive the world the same via o𝑅 and o𝐻 ,

in an ideal world we would want them to make sense of their observations in a similar way.

To that end, we formalize the representation alignment problem as the search for a robot

representation that is similar to the human’s representation. This takes the form of an

optimization problem with the following objective:

𝜙∗𝑅 = arg max

𝜙𝑅
𝜓(𝜙𝑅 , 𝜙𝐻), (2.1)

where 𝜓 is a function that measures the similarity (or alignment) between two represen-

tation functions. The question is how do we measure representation alignment, i.e. what

is 𝜓? We pose the 𝜓 below:

𝜓(𝜙𝑅 , 𝜙𝐻) = −min

𝐹

∑
s∈𝒮𝑡
∥𝐹𝑇𝜙𝑅(o𝑅) − 𝜙𝐻(o𝐻)∥2

2
− � · dim(Φ𝑅) , (2.2)
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where o𝑅 and o𝐻 correspond to s, 𝐹 is a linear transformation, and� is a trade-off term. We

next further explain this notation and why (2.2) best reflects our desiderata from Sec. 2.1.

D1: Recover the Human’s Representation. To ensure the robot’s representation captures

all relevant task aspects, we intuitively want alignment to be high when the human’s

representation can be recovered from the robot’s, no matter the state(s) s. Mathematically,

we define “recovery” as a mapping 𝑓 : Φ𝑅 → Φ𝐻 from 𝜙𝑅(o𝑅) to 𝜙𝐻(o𝐻), where 𝜙𝐻(o𝐻) is
recoverable from 𝜙𝑅(o𝑅) if 𝑓 (𝜙𝑅(o𝑅)) ≈ 𝜙𝐻(o𝐻),∀s, where o𝑅 and o𝐻 correspond to s. In

other words, we can express the recovery error via an 𝐿2 distance summed across all state

sequences s:

∑
s∈𝒮𝑡 ∥ 𝑓 (𝜙𝑅(o𝑅)) − 𝜙𝐻(o𝐻)∥2

2
. In (2.2), we want representation functions 𝜙𝑅

that have high alignment 𝜓 with 𝜙𝐻 to have low recovery error, hence we use the negative

best distance as a measure of similarity.

D2: Avoid Spurious Correlations. We want 𝜙𝑅(o𝑅) to not just recover 𝜙𝐻(o𝐻), i.e. be

sufficient, but also be minimal to avoid spurious correlations that reflect irrelevant task as-

pects. We formalize this with a penalty on the dimensionality of the robot representation

function’s co-domain Φ𝑅. Together, D1 and D2 describe in (2.2) a measure of representa-

tion alignment that rewards small representations that can be mapped close to 𝜙𝐻(o𝐻),
where � is a designer-specified trade-off parameter.

D3: Easily Recover the Human’s Representation. We operationalize the ability to easily
recover 𝜙𝐻(o𝐻) from 𝜙𝑅(o𝑅). Finding an optimal solution to (2.2) via typical optimiza-

tion methods is intractable given the large space of functions 𝑓 to search over. In theory,

if the human’s 𝜙𝐻 can be queried by the robot (e.g., by asking for labels), the most

straightforward solution collects feedback ⟨o𝑅 , 𝜙𝐻(o𝐻)⟩ from the human and fits an ap-

proximation 𝑓 (𝜙𝑅(o𝑅)) ≈ 𝜙𝐻(o𝐻), e.g. a neural network. Unfortunately, even if 𝜙𝑅(o𝑅) is
low-dimensional, fitting an arbitrarily complex 𝑓 that reliably results in high alignment

for all states could require a large amount of representative labels, i.e. it would not be

easy to recover the human’s representation. For this reason, we want “easy” recovery

to involve a transformation 𝑓 of small complexity. This condition has been mathemat-

ically stated via a multitude of complexity theory arguments (upper bounds based on

the Vapnik–Chervonenkis dimensions [31, 127, 29, 153] or the Radamacher complexity of

the function [111, 30]), but recent empirical work argues that linear transformations are a

good proxy for small complexity [73, 169, 243, 10]. We thus similarly take 𝑓 to be a linear

transformation given by a matrix 𝐹.

D4: Explain the Robot’s Representation. Human-aligned representations should be

amenable to interpretability and explainability tools. If the human representation is eas-

ily recoverable, i.e. the robot can learn a good estimate 𝑓 , we get this condition almost for

free: the robot can communicate its representation to the human by showing examples

⟨o𝐻 , 𝑓 (𝜙𝑅(o𝑅))⟩ where observation sequences are labeled with the robot’s current “trans-

lation” of its representation. The last piece we need for explainability is ensuring that 𝑓 is

understandable by the human, by, for example, having additional tools that can convert 𝑓

into more human-interpretable interfaces, like language or visualizations.
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Examples of Robot Representations. Since solving (2.1) is intractable for an arbitrarily

large set of functions 𝜙𝑅, different ways of defining the robot’s representation 𝜙𝑅(o𝑅)
implicitly make different simplifying assumptions. When 𝜙𝑅 is the identity function,

the underlying assumption is that there exists some 𝑓 : 𝒪𝑡
𝑅
→ Φ𝐻 that satisfies (2.2)

so long as o𝑅 has enough information to capture 𝜙𝐻(o𝐻). Unfortunately, because 𝑓

operates on an extremely large space of robot observation histories 𝒪𝑡
𝑅
, it would have

to be complex enough to reliably cover the space, violating D3. This, together with the

large dimensionality of the representation space, result in a small alignment value in (2.2).

Meanwhile, methods that assume that 𝜙𝑅(o𝑅) has some more low-dimensional structure,

like the feature sets or embeddings from earlier, could also have small alignment values:

feature sets might be non-comprehensive, while learned feature embeddings might have

not extracted what’s truly important to the human, making it, thus, impossible to find

an 𝑓 that recovers 𝜙𝐻(o𝐻). As we will see in Sec. 2.4, no representation is naturally

human-aligned and every representation type comes with its trade-offs.

Extension to Multiple Tasks. We have considered the single task setting, where the robot’s

goal is to successfully perform one desired task, but our formalism can be extended to

account for multiple tasks. First, when the person wants to train the robot to correctly

perform multiple tasks, the observation space 𝒪𝑅 may be different for each task. In

practice, these observation spaces are oftentimes the same or similar (e.g. multiple robot

manipulation tasks can all still use images of the same tabletop as observations, although

the observation distribution may differ if different objects are used). We can account

for differing spaces by choosing the overall observation space 𝒪𝑅 to be the union of all

individual 𝑁 task observation spaces 𝒪𝑅𝑖 : 𝒪𝑅 = 𝒪𝑅1

⋃
...
⋃𝒪𝑅𝑁 . Additionally, in multi-

task settings, the human representation 𝜙𝐻(o𝐻)will reflect aspects of the task distribution
that matter to them, rather than of a single task.

Extension to Multiple Humans. Aligning the robot’s representation to multiple humans

requires acknowledging that each human may operate under a different observation space

𝒪𝐻 or representation 𝜙𝐻(o𝐻). First, we could modify our formalism for differing spaces

similarly to how we did in the multi-task setting, by choosing the overall observation

space 𝒪𝐻 to be the union of all individual 𝑀 human observation spaces 𝒪𝐻𝑖 : 𝒪𝐻 =

𝒪𝐻1

⋃
...
⋃𝒪𝐻𝑀 . Second, in such multi-agent settings, the robot could attempt to align

its representation to a unified 𝜙𝐻(o𝐻) = 𝜙𝐻1
(o𝐻)

⋃
...
⋃

𝜙𝐻𝑀 (o𝐻), individually to each

𝜙𝐻𝑖 (o𝐻), or a combination of the two strategies where the unified representation is then

specialized to each individual human’s representation.

2.4 Survey of Robot Representations
We present our survey on learned robot representations. Table 2.1 situates them within

our formalism’s key tradeoffs. We focus on 4 categories of representations: the identity

map, feature sets, feature embeddings, and graph structures.
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Table 2.1: Existing representations (and example papers) through the lens of our formalized desiderata.

Representation Type D1: Recoverability of 𝜙𝐻(o𝐻) from 𝜙𝑅(o𝑅)
min 𝑓

∑
s∈𝒮𝑡 ∥ 𝑓 (𝜙𝑅(o𝑅)) − 𝜙𝐻(o𝐻)∥2

2

D2: Minimality
dim(Φ𝑅)

D3: Ease of Recovery of 𝜙𝐻(o𝐻) from 𝜙𝑅(o𝑅)
min𝐹

∑
s∈𝒮𝑡 ∥𝐹𝑇𝜙𝑅(o𝑅) − 𝜙𝐻(o𝐻)∥2

2

D4: Interpretability

Identity

𝜙𝑅(o𝑅) = o𝑅 ∈ 𝒪𝑡𝑅
[219, 276, 96, 71, 95, 296]

Contains complete information |𝒪𝑡
𝑅
|, Large Difficult in arbitrarily large observation spaces Black box

Feature Set

𝜙𝑅(o𝑅) = {𝜙1

𝑅
(o𝑅), ..., 𝜙𝑑𝑅(o𝑅)}

[281, 68, 177, 235, 40, 42, 224, 303]

May lack information but can use misalign-

ment detection methods to learn new features

𝑑, Grows linearly If complete, easy

If complete but 𝑑 large, medium

If incomplete, hard

High

Feature Embedding (Unsupervised)

𝜙𝑅(o𝑅) = ®𝜙𝑅(o𝑅) ∈ R𝑑

[174, 269, 256, 15, 305, 119, 170, 125]

May learn wrong disentangled information 𝑑, Low by design If disentangled information complete, easy

If disentangled information incomplete, hard

May be interpretable

to designer

Feature Embedding (Supervised)

𝜙𝑅(o𝑅) = ®𝜙𝑅(o𝑅) ∈ R𝑑

[50, 278, 109, 239, 135, 45, 140]

More likely to capture relevant information 𝑑, Low by design If relevant information, easy

If missing relevant information, hard

May be interpretable

to designer

Graph

𝜙𝑅(o𝑅) = 𝐺 = {𝑉, 𝐸}
[285, 304, 77, 301, 63, 207, 120, 307]

May lack information |𝑉+𝐸 |, |𝑉 | linear,

|𝐸 | quadratic

If complete, easy

If complete but |𝑉 + 𝐸 | large, medium

If incomplete, hard

High

2.4.1 Identity Representation
The identity maps an observation history onto itself, i.e. 𝜙𝑅(o𝑅) = o𝑅 with 𝜙𝑅 : 𝒪𝑡

𝑅
→

𝒪𝑡
𝑅
. The methods we review here, thus, don’t learn an explicit intermediate representation

but instead hope to implicitly extract what’s important from human task data.

Because the inputs for reward or policy learning consist of potentially high-dimensional

observation histories, e.g. images, most approaches we cover here are based on high-

capacity deep learning models. There are now numerous end-to-end methods for learn-

ing policies [219, 276, 241, 179] or rewards [96, 102, 291] from demonstrations. While

these methods perform well with an overparameterized high complexity function, they

tend to overfit to the training tasks and suffer from generalization failures due to distribu-
tion shift [244], resulting in arbitrarily erroneous behaviour during deployment. Achieving

good end-to-end performance across a large test distribution can require hundreds or even

thousands of demonstrations for each desired task [306, 230, 231], which is expensive to

obtain in practice. In reward learning, this has been alleviated by introducing other types

of human reward feedback, like comparisons [71], numeric feedback [286], examples of

what is a goal [103], or a combination [142]. These are not only more user friendly alter-

natives to demonstrations, but they are also amenable to active learning techniques [242,

263], which can further reduce the human burden.

Another popular way to reduce the sample complexity is meta-learning [95], which

seeks to learn representations that can be quickly fine-tuned [296, 302, 264, 141, 257]. The

intuition is that we can reuse human data from many different tasks, and if the training

distribution is representative enough, this “warm-started” model can adapt to new tasks

with little data. Unfortunately, the human needs to know the test task distribution a priori,
which brings us back to the specification problem: we now trade hand-crafting features for

hand-crafting task distributions. Moreover, because these models are overparameterized,

they are inherently uninterpretable and tough to debug in case of failure [245].

Takeaway. Despite recent advances in end-to-end systems, the identity representation,

while easy to specify, is difficult to use for robust and generalizable robot learning while
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minimizing human input.

2.4.2 Feature Sets

We can instantiate 𝜙𝑅(o𝑅) as a set {𝜙1

𝑅
(o𝑅), ..., 𝜙𝑑𝑅(o𝑅)}, where each 𝜙𝑖

𝑅
(o𝑅) is a different

individual dimension of the representation, with 𝑑much smaller than |𝒪𝑡
𝑅
|. These dimen-

sions represent concrete task aspects – or features, e.g. how far the end effector is from the

table, – which is why we call 𝜙𝑖
𝑅

a feature function and the output 𝜙𝑖
𝑅
(o𝑅) a feature value.

The feature function maps observation histories to a real number indicating how much

that feature is expressed in the observations, 𝜙𝑖
𝑅

: 𝒪𝑡
𝑅
→ R. The robot’s representation

maps from observation histories onto a 𝑑-dimensional space of real values: 𝜙𝑅 : 𝒪𝑡
𝑅
→ R𝑑,

where 𝑑 grows linearly with the number of features.

Handcrafted feature sets have been used widely across policy and reward learning [2,

144, 145, 258], but exhaustively pre-specifying everything a human may care about is

impossible [43]. To address this, early methods infer relevant feature functions directly

from task demonstrations. Vernaza and Bagnell [281] define the robot’s representation

as the PCA components of the observations, while other methods specify base feature

components for constructing the feature functions [68] as either logical conjunctions [177]

or regression trees [235]. Unfortunately, relying on engineering a relevant set of base

features can be tedious and incomplete. Therefore, more recent methods instead learn

individual feature functions as neural networks [40, 41, 42, 224, 303], and train them with

labels for different diverse observations [224, 303]. While Paxton et al. [224] can learn

complex spatial relations mapping from high-dimensional point cloud observations, they

require large amounts of data, making the approach unsuitable for learning many different

feature functions from a human. A different approach reduces the data complexity by

introducing a new type of structured input, a feature trace, which results in large amounts

of feature value comparisons to train the network with little effort from the human [40,

41]. Bobu et al. [42] reduce the burden by using a small amount of human labels to learn

feature functions defined on a lower dimensional transformation of the observation space

(object geometries) and using that to label data in a simulator (object point clouds).

Takeaway. While feature sets are advantageous for inserting structure in the downstream

learning pipeline making it more data efficient, robust, and generalizable [41], that added

structure is only useful if complete. Under-specified feature sets can be handled by detect-

ing misalignment [38] and learning new features over time, but we need more ways to

reduce the human burden for teaching features, like introducing new types of structured

input [40] or bootstrapping the learning [42]. If, on the other hand, the structure is over-

complete, i.e. it contains irrelevant features, it may lead to spurious correlations which

can be prevented via feature subset selection methods [58, 55, 196].
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2.4.3 Feature Embeddings

We can instantiate 𝜙𝑅(o𝑅) as a low-dimensional feature embedding, or vector,
®𝜙𝑅(o𝑅),

where each dimension is a different neuron in the embedding. The representation function

is 𝜙𝑅 : 𝒪𝑡
𝑅
→ R𝑑, with 𝑑 fixed by the designer and much smaller than |𝒪𝑡

𝑅
|. While feature

set functions also map to R𝑑, each dimension is learned individually (and is representative

of some task aspect), whereas here the embedding is learned jointly (and hopes to capture

important task aspects implicitly). We identify two broad areas: unsupervised methods

(also called self-supervised), which use unlabeled data and proxy tasks to learn repre-

sentations, and supervised methods, which use human supervision at the representation

level. We also cover some in-between semi- or weakly-supervised methods.

Unsupervised methods. At one extreme, unsupervised methods try to learn disentangled

latent spaces from data collected without any human supervision. Instead of explicitly giv-

ing feedback, the human designer hopes to instill their intuition for what is causal for the

task by specifying useful proxy tasks [174, 67, 171, 299]. In robot learning, these proxy tasks

range from reconstructing the observation (to ignore irrelevant visual aspects) [97, 134,

119, 197], to predicting forward dynamics (to capture what constrains movement) [287,

119] or inverse dynamics (to recover actions from observations) [222], to enforcing be-

havioural similarity between observations [305, 106, 22], to contrastive losses [218, 170, 15,

269], or some combination [125, 256]. The proxy task result itself does not matter; rather,

these methods are interested in the intermediate representation extracted from training on

the proxy tasks. However, because they are purposefully designed to bypass supervision,

these representations do not necessarily correspond to human features, rendering explicit

alignment challenging. In fact, the cases where the disentangled factors match human

concepts are primarily due to spurious correlations [193]. Lastly, like all learned latent

representations, they are difficult to interpret and use to debug failures.

Supervised Methods. At the other extreme sit supervised approaches. Some methods

combine the human’s reward or policy data with self-supervised proxy tasks to pre-train

a useful low-dimensional feature embedding [50, 278] while others reduce supervision

by learning a simpler model that, when trained well, can automatically label large swaths

of videos of people doing tasks [26]. Multi-task methods pre-train representations from

human input for multiple tasks, then fine-tune the reward or policy on top of the learned

embedding at test time [109, 215, 298]. Similar to meta-learning, the motivation here is that

the robot collects data from many different but related tasks, which it can then leverage to

jointly train a shared representation. This is more scalable than meta-learning [201], but

still needs curating a large set of training tasks to cover the test distribution.

There is a growing body of work directly targeting supervision at the representation

level. Implicit methods make use of a proxy task for the human to solve and a visual

interface that changes based on the robot’s current representation [239, 135, 45]. The hope

is that if the human can still solve the proxy task well, the representation producing the

visualization must contain causal behavioural aspects. If the representation dimensions
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are interpretable enough, explicit learning of aligned representations is also possible by

directly labeling examples with the embedding vector values [140, 266]. What both these

directions have in common is that the representation is or can be converted into a form that is

interpretable to the human, thus opening the possibility of the human providing targeted

feedback that is explicitly intended to teach the robot the desired task representation.

Takeaway. There is a trade-off between the amount of supervision at the representation

level and how human-aligned the learned representations are. “Supervising” by coming

up with proxy tasks certainly reduces the end user’s labeling effort, but may result in

misalignment. On the other hand, direct supervision more explicitly aligns the robot’s

representation with the human’s, but is also more effortful. These representations tend to

be more interpretable than the identity [93].

2.4.4 Graphical Structures
The fourth group maps observation histories onto a graph 𝐺 = {𝑉, 𝐸}, i.e. 𝜙𝑅(o𝑅) = 𝐺

with 𝜙𝑅 : 𝒪𝑡
𝑅
→ 𝒢. Many graphical structures have been used for robot learning and plan-

ning, from knowledge graphs [77], to directed graphs [254], Markov random fields [115],

Bayesian networks [160], hierarchical task networks [207], etc. Graphical structures have

been especially useful for fast and robust planning [21, 217, 185] or when robust robot

behaviour relies on strong priors for the task context, like interpreting ambiguous user

commands [304, 301] or handling partially observable environments [216, 77]. Since their

relational structure directly allows for probing the causal effect of a certain part of the

representation on the robot’s behaviour [293, 76, 77], they are also often leveraged in the

interpretability literature. Unfortunately, they require well-conceived, well-structured,

and comprehensive domain knowledge to be successful [213, 206, 265, 80], which takes a

considerable amount of human effort or data to build or learn [285, 187].

Takeaway. While graphical structures are more interpretable to users, they require signif-

icant human effort to construct and maintain relative to their neural network counterparts.

Much like specifying rewards by hand, it is hard to specify all relevant nodes, potentially

resulting in under-specification.

2.5 Discussion
We proposed a formal lens for viewing representation alignment in robot learning. While

we do not offer a practical solution for (2.2), we believe there is still tremendous value in

explicitly formalizing representation alignment. The formalism allows us to identify gaps

in current methods (including the ones in Tab. 2.1) and provide directions for future work.

Moreover, explicitly defining representation alignment in robotics as the optimization (2.2)

allows us to assess future methods based on how well they approximate solutions to this

problem. This thesis provides one way to tackle the representation alignment problem,

but we hope future work will seek novel approximations to (2.2) to fill in the gaps.
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Part II

Learning Representations from
Representation-Specific Input

We have motivated that when robots interact with people, they need a representation

capturing salient features of human decision-making, e.g. humans care how close to them

the robot gets when carrying full mugs. Part II focuses on how robots can learn these

representations from humans to ensure they are aligned. With standard data-driven

methods, not only does the data used have to reflect every individual, environment, and

task the robot will face, but it has to also implicitly extract the relevant task features. Instead

of treating humans as static data sources, the core idea in Part II is to explicitly include them
in the alignment process and intelligently ask them to teach the robot about their representation.

This requires us to devise algorithms that make it easy for people of varying levels of

expertise to give data about their representations. We do so in the context of learning every

feature of the representation one at a time (Chapters 3 and 4), learning the mapping to a

known feature structure (Chapter 5), and learning the representation all at once (Chapter

6). We design representation-specific human input that can still be leveraged by data-driven

techniques but in a more efficient way (Chapter 3), we bootstrap the representation learning
process to reduce the amount of data necessary (Chapter 4), we structure the representation
to allow people to give feedback more easily (Chapter 5), and we design representation-
specific tasks to reduce the person’s cognitive load when teaching the robot (Chapter 6).

By combining these techniques with the power of neural networks, we find that humans

can more quickly teach the robot new features like the distance to their possessions, their

personal space, or even emotion. We show that teaching representations has important

benefits for reward learning, personalized motion planning, and expressive robot motion.
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Chapter 3

One-by-One Representation Learning

This chapter is based on the papers “Feature Expansive Reward Learning: Rethinking Human
Input” [40] and “Inducing Structure in Reward Learning by Learning Features” [41], written in
collaboration with Marius Wiggert, Claire Tomlin, and Anca Dragan.
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Figure 3.1: (Left) The person teaches the robot the feature for horizontal distance from the laptop by giving a

few feature traces. (Right-Top) In the online reward learning from corrections setting, once the robot detects

that its feature set is incomplete, it queries the human for feature traces that teach it the missing feature

and adapts the reward to account for it. (Right-Bottom) In the offline reward learning from demonstrations

setting, the person has to teach the robot each feature separately one at a time using feature traces, and only

then teach their combined reward.

Whether it’s semi-autonomous driving [249], recommender systems [311], or house-

hold robots working in close proximity with people [144], reward learning can greatly

benefit autonomous agents to generate behaviors that adapt to new situations or human

preferences. Under this framework, the robot uses the person’s input to learn a reward

function that describes how they prefer the task to be performed. For instance, in the

scenario in Fig. 3.1, the human wants the robot to keep the cup away from the laptop to

prevent spilling liquid over it; she may communicate this preference to the robot by pro-
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viding a demonstration of the task or even by directly intervening during the robot’s task

execution to correct it. After learning the reward function, the robot can then optimize it

to produce behaviors that better resemble what the person wants.

In order to correctly interpret and efficiently learn from human input, traditional meth-

ods resorted to structuring the reward as a (linear) function of carefully hand-engineered

features – important aspects of the task [311, 2, 144, 25]. Unfortunately, selecting the

right feature representation is notoriously challenging, even for expert system designers:

knowing and specifying a priori an exhaustive set of all the features that might be relevant

for the reward is impossible for most real-world tasks. To bypass this feature specification

problem, state-of-the-art deep Inverse Reinforcement Learning (IRL) methods [291, 96, 50]

learn rewards defined directly on the high-dimensional raw state (or observation) space,

thereby implicitly constructing features automatically from task demonstrations.

In doing so, however, these approaches sacrifice the sample efficiency and generaliz-

ability that a well-specified feature set offers. While using an expressive function approxi-

mator to extract features and learn their reward combination at once seems advantageous,

many such functions can induce policies that explain the demonstrations. Hence, to dis-

ambiguate between all these candidate functions, the robot requires a very large amount

of (laborious to collect) data, and this data needs to be diverse enough to identify the true

reward. For example, the human in the household robot setting in Fig. 3.1 might want to

demonstrate keeping the cup away from the laptop, but from a single demonstration the

robot could find many other explanations for the person’s behavior: perhaps they always

happened to keep the cup upright or they really like curved trajectories in general.

The underlying problem here is that demonstrations – or task-specific input more

broadly – are meant to teach the robot about the reward and not about the features per se,

so these function approximators struggle to capture the right feature representation for

the reward. We argue that the robot does not have to learn everything at once; instead,

it can divide-and-conquer the reward learning problem and focus on explicitly learning the

features separately from learning how to combine them into the reward. In our earlier

example, if the robot were taught about the concept of distances to laptops separately, it

would be able to quickly tell what the person wants from a single demonstration.

We make the following contributions:

Learning features from a novel type of representation-specific human input. We present

a method for learning complex non-linear features separately from the reward (Sec. 3.3).

We introduce a new type of representation-specific human input specifically designed to

teach features, which we call feature traces – partial trajectories that describe the monotonic

evolution of the value of the feature to be learned. To provide a feature trace, the person

guides the robot from states where the feature is highly expressed to states where it is

not, in a monotonic fashion. Looking at Fig. 3.1 (Left), the person teaches the robot to

avoid the laptop by giving a few feature traces: she starts with the arm above the laptop

and moves it away until comfortable with the distance from the object. We present an

algorithm that harvests the structure inherent to feature traces and uses it to efficiently
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learn a feature relevant for the reward: in our example, the horizontal distance from the

laptop. In experiments on a 7-DoF JACO2 robot arm, we find that our method can learn

high quality features closely resembling the ground truth (Sec. 3.5.1).

Demonstrating our feature learning in a user study on a simulated 7-DoF robot arm.
In a user study with the JACO2 (Kinova) robotic arm, we show that non-expert users

can use our approach for learning features (Sec. 3.5.2). The participants were able to

provide feature traces to teach good features, and found our teaching protocol intuitive.

Unfortunately, due to the current pandemic, we conducted the study online in a simulated

environment; despite the inevitable degradation in input quality that this entails, the users

were still able to teach features that induced informative bias.

Analyzing sample complexity benefits of learning feature representations for rewards.
We show how our method, which we call Feature Expansive Reward Learning (FERL)

because it expands the feature set one by one, can improve reward learning sample

complexity and generalization. First, we look at an easier online reward learning setting

like the one in Fig. 3.1 (Right-Top) where the robot knows part of the feature set from

the get-go, but the person’s preference also depends on other features not in the set

(Sec. 3.4.2). We show that, by learning the missing feature, the robot obtains a more

generalizable reward than if it had trained a deep IRL network directly from the raw

state and the known set (Sec. 3.6). We then consider the more challenging offline reward

learning case in Fig. 3.1 (Right-Bottom) where the person teaches the reward from scratch,

one feature at a time (Sec. 3.4.1). We find that the robot outperforms the baseline most

of the time, with less clear results when the learned features are noisily taught by novice

users in simulation (Sec 3.7).

We show that taking a divide-and-conquer approach focusing on learning important

features for the representation separately before learning the reward on top improves sam-

ple complexity in reward learning. Although showcased in manipulation, our method

can be used in any robot learning scenarios where feature learning is beneficial: in collab-

orative manufacturing users might care about the rotation of the object handed over, or in

autonomous driving passengers may care about how fast to drive through curves.

3.1 Prior Work
Programming robot behavior through human input is a well-established paradigm.

In this paradigm, the robot receives human input and aims to infer a policy or reward

function that captures the behavior the human wants the robot to express. In imitation

learning, the robot directly learns a policy that imitates demonstrations given by the

human [219]. The policy learns a correlation between situations and actions but not why
a specific behavior is desirable. Because of that, imitation learning only works in the

training regime whereas optimizing a learned reward, which captures why a behavior is

desirable, can generalize to unseen situations [2].
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In the IRL framework the robot receives demonstrations through teleoperation [145,

2] or kinesthetic teaching [17] and learns a reward under which these demonstrations

are optimal [247, 2]. Recent research goes beyond demonstrations, utilizing other types

of human input for reward learning such as corrections [144, 25], comparisons [71] and

rankings [49], examples of what constitutes a goal [103], or even specified proxy objectives

[123]. Depending on the interaction setting, the human input can be given all-at-once,

iteratively, or on specific requests of the robot in an active learning setting [188, 51, 249].

All these methods require less human input if a parsimonious representation of the

world, which summarizes raw state information in the form of relevant features, is avail-

able. This is because finite feature sets significantly reduce the space of possible functions

which according to statistical learning theory reduces the information complexity of the

learning problem [279]. In the following we discuss the the role of feature representations

in reward learning and methods for learning features.

3.1.1 Feature Representations in Reward Learning
Traditional reward learning methods rely on a set of carefully hand-crafted features

that capture aspects of the environment a person may care about. These are selected by

the system designer prior to the task [311, 2, 144, 123, 25]. If chosen well, this feature set

introduces an inductive bias that enables the algorithms to find a good estimate of the

human’s preferences with limited input. Unfortunately, selecting such a set in the first

place is notoriously challenging, even for experts like system designers. For one, defining

a good feature function can be a time consuming trial-and-error process, especially if the

feature is meant to capture a complex aspect of the task [291]. Moreover, the chosen feature

space may not be expressive enough to represent everything that a person might want

(and is giving input about) [38, 128]. When this is the case, the system may misinterpret

human guidance, perform unexpected or undesired behavior, and degrade in overall

performance [13, 247, 128].

To tackle these challenges that come with hand-designing a feature set, state-of-the-art

deep IRL methods use the raw state space directly and shift the burden of extracting

behavior-relevant aspects of the environment onto the function approximator [96, 291].

The objective of IRL methods is to learn a reward which induces behavior that matches

the state expectation of the demonstrations. The disadvantage of such approaches is

that they require large amounts of highly diverse data to learn a reward function which

generalizes across the state space. This is because with expressive function approxima-

tors there exists a large set of functions that could explain the human input, i.e. many

reward functions induce policies that match the demonstrations’ state expectation. The

higher dimensional the state, the more human input is needed to disambiguate between

those functions sufficiently to find a reward function which accurately captures human

preferences and thereby generalizes to states not seen during training and not just repli-

cates the demonstrations’ state expectations. Thus, when venturing sufficiently far away
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from the demonstrations the learned reward in IRL does not generalize which can lead to

unintended behavior [241, 102].

It has been shown that providing linear feature functions as human input can reduce the

risk of unintended behavior [128]. In our work we argue that generalization with limited

input can be achieved without requiring hand-crafted features if the robot explicitly learns

features, instead of attempting to learn them implicitly from demonstrations.

3.1.2 Learning Features
In IRL researchers have explored the direction of inferring a set of relevant features

directly from task demonstrations. This can take the form of joint Bayesian inference

on both reward and feature parameters [68] or projecting the raw state space to lower

dimensions via PCA on demonstrated trajectories [281]. There are also methods that add

features iteratively to learn a non-linear reward, such as Levine, Popovic, and Koltun [177],

which constructs logical conjunctions of primitive integer features, and Ratliff et al. [235],

which trains regression trees to distinguish expert from non-expert trajectories in a base

feature space. Levine, Popovic, and Koltun [177] performs well in discrete-state MDPs,

but is not suitable for continuous state spaces, does not operate on raw states but rather

a hand-engineered set of integer component features, and requires the reward structure

to be expressible as logical conjunctions. Meanwhile, Ratliff et al. [235] allows for larger

state spaces and arbitrary continuous rewards, but still relies on engineering a relevant

set of base features and severely underperforms in the case of non-expert human input

when compared to more recent IRL techniques [178, 291]. Because of these shortcomings,

IRL researchers have opted recently for either completely hand-specifying the features or

using deep IRL for extracting them automatically from the raw continuous state space

with non-expert demonstrations [102, 96].

Rather than relying on demonstrations for everything, we propose to first learn com-

plex non-linear features leveraging explicit human input about relevant aspects of the

task (Sec. 3.3). Based on these features, a reward can be inferred with minimal input

(Sec. 3.4). Our results show that adding structure in such a targeted way can enhance both

the generalization of the learned reward and data-efficiency of the method.

3.2 Problem Formulation
We consider a robot 𝑅 operating in the presence of a human 𝐻 from whom it is trying

to learn to perform a task, ultimately seeking to enable autonomous execution. In the

most general setting, both 𝐻 and 𝑅 are able to affect the evolution of the continuous state

𝑠 ∈ R𝑑 (i.e. robot joint poses or object poses) over time through their respective continuous

actions 𝑎𝐻 and 𝑎𝑅 via a dynamics function 𝑓 :

𝑠𝑡+1 = 𝑓 (𝑠𝑡 , 𝑎𝑡𝐻 , 𝑎
𝑡
𝑅) , (3.1)
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with 𝑎𝐻 ∈ 𝒜𝐻 and 𝑎𝑅 ∈ 𝒜𝑅, and𝒜𝐻 and𝒜𝑅 compact sets. Thus, when executing a task,

the robot follows a trajectory � = [𝑠0, 𝑎0

𝐻
, 𝑎0

𝑅
, 𝑠1, 𝑎1

𝐻
, 𝑎1

𝑅
, . . . , 𝑠𝑇 , 𝑎𝑇

𝐻
, 𝑎𝑇
𝑅
].

We assume that the human has some consistent internal preference ordering between

different trajectories �, which affects the actions 𝑎𝐻 that they choose. In principle, these

human preferences could be captured by a reward function𝑅∗(�). Unfortunately, the robot

does not have access to 𝑅∗, so to learn how to perform the task it must attempt to infer

it. Since 𝑅∗ may encode arbitrary preference orderings deeming the inference problem

intractable, we assume that the robot reasons over a parameterized approximation 𝑅�

induced by parameters � ∈ Θ. The robot’s goal is, thus, to estimate the human’s preferred

� from their actions 𝑎𝐻 .

Even with this parameterization, the space of possible reward functions is infinite-

dimensional. One way to represent it using a finite � is through the means of a finite

family of basis functions Φ𝑖 , also known as features [214]: 𝑅�( ®Φ(�)), where ®Φ is the set of

chosen features Φ𝑖 . Consistent with classical utility theories [282], we may decompose tra-

jectory features Φ𝑖 into state features 𝜙𝑖 and approximate the trajectory’s reward through

a cumulative return over time:

𝑅�(�) = 𝑅�( ®Φ(�)) =
∑

(𝑠,𝑎𝐻 ,𝑎𝑅)∈�
𝑟�
( ®𝜙(𝑠, 𝑎𝐻 , 𝑎𝑅)) . (3.2)

This restriction of the representation to a finite set of features
®𝜙 is essentially a truncation

of the infinite collection of basis functions spanning the full reward function space. Thus,

the features we choose to represent the reward dramatically impact the reward functions

that can be learned altogether. Importantly, this observation holds regardless of the

representation power that 𝑟� has (linear combination, neural network, etc). Motivated by

recovering a reward function 𝑟� that captures the person’s preferences as best as possible,

we are, thus, interested in the question of how to choose the feature representation
®𝜙.

We assume the robot’s representation is initially a (possibly empty) set of features
®𝜙.

In Sec. 3.3, we propose a protocol via which the robot can learn a novel feature to add to

its existing set by soliciting representation-specific human input. We then describe classic

offline IRL and its adaptation to situations where the human is teaching the reward from

scratch (Sec. 3.4.1); our framework enables them to teach one feature at a time before

teaching the reward on top using task demonstrations. Lastly, we present the online

variant, where the robot executes the task according to a reward function defined on an

incomplete feature set and the human intervenes to correct it (Sec. 3.4.2); our method

allows them to explicitly focus on teaching the missing feature(s) and adding them to the

set before the reward is updated.
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3.3 Approach: Feature Learning with Feature Traces
We first look at learning individual feature functions. We focus on state features

(ignoring actions from the feature representation), which we define as arbitrary complex

mappings 𝜙(𝑠) : R𝑑 → R+. As such, in regions of the state space where the feature is

highly expressed, this function has high positive values, whereas for states where the

feature is not expressed, 𝜙 is closer to zero.

One natural idea for learning this mapping is treating it as a regression problem and

asking the human for regression labels (𝑠, 𝜙(𝑠)) directly. Unfortunately, to learn anything

useful, the robot would need a very large set of labels from the person, which would

be too effortful for them to provide. Even worse, humans are notoriously unreliable at

quantifying their preferences with any degree of precision [48], so their labels might result

in arbitrarily noisy regressions. Hence, we need a type of human input that balances being

informative and not placing too much burden on the human.

3.3.1 Feature Traces
To teach a non-linear representation of 𝜙 with little data, we introduce feature traces 𝜏 =

𝑠0:𝑛 , a novel type of human input defined as a sequence of 𝑛 states that are monotonically

decreasing in feature value, i.e. 𝜙(𝑠𝑖) ≥ 𝜙(𝑠 𝑗),∀𝑖 < 𝑗. This approach relaxes the need for

accurate state labeling, while simultaneously providing a combinatorial amount of state

comparisons (see Sec. 3.3.2 for details) from each trace 𝜏.

When learning a feature, the robot can query the human for a set T of 𝑁 traces. The

person gives a trace 𝜏 by simply moving the system from any start state 𝑠0 to an end

state 𝑠𝑛 , noisily ensuring monotonicity. Our method, thus, only requires an interface

for communicating ordered feature values over states: kinesthetic teaching is useful for

household or small industrial robots, while teleoperation and simulation interfaces may

be better for larger robotic systems.

To illustrate how a human might offer feature traces in practice, let’s turn to Fig. 3.1

(Left). Here, the person is teaching the robot to keep the mug away from the laptop (i.e.

not above). The person starts a trace at 𝑠0 by placing the end-effector directly above the

object center, then leads the robot away from the laptop to 𝑠𝑛 . Our method works best

when the person tries to be informative, i.e. covers diverse areas of the space: the traces

illustrated move radially in all directions and start at different heights. While for some

features, like distance from an object, it is easy to be informative, for others, like slowing

down near objects, it might be more difficult. We explore how easy it is for users to be

informative in our study in Sec. 3.5.2, with encouraging findings, and discuss alleviating

existing limitations in Sec. 3.8.

The power of feature traces lies in their inherent structure. Our algorithm, thus, makes

certain assumptions to harvest this structure for learning. First, we assume that the feature

values of states along the collected traces 𝜏 ∈ T are monotonically decreasing. Secondly,
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we assume that by default the human starts all traces in states 𝑠0 with the highest feature

value across the domain, then leads the system to states 𝑠𝑛 with the lowest feature value. In

some situations, this assumption might unnecessarily limit the kinds of feature traces the

human can provide. For example, the person might want to start somewhere where the

feature is only “half” expressed relative to the feature range of the domain. Because of this,

we optionally allow the human to provide relative values 𝑣0, 𝑣𝑛 ∈ [0, 1]1 to communicate

that the traces start/end at values that are fractions of the feature range of the domain.

3.3.2 Learning a Feature Function
To allow for arbitrarily complex non-linear features, we approximate a feature by a

neural network 𝜙𝜓(𝑠) : R𝑑 → R+. We incorporate the assumptions in the previous section

by training 𝜙𝜓 as a discriminative function with respect to the state ordering in feature

traces 𝜏 ∈ T, and also encouraging the starts 𝑠0 and ends 𝑠𝑛 across all traces to have the

same high and low values, respectively. For ease of exposition, we present our feature

learning technique without the relative values 𝑣0 and 𝑣𝑛 first, then later describe how to

modify the algorithm to include them.

3.3.2.1 Monotonicity Along Feature Traces. First, due to the monotonicity assumption

along any feature trace 𝜏𝑘 = (𝑠𝑘
0
, 𝑠𝑘

1
, . . . , 𝑠𝑘𝑛), when training 𝜙𝜓 we want to encourage

feature values to decrease monotonically along every trace, i.e. 𝜙𝜓(𝑠𝑘𝑖 ) ≥ 𝜙𝜓(𝑠𝑘𝑗 ),∀𝑗 > 𝑖 , 𝑘.

For this purpose, we convert the set of collected traces 𝜏𝑘 ∈ T into a dataset of ordered
tuples (𝑠𝑘

𝑖
, 𝑠𝑘
𝑗
) ∈ 𝒯𝑜𝑟𝑑, where every first element appears earlier in the trace than the second

element (hence its feature value should be higher). This results in

((𝑛+1)
2

)
tuples per trace,

which we can use for training 𝜙𝜓.

We train the discriminative function 𝜙𝜓 as a predictor for whether a state 𝑠 has a

higher feature value than another state 𝑠′, which we represent as a softmax-normalized

distribution:

𝑃(𝜙𝜓(𝑠) > 𝜙𝜓(𝑠′)) = 𝑃(𝑠 ≻ 𝑠′) =
𝑒𝜙𝜓(𝑠)

𝑒𝜙𝜓(𝑠) + 𝑒𝜙𝜓(𝑠′)
, (3.3)

where we define the shorthand notation 𝑠 ≻ 𝑠′ for 𝜙𝜓(𝑠) > 𝜙𝜓(𝑠′). We choose 𝜓 to

minimize a negative log-likelihood loss 𝐿𝑜𝑟𝑑(𝜓) operating on the ordered tuples dataset:

𝐿𝑜𝑟𝑑(𝜓) = −
∑

(𝑠,𝑠′)∈𝒯𝑜𝑟𝑑

log(𝑃(𝑠 ≻ 𝑠′)) = −
∑

(𝑠,𝑠′)∈𝒯𝑜𝑟𝑑

log

𝑒𝜙𝜓(𝑠)

𝑒𝜙𝜓(𝑠) + 𝑒𝜙𝜓(𝑠′)
. (3.4)

Intuitively, this loss spaces out the feature values 𝜙𝜓 such that they decrease monoton-

ically along every trace; however, this alone does not constrain the traces to have the same

start and end values, respectively.

1
Since specifying decimal fractions is difficult, the person gives percentages between 0 and 100 instead.
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3.3.2.2 Start/End Feature Value Equivalence. To encourage all traces to start and end in

the same high and low feature values, we need an additional loss encoding 𝜙𝜓(𝑠 𝑖
0
) = 𝜙𝜓(𝑠 𝑗

0
)

and 𝜙𝜓(𝑠 𝑖𝑛) = 𝜙𝜓(𝑠 𝑗𝑛) for all 𝜏𝑖 , 𝜏𝑗 ∈ T. We thus convert the set of collected traces T into

another dataset 𝒯𝑒𝑞𝑢𝑖𝑣 of equivalence tuples (𝑠 𝑖
0
, 𝑠
𝑗

0
), (𝑠 𝑖𝑛 , 𝑠

𝑗
𝑛) ∀ 𝜏𝑖 , 𝜏𝑗 ∈ T, 𝑖 ≠ 𝑗 , 𝑖 > 𝑗. This

results in 2

(𝑁
2

)
tuples where the states of the tuple (𝑠, 𝑠′) should have the same feature

value, i.e. 𝜙𝜓(𝑠) = 𝜙𝜓(𝑠′). We denote this relationship as 𝑠 ∼ 𝑠′ to simplify notation.

When training 𝜙𝜓, the predictor should not be able to distinguish which state has a

higher feature value, hence 𝑃(𝜙𝜓(𝑠) > 𝜙𝜓(𝑠′)) = 0.5. As such, we introduce a second loss

function 𝐿𝑒𝑞𝑢𝑖𝑣(𝜓) that minimizes the negative log-likelihood of both 𝑠 having a higher

feature value than 𝑠′ and 𝑠′ having a higher feature value than 𝑠:

𝐿𝑒𝑞𝑢𝑖𝑣(𝜓) = −
∑

(𝑠,𝑠′)∈𝒯𝑒𝑞𝑢𝑖𝑣

log(𝑃(𝑠 ≻ 𝑠′)) + log(𝑃(𝑠′ ≻ 𝑠)) = −
∑

(𝑠,𝑠′)∈𝒯𝑒𝑞𝑢𝑖𝑣

log

𝑒𝜙𝜓(𝑠)+𝜙𝜓(𝑠′)

(𝑒𝜙𝜓(𝑠) + 𝑒𝜙𝜓(𝑠′))2
.

(3.5)

This loss ensures the state space around feature trace starts and ends have similar

feature values, respectively. 2

We now have a total dataset 𝒯 = 𝒯𝑜𝑟𝑑∪𝒯𝑒𝑞𝑢𝑖𝑣 of |𝒯 | = ∑𝑁
𝑖=1

((𝑛 𝑖+1)
2

)
+2

(𝑁
2

)
tuples, which

is already significantly large for a small set of feature traces. We can use it to optimize a

loss 𝐿(𝜓) that combines the ordered and equivalence losses:

𝐿(𝜓) = 𝐿𝑜𝑟𝑑(𝜓) + �𝐿𝑒𝑞𝑢𝑖𝑣(𝜓) , (3.6)

where � is a hyperparameter trading off the two loss functions.

Given the loss function in (3.6), we can use any automatic differentiation package to

compute its gradients and update 𝜓 via gradient descent. Note that 𝐿𝑒𝑞𝑢𝑖𝑣 is akin to a

binary cross-entropy loss with a target of 0.5, whereas 𝐿𝑜𝑟𝑑 is similar to a binary cross-

entropy loss with a target of 1. This form of loss function has been shown to be effective

for preference learning [71, 142]. The key differences here are that our loss is over feature

functions not rewards, and that preferences are state orderings provided via feature traces

not trajectory comparisons. Additionally, in practice we normalize the feature functions

to make their subsequent reward weights reflect importance relative to one another. We

present the full feature learning algorithm using feature traces in Alg. 1.

3.3.2.3 Incorporating Relative Values. So far, we have assumed that all feature traces

have starts and ends of the same high and low feature value, respectively. The optional

relative values 𝑣0, 𝑣𝑛 can relax this assumption to enable the human to provide richer

traces and teach more complex feature functions, e.g. where no monotonic path from the

2
One could choose other losses to ensure equivalence of start and end values such as a p-norm | |𝜙𝜓(𝑠) −

𝜙𝜓(𝑠′)| |𝑝 . We experimented with 𝑝 = 2 but it produced inferior results.
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Algorithm 1: Feature Learning via Feature Traces

Input: 𝑁 number of queries, 𝐾 iterations.

for 𝑖 ← 1 to 𝑁 do
Query feature trace 𝜏 as in Sec. 3.3.1.

T← T ∪ 𝜏.

end
Convert T to datasets 𝒯𝑜𝑟𝑑 and 𝒯𝑒𝑞𝑢𝑖𝑣 as in Sec. 3.3.2.

Initialize 𝜙𝜓 randomly.

for iteration 𝑘 ← 1 to 𝐾 do
Sample tuples batch �̂�𝑜𝑟𝑑 ∈ 𝒯𝑜𝑟𝑑.
Sample tuples batch �̂�𝑒𝑞𝑢𝑖𝑣 ∈ 𝒯𝑒𝑞𝑢𝑖𝑣 .
Estimate 𝐿(𝜓) using �̂�𝑜𝑟𝑑, �̂�𝑒𝑞𝑢𝑖𝑣 , and (3.6).

Update parameter 𝜓 via gradient descent on 𝐿(𝜓).
end
return normalized 𝜙𝜓

highest to lowest feature value exists. By default, 𝑣0 = 1 communicating that the trace

starts at the highest feature value of the domain, and 𝑣𝑛 = 0 signifying that the trace ends

at the lowest feature value. By allowing 𝑣0 and 𝑣𝑛 to be something different from their

defaults, the person can provide traces that start at higher feature values or end at lower

ones. We describe how to include these relative values in the feature training procedure

in Sec. 3.9.1.1.

3.4 Approach: Reward Learning with Learned Features
Now that we have a method for learning features, we discuss how the robot can

include this capability in reward learning frameworks. For exposition, we chose two

reward learning frameworks – learning from demonstrations (offline) and from corrections

(online) – but we stress that features learned with our method are applicable to any other

reward learning method that admits features (e.g. comparisons, scalar feedback, etc.).

3.4.1 Offline FERL
We first consider the scenario where the human is attempting to teach the robot a

reward function from scratch, i.e. the robot starts off with an empty feature set
®𝜙. For

instance, imagine a system designer trying to engineer the robot’s reward before deploy-

ment, or an end user resetting it and custom designing the reward for their home. We can

think of this as an offline reward learning setting, where the person provides inputs to the

robot before it starts executing the task. Here, we focus on learning from demonstrations,

although our framework can be adapted to any other offline reward learning strategy.
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In standard learning from demonstrations, deep IRL uses a set of demonstrations to

train a reward function directly from the raw state, in an end-to-end fashion. Under our

divide-and-conquer framework, we redistribute the human input the robot asks for: first

ask for feature traces 𝜏 focusing explicitly on learning 𝐹 features one by one via Alg. 1,

and only then collect a few demonstrations � ∈ 𝒟∗ to learn the reward on top of them.

Alg. 2 summarizes the full procedure.

Algorithm 2: Offline FERL

Input: Demonstration set𝒟∗, 𝐹 number of features, 𝐾 iterations, 𝛼 learning rate.

Initialize empty feature set
®𝜙 = [].

for 𝑓 ← 1 to 𝐹 do
Learn feature 𝜙 𝑓 using Alg. 1.

®𝜙← ( ®𝜙, 𝜙 𝑓 ).
end
Initialize � randomly.

for iteration 𝑘 ← 1 to 𝐾 do
Generate samples𝒟�

using current reward 𝑅�.

Estimate gradient ∇ℒ using𝒟∗,𝒟�
in (3.13).

Update parameter � using gradient ∇ℒ in (3.14).

end
return optimized reward parameters �

3.4.1.1 Creating the Feature Set. Since the robot starts off with an empty feature set
®𝜙,

the person has to teach it every relevant feature one at a time. To do so, they follow the

procedure in Alg. 1, that is they collect a set of feature traces 𝜏 ∈ T for the current feature,

then use them to train 𝜙𝜓. The person can add this new feature to the robot’s existing set:

®𝜙← ( ®𝜙, 𝜙𝜓) , (3.7)

and repeat the procedure for as many features 𝐹 as they want.

After being equipped with a new set of features taught by the human, the robot

can undergo standard learning from demonstration procedures to recover the person’s

preferences. We now review Maximum Entropy IRL [311] for completion of the offline

reward learning exposition.

3.4.1.2 Offline Reward Learning. To teach the robot the desired reward function 𝑅�,

the person collects a set of demonstrations � ∈ 𝒟∗ for how to perform the task by directly

controlling the state 𝑠 through their input 𝑎𝐻 . During a demonstration, the robot is put

in gravity compensation mode or teleoperated, to allow the person full control over the
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desired trajectory. The robot interprets the set of demonstrations 𝒟∗ as evidence about

the human’s preferred � parameter, and uses them to estimate it and, thus, to learn the

reward function.

In order to reason about the human’s preferences, the robot needs to be equipped

with a model 𝑃(� | �) for how those preferences affect their choice of demonstrations.

For example, if the human were assumed to act optimally, the model would place all the

probability on the set of trajectories that perfectly optimize the reward 𝑅�. However, since

humans are not perfect, we relax this assumption and model them as being noisily-optimal,
choosing trajectories that are approximately aligned with their preferences. We follow the

Boltzmann noisily-rational decision model:

𝑃(� | �, 𝛽) = 𝑒𝛽𝑅�(�)∫
�̄
𝑒𝛽𝑅�(�̄)𝑑�̄

, (3.8)

where the human picks trajectories proportional to their exponentiated reward [27, 282].

Here, 𝛽 ∈ [0,∞) controls how much the robot expects to observe human input consistent

with its reward model. For now, we use the Maximum Entropy IRL [311] version of this

observation model where 𝛽 is fixed to 1, so for notation simplicity we refer to this model

as 𝑃(� | �). Later in Sec. 3.4.2, we will allow 𝛽 to vary and make use of it in the online

version of our framework.

In maximum entropy IRL, to recover the � parameter we maximize the log-likelihood

ℒ(�) of the observed data under the above model [146]. To see how, let’s start by writing

down the log-likelihood formula:

ℒ(�) = log

∏
�∈𝒟∗

𝑃(� | �) =
∑
�∈𝒟∗

log

𝑒𝑅�(�)∫
�̄
𝑒𝑅�(�̄)𝑑�̄

=
∑
�∈𝒟∗

𝑅�(�) − |𝒟∗ | log

∫
�̄
𝑒𝑅�(�̄)𝑑�̄ . (3.9)

Computing the integral over trajectories is intractable in real-world problems, so

sample-based approaches to maximum entropy IRL estimate it with samples � ∈ 𝒟′
drawn from a background distribution 𝑞(�):

ℒ(�) ≈
∑
�∈𝒟∗

𝑅�(�) − |𝒟∗ | log

1

|𝒟′|
∑
�̄∈𝒟′

𝑒𝑅�(�̄)

𝑞(�̄)
. (3.10)

The distribution 𝑞(�) is chosen often times to be uniform; instead, we follow Finn, Levine,

and Abbeel [96] and generate samples in those regions of the trajectory space that are good

according to the current estimate of the reward function, i.e. 𝑞(�) ∝ 𝑒𝑅�(�)
. We denote

� ∈ 𝒟�
such a set sampled under �.

We may now find � by maximizing the log-likelihood ℒ(�) using gradient-based

optimization on the above objective. The gradient then takes the following form:

∇ℒ =
1

|𝒟∗ |
∑
�∈𝒟∗
∇𝑅�(�) −

1

|𝒟� |
∑
�̄∈𝒟�

∇𝑅�(�̄) . (3.11)
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At this point, a standard deep IRL baseline could use any automatic differentiation

package to compute the gradient and update the reward parameters directly from the raw

trajectory state. Instead, consistent with prior work on reward learning with feature sets,

we represent the reward as a linear combination of the learned features
®𝜙:

𝑅�(�) = �𝑇 ®Φ(�) =
∑

(𝑠,𝑎𝐻 ,𝑎𝑅)∈�
�𝑇 ®𝜙(𝑠) . (3.12)

Note that the linear reward assumption is not necessary for our algorithm to work. While

in theory the reward could be modeled as non-linear, our divide-and-conquer approach

is motivated by keeping the reward parameter space small while still effectively capturing

the person’s preferences.

For the linear case, the gradient becomes the difference between the observed demon-

stration feature values and the expected feature values dictated by the sampled trajectories:

∇ℒ =
1

|𝒟∗ |
∑
�∈𝒟∗
®Φ(�) − 1

|𝒟� |
∑
�̄∈𝒟�

®Φ(�̄) . (3.13)

Lastly, we compute an estimate �̂ by iteratively computing the gradient ∇ℒ and up-

dating the parameters until convergence:

�̂′ = �̂ − 𝛼
©« 1

|𝒟∗ |
∑
�∈𝒟∗
®Φ(�) − 1

|𝒟� |
∑
�̄∈𝒟�

®Φ(�̄)ª®¬ , (3.14)

where 𝛼 is the chosen learning rate. The final reward learning procedure, thus, consists of

𝐾 iterations of generating samples 𝒟�
under the current reward, using them to estimate

the gradient in (3.13), and updating the parameter � via gradient descent with (3.14).

3.4.2 Online FERL
In Sec. 3.4.1, we saw that our method allows the person to specify a reward by sequen-

tially teaching features and adding them to the robot’s feature set before using demon-

strations to combine them. However, in many situations the system designer or even the

user teaching the features might not consider all aspects relevant for the task a priori. As

such, we now consider an online reward learning version of our previous scenario, where

the person provides inputs to the robot during the task execution and its feature space

may or may not be able to correctly interpret them.

We assume the robot has access to an initial feature set
®𝜙, and is tracking a trajectory

� optimizing its current estimate of the reward function 𝑅� in (3.12). If the robot is

not executing the task according to the person’s preferences, the human can intervene

with input 𝑎𝐻 . For instance, 𝑎𝐻 might be an external torque that the person applies to
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change the robot’s current configuration. Or, they might stop the robot and kinesthetically

demonstrate the task, resulting in a trajectory. Building on prior work, we assume the robot

can evaluate whether its existing feature space can explain the human input (Sec. 3.4.2.2).

If it can, the robot directly updates its reward function parameters �, also in line with

prior work Bajcsy et al. [25] and Ratliff, Bagnell, and Zinkevich [237] (Sec. 3.4.2.1). If it can

not, the human can teach the robot a new feature3 𝜙𝜓 just like in Sec. 3.4.1 and augment

its feature set
®𝜙 ← ( ®𝜙, 𝜙𝜓). The robot can then go back to the original human input 𝑎𝐻

that previously could not be explained by the old features and use it to update its estimate

of the reward parameters �. Algorithm 3 summarizes the full procedure.

Algorithm 3: Online FERL

Input: Features
®𝜙 = [𝜙1, . . . , 𝜙 𝑓 ], initial parameters �, confidence threshold 𝜖.

Plan initial trajectory � by optimizing 𝑅�.

while executing � do
if 𝑎𝐻 then

Estimate confidence �̂� from 𝑎𝐻 using (3.17).

if �̂� < 𝜖 then
Learn feature 𝜙𝑛𝑒𝑤 using Alg. 1.

®𝜙← ( ®𝜙, 𝜙𝑛𝑒𝑤), �← (�, 0.0).
end
Get induced trajectory �𝐻 from (3.15).

Update parameter � using �𝐻 in (3.16).

Replan trajectory � by optimizing new 𝑅�.

end
end

3.4.2.1 Online Reward Update. Whether it needs to learn a new feature 𝜙𝜓 or not, the

robot has to then use the human input 𝑎𝐻 to update its estimate of the reward parameters

�. Here, any prior work on online reward learning from user input is applicable, but we

highlight one example to complete the exposition.

For instance, take the setting where the human’s input 𝑎𝐻 was an external torque,

applied as the robot was tracking a trajectory � that was optimal under its current reward

𝑅�. Prior work Bajcsy et al. [25] has modeled this as inducing a deformed trajectory �𝐻 ,

by propagating the change in configuration to the rest of the trajectory:

�𝐻 = � + �𝐴−1 �̃�𝐻 , (3.15)

3
Because feature learning was triggered by an intervention, it is fair to assume that the human knows

what aspect of the task they were trying to correct.
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where � > 0 scales the magnitude of the deformation, 𝐴 defines a norm on the Hilbert

space of trajectories4 and dictates the deformation shape [88], and �̃�𝐻 is 𝑎𝐻 at the interaction

time and 0 otherwise.

If we think of �𝐻 as the human observation and of � as the expected behavior according

to the current reward [25], we arrive at a natural alternation of the update rule in (3.14):

�̂′ = �̂ − 𝛼
(
®Φ(�𝐻) − ®Φ(�)

)
. (3.16)

Intuitively, the robot updates its estimate �̂ in the direction of the feature change induced

by the human’s correction 𝑎𝐻 from � to �𝐻 .

If instead, the human intervened with a full demonstration, work on online learning

from demonstrations (Sec. 3.2 in Ratliff, Bagnell, and Zinkevich [237]) has derived the

same update with �𝐻 now being the human demonstration. In our implementation, we

use corrections and follow Bajcsy et al. [24], which shows that people more easily correct

one feature at a time, and only update the � index corresponding to the feature that

changes the most (after feature learning this is the newly learned feature). After the

update, the robot replans its trajectory using the new reward.

3.4.2.2 Confidence Estimation. The robot can learn a new feature from the person

because we assumed it has the capacity to detect that a feature is missing in the first place.

We alluded earlier in Sec. 3.4.1 how this ability might be enabled by manipulating the 𝛽
parameter in the observation model in (3.8). We now expand on this remark.

In the presented Boltzmann model, 𝛽 controls how much the robot expects to observe

human input consistent with its reward structure, and, thus, its feature space. A high

𝛽 suggests that the input is consistent with the robot’s feature space, whereas a low 𝛽
may signal that no reward function captured by the feature space can explain the input.

As such, inspired by work in Fridovich-Keil et al. [100], Fisac et al. [98], and Bobu et al.

[38], instead of keeping 𝛽 fixed like in the maximum entropy IRL observation model, we

reinterpret it as a confidence in the robot’s features’ ability to explain human data.

When the human input 𝑎𝐻 is a correction, following Sec. 7.4 (discussed later in Chapter

7), the robot estimates �̂� by considering how efficient the human input 𝑎𝐻 is in achieving

the induced trajectory features ®Φ(�𝐻). Accordingly, �̂� is inversely proportional to the

difference between the actual human input and the input that would have produced

®Φ(�𝐻) optimally:

�̂� ∝ 1

∥𝑎𝐻 ∥2 − ∥𝑎∗𝐻 ∥2
, (3.17)

where we obtain 𝑎∗
𝐻

by solving the optimization problem (7.21) in Chapter 7.

4
We used a norm 𝐴 based on acceleration, consistent with Bajcsy et al. [25], but other norm choices are

possible as well.
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Intuitively, if the person’s input is close to the optimal 𝑎∗
𝐻

, then it achieves the induced

features ®Φ(�𝐻) efficiently, resulting in high confidence �̂�. If, however, there is a far more

efficient alternative input – the difference between 𝑎𝐻 and 𝑎∗
𝐻

is large –, �̂� will be small:

the person probably intended to give input about a feature the robot does not know about.

Alternatively, if the human input 𝑎𝐻 is a demonstration, like in the classical IRL

presented in Sec. 3.4.1, we may estimate �̂� via a Bayesian belief update: 𝑏′(�, 𝛽) ∝ 𝑃(� |
�, 𝛽)𝑏(�, 𝛽). Once again, in our implementation we used corrections, but Chapter 7 shows

confidence estimation can easily be adapted to learning from demonstrations if desired.

To detect a missing feature, the robot simply needs a confidence threshold 𝜖. If �̂� > 𝜖,

the robot is confident in its feature space, so it updates the reward as usual; if �̂� < 𝜖, its

features are insufficient and the robot asks the person to be taught a new one.

3.5 Experiments: Learning Features with Feature Traces
Before testing FERL in the two reward learning settings of interest, we first analyze our

method for learning features in experiments with a robotic manipulator. In Sec. 3.5.1, we

inspect how well FERL can learn six different features of varying complexity by using real

robot data collected from an expert – a person familiar with how the algorithm works. We

then conduct an online user study in simulation in Sec. 3.5.2 to test whether non-experts

– people not familiar with FERL but taught to use it – can teach the robot good features.

3.5.1 Expert Users
We have argued that feature traces are useful in teaching the robot features explicitly.

In our first set of experiments, we look at how good the learned features are, and how

their quality varies with the amount of feature traces provided.

3.5.1.1 Experimental Design. We conduct our experiments on a 7-DoF JACO robotic

arm. We investigate six features in the context of personal robotics:

1. table: distance of the End-Effector (EE) to the table (T), as a 𝑧-coordinate difference:

𝐸𝐸𝑧 − 𝑇𝑧 (superscript denotes pose coordinate selection);

2. coffee: coffee cup upright orientation, defined by how far the EE is from pointing up:

1 − 𝐸𝐸𝑅 · [0, 0, 1] (superscript denotes pose rotation matrix);

3. laptop: 0.3 meter 𝑥𝑦-plane distance of the EE to a laptop (L), to avoid passing over

the laptop: max{0.3 − ∥𝐸𝐸𝑥𝑦 − 𝐿𝑥𝑦 ∥2, 0};

4. test laptop location: same as laptop but the test position differs from the training ones;
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Figure 3.2: Visualization of the experimental setup, learned feature values 𝜙𝜓(𝑠), and training feature traces

𝜏 for table (up) and laptop (down). We display the feature values 𝜙𝜓(𝑠) for states 𝑠 sampled from the reachable

set of the 7-DoF arm, as well as their projections onto the 𝑦𝑧 and 𝑥𝑦 planes.

5. proxemics: non-symmetric 0.3 meter 𝑥𝑦-plane distance between the EE and the hu-

man (H), to keep the EE away from them, three times as much when moving in front

of them than on their side : max{0.3 −
√(

𝐸𝐸𝑦−𝐻𝑦

3

)
2 + (𝐸𝐸𝑥 − 𝐻𝑥)2, 0};

6. between objects: 0.2 meter 𝑥𝑦-plane distance of the EE to two objects, 𝑂1 and 𝑂2 –

the feature penalizes being above either object, and, to a lesser extent, passing in

between the objects as defined by a distance to the imaginary line 𝑂1𝑂2: max{0.2 −
min{0.8 ∗ ∥𝑂1𝑂

𝑥𝑦

2
− 𝐸𝐸𝑥𝑦 ∥2, ∥𝑂𝑥𝑦

1
− 𝐸𝐸𝑥𝑦 ∥2, ∥𝑂𝑥𝑦

2
− 𝐸𝐸𝑥𝑦 ∥2}, 0}.

Most features can be taught with the default relative values 𝑣𝑛 = 0 and 𝑣0 = 1, but

between objects requires some traces with explicit values 𝑣0, 𝑣𝑛 . We approximate all features

𝜙𝜓 by neural networks (2 layers, 64 units each), and train them on a set of traces T using

stochastic gradient descent (see Sec. 3.9.3.1 for training details details).

For each feature, we collected a set ℱ of 20 feature traces (40 for the complex test laptop
location and between objects) from which we sample subsets T ∈ ℱ for training. We decide

for each feature what an informative and intuitive set of traces would be, i.e. how to choose

the starting states to cover enough of the space (details in Sec. 3.9.2.1). As described in

Sec. 3.3.2, the human teacher starts at a state where the feature is highly expressed, e.g.

for laptop that is the EE positioned above the laptop. They then move the EE away until

the distance is equal to the desired radius. They do this for a few different directions and

heights to give a diverse dataset.

Our raw state space consists of the 27D 𝑥𝑦𝑧 positions of all robot joints and objects in

the scene, as well as the rotation matrix of the EE. We assume known object positions but

they could be obtained from a vision system. It was surprisingly difficult to train on both

positions and orientations due to spurious correlations in the raw state space, hence we

show results for training only on positions or only on orientations. This speaks to the need

for methods that can handle correlated input spaces, which we expand on in Sec. 3.9.2.3.

Manipulated Variables. We are interested in seeing trends in how the quality of the

learned features changes with more or less data available. Hence, we manipulate the
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Figure 3.3: The plots display the ground truth 𝜙True (top rows) and learned feature values 𝜙𝜓 (bottom rows)

over 𝒮Test, averaged and projected onto a representative 2D subspace: the 𝑥𝑦-plane, the 𝑦𝑧-plane (table),

and the 𝑥𝑧 orientation plane for coffee (the arrow represents the cup upright).

number of traces 𝑁 the learner gets access to.

Dependent Measures. After training a feature 𝜙𝜓, we measure error compared to the

ground truth feature 𝜙True that the expert tries to teach, on a test set of states 𝒮Test. To

form 𝒮Test, we uniformly sample 10,000 states from the robot’s reachable set. Importantly,

many of these test points are far from the training traces, probing the generalization of

the learned features 𝜙𝜓. We measure error via the Mean Squared Error (MSE), MSE =
1

|𝒮Test |
∑
𝒮Test

| |𝜙𝜓(𝑠) − 𝜙True(𝑠)| |2. To ground the MSE values, we normalize them with the

mean MSE of a randomly initialized untrained feature function, MSEnorm = MSE

MSE
random

,

hence a value of 1.0 is random performance. For each 𝑁 , we run 10 experiments sampling

different feature trace sets T from ℱ , and calculate MSEnorm.

Hypotheses.
H1: With enough data, FERL learns good features.

H2: FERL learns increasingly better features with more data.

H3: FERL becomes less input-sensitive with more data.

3.5.1.2 Qualitative Results. We first inspect the results qualitatively, for 𝑁 = 10. In

Fig. 3.2 we show the learned table and laptop features 𝜙𝜓 by visualizing the position of

the EE for all 10,000 points in our test set. The color of the points encodes the learned

feature values 𝜙𝜓(𝑠) from low (blue) to high (yellow): table is highest when the EE is

farthest, while laptop peaks when the EE is above the laptop. In Fig. 3.3, we illustrate the

Ground Truth (GT) feature values 𝜙True and the trained features 𝜙𝜓 by projecting the test

points on 2D sub-spaces and plotting the average feature value per 2D grid point. For

Euclidean features we used the EE’s xy-plane or yz-plane (table), and for coffee we project

the 𝑥-axis basis vector of the EE after forward kinematic rotations onto the xz-plane (arrow

up represents the cup upright). White pixels are an artifact of sampling.



CHAPTER 3. ONE-BY-ONE REPRESENTATION LEARNING 38

2 3 4 5 6 7 8 9 10
0.0

0.5

1.0

M
SE

no
rm

Table

2 3 4 5 6 7 8 9 10

Laptop

2 4 6 8 10 12 14 16 18 20

Test Laptop Location

2 3 4 5 6 7 8 9 10
Number of Feature Traces

0.0

0.5

1.0

M
SE

no
rm

Coffee

2 3 4 5 6 7 8 9 10
Number of Feature Traces

Proxemics

3 6 9 12 15 18 21 24 27 30
Number of Feature Traces

Between Objects

Figure 3.4: For each feature, we show the MSEnorm mean and standard error across 10 random seeds with

an increasing number of traces (orange) compared to random (gray).

We observe that 𝜙𝜓 resembles 𝜙True very well for most features. Our most complex

feature, between objects, does not recreate the GT as well, although it does learn the general

shape. However, we note in Sec. 3.9.4.1 that in smaller raw input space it is able to learn

the fine-grained GT structure. This implies that spurious correlation in input space is

a problem, hence for complex features more data or active learning methods to collect

informative traces are required.

3.5.1.3 Quantitative Analysis. Fig. 3.4 displays the means and standard errors across 10

seeds for each feature with increasing amount of data 𝑁 . To test H1, we look at the errors

with the maximum amount of data. Indeed, FERL achieves small errors, put in context

by the comparison with the error a random feature incurs (gray line). This is confirmed

by an ANOVA with random vs. FERL as a factor and the feature ID as a covariate, finding

a significant main effect (𝐹(1, 113) = 372.0123, 𝑝 < .0001). In line with H2, most features

have decreasing error with increasing data. Indeed, an ANOVA with 𝑁 as a factor and

feature ID as a covariate found a significant main effect (𝐹(8, 526) = 21.1407, 𝑝 < .0001).

Lastly, supporting H3, we see that the standard error on the mean decreases when FERL

gets more data. To test this, we ran an ANOVA with the standard error as the dependent

measure and 𝑁 as a factor, finding a significant main effect (𝐹(8, 45) = 3.098, 𝑝 = .0072).

3.5.1.4 Summary. The qualitative and quantitative results support our hypotheses and

suggest that our method requires few traces to reliably learn features 𝜙𝜓 that generalize

well to states not seen during training. We also find that the more complex a feature, the

more traces are needed for good performance: while table and laptop perform well with

just 𝑁 = 4, some other features, like between objects, require more traces. Active learning
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approaches that disentangle the learned function by querying traces at parts of the state

space that are confusing could further reduce the amount of data required.

3.5.2 User Study
In the previous section, we have demonstrated that experts can teach the robot good

feature functions. We now design a user study to test how well non-expert users can teach

features with FERL and how easily they can use the FERL protocol.

Figure 3.5: The pybullet simulator interface used in the

user study, replicating our lab setup with the JACO robot.

3.5.2.1 Experimental Design. Due to

COVID, we replicated our set-up from

Fig. 3.1 (Left) in a pybullet simulator [74]

in which users can move a 7 DoF-JACO

robotic arm using their cursor. Through

the interface in Fig. 3.5, the users can

drag the robot to provide feature traces,

and use the buttons for recording, sav-

ing, and discarding them.

The user study is split into two

phases: familiarization and teaching. In

the first phase, we introduce the user

to the task context, the simulation inter-

face, and how to provide feature traces

through an instruction video and a man-

ual. Next, we describe and 3D visual-

ize the familiarization task feature hu-
man (0.3 meter 𝑥𝑦-plane distance of the

EE to the human position), after which we ask them to provide 10 feature traces to teach it.

Lastly, we give the users a chance to see what they did well and learn from their mistakes

by showing them a 3D visualization of their traces and the learned feature. See Sec. 3.9.2.4

for more details on the user training.

In the second phase, we ask users to teach the robot three features from Sec. 3.5.1: table,
laptop, and proxemics. This time, we don’t show the learned features until after all three

tasks are complete.

Manipulated Variables. We manipulate the input type with three levels: Random, Expert,
and User. For Random, we randomly initialize 12 feature functions per task; for Expert, the

authors collected 20 traces per task in the simulator, then randomly subsampled 12 sets of

10 that lead to features of similar MSEs to the ones in the physical setup before; for User,
each person provided 10 traces per task.

Dependent Measures. Our objective metric is the learned feature’s MSE compared to

the GT feature on 𝒮Test, similar to Sec. 3.5.1. Additionally, to assess the users’ interaction
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Figure 3.6: Questions, answer distributions, and p-values (2-sided t-test against the middle score 4) from

the user study. The p-values in orange are significant after adjusted for multiple comparisons using the

Bonferroni correction.

experience we administered the subjective 7-point Likert scale survey from Fig. 3.6, with

some items inspired by NASA-TLX [126]. After they provide the feature traces for all

3 tasks, we ask the top eight questions in Fig. 3.6. The participants then see the 3D

visualizations of their feature traces and learned features, and we survey all 11 questions

as in Fig. 3.6 to see if their assessment changed.

Participants. We recruited 12 users (11 male, aged 18-30) from the campus community

to interact with our simulated JACO robot and provide feature traces for the three tasks.

All users had technical background, so we caution that our results will speak to FERL’s

usability with this population rather than the general population.

Hypotheses.
H4: FERL learns good features from non-expert user data.

H5: Users find it easy to think of traces to give the robot, believe they understand how

these traces influence the learned feature, believe they were successful teachers, and find
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our teaching protocol intuitive (little mental/physical effort, time, or stress).

3.5.2.2 Analysis.
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Figure 3.7: MSE to GT for the three features learned

from expert (orange) and user (yellow) traces pro-

vided in simulation, and randomly (gray) initialized

feature for comparison.

Objective. Fig. 3.7 summarizes the results

by showing how the MSE varies with each

of our input types, for each task feature.

Right off the bat, we notice that in line

with H4, the MSEs for the user features

are much closer to the expert level than

to random. We ran an ANOVA with in-

put type as a factor and task as a covariate,

finding a significant main effect (F(2, 103)

= 132.7505, p < .0001). We then ran a Tukey

HSD post-hoc, which showed that the MSE

for Random input was significantly higher

than both Expert (p < .0001) and User (p <

.0001), and found no significant difference

between Expert and User (p = .0964). While

this does not mean that user features are

as good as expert features (we expect some

degradation in performance when going to

non-experts), it shows that they are sub-

stantially closer to them than to random,

i.e. the user features maintain a lot of signal despite this degradation.

Subjective. In Fig. 3.6, we see the Likert survey scores before and after the users saw the

teaching results. For every question, we report 2-sided t-tests against the neutral score 4.

These results support H5, although the evidence for finding the teaching protocol intuitive

is weaker, and participants might have a bias to be positive given they are in a study. In

fact, several participants mentioned in their additional remarks that they had a good idea

of what traces to give, and the only frustrating part was the GUI interface, which was

necessary because in-person studies are not possible during the COVID pandemic ("I had

a pretty good mental model for what I wanted to show, but found it frustrating doing that

with a mouse", "I know what it wants, but the interface makes it difficult to give those

exact traces"); performing the experiment as it was originally intended with the real robot

arm would have potentially alleviated this issue ("With manual control of the arm it would

have been a lot easier.").

Looking before and after the visualization, we find a trend: seeing the result seems to

reinforce people’s belief that they were effective teachers (Q3, Q4), also noticed in their

comments ("Surprising how well it learned!", "Surprised that with limited coverage it

generalized pretty well."). Also, in support of H4, we see significant evidence that users

thought the robot learned the correct feature (Q9-Q11).
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Lastly, we wanted to know if there was a correlation between subjective scores and

objective performance. We isolated the “good teachers” – the participants who scored

better than average on all 3 feature tasks in the objective metric, and compared their

subjective scores to the rest of the teachers. By running a factorial likelihood-ratio test for

each question, we found a significant main effect for good teachers: they are more certain

that the robot has learned a correct feature even before seeing the results (Q3, p = .001),

are more inclined to think they were successful (Q4, p = .0203), and find it significantly

easier to teach features (Q7, p = .0202).

3.5.2.3 Summary. Both the objective and subjective results provide evidence that non-

expert users can teach the robot reasonable features using our FERL protocol. In addition,

participants found our teaching protocol intuitive, suggesting that feature traces can be

useful for teaching features outside of the system designer’s setting. In the following

sections, we explore whether both expert and non-expert features can be used to improve

reward learning generalization.

3.6 Experiments: Online FERL
Now that we have tested our method for learning features with both experts and non-

experts, we analyze how the learned features affect reward learning. In this section, we

start with the easier setting where the robot already has a feature set that it is using for

online reward learning, but the human might provide input about a missing feature.

3.6.1 Expert Users
When the robot receives human input that cannot be explained by its current set of

features, we hypothesize that adding FERL features to it can induce structure in the reward

learning procedure that helps better recover the person’s preferences. We first test this

hypothesis with expert user data.

3.6.1.1 Experimental Design. We run experiments on the same JACO robot arm in three

settings in which two features are known (𝜙
coffee

, 𝜙
known

) and one is unknown. In all tasks,

the true reward is 𝑟true= (0, 10, 10)(𝜙
coffee

, 𝜙
known

, 𝜙
unknown

)𝑇 . We include 𝜙
coffee

with zero

weight to evaluate if the methods can learn to ignore irrelevant features. In task 1, 𝜙
laptop

is unknown and the known feature is 𝜙
table

; in task 2, 𝜙
table

is unknown and 𝜙
laptop

is

known; and in task 3, 𝜙proxemics is unknown and 𝜙
table

is known. We name the tasks Laptop
Missing, Table Missing, and Proxemics Missing, respectively.
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Manipulated Variables. We manipulate the learning method with 2 levels: FERL and an

adapted ME-IRL baseline5 [96, 291] learning a deep reward function from demonstrations.

We model the Maximum Entropy Inverse Reinforcement Learning (ME-IRL) reward func-

tion 𝑟𝜔 as a neural network with 2 layers, 128 units each. For a fair comparison, we gave

𝑟𝜔 access to the known features: once the 27D Euclidean input is mapped to a neuron, a

last layer combines it with the known feature vector.

Also for a fair comparison, we collected a set of demonstrations for ME-IRL designed

to be as informative as possible: we chose diverse start and goal configurations for the

demonstrations, and focused some of them on the unknown feature and some on learning

a combination between features (see Sec. 3.9.2.2). Moreover, FERL and ME-IRL rely on

different input types: FERL on feature traces 𝜏 and pushes 𝑎𝐻 and ME-IRL on a set of

near-optimal demonstrations 𝒟∗. To level the amount of data each method has access to,

we collected the traces T and demonstrations𝒟∗ such that ME-IRL has more data points:

the average number of states per demonstration/trace were 61 and 31, respectively.

Following (3.11), the gradient of the ME-IRL objective with respect to the reward

parameters 𝜔 can be estimated by: ∇𝜔ℒ ≈ 1

|𝒟∗ |
∑

𝜏∈𝒟∗∇𝜔𝑅𝜔(𝜏)− 1

|𝒟𝜔 |
∑

𝜏∈𝒟𝜔∇𝜔𝑅𝜔(𝜏) [291,

96]. Here, 𝑅𝜔(𝜏)=
∑
𝑠∈𝜏𝑟𝜔(𝑠) is the parametrized reward, 𝒟∗ the expert demonstrations,

and 𝒟𝜔
are trajectory samples from the 𝑟𝜔 induced near optimal policy. We use TrajOpt

[255] to obtain the samples 𝒟𝜔
(see Sec. 3.9.3.4 for details). For practical considerations

and implementation details of the online version of FERL we used, see Sec. 3.9.3.2.

Dependent Measures. We compare the two reward learning methods across three metrics

commonly used in the IRL literature [69]: 1) Reward Accuracy: how close to GT the learned

reward is, 2) Behavior Accuracy: how well do the behaviors induced by the learned rewards

compare to the GT optimal behavior, measured by evaluating the induced trajectories on

GT reward, and 3) Test Probability: how likely trajectories generated by the GT reward are

under the learned reward models.

For Reward Accuracy, note that any affine transformation of a reward function would

result in the same induced behaviors, so simply measuring the MSE between the learner’s

reward and the GT reward may not be informative. As such, we make reward functions

given by different methods comparable by computing each learner’s reward values on𝒮Test

and normalizing the resulting set of rewards to be in [0, 1]. This allows us to compute

the MSE on 𝒮Test between each method and the GT. Similarly to Sec. 3.5.1, we report this

metric by varying the number of traces / demonstrations each learner gets access to. For

Behavior Accuracy and Test Probability, we train FERL and ME-IRL with a set of 10 traces /

demonstrations. For Behavior Accuracy, we use TrajOpt [255] to produce optimal trajectories

for 100 randomly selected start-goal pairs under the learned rewards. We evaluate the

trajectories with the GT reward 𝑟true and divide by the reward of the GT induced trajectory

5
We chose ME-IRL as it is the state-of-the-art method for learning rewards and does not rely on base

feature engineering, as explained in Section 3.1. We also tried a linear variant of ME-IRL optimizing

the reward parameters on top of random features modeled as neural networks. However, we found the

performance of this alternate baseline to be consistently inferior to that of the deep ME-IRL (see Sec. 3.9.4.2),

so we only compare against the deep variant.
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Figure 3.8: Visual comparison of the ground truth, online FERL, and ME-IRL rewards for Laptop Missing
(top), Table Missing (middle) and Proxemics Missing (bottom).

for easy relative comparison. For Test Probability, we generate 100 optimal trajectories using

the GT reward, then evaluate their likelihood under the Boltzmann model in (3.8) with

each learned reward. To approximate the intractable integral in (3.8), we sample6 sets of

100 trajectories for every start-goal pair corresponding to the optimal trajectories. For a fair

comparison, we use the normalized rewards once again, and fit the maximum likelihood

coefficient �̂� for each model.

Hypotheses.
H6: Online FERL learns rewards that better generalize to the state space than ME-IRL.

H7: Online FERL performance is less input-sensitive than ME-IRL’s.

3.6.1.2 Qualitative Comparison. In Fig. 3.8, we show the learned FERL and ME-IRL

rewards as well as the GT for all three tasks evaluated at the test points. As we can

see, by first learning the missing feature and then the reward on the extended feature

6
To obtain dynamically feasible trajectories, we sampled random objectives given by linear combinations

of various features, and optimized them with TrajOpt. While this sampling strategy cannot be justified

theoretically, it works well in practice: the resulting optimized trajectories are a heuristic for sampling

diverse and interesting trajectories in the environment.
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Figure 3.9: MSE of online FERL and ME-IRL to GT reward across all three tasks. FERL learns rewards that

better generalize to the state space.

vector, FERL is able to learn a fine-grained reward structure closely resembling the GT.

Meanwhile, ME-IRL learns some structure capturing where the laptop or the human is,

but not enough to result in a good trade-off between the active features.

3.6.1.3 Quantitative Analysis. To compare Reward Accuracy, we show in Fig. 3.9 the

MSE mean and standard error across 10 seeds, with increasing training data. We visualize

results from all 3 tasks, with FERL in orange and ME-IRL in gray. FERL is closer to GT

than ME-IRL no matter the amount of data, supporting H6. To test this, we ran an ANOVA

with learning method as the factor, and with the task and data amount as covariates, and

found a significant main effect (F(1, 595) = 335.5253, p < .0001).

Additionally, the consistently decreasing MSE in Fig. 3.9 for FERL suggests that our

method gets better with more data; in contrast, the same trend is inexistent with ME-IRL.

Supporting H7, the high standard error that ME-IRL displays implies that it is highly

sensitive to the demonstrations provided and the learned reward likely overfits to the

expert demonstrations. We ran an ANOVA with standard error as the dependent measure,

focusing on the 𝑁 = 10 trials which provide the maximum data to each method, with

the learning method as the factor and the task as a covariate. We found that the learning

method has a significant effect on the standard error (F(1, 4) = 12.1027, p = .0254). With

even more data, this shortcoming of IRL might disappear; however, this would pose an

additional burden on the human, which our method successfully alleviates.

We also looked at Behavior Accuracy for the two methods. Fig. 3.10 (left) illustrates the

reward ratios to GT for all three tasks. The GT ratio is 1 by default, and the closer to 1 the

ratios are, the better the performance because all rewards are negative. The figure further

supports H6, showing that FERL rewards produce trajectories that are preferred under
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Figure 3.10: (Left) Induced trajectories’ reward ratio for the two methods compared to GT. ME-IRL struggles

to generalize across all tasks. (Right) Probability assigned by the two methods to a set of optimal trajectories

under the Boltzmann assumption. The trajectories are more likely under FERL than ME-IRL, suggesting

FERL is the more accurate reward model.

the GT reward over ME-IRL reward trajectories. An ANOVA using the task as a covariate

reveals a significant main effect for the learning method (F(1, 596) = 14.9816, p = .0001).

Lastly, we compare how likely a test set of trajectories given by optimizing the GT

reward is under the two models. A more accurate reward model should give higher prob-

abilities to the demonstrated trajectories under the Boltzmann noisily-rational assumption

in (3.8). Fig. 3.10 (right) illustrates that FERL does indeed assign higher likelihood to the

test trajectories than ME-IRL, which is consistent with H6.

3.6.1.4 Summary. The rewards learned with FERL qualitatively capture more structure

than ME-IRL ones, but they also quantitatively get closer to the GT. Using FERL features

– at least when the robot is missing one feature – seems to induce useful structure in the

reward learning process that guides the robot to better capture the person’s preferences.

These results hold when the person teaching the missing feature is an expert user; we next

look at the case where a novice interacts with the robot instead.

3.6.2 Non-expert Users
The objective results in Sec. 3.5.2 show that while users’ performance degrades from

expert performance, they are still able to teach features with a lot of signal. We now want

to test how important the user-expert feature quality gap is when it comes to using these

features for online reward learning.

3.6.2.1 Experimental Design. For this experiment, we had a similar setup to the one

in Sec. 3.6.1, only that we performed reward learning with FERL using the user-taught

simulation features from the user study. We wanted to see if the divide-and-conquer
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approach employed by FERL results in better rewards than ME-IRL even when using

noisy simulation data.

Manipulated Variables. We manipulate the learning method, FERL or ME-IRL, just like in

Sec. 3.6.1. Because corrections and demonstrations would be very difficult in simulation,

we use for ME-IRL the expert data from the physical robot. For FERL, we use the user

data from the simulation, and the expert corrections that teach the robot how to combine

the learned feature with the known ones. Note that this gives ME-IRL an advantage,

since its data is both generated by an expert, and on the physical robot. Nonetheless, we

hypothesize that the advantage of the divide-and-conquer approach is stronger.

Dependent Measures. We use the same objective metric as Reward Accuracy in the expert

comparison in Sec. 3.6.1: the learned reward MSE to the GT reward on 𝒮Test.

Hypothesis.
H8: Online FERL learns more generalizable rewards than ME-IRL even when using

features learned from data provided by non-experts in simulation.
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Figure 3.11: MSE to GT reward for the three tasks,

comparing ME-IRL from expert physical demonstra-

tions (gray) to online FERL from expert (orange) and

non-expert (yellow) features learned in simulation

and combined via corrections.

3.6.2.2 Analysis. Fig. 3.11 illustrates our

findings for the reward comparison. In the

figure, we added FERL with expert-taught

simulation features for reference: we ran-

domly subsampled sets of 10 from 20 ex-

pert traces collected by the authors, and

trained 12 expert features for each of our 3

task features. We see that, even though ME-
IRL was given the advantage of using physical
expert demonstrations, it still severely under-
performs when compared to FERL with both
expert and user features learned in simulation.
This finding is crucial because it under-

lines the power of our divide-and-conquer

approach in online reward learning: even

when given imperfect features, the learned

reward is superior to trying to learn every-

thing implicitly from demonstrations.

We verified this result with an ANOVA

with the learning method as factor and the

task as covariate. We found a significant

main effect for the learning method (F(1, 62) = 41.2477, p < .0001), supporting H8.

3.6.2.3 Summary. Despite the degradation in feature quality we see in user features

when compared to expert ones, we find that the structure they do maintain is advantageous
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in online reward learning. This suggests that the online instantiation of FERL can be used

even by non-experts to better teach the robot their preferences.

3.7 Experiments: Offline FERL
In the online reward learning setting, the robot was already equipped with a starting

feature set, and we tested how learning missing features affects the reward. We now

look at the scenario where the robot’s reward must be programmed entirely from scratch,

teaching each feature separately before combining them into a reward via demonstrations.

3.7.1 Expert Users
We have argued that learned features can induce useful structure that speeds up reward

learning. We test how the reward is affected when the entire structure is built up from the

expert features taught from real robot data in Sec. 3.5.1.

3.7.1.1 Experimental Design. We run experiments on the robot arm in three settings of

increasing complexity: in the first, the true reward depends on a single feature, and every

subsequent task adds another feature to the reward. In task 1, the true reward depends

on only 𝜙
table

. In task 2, we add the 𝜙
laptop

feature, and in task 3 the 𝜙proxemics feature. In

both tasks 2 and 3, the reward equally combines the two and three features, respectively.

Task 1 should be easy enough for even an end-to-end IRL method to solve, especially

since it relies on the simplest feature that we have considered. Meanwhile, tasks 2 and

3 require learning rewards that are more structurally complex. We name the three tasks

One Feature, Two Features, and Three Features, respectively.

Manipulated Variables. We manipulated the learning method with 2 levels: FERL and

ME-IRL. While in Sec. 3.6 ME-IRL had access to the known features, this time the reward

network is a function mapping directly from the 27D Euclidean input space only. For

practical considerations and implementation details of the offline version of FERL we

used, see Sec. 3.9.3.3.

For a fair comparison, we once again took great care in how we collected the demonstra-

tions ME-IRL learns from. Just like before, we chose diverse start and goal configurations,

and focused some of the demonstrations on each individual feature, and, when it applies,

on each combination of features (see Sec. 3.9.2.2). Importantly, while ME-IRL uses a set of

near-optimal demonstrations 𝒟∗, FERL requires both demonstrations and feature traces

𝜏. To level the amount of data each method has access to, we distributed the demonstra-

tions and traces FERL has access to such that ME-IRL has more data points. The average

number of states per demonstration/trace were 64 and 31, respectively, so if we keep

the number of ME-IRL demonstrations and FERL traces the same, FERL has a non-zero

budget of demonstrations to use for cases with more than one demonstration (𝑁 > 1).
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Figure 3.12: Visual comparison of the ground truth, offline FERL, and ME-IRL rewards for One Feature (top),

Two Features (middle) and Three Features (bottom).

Dependent Measures. We use the same objective metrics as Reward Accuracy, Behavior
Accuracy, and Test Probability in Sec. 3.6.1. For Reward Accuracy, we vary the number 𝑁

of traces / demonstrations each learner gets but skip 𝑁 = 1 because FERL would have

an unfair advantage in the amount of data given. We give ME-IRL up to 10, 20, and 30

demonstrations for the three tasks, respectively. Meanwhile, we give FERL up to 10 traces

for each feature, and 1, 2, and 3 demonstrations for each task, respectively. Overall, FERL

would use up to 10 traces and one demonstration, up to 20 traces and 2 demonstrations,

and up to 30 traces and 3 demonstrations, while ME-IRL would be given 10, 20, and 30

demonstrations for each task, respectively. For Behavior Accuracy and Test Probability, we

train FERL with 10 traces per feature and 1, 2, or 3 demonstrations, and ME-IRL with 10,

20, and 30 demonstrations, respectively. Just like in Sec. 3.6.1, for Behavior Accuracy we

produce optimal trajectories for 100 randomly selected start-goal pairs under the learned

rewards and evaluate them under the GT reward. Meanwhile, for Test Probability, we

generate 100 optimal trajectories using the GT reward, then evaluate their likelihood

under the learned models.



CHAPTER 3. ONE-BY-ONE REPRESENTATION LEARNING 50

2 3 4 5 6 7 8 9 10
Number of Traces/Demonstrations

0.00

0.02

0.04

0.06

0.08

0.10

M
SE

to
G

T
R

ew
ar

d

One Feature
FERL
MEIRL

4 6 8 10 12 14 16 18 20
Number of Traces/Demonstrations

0.00

0.02

0.04

0.06

0.08

0.10

M
SE

to
G

T
R

ew
ar

d

Two Features
FERL
MEIRL

6 9 12 15 18 21 24 27 30
Number of Traces/Demonstrations

0.00

0.02

0.04

0.06

0.08

0.10

M
SE

to
G

T
R

ew
ar

d

Three Features
FERL
MEIRL

Figure 3.13: MSE of offline FERL and ME-IRL to GT reward for One Feature (Left), Two Features (Middle), and

Three Features (Right). In most data regimes, FERL learns rewards that better generalize to the state space.

Hypothesis.
H9: Offline FERL learns rewards that better generalize to the state space than ME-IRL.

3.7.1.2 Qualitative Comparison. In Fig. 3.12, we show the learned FERL and ME-IRL

rewards as well as the GT for all three tasks evaluated at the test points. The figure

illustrates that by first learning each feature separately and then the reward that combines

them, FERL is able to learn a fine-grained reward structure closely resembling the GT.

For the easiest task, One Feature, ME-IRL does recover the GT appearance, but this is

unsurprising since the table feature is very simple. For the other more complex two tasks,

just like in the online case, ME-IRL learns some structure capturing where the laptop or

the human is, but not enough to result in a good trade-off between the features.

3.7.1.3 Quantitative Analysis. To compare Reward Accuracy, we show in Fig. 3.13 the

MSE mean and standard error across 10 seeds, with increasing training data. We visualize

results from all 3 tasks side by side, with FERL in orange and ME-IRL in gray. For

One Feature, as expected, ME-IRL does eventually learn a good reward with enough

data. However, for the other more complex tasks that combine multiple features, ME-IRL

underperforms when compared to our method. Overall, across the tasks, FERL is closer

to GT than ME-IRL no matter the amount of data, supporting H9. To test this, we ran

an ANOVA with learning method as the factor, and with the task and data amount as

covariates, and found a significant main effect (F(1, 535) = 148.8431, p < .0001).

For comparing Behavior Accuracy, Fig. 3.14 (left) illustrates the reward ratios to GT for

all three tasks. When the reward consists of a single very simple feature, ME-IRL performs

just as well as our method. However, when the reward structure more complexly combines

multiple features, ME-IRL does not produce as good trajectories under the GT reward as

FERL, supporting H8. We ran an ANOVA using the learning method as a factor and the

task as a covariate and did not find a significant main effect, probably due to the One
Feature results. To verify this theory, we re-ran the ANOVA using only the data from the

more complex Two Features and Three Features tasks, and did, in fact, find a significant main
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Figure 3.14: (Left) Induced trajectories’ reward ratio for the two methods compared to GT. While ME-IRL

generalizes for the single feature task, it struggles with the more complex multiple feature tasks. (Right)

Probability assigned by the two methods to a set of optimal trajectories under the Boltzmann assumption.

For the more complex multiple feature tasks, the trajectories are more likely under FERL than ME-IRL.

effect (F(1, 397) = 5.7489, p = .0097). Results with the Test Probability metric paint a similar

picture. Fig. 3.14 (right) shows that for the easy One Feature case, both methods perform

comparably, but when the reward is more complex (Two Features and Three Features), FERL

outperforms ME-IRL and assigns higher probability to the test trajectories.

3.7.1.4 Summary. The results in this section suggest that while ME-IRL is capable of

recovering very simple reward structures, it does not perform as well as using FERL

features for complex rewards. This observation applies when the features are taught by

experts, so we now test what happens if we instead use non-expert user features.

3.7.2 Non-expert Users
In Sec. 3.6.2, we saw that user-taught FERL features have enough structure to help the

robot recover the human’s preferences in online reward setting where the original feature

set is incomplete. However, there we only had one missing feature. In this section, we

test the more challenging scenario, where we learn a reward from scratch using the noisy

user features learned in simulation.

3.7.2.1 Experimental Design. For this experiment, we had a similar setup as in Sec. 3.6.2

– using the user-taught simulation features for learning the reward – only this time we

tested the offline instantiation of FERL. Given that now we combine multiple noisy features

together into a reward, we wanted to see how our divide-and-conquer approach fares

against the ME-IRL baseline.

Manipulated Variables. We manipulate the learning method, FERL or ME-IRL, just like

in Sec. 3.7.1. Like in Sec. 3.6.2, we use demonstrations collected from the expert on the
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physical robot for ME-IRL. For FERL, we use the user data from the simulation, and the

expert demonstrations that teach the robot how to combine the learned feature into a

reward. Note that this gives ME-IRL an advantage, since all its data is both generated by

an expert, and on the physical robot.

Dependent Measures. We use the same objective metric as Reward Accuracy in the expert

comparison in Sec. 3.7.1: the learned reward MSE to the GT reward on 𝒮Test.

Hypotheses.
H10: Offline FERL learns more generalizable rewards than ME-IRL even when using

features learned from data provided by non-experts in simulation.
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Figure 3.15: MSE to GT reward for the three tasks,

comparing ME-IRL from expert physical demonstra-

tions (gray) to offline FERL from expert (orange) and

non-expert (yellow) features learned in simulation

and combined via corrections.

3.7.2.2 Analysis. Fig. 3.15 illustrates our

findings for the reward comparison. We

also added the offline FERL reward using

expert-taught simulation features for refer-

ence, where we randomly subsampled sets

of 10 traces and trained 12 expert features

for each of the three features. This time, we

find that the user features are noisy enough

that, when combined into a reward, they

do not reliably provide an advantage over

ME-IRL. This could be attributed to the dif-

ficulty of teaching features in a simulator,

especially given that there is no easy way

to approximate distances and traces in 3D

space with a 2D interface are hard. We ver-

ified this result with an ANOVA with the

learning method as a factor and the task as

a covariate, and, as expected, we found no

significant main effect.

3.7.2.3 Summary. Previously, we have seen how structure can indeed help reward learn-

ing generalizability and sample efficiency; but we now see that the wrong – or very noisy –

structure obtained from traces from simulation may diminish the benefits that our divide-

and-conquer approach promises. However, we suggest taking this result with a grain of

salt, since ME-IRL had the advantage of all-expert, all-physical data, whereas our method

was limited to data collected in simulation from novice users. While not possible during

the pandemic, we are optimistic that with physical demonstrations the benefits would be

more prominent.
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3.8 Discussion
Learning reward functions is a popular way to help robots generate behaviors that

adapt to new situations or human preferences. In this work, we propose that robots can

learn more generalizable rewards by using a divide-and-conquer approach, focusing on

learning features separately from learning how to combine them. We introduced feature

traces as a novel type of human input that allows for intuitive teaching of non-linear

features from high-dimensional state spaces. We then presented two instantiations of

our FERL algorithm: one that enables expanding the robot’s feature set in online reward

learning situations, and one that lets the user sequentially teach every feature and then

combine them into a reward. In extensive experiments with a real robot arm and a user

study in simulation, we showed that online FERL outperforms deep reward learning from

demonstrations (ME-IRL) in data-efficiency and generalization. Offline FERL similarly

beats ME-IRL when the features used are of high enough quality, but the results are less

conclusive when using very noisy features.

Implications for Online Reward Learning. Because they have to perform updates in real

time from very little input, online reward learning methods represent the reward as a

linear function of a set of hand-engineered features. Exhaustively choosing such a set a

priori puts too much burden on system designers, and an incomplete set of features can

lead to learning the wrong reward. Prior work enabled robots to at least detect that its

feature space is insufficient to explain the human’s input [43], but then the robot’s only

option was to either not update the reward or completely stop task execution. Our online

FERL approach provides an alternative that allows people to teach features when the robot

detects it is missing something, and then update the reward using the new feature set.

Although we presented experiments where the robot learns rewards from corrections, our

framework can conceivably be adapted to any online reward learning method, provided

there is a way to detect the feature set is insufficient. Recent work on confidence estimation

from human demonstrations [38] and teleoperation [313] offers encouraging pathways to

adapting FERL to other online human-robot collaborative settings.

Implications for Learning Complex Rewards from Demonstrations. Reward learning

from raw state space with expressive function approximators is considered difficult be-

cause there exists a large set of functions 𝑟�(𝑠) that could explain the human input. For

example, in the case of learning from demonstrations, many functions 𝑟�(𝑠) induce policies

that match the demonstrations’ state expectation. The higher dimensional the state 𝑠, the

more human input is needed to disambiguate between those functions sufficiently to find

a reward 𝑟� that accurately captures human preferences. Without that, the learned reward

is unlikely to generalize to states not seen during training and might simply replicate the

demonstrations’ state expectations. We presented evidence that offline FERL may provide

an alternative to better disambiguate the reward and improve generalization.

The reason our divide-and-conquer approach can help relative to relying on demon-

strations for everything is that demonstrations aggregate a lot of information. First, by
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learning features, we can isolate learning what matters from learning how to trade off what

matters into a single value (the features vs. their combination) – in contrast, demonstra-

tions have to teach the robot about both at once. Second, feature traces give information

about states that are not on optimal trajectories, be it states with high feature values that

are undesirable, or states with low feature values where other, more important features

have high values. Third, feature traces are also structured by the monotonicity assump-

tion: they tell us relative feature values of the states along a trace, whereas demonstrations

only tell us about the aggregate reward across a trajectory. Thus, by focusing on learning

features first before combining them into a reward, the robot can incorporate all three

benefits and ultimately improve reward learning from demonstrations.

Limitations and Future Work. Our work is merely a step towards understanding how

explicitly focusing on learning features can impact reward learning generalization and

sample complexity. While FERL enables robots to learn features and induce structure in

reward learning, there are several limitations that may affect its usability.

Our user study provides evidence that non-expert users can, in fact, use FERL to

teach good features. However, due to the current pandemic, we conducted the study in

a simulated environment instead of in person with the real robot, and most of our users

had technical background. It is unclear how people without technical background would

perform, and especially how kinesthetically providing feature traces (instead of clicking

and dragging in a simulator) would affect their perception of the protocol’s usability.

Further, we only tested whether users could teach features we tell them about, so we still

need to test whether users can teach features they implicitly know about (as would happen

when intervening to correct the robot or designing a reward from scratch).

Even if people know the feature they want to teach, it might be so abstract (e.g. comfort)

that they would not know how to teach it. Moreover, with the current feature learning

protocol, they might find it cumbersome to teach discontinuous features like constraints.

We could ease the human supervision burden by developing an active learning approach

where the robot autonomously picks starting states most likely to result in informative

feature traces. For instance, the robot could fit an ensemble of functions from traces online,

and query for new traces from states where the ensemble disagrees [238]. But for such

complex features, it may be more effective to investigate combining feature traces with

other types of structured human input.

The quality of the learned rewards depends directly on the quality of the learned

features. When the human provides feature traces that lead to good features, many of

our experiments demonstrate that they induce structure in the reward learning procedure

that helps generalization and sample complexity. However, if the robot learns features

that are too noisy or simply incorrect, that (wrong) structure may impair performance.

We saw an example of this when we tried to utilize the user study features for reward

learning. In online FERL where a single feature was missing, the structure captured by the

(noisy) non-expert features was still helpful in learning a better reward than the baseline.

However, when trying to combine multiple noisy features in offline FERL, reward learning
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did not see a benefit. Future work must investigate ways in which the robot can determine

whether to accept or reject the newly learned feature. One idea is to use our current

framework’s confidence estimation capability in Sec. 3.4.2.2 to determine whether the

learned feature set explains the human’s reward input. Another idea is to visualize either

the feature function or examples of behaviors induced by it, and let the person decide

whether the learned feature is acceptable.

While we show that FERL works reliably in 27D, more work is necessary to extend

it to higher dimensional state spaces, like images. In our discussion in Sec. 3.9.2.3, we

show how spurious correlations in large input spaces may affect the quality of the learned

features in low data regimes. To counteract that, we could ask the person for more data, but

after a certain point this becomes too burdensome on the user. Alternatively, approaches

that encode these spaces to lower dimensional representations or techniques from causal

learning, such as Invariant Risk Minimization [19], could help tackle these challenges.

3.9 Additional Details and Comparisons

3.9.1 Method Details
3.9.1.1 Incorporating Relative Values in Training. Concretely, given start state 𝑠0, a

relative value 𝑣0 acts as a modifier for what 𝜙𝜓(𝑠0) should be relative to 𝜙𝜓’s minimum

value. If we consider the maximum feature value to be 𝜙𝑚𝑎𝑥𝜓 and the minimum one 𝜙𝑚𝑖𝑛𝜓 ,

we can define the feature range 𝜙
𝑟𝑎𝑛𝑔𝑒

𝜓 = 𝜙𝑚𝑎𝑥𝜓 − 𝜙𝑚𝑖𝑛𝜓 . Then, 𝑣0 shifts the desired feature

value 𝜙𝜓(𝑠0) in proportion to this range. When comparing 𝜙𝜓(𝑠0) to the maximum value

𝜙𝑚𝑎𝑥𝜓 , their difference should be 𝜙𝑚𝑎𝑥𝜓 − 𝜙𝜓(𝑠0) = (1− 𝑣0) ∗ 𝜙𝑟𝑎𝑛𝑔𝑒𝜓 . For example, if 𝑣0 = 0.3,

meaning the trace starts somewhere with a feature value 30% higher than the minimum,

their difference is 70% of the feature range. If 𝑣0 is the default 1, their difference becomes

0, meaning 𝜙𝜓(𝑠0) is the maximum.

Similarly, a relative value 𝑣𝑛 would also shift the feature value of an end state 𝑠𝑛 in

proportion to 𝜙
𝑟𝑎𝑛𝑔𝑒

𝜓 . This time, when comparing 𝜙𝜓(𝑠𝑛) to the minimum value 𝜙𝑚𝑖𝑛𝜓 , their

difference will be 𝜙𝜓(𝑠𝑛) − 𝜙𝑚𝑖𝑛𝜓 = 𝑣𝑛 ∗ 𝜙𝑟𝑎𝑛𝑔𝑒𝜓 . For example, if 𝑣𝑛 = 0.3, meaning the trace

ends somewhere with a feature value 30% higher than the minimum, their difference is

30% of the feature range. If 𝑣𝑛 is the default 0, their difference becomes 0, meaning 𝜙𝜓(𝑠𝑛)
is the minimum.

To incorporate the relative values 𝑣0 and 𝑣𝑛 into the training procedure, we have to

use them to modify the feature values that the predictor in (3.3) is applied to. Given start

states 𝑠0 and 𝑠′
0
, instead of comparing 𝜙𝜓(𝑠0) to 𝜙𝜓(𝑠′

0
) directly, we compare the altered

feature values 𝜙𝜓(𝑠0)′ = 𝜙𝜓(𝑠0) + (1 − 𝑣0) ∗ 𝜙𝑟𝑎𝑛𝑔𝑒𝜓 and 𝜙𝜓(𝑠′
0
)′ = 𝜙𝜓(𝑠′

0
) + (1 − 𝑣0) ∗ 𝜙𝑟𝑎𝑛𝑔𝑒𝜓 .

As such, the training loss uses 𝑃(𝜙𝜓(𝑠0)′ > 𝜙𝜓(𝑠′
0
)′) as a predictor. Similarly, given end

states 𝑠𝑛 and 𝑠′𝑛 , instead of comparing 𝜙𝜓(𝑠𝑛) to 𝜙𝜓(𝑠′𝑛) directly, we compare the altered
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Figure 3.16: (Left) Feature traces for coffee. We show the 𝑥𝑦𝑧 values of the 𝑥-axis base vector of the EE

orientation. The traces start with the EE pointing downwards and move it upwards. (Middle) Feature traces

for proxemics with the human at 𝑥𝑦 = [−0.2,−0.5], with GT feature values projected on the 𝑥𝑦-plane. Some

traces are longer than others, to signal that the human dislikes the EE being in front of them more than to

the sides. (Right) Feature traces for between objects, with GT feature values projected on the 𝑥𝑦-plane. Notice

a mix of traces teaching about the two objects and about the space between them.

feature values 𝜙𝜓(𝑠𝑛)′ = 𝜙𝜓(𝑠𝑛) − 𝑣𝑛 ∗ 𝜙𝑟𝑎𝑛𝑔𝑒𝜓 and 𝜙𝜓(𝑠′𝑛)′ = 𝜙𝜓(𝑠′𝑛) − 𝑣𝑛 ∗ 𝜙
𝑟𝑎𝑛𝑔𝑒

𝜓 . As such,

the training loss uses 𝑃(𝜙𝜓(𝑠𝑛)′ > 𝜙𝜓(𝑠′𝑛)′) as a predictor.

3.9.2 Experimental Details
3.9.2.1 Protocols for Feature Trace Collection. In this section, we present our protocol

for collecting feature traces for the six features discussed in Sec. 3.5.1. As we will see, the

traces collected from the human only noisily satisfy the assumptions in Sec. 3.3.2. Never-

theless, as we showed in Sec. 3.5.1, FERL is able to learn high quality feature functions.

For table, the person teaches that being close to the table, anywhere on the 𝑥𝑦 plane,

is desirable, whereas being far away in height is undesirable. As such, in Fig. 3.2 on the

left traces traverse the space from up at a height, until reaching the table. A few different

starting configurations are helpful, not necessarily to cover the whole state space, but

rather to have signal in the data: having the same trace 10 times would not be different

from having it once.

For laptop, as described in the text and shown in Fig. 3.2 on the right, the person starts

in the middle of the laptop, and moves away a distance equal to the bump radius desired.

Having traces from a few different directions and heights helps learn a more distinct

feature. For test laptop location, the laptop’s location at test time is not seen during training.

Thus, the training traces should happen with various laptop positions, also starting in the

middle and moving away as much distance as desired.

When teaching the robot to keep the cup upright (coffee), the person starts their traces by

placing the robot in a position where the cup is upside-down, then moving the arm or ro-

tating the EE such that it points upright. Doing this for a few different start configurations
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Figure 3.17: A few representative demonstrations collected for Laptop Missing (left), Table Missing (middle),

and Proxemics Missing (right). The colors signify the true reward values in each task, where yellow is low

and blue is high.

helps. Fig. 3.16 (left) shows example traces colored with the true feature values.

When learning proxemics, the goal is to keep the EE away from the human, more so

when moving in front of their face, and less so when moving on their side. As such, when

teaching this feature, the person places the robot right in front of the human, then moves

it away until hitting the contour of some desired imaginary ellipsis: moving further in

front of the human, and not as far to the sides, in a few directions. Fig. 3.16 (middle)

shows example traces colored with the GT feature values.

Lastly, for between objects there are a few types of traces, all shown in Fig. 3.16 (right).

First, to teach a high feature value on top of the objects, some traces need to start on top of

them and move away radially. Next, the person has a few options: 1) record a few traces

spanning the line between the objects, at different heights, and labeling the start and the

end the same; 2) starting anywhere on the imaginary line between the objects and moving

perpendicularly away the desired distance, and labeling the start; 3) starting on top of one

of the objects, moving towards the other then turning away in the direction orthogonal to

the line between the objects.

3.9.2.2 Protocols for Demonstration Collection. In an effort to make the ME-IRL com-

parison fair, we paid careful attention to collecting informative demonstrations for both

reward learning settings in Sec. 3.6 and Sec. 3.7.

In the online setting, for each unknown feature, we recorded a mix of 20 demonstrations

about the unknown feature only (with a focus on learning about it), the known feature only

(to learn a reward weight on it), and both of them (to learn a reward weight combination

on them). We chose diverse start and goal configurations to trace the demonstrations.

For Laptop Missing, we had a mix of demonstrations that start close to the table and

focus on going around the laptop, ones that are far away enough from the laptop such

that only staying close to the table matters, and ones where both features are considered.

Fig. 3.17 (left) shows examples of such demonstrations: the two in the back start far away
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enough from the laptop but at a high height, and the two in the front start above the laptop

at different heights.

For Table Missing, we collected a similar set of trajectories, although we had more

demonstrations attempting to stay close to the table when the laptop was already far

away. Fig. 3.17 (middle) shows a few examples: the two in the back start far away from

the laptop and only focus on staying close to the table, a few more start at a high height

but need to avoid the laptop to reach the goal, and another two start above the laptop and

move away from it.

For Proxemics Missing, the most difficult one, some demonstrations had to avoid the

person slightly to their side, while others needed to avoid the person more aggressively

in the front. We also varied the height and start-goal locations, to ensure that we learned

about each feature separately, as well as together. Fig. 3.17 (right) shows a few of the

collected demonstrations.

In the offline setting, we took a similar approach to collecting demonstrations. For One
Feature, we recorded 20 demonstrations starting far from the table and moving close to it,

making sure to vary the start and end configurations. For Two Features, we collected 40

demonstrations (double the amount for two features) with a similar protocol to the Laptop
Missing and Table Missing tasks in the online setting. Lastly, for the Three Features task we

obtained 60 demonstrations, focusing on each feature separately, every pair of two, and

the full combination of three features.

3.9.2.3 Raw State Space Dimensionality. Throughout our experiments, we chose a 36D

input space made out of 27 Euclidean coordinates (𝑥𝑦𝑧 positions of all robot joints and

environment objects) and 9 entries in the EE’s rotation matrix. We now explain how

we chose this raw state space, how spurious correlations across different dimensions can

reduce feature learning quality, and how this adverse effect can be alleviated.

First, note that the robot’s 7 joint angles and the 𝑥𝑦𝑧 positions of the objects are the

most succinct representation of the state, because the positions and rotation matrices of

the joints can be determined from the angles via forward kinematics. With enough data,

the neural network should be able to implicitly learn forward kinematics and the feature

function on top of it. However, we found that applying forward kinematics a-priori and

giving the network access to the 𝑥𝑦𝑧 positions and rotation matrices for each joint improve

both data efficiency and feature quality significantly. In its most comprehensive setting,

thus, the raw state space can be 97D (7 angles, 21 𝑥𝑦𝑧 coordinates of the joints, 6 𝑥𝑦𝑧

coordinates of the objects, and 63 entries in rotation matrices of all joints).

Unfortunately, getting neural networks to generalize on such high dimensional input

spaces, especially with the little data that we have access to, is very difficult. Due to the

redundancy of the information in the 97D state space, the feature network 𝜙𝜓 frequently

picks up on spurious correlations in the input space, which decreases the generalization

performance of the learned feature. In principle, this issue could be resolved with more

diverse and numerous data. Since we want feature learning to be as effortless as possible
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Figure 3.18: Quantitative feature learning results for 36D without (above) and with (below) the subspace

selection heuristic. For each feature, we show the MSEnorm mean and standard error across 10 random seeds

with an increasing number of traces (orange) compared to random performance (gray).

for the human, we instead opted for the reduced 36D state space, focusing directly on the

𝑥𝑦𝑧 positions and the EE orientation.

Now, as noted in Sec. 3.5.1, the spurious correlations in the 36D space still made

it difficult to train on both the position and orientation subspaces. To better separate

redundant information, we devised a heuristic to automatically select the appropriate

subspace for a feature. For each subspace, the algorithm first trains a separate network for

10 epochs on half of the input traces and evaluates its generalization ability on the other

half using the FERL loss. The subspace model with the lower loss (better generalization)

is then used for 𝜙𝜓 and trained on all traces. We found this heuristic to work fairly well,

selecting the right subspace on average in about 85% of experiments.

To test how well it works in feature learning, we replicated the experiment in Fig. 3.4

on the 36D state space, both with and without the subspace selection heuristic. A first

obvious observation from this experiment is that performing feature learning on separate

subspaces (Fig. 3.4) results in lower MSEs for all features and 𝑁 number of traces than
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learning from all 36 raw states (Fig. 3.18). Without the heuristic (Fig. 3.18 above), we

notice that, while spurious correlations in the raw state space are not problematic for

some features (table, coffee, laptop, between objects), they can reduce the quality of the

learned feature significantly for proxemics and test laptop location. Adding our imperfect

heuristic (Fig. 3.18 below) solves this issue, but increases the variance on each error bar:

while our heuristic can improve learning when it successfully chooses the correct raw

state subspace, feature learning worsens when it chooses the wrong one.

In practice, when the subspace is not known, the robot could either use this heuristic or

it could ask the human which subspace is relevant for teaching the desired feature. While

this is a first step towards dealing with correlated input spaces, more work is needed

to find more reliable solutions. A better alternative to our heuristic could be found in

methods for causal learning, such as Invariant Risk Minimization [19]. We defer such

explorations to future work.

3.9.2.4 User Study Instructions. The familiarization phase of the user study is crucial

for making sure our participants are equipped to provide pedagogic feature traces. To

properly train our participants, we provided them with an instruction video and a user

manual prior to the study. The manual outlined the task they were going to be trained on

(human), how features are visualized in the study, how to utilize the simulator interface,

how to give feature traces in practice, and provided visual examples of traces that lead

to high quality and low quality teaching. The user video essentially followed the outline

of the manual, but we found that it provided a more practical illustration of the interface

and the teaching procedure. If interested in the instruction video, see https://youtu.
be/y36hhb9DI24.

During the study, the familiarization phase was 10 minutes long and it gave participants

the opportunity to try out the instructions from the manual in practice. First, a window

appears visualizing the feature on 10,000 states sampled in the reachable set of the robot.

We explain verbally what the feature represents and how that definition ties into the 3D

visualization. This step was crucial to ensure that all participants have a standardized

understanding on the features they teach. After closing this window, the simulator

interface opens up for training the feature. Because this was a familiarization phase,

we guided the participants through the steps, answered questions about the simulator

interface, and explained how to give diverse and pedagogic feature traces. Once the

algorithm trained the human feature, the 3D visualization of the learned feature along the

given traces appeared. We walked the participants through what went right and wrong

in their teaching, and explained how they could have improved their traces. We offered

them the opportunity to try again, but all users chose to begin the study. Once the second

phase of the study began, we offered participants no feedback on their teaching.

https://youtu.be/y36hhb9DI24
https://youtu.be/y36hhb9DI24
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3.9.3 Implementation Details
We report details of our training procedures and hyperparameters. We tried a few

different settings, and we present the settings that worked best for each method. The code

can be found at https://github.com/andreea7b/FERL.

3.9.3.1 Feature Learning Training Details. The feature function 𝜙𝜓(𝑠) is approximated

by a 2 layer, 64 hidden units neural network. We used a leaky ReLu non-linearity for all but

the output layer, for which we used the softplus non-linearity. We normalized the output

of 𝜙𝜓(𝑠) every epoch by keeping track of the maximum and minimum output logit over

the entire training data. Following the description in Sec. 3.3.2, the full dataset consists

of |𝒯 | = ∑𝑁
𝑖=1

((𝑛 𝑖+1)
2

)
+ 2

(𝑁
2

)
tuples, where the first part is tuples encoding monotonicity

and the second part is tuples encouraging indistinguishable feature values at the starts

and ends of traces. Since

∑𝑁
𝑖=1

((𝑛 𝑖+1)
2

)
>> 2

(𝑁
2

)
, in the dataset there are significantly fewer

tuples of the latter than the former type. This imbalance can lead to the training converging

to local optima where the start and end values of traces are significantly different across

traces. We addressed this by using data augmentation on the equivalence tuples (adding

each tuple 5 times) and weighing the loss 𝐿𝑒𝑞𝑢𝑖𝑣 by a factor of 10, i.e. we picked � = 10

in (3.6). We optimized our loss function using Adam for 𝐾 = 100 epochs with a learning

rate and weight decay of 0.001, and a batch-size of 32 over all tuples.

3.9.3.2 Online FERL Details. In the Online FERL implementation of Alg. 3, the robot

uses TrajOpt [255] to plan a path from the start to the goal configuration using the initial

parameters �, then starts tracking it. When a person applies a correction, the robot records

the instantaneous deviation at 100Hz frequency until the interaction concludes. Then, the

robot uses the first of these deviations to estimate the confidence �̂� in its ability to explain

the push. If the robot needs to learn a new feature, i.e. �̂� < 𝜖, it pauses trajectory execution.

We used 𝜖 = 0.1 but we did not perform extensive parameter tuning.

After potentially learning the feature using Alg. 1, the robot uses its recorded sequence

of instantaneous deviations to update � and replan �. If the robot did learn a new feature,

by now its configuration has changed as a result of collecting feature traces, so we place

it at the last recorded configuration before feature learning happened, then resume new

trajectory execution. More details on estimating �̂�, deforming the trajectory � by the

correction, and parameters for updating � can be found in Sec. 7.8.

3.9.3.3 Offline FERL Details. We optimize the loss in Alg. 2 with stochastic gradient

descent using a learning rate of 1.0 and 𝐾 = 50 iterations. At each iteration we have to

generate a set of near optimal trajectories 𝐷�
for the current reward. To do so, we take the

start and goal pairs of the demonstrations and use TrajOpt [255] to generate an optimal

trajectory for each start-goal pair, hence |𝐷∗ | = |𝐷� |. At every iteration, we estimate the

gradient using the full batch of |𝐷∗ | demonstration tuples.

https://github.com/andreea7b/FERL
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Figure 3.19: The between objects feature. (Left) Using a 27D highly correlated raw state space (𝑥𝑦𝑧 positions

of all robot joints and objects), the learned feature (Down) does not capture the fine-grained structure of the

ground truth (Up). (Right) When using only 9D (𝑥𝑦𝑧 positions of the EE and objects), the quality of the

learned feature improves.

3.9.3.4 ME-IRL Training Details. We approximate the reward 𝑟𝜔(𝑠) by a 2 layer, 128

hidden units neural network, with ReLu non-linearities. In the online reward learning

experiments in Sec. 3.6.1, we also add the known features to the output of this network

before linearly mapping them to 𝑟𝜔(𝑠) with a softplus non-linearity. While 𝐷∗ is given,

at each iteration we have to generate a set of near optimal trajectories 𝐷𝜔
for the current

reward 𝑟𝜔(𝑠). To do so, we take the start and goal pairs of the demonstrations and use

TrajOpt [255] to generate an optimal trajectory for each start-goal pair, hence |𝐷∗ | = |𝐷𝜔 |.
At each of the 50 iterations, we go through all start-goal pairs with one batch consisting

of the 𝐷∗ and 𝐷𝜔
trajectories of one randomly selected start-goal pair from which we

estimate the gradient as detailed in Sec. 3.6.1. We optimize the loss with Adam using a

learning rate and weight decay of 0.001.

3.9.4 Additional Results
3.9.4.1 Between Objects with 9D State Space. In Fig. 3.3 we saw that for between features,
while FERL learned the approximate location of the objects to be avoided, it could not

learn the more fine-grained structure of the ground truth feature. This could be an artefact

of the spurious correlations in the high dimensional state space. To analyze this result, we

trained a network with only the dimensions necessary for learning this feature: the 𝑥𝑦𝑧

positions of the EE and of the two objects. The result in Fig. 3.19 illustrates that, in fact, our
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Figure 3.20: MSE of shallow ME-IRL with 1, 2, 3, 5, and 10 random features (gray) and deep ME-IRL (blue)

to GT reward for One Feature (Left), Two Features (Middle), and Three Features (Right). The deep ME-IRL

variant outperforms the shallow one.

method is capable of capturing the fine-grained structure of the ground truth; however,

more dimensions in the state space induce more spurious correlations that decrease the

quality of the features learned.

3.9.4.2 Baseline Comparison. Throughout our reward learning experiments in Secs.

3.6 and 3.7, we compare FERL to a deep implementation of ME-IRL. Here, we investigate

using a shallow variant as a baseline instead, where the reward is modeled as a linear

combination of random features 𝜙𝑟𝑎𝑛𝑑. We model each random feature as frozen randomly

initialized neural networks with 2 layers and 256 units. This comparison should tell us

whether using a deep architecture for reward learning provides an advantage when

compared to learning rewards on top of random transformations of the input space.

For this experiment, we looked at three tasks where the GT reward is increasingly

complex in the number of features: One Feature, Two Features, and Three Features from

Sec. 3.7. We compare deep ME-IRL to a shallow implementation that has access to 1, 2, 3,

5, or 10 random features in the linear layer. We use as a metric the same Reward Accuracy
metric as in Secs. 3.6 and 3.7, which computes the MSE between the normalized learned

rewards and the GT.

Fig. 3.20 illustrates the differences between the 5 shallow variants (gray) and the deep

ME-IRL (blue). For One Feature, the easiest case where the reward relies only on the

table feature, we see that increasing the number of random features does improve the

performance, but never beyond that of deep ME-IRL. The same trend disappears in

the other, more complex, two cases. Overall, the deep variant consistently outperforms

shallow ME-IRL with any of the tested number of random features, so we chose deep

ME-IRL as the representative baseline in our main experiments.
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Chapter 4

Learning Perceptual Features

This chapter is based on the paper “Learning Perceptual Concepts by Bootstrapping from Human
Queries” [42], written in collaboration with Chris Paxton, Wei Yang, Balakumar Sundaralingam,
Yu-Wei Chao, Maya Cakmak, and Dieter Fox.

𝜙!

	𝜙"
𝜙! labels

Learn high-dimensional feature 𝜙"

Test-time planning with	𝜙"
	𝜙"

𝜙!

𝜙∗labels

Learn low-dimensional feature 𝜙!

𝜙∗

Privileged info

High-dim. data

can

Figure 4.1: (Left) We propose a new approach for learning individual features whereby the robot collects

labels from the human about the feature 𝜙∗ (e.g. near) and learns a low-dimensional feature 𝜙𝑙 on the

privileged information space (e.g. poses and bounding boxes) (top), then uses 𝜙𝑙 to label data necessary

for learning the high-dimensional feature 𝜙ℎ (bottom). (Right) At test time, the robot can directly use the

learned feature 𝜙ℎ to produce a plan for moving the mug to be near the can. Additional qualitative results

available at https://sites.google.com/nvidia.com/active-concept-learning.

In Chapter 3, we demonstrated how people can teach robots features of their repre-

sentations by using a novel type of representation-specific input – feature traces – whose

inherent structure can make training the feature function substantially more data efficient.

In this chapter, we don’t develop new types of feedback; instead, we turn our attention to

the training process itself and focus on improving efficiency there.

https://sites.google.com/nvidia.com/active-concept-learning
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The motivation in this section is similar to before: as robots are increasingly expected

to perform tasks in human environments, from helping with household chores to cleaning

up the office, we need to align their performance with the end user’s unique needs. This

means that the person should be able to teach their robot new concepts they care about

– features expressing object-centric properties of the environment. Just like in previous

chapters, a feature here maps the environment state to a value indicating how much the

object-centric property is expressed, and the robot can optimize it to perform the person’s

desired task. For example, in Fig. 4.1 the user wants the robot to tidy the tabletop by

moving the mug near the can. To accomplish this, the robot first learns the concept of

what it means for objects to be near each other, and then moves the mug closer to the can.

A learned feature must operate on an input space that the robot understands. In

Chapter 3, our experiments assumed that the environment state is fully observable and,

thus, the input space directly consists of the state (robot poses, object poses, etc.). This

assumption is convenient, but impractical: in the real world, robots rely on observations

from sensors (e.g. images or point clouds). Since these observations are often high-

dimensional, learning a perceptual feature that is robust across the input space is very

challenging. Classical methods simplify this problem by relying on a pre-processing step,

extracting geometric information like object poses and bounding boxes from the high-

dimensional sensor data [204, 275, 208]. The human can then teach a feature mapping

from this lower dimensional space, for instance by labeling when objects are near or far

for the near example in Fig. 4.1. By transforming the sensor input into a lower dimensional

space, the robot can learn the feature quickly even from limited human input.

Unfortunately, recovering accurate geometries from real-world sensor data is challeng-

ing: even modern pose estimators [295, 271, 83, 284] struggle when confronted with partial

occlusions or novel objects [154]. Instead, recent deep learning alternatives learn percep-

tual features directly from the sensor data, without any pre-processing [224, 303]. These

methods are usually trained in simulation, where a variety of objects can be manipulated in

diverse configurations, resulting in better generalization than classical approaches [154,

211, 303]. However, because of the high dimensionality of the input space, the robot

needs unreasonably many human-labeled examples, making a new feature impractical

and cumbersome for a human to teach.

We propose getting the best of both worlds: learn features from high-dimensional

sensor data with limited human labeling effort. We observe that, while the robot only has

access to the high-dimensional sensor inputs during task execution, at training time it has a

simulator containing privileged information akin to the geometries that classical approaches

tried to compute. In Fig. 4.1, this privileged space is the object poses and bounding boxes

– a much simpler representation than their high-dimensional point cloud equivalent. Our

idea is to learn a low-dimensional, geometric variant of the feature on the privileged

space, then treat it as a labeler and use it to automatically label high-dimensional data

in the simulator (Fig. 4.1). This lets us generate a large, diverse, and automatically labeled
dataset for training a high-dimensional, perceptual feature – or concept – which can be

directly applied to real-world settings without additional human input.
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Since these low-dimensional spaces result in faster training and are often semantically

meaningful, they allow for richer human interaction. We thus investigate three types of

human input for feature learning (demonstration, label, and feature queries), and propose

an active learning strategy for informative queries. We then showcase our framework

called Perceptual Concept Bootstrapping (PCB) in experiments both in simulation and on

a real Franka Panda robot.

4.1 Prior Work
Feature Learning from Low-dimensional Geometries. Traditionally, features are hand-

engineered by the system designer prior to robot deployment [311, 2, 123]. Unfortunately,

by relying entirely on prior specification, the robot cannot adapt its task execution to an

end user’s needs. Recent works address this problem by allowing the robot to either infer

features from task demonstrations [68, 177] or learn them directly from the human [40, 41]

(as we did in Chapter 3). While these methods enable the robot to learn after deployment,

they have been primarily demonstrated on low-dimensional spaces.

We can bypass the high-dimensional learning problem by extracting low-dimensional

geometric information and learning a feature function on top of it [204, 275, 208]. However,

recovering accurate geometries from real-world sensor data is challenging: even modern

pose estimators [295, 271, 83, 284] struggle with the partial occlusions or novel objects that

appear in open-world environments [154]. As such, we seek to learn features that operate

directly on high-dimensional input, without any intermediary pre-processing.

Learning from High-dimensional Sensor Data. Deep learning handles high-dimensional

data by using a function approximator to learn low-dimensional embeddings, hoping to

capture salient aspects of the environment. Deep inverse reinforcement learning (IRL) and

imitation learning approaches, in particular, use demonstrations to automatically extract

behavior-relevant representations [96, 291, 259]. Unfortunately, to work reliably on high-

dimensional inputs and generalize outside of the training distribution, these methods

require a large amount of data from the human [102, 241].

Recent work in the auto-encoder community suggests that we can improve data ef-

ficiency by learning a disentangled latent space from weakly labeled examples of many

features [140]. However, this approach still requires the user to label tens of thousands

of examples for training. Moreover, while these methods are aligned with our goals of

capturing important aspects of robotic tasks, they are complementary in that they focus

on learning latent embeddings of the high-dimensional data, not representations made

out of individual, meaningful perceptual features.

Feature Learning from High-dimensional Sensor Data. Instead of learning a univer-

sal representation, other work learns specific features directly from high-dimensional

data [224, 303]. In particular, these methods learn from segmented object point clouds,

which are easy to obtain and have successfully been used in other perception pipelines [112].

The disadvantage of this approach is that it still requires large amounts of data (thousands
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of labeled examples), making it unsuitable for learning the feature from a human. We

look at how we can teach similar perceptual features from high-dimensional point cloud

data, but do so quickly and efficiently with the help of the privileged space.

4.2 Approach: Perceptual Feature Bootstrapping
Our goal is to enable humans to teach robots perceptual features operating in high-

dimensional input spaces, like segmented object point clouds. We assume that the robot

may query the human for labeled examples of the desired feature, but we wish to learn the

feature with as few human labels as possible. As training high-dimensional features is data

intensive [224, 303], we propose to learn the feature first in a simpler, lower dimensional

input space, then use it to label as much high-dimensional data as needed to train the

feature in the target high-dimensional sensor space.

4.2.1 Preliminaries

Formally, a feature is a function mapping from input state to a scalar, 𝜙(𝑠) : R𝑑 → [0, 1],
indicating how much feature 𝜙 is expressed at 𝑑-dimensional state 𝑠 ∈ R𝑑. In our setting,

we assume the human teacher already knows the ground truth feature 𝜙∗ and can answer

queries about it.

At training, the robot has a simulator that gives it access to the entire state 𝑠, but at test

time it receives high-dimensional observations 𝑜ℎ ∈ Rℎ given by a transformation of the

state ℱ (𝑠) : R𝑑 → Rℎ . In the example in Fig. 4.1, 𝑠 captures the objects’ pose, mesh, color,

etc, whereas 𝑜ℎ is only the segmented point cloud of the scene from a fixed camera view.

The robot seeks to learn a high-dimensional feature mapping from these observations,

𝜙ℎ(𝑜ℎ) : Rℎ → [0, 1], so that it can use it in desired manipulation tasks later on.

To do so, we assume the robot can ask the person for state-label examples (𝑠, 𝜙∗(𝑠)),
forming a data set {𝑠, 𝑜ℎ , 𝜙∗(𝑠)} ∈ 𝒟𝜙. Since the high-dimensional observation 𝑜ℎ directly

corresponds to state 𝑠, this data set has the crucial property that the same label 𝜙∗(𝑠)
applies to both 𝑠 and 𝑜ℎ :

𝜙∗(𝑠) = 𝜙ℎ(𝑜ℎ),∀𝑠, 𝑜ℎ = ℱ (𝑠) . (4.1)

From here, one natural idea to learn 𝜙ℎ is to treat it as a classification or regression problem

and directly perform supervised learning on (𝑜ℎ , 𝜙∗(𝑠)) pairs. Unfortunately, to learn a

meaningful decision boundary, this approach would require very large amounts of data

from the person, making it impractical to have a user teach a new feature.

Instead, we assume the robot can use privileged information from the simulator as a

low-dimensional observation 𝑜𝑙 ∈ R𝑙 given by a transformation 𝒢(𝑠) : R𝑑 → R𝑙 . We think

of this information as privileged because the robot has access to it during training but

not at task execution time. In Fig. 4.1, 𝑜𝑙 only needs the object poses and bounding boxes

to determine whether the objects are near. The set of collected human examples then
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includes the low-dimensional observation: {𝑠, 𝑜𝑙 , 𝑜ℎ , 𝜙∗(𝑠)} ∈ 𝒟𝜙, which allows the robot

to learn a low-dimensional variant of the feature, 𝜙𝑙(𝑜𝑙) : R𝑙 → [0, 1], by extending the

property in (4.1):

𝜙∗(𝑠) = 𝜙ℎ(𝑜ℎ) = 𝜙𝑙(𝑜𝑙),∀𝑠, 𝑜ℎ = ℱ (𝑠), 𝑜𝑙 = 𝒢(𝑠) . (4.2)

We hypothesize that learning the low-dimensional feature 𝜙𝑙 from privileged infor-

mation should require less human input than learning 𝜙ℎ directly from high-dimensional

data. Moreover, (4.2) allows the learned 𝜙𝑙 to act as a labeler, bypassing the need for

additional human input. We, thus, break down the feature learning problem into two

steps: leverage the human queries to learn a low-dimensional feature 𝜙𝑙 , then use it to

ultimately learn the original high-dimensional 𝜙ℎ .

4.2.2 Learning a Low-dimensional Feature
To learn 𝜙𝑙 the robot first needs to ask the human for 𝒟𝜙. To ensure the robot can

learn the feature with little data, we want a query collection strategy that balances being

informative and not placing too much burden on the human. We consider two types of

input that are easy to provide and commonly used in the human-robot interaction (HRI)

literature [57]: demonstration queries and label queries. Since users may struggle to label

continuous values, we simplify the labeling to consist of 0 (negative) or 1 (positive) for low

and high feature values. Note that despite the labels being discrete, they can still be used

to learn a model that predicts continuous values.

Demonstration queries, or demo queries, involve creating a new scenario and asking the

human to choose states 𝑠 that demonstrate the feature and label them according to 𝜙∗.
This method requires an interface that allows the person to directly manipulate the state

of the environment and label it, like a simulator with keyboard or click control. For

example, for the near feature in Fig. 4.1, the person could move the red object near the

green one and label the state 1.0, symbolizing a high feature value. Here, the robot can

only manipulate the constraints of the scenario (e.g. which objects are involved) and the

human has complete control over the selection of the rest of the state (e.g. object poses).

If the human is pedagogic, demonstration queries provide the robot with an infor-

mative data set of examples that should allow it to learn the low-dimensional feature

quickly. Unfortunately, this data collection method can be quite slow due to the fact that

the person has to spend time both deciding on an informative state and manipulating the

environment to reach it. This makes it challenging to use in data intensive regimes (like

when training 𝜙ℎ from the get-go) but ideal in the low-data ones we are interested in.

Label queries are a less time-consuming alternative where the robot synthesizes the full

query state 𝑠, and the person simply labels it as 0 or 1. For instance, in Fig. 4.1 the robot

picks both the objects and their poses. This type of query is much easier and faster for

the person to answer, but places the burden of informative state generation entirely on

the robot. Simply randomly sampling the state space might not be very informative for



CHAPTER 4. LEARNING PERCEPTUAL FEATURES 69

the desired feature. For example, for a feature like above, placing two objects at random

locations will rarely result in examples where one object is above the other. As such, we

need a way to select more useful queries.

We use active learning [238, 37], whereby the robot can proactively select query states

that it deems more informative. Concretely, we interleave asking for a batch of query states

with learning the feature 𝜙𝑡
𝑙

from the 𝑡 examples received so far. This way, the robot can

use the partially-learned 𝜙𝑡
𝑙
to inform the synthesis of a more useful next batch of queries.

For every query, the robot chooses among three query synthesis strategies: 1. random:

randomly generate a state 𝑠 ∈ R𝑑; 2. confusion: pick the state that maximizes confusion

by being at 𝜙𝑡
𝑙
(𝑠)’s decision boundary, i.e. 𝑠 = arg min𝑠(∥𝜙𝑡𝑙 (𝑠) − 0.5∥); 3. augment: select

a state that was previously labeled as a positive (or negative, whichever is rarer) and add

noise to it. A random query serves as a proxy for exploring novel areas of the state space.

In a simulator, this query can be generated by randomizing the parameters of the state

(e.g. object meshes, poses, etc). The confusion query is a proxy for disambiguating areas

of the state space where the current feature 𝜙𝑡
𝑙

cannot determine whether the state has a

positive or a negative feature value. The query state in this case is selected by optimizing

the feature value to be 0.5 using the cross-entropy method [78, 159]. The augment query is

useful for features where positives (or negatives) are rarer, like in the above example.

Active learning is possible when learning low-dimensional features because they have

much shorter training cycles than their high-dimensional variants. Another advantage of

low-dimensional spaces is that, while the transformation ℱ cannot be modified because

the robot is constrained to operate on 𝑜ℎ at test time, we have more flexibility over what 𝒢
and 𝑜𝑙 can be. We exploit this with a third type of human input called feature queries [57].

Feature queries typically involve asking the person whether an input space dimension is

relevant for the target feature. However, this query is only useful if the dimension itself

is meaningful to the human. We adapt feature queries and ask the person a few intuitive

questions about the feature such that the answer informs the choice of the transformation

𝒢. For example, a negative answer to the question “Does the size of the objects matter?”

signals that 𝑜𝑙 does not benefit from containing object bounding box information. These

queries lead to an appropriate 𝒢, which can further speed up the learning of 𝜙𝑙 .
Given a dataset of human labels𝒟𝜙, the robot can train a low-dimensional feature 𝜙𝑙 .

We treat feature learning as a classification problem, approximate 𝜙𝑙 by a neural network,

and train it on the (𝑜𝑙 , 𝜙∗(𝑠)) examples in𝒟𝜙 using a binary cross-entropy loss.

4.2.3 Learning a High-dimensional Feature
Learning the perceptual feature requires a large amount of labeled high-dimensional

data. Generating this data set is a two-step process: the robot needs to synthesize a large

and diverse set of states 𝑠, which it then has to acquire labels for. However, as opposed

to the low-dimensional case, this data set need not be directly labeled by the human: the

learned low-dimensional feature itself can act as a labeler.
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At training time the robot has a simulator, so we can randomly explore the state space

for the data synthesis step. With the property in (4.2), we can use the low-dimensional

feature 𝜙𝑙 to automatically label the states, generating the data set {𝑠, 𝑜𝑙 , 𝑜ℎ , 𝜙𝑙(𝑜𝑙)} ∈ 𝒟𝜙𝑙 .

To now learn the high-dimensional feature 𝜙ℎ , we approximate it by a neural network and

train it via classification on the (𝑜ℎ , 𝜙𝑙(𝑜𝑙)) examples in𝒟𝜙𝑙 using a cross-entropy loss.

4.2.4 Implementation Details
We used a multilayer perceptron (3 layers, 256 units) and a standard PointNet [289, 228]

to represent the low- and high-dimensional features, respectively. Our features involved

relationships between objects, so we represented the high-dimensional observation 𝑜ℎ
with the relevant objects’ segmented point clouds from the camera view, and the low-

dimensional one 𝑜𝑙 with object poses and bounding boxes.

Figure 4.2: We show the aligned and scaled ShapeNet

objects. We chose objects commonly found in manip-

ulation tasks.

For data generation, we modified the

objects in the ShapeNet data set [61] to be

aligned and scaled. We selected objects

commonly found in tabletop manipulation

tasks, like bowls, cereal boxes, cups, cans,

mugs, bottles, cutlery, hammers, candles,

teapots, fruit, etc. (Fig. 4.2). When syn-

thesizing states 𝑠 ∈ R𝑑, we spawned pairs

of two objects in the Isaac Gym simula-

tor [200] and manipulated their poses, as

well as the camera pose along the table

plane. This process resulted in a variety of

states with possibly occluded objects, from

many camera views. Since our method al-

lows us to generate as much simulated data

as desired, our hope is to generalize to real-

world conditions like other simulation-based methods do [224, 209, 294].

4.3 Experiments: Learning Perceptual Features
We now compare our label-efficient perceptual feature learning method PCB to a

baseline that learns directly from high-dimensional input. PCB relies on a human-trained

low-dimensional feature 𝜙𝑙 , for which we perform an extensive investigation in Sec. 4.4.

4.3.1 Experimental Design
Throughout our experiments, we synthesize queries by manipulating pairs of objects

in the simulator: a stationary anchor and a moving object, which is related to the anchor by
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our feature. We investigate 9 spatial features:

1. above: angle between the objects’ relative position and the world 𝑧-axis;

2. abovebb: intersection area of the two objects’ bounding box projections on the world

𝑥𝑦-plane;

3. near: inverse distance between the objects;

4. upright: angle between the moving object’s 𝑧-axis and the world’s;

5. alignedhoriz: angle between the objects’ 𝑥-axes;

6. alignedvert: angle between the objects’ 𝑧-axes;

7. forward: angle between the anchor’s 𝑥-axis and the objects’ relative position;

8. front: angle between the anchor’s 𝑥-axis and the objects’ relative position;

9. top: angle between the anchor’s 𝑧-axis and the objects’ relative position.

For evaluation purposes, our ground truth feature implementations cut off the angles

in above, upright, alignedhoriz, alignedvert, front, and top after 45
◦

and the distance in near after

0.3m, then normalize all feature values between 0 and 1. Fig. 4.3 showcases qualitative

visualizations of the features.

Notably, some of the features involve object affordances (upright, alignedhoriz, alignedvert,
forward, front, top). For those, only a subset of the objects are applicable (e.g. a mug

has a front, but a box doesn’t), so we selected object subsets for each feature accordingly.

The features above, abovebb, and near used all objects because they don’t involve object

affordances. For upright and top, we used objects with clear upright orientations: bottles,

bowls, candles, mugs, cups, cans, milk cartons, pans, plates, and teapots. For alignedhoriz we

used objects that can be horizontally aligned: calculators, can openers, cutlery, hammers,

pans, and scissors. For alignedvert we used objects that can be vertically aligned: bottles,

boxes, candles, cups, milk cartons, and cans. For forward and front we used large objects

with clear fronts: hammers, pans, and teapots. By default, the privileged space consists

of the object poses, relative pose, positional difference, and bounding boxes.

4.3.2 PCB Results for Label Queries
We first show results with label queries. We compare PCB to a baseline that learns

𝜙ℎ directly from the human queries, without an intermediate low-dimensional feature.

For PCB, we chose to use the low-dimensional features 𝜙𝑙 trained using feature and label

queries collected with the confrand and augment active learning strategies together. We

show in Sec. 4.4 that this was the best performing 𝜙𝑙 with the overall cheapest type of

human input. We use the features 𝜙𝑙 to label a large set of randomly generated 80,000
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Figure 4.3: Visual representation of the 9 perceptual features learned with our method (icon in the top left

of each box). The anchor (green) is joined by examples of the moving object represented as either partial

object point clouds (middle: upright, alignedhoriz, alignedvert) or object point cloud centers (top: above, abovebb,
near; bottom: forward, front, top). We color predicted positive examples in red, and negative ones in black.

For features defined with respect to the world coordinate frame, we additionally plot the frame.

training states, resulting in 𝒟𝜙𝑙 , then train 𝜙ℎ using 𝒟𝜙𝑙 . Since the baseline is a PointNet

that takes a long time to train, it is not suitable for active learning, so we train it with label

queries generated with the random strategy. For additional comparison, we also train the

baseline with the label queries collected by PCB with the confrand and augment strategies.

We train 𝜙ℎ with each method and a varying number of queries, and report two

metrics: 1) Classification Accuracy: how well the features can predict labels for a test set

of states, and 2) Optimization Accuracy: how well the states induced by optimizing these

features fare under the true 𝜙∗. For Classification Accuracy, we use 𝜙∗ to generate a test

set 𝒟𝑡𝑒𝑠𝑡 of 20,000 state-label pairs such that they have an equal number of positives and

negatives. This way, we probe whether the learned features perform well on both labels

and don’t bias to one. We measure 𝜙ℎ’s accuracy as the percentage of datapoints in𝒟𝑡𝑒𝑠𝑡

predicted correctly. For Optimization Accuracy, we sample 1,000 states 𝒮𝑜𝑝𝑡 with a feature
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Figure 4.4: Classification accuracy on a held-out test data set, for models trained on a varying number of

queries. PCB features (orange) correctly classify at least 80% of the data after the first 500 queries in most

cases. The baseline with random queries (gray) struggles to perform better than random; when trained with

PCB’s actively collected data (blue), the baseline performs better for the simple features but fails on the last

six features that involve affordances.

value of 0, and use the learned features to optimize them into a new set of states 𝒮′𝑜𝑝𝑡 .
We do so by finding a pose transform on the moving object that maximizes the feature

value, and use the cross-entropy method [78]. Importantly, since this is happening at test

time, we use the high-dimensional observation of the state 𝑜ℎ to perform the optimization.

We evaluate 𝒮′𝑜𝑝𝑡 under 𝜙∗ and report the percentage of states that are labeled as 1. We

present results for an arbitrarily chosen fixed seed.

4.3.2.1 Qualitative Results. Fig. 4.3 showcases the 9 features trained using PCB. For

every feature, we show the anchor object in green (if applicable), together with positive

and negative examples of the feature. For above and abovebb the positive examples above

the anchor are sparse, which could make learning challenging from a data diversity

perspective: if the robot doesn’t query for enough positive examples, it won’t be able to

learn a meaningful decision boundary for these features. In contrast, near has a balanced

mix of positives and negatives, making it a simpler feature to learn. The remaining six

features all involve affordances which are dependent on the object shapes (e.g. a bowl is

upright if its opening points upwards, an object is atop the kettle is it’s placed above the

lid, etc). Thus, to learn such features describing functionality across a plurality of objects

and camera views, a method that learns directly from point clouds would need large

amounts of data to accurately capture how the features relate to all objects’ morphologies.
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Figure 4.5: Accuracy when optimizing object poses based on the learned features (Optimization Accuracy).

PCB (orange) produces satisfactory poses for most features, as opposed to the baseline (gray and blue)

which sometimes cannot even surpass 10% performance.

The figure shows that PCB handles these challenges gracefully.

4.3.2.2 Quantitative Analysis. Fig. 4.4 shows Classification Accuracy results. Both vari-

ants of the baseline perform well for above, abovebb, and near, eventually reaching 70%

performance. We think this happens because these features only require absolute po-

sition information, which is easy to infer from just the positions of the points clouds.

The baseline trained on active data from PCB performs closer to PCB, suggesting that

in some cases we may use the privileged information and low-dimensional features to

guide the labeling process of high-dimensional data and be more sample efficient, with-

out generating additional high-dimensional data. However, this does not always hold:

the other six features involve affordances in addition to positions, which is much more

challenging to capture with limited data. As a result, neither baseline version can achieve

performance better than random. In contrast, PCB, which is able to generate thousands of

high-dimensional training data points capturing different object point cloud morpholo-

gies, can successfully learn these kinds of features, correctly classifying at least 80% of

the test data after the first 500 queries in most cases. In Fig. 4.5, Optimization Accuracy
results tell a similar story. Our features can be optimized successfully with an accuracy

of over 50%, meaning that we would be able to find positions for objects to satisfy these

features [224]. Meanwhile, several baseline features have a success rate barely above 10%.
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Figure 4.6: Classification accuracy on a held-out test data set (Classification Accuracy), for models trained on

a varying number of queries. features trained using our PCB method (orange) correctly classify at least 80%

of the test data after the first 200 demo queries. Meanwhile, the baseline (gray) struggles to perform better

than random, especially on the last six features that involve affordances.

4.3.3 PCB Results for Demo Queries
We now expand on the results in Sec. 4.3.2 by showing the case where the human

provides the robot with demonstration queries. We compare PCB to a baseline that learns

𝜙ℎ directly from the queries. For PCB, we take the 𝜙𝑙 features we trained using both

demonstration and feature queries in Sec. 4.4.1, and use them to label a large set of 80,000

training states, resulting in𝒟𝜙𝑙 . Our method then trains 𝜙ℎ using𝒟𝜙𝑙 , while the baseline

trains the same architecture using the original queries we used to learn 𝜙𝑙 . Importantly,

both methods use well-balanced demonstration queries. We report results on the same

two metrics from Sec. 4.3.2, Classification Accuracy and Optimization Accuracy.

Fig. 4.6 shows Classification Accuracy results. The baseline actually performs well for

above, abovebb, and near, eventually reaching 80% performance. We think this happens

because for these features it is easy to infer the necessary privileged information just from

the positions of the point clouds. For example, for near, given the position of the two

object point cloud centers, learning a relationship between their distance and the feature

value should not require more than a few samples. The other features involve affordances

in addition to position information, which is much more challenging to capture. As a

result, the baseline can barely achieve performance better than random. In contrast, our

method, which is able to generate thousands of high-dimensional training data points, can

successfully learn these kinds of features, correctly classifying at least 80% of the test data
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Figure 4.7: Accuracy when optimizing object poses based on the learned features (Optimization Accuracy).

Our PCB method (orange) produces satisfactory poses for most features, as opposed to the baseline (gray)

which sometimes cannot even surpass 25% performance.

after the first 200 queries. Note that PCB with demo queries reaches this accuracy faster

than with the label queries from Sec. 4.3.2, but demo queries are more effortful to give

than label queries. This shows the trade-off between human effort and informativeness

we investigated in Sec. 4.4.

In Fig. 4.7, Optimization Accuracy results tell a similar story. Our features can be

optimized successfully with an accuracy of over 50%, meaning that we would be able

to find positions for objects to satisfy these features [224]. Meanwhile, several baseline

features have a success rate barely above 25%.

4.4 Analysis: Learning Proxy Features for Bootstrapping
We saw how, given a low-dimensional feature learned from human input, our method

can outperform the baseline learning directly from high-dimensional sensor data. We

now analyze what are the best strategies for learning low-dimensional proxy features from

human input. We seek to answer the following: Q1: Does querying via demonstration –

the most informative type of query but also the most expensive – benefit learning when

compared to random label queries? Q2: Does modifying the privileged information space

via feature queries speed up learning? Q3: Can we choose label queries – the cheaper

version of demo queries – that are more informative than random via active learning? Q4:
How does labeling noise affect the quality of the learned features?
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4.4.1 Benefits of Demonstration, Label, and Feature Queries
We first compare the three types of human queries across two dimensions: the query

selection strategy and the privileged input space. For the former, while the robot could

randomly synthesize states and ask the human to label them (i.e. random label queries),

for some features such a strategy would rarely find states with positive feature values. In

contrast, demonstration queries allow the human to select the states themselves, so they

can balance the amount of positives and negatives the data set contains to be informative.

As for the privileged input space, by default it contains many features that are correlated

with one another or irrelevant to some features altogether. These redundant dimensions

can make learning more difficult. Feature queries, with just a few simple and intuitive

questions, can eliminate some dimensions of the input space that are unnecessary.

To answer Q1 and Q2, we use a 2 × 2 factorial design. We manipulate the query
strategy (random label and demo), and the input space strategy (feature and no feature). For

both query strategies, we generate a dataset of labeled states as described in Sec. 4.2.4,

and simulate human input by sampling examples randomly for random label or in a way

that balances positives and negatives for demo. The practical difference is in the positives-

to-negatives ratio: while for random label that may be low for certain features (other than

near and forward the mean ratio is 0.08), for demo it is 1. For feature, we ask three intuitive

questions: F1. Does the feature concern a single object? F2. Does the feature care about

the objects’ absolute poses or their relative one? F3. Do the object sizes matter? F1

discards dimensions from the redundant object (useful for features like upright). F2 gets

rid of correlated features (absolute or relative pose). F3 drops bounding box information

if the feature doesn’t require it.

We compare the learned feature network 𝜙𝑙 to the ground truth 𝜙∗with a metric similar

to Classification Accuracy from Sec. 4.3: we measure 𝜙𝑙’s correct prediction rate for 𝒟𝑡𝑒𝑠𝑡 .

In Fig. 4.8, we show results with varying amounts of queries from 100 to 1000. Comparing

the solid lines, we immediately see that, for most features, demo queries perform much

better than random label queries. The only features where this trend doesn’t hold are

forward and near, which are features where random sampling can already easily find many

positives. This result stresses that having enough positives is crucial for learning good

features. We can also compare the effect of feature queries: whether we use demo or

label queries, feature queries considerably speed up learning, and this result holds across

all 9 features. Another observation is that the combination of demo and feature queries

plateaus in performance after about 200-300 queries, suggesting that, although each query

requires more human time, the teaching process altogether might be shorter.

4.4.2 Active Query Labeling
We saw that demonstration queries substantially benefit feature learning when com-

pared to random label queries. Unfortunately, demo queries are also very time-consuming
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Figure 4.8: Comparing different query and input space strategies. Demo queries outperform random label for

features with few positives, and feature queries improve learning speed.

to collect1, which only makes them feasible in low-data regimes. In this section, we tackle

Q3 and explore whether we can make label queries more informative by employing active

learning techniques, rather than simply randomly selecting them. This way, we can have

the benefits of both informative query generation and easy label collection.

We use a 3 × 2 factorial design where we vary the active strategy (random, confusion,

and confrand) and the positives selection (augment and no augment). As described in Sec. 4.2,

random generates a query state randomly and confusion picks a state at the decision bound-

ary of the currently learned feature. We also introduce confrand, which randomly selects

between the two strategies, to balance exploration of new areas and disambiguation of

the current feature. With an augment positives selection, for every query the method also

randomly chooses whether to exploit the space of positives it has found so far or just go

with the selected active strategy. We use a batch size of 100. We train 𝜙𝑙 with each strategy

and varying number of queries, and report accuracy on𝒟𝑡𝑒𝑠𝑡 .

In Fig. 4.9, we show results with increasing number of queries across the 6 total label

query selection strategies. Right off the bat, we see that active learning helps more the

harder it is to find positives. For features like forward or near, random label queries do

well because the positive-to-negative ratio is already high. For all other features, however,

active learning helps considerably, certain techniques more than others. A general trend is

that using augment queries outperforms not using them, especially in lower data regimes,

confirming our intuition that finding positives earlier on improves learning. Amongst

1
An expert labels 100 queries in 2 minutes, but needs 10 minutes for the same amount of demo queries.
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Figure 4.9: Comparison amongst active labeling and positives selection strategies. Confrand is the most

consistently beneficial strategy, and Augment boosts performance, especially in low data regimes.

random, confusion, and confrand, we don’t see a clear winner for all features, but confrand,

the combination of novelty and uncertainty exploration, seems to perform the best across.

It is encouraging to see that the performance can reach 80% accuracy after the first 500

queries, which would require a mere 10 minutes of human labeling time.

4.4.3 Noise Ablation in Human Query Labeling
So far we assumed the simulated human answered the queries perfectly. Since this

won’t necessarily be the case for novice users, we examine Q4, how labeling noise affects

our feature learning results. We do this by varying the noise level by 0%, 1%, 5%, 10%, 25%,

and 50%. A “noisy” query has its label flipped. 50% is equivalent to a random labeler.

We train 𝜙𝑙 by adding varying noise levels to the queries and report accuracy on 𝒟𝑡𝑒𝑠𝑡 .

Fig. 4.10 reveals that, unsurprisingly, the noisier the queries, the worse the learned feature

performs. While unrealistic noise levels like 25% or 50% severely worsen the quality of

the learned features, our method seems to be able to withstand lower noise levels.

4.5 Using Perceptual Features in Motion Planning Tasks
We test our learned PCB features 𝜙ℎ on a Franka Panda robot with a RGB-D camera in

motion planning tasks, as shown in Fig. 4.1. For each trial, a user selects the feature to test,
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Figure 4.10: Comparison for different labeling noise levels. Our method can withstand reasonable noise

levels around 1-10%

and the anchor and moving objects. Given the initial object placement, the robot’s goal is

to compute a new pose for the moving object that maximizes the feature value with respect

to the anchor, grasp the object, and move it to the optimized pose. We used unknown

object instance segmentation [294] to segment out the objects, 6-DOF GraspNet [209] to

generate grasps, and RRT-connect [166] for motion planning.

We optimize a pose such that when applied to the moving object’s (mean-centered)

point cloud it results in a scene point cloud that maximizes the feature value. We use the

Cross-Entropy Method (CEM) [78] with the cost function given by the feature value of

the moved scene point cloud. To encourage the model to find object poses at reasonable

orientations, we added a quaternion-angle cost to the CEM optimization, similarly to the

metric used in prior work [300]:

𝑑(𝑞1, 𝑞2) = � (1 − ⟨𝑞1, 𝑞2⟩)

where 𝑞1 is the pose being optimized, 𝑞2 = 𝐼 = (0, 0, 0, 1) is an identity quaternion, and

� = 0.001 is manually-tuned.

When optimized, our feature models found good poses, even on real-world data of

previously unseen objects. Since our method’s performance depends on that of the off-

the-shelf point-cloud segmentation model used, failures may occur when large portions

of the objects are occluded. Moreover, we focus on generating poses that maximize the

feature without any collision constraints, so the moved objects sometimes collide with the

anchor. In the future, we would fix this by incorporating these features into a planner
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such as that proposed in [224], so as to include the robot’s kinematic constraints directly

in the optimization process.

4.6 Discussion
In this chapter, we presented a method for learning relational features with as little

expert human interaction is possible. Our approach quickly learns a feature in a low-

dimensional space, which is used to generate a large data set for training in a high-

dimensional space such as the robot’s sensor space.

While our results demonstrate that our features can be used on a 7-DoF Franka Panda

arm operating with real sensor data, we still need to investigate how features taught by

real people would fare. Our noise analysis in Sec. 4.4.3 suggests that limited random

labeling noise might not affect the results too much, but this type of noise might not be a

good model for how people make labeling errors. It could also be interesting to study the

trade-off between learning accuracy and human burden for different types of queries.

Additionally, while we demonstrated our method in the context of object relations for

manipulation, we are excited about future extensions to other types of features: many-

object features (“the cup is surrounded by plates”), ordering (“sorted from largest to small-

est”), or even functional relationships (support / concealment). We could extend PCB to

any features where privileged information is available at training time. For instance, if the

privileged space contains poses between two frames, we could learn an acceptable speed

threshold for manipulating objects. A potential limitation is that the privileged space does

become more complex the more (possibly correlated or irrelevant) information we add to

it, so learning low-dimensional features may require more data. Our results give some

evidence that PCB would overall still require much less data than learning directly from

high dimensions, but more future work would be beneficial.

Finally, it could be worthwhile to study modifications to our training and query collec-

tion procedure to further improve the quality of the data. For example, we could combine

demo and label queries by “warm-starting” the model with demo queries and then ac-

tively asking for label queries. The robot could also display examples of the currently

learned feature to assist the person in deciding what new examples to give. Lastly, we

could consider “chaining” learned features (“mug upright and in front of the hammer”).
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Chapter 5

Mapping to a Known Feature Structure

This chapter is based on the paper “Teaching Robots to Span the Space of Functional Expressive
Motion” [266], written in collaboration with Arjun Sripathy, Zhongyu Li, Koushil Sreenath,
Daniel Brown, and Anca Dragan.

Great weather today!

Didn’t get the offer…

Figure 5.1: Cassie robot performing a task with trajectories it believes exhibit similar emotion VAD as the

human utterance. (Top) The person’s happier sentiment (orange) results in the robot’s fast upright motion.

(Bottom) The person’s sad sentiment (blue) results in slow and slouched motion.

In Chapters 3 and 4, we assumed that the human can identify the feature representation

they wish to teach, but that’s not always easy. Imagine you want the robot to understand

what comfort means or learn a representation for emotion. How would you even explicate



CHAPTER 5. MAPPING TO A KNOWN FEATURE STRUCTURE 83

such a feature representation? In this chapter, rather than thinking of and teaching each

feature one at a time, we observe that cognitive science grounds certain representations

in well-studied structures, for which we can then ask the human for labels.

Here we focus on one such structure that centers around representing emotion, and

we are specifically motivated by producing robot motion that is expressive. Robotics

research tends to focus on generating functional motion, in service of the robot’s task. But

imagine coming home from work exhausted and disappointed in being rejected from a

job application, and the robot continuing to carry on its tasks as if nothing changed. Or,

coming back with high energy after taking a walk in the sun, and the robot still putting

the dishes away in the same exact way it always does. Ideally, our robots should adapt

their behavior like in Fig. 5.1 in response to us, as well as in response to successes and

failures they encounter, their confidence levels when performing a task, etc.

While much work has focused on expressive or emotive robot gestures [270, 84, 252], the

ability to generate emotive functional motion that still achieves the robot’s task remains an

open problem. How can a robot walk to its goal and avoid obstacles while seeming happy or
confident in response to its user having had a great day? How could a manipulator place

a dish in the sink while empathizing with its user’s disappointment at work? Taking an

existing motion and adjusting its affective aspects, as researchers do with gestures [107,

270], would no longer meet the functional task specification. Instead, prior work [310]

has proposed to learn a cost function from user feedback for each desired emotion or style,

that can be then optimized along with the task specification. Although this addresses the

problem of generating motion in an emotive style even as the specifics of the task change,

it has the challenge that we have to think of every desired emotion in advance, and collect

data specific to it. Further, we still need a way to decide which style or emotion to use.

Here we focus on the fact that emotions are not independent—they are latently related

through the Valence-Arousal-Dominance (VAD) spectrum. Motivated by foundational

studies in social psychology, VAD identifies three continuous, interpretable features cap-

turing much of emotional variance [56, 246]. In other words, VAD constitutes a structured

representation for emotion. Rather than learning independent cost functions for each

emotion, our key idea is to learn the mapping from robot trajectories to an emotive VAD

latent representation—this way, all user feedback contributes to learning about all emo-

tions, and the robot can model new emotions that interpolate those seen during training.

This enables robots to perform tasks in ways expressive of any specific emotion, by op-

timizing for a trajectory with a projection onto the latent representation that is as close

as possible to the desired emotion’s VAD. They also may use natural language to infer

target emotion VAD: enabling stylistic response to emotive words, like “anger”, or even

sentences, like “Great weather today!” as in Fig. 5.1.

Our approach interactively collects data from a user to learn this emotive latent space:

it starts with an initial space, uses it to optimize emotive trajectories for a variety of task

specifications and target emotions, asks the user to label these trajectories, and retrains the

latent space to agree with the user labels. Users may choose to label directly with VAD,

or use language, which we can map to VAD by using pre-trained language models [85]
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finetuned to predict VAD scores.

In experiments with simulated human feedback for a Vacuum robot and the Cassie

biped, we demonstrate the efficiency of our method in learning emotive costs when com-

pared to approaches which model each emotion independently. We then show in a user

study with the Vacuum robot that real humans can teach personalized emotive repre-

sentations in only 30 minutes of labeling. We find that users are able to recognize target

emotions in robot motions generated with the model trained on their labels, even though

those target emotions were not explicitly queried for during training. In summary, we

propose a method for generating functional, stylistic robot motion by efficiently teaching

how trajectories map to the VAD representation, which can then define a cost function

encouraging target emotive style specified by natural language. Code and videos are

made available at arjunsripathy.github.io/robot_emotive_space.

Despite showing promise in enabling simulated robots to perform functional tasks

while expressing a wide range of emotions, much work remains ahead. Demonstrating

generalization to a broader range of tasks than locomotion, thinking critically about how

target VAD should be determined based on the emotion the user expresses, and moving

as much of the process as possible to the physical domain all pose interesting challenges

which we discuss further in Sec. 5.4

5.1 Prior Work
Getting robots and virtual avatars to exhibit realistic looking and human-recognizable

motions is a well-studied problem, from conveying intent in a task [90, 107, 272], to

communicating incapability [168, 273], to expressing emotions [158, 260, 310]. In this

section, we focus our attention on literature from the latter category, as our goal is enabling

robots to learn emotive styles for performing functional tasks.

Motion style research has its roots in the graphics community. Some work looks

at transferring motion capture style from one clip to another [277, 292, 139], but such

unconstrained transfer is not appropriate for robots that need to satisfy rigid physical

dynamics, or, even more challenging, to still be performing the desired underlying task.

Alternative approaches use human demonstrations to learn locomotion styles as cost

functions that the robot optimizes to respect task constraints [186, 172]. Unfortunately, due

to the correspondence problem in robotics [17], these methods cannot be applied outside

of locomotion robots, and acquiring demonstrations of stylized non-anthropomorphic

robots is challenging, especially when moving beyond gestures to functional motion.

In typical robotics motion style work, researchers design libraries of emotive motions

that the robot can use during task execution [184, 158, 260, 182]. To produce trajectories

feasible for complex physical systems, Li et. al. [182] employ a dynamically constrained

optimization that encourages the resulting motion to match stylized trajectories while

abiding by the robot’s dynamics. The motions in these methods are hand-crafted and,

therefore, specific to the system and task they are being designed for. To generalize to a

https://arjunsripathy.github.io/robot_emotive_space
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more diverse set of tasks, recent methods [310, 186, 172] try to learn a cost function that

when optimized produces the desired emotive motion. However, these methods require

collecting labels for each emotion one at a time, resulting in inefficient and costly learning

that fails to generalize to new emotions.

Instead of representing each emotive motion with an individual cost function, we can

learn a more generalizable representation. Suguitan et. al. [270] learned a latent emotive

embedding along the VA spectrum [56, 246] capturing a whole space of emotions. While

their approach enabled the robot to exhibit simple emotive gestures, like a slow lowering

of the head for sad, we are interested in integrating emotive motion during the robot’s

task execution. In this work, we take inspiration to similarly learn an embedding that

maps emotive trajectories like the ones in Fig. 5.1 to a latent VAD space but extend their

approach to functional task behaviors.

With this embedding, we have a representation that is both generalizable to new emo-

tions and amenable to alternative forms of human feedback, such as natural language.

Recently large, pre-trained language models such as BERT [85] have made transfer learn-

ing for downstream natural language tasks more accessible and efficient. Further, due to

the breadth of research around VAD there exist datasets containing language and corre-

sponding manual VAD annotations [205, 54]. Putting these together we may train a model

for mapping natural language into our learned VAD space which will allow us to make

the interaction between user and our system even more seamless.

5.2 Approach: A Representation for Expressive Motion
We now present our method for enabling a human to teach robots how to exhibit

a broad range of emotions while performing various tasks. The core of our method is

training a style discriminator, which predicts what emotion the human would perceive

given a trajectory, using VAD labels collected from humans in response to query motions.

For any target emotion, we’ll define a motion style cost based convincing the discriminator

that the trajectory being optimized exhibits the target VAD. We leverage the interpretable

structure of VAD as a representation for emotion to improve learning efficiency, interpolate

or extrapolate to new emotions, and integrate natural language seamlessly.

5.2.1 Preliminaries
We represent a trajectory � ∈ Ξ, where Ξ denotes the set of all trajectories in an

environment, as a variable length sequence of waypoints along with the variable time

duration between each pair of consecutive points. We denote environment tasks, such as

moving from a specific start location to a specific goal, as 𝜏 ∈ T, where T denotes the set of

all tasks in the environment. The robot produces a trajectory that solves a particular task in

the environment by optimizing a base cost 𝐶𝑏𝑎𝑠𝑒 : Ξ×T→ R. Optimizing a trajectory using
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Figure 5.2: Visualization of our method. The optimizer combines the task’s base cost 𝐶𝑏𝑎𝑠𝑒 with the style

cost 𝐶𝑠𝑡𝑦𝑙𝑒 of a sampled emotion to produce a query trajectory the style discriminator believes aligns with

the target VAD. The user labels the trajectory with a VAD, and the style discriminator 𝑓� is trained to bring

its predicted VAD closer to the human label.

𝐶𝑏𝑎𝑠𝑒 yields an efficient trajectory but offers no control over the emotion and typically

produces a neutral style.

We describe the style of a trajectory based on an emotion VAD latent 𝑒 ∈ ℰ B [−1, 1]3,

where the three values continuously represent Valence, Arousal, and Dominance. Our

goal is to learn a trajectory style cost, 𝐶𝑠𝑡𝑦𝑙𝑒 : Ξ × ℰ → R, capable of encouraging stylistic

alignment with any target emotion 𝑒. Ultimately, to produce trajectories that achieve the

task with the target style the robot will trade off between the base cost and the style cost:

𝐶(�, 𝜏, 𝑒) = 𝐶𝑏𝑎𝑠𝑒(�, 𝜏) + 𝛼 · 𝐶𝑠𝑡𝑦𝑙𝑒(�, 𝑒) , (5.1)

where 𝛼 is a user specified hyperparameter that prioritizes between style and efficiency.

5.2.2 Cost Function Formulation
To learn the style cost 𝐶𝑠𝑡𝑦𝑙𝑒 , we propose training a neural network style discriminator

𝑓� : Ξ → ℰ parameterized by � to map a trajectory � to the emotion 𝑒 the robot exhibits

while following it. Our motivation for this design is that every trajectory exhibits some

emotion. The style discriminator 𝑓� naturally motivates a style cost function 𝐶𝑠𝑡𝑦𝑙𝑒 which

penalizes a trajectory � based on how much its exhibited emotion, 𝑓�(�), differs from the

target 𝑒. We formalize this intuition using Euclidean distance in ℰ:

𝐶𝑠𝑡𝑦𝑙𝑒(�, 𝑒) = | | 𝑓�(�) − 𝑒 | |2
2
. (5.2)
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Figure 5.3: The VAD latent space with each of Valence, Arousal, and Dominance being a real valued axis

ranging from -1 to 1. The scatter plot depicts the projections of 1,672 emotive words projections into this

space with the red dots highlighting the 6 basic evaluation emotions we used in our experiments.

By optimizing the combined cost in (5.1) along with any task constraints, the resulting

trajectory � completes the task while making its best effort to exhibit the target 𝑒.

5.2.3 Generating Human Queries
To train a robust discriminator 𝑓�, we generate batches of trajectories and query the

user for emotive labels as shown in Fig. 5.2. The user provides either direct VAD labels or

language which we map to VAD as discussed in Sec. 5.2.5. Our goal is to learn �, which

is randomly initialized and updated after each labeling round as discussed in Sec. 5.2.4.

To generate a round of query trajectories we optimize (5.1) for a batch of sample

emotions and tasks, using the current estimate of � for 𝐶𝑠𝑡𝑦𝑙𝑒 . Given 𝐶𝑠𝑡𝑦𝑙𝑒 does not

explicitly model the task, we focus on how to sample emotions in a way that is most

informative for �. Motivated by active learning literature we seek a diverse batch that

biases towards important, unexplored areas of ℰ [308]. Emotions are not uniformly spread

across ℰ, and we would like to focus our queries on more populated areas of the space.

We leverage the empirical emotion distribution from the NRC VAD lexicon [205], which

contains annotated VAD values for 20k words. We filtered them down to 1,672 common

emotive words, resulting in the VAD distribution in Fig. 5.3.
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We now propose an active learning method for improving query coverage of this

distribution to make the discriminator, 𝑓�, more robust. For the first round of queries, since

the network 𝑓� is randomly initialized and has no semantic meaning yet, we uniformly

sample 𝐵 emotions from ℰ. To explain the process for successive rounds we must establish

some notation. We conduct 𝐾 query rounds with 𝑘 ∈ [1, 𝐾] referencing the round index.

Let 𝒮𝑘 B {𝑠𝑘}1:𝐵 ∈ ℰ𝐵 reference the batch of sample emotions to be chosen by active

learning to cover the empirical distribution of 𝐷 = 1672 lexicon VAD values 𝑒1, ..., 𝑒𝐷 . By

optimizing (5.1) for 𝒮𝑘 alongside tasks randomly presented by environment, we generate

query trajectories 𝒬𝑘 B {𝑞𝑘}1:𝐵 ∈ Ξ𝐵. For these queries we will collect human labels

referenced ℒ𝑘 B {𝑙𝑘}1:𝐵 ∈ ℰ𝐵.

Our active learning method seeks to minimize the average distance between lexicon

emotions and the closest acquired label from any round. This relies on estimating the ℒ𝑘
based on our selection of 𝒮𝑘 . Our approximation here is ℒ𝑘 ≈ 𝒮𝑘 which becomes more

accurate over the course of training. With this assumption, for 𝑘 > 1, we may select 𝒮𝑘 as:

𝒮𝑘 = arg min

𝒮𝑘

𝐷∑
𝑖=1

min

𝑙∈𝒮𝑘∪
𝑘−1⋃
𝑗=1

ℒ 𝑗

| |𝑒𝑖 − 𝑙 | |2 . (5.3)

𝒮𝑘 will bias towards dense areas of the VAD space where we do not yet have a nearby

label. We approximate the optimal solution using expectation maximization [81]. We next

look at how to update � after each round based on the collected feedback.

5.2.4 Trajectory Network Training and Architecture
After each round 𝑘 of querying, we update � given our trajectory queries and VAD

label responses collected so far (𝒬1:𝑘 , ℒ1:𝑘). We optimize the following MSE training loss:

𝐿𝑘(�,𝒬1:𝑘 ,ℒ1:𝑘) =
𝑘∑
𝑖=1

𝐵∑
𝑗=1

| | 𝑓�(𝑞 𝑗𝑖 ) − 𝑙
𝑗

𝑖
| |2

2
. (5.4)

Note the summand is exactly equivalent to 𝐶𝑠𝑡𝑦𝑙𝑒(𝑞 𝑗𝑖 , 𝑙
𝑗

𝑖
) allowing for an alternative inter-

pretation: we treat the queries as demonstrations for the emotion labels and would like to

assign them minimal style cost.

In implementing this method, we have to choose a specific architecture for 𝑓�. Recall

from Sec. 5.2.1 that we represent a trajectory as a variable-length sequence of waypoints

and time deltas. We utilize an architecture similar to PointNet [227] for its simplicity and

ability to gracefully handle varying length trajectories. First, a fully connected network

processes each waypoint independently. Then we apply average and softmax pooling over

waypoints to produce a single trajectory embedding. From there another fully connected

network predicts the overall trajectory VAD value. Both networks use ELU activation [72].
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We want network predictions to be smooth so they guide trajectory optimization

well when used within the cost function. In other words, not only must predictions be

accurate, but their gradient signal must also be informative. These factors motivated us

to use smoother pooling (average & softmax) and activation functions (ELU), and to limit

network capacity. A single hidden layer in each network, of dimensions chosen to match

the complexity of the robot, along with L1 regularization worked well in our experiments.

5.2.5 Natural Language to VAD
We now describe how VAD may be inferred from natural language and where this may

be used. We look up single words directly in the NRC VAD lexicon [205]. For sentences or

words not present in the lexicon, we apply a BERT model finetuned to predict VAD using

EmoBank: a dataset with 10k VAD labeled sentences [85, 54]. The wealth of resources and

data around VAD is another benefit of using the spectrum as our latent space.

In many scenarios language provides a more natural means of communicating emotion

than VAD. During training, language labels could be easier to provide compared to VAD

directly. After training, the robot should determine target emotion in a less burdensome

way than explicitly requesting VAD. Interpreting VAD from language allows the robot to

seamlessly identify target emotion and modulate its behavior around humans.

5.3 Experiments: Expressive and Functional Robot Motion
There are three primary hypotheses we seek to test with our experiments. (1) A real

human is capable of using our method to teach their perception of a robot’s emotive style,

and after training they perceive the robot’s intended target emotion in generated stylistic

trajectories; (2) Our method is more efficient at learning a set of emotive styles than an

approach that models each emotion independently; (3) Despite using general emotive

labels, our method is equally efficient at learning any single emotive style as alternatives

which leverage feedback specific to that emotion.

To evaluate hypothesis (2) & (3) we run a set of simulated human trials comparing the

query efficiency our method to alternatives which model emotions independently. To test

(1) we conduct a user study where real humans’ perception of emotion takes the place of

simulated human heuristics. We evaluate the effectiveness of teaching by the extent to

which the human (simulated or real) perceives emotion similar to what the robot intended

to exhibit while completing various tasks. We will discuss the results for each case and

ultimately find our hypotheses supported by the data collected.

5.3.1 Robots
We used two simulated robots to test our method: a simpler Vacuum robot (Vacu-

umBot) and the more complex Cassie bipedal robot [182]. We now describe the robot
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Afraid Happy Sad

Figure 5.4: Cassie must reach a target location avoiding obstacles represented by cones. Here it optimizes

for various target emotions on various tasks using a model learned with our method. Visuals overlay one

snapshot per second with earlier frames made more transparent. Afraid first takes a few cautious steps back

before proceeding. Happy keeps head high and moves fast. Sad slouches and proceeds slowly.

specifications, the environments they operated in, and the tasks they must complete.

VacuumBot is tasked with collecting dust that appears in a 2D world. It has 3 DOF

controlling horizontal, vertical and angular acceleration and is subject to various physical

constraints including gravity and friction. The current state of the robot and environment

is summarized by the position and velocity corresponding to the DOF, and the location of

the dust. Trajectories are optimized for VacuumBot entirely using PyTorch [221].

Cassie, shown in Fig. 5.4, is a person-sized bipedal robot which has 20 DoF including

6 DoF of the base (its pelvis), 5 DoF and 2 passive joints of each leg. More details about

Cassie can be found in [182]. Cassie, shown in Fig. 5.4, is a person-sized bipedal robot

which has 20 DoF including 6 DoF of the base (its pelvis), 5 DoF and 2 passive joints

of each leg. More details about Cassie can be found in [182]. In our paper, Cassie is

tasked with navigating to a randomly generated target location while avoiding random

obstacles represented by the red cones in Fig. 5.4. We leverage collocation to obtain

a trajectory minimizing the proposed style cost while imposing constraints including

collision-avoidance and reduced-order nonlinear dynamics as described in [183]. Based

on the optimized trajectory of robot base velocity and height, the robot’s whole body

motion is obtained from a gait library optimized by its full-order dynamics [182, 132].

This nonlinear optimization is formulated in CasADI [16], solved via IPOPT [34], and the

resulting trajectory is visualized through animation in Blender [182]. To integrate our

PyTorch implementation of 𝑓� we export our learned � after every training round and

replicate the neural network as a fixed numerical function in CasADI [16].

5.3.2 Experimental Design
The simulated human trials and real human study used a very similar experimental

design. In this section, we describe the process for evaluating a single method in general

terms, and will discuss how this was adapted for the two contexts in their corresponding

sections. We implement alternative models in a way that allows them to conform to the

same evaluation procedure as our method.
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Using notation from Sec. 5.2.4, we train by conducting 𝐾 rounds of 𝐵 trajectory query

batches updating the model after each batch of labels. Then we evaluate stylistic trajec-

tories, produced for a representative set of evaluation emotions, based on the extent to

which the human perceives the intended emotion in each.

To identify our evaluation emotions, we again leveraged VAD values from the NRC

VAD Lexicon [205]. Based on the empirical distribution shown in Fig. 5.3, we identified the

corners [-1, -1, -1], [1, 1, 1], [-1, 1, -1], [1, -1, 1], and [-1, 1, 1] as the best regions to evaluate

our model due to their population density and general coverage of the space. We selected

representative emotions near each of these corners: sadness, joy, fear, confidence, anger, and

patience respectively. Note that consecutive pairs on this list are diametric opposites in

VAD space. We will not always use all 6 evaluation emotions and use 𝑁 to reference the

specific number we are working with. For consistency, when 𝑁 < 6 we will always use

the first 𝑁 emotions based on the order we presented these above. We restrict ourselves

to 𝑁 ∈ {2, 4, 6} to keep the emotions in opposing pairs.

Our three evaluation metrics are Quality score, Top-1 accuracy, and Top-2 accuracy.

Quality score measures binary alignment: how well trajectories express the intended

emotion compared to its diametric opposite. Top-X accuracies measure precise alignment:

how well trajectories express the intended emotion compared to all 𝑁 − 1 alternatives.

Ideally we’d evaluate across all tasks, but given the task space is continuous we randomly

sample 𝑀 tasks for each of the 𝑁 evaluation emotions averaging the metric values we get.

To compute the quality score, the robot presents the user with 𝑁/2 sets of 2 · 𝑀
trajectories for evaluation. Each set is associated with one diametric pair of evaluation

emotions, say A and B. The 2 ·𝑀 trajectories includes 𝑀 trajectories optimized for A and

𝑀 trajectories optimized for B. The user is asked to assign each trajectory a score, 𝑠 from 1

to 7 answering the Likert question: Is the trajectory more expressive of Emotion B than A? with

a response of 1 indicating the trajectory is very expressive of Emotion A and a 7 indicating

that the trajectory is very expressive of B. Let 𝑞 be the Quality score metric. For trajectories

optimized for B we define 𝑞 B 𝑠, and for A 𝑞 B 8 − 𝑠. As a result, 𝑞 ranges from 1 to 7

with 7 indicating perfect alignment with the intended emotion compared to its opposite.

To compute Top-X accuracies, we present the user with another 𝑁 · 𝑀 trajectories

including 𝑀 trajectories optimized for each of the evaluation emotions. Now the user is

asked to select which of the 𝑁 emotions is most expressed by each trajectory as well as

their second choice. We define the Top-X accuracy metric, for𝑋 ∈ {1, 2}, as the proportion

of the time the user’s top 𝑋 choices include the intended emotion.

5.3.3 Simulated Human Trials
We first conducted a set of experiments with simulated human feedback, since it would

have been impractical to reliably test all our configurations with real humans.

5.3.3.1 Simulating Human Feedback. The simulated “human” (SH) uses heuristics to

determine VAD for trajectories. For example, SH quantifies dominance for Cassie based on
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Figure 5.5: Quality score, Top-1, Top-2 accuracy and standard errors during training averaged across six

seeds for each (environment, method, 𝑁) configuration. Metrics were computed before training and after

each of 4 batches of 20 trajectory queries, with the query number indicated in the horizontal axis. Shown

in dotted lines are the expected values if users chose randomly during evaluation. Our method matches

performance of SEP-ALL whereas SEP struggles to keep pace as the number of emotions 𝑁 increases.

the average head height. SH may not accurately represent human emotive perception, but

its consistent feedback allows us to compare learning efficiency between various methods.

During training SH directly gives its VAD for a trajectory as feedback. During evalua-

tion, it must further transform this VAD value to mimic appropriate human responses. For

the Likert question juxtaposing opposite emotions, SH projects the VAD value on to the

diametric axis between the pair of emotions; then SH linearly scales the result so Emotion

A is 1 and B is 7. For the choice based component, SH picks the closest and second closest

evaluation emotion based on Euclidean distance in VAD space.

5.3.3.2 Alternative Methods. We compare our method to two approaches that model

emotions independently. First is an approach inspired by Zhou et al. [310] which we’ll

reference as SEP because it trains separate models directly predicting cost for each evalua-

tion emotion. SEP directly asks the user to label trajectories with how expressive they are

of one of the evaluation emotions. The second approach is SEP-ALL which we allow access

to real valued cost labels for all evaluation emotions for each trajectory; SEP-ALL does not

have to split its labeling budget between emotions as SEP does. Recall our approach re-

quests VAD labels from the user irrespective of the evaluation set enabling generalization

beyond predefined emotions. In contrast, SEP and SEP-ALL both require knowledge of

the evaluation set of emotions prior to training and get feedback specific to them.

To select emotions to generate trajectory queries for, SEP and SEP-ALL simply sample

with replacement from the evaluation set. To remove a potential confound and isolate
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Figure 5.6: Quality score, Top-1, and Top-2 accuracy and standard error for each evaluation emotion averaged

across study users. Metrics significantly outperforms a random guess baseline, shown with the dashed lines,

suggesting humans can indeed teach emotive motion with our method.

learning efficiency, we use the same selection process for our method in the simulated

experiments. In the Sec. 5.3.4 study we revert to the active learning described in Sec. 5.2.3.

5.3.3.3 Simulation Results Discussion. The simulated human trials involved running

each (environment, method, 𝑁) combination with 6 seeds, 108 experiments total, using

𝐾 = 4 rounds of 𝐵 = 20 trajectory labels. We present the average evaluation results using

𝑀 = 6 tasks per emotion along with standard errors in Fig. 5.5.

To evaluate hypothesis (2), improving learning efficiency for a set of emotions compared

to an approach that models them independently, we juxtapose our method with SEP.

Across all metrics our method is able to reach a higher performance faster, the gap growing

with 𝑁 , supporting our hypothesis. With SEP each query is only informative for one of

𝑁 emotive models. By contrast, with our method each query is informative for the entire

VAD space and, thus, every evaluation emotion to some extent.

To evaluate hypothesis (3), matching learning efficiency for a single emotion compared

to an approach that gets feedback specific to that emotion for each query, we juxtapose

our method with SEP-ALL. SEP-ALL gets emotion specific cost labels for all 𝑁 emotions

with each query, as opposed to the generic VAD label our method receives. Yet across the

board performance of our method matches SEP-ALL supporting our hypothesis again.

It is not practical to go beyond a few evaluation emotions with SEP-ALL since labeling

overhead scales linearly with respect to 𝑁 , whereas our method has constant overhead

enabling capture of the full span of emotions. Furthermore, even for small 𝑁 providing

VAD values (or natural language) may be easier than real valued emotion specific costs.

Ultimately, VAD provides an interpretable latent representation that allows efficient

learning of the space of emotive style with performance no worse than if we targeted any

specific target emotion. Fig. 5.4 visualizes some emotive styles Cassie learned from this

experiment, demonstrating our method’s ability to work with high DOF, complex robots.
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Angry User 1

Confident User 1

Angry User 2

Confident User 2

Angry User 3

Confident User 3

Figure 5.7: VacuumBot collecting dust with style trained by three real users optimized for two target

emotions on a single task. Judging by these motions, User 2 and 3’s perception of anger involved greater

speed, jumping, and arm movement than User 1. User 3’s confidence had more arm movement but less

jumping than User 1 and 2’s.

Great weather today! Didn’t get the offer… I don’t know what to do!

Figure 5.8: Three trajectories for a single task where VacuumBot infers VAD from the displayed phrases

and produces motions based on a study user’s trained model. When the human expresses cheerfulness it

gracefully hops to the goal. When the human expresses sorrow it slowly slouches its way there. When the

human expresses fear it reflects that nervous energy.

5.3.4 Real Human Study
The efficiency demonstrated in Sec. 5.3.3 shows that real humans may feasibly use our

system. We present a user study with VacuumBot aimed at testing hypothesis (1): the

effectiveness of our method in teaching emotive style that is recognizable to end users.

5.3.4.1 Study Setup. We recruited 12 participants (9 male, 3 female) aged 20-27. They

were asked to provide emotion labels for 𝐾 = 2 rounds of 𝐵 = 20 robot trajectories. We

use a lower value for 𝐾 here compared to the simulated experiments to emphasize the

practicality of our approach. We found it was easier for humans to consistently label

trajectories with VAD labels; however, as discussed earlier language may be used as well.

For the evaluation phase we used 𝑁 = 6 emotions with 𝑀 = 3 tasks each for all

participants. To keep the overall study time shorter we did not perform intermediate

evaluations, only evaluating after all labeling was complete. The labeling portion of the

study took 30-40 minutes and the evaluation phase 20-25 minutes per participant.

5.3.4.2 Study Results Discussion. Fig. 5.6 compares human evaluation results to a

random guess baseline. We break down results by each of the 6 evaluation emotions.
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For every emotion and metric we ran t-tests at the 5% significance level comparing per-

formance to the random baseline. Each test indicated statistically significant improvement

which is reflected by the standard errors in Fig. 5.6. These results support hypothesis (1):

our participants could teach the robot by labeling query trajectories in about 30 minutes,

and during evaluation they perceived the robot’s intended emotion at a rate significantly

higher than random chance.

While the quality scores are relatively consistent across emotions the Top-1 accuracy

varies a fair amount. This suggests the method is reliable in producing trajectories that

are generally in the right direction but might not exactly line up with the intended one. In

some cases the former may be of primary importance and in others emotional precision

may be equally important; however, it is reassuring to know that the robot will roughly

align with the intended style even when it is not perfect in targeting the particular one.

A qualitative observation is that all users had their own personalized views of emotions.

As demonstrated in Fig. 5.7, robots trained by three different study users ended up with

fairly different, yet justifiable behaviors for the same emotions and task. Furthermore, in

Fig. 5.8 we showcase example motions for one user’s robot generated based on the VAD

of short phrases. This highlights how our method enables the robot to learn more than a

finite set of emotions. It learns an entire emotive space which it may index into to generate

appropriately expressive behavior. By making the teaching process more accessible, our

work takes an important step towards enabling anyone to teach robots nuanced behaviors

without needing a technical foundation themselves.

5.4 Discussion

Summary. We introduced a method that enables robots to perform functional tasks in

ways that are expressive of a wide range of emotions. After being taught how trajectories

map to VAD the robot may include a cost function encouraging a target emotive style in

task motion optimization. Natural language VAD inference enables the robot to decide

target emotions while in use and may also substitute numerical VAD labels during training.

Our experiments suggest that learning the VAD space jointly, beyond enabling emotion

generalization, is more efficient and practical than trying to model each target emotion

separately. Furthermore, our experiments provide evidence that our method enables real

humans to teach robots discernible, emotive style.

Limitations and Future Work. First we share some short term directions. our environ-

ments only presented robot locomotion tasks, albeit varying the start, goal, and obstacle

locations, hence expanding the task space to include more diverse objectives (e.g. object

manipulation) would be an interesting direction. Although we mentioned the possibility

of using language in place of VAD for training we did not explicitly evaluate this option.

After training we propose inferring target VAD from user sentences, and despite promis-

ing qualitative results in Fig. 5.8 more in depth analysis is required. It’s unclear even

whether the robot should alter user emotion or merely reflect it.
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Now we highlight some long term challenges. There are existing solutions for pro-

ducing physical trajectories with our style cost [182], but bringing the training procedure

into the physical domain is more challenging. It removes the ability to easily reset the

robot as we do in simulation to facilitate label collection. Another challenge is while VAD

captures the three most important emotive directions, sometimes differing emotions have

similar VAD. For example, fear and disgust both have low valence and dominance with

high arousal. Future work would have to navigate these subtleties while preserving the

efficiency of our learning process.

We are excited about our results and believe they make an important contribution

towards the end-goal of making robots more expressive and enabling people to teach

personalized emotive styles. We look forward to seeing robots operate alongside humans

with control over their exhibited emotion.
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Chapter 6

All-at-Once Representation Learning

This chapter is based on the paper “SIRL: Similarity-based Implicit Representation Learning” [45],
written in collaboration with Yi Liu, Rohin Shah, Daniel Brown, and Anca Dragan.
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Similarity 

query

Preference 
query H1

Preference 
query H2

Preference 
query H3

Optimize 𝑅!!

Optimize 𝑅!"

Optimize 𝑅!#

𝑅!!

𝑅!"
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Figure 6.1: Our goal is to learn representations for robot behavior that capture what is salient to people,

and, thus, support generalizable preference learning with low sample complexity. We propose to extract

this representation by asking people trajectory similarity queries (left), where they judge which two out of

three trajectories are most similar to each other. We then use the representation to learn reward functions

corresponding to different people’s preferences on different tasks (right).

When the human teaches their representation explicitly, they have to either know how

to break it down into the features that compose it (like in Chapters 3 and 4) or assume

a well-studied structured representation (like in Chapter 5). While this expectation is

oftentimes reasonable, people may not always be able to explicate their representation

and break it down into concepts that are individually teachable. In this chapter, we study

how to enable the robot to also implicitly extract the person’s representation by having

them solve representation-specific tasks – proxy tasks designed to learn an embedding of

what matters to the human all-at-once from their behavior.
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Just like in Chapter 3, we are motivated here by learning representations that lead to

learning generalizable rewards. For instance, imagine waking up in the morning and your

home robot assistant wants to place a steaming mug of fresh coffee on the table exactly

where it knows you will sit. Depending on the context, you will have a different preference

for how the robot should be doing its task. Some days it carries your favorite mug close to

the table to prevent it from breaking in the case of a slip (so that it will remain your favorite

mug); other days the steam from your delicious meal is difficult to handle for the robot’s

perception, so you’d want it to keep a large clearance from the table to avoid collisions.

Similarly, some days you want the robot to keep your mug away from your laptop to avoid

spilling on it; other days the mug only has an espresso shot so you want the robot keep it

close to the laptop to prevent clutter and leave the rest of the table open for you.

The reward function the robot should optimize changes — whether due to variations

in the task, having different users, or, as in the examples above, different contexts that

are not always part of the robot state (e.g. holding the user’s favorite mug and not just

a regular mug). However, the representation on top of which the reward is built, i.e the

features that are important (like the distance from the table, being above the laptop, etc.),

are shared. If the robot learns this representation correctly, it can use it to obtain the right

reward function, even if the task, user, and context changes. Meta-learning and multi-task

learning methods [296, 109, 215] learn the representation from user input meant to teach

the full reward, like preference queries or demonstrations. By contrast, we propose that if

learning generalizable representations is the goal, then we should ask the user for input

that is specifically meant to teach the representation itself, rather than input meant to

teach the full reward and hoping to extract a good representation along the way.

But asking people to teach robots representations, rather than tasks, is not so easy. What

are the features that they care about? While some techniques advocate for people enabling

users to teach each feature separately [40], people may not always be able to explicate

their representation and break it down into concepts that are individually teachable. In

this chapter, our idea is that we can implicitly tune into the representations people use

by asking them to do a proxy task of evaluating similarity of behaviors. Behaviors will

be similar if the features that matter are similar, even if low-level behavior is different;

conversely, behaviors will be different if even one of the features that matter differs. This,

in turn, should enable the robot to arrive at the features that matter — we want robots

that can disambiguate between what needs to go into the representation versus what is

spurious, as well as what aspects of behavior can be compressed together into a feature

embedding versus kept separate. We thus introduce a novel type of human input to

help the robot extract the person’s representation: trajectory similarity queries. A trajectory

similarity query is a triplet of trajectories that the person answers by picking the two more

similar trajectories. In Fig. 6.1 (left), the person chooses the two trajectories that are close to

the table and far from the laptop, even though visually they look dissimilar. This results in

an (anchor, positive, negative) triplet that can be used for training a feature representation.

We call this process Similarity-based Implicit Representation Learning (SIRL).

Our method has a parallel in self-supervised learning work, especially contrastive
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learning, where the goal is to learn a good visual representation by training from (anchor,

positive, negative) triplets generated via data augmentation techniques [65]. However,

this notion of similarity is purely visual, driven by manually designed heuristics for data

augmentation, and is not necessarily reflective of what users would consider similar. For

instance, two images might be labeled as visually different, when in fact their difference

is only with respect to some low-level aspects that are not really relevant to the distri-

bution of tasks people care about. This would result in representations that contain too

many distractor features that are not present in the human’s representation. Our method

uses similarity too, but we defer to the user’s judgement of similarity, with the goal of

reconstructing the user’s representation.

Of course, our method is not the full answer to learning causally aligned representa-

tions. But our experiments suggest that it outperforms methods that are self-supervised,

or that learn from input meant to teach the full tasks. In simulation, where we know

the causal features, we show that SIRL learns representations better aligned with them,

which in turn leads to learning multiple more generalizable reward functions downstream

(Fig. 6.1). We also present a user study where we crowdsource similarity queries from

different people to learn a shared SIRL representation that better recovers each of their

individual preferences. While the study results do show a significant effect, the effect size

is much lower than in simulation. This is attributable in part to the interface difficulty of

analyzing the robot trajectories, which means more work is needed to determine the best

interfaces that enable users to accurately answer similarity queries. Moreover, some users

reported struggling to trade off the different features, which means that similarity queries

might not be entirely preference-agnostic. Nonetheless, our results underscore that there

are gains by explicitly aligning robot and human representations, rather than hoping it

will happen as a byproduct of learning rewards from standard queries.

6.1 Prior Work
Learning from Human Input. Human-in-the-loop learning is a well-established paradigm

where the robot uses human input to infer a policy or reward function capturing the de-

sired behavior. In imitation learning, the robot learns a policy that essentially copies

human demonstrations [219], a strategy that typically doesn’t generalize well outside the

training regime [179]. Meanwhile, inverse reinforcement learning (IRL) uses the demon-

strations to extract a reward function capturing why a specific behavior is desirable, thus

better generalizing to unseen scenarios [2]. Recent research goes beyond demonstrations,

utilizing other types of human input for reward learning, such as corrections [25], compar-

isons [290], or rankings [49]. Unless explicitly designed for, these methods learn a latent

representation implicitly from the respective human input. We seek to instead explicitly

learn a preference-agnostic latent space that can be used for downstream reward learning.

We focus on learning reward functions via preference queries [290], but we believe the

latent space we learn can be useful for learning from any of the above types of feedback.
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Representation and Similarity Learning. Common representation learning approaches

are unsupervised [66, 133, 64] or self-supervised [87, 222, 22, 170], but because they are

purposefully designed to bypass human supervision, the learned embedding does not

necessarily correspond to features the person cares about. Prior work leverages task la-

bels [62] or trajectory rankings [50] to learn latent spaces for specific goals or preferences.

By contrast, we focus on learning task-agnositic measures of feature similarity that are

useful for learning multiple preferences. Some work looks at having people interactively

select features from a pre-defined set [58, 55, 196] or teach task-agnostic features sequen-

tially via kinesthetic feature demonstrations [41] or active learning techniques [167, 129,

42]. We instead focus on fully learning a lower-dimensional feature representation all-at-

once, rather than one at a time. Furthermore, rather than relying on the human to provide

physical demonstrations for learning a good feature space [40, 41], we propose a more ac-

cessible and general form of human feedback: showing the user triplets of trajectories and

simply asking them to label which two trajectories are the most similar. Triplet losses have

been widely used to learn similarity models that capture how humans perceive objects [6,

274, 203, 82, 12]; however, to the best of our knowledge, we are the first to use a triplet loss

to learn a general, task-agnostic similarity model of how humans perceive trajectories.

Meta- and Multi-Task Reward Learning. To learn multiple reward function models, prior

work has proposed clustering demonstrations and learning a different reward function for

each cluster [86, 23, 70]; however, these methods require a large number of demonstrations

and do not adapt to new reward functions. Meta-learning [95] seeks to learn a reward

function initialization that enables fast fine-tuning at test time [297, 302, 141, 257]. Multi-

task reward learning approaches pretrain a reward function on multiple human intents

and then fine-tune the reward function at test time [109, 215]. This has been shown to be

more stable and scalable than meta-learning approaches [201], but still requires curating

a large set of training environments. By contrast, we do not assume any knowledge of the

test-time task distribution a priori and do not require access to a population of different

reward functions during training. Rather, we focus on learning a task-agnostic feature

representation that can be utilized for down-stream reward learning tasks. In particular,

we test our learned representation on the down-stream task of learning models of human

reward functions via pairwise preference queries over trajectories [290, 251, 36, 180].

6.2 Approach: A Proxy Task for Representation Learning
We present our method for learning preference-agnostic representations from trajec-

tory similarity queries. Our intuition is that if a human judges two behaviors to be similar,

then their representations should also be similar. Since directly asking if two trajectories

are similar is difficult without an explicit threshold, we instead present the human with a

triplet of trajectories and ask them to pick the two most similar (or, equivalently, the most

dissimilar one). We use the human’s answers to train the representation such that similar

trajectories have embeddings that are close and dissimilar trajectories map to embeddings
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far apart. The robot then uses this latent space as a shared representation for downstream

preference learning tasks with multiple people, each with different preferences.

6.2.1 Preliminaries
We define a trajectory � as a sequence of states, and denote the space of all possible

trajectories by Ξ. The human’s preference over trajectories is given by a reward function

𝑅 : Ξ ↦→ R that is unobserved by the robot and must be learned from human interaction.

The robot reasons over a parameterized approximation of the reward function 𝑅�, where

� represents the parameters of a neural network. To learn �, the robot collects human

preference labels over trajectories [290, 71] and seeks to find parameters � that maximize

the likelihood of the human input. The robot can then use the learned reward function to

score trajectories during motion planning in order to align its behavior with a particular

human’s preferences. We focus on explicitly using human input to first learn a good

representation and then use that representation for downstream reward learning, rather

than using reward-specific human input (e.g., preferences or demonstrations) to implicitly

learn the representation at the same time as the reward function.

6.2.2 Training the Representation via Trajectory Similarity Queries
We seek to train a latent space that is useful for multiple downstream preference

learning tasks. To do this, we propose learning a preference-agnostic model of human

similarity. One way to learn such a model would be to ask users to judge whether two

trajectories are similar or not; however, humans are better at giving relative rather than

binary or quantitative assessments of similarity [155, 268]. Thus, rather than asking

users to use some internal threshold or scoring mechanism to quantitatively measure

similarity, we instead focus on qualitative trajectory similarity queries. We present the

user with a visualization of three trajectories and ask them to pick the two most similar

ones (equivalently the most dissimilar one). The human’s queries form a data set 𝒟𝑠𝑖𝑚 =

{(�𝑖
𝑃1

, �𝑖
𝑃2

, �𝑖
𝑁
)}, where �𝑖

𝑃1

and �𝑖
𝑃2

are the trajectories that are most similar and �𝑖
𝑁

is the

trajectory most dissimilar to the other two.

We can interpret similarity (or dissimilarity) as a distance function, so we define the

distance between two trajectories as the 𝐿2 feature distance: 𝑑(�1, �2) = ∥𝜙(�1) − 𝜙(�2)∥2
2
.

Given a dataset of trajectory similarity queries𝒟𝑠𝑖𝑚 , we use the triplet loss [28]:

ℒ𝑡𝑟𝑖𝑝(�𝐴 , �𝑃 , �𝑁 ) = max(𝑑(�𝐴 , �𝑃) − 𝑑(�𝐴 , �𝑁 ) + 𝛼, 0) , (6.1)

a form of contrastive learning where �𝐴 is the anchor, �𝑃 is the positive example, �𝑁 is the

negative example, and 𝛼 ≥ 0 is a margin between positive and negative pairs. However,

because our queries do not contain an explicit anchor, our final loss is as follows:

ℒ𝑠𝑖𝑚(𝜙) =
|𝒟𝑠𝑖𝑚 |∑
𝑖=1

ℒ𝑡𝑟𝑖𝑝(�𝑖𝑃1

, �𝑖𝑃2

, �𝑖𝑁 ) + ℒ𝑡𝑟𝑖𝑝(�
𝑖
𝑃2

, �𝑖𝑃1

, �𝑖𝑁 ) . (6.2)
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We train a similarity embedding 𝜙 : Ξ ↦→ R𝑑 that minimizes the above similarity loss,

with 𝑑 the representation dimensionality. The intuition is that optimizing this loss should

push together the embeddings of similar trajectories and push apart the embeddings of

dissimilar trajectories. Before training the representation with the loss in (6.2), we may

also pre-train it using unsupervised learning [156], which we experiment with in Sec. 6.3.

6.2.3 Using SIRL for Reward Learning
Given a learned embedding 𝜙, we can use it for learning models of specific user

preferences. While we focus on learning from pairwise preferences, we note that 𝜙
can in principle be used in downstream tasks that learn from many types of human

feedback [148]. When learning a reward function from human preferences, we show the

human two trajectories, �𝐴 and �𝐵, and then ask which of these two the human prefers. We

collect a data set of such preferences 𝒟𝑝𝑟𝑒 𝑓 = {(�𝑖𝐴 , �
𝑖
𝐵
, ℓ 𝑖)} where ℓ 𝑖 = 1 if �𝑖

𝐴
is preferred

to �𝑖
𝐵
, denoted �𝑖

𝐴
≻ �𝑖

𝐵
, and ℓ 𝑖 = 0 otherwise. We interpret the human’s preferences

through the lens of the Bradley-Terry preference model [47]:

𝑃�(�𝐴 ≻ �𝐵) =
𝑒𝑅�(𝜙(�𝐴))

𝑒𝑅�(𝜙(�𝐴)) + 𝑒𝑅�(𝜙(�𝐵))
. (6.3)

We learn the reward function with a simple cross-entropy loss:

ℒ𝑝𝑟𝑒 𝑓 (�) = −
|𝒟𝑝𝑟𝑒 𝑓 |∑
𝑖=0

ℓ 𝑖 log𝑃�(�𝑖𝐴 ≻ �𝑖𝐵) + (1 − ℓ
𝑖) log𝑃�(�𝑖𝐵 ≻ �𝑖𝐴) . (6.4)

6.2.4 Adapting to Different User Preferences
We want robots that can adapt to changes to an individual user’s preferences depending

on the context as well as quickly adapt to new users’ preferences. Rather than learn each

preference independently by collecting a new set of human data and training a completely

new reward function 𝑅�, we study whether we can leverage the latent space learned by

SIRL to perform more accurate and sample-efficient multi-preference learning. When

learning a new user’s preference model, 𝑅� the robot can use 𝜙 to more quickly learn the

reward function 𝑅�(𝜙(�)). Our main idea is that because this shared latent representation

𝜙 is trained via preference-agnostic similarity queries, it is more transferable than using

a multi-task or meta-learning approach, where the pre-trained network is trained using

multiple, specific task objectives. Furthermore, because SIRL uses human input to train

𝜙, we hypothesize that the learned feature space will be better suited for learning human

reward functions than a latent space learned via unsupervised training.
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(a) GridRobot environment.

Preprogrammed Views
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(b) JacoRobot environment and user study interface.

Figure 6.2: Visualization of the experimental environments.

6.3 Experiments: Learning Generalizable Representations
We investigate the SIRL representations and their benefits for preference learning using

simulated human input in two environments with ground truth rewards and features.

6.3.1 Environments
GridRobot (Fig. 6.2a) is a 5-by-5 gridworld with two obstacles and a laptop (the blue,

green, and black boxes). Trajectories are sequences of 9 states with the start and end

in opposite corners. The 19-dimensional input consists of the 𝑥 and 𝑦 coordinates of

each state and a discretized angle in {−90
◦,−60

◦,−30
◦, 0◦, 30

◦, 60
◦, 90

◦} at the end state.

The simulated human answers queries based on 4 features 𝜙∗ in this world: Euclidean

distances to each object, and the absolute value of the angle orientation.

JacoRobot (Fig. 6.2b) is a pybullet [74] simulated environment with a 7-DoF Jaco robot

arm on a tabletop, with a human and laptop in the environment. Trajectories are length 21,

and each state consists of 97 dimensions: the 𝑥𝑦𝑧 positions of all robot joints and objects,

and their rotation matrices. This results in a 2037-dimensional input space, much larger

than for GridRobot. The 4 features of interest 𝜙∗ for the simulated human are: a) table —

distance of the robot’s End-Effector (EE) to the table; b) upright — EE orientation relative

to upright, to consider whether objects are carried upright; c) laptop — 𝑥𝑦-plane distance

of the EE to a laptop, to consider whether the EE passes over the laptop at any height; d)

proxemics [212] — proxemic 𝑥𝑦-plane distance of the EE to the human, where the EE is

considered closer to the human when moving in front of the human that to their side.

In GridRobot the state space is discretized, so the trajectory space Ξ can be enumer-

ated; however, the JacoRobot state space is continuous, so we construct Ξ by smoothly
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Figure 6.3: SIRL picks the two trajectories that are most and least similar to a query trajectory. Top:

trajectories are similar in features despite being dissimilar in states. Bottom: trajectories are dissimilar in

features despite being close in states.

perturbing the shortest path trajectories from 10,000 randomly sampled start-goal pairs

(see Sec. 6.6.1). We generate similarity and preference queries by randomly sampling

from Ξ. The simulated human answers similarity queries by computing the 4 feature

values for each of the three trajectories and choosing the two that were closest in the

feature space. For preference queries, the simulated human computes the ground truth

reward and samples the trajectory with the higher reward. The space of true reward

functions (used to simulate preference labels) is defined as linear combinations of the 4

features described above. The robot is not given access to the ground-truth features nor

the ground-truth reward function but must learn them from similarity and preference

labels over raw trajectory observations.

6.3.2 Qualitative Examples
In Fig. 6.3 we show similar and dissimilar trajectories learned by SIRL in a simplified

GridRobot environment with only the laptop and the joint angle. Top: the given trajectory

stays far from the laptop and holds the cup on its side; SIRL learns that trajectories

that share those features are similar, despite being dissimilar in the state-space. Bottom:

the trajectory stays close to the laptop and holds the cup at an angle; SIRL learns that

trajectories that hold the cup upright and stay far from the laptop are dissimilar, despite

being similar in the state-space (going up and then right).
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6.3.3 Experimental Setup

Manipulated Variables. We test the importance of user input that is designed to teach the

representation by comparing SIRL with multi-task learning techniques from generic pref-

erence queries, and unsupervised representation learning. We have 4 baselines: a) VAE,

which learns a representation with a variational reconstruction loss [156]; b) MultiPref , a

multi-task baseline [109], where we learn the representation 𝜙 implicitly by training multi-

ple reward functions (each with shared initial layers) via preference learning; c) SinglePref ,

a hypothetical method that learns from an ideal user who weighs all features equally; d)

Random, a randomly initialized embedding, which does not benefit from human data but

is also immune from any spurious correlations that might be learned from biased data.

For MultiPref, we trained versions with 10 and 50 simulated human preference rewards

for good coverage of the reward space. All embeddings have the same network size: for

GridRobot we used MLPs with 2 layers, 128 units each, mapping to 6 output neurons,

while for JacoRobot we used 1024 units to handle the larger input space (see Sec. 6.6.2).

For a fair comparison, we gave SIRL, SinglePref, and MultiPref equal amounts of human

data for pre-training: 𝑁 similarity queries for SIRL, and 𝑁 preference queries (used for a

single human for SinglePref or equally distributed amongst humans for MultiPref). We

also performed ablations with and without VAE pre-training and found that SinglePref

and MultiPref are better without VAE (see Sec. 6.6.3).

Dependent Measures. To test the quality of the learned representations, we use two

metrics: Feature Prediction Error (FPE) and Test Preference Accuracy (TPA). The FPE metric is

inspired by prior work that argues that good representations are linearly separable [73, 169,

243]. Our goal is to measure whether the embeddings contain the necessary information to

recover the 4 ground-truth features in each environment. We generate data sets of sampled

trajectories labeled with their ground truth (normalized) feature vector 𝒟𝐹𝑃𝐸 = {�, 𝜙∗}.
We freeze each embedding and add a linear regression layer on top to predict the feature

vector for a given trajectory. We split 𝒟𝐹𝑃𝐸 into 80% training and 20% test pairs, and

FPE is the mean squared error (MSE) on the test set between the predicted feature vector

and the ground truth feature vector. For the human query methods, we report FPE with

increasing number of representation training queries 𝑁 .

For TPA, we test whether good representations necessarily lead to good learning of

general preferences. We use the trained embeddings as the base for 20 randomly selected

test preference rewards. For each 𝑅�𝑖 , we generate a set of labeled preference queries

𝒟�𝑖
𝑝𝑟𝑒 𝑓

= {�𝐴 , �𝐵 , 𝑙}, which we split into 80% for training and 20% for test. We train each

reward model with 𝑀 preference queries per test reward, and we vary 𝑀. All preference

networks have the same architecture: we take the embedding 𝜙 pre-trained with the

respective method, and add new fully connected layers to learn a reward function from

trajectory preference labels. For GridRobot we used MLPs with 2 layers of 128 units, and

for JacoRobot we used 1024 units. We found that all methods apart from SIRL worked

better with unfrozen embeddings (Sec. 6.6.3). We report TPA as the preference accuracy
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Figure 6.4: FPE for the GridRobot (left) and JacoRobot (right) environments with simulated human data.

With enough data, SIRL learns representations more predictive of the true features 𝜙∗ in both simple and

complex environments.

for the learned reward models on the test preference set, averaged across the test human

preferences.

Hypotheses. We test two hypotheses:

H1. Using similarity queries specifically designed to teach the representation (SIRL) leads

to representations more predictive of the true features (lower FPE) than unsupervised

(VAE), implicit (MultiPref, SinglePref), or random representations.

H2. SIRL representations result in more generalizable reward learning (higher TPA) than

unsupervised (VAE), implicit (MultiPref, SinglePref), or random representations.

6.3.4 Results
In Fig. 6.4 we show FPE for both environments with varying representation queries 𝑁

from 100 to 1000. For GridRobot, both versions of SIRL (with or without VAE pre-training)

perform similarly and outperform all baselines, supporting H1. When pre-training with

preference queries, MultiPref with 10 humans performs better than SinglePref or MultiPref

with 50 humans: SinglePref may be overfitting to the one human preference it has seen,

while when MultiPref has to split its data budget among 50 humans it ends up learning a

worse representation than Random. There is a balance to be struck between the diversity

in human training rewards covered and the amount of pre-training data each reward gets,

a trade-off which SIRL avoids because similarity queries are agnostic to the particular

human reward. For the more complex JacoRobot, both versions of SIRL outperform all

baselines, in line with H1, although SIRL without VAE scores better than with it.

In Fig. 6.5 we present the TPA score for both environments with a varying amount of

test preference queries 𝑀 from 10 to 190, and 𝑁 = 100, 500, and 1000. For GridRobot,

each respective method performs comparably with different 𝑁s, suggesting that this is a

simple enough environment that low amounts of representation data are sufficient. For

JacoRobot, this is not the case: with just 100 queries, SIRL with VAE pre-training performs



CHAPTER 6. ALL-AT-ONCE REPRESENTATION LEARNING 107

10 30 50 70 90 110 130 150 170 1900.5

0.6

0.7

0.8

0.9

1.0

TP
A

GridRobot with N = 100
SIRL+VAE (Ours)
SinglePref

SIRL (Ours)
MultiPref 10H

Random
MultiPref 50H

VAE

10 30 50 70 90 110 130 150 170 1900.5

0.6

0.7

0.8

0.9

1.0

TP
A

JacoRobot with N = 100
SIRL+VAE (Ours)
SinglePref

SIRL (Ours)
MultiPref 10H

Random
MultiPref 50H

VAE

10 30 50 70 90 110 130 150 170 1900.5

0.6

0.7

0.8

0.9

1.0

TP
A

GridRobot with N = 500
SIRL+VAE (Ours)
SinglePref

SIRL (Ours)
MultiPref 10H

Random
MultiPref 50H

VAE

10 30 50 70 90 110 130 150 170 1900.5

0.6

0.7

0.8

0.9

1.0

TP
A

JacoRobot with N = 500
SIRL+VAE (Ours)
SinglePref

SIRL (Ours)
MultiPref 10H

Random
MultiPref 50H

VAE

10 30 50 70 90 110 130 150 170 190
Number of Preference Queries

0.5

0.6

0.7

0.8

0.9

1.0

TP
A

GridRobot with N = 1000
SIRL+VAE (Ours)
SinglePref

SIRL (Ours)
MultiPref 10H

Random
MultiPref 50H

VAE

10 30 50 70 90 110 130 150 170 190
Number of Preference Queries

0.5

0.6

0.7

0.8

0.9

1.0

TP
A

JacoRobot with N = 1000
SIRL+VAE (Ours)
SinglePref

SIRL (Ours)
MultiPref 10H

Random
MultiPref 50H

VAE

Figure 6.5: TPA for GridRobot (left) and JacoRobot (right) with simulated data. With enough data, SIRL

recovers more generalizable rewards than unsupervised, preference-trained, or random representations.
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like VAE, SIRL without pre-training has random performance (since it’s frozen), and the

preference baselines all perform close to Random, as if they weren’t trained with queries

at all. For larger 𝑁 , both versions of SIRL start performing better than the baselines,

suggesting that with enough data a good representation can be learned.

Focusing on 𝑁 = 1000, our results support H2: both SIRLs outperform all baselines in

both environments, although for JacoRobot SIRL without VAE is better than with VAE. In

the GridRobot environment VAE pre-training helps SIRL. However, while VAE performs

comparably to other baselines in GridRobot, it severely underperforms in JacoRobot. This

suggests that the reconstruction loss struggles to recover a helpful starting representation

when the input space is higher dimensional and correlated. As a result, using the VAE pre-

training to warmstart SIRL hinders performance when compared to starting from a blank

slate. When comparing the preference-based baselines, in GridRobot they all perform

similarly apart from MultiPref with 50 humans. In JacoRobot we see a trend that more

preference humans does not necessarily result in better performance. This confirms our

observation from Fig. 6.4 that deciding on an appropriate number of human preferences

to use for multi-task pretraining is challenging, a problem that SIRL bypasses.

Summary. With enough data, SIRL learns representations more predictive of the true

features (H1), leading to learning more generalizable rewards (H2). This does not neces-

sarily mean that SIRL representations are perfectly aligned with causal features — they

are just better aligned, so the learned rewards are also better. When VAE pre-training re-

covers sensible starting representations it further reduces the amount of human data SIRL

needs, otherwise it hurts performance. Lastly, surprisingly, Random is often better than

pre-training with preference queries: preference-based methods may learn features that

correlate with the training data but are not necessarily causal, and an incorrectly biased

representation is worse for learning downstream rewards than starting from scratch.

6.4 User Study: A Proxy Similarity Task for People
We now present a user study with novice users that provide similarity queries via an

interface for the JacoRobot environment.

6.4.1 Experiment Design
We ran a user study in the JacoRobot environment, modified for only two features:

table and laptop (we removed the humanoid in the environment). We designed an interface

where people can click and drag to change the view, and press buttons to replay trajectories

and record their query answer (Fig. 6.2b). We chose to display the Euclidean path of

each trajectory in the query traces, as we found that to help users more easily compare

trajectories to one another.

The study has two phases: collecting similarity queries and collecting preference

queries. In the first phase, we introduce the user to the interface and describe the two fea-
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tures of interest. Because similarity queries are preference-agnostic, we describe examples

of possible preferences akin to the ones in the introduction of the chapter, but we do not

bias the participant towards any specific preference yet. Each participant practices answer-

ing a set of pre-selected, unrecorded similarity queries, and then answers 100 recorded

similarity queries. In the second phase, we describe a scenario in the environment that

has a specific preference associated with it (e.g. “There’s smoke in the kitchen, so the

robot should stay high from the table” or “There is smoke in the kitchen and the robot’s

mug is empty, so you want to stay far from the table and close to the laptop.”) and as-

sign different preference scenarios to each participant. Each person practices unrecorded

preference queries, then answers 100 preference queries.

Participants. We recruited 10 users (3 female, 6 male, 1 non-binary, aged 20-28) from the

campus community. Most users had technical background, so we caution that our results

will speak to SIRL’s usability with this population rather than more generally.

Manipulated Variables. Guided by the results in Fig. 6.5, we compare our best performing

method, SIRL without VAE, to Random, the best performing realistic baseline. For SIRL

we collect 100 similarity queries from each participant and train a shared representation

using all of their data.

Dependent Measures. We present the same two metrics from Sec. 6.3, FPE and TPA. For

TPA, we collect 100 preference queries for each user’s unique preference, we use 70% for

training individual reward networks which we evaluate on the remaining 30% queries

(Real). We compute TPA with cross-validation on 50 splits. To demonstrate how well

SIRL works for new people who don’t contribute to learning the similarity embedding,

we also train SIRL on the similarity queries of 9 of the users and compute TPA on the

held-out user’s preference data (Held-out), for each user, respectively. Lastly, because real

data tends to be noisy, we also compute TPA with 70 simulated preference queries for 10

different rewards, which we also evaluate on a simulated test set (Simulated).

Hypotheses. Our hypotheses for the study are:

H3. Similarity queries (SIRL) recover more salient features than a random representation

(lower FPE), even with novice user data.

H4. The SIRL representation results in more generalizable reward learning (higher TPA),

even with novice similarity queries.

6.4.2 Analysis
Fig. 6.6 summarizes the results. On the left, SIRL recovers a representation twice as

predictive of the true features, supporting H3. A 2-sided t-test (p < .0001) confirms this.

This suggests SIRL can recover aspects of people’s feature representation even with noisy

similarity queries from novice users. On the right (Real), SIRL recovers more generalizable

rewards on average than Random, providing evidence for H4. Furthermore, using the

SIRL representation on a novel user (Held-out) also performs better than Random, and the

result appears almost indistinguishable from Real. This suggests that similarity queries
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Figure 6.6: Study values for FPE, and TPA with real and simulated preferences. Even with novice similarity

queries, SIRL recovers representations both more predictive of the true features and more useful for learning

different user rewards than the baseline.

can be effectively crowd-sourced and the resulting representation works well for novel

user preferences. Lastly, training with simulated preference queries slightly improves

performance for both methods, suggesting that noise in the human preference data can

be substantial. Three ANOVAs with method as a factor find a significant main effect

(F(1, 18) = 6.0175, p = .0246, F(1, 18) = 4.7547, p = .0427, and F(1, 18) = 16.1068, p < .001,

respectively). For each of the 3 cases, we also separated the 6 humans that were assigned

preferences pertaining to both features (e.g. “There is smoke in the kitchen and the robot’s

mug is empty, so stay far from the table and close to the laptop.”). SIRL performance is

slightly better when using preference data from this subset of users, hinting that perhaps

the learned representation entangled the two features.

Overall, the quantitative results support H3 and H4, providing evidence that SIRL

can recover more human-aligned representations. Subjectively, some users found the 2D

interface deceiving at times, as they would judge trajectory similarity differently based

on the viewpoint. This is a natural artifact of visualizing a 3D world in 2D, but future

work should investigate better interfaces. Some users reported struggling to trade off the

two features when comparing trajectories. This is in part due to the fact that we almost

“engineered” their internal representation, so a more in-the-wild study could determine

whether similarity queries are indeed preference-agnostic. Lastly, some queries were

easier than others: users’ time-to-answer varied across triplets suggesting that future

work could use it as a confidence metric for how much to trust their answer.

6.5 Discussion
In this chapter, our goal was to tackle the problem of learning good representations

that capture the features that matter, while excluding spurious features. If we had such

a representation, then learning rewards that capture different preferences and tasks on

top of it would lead to generalizable models that reliably incentivize the right behavior
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across different situations, rather than picking up on correlates and being unable to

distinguish good from bad behaviors on new data. Our idea was to implicitly tap into this

representation by asking people what they find similar versus not, because two behaviors

will be similar if and only if their representations are similar. We introduced a novel human

input type, trajectory similarity queries, and tested that it leads to better representations

than those learned through self-supervision or via multi-task learning: it enables learning

rewards from the same training data that better rank behaviors on test data.

That said, we need to be explicit that this is not the be-all end-all solution to our goal

above. The representations learned, as we see in simulation, are not perfectly aligned

with causal features — they are just better aligned. The learned rewards are not perfect

— they are just better than alternatives. Similarity queries do not solve the problem fully,

potentially because they suffer from the same issue preference queries do: when multiple

important features change, it becomes harder to make a judgement call on what is more

similar. The advantage that we see from similarity queries, though, is that rewards for

particular tasks might ignore or down-weigh certain features that matter in other tasks,

while similarity queries are task-agnostic and implicitly capture the distribution of tasks

in the human’s head. Rather than having to specify a task distribution for multi-task

learning, with similarity queries we are (implicitly) asking the user to leverage their more

general-purpose representation of the world. But thinking about how to overcome the

challenge that multiple changing features make these queries harder to answer opens the

door to exciting ideas for future work. For instance, what if we iteratively built the space,

and based similarity queries on some current estimate of what are the important features;

over time, as the representation becomes more aligned with the human’s, the queries

would get better at honing in on specific features.

Another obvious limitation is that we did not do an in-the-wild study. In theory,

similarity queries should be used when people already have a robot they are familiar with

and, thus, have a distribution of tasks they care about in their everyday contexts, but in

our study we needed to explain to users these contexts and what might be important. In

doing so, we almost “engineered” their internal representation. As robots become more

prevalent, a follow-up study where users are given much less structure and allowed to

actually tap into their unaltered representation might be possible.

In a sense, with SIRL we build a foundation model, and this may require hundreds of

queries to learn a good representation. While we don’t think having this much data when

pre-training is unreasonable, especially since it leads to significant desirable performance

improvement over baselines, sample-complexity is crucial to address as we scale to more

complex robotic tasks. Because similarity queries are task agnostic, we can crowd-source

the queries from multiple people (as we did in the study) and rely on this economy at scale

to alleviate user burden. Future work could also look at active querying methodologies

to ask the person for more informative similarity queries and reduce data amounts.

A further avenue of work is extending beyond reward learning, using SIRL represen-

tations directly for learning policies or exploration functions. We emphasize that simi-

larity queries are not a replacement for self-supervised learning; rather, we view them
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as complementary — self-supervised learning might be able to leverage expert-designed

heuristics to eliminate many of the spurious features, while SIRL might serve to fine-tune

the representation. How to properly combined the two remains an open question.

Overall, similarity queries are a step towards recovering human-aligned representa-

tions. They improve upon the state of the art, and can benefit from further exploration

in how to combine them with other inputs and self-supervision, and how to make them

easier through better interfaces and query selection algorithms.

6.6 Additional Details and Comparisons

6.6.1 Trajectory Generation
In GridRobot the state space is discretized, so the trajectory spaceΞ can be enumerated;

however, the JacoRobot state space is continuous, so we need to construct Ξ by sampling

the infinite-dimensional trajectory space. We randomly sample 10,000 start-goal pairs

and compute the shortest path in the robot’s configuration space for each of them, �𝑆𝐺.

Each trajectory has horizon𝐻 and consists of 𝑛-dimensional states. We then apply random

torque deformations 𝑢 to each trajectory to obtain a deformed trajectory �𝑆𝐺
𝐷

. We randomly

select up to 3 states along the trajectory, and then deform each of the selected states with

a different random torque 𝑢. To deform a trajectory in the direction of 𝑢 we follow:

�𝑆𝐺𝐷 = �𝑆𝐺 + �𝐴−1�̃� , (6.5)

where 𝐴 ∈ R𝑛(𝐻+1)×𝑛(𝐻+1)
defines a norm on the Hilbert space of trajectories and dictates

the deformation shape [88],� > 0 scales the magnitude of the deformation, and �̃� ∈ R𝑛(𝐻+1)

is 𝑢 at indices 𝑛𝑡 through 𝑛(𝑡+1) and 0 otherwise (�̃� is 0 outside of the chosen deformation

state index). For each deformation, we randomly generated � and the index of the state

the deformation is applied to. For smooth deformations, we used a norm 𝐴 based on

acceleration, but other norm choices are possible as well (see Dragan et al. [88] for more

details). We took inspiration for this deformation strategy from Bajcsy et al. [25].

6.6.2 Training Details
We describe architecture and optimization details for reproducibility.

6.6.2.1 Feature Networks. All embeddings have the same network size: for GridRobot

we used MLPs with 2 hidden layers, 128 units each, mapping to 6 output neurons, while

for JacoRobot we used 1024 units to handle the larger input space. For both environments,

we used ReLU non-linearities after every linear layer.

We trained the VAE network with a standard variational reconstruction loss [156] also

including a KL-divergence-based regularization term (to make the latent space regular).
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The regularization part of the loss had a weight of � = 0.01. For both environments, we

optimized the loss function using Adam for 2000 epochs with an exponentially decaying

learning rate of 0.01 (decay rate 0.99999) and a batch-size of 32.

SinglePref and MultiPref with 10 and 50 humans are trained using the standard pref-

erence loss in (6.4). Christiano et al. [71] ensured that the rewards predicted by the

preference network remain small by normalizing them on the fly. We instead add an 𝑙2
regulatization term on the predicted reward to the preference loss, with a weight of 10 for

GridRobot and 1 for JacoRobot. All three methods optimize this final loss in the same way:

for GridRobot, we use Adam for 5000 epochs with a learning rate of 0.01 and batch-size

32, while for JacoRobot a lower learning rate of 0.001 results in more stable training.

Lastly, for SIRL we had the option to first pre-train with the VAE loss. Training with

the similarity objective in (6.2) happens disjointly, after pre-training. For both GridRobot

and JacoRobot, we optimized this loss function using Adam for 3000 epochs with an

exponentially decaying learning rate of 0.004 (decay rate 0.99999) and batch-size 64.

We note that our current architectures assume fixed-length trajectories but one could

adopt an LSTM-based architecture for trajectories of varying length [267].

6.6.2.2 Preference Networks. For evaluating TPA, we used preference networks on top

of each tested embedding. For GridRobot we used MLPs with 2 hidden layers of 128 units,

and for JacoRobot we used 1024 units for larger capacity. For both environments, we used

ReLU non-linearities after every linear layer. We added the same 𝑙2 regularization to the

loss in (6.4) as before, with weight 10 for GridRobot and 1 for JacoRobot. For GridRobot,

we optimized our final loss function using Adam for 500 epochs with a learning rate of

0.001 and a batch-size of 64. For JacoRobot, we increased the number of epochs to 1000.

6.6.3 Ablations
Fig. 6.5 illustrates results with frozen SIRL, and unfrozen baselines without VAE pre-

training, as these were the best configurations we found for each method. In this section,

we show the complete ablation we performed to decide which methods benefit from

frozen or unfrozen embeddings, or VAE pre-training. Fig. 6.7 showcases the result of

this ablation on both GridRobot and JacoRobot. Overall, we see that SIRL does better

when the learned representation is frozen, while all the other methods do better when

the representations is unfrozen. SinglePref and the MultiPref baselines perform better

without VAE pre-training, while SIRL sometimes benefits from pre-training in simple

environments like GridRobot.
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Figure 6.7: Ablation results for GridRobot (left) and JacoRobot (right). Overall, SIRL does better when the

learned representation is frozen, while all other method do better when the representations is unfrozen.

SinglePref and the MultiPref baselines perform better without VAE pre-training, while SIRL sometimes

benefits from pre-training in simple environments like GridRobot.
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Part III

Detecting Representation Misalignment

Human behavior is not random – it’s intentional and reflective of internal goals and

preferences. To interpret and learn from it, robots rely on a model of how people act: they

often assume humans trade off what matters for the task – the representation – and behave

rationally to achieve that trade-off. If the robot expects representations to be naturally

aligned, it interprets the human’s actions as rationally trading off its representation instead

of their own. Thus, with the wrong representation, the robot may incorrectly anticipate

what the person will do or misinterpret their guidance for how to do the task, resulting

in undesired behaviors and poor coordination. In Part III we enable the robot to instead

automatically detect misalignment during real-time interaction with the human. The

idea here is to jointly estimate the human’s intent and their rationality in achieving it,

and reinterpret that rationality as a confidence in how much the robot should trust its

representation: if the person’s behavior seems irrational under the robot’s current representation,
then that representation must be misaligned. This provides the robot with a fast and principled

way to monitor misalignment, and it can even overcome it: once the robot knows its

representation is wrong, it can re-learn or expand it to be aligned with the human’s (like

in Part II). We demonstrate that the robot can still learn from behavior it understands, but is

now robust to misinterpretation and ultimately learns what humans want. Lastly, we show

our insight applies broadly to many types of human data like physical demonstrations or

corrections (Chapter 7) and teleoperation in shared autonomy (Chapter 8).
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Chapter 7

Misalignment Detection in Physical HRI

This chapter is based on the papers “Quantifying Hypothesis Space Misspecification in Learning
from Human–Robot Demonstrations and Physical Corrections” [38] and "Learning under Mis-
specified Objective Spaces" [43], written in collaboration with Andrea Bajcsy, Jaime Fisac, Sampada
Deglurkar, and Anca Dragan.

Figure 7.1: A household robotics scenario where the person physically interacts with the robot. The person

prefers the robot to keep cups closer to the table, but accounting for the table (outside of collisions) is not

in the robot’s representation for what the person might care about. Thus, the robot’s internal situational

confidence, 𝛽, about what the human input means is low for all hypothesised reward parameters �.

Autonomous systems are increasingly interfacing and collaborating with humans in

a variety of contexts, such as semi-autonomous driving, automated control schemes on

airplanes, or household robots working in close proximity with people. While the improv-
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ing capabilities of robotic systems are opening the door to new application domains, the

substantially greater complexity and interactivity of these settings makes it challenging

for system designers to account for all relevant operating conditions and requirements

ahead of time. For example, a household robot designer may not know how an end-user

would like the robot to interact with the personal possessions in the user’s home.

In such situations, it can be beneficial for the robot to use human input as guidance

on the desired behavior. In fact, this has enabled researchers and engineers to program

advanced behaviors that would have otherwise been extremely challenging to specify. He-

licopter acrobatics [1], aggressive automated car maneuvers [161], and indoor navigation

[165] are three cases exemplifying the benefit of human input for guiding robot behavior.

To use human input, system designers equip robots with a reward model based on a

representation of possible features that the human could care about. These can range from

quadratic models[162] to complex temporal logic specifications [101] to neural networks

[96]. However, anticipating all motivations for human input and specifying a complete

representation is challenging. Consider Fig. 7.1 where a human is attempting to change

the robot’s behavior in order to make it consistently stay close to the table, but the robot’s

representation of what the human might care about does not include distances to the

table. By choosing a class of functions, the system designer implicitly assumes that what

the human wants (and is giving input about) can be represented via a member of that

class. Unfortunately, when this assumption breaks, the system can misinterpret human

guidance, perform unexpected or undesired behavior, and degrade in overall performance.

Two approaches to mitigating this problem could be to either start with a more complex

reward model or to continuously increase its complexity given more task data. Unfor-

tunately, even complex models are not guaranteed to encompass all possibilities and

re-computing the best model based on human data faces the threat of overfitting to the

most recent observations. In contrast, we argue the robot should be able to understand
when it cannot understand the input. For example, if the end-user in the home is trying to

guide the robot to handle fragile objects with care but the system’s representation for the

space of rewards does not posses a feature for fragility, the robot should deduce that this

input cannot be well explained by any of its given reward hypotheses.

In this chapter, we formalize how autonomous systems can explicitly reason about

how well they can explain given human inputs. To do this, we observe that if a human

input appears unlikely with respect to all possible reward hypotheses, then the robot’s

reward space, or representation, is misaligned. We build on previous work centered

around this observation to propose a Bayesian inference framework focused on inferring

both reward parameters and their corresponding situational confidence. If the robot is in

situations like Fig. 7.1 where none of the reward hypotheses explain the human’s input

well, then the situational confidence will be low for all hypotheses, indicating that the

robot’s representation is not sufficiently rich to understand the human’s input. However,

when the robot’s representation is well specified, our framework does not impede the

robot from inferring the correct task objectives — in fact, the situational confidence will

be high, providing an indicator of how well the system can understand the objective.
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We illustrate the utility of situational confidence estimation in quantifying represen-

tation misalignment for two types of human input: demonstrations and corrections. In

Chapter 8 we will demonstrate that the principles outlined in our formalism are more

general than just these two domains and have implications for a wider range of interaction

modes, including shared autonomy. Our contributions in this section are:

1. we introduce a general framework for quantifying representation misalignment

when the human and the robot are acting on the same dynamical system;

2. we showcase the framework for learning from demonstrations using user demon-

stration data for an arm motion planning task;

3. we showcase the framework for learning from physical corrections by deriving an

algorithm for online (close to real-time) inference and testing it in a user study.

This chapter is organized as follows: Sec. 7.1 places this work in the context of existing

literature on robots learning from humans and confidence estimation. Sec. 7.2 frames

the confidence estimation problem more formally for scenarios where the human and

robot operate on the same dynamical system. Sec. 7.3 directly instantiates the framework

in Sec. 7.2 for the case of learning from demonstrations. Sec. 7.4 presents a derivation

of approximations of the general formalism for tractable online inference from human

corrections. Sec. 7.5 showcases our proposed approach in several case studies where the

robot’s representation cannot or only partially explain the human’s input. Sec. 7.6 presents

the results of a user study of our approach as applied to a 7-DoF robotic manipulator

learning from human participants. Sec. 7.7 concludes with a discussion of some of the

limitations of our work, as well as suggestions for future research directions.

Overall, we think that the ability to detect misalignment when learning rewards from

human input will become increasingly important as robotics capability advances and we

will want end-users to customize how the robot behaves. Our work takes a step in this

direction by enabling robots to detect when none of the hypotheses they have explain

the user input, and our experiments show promising results. Of course, there are still

limitations to this. One limitation is in the experiments themselves, which are only

for motion planning tasks with low-dimensional representations. A more fundamental

limitation is that there will still be cases when the person wants something outside the

robot’s representation, but the robot can nonetheless explain their current input relatively

well with what it has access to, thus confusing misalignment for slight noise in the human

input. This will especially be the case as the representation is more expressive, and can

only be solved by the robot receiving a lot more human input: each might be explainable

by some hypothesis, but eventually no hypothesis can explain all input. More work is

needed in studying how to query for diverse human input, as well as how to convey what

the robot has learned back to the person, and in general how to have a true collaborative

interaction to detect and resolve misalignment in the objective space.
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7.1 Prior Work
We group prior work into three main categories: enabling robots to learn from human

input, doing so while leveraging uncertainty, and estimating confidence.

7.1.1 Robots Learning from Humans
Programming robots through direct human interaction is a well-established paradigm.

Human input can be given to the robot in a variety of forms, from teleoperation of the

robot by a user to kinesthetic teaching [17]. In such interaction paradigms, the robot aims

to infer a reward function or policy that best describes the examples that it has received. New

avenues of research focus on learning such robot objectives from human input through

demonstrations [2, 219], teleoperation data [145], corrections [144, 25], comparisons [71],

examples of what constitutes a goal [103], or even specified proxy objectives [123]. In Part

III we focus on learning from three such types of human input – demonstrations, physical

corrections, and teleoperation – showcasing that the principles outlined in our formalism

are generally applicable.

One approach to learning behaviors from human inputs is inverse reinforcement learn-

ing (IRL). In classical IRL, the robot receives complete optimal demonstrations of how to

perform a task, and the robot learns the human’s reward function from these observa-

tions [151, 214, 219]. In this paradigm, it is typically assumed that the expert is trying to

optimize an unknown reward function. The robot uses the observations of the human’s

behavior to recover the underlying objective.

Another form of human input are corrections: here, the robot performs the task accord-

ing to how it was programmed and the user corrects aspects of the task to better match

their preferences. From these sparse interactions, the robot infers the reward function

to improve performance during the next task iteration [262, 236, 152]. Learning from

corrections has been explored in offline [144, 118] and online settings [25, 60, 18].

Although powerful, the aforementioned IRL works assume that the human expert

provides optimal demonstrations, which is often an unrealistic assumption. Real human

input, especially during interaction with high degree-of-freedom systems like robotic

manipulators, is noisy and sub-optimal. Second, much of the corrections literature has

focused on estimates of the human’s objectives. However, in practice, even the most

likely estimate might not be a very likely one. Thus, in both domains, we stress that it is

important to maintain the uncertainty over the estimated objectives.

7.1.2 Uncertainty in Robot Learning
Rather than estimating a single objective, some learning methods maintain an entire

probability distribution over the objective [51, 123, 190, 233]. This not only enables the

robot to leverage a prior, but also to then generate its behavior in a way that is mindful of

the entire distribution, rather than of just the maximum likelihood estimator.
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Bayesian IRL [233] treats demonstrations as evidence about the objective, and does a

Bayesian belief update on a prior distribution. Inverse Reward Desing [123] treats the

objective a designer specified for a particular set of environments (a “proxy” objective) as

evidence about the true desired objective, again obtaining a full distribution over what

the designer might want. The intuition is that this observed proxy objective incentivizes

behavior that is approximately optimal with respect to the true objective.

Lastly, specifically for input as physical corrections, [190] reasons over the uncertainty

of the estimated human preferences through the means of a Kalman filter. The method

maintains a mean estimate and a covariance of this estimate as a measure of confidence.

These are used in planning the robot’s trajectory such that it optimizes for features it is

confident about, while avoiding features it is uncertain about.

Although they maintain a full distribution, these works still assume that what the

human wants is in the robot’s representation. We argue that this is not necessarily a

realistic assumption, and later showcase some consequences that arise when it is not true.

When the robot’s representation is misaligned, even when maintaining uncertainty over

the objective, state-of-the-art methods interpret human input as evidence about which

hypothesis is correct, rather than considering whether any hypothesis is correct.

7.1.3 Situational Confidence Estimation
Some recent works are studying how to enable robots to understand that their models

cannot explain human input well [309, 98, 100]. The authors in [98, 100] employ a noisily-

optimal model of human pedestrian motion when the human and the robot operate on

separate dynamical systems (and have separate objective functions). The paper introduces

the notion of model confidence estimation and uses the apparent likelihood of the human’s

choice of actions to adjust the confidence in predictions about their behavior.

Our work draws inspiration from the notion of model confidence estimation, general-

izing it to the setting of inferring what the robot’s objective ought to be. Instead of focusing

on misalignment of a discrete set of physical goal locations for pedestrian navigation, here

we study misalignment of a relatively complex set of possible robot features in motion

planning tasks. As a result of focusing on robot objectives, we also study a different form

of human input – that is, input in the context of operating on the same dynamical system,

such as full task demonstrations and physical corrections.

7.2 Problem Formulation
We consider a robot 𝑅 operating in the presence of a human 𝐻 whom it seeks to assist

in the execution of some task. In the most general setting, the robot and the human are

both able to affect the state 𝑥 ∈ R𝑛 over time through their respective control inputs:

𝑥𝑡+1 = 𝑓
(
𝑥𝑡 , 𝑢𝑡𝑅 , 𝑢

𝑡
𝐻

)
, (7.1)
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with 𝑢𝑅 ∈ 𝒰𝑅 and 𝑢𝐻 ∈ 𝒰𝐻 , where𝒰𝑖 (𝑖 ∈ {𝐻, 𝑅}) are compact sets. We assume that the

human has some consistent preference ordering between different state trajectories and

input signals, which could in principle be expressed through a reward function

𝑅∗(x, u𝑅 , u𝐻) (7.2)

where the state trajectory is x = [𝑥0, 𝑥1, . . . , 𝑥𝑇] ∈ R𝑛(𝑇+1)
, the robot’s control input is

u𝑅 = [𝑢0

𝑅
, 𝑢1

𝑅
, . . . , 𝑢𝑇

𝑅
] ∈ R𝑛(𝑇+1)

, and the human’s is u𝐻 = [𝑢0

𝐻
, 𝑢1

𝐻
, . . . , 𝑢𝑇

𝐻
] ∈ R𝑛(𝑇+1)

.1

Note that this hypothesized reward function 𝑅∗ can be quite general, encoding an arbitrary

preference ordering. However, the robot does not in general have access to the human’s

preferences 𝑅∗, and must instead attempt to infer and represent them tractably.

The robot can typically reason over a parametrized approximation of the reward func-

tion, which introduces an inductive bias, making inference tractable at the reward of

limiting expressiveness: in some cases, the chosen set of parametric functions may fail to

encode preferences that would explain the human’s behavior with sufficient accuracy. In

this work, we will denote by 𝑅� the reward function induced by parameters � ∈ Θ, and

the robot seeks to estimate the human’s preferred � from her control inputs u𝐻 .

In a general setting, since the state trajectory x is determined not only by the human’s

actions u𝐻 but also the robot’s u𝑅, the human would need to reason about how the robot

will respond to her decisions. This requires analyzing the interaction in a game-theoretic

framework [122, 99], which will not be the object of this work. Instead, we focus on

common interaction scenarios in which the robot can approximately assume that the

human does not explicitly account for the coupled mutual influence between both agents’

decisions. This happens frequently if the human is either providing a demonstration

for the robot or intervening to correct the robot’s default behavior. In these settings,

the typical assumption is that the human has all necessary information about the robot’s

control input u𝑅 before deciding on her own u𝐻 .

Thus, given observations of the human input u𝐻 from an initial state 𝑥0
, the robot

needs to draw inferences on the reward parameter �:

𝑃(� | 𝑥0, u𝑅 , u𝐻) =
𝑃(u𝐻 | 𝑥0, u𝑅;�)𝑃(�)∫

�̄
𝑃(u𝐻 | 𝑥0, u𝑅; �̄)𝑃(�̄)𝑑�̄

, (7.3)

where 𝑃(u𝐻 | 𝑥0, u𝑅;�) characterizes how the robot expects the human’s input to be

informed by her preferences, conditioned on the initial state and the robot’s controls.

For example, if the human were assumed to act optimally, this model would place

all probability on the set of optimal states and actions with respect to the reward 𝑅�.

Of course, this would be an unreasonably strong assumption given that the robot’s

parametrized reward constitutes a best effort to approximate the human’s preferences.

1
For deterministic dynamics (7.1), having 𝑥0 , u𝑅 and u𝐻 is enough to fully specify the entire state

trajectory x. In this case, the reward function could be rewritten as 𝑅∗(𝑥0 , u𝑅 , u𝐻) by implicitly encoding

(7.1). For clarity, we use the more general form in (7.2) and make the dependence explicit where needed.
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Instead, a useful modeling choice can be to characterize the human as being more likely to

take actions that are well-aligned with her preferences.

One such model is inspired by the Boltzmann energy-based model satisfying the max-

imum entropy principle [146]. Following its adaptations as a model of human decision-

making in [282, 27, 25], we model the human as a noisily-optimal agent that tends to

choose control inputs that approximately maximize the modeled reward:

𝑃(u𝐻 | 𝑥0, u𝑅;�, 𝛽) = 𝑒𝛽𝑅�

(
x(·;𝑥0 ,u𝑅 ,u𝐻),u𝑅 ,u𝐻

)∫
ū𝐻
𝑒𝛽𝑅�

(
x(·;𝑥0 ,u𝑅 ,ū𝐻),u𝑅 ,ū𝐻

)
𝑑ū𝐻

. (7.4)

The inverse temperature coefficient 𝛽 ∈ [0,∞) determines the degree to which the robot

expects to observe human actions that are consistent with the reward model.

The goal is to detect when the robot does not have a rich enough reward hypothesis

space, i.e. when 𝑅∗ lies far outside of any 𝑅�. Rather than only interpreting human

input as evidence about which hypothesis is correct, we additionally focus on considering

whether any hypothesis is correct. It is thus crucial that the robot can quantify the extent

to which any parameter value � ∈ Θ can correctly explain the observed human input.

7.2.1 Situational Confidence Estimation
The key to our approach goes back to the inverse temperature parameter 𝛽 in (7.4).

Typically, 𝛽 is a fixed term, encoding the degree to which the robot expects to observe

human actions that are optimal. Setting it to 0 models a randomly-acting human, while

setting it to∞models a perfectly optimal human. However, the possibility of misalignment

brings fixing 𝛽 into question: when the space is correctly specified, we would expect the

human actions to indeed be somewhat close to optimal; but when the space is misaligned,

we should expect the actions to be far from optimal for any �. Thus, rather than treating 𝛽 as a

fixed term, we build on the work in [98, 100] and explicitly reason over 𝛽 as an additional

inference parameter along with �. Since 𝛽 directly impacts the entropy of the human’s

decision model, it can be used as an effective and computationally efficient measure of the

robot’s confidence in its parametric interpretation of the human’s preference: we say that

the robot is assessing its situational confidence for the inference task at hand.

Thus, the robot maintains a joint Bayesian belief 𝑏(�, 𝛽). For each new measurement

of u𝐻 given 𝑥0, u𝑅, this belief is updated as:

𝑏′(�, 𝛽) = 𝑃(u𝐻 | 𝑥0, u𝑅;�, 𝛽)𝑏(�, 𝛽)∫
�̄,�̄�
𝑃(u𝐻 | 𝑥0, u𝑅; �̄, �̄�)𝑏(�̄, �̄�)𝑑�̄𝑑�̄�

, (7.5)

where 𝑏′(�, 𝛽) = 𝑃(�, 𝛽 | 𝑥0, u𝑅 , u𝐻).
This inference can be seen as analogous to performing Bayesian Inverse Reinforce-

ment Learning [233] with the Maximum Entropy IRL [311] observation model, where we
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maintain the full belief instead of just the maximum likelihood estimate, and we explicitly

reason over the additional scaling parameter 𝛽. By actively performing inference over 𝛽,

the robot can gain insight into the reliability of its human model in light of new evidence.

Context-dependent Usage of Situational Confidence. How this insight should be used

is dependent on the context of the robot’s operation. Here, we provide some examples

of how situational confidence can be integrated into various human-robot interaction

scenarios and robot motion planners.

In collaborative settings where the human and robot are accomplishing a task together

(e.g. manipulating an object together), it the robot may stop and ask for clarification from

the human whenever sufficient probability mass indicates low confidence:

∀� ∈ Θ, arg max

𝛽
𝑏′(𝛽 | �) < 𝜖 . (7.6)

That is, for a predefined threshold 𝜖, if all hypotheses have the most mass on 𝛽s lower

than 𝜖, the robot can raise a flag.

In assistive applications, where the robot is carrying out a task in close physical prox-

imity to the human, the robot may receive intermittent human input to correct it’s task

performance. In such scenarios, it may be appropriate for the robot to simply dismiss

human corrections that it cannot explain in terms of modeled preference parameters and

carry on with its pre-defined task. That is, when a human input results in a 𝑏′(�, 𝛽) that

satisfies (7.6), the input gets discarded.

Situational confidence could also be leveraged by robot motion planners that excel

at decision making under uncertainty. Here, the robot may use its joint posterior belief

𝑏′(�, 𝛽) to make goal-driven decisions in the presence of the human. The coupling between

the inference problem and the robot’s planning problem can be viewed as a partially

observable Markov decision process (POMDP), where the hidden parts of the state are the

reward parameter� and the situational confidence 𝛽, the robot receives observations about

them via human actions u𝐻 , it takes actions u𝑅, and it optimizes an unknown parametrized

reward 𝑅�. Our problem is, thus, akin to identifying misalignment in the state space of

the POMDP. However, inference and planning in such spaces requires solving the full

POMDP, which is computationally intractable for large, real-world problems [149].

Alternative, less computationally demanding motion planning approaches are also

amenable to our framework, where the robot plans to maximize the expected reward for

the human given its current belief, by marginalizing over 𝛽:

max

u𝑅
E

�∼𝑏

[
𝑅�(x, u𝑅 , u𝐻)

]
, (7.7)

for an expected human input u𝐻 that will typically be 0 if the robot is attempting to perform

the task without the need for active human intervention. To understand the implication

of (7.7) as a function of 𝛽, we need to understand the posterior belief marginalized over

𝛽 that we are taking the expectation over. At one extreme, if for all �s the conditional

distribution 𝑏′(𝛽 | �) puts all probability mass on 𝛽 = 0 (i.e. input poorly explained), since
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𝑃(u𝐻 | 𝑥0, u𝑅;�, 𝛽 = 0) is the same for all �s, the robot will obtain a posterior for � that

is equal to the prior. The optimization above becomes the same as optimizing using the

robot’s prior, i.e. the robot ignores the human input. At the other extreme, if there is one �
that perfectly explains the input and all others do not, the posterior will put all probability

mass on that �, and the robot will switch to optimizing it.

The objective expectation may also be appropriately weighted by the robot’s situational

confidence for each �:

max

u𝑅
E

�,𝛽∼𝑏

[
𝛽𝑅�(x, u𝑅 , u𝐻)

]
, (7.8)

which leads the robot to prioritize those components about which it is most certain.

In Sec. 7.3 and Sec. 7.4 we discuss some of these possibilities in the context of learning

from demonstrations and corrections.

7.2.2 Reward Representation through Basis Functions
One way to approximate the infinite-dimensional space of possible reward functions

using a finite number of parameters is the use of a finite family of basis functions Φ𝑖[214].

This family can be seen as a truncation of an infinite collection of basis functions spanning

the full function space. Parametric approximations 𝑅� of 𝑅∗ then have the form

𝑅�(x, u𝑅 , u𝐻) =
𝑑∑
𝑖=1

�𝑖Φ𝑖(x, u𝑅 , u𝐻) = �𝑇Φ(x, u𝑅 , u𝐻) . (7.9)

Consistent with classical utility theories [282], we further assume that the human’s pref-

erences can be approximated through a cumulative return over time, rewriting (7.9) as

𝑅�(x, u𝑅 , u𝐻) =
𝑑∑
𝑖=1

�𝑖
𝑇∑
𝑡=0

𝜙𝑖(𝑥𝑡 , 𝑢𝑡𝑅 , 𝑢
𝑡
𝐻) , (7.10)

where 𝜙𝑖 : R𝑛 ×𝒰 ×𝒰 → R are fixed, pre-specified, bounded real-valued basis functions,

� is the unknown parameter that the robot is trying to fit according to the human’s

preferences, and 𝑑 is the dimensionality of its domain Θ.

In the domains presented in Sec. 7.3 and Sec. 7.4, the functions 𝜙𝑖 output feature

values that encode key aspects of a task—for example distance between the robot body

and obstacles in the environment, speed of the motion, or characteristics of a motion

planning task. In general, the 𝜙𝑖 can either be hand-engineered by a system designer or

more generally learned through data-driven approaches [96].

It is important to stress that the misalignment issue we are trying to mitigate is quite

general and does not exclusively affect rewards based on hand-crafted features: any

representation could ultimately fail to capture the underlying motivation of some human

actions. While it may certainly be possible, and desirable, to continually increase the
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Figure 7.2: (Left) Visual example of a full human-provided demonstration x. (Right) Visual example of a

human physical correction 𝑢𝑡
𝐻

onto the robot’s current trajectory x.

complexity of the robot’s representation to capture a richer space of rewards, there will

still be a need to account for the presence of yet-unlearned components of the true reward.

In this sense, our work is complementary to open-world reward modeling efforts.

Note that using a reward model in the form of (7.10), the observation model (7.4)

becomes overparametrized, since for any (�, 𝛽) pair with � ∈ Θ and 𝛽 ∈ [0,∞), one

can always find a different �′ = 𝑐� with an associated 𝛽′ = 𝛽/𝑐 leading to the same

probability distribution over human choices. This is equivalent to using an unrestricted

Θ and 𝛽 = ∥�∥. Due to this overparametrization, the absolute value of 𝛽 does not have a

universal meaning, and restricting � to have a fixed norm is necessary in order to make

comparisons between the 𝛽 values associated to different � hypotheses. We thus restrict

our Θ to the set of vectors with unit norm.

Consider the case where the human provides input for a reward function in the robot’s

reward space. This results in the robot inferring high probability on the corresponding

� vector on the unit sphere with a high magnitude 𝛽. However, if the reward that the

human cares about and provides input for is outside the robot’s reward space, the robot

will infer low probability on all � vectors in the unit sphere, with low magnitude 𝛽s.

7.3 Approach: Misalignment for Demonstrations

7.3.1 Formulation
In learning from demonstrations, the human directly controls the state trajectory x

through her input u𝐻 , which enables her to offer the robot a demonstration of how to

perform the task. Fig. 7.2 (left) is an example of such a demonstration.

During the demonstration, the robot is put in gravity compensation mode or is teleop-

erated, to grant the person full control over the desired trajectory. As such, in this setting,

the reward function 𝑅� does not depend on the robot controls u𝑅. Additionally, since the
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person is primarily concerned with the robot’s states and not with the (robot or human)

actions required to reach those states, we model the human’s internal preferences as only

dependant on the state trajectory x. Accordingly, the reward function in (7.10) becomes:

𝑅�(x) = �𝑇Φ(x). (7.11)

The reward does not have a direct dependence on the actions, but it has an indirect one,

as x depends on u𝑅 and u𝐻 .

In our problem formulation, we would like the robot to explicitly reason about how

well it can explain the demonstration given its human model. Thus, we can adapt the

model in (7.4) to use this new reward function2,

𝑃(x | �, 𝛽) = 𝑒𝛽�
𝑇Φ(x)∫

x̄ 𝑒
𝛽�𝑇Φ(x̄)𝑑x̄

, (7.12)

then perform the Bayesian update in (7.5)

𝑏′(�, 𝛽) =
𝑃(x | �, 𝛽)𝑏(�, 𝛽)∫

�̄,�̄�
𝑃(x | �̄, �̄�)𝑏(�̄, �̄�)𝑑�̄𝑑�̄�

. (7.13)

Given 𝑏′(�, 𝛽), we now can use any of (7.6), (7.7) or (7.8). Next, we discuss making inference

with (7.12) and (7.13) tractable.

7.3.2 Approximation
Although the proposed formalism enables us to capture if the robot’s representation

cannot explain the human’s input, it is non-trivial to implement tractably for continuous 𝛽
and �, and large state and action spaces. Notice that equations (7.12) and (7.13) constitute

a doubly-intractable system with denominators that cannot be computed exactly. For

this reason, we employ several approximations to demonstrate the benefits of estimating

situational confidence. Note that we do not consider these a contribution of our work: we

choose the simplest approximations that facilitate tractability. There are many methods

for approximate inference of � studied in the literature that could be used for the joint

(�, 𝛽) spaces as well, from Metropolis Hastings [123, 250], to acquiring an MLE only via

importance sampling of the partition function [96] or via a Laplace approximation [176].

To approximate the intractable integral in (7.12), we sampled a set𝒳 of 1500 trajectories.

We sampled rewards according to (7.11) given by random unit norm �s, then optimized

them with an off-the-shelf trajectory optimizer. We used TrajOpt [255], which is based on

sequential quadratic programming and uses convex-convex collision checking. This way,

we obtain dynamically feasible trajectories that optimize for different features in varying

proportions. While this sampling strategy cannot be justified theoretically, it works well

2
For deterministic (7.1), 𝑃(u𝐻 | 𝑥0 , u𝑅;�, 𝛽) is equivalent to 𝑃(x | �, 𝛽).
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in practice: the resulting optimized trajectories are a heuristic for sampling diverse and

interesting trajectories in the environment. Future work will address this shortcoming by

either providing theoretical guarantees or using importance sampling instead.

For the second approximation to (7.13), we discretized the space of � ∈ Θ and 𝛽 ∈ ℬ
into sets Θ𝐷 and ℬ𝐷 , which leaves us with a finite, easy to compute posterior. For more

practical details on specific discretization schemes, see Sec. 7.8.1.

Using the above discretization3, we can now perform tractable inference from demon-

strations 𝒟 to obtain a discrete posterior 𝑏(�, 𝛽). Algorithm 4 summarizes the full pro-

cedure: given Θ𝐷 ,ℬ𝐷 ,𝒳, and 𝒟, our method iteratively updates the belief using (7.12)

and (7.13), resulting in the posterior 𝑏(�, 𝛽). Lacking any a-priori information, we chose

a uniform prior but our method will work with any prior. We next present examples for

what this posterior looks like in different scenarios.

Algorithm 4: Learning from Demonstrations (Offline)

Input: Discretized sets Θ𝐷 ,ℬ𝐷 ,𝒳, set of demonstrations𝒟.

𝑏(�, 𝛽) ← 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(�, 𝛽).
for x in𝒟 do

for � ∈ Θ𝐷 , 𝛽 ∈ ℬ𝐷 do
𝑃(x | �, 𝛽) = 𝑒𝛽�

𝑇Φ(x)∑
x̄∈𝒳 𝑒

𝛽�𝑇Φ(x̄) as per (7.12).

𝑏(�, 𝛽) ← 𝑃(x|�,𝛽)𝑏(�,𝛽)∑
�̄∈Θ,�̄�∈ℬ 𝑃(x|�̄,�̄�)𝑏(�̄,�̄�)

as per (7.13).

end
end
return Posterior belief 𝑏(�, 𝛽) inferred from𝒟.

7.3.3 Examples
To provide intuition for how situational confidence can indicate when a robot’s repre-

sentation is misaligned, we illustrate some examples with a robot manipulator learning

from a human demonstrator. These examples help prepare the setup we will present in

our actual experiments in Sec. 7.5.

The robot manipulator is performing a household task of moving cups from a shelf

onto the kitchen table. The robot needs to learn from the person’s demonstrations how to

best perform this task. For this purpose, the person physically guides the robot through

3
In situations where the designer might want high fidelity inference over a large space of � vectors,

reasoning over a heavily discretized space would be more computationally expensive. However, longer

offline computation is possible in our learning-from-demonstrations scenario as the inference happens

offline, after providing the robot with human demonstrations. Alternatively, we could use Monte Carlo

sampling approaches, similar to [123, 233].
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(a) (Left) Simulated perfect demonstration for keeping the cup close to the table. (Right) Posterior belief resulted from

this demonstration. A perfect demonstration leads to a high probability on the correct � and high values for 𝛽.

(b) (Left) Noisy human demonstration for keeping the cup close to the table. (Right) Posterior belief resulted from this

demonstration. A noisy but well-explained demonstration leads to a high probability on the correct � and moderately

high values for 𝛽. However, the noise in the demonstration reduces the probability at the distributional peak.

(c) (Left) Simulated perfect demonstration for keeping the cup away from the human’s body. (Right) Posterior belief

resulted from this demonstration. Notice that, since this demonstration is poorly explained (the robot is not reasoning

about distance from the human), the posterior belief is spread out approximately uniformly over all �s and the lowest

𝛽 values. This indicates that the robot cannot tell what the demonstration was intended for.

Figure 7.3: Three examples of demonstrations and the inferred posterior belief after each one of them.

The robot infers the right � = [0, 1, 0] from the two well-explained demonstrations, but, unlike the perfect

simulated demonstration in Fig. 7.3a, the noisy one in Fig. 7.3b cannot reach the highest 𝛽 and has as

overall more spread-out probability distribution with a lower peak value. Lastly, the perfect simulated

demonstration that is poorly explained in Fig. 7.3c results in a posterior that is spread-out over all �s and

the lowest 𝛽s , consistent with the robot not being able to tell what the human’s objective was.
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one or a few demonstrations of moving the cup down to the table, from which the robot

infers the hidden objective function.

In these examples, the robot’s representation includes three features: efficiency (E) as

sum of squared velocities over the trajectory, distance to the table (T), and distance from

the laptop (L) depicted in black. Formally, we can represent these three features as:

Φ(x) =


∑𝑇
𝑖=1
((𝑥 𝑖 − 𝑥 𝑖−1)/Δ𝑡)2∑𝑇

𝑖=0
| |𝑥 𝑖 − 𝑥

table
| |2∑𝑇

𝑖=0
max{0, 𝐿 − ||𝑥 𝑖 − 𝑥

laptop
| |2}

 (7.14)

where 𝐿 is the radius of a penalty sphere around the laptop, Δ𝑡 is the discrete timestep

between the states in the trajectory, and the corresponding feature weight vector is � ∈ R3
.

Fig. 7.3 demonstrates how the feature weight � and the situational confidence 𝛽 are

affected for well-explained, noisy, and poorly-explained simulated human demonstration.

The posterior belief is shown for the combination of discrete parameters � and 𝛽. Higher 𝛽
indicates higher situational confidence. The three circles under each column represent the

� vector for that column, with the components being the efficiency, distance from the table,

and distance from the laptop features. A larger feature weight is indicated by a darker

circle, while a white color indicates zero weight. We used a cost function implementation,

so here a larger weight indicates a larger penalty on that feature (or a smaller reward).

First, in Fig. 7.3a, we consider the case where the demonstration is a perfectly optimal

trajectory produced by TrajOpt [255]. This serves as a sanity check for when the human

and the robot have the same representation and the demonstration is perfect. The optimal

demonstration was produced by finding a trajectory that moves the cup from the start

configuration to the end while minimizing the distance between the cup and the table.

Notice that with a perfect demonstration, the posterior distribution places the most prob-

ability mass on the � that indicates high penalties for staying away from the table but no

penalties for lack of efficiency or closeness to laptop. Moreover, the posterior also reveals

that the most likely � also corresponds with the highest available confidence 𝛽.

Next, in Fig. 7.3b we recorded a real human demonstration of the same cup-to-table

behavior. The nature of demonstrations both on hardware and from real people introduce

noise into the demonstration, making it potentially suboptimal with respect to the robot’s

model. However, in this case the human and the robot still share the same representation

(i.e. the robot and the human both know about the the efficiency, table, and laptop

features). Here, we study how the noise in the demonstration affects the robot’s inference.

Notice that even with an imperfect demonstration, the robot is able to identify the correct

� parameter, but now with a lower confidence 𝛽.

Lastly, we consider the example where the demonstration is optimal but the robot does

not have a rich enough representation to explain it. The robot reasons about the same

three features, but now the demonstration was produced by optimizing for an additional

feature that is outside its representation: keeping the cup away from the human’s body.

We observe that the probability distribution in Fig. 7.3c is spread over all the � values



CHAPTER 7. MISALIGNMENT DETECTION IN PHYSICAL HRI 130

in the space, with the highest values on low 𝛽s. This example shows how, in the case of

poorly-explained input, the robot’s inference is unsure which objective the human had in

mind, and assigns low situational confidence to the given input.

These illustrative examples give us valuable insight into how the (�, 𝛽)-belief changes

depending on how well-explained the input is. For perfectly explained demonstrations,

the inference identifies the correct � with high posterior probability. As the input becomes

more poorly-explained, the robot loses confidence in all �s, assigning approximately

uniformly spread-out probability on the lowest situational confidence values 𝛽.

7.4 Approach: Misalignment for Corrections

7.4.1 Formulation
We consider the setting where human input is given as physical interventions during

the robot’s task execution. Fig. 7.2 (right) is an example of such a correction. The human

may provide a correction to improve some aspect of the task execution that is not repre-

sented in the robot’s objective space. When the robot receives input, it should be able to

reason about its situational confidence in light of the correction and replan its trajectory

accordingly for the rest of the task execution or until a new correction happens. Thus, the

robot must have access to an inference algorithm that can run in real time. In this section,

we will present an online version of our situational confidence framework.

In the physical corrections setting, the robot starts with an initial guess of the param-

eter � and uses a trajectory optimization scheme to compute a motion plan seeking to

minimize the associated reward 𝑅�. The robot performs the task at hand by applying

controls u𝑅 via an impedance controller in order to track the computed trajectory x.

At any timestep 𝑡 during the trajectory execution, the human may physically interact

with the robot, inducing a joint torque𝑢𝑡
𝐻

. When this happens, the robot can use the human

input to update its estimated � parameter, and thereby the corresponding objective 𝑅�.

Given the new adapted objective, the robot replans an optimized trajectory x and tracks it

until the next human input is sensed or until the task is completed.

Following [25], the robot’s representation of the task assumes that the human does not

explicitly care about the robot’s control effort, but only about features of the state trajectory.

The human is also assumed to have a preference for minimizing her own control effort.

This captures the human’s incentive to have the robot perform the task autonomously,

providing only minimal input to guide the robot towards the correct behavior when

necessary. Encompassing these assumptions, the reward (7.10) takes the form:

𝑅�(x, 𝑢𝑡𝐻) = �𝑇Φ(x) − �∥𝑢𝑡𝐻 ∥
2. (7.15)

To approximately compute the trajectory resulting from the human’s input, we follow

the approach in [25] and introduce the notion of a deformed trajectory x𝐷 . This trajectory

constitutes the robot’s estimate of the human’s desired trajectory given her applied torque
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𝑢𝑡
𝐻

. Given the robot’s default trajectory x𝑅 := x(·; 𝑥0, u𝑅 , 0) and having observed the

instantaneous human intervention 𝑢𝑡
𝐻

, we compute x𝐷 by deforming the robot’s default

trajectory in the direction of 𝑢𝑡
𝐻

:

x𝐷 = x𝑅 + �𝐴−1ũ𝐻 , (7.16)

where � > 0 scales the magnitude of the deformation, 𝐴 ∈ R𝑛(𝑇+1)×𝑛(𝑇+1)
defines a norm on

the Hilbert space of trajectories4 and dictates the deformation shape [88], and ũ𝐻 ∈ R𝑛(𝑇+1)

is 𝑢𝑡
𝐻

at indices 𝑛𝑡 through 𝑛(𝑡 + 1) and 0 otherwise. The human is therefore modeled

by (7.15) as trading off between inducing a good trajectory x𝐷 with respect to �, and

minimizing her effort.

Equipped with this reward function, we need the robot to reason about the reliability

of its representation given new corrections. In contrast with our analysis in Sec. 7.3, here

the person does not give full demonstrations x, but instead offers corrections 𝑢𝑡
𝐻

based on

the robot’s default trajectory x𝑅. Applying (7.4) to this setting, we have:

𝑃(𝑢𝑡𝐻 | 𝑥
0, u𝑅;�, 𝛽) = 𝑒𝛽(�

⊤Φ(x𝐷)−�∥𝑢𝑡𝐻 ∥
2)∫

𝑒𝛽(�⊤Φ(x̄𝐷)−�∥�̄�∥2)𝑑�̄�
, (7.17)

where x𝐷 and x̄𝐷 are given by (7.16) applied to their respective controls 𝑢𝑡
𝐻

and �̄�.

Ideally, with this model of human actions, illustrated in Fig. 7.4a, we would per-

form inference over both the situational confidence 𝛽 and the modeled parameters � by

maintaining a joint Bayesian belief 𝑏′(�, 𝛽). Analogously to the demonstrations case, our

probability distribution over � would automatically adjust for well-explained corrections,

whereas for poorly-explained ones the robot’s posterior would not deviate significantly

form its prior on �. Unfortunately, this Bayesian update is not generally feasible in real

time, given the continuous and possibly high-dimensional nature of the parameter space

Θ. Even in simple scenarios with a small number of continuous features, discretizing

Θ as we did in the demonstrations case would generally yield an overly slow inference,

making the method impractical for use in the real-time collaborative scenarios that we

are interested in here. Thus, to evaluate the benefits of estimating 𝛽 we need to derive an

online method that goes beyond simple discretization.

7.4.2 Approximation
To alleviate the computational challenge of performing joint inference over 𝛽 and �,

we introduce a structural assumption that will enable us to approximately decouple the

two inference problems.

4
We used a norm 𝐴 based on acceleration, consistent with [25], but other norms are possible as well.
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(a) In the true graphical

model, 𝑢𝐻 is an obser-

vation of � and the sit-

uational confidence 𝛽.

(b) We use the proxy variable

Φ to first estimate 𝛽 efficiently.

(c) We interpret the estimate �̂� as an in-

direct observation of the unobserved 𝐸,

which we then use for the � estimate.

Figure 7.4: Graphical model formulation (a) and modifications to it ((b) and (c)) for real-time tractability.

7.4.2.1 Estimating 𝛽. To estimate 𝛽 without dependence on �, we assume that to decide

what correction to provide, the human first chooses the desired features Φ of the resulting

trajectory x𝐷 and then selects an input 𝑢𝑡
𝐻

that will obtain these features (Fig. 7.4b).

Based on the observed human input 𝑢𝑡
𝐻

and the trajectory features of the deformed

trajectory Φ(x𝐷), the robot can obtain an estimate of 𝛽 by considering how efficient the

human’s input was for the features achieved. Letting𝒰Φ be the set of inputs that achieve

the same observed features Φ𝐷 := Φ(x𝐷), the Boltzmann decision model gives

𝑃(𝑢𝑡𝐻 | 𝑥
0, u𝑅;Φ𝐷 , 𝛽) =

𝑒𝛽(�
⊤Φ𝐷−�∥𝑢𝑡𝐻 ∥

2)∫
𝒰Φ

𝑒𝛽(�⊤Φ(x̄𝐷)−�∥�̄�∥2)𝑑�̄�
=

𝑒−𝛽�∥𝑢
𝑡
𝐻
∥2∫

𝒰Φ
𝑒−𝛽�∥�̄�∥2𝑑�̄�

, (7.18)

since the term �⊤Φ(x̄𝐷) is constant for all �̄� ∈ 𝒰Φ and equal �⊤Φ𝐷 in the numerator.

Using (7.18), the robot can obtain an estimate of 𝛽 by considering how efficient the

human’s correction was for the features achieved—if the input seems highly inefficient,

this is indicative that the features modeled by the robot may not accurately capture the

human’s preference.

It is useful to approximate the integral over the constrained set𝒰Φ ⊂ 𝒰 by an integral

over the entire set of possible inputs𝒰 , introducing a penalty term in the exponent that

results in a soft indicator function for �̄� ∈ 𝒰Φ:

𝑃(𝑢𝑡𝐻 | 𝑥
0, u𝑅;Φ𝐷 , 𝛽) ≈

𝑒−𝛽�∥𝑢
𝑡
𝐻
∥2∫

𝒰 𝑒
−𝛽(�∥�̄�∥2+�∥Φ(x̄𝐷)−Φ𝐷 ∥2)𝑑�̄�

. (7.19)

Note that for an arbitrarily large � there is an arbitrarily small probability assigned to

𝒰 \ 𝒰Φ in the integral. It is now possible to apply the Laplace approximation to the

unconstrained integral (see Sec. 7.8.3 for details), yielding:

𝑃(𝑢𝑡𝐻 | 𝑥
0, u𝑅;Φ𝐷 , 𝛽) ≈

𝑒−𝛽�∥𝑢
𝑡
𝐻
∥2

𝑒−𝛽(�∥𝑢
∗
𝐻
∥2+�∥Φ(x∗

𝐷
)−Φ𝐷 ∥2)

√
𝛽𝑘 |𝐻𝑢∗

𝐻
|

2𝜋𝑘
, (7.20)
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where 𝑘 is the action space dimensionality and 𝐻𝑢∗
𝐻

is the Hessian of the exponent in

the denominator of (7.19) around 𝑢∗
𝐻

. We obtain the optimal action 𝑢∗
𝐻

by solving the

constrained optimization problem (see Sec. 7.8.2):

minimize

�̃�𝐻
∥�̃�𝐻 ∥2

subject to Φ(x + �𝐴−1ũ𝐻) −Φ𝐷 = 0 .
(7.21)

In other words, the resulting 𝑢∗
𝐻

is the minimal norm �̃�𝐻 the human could have taken,

constrained to lie in 𝒰Φ. As such, the second norm in the denominator’s exponent is 0,

and the final conditional probability becomes:

𝑃(𝑢𝑡𝐻 | 𝑥
0, u𝑅;Φ𝐷 , 𝛽) = 𝑒−𝛽�(∥𝑢

𝑡
𝐻
∥2−∥𝑢∗

𝐻
∥2)

√
𝛽𝑘 |𝐻𝑢∗

𝐻
|

2𝜋𝑘
. (7.22)

We derive below the maximum likelihood estimator (MLE), noting that a maximum a
posteriori (MAP) estimator is often appropriate given a certain prior on 𝛽.

�̂� = arg max

𝛽
{log(𝑃(𝑢𝑡𝐻 | 𝑥

0, u𝑅;Φ𝐷 , 𝛽)}

= arg max

𝛽
{−𝛽�(∥𝑢𝑡𝐻 ∥

2 − ∥𝑢∗𝐻 ∥
2) + log(

√
𝛽𝑘 |𝐻𝑢∗

𝐻
|

2𝜋𝑘
)}.

(7.23)

Applying the first-order condition and setting the derivative to zero yields the maximizer:

�̂� =
𝑘

2�(∥𝑢𝑡
𝐻
∥2 − ∥𝑢∗

𝐻
∥2)

. (7.24)

The estimator5 above yields a high value when the difference between 𝑢𝑡
𝐻

and 𝑢∗
𝐻

is

small, i.e. the person’s correction achieves the induced features Φ(x𝐷) efficiently. If x𝐷
brings the robot closer to the table, and 𝑢𝑡

𝐻
pushes the robot straight towards the table, 𝑢𝑡

𝐻
is

an efficient way to induce those new feature values. However, when there is a much more

efficient alternative (e.g. when the person pushes mostly sideways rather than straight

towards the table), �̂� will be small. Efficient ways to induce the feature values will suggest

well-explained inputs, inefficient ones will suggest poorly-explained corrections.

7.4.2.2 Estimating �. To tractably estimate � building on the 𝛽 estimate, we introduce

an auxiliary binary variable 𝐸 ∈ {0, 1} indicating whether the human’s intervention can

be well explained by the robot’s modeled reward features. We will perform offline training

with ground-truth access to this variable to learn its relation to the robot’s estimate �̂�.

5
Note that �̂� is non-negative, since 𝑢∗

𝐻
is the minimal-norm �̃�𝐻 that satisfies the constraint, so the

difference in the denominator of (7.24) is positive.
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Figure 7.5: Empirical estimates for 𝑃(�̂� | 𝐸) and their corresponding chi-squared (𝜒2
) fits.

When 𝐸 = 1, the human’s desired modification of the robot’s behavior can be well

explained by some vector � ∈ Θ, which will lead the intervention to appear less noisy to

the robot (i.e. 𝛽 is large). As a result, the correction 𝑢𝑡
𝐻

is likely to be efficient for the

reward encoded by this �. Conversely, when 𝐸 = 0, the intervention appears noisy (i.e.

𝛽 is small), and the human’s correction cannot be well explained by any of the reward

features modeled by the robot.

The graphical model in Fig. 7.4c relates the induced feature valuesΦ𝐷 to � as a function

of the 𝐸. When 𝐸 = 1, the induced features will tend to have high reward with respect to

�; when 𝐸 = 0, the induced features do not depend on �, and we model them as Gaussian

noise centered around the feature values of the robot’s currently planned trajectory x𝑅.

𝑃(Φ𝐷 | �, 𝐸) =


𝑒�
⊤Φ𝐷∫

𝑒�
⊤Φ(x̃𝐷)𝑑x̃𝐷

, 𝐸 = 1( �
𝜋

) 𝑘
2 𝑒−� | |Φ𝐷−Φ(x𝑅)| |2 , 𝐸 = 0

(7.25)

with the constant in the 𝐸 = 0 case corresponding to the Gaussian normalization term.

In addition, this graphical model relates the �̂� resulting from the model in Fig. 7.4b to

𝐸 by a 𝑃(�̂� | 𝐸). We fit this distribution from controlled user interaction samples where

we have ground-truth knowledge of 𝐸6. For each sample interaction, we compute �̂� (for

example, using (7.24) if using MLE) and label it with the corresponding binary 𝐸 value.

We fit a chi-squared distribution to these samples to obtain the probability distributions

for 𝑃(�̂� | 𝐸 = 0) and 𝑃(�̂� | 𝐸 = 1). The resulting distributions are shown in Fig. 7.57.

Using the model in Fig. 7.4c with the learned distribution 𝑃(�̂� | 𝐸), we can infer a �
estimate in real time whenever a physical correction from the human is measured. We do

6
Since we tell users what to optimize for, we know whether the human’s input is well-explained with

respect to the robot’s representation or not.

7
Because users tend to accidentally correct more than one feature, we perform 𝛽-inference separately for

each feature. This requires more overall computation (although still linear in the number of features, and

can be parallelized) and a separate 𝑃(�̂� | 𝐸) estimate for each feature.
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this tractably by interpreting the �̂� obtained from (7.24) as an indirect observation of the

unknown 𝐸. We combine the empirically characterized likelihood model 𝑃(�̂� | 𝐸)with an

initial uniform prior 𝑃(𝐸) to maintain a Bayesian posterior on 𝐸 based on the evidence �̂�
constructed from human observations at deployment time, 𝑃(𝐸 | �̂�) ∝ 𝑃(�̂� | 𝐸)𝑃(𝐸).

Further, since we wish to obtain a posterior estimate of the human’s objective �, we

use the model from Fig. 7.4c to obtain the posterior probability measure

𝑃(� | Φ𝐷 , �̂�) ∝
∑

𝐸∈{0,1}
𝑃
(
Φ𝐷 | �, 𝐸

)
𝑃(𝐸 | �̂�)𝑃(�) . (7.26)

Following [25], we note that we can approximate the partition function in the human’s

policy (7.25) by employing the Laplace approximation. Taking a second-order Taylor

series expansion of the exponent’s objective about x𝑅, the robot’s current best guess at the

optimal trajectory, we obtain a Gaussian integral that can be evaluated in closed form

𝑃(Φ𝐷 | �, 𝐸 = 1) ≈ 𝑒�⊤
(
Φ𝐷−Φ(x𝑅)

)
. (7.27)

We also use a Gaussian prior distribution of � around the robot’s current estimate �̂:

𝑃(�) = 1

(2𝜋𝛼) 𝑘2
𝑒−

1

2𝛼 | |�−�̂ | |2 , (7.28)

where 𝛼 ≥ 0 determines the variance of the Gaussian.

To obtain an update rule for the � parameter, we can simply plug (7.25), (7.27), and

(7.28) into (7.26). For legibility, let’s denote Γ(Φ𝐷 , 𝐸 = 𝑖) = 𝑃(𝐸 = 𝑖 | �̂�)𝑃
(
Φ𝐷 | �, 𝐸 = 𝑖

)
,

for 𝑖 ∈ {0, 1}. Then, the maximum-a-posteriori estimate of the human’s objective � is the

solution maximizer of

𝑃(�)
[
Γ(Φ𝐷 , 𝐸 = 1) + Γ(Φ𝐷 , 𝐸 = 0)

]
=

1

(2𝜋𝛼) 𝑘2
𝑒−

1

2𝛼 | |�−�̂ | |2
[
𝑃(𝐸 = 1 | �̂�)𝑒�⊤

(
Φ𝐷−Φ(x𝑅)

)
+ 𝑃(𝐸 = 0 | �̂�)

( �
𝜋

) 𝑘
2

𝑒−� | |Φ𝐷−Φ(x𝑅)| |2
]
.

(7.29)

Setting the derivative of (7.29) w.r.t. � to 0 gives the maximum-a-posteriori update

�̂′ = �̂ + 𝛼
Γ(Φ𝐷 , 𝐸 = 1)

Γ(Φ𝐷 , 𝐸 = 1) + Γ(Φ𝐷 , 𝐸 = 0)
(
Φ𝐷 −Φ(x𝑅)

)
. (7.30)

We note that due to the coupling in �̂′, the solution to (7.30) is non-analytic and can instead

be obtained via numerical approaches like Newton-Raphson or quasi-Newton methods.

In previous objective-learning approaches including [25] and [311], it is implicitly

assumed that all human actions are fully explainable by the robot’s representation of the

objective function space (𝐸 = 1), leading to the simplified update

�̂′ = �̂ + 𝛼
(
Φ𝐷 −Φ(x𝑅)

)
, (7.31)
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which can be easily seen to be a special case of (7.30) when 𝑃(𝐸 = 0 | �̂�) ≡ 0. Our proposed

update rule therefore generalizes commonly-used objective-learning formulations to cases

where the human’s underlying objective function is not fully captured by the robot’s

model. We expect that this extended formulation will enable learning that is more robust

to misaligned or incomplete human objective parameterizations.8 Once we obtain the �̂′

update, we replan the robot trajectory in its 7-DOF configuration space with an off-the-

shelf trajectory optimizer, TrajOpt [255].

The update rule changes the weights in the objective in the direction of the feature

difference as well, but how much it does so depends on the probability assigned to the

correction being well-explained. Looking back at Sec. 7.2, this update is approximating

(7.7). At one extreme, if we know with full certainty that the correction is well explained,

then we do the full update as in traditional objective learning. But crucially, at the other

extreme, if we know that the correction is poorly explained, we do not update at all and

keep our prior belief.

Algorithm 5: Learning from Corrections (Online)

Input: 𝑃(�̂� | 𝐸 = 𝑖),∀𝑖 ∈ {0, 1} from training data.

Initialize x𝑅 ← 𝑇𝑟𝑎 𝑗𝑂𝑝𝑡(�̂) for initial �̂.

while goal not reached do
if 𝑢𝐻 ≠ 0 then

x𝐷 = x𝑅 + �𝐴−1ũ𝐻 .

𝑢∗
𝐻
← 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐻𝑢𝑚𝑎𝑛𝐴𝑐𝑡𝑖𝑜𝑛(Φ𝐷), as per (7.21) .

�̂� = 𝑘
2�(∥𝑢𝐻 ∥2−∥𝑢∗𝐻 ∥2)

, as per (7.24) .

�̂← �̂ + 𝛼 Γ(Φ𝐷 ,𝐸=1)
Γ(Φ𝐷 ,𝐸=1)+Γ(Φ𝐷 ,𝐸=0)

(
Φ𝐷 −Φ(x𝑅)

)
, as per (7.30) .

x𝑅 ← 𝑇𝑟𝑎 𝑗𝑂𝑝𝑡(�̂) .
end

end

The full algorithm is given in Algorithm 5. The robot begins tracking a trajectory x𝑅
given by an initial �̂. Once a human torque 𝑢𝐻 is sensed, the robot deforms its trajectory

to compute the induced features Φ𝐷 , computes the optimal human action 𝑢∗
𝐻

using (7.21),

and uses it to estimate �̂� for that input. It then updates �̂ using the learned distributions

𝑃(�̂� | 𝐸 = 𝑖),∀𝑖 ∈ {0, 1}, and updates its tracked trajectory x𝑅. For more practical details

on how replanning works, and how to set various hyperparameters, consult Sec. 7.8.2.

8
Note that to enforce the constraint on | |� | | = 1, we can indeed project the resulting �̂′ onto the unit ball.

In practice, because our learning from corrections algorithm separates the 𝛽-inference from the �-inference,

this projection is no longer required, but we found it helpful to still constrain the space of Θ to encourage

smoothness in the change of the reward function.
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(a) (Left) The human applies well-explained corrections to

keep the cup close to the table. Learning with fixed 𝛽 leads

to a correct trajectory that satisfies the human’s preference.

(Right) As the person corrects the robot by pushing down

on it, the learning algorithm gradually updates its weight

on the distance to table feature.

(b) (Left) The human applies poorly-explained corrections

to keep the cup upright. Learning with fixed 𝛽 leads to a

oscillatory and noisy trajectory. (Right) The naive learning

algorithm incorrectly updates the weight on the distance

to table feature, leading to unintended learning.

(c) (Left) The human applies well-explained corrections to

keep the cup close to the table. Learning with estimated

𝛽 leads to a correct trajectory that satisfies the human’s

preference. (Right) As the person corrects the robot by

pushing down on it, the learning algorithm infers high �̂�
and updates its weight on the distance to table feature.

(d) (Left) The human applies poorly-explained corrections

to keep the cup upright. Learning with estimated 𝛽 leads

to a smooth trajectory where the robot is robust to poorly-

explained inputs. (Right) The confidence-aware learning

algorithm infers low �̂� and correctly avoids unintended

learning for the distance to table feature.

Figure 7.6: Examples of physical corrections (blue interaction points) and the resulting behavior for the fixed

𝛽 method (top) and estimated 𝛽 method (bottom). When the corrections are well explained, both methods

learn the correct weight �̂ = 1.0. But if they are poorly-explained, our method infers low �̂� and manages to

reduce unintended learning, whereas the fixed 𝛽 method produces incorrect oscillatory behavior.

7.4.3 Examples
As in Sec. 7.3, we now illustrate some examples to help lay out some of the setup we

will present in our actual experiments in Sec. 7.5 and Sec. 7.6. We provide intuition for

how the estimators of 𝛽 and � work when we have a perfectly aligned representation and a

misaligned representation. In all of the examples, the robot reasons about the previously

described distance from the table feature. What changes is the feature for which the

human decides to provide corrections.

We look at two situations: the human may correct the relevant feature and push the
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robot closer to the table, or she might provide an poorly-explained input to keep the coffee

mug upright. Fig. 7.6 illustrates the two scenarios and contrasts our estimated-𝛽 approach

to the state of the art fixed-𝛽 approach that uses (7.31).

On the top we present the fixed-𝛽 method and its performance with both the well-

explained and the poorly-explained input. When the input is well explained, the left

image shows that the robot learns from the interactions and converges close to the true

� = 1. However, when the input is poorly explained on the right, the robot incorrectly

learns fictitious � values and produces oscillatory behavior.

In Fig. 7.6 (bottom) we showcase our described estimated-𝛽 method. If inputs are

well-explained, the value for �̂� increases, allowing � to grow up to the real value � = 1.

The method has the same behavior as the fixed-𝛽 method. However, more importantly,

if inputs are poorly-explained, our method immediately estimates low �̂� values, which

allows it to significantly reduce unintended learning as compared to the fixed-𝛽 method.

This figure illustrates how situational confidence estimation can aid the robot when

the human input is poorly explained. We stress that although our method does not allow

the robot to magically learn the correct behavior that the user desires, it greatly reduces

unintended learning and undesired behaviors.

7.5 Experiments: Real Robot Case Studies
Equipped with our algorithmic approaches to situational confidence estimation, we

now consider two case studies in learning from demonstrations and corrections using real

human input on a 7-DoF robot manipulator.

7.5.1 Demonstrations
We collected human demonstrations of household motion planning tasks and per-

formed our situational confidence inference offline. We recruited 12 people to physically

interact with a JACO 7-DoF robotic arm and analyzed 4 common cases that can arise in

the context of personal robotics learning.

For all the experiments in this section, we asked the participants to provide demonstra-

tions with respect to a feature of interest, which the robot might (well-explained) or might

not (poorly-explained) have in its representation. Some of the features that the humans

had to prioritize include: distance of the end effector from the table, distance from the

person, or distance from the end-effector to a laptop placed on the table.

Before giving any demonstrations, each person was allowed a period of training with

the robot in gravity compensation mode to get accustomed to interacting with the robot.

When collecting demonstrations, participants were asked to move the robot arm holding

a cup of coffee from the upper shelf of a cupboard to right above the table, across a laptop.

After collecting all demonstrations, we designed the robot’s representation for infer-

ence. In all scenarios the robot reasons over the same three features as in (7.14): E, T, and
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Figure 7.7: (Left) Human demonstrations avoiding the laptop. (Right) Upper distribution is the posterior

belief for the highlighted blue demonstration. Since the robot has the laptop feature in its representation, this

demonstration induces a high 𝛽 on the correct � = [0, 0, 1]. Below, when considering all the demonstrations,

the inference procedure converges to a slightly lower 𝛽 value due to the suboptimality of some of the

demonstrations in the dataset.

L. Although the robot always knows about these features, the demonstrations may have

been given relative to different (and potentially unknown) features.

Throughout our scenarios, we tested two hypotheses:

H1. If the human input is well-explained, our inference procedure places high probability on the
correct � hypothesis, with a high situational confidence 𝛽.
H2. If the human input is poorly-explained, our inference procedure does not place high probability
on any � hypothesis and is uniform over all hypotheses with low situational confidence 𝛽.

To test these hypotheses, we looked at the resulting inferred belief. Given the demon-

strations and a parametrization of the reward function, we first updated the belief over the

weight and situational confidence parameters for each demonstration, 𝑏𝑠𝑖𝑛𝑔𝑙𝑒(�, 𝛽). This

gives insights into how a single demonstration can affect the robot’s inference procedure.

Next, we used all 12 human demonstrations to obtain a probability distribution over

the weight and confidence, 𝑏𝑎𝑙𝑙(�, 𝛽), for each scenario. By using multiple demonstrations

as evidence about the reward and the situational confidence parameter, we see how in

some scenarios multiple demonstrations can help improve confidence in the � estimation.

7.5.1.1 Well-aligned Representation. Here we consider a scenario where the robot and

the human share the same representation, i.e. the robot’s model is well-aligned. The

participants were instructed to avoid spilling the coffee over the laptop by providing a

demonstration where the robot’s end-effector is away from the electronic device. Here, the
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Figure 7.8: (Left) Human demonstrations avoiding the user’s body. (Right) Upper distribution is the

posterior belief 𝑏(𝛽, �) for the highlighted demonstration. Since the robot’s model does not include distance

to the user’s body, none of the robot’s hypotheses can explain the demonstration, as reflected in the higher

probabilities on low 𝛽s for all �s. After performing inference on all the demonstrations, the distribution in

the lower right plot shows even more probability mass on the lowest situational confidence values.

feature of interest was the distance from the laptop which was in the robot’s representation:

the demonstration would be well explained as long as the demonstration maintained a

distance of at least 𝐿 meters away from the center of the laptop.

On the left of Fig. 7.7 we visualize all 12 recorded demonstrations and the experimental

setup. Note that most participants had an easy time providing demonstrations which

avoided the laptop. Indeed, we noticed that 10 out of the 12 demonstrations resulted in

high situational confidence and a probability distribution similar to the one at the top

right of Fig. 7.7. Here, the � vector that has largest weight on the third feature (distance

from the laptop) is correctly inferred to have high 𝛽 value. This signals that the robot is

highly confident the person provided a demonstration that avoids the laptop, which is

correct and supports our hypothesis H1.

Another interesting observation is that the situational confidence over all 12 demon-

strations together is lower than in the case of the single optimal demonstration highlighted

in blue (peak at around 1.0 instead of 100.0)9. This is due to the two noisy demonstrations

that came too close to the laptop. When working with non-expert users, it is inevitable

that such imperfect demonstrations will arise. However, despite the challenge of noisy

9
In the lower right belief in Fig. 7.7, note from the colorbar values that the probability mass is more

peaked than in the case of a single demonstration. This confirms our intuition that the robot’s certainty in

the hypothesis is enhanced the more demonstrations supporting that hypothesis it receives.
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and/or erroneous demonstrations, the algorithm recovers the correct � hypothesis with

a relatively high 𝛽, supporting H1 once again.

7.5.1.2 Misaligned Representation. We look at the opposite scenario: the robot and the

human do not share the same representation and the robot’s model is clearly misaligned.

Participants were instructed to move the robot from start to end while also keeping

the robot’s hand away from their body to avoid spilling coffee on their clothes. Since the

robot’s reward does not include distance to humans, the demonstrations should appear

poorly explained relative to the robot’s model of how humans choose demonstrations.

Fig. 7.8 visualizes all 12 demonstrations as well as the posterior probability distributions

for a single highlighted trajectory and for all 12. For both a single demonstration and all

of them, in the case of misalignment none of the hypotheses are correct. Thus, the robot

infers equally low probability for all �s, with low situational confidence, supporting our

hypothesis H2. This signals that the robot is unsure what the person’s demonstration

referred to, as we expected.

These two examples illustrate cases where our method supports the two hypotheses

above. However, there are important limitations that we discuss next.

7.5.1.3 Feature Correlation. The past two examples demonstrate clear instances when

the robot’s objective space is either well- or mis-aligned. However, often times situations

will be more ambiguous. For example, although the human input may refer to a feature

that is nonexistent in the robot’s representation, the robot may know about a feature

that is correlated to it. In this next scenario, we investigate how such feature correlation

influences the situational confidence estimates.

We asked the participants to move the robot from the same start and end as before,

while keeping the cup in the robot’s end-effector away from their body to avoid spilling

coffee on their clothes. The setup is similar to the poorly-explained demonstration in the

previous scenario, only that now the human starts in a different initial position.

Visualizations of the 12 demonstrations in Fig. 7.9 showcase that although all demon-

strations move the cup away from the person, some of them (depicted in blue) also

maintain a good distance away from the laptop. Hence, even though the human was

trying to teach the robot to stay away from their body, the robot interprets the human’s

demonstrations as a signal to stay away from the laptop. Thus, we say that the distance

from human and distance from laptop features are correlated.

When looking at the top-right posterior probability in Fig. 7.9, the distribution over �, 𝛽
shows that our algorithm infers a high situational confidence for the � that fully considers

the distance from the laptop. Thus, even if the human input does not pertain to a feature

in the robot’s representation, in some cases the demonstration can still be explained via

correlated features in the robot’s representation. This observation does not support H2

and is clearly a limitation of our method.



CHAPTER 7. MISALIGNMENT DETECTION IN PHYSICAL HRI 142

Figure 7.9: (Left) Human demonstrations avoiding the user’s body. The blue cluster is correlated with

the feature describing distance from the laptop. The orange cluster is uncorrelated. (Right) The top

distribution is the posterior belief 𝑏(𝛽, �) for the highlighted blue correlated demonstration. Notice that the

hypothesis that puts all weight on avoiding the laptop � = [0, 0, 1] dominates the distribution. Meanwhile,

the posterior belief for the highlighted orange demonstration indicates low situational confidence in all

hypotheses. The bottom distribution shows that when combining all demonstrations, the robot continues

to have low situational confidence although the laptop hypothesis has slightly higher 𝛽.

However, the orange cluster of demonstrations in Fig. 7.9, showcase the fine line

between demonstrations that induce a feature correlation and those that do not. The

orange demonstrations clearly ignore the laptop and simply take the shortest path to the

end goal while avoiding the human’s body. As we can see in the orange probability

distribution, our method infers a uniform distribution over all � hypotheses, with a focus

on the lowest situational confidence values, backing H2.

These two clusters highlight that our method infers reasonable �, 𝛽 values even in the

case of feature correlation. The robot either infers a good � to perform its original task

through the means of another feature, or it has low confidence in understanding the input.

When we look at the posterior distribution that results from all 12 demonstrations,

the bottom-right part of the figure shows that, due to the correlation in the blue cluster,
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Figure 7.10: (Left) Human demonstrations keeping the cup in the end-effector close to the table. (Right)

Because it is difficult for the person to give a good demonstration, the top posterior does not have a clearly

defined peak for one particular hypothesis, although several �s are favored. In the bottom distribution,

we notice that when presented with all 12 demonstrations, the robot can more clearly infer the correct

hypothesis for the distance to the table, � = [0, 1, 0].

there is increased probability on the � that considers fully the distance from the laptop.

However, due to the ambiguity of the orange cluster, the situational confidence is not as

high as it would be in a well-explained case (see Fig. 7.7).

7.5.1.4 Feature Engineering. Many of the reward function features we considered so far

have been intuitive to provide demonstrations for. However, some reward functions may

be particularly challenging or unintuitive for human users. Two extreme examples of this

could be features learned using complex function approximators or unintuitive features

like minimizing the total energy of a system.

In our scenario, the feature users have a difficult time providing good demonstrations

for is the distance between the robot’s hand and the table along the trajectory. Since the

feature was designed as the sum of distances to table for all waypoints in the trajectory, the

optimal demonstration immediately moves the end-effector to the table and then keeps it

right above the tabletop for the rest of the path, as seen in Fig. 7.3a. This limitation does

not support H1.

However, this mathematical optimum does not necessarily align with how human

users interpret the best behavior for this task. In our experiments, most users gradually

bring the robot’s hand closer to the table, rather than pushing it down immediately, for a

more smooth and natural motion (see left in Fig. 7.10). These demonstrations thus appear
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noisy and sub-optimal with respect to the robot’s model and make it difficult to infer the

true � from a single demonstration.

This phenomenon is reflected more clearly when we look at the top-right belief dis-

tribution in Fig. 7.10. Although the distribution for the highlighted blue demonstration

has some peaks around hypotheses that strongly favor the feature responsible for dis-

tance to the table, it is not nearly as clearly defined as it should be for a well-explained

demonstration (see Fig. 7.7).

However, when the robot gathers evidence from multiple demonstrations, the algo-

rithm does manage to figure out that this is the feature that people were optimizing for.

The bottom right plot in Fig. 7.10 illustrates that, once again, having more input samples

eventually leads our algorithm to converge to a strong probability for the right � with a

reasonably high 𝛽. Although our method cannot back H1 when inferring the objective

from a single demonstration, more data leads our algorithm to correctly support H1.

Summary: The four situations presented above illustrate that our two original hypotheses

H1 and H2 are supported most of the time (Sec. 7.5.1.1, Sec. 7.5.1.2), with some exceptions

(Sec. 7.5.1.3, Sec. 7.5.1.4). We saw that when the person has a difficult time giving a good

demonstration (Sec. 7.5.1.4), our method cannot support H1 unless provided with mul-

tiple demonstrations, to disambiguate the inherent noise in the user’s suboptimal input.

Additionally, when the person provides what should be a poorly-explained demonstration

(Sec. 7.5.1.3), feature correlation might lead the inference to falsely detect�s corresponding

to that input, contradicting H2. However, we observed that when given more demonstra-

tions, our algorithm can attribute low situational confidence 𝛽 if the uncorrelated input is

sufficient. More work is needed in this area.

7.5.2 Corrections
We now turn our attention to case where human input is sparse and in the form of

intermediate corrections during the robot’s task execution. Here we present an offline

case study where we analyze how our estimates of �̂� enable us to distinguish if the input

is well explained or not to the robot’s model of the human. For a full exploration of the

real-time updates from human corrections, we conduct an online user study which we

later describe in Sec. 7.6.

We recruited 12 additional individuals to physically interact with the same robotic

manipulator. Each participant was asked to intentionally correct a feature (that the robot

may or may not have in its representation): adjusting the distance of the end effector from

the table, adjusting the distance from the person, or adjusting the cup’s orientation.

During this case study the robot did not attempt to update the feature weights �
and simply tracked a predefined trajectory with an impedance controller [138]. The

participants were instructed to intervene only once during the robot’s task execution,

in order to record a single physical correction. The resulting trajectories and physical



CHAPTER 7. MISALIGNMENT DETECTION IN PHYSICAL HRI 145

0.0

0.5

1.0

1.5

2.0
*

table

0.0

0.5

1.0

1.5

2.0

*

cup

0.0

0.5

1.0

1.5
*

human

Poorly-explained uH Well-explained uH

(a) 𝛽 in well-explained and poorly-explained interactions.

0.0

0.2

0.4

0.6

0.8

1.0
table

0.0

0.2

0.4

0.6

0.8

1.0
cup

0.0

0.2

0.4

0.6

0.8

1.0
human

Poorly-explained uH Well-explained uH

(b) ΔΦ in well-explained and poorly-explained interactions.

Figure 7.11: 𝛽 values are significantly larger for well-explained actions than for poorly-explained ones. Fea-

ture updates are non-negligible even during poorly-explained actions, which leads to significant unintended

learning for fixed-𝛽 methods.

interaction 𝑢𝐻 were saved for offline analysis. This setup enabled us to easily analyze the

situational confidence of the robot as we changed the robot’s representation.

Next, we ran our approximate inference algorithm using the recorded human interac-

tion torques and robot joint angle information. We measured what �̂� would have been for

each interaction if the robot knew about a given subset of the features. By changing the

subset of features for the robot, we changed whether any given human interaction was

well explained to the robot’s representation.

We tested two hypotheses:

H1. Well-explained interactions result in high �̂�, whereas interactions that change a feature the
robot does not know about result in low �̂� for all features the robot does know about.
H2. Not reasoning about well-explained interactions and, instead, indiscriminately learning from
every update leads to significant unintended learning.

We ran a repeated-measures ANOVA to test the effect of whether an input is well-

explained on our �̂�. We found a significant effect (𝐹(1, 521) = 9.9093, 𝑝 = 0.0017): when

the person was providing a well-explained correction, �̂� was higher. This supports H1.

Fig. 7.11a plots �̂� under the well-explained (orange) and poorly-explained (blue) condi-

tions. Whereas the poorly-explained interactions end up with �̂�s close to 0, well-explained

corrections have higher mean and take on a wider range of values, reflecting varying de-

grees of human performance in correcting something the robot knows about. We fit

per-feature chi-squared distributions for 𝑃(�̂� | 𝐸) which we will use to infer 𝐸 and, thus,

� online. In addition, Fig. 7.11b illustrates that even for poorly-explained human actions

𝑢𝐻 , the resulting feature difference ΔΦ = Φ(x𝐷) − Φ(x) is non-negligible. This supports

our second hypothesis, H2, that not reasoning about how well-explained an action is is

detrimental to learning performance when the robot receives misaligned updates.
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7.6 User Study: Real-time Learning from Corrections

Our case study on corrections suggested that �̂� can be used as a measure of whether

physical interactions are well explained and should be learned from. Next, we conducted

an IRB-approved user study to investigate the implications of using these estimates during

learning. During each experimental task, the robot began with a number of incorrect

weights and participants were asked to physically correct the robot. Locations of the

objects and human were kept consistent in our experiments across tasks and users to

control for confounds10. The planning and inference were done for robot trajectories in

7-dimensional configuration space, accounting for all relevant constraints including joint

limits and self-collisions, as well as collisions between obstacles in the workspace and any

part of the robot’s body.11

7.6.1 Experiment Design

Independent Variables. We used a 2 by 2 factoral design. We manipulated the corrections

learning strategy with two levels (fixed-𝛽 and estimated-𝛽 learning), and also whether the

human corrected for features inside (well-explained) or outside (poorly-explained) the

robot’s representation. In the fixed learning strategy, the robot updated its feature weights

from a given interaction via (7.31) with a fixed 𝛽 value. In the estimated-𝛽 learning strategy,

the robot updates its feature weights via (7.30). The offline experiments above provided

us an estimate for 𝑃(𝐸 | �̂�) that we used in the gradient update.

Dependent Measures - Objective. To analyze the objective performance of the two

learning strategies, we focused on comparing two main measurements: the length of the

�̂ path through weight space as a measurement of the learning process, and the regret in

feature space measured by |Φ(x�∗)−Φ(x𝑎𝑐𝑡𝑢𝑎𝑙)|. Longer �̂ paths should indicate a learning

process that oscillates, whereas shorter paths suggest smoother learning curves. On the

other hand, high regret implies that the learning method did not converge to a good

objective �, whereas low regret indicates better learning.

Dependent Measures - Subjective. For each condition, we administered a 7-point Likert

scale survey about the participant’s interaction experience (Table 7.1). We separate the

survey into 3 scales: task completion, task understanding, and unintended learning.

Hypotheses.
H1. On tasks where humans try to correct inside the robot’s representation (well-explained
corrections), inferring situational confidence is not inferior to assuming high situational confidence.
H2. On tasks where humans try to correct outside the robot’s representation (poorly-explained
corrections), inferring situational confidence reduces unintended learning.

10
We assume full observability of the objects and the human, as the focus of this paper is not sensing.

11
For video footage of the experiment, see: https://youtu.be/stnFye8HdcU

https://youtu.be/stnFye8HdcU
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(b) �̂ learning path length averaged across subjects.

Figure 7.12: Comparison of regret and length of �̂ learning path through weight space over time.

H3. On tasks where they tried to correct inside the robot’s representation, participants felt like the
two methods performed the same.
H4. On tasks where they tried to correct outside the robot’s representation, participants felt like
our estimated-𝛽 method reduced unintended learning.
Tasks. We designed 4 experimental household motion planning tasks for the robot to

perform in a shared workspace. Similarly to the case studies, for each experimental task

the robot carried a cup from start to end with an initially incorrect reward. Participants

were instructed to physically intervene to correct the robot’s behavior during the task.

In Tasks 1 and 2, the robot’s default trajectory took a cup from the participant and put

it down on the table, but carried the cup too high above the table. In Tasks 3 and 4, the

robot also took a cup from the human and placed it on the table, but this time it initially

grasped the cup at the wrong angle, requiring human assistance to correct end-effector

orientation to an upright position. For Tasks 1 and 3, the robot knew about the feature the

human was asked to correct for (𝐸 = 1) and participants were told that the robot should be

compliant. For Tasks 2 and 4, the correction was poorly explained (𝐸 = 0) and participants

were instructed to correct any additional unwanted changes in the trajectory.

Participants. We used a within-subjects design and randomized the order of the learning

methods during experiments. We recruited 12 participants (6 females, 6 males, aged

18-30) from the campus community, 10 of which had technical background. None of the

participants had experience interacting with the robot used in our experiments.

Procedure. Every participant was assigned a random ordering of the two methods, and

performed each task without knowing how the underlying methods work. One challenge

in running our experiment was that different participants may have different internal

preferences for how a task should be performed. In order to have a consistent notion of

ground-truth preferences, we fixed the true objective (e.g. how far the cup should be from

the table) for each task. At the beginning of each task, the participant was first shown the

incorrect default trajectory that they must correct, followed by the ground-truth desired

trajectory they should teach the robot. This allows us to focus on how well each algorithm
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Questions Cronbach’s 𝛼 F-Ratio p-value

ta
sk The robot accomplished the task in the way I wanted.

0.94 0.88 0.348

The robot was NOT able to complete the task correctly.

un
de

rs
ta

nd

I felt the robot understood how I wanted the task done.

0.95 0.55 0.46

I felt the robot did NOT know how I wanted the task done.

un
in

te
nd

I had to undo corrections that I gave the robot.

The robot wrongly updated its understanding about aspects of the task I did not want to change.

0.91 9.15 0.0046
After I adjusted the robot, it continued to do the other parts of the task correctly.

After I adjusted the robot, it incorrectly updated parts of the task that were already correct.

Table 7.1: Results of ANOVA on subjective metrics collected from a 7-point Likert-scale survey.

infers objectives from human input, versus trying to additionally estimate the unique

ground-truth human objective of each participant. Then the participant performed a

familiarization round, followed by two recorded experimental rounds. After answering

the survey, the participant repeated the procedure for the other method.

7.6.2 Analysis

Objective. We ran a repeated-measures factorial ANOVA with learning strategy and

input quality (well or poorly explained) as factors. We found a significant main effect for

the method (𝐹(1, 187) = 7.8, 𝑝 = 0.0058), and a significant interaction effect (𝐹(1, 187) =
6.77, 𝑝 = 0.0101). We ran a post-hoc analysis with Tukey HSD corrections for multiple

comparisons to analyze this effect, and found that it supported our hypotheses. On tasks

where corrections were poorly explained, the estimated-𝛽 method had significantly lower

regret (𝑝 = 0.001); on tasks where corrections were well explained, there was no significant

difference (𝑝 = 0.9991). Fig. 7.12a plots the regret per task, and indeed the estimated-𝛽
method was not inferior on tasks 1 and 3, and significantly better on tasks 2 and 4.

For the length of the �̂ path metric, the factorial ANOVA analysis found a significant

main effect for the method (𝐹(1, 187) = 76.43, 𝑝 < 0.0001), and a significant interaction

effect (𝐹(1, 187) = 33.3, 𝑝 < 0.0001). A similar post-hoc analysis with Tukey HSD correction

for multiple comparisons also supports our hypotheses. On tasks where corrections were

poorly explained, our method had lower average weight paths over time (𝑝 = 0.0025); on

tasks where correction were well explained, however, there was no significant difference

(𝑝 = 0.1584). The same results are supported by Fig. 7.12b, which plots the average length

of �̂ through weight space per task, and indeed our method was not significantly inferior

for tasks 1 and 3, and significantly better on tasks 2 and 4.

Subjective. We ran a repeated measures ANOVA on the results of our participant survey.

We find that our method is not significantly different from the baseline in terms of task
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completion (𝐹(1, 7) = 0.88, 𝑝 = 0.348) and task understanding (𝐹(1, 7) = 0.55, 𝑝 = 0.46),

which supports H3. Participants also significantly preferred the estimated-𝛽 method in

terms of reducing unintended learning (𝐹(1, 7) = 9.15, 𝑝 = 0.0046), which supports H4.

7.7 Discussion
Human guidance is becoming increasingly important as autonomous systems enter

the real world. One common way for robots to interpret human input is treating it as

evidence about hypotheses in the robot’s reward space. Since accounting for all possible

hypotheses and situations ahead of time is challenging if not infeasible, in this paper we

claim that robots should explicitly reason about how well their given representation can

explain the human inputs.

We introduced the notion of situational confidence 𝛽 as a natural way to measure how

much the robot should trust its inputs and learn from them. We presented a general

framework for estimating 𝛽 in conjunction with any task objectives for scenarios where

the human and the robot are operating the same dynamical system. We instantiated it for

learning from human demonstrations, as well as for learning from corrections, by deriving

a close to real-time approximate algorithm. In both settings, we exemplified – via human

experiments with a 7-DoF robotic manipulator and a user study – that reasoning about

situational confidence does, in fact, assist the robot in better understanding when it cannot

explain human input.

There are several important limitations in our work. Perhaps the biggest limitation of

all, which we alluded to in the introduction, is that the representation can be misaligned

but the robot can nonetheless explain the input relatively well, thus confusing misalign-

ment for slight noise. This is especially true in more expressive representations, where

there might always be some hypothesis that explains the input. This is unfortunately a

fundamental problem with detecting misalignment in expressive representations: a sin-

gle demonstration or a single data point will not be enough. Much like learning cost

functions when using such spaces requires much more and diverse data than when using

a less expressive space, with detecting misalignment too it will be the case that the robot

will require a rich and diverse set of data points. The more data the robot has access

to, and the more diversely it is distributed, the less of a chance there is that one wrong

hypothesis can explain all the data. Furthermore, our approach cannot disambiguate

between misalignment of the representation and misalignment of the human observation

model, i.e. the Boltzmann model.

Algorithmically, while for corrections we derived a way to handle continuous reward

spaces that scales linearly with the dimensionality of the space, for demonstrations we

relied on simply discretizing the space. This was sufficient for showcasing the benefit of

estimating situational confidence, since for demonstrations this is done offline. However,

to scale the method to complex spaces, we need to combine it with state-of-the-art IRL

approaches that rely on Metropolis Hastings sampling, or simply estimate the MLE. Lastly,
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experimentally for both demonstrations and corrections we are limited to a simple motion

planning task with a cost function that depends on only a few features.

In subsequent work, we hope to address some of these limitations. We are also

interested in an extension to sequential time-dependent inputs, where the person could

change their mind about what objective is important to them. Additionally, we want to

explore ways of handling misalignment other than reducing learning, such as switching to

a more expressive representation (but demanding more data and computation) whenever

the situational confidence is very low for all �s. Finally, we are excited to showcase our

work on other coupled dynamical systems, such as autonomous vehicles.

7.8 Additional Details and Practical Considerations

7.8.1 Demonstrations

Discretizing Θ and ℬ in (7.13). For the Θ discretization, we chose vectors in the unit

sphere, as discussed in Sec. 7.2.2. For practical purposes, we restricted the � components

to be positive due to our task features and the capabilities of our trajectory optimizer;

in general, learning from demonstrations should be restricted to norm 1, not necessarily

to the positive quadrant. In both our examples in Sec. 7.3 and experiments in Sec. 7.5,

each �𝑖 component was allowed to take values 0, 0.5, or 1. Since we used 3 features,

�’s dimensionality was 3, leading to a possible set Θ equivalent to the 3-fold Cartesian

product of the values above. After normalizing to norm 1, we were left with 19 unique

� vectors in Θ, weighing the three features in different proportions, as shown in Figures

7.3, 7.7, 7.8, 7.9, and 7.10. Our discretization scheme ensured an approximately uniform

sampling on the positive quadrant of the unit sphere.

To discretize situational confidence, we found it sufficient to cover the log-scale space,

similarly to [100, 98]: 𝛽 ∈ {0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0, 100.0}. For different tasks,

a similar discretization should suffice because what matters is 𝛽’s relative magnitude for

identifying misalignment, not its absolute one. We suggest calibrating the threshold 𝜖 in

(7.6) using a few simulated trajectories like the ones in Fig. 7.3.

7.8.2 Corrections

Planning and Replanning. We use TrajOpt [255] to plan and replan robot trajectories.

We set up the trajectory optimization problem to plan a path that minimizes a cost given

by the negative of the reward function (7.15). Given different features Φ and weights

� on these features, different optimal paths may be found. Additionally, we constrain

the optimization to plan a path between a pre-specified start and goal locations, while

avoiding collisions with the objects in the environment (table, laptop, or human). The

total time of the trajectory is fixed, but the actual length can differ. That means that the

robot moves faster for longer trajectories, and slower for shorter ones.
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The robot plans an initial path from start to goal using the initial weights �. When a

human pushes, the robot measures the instantaneous deviation, which deforms the tra-

jectory via the impedance controller. Without learning, the robot would resume tracking

its original trajectory. However, we use the human input to update � according to (7.30),

which the robot’s planner uses to compute a new trajectory that the robot can follow in-

stead. In a perfect world, this entire process would happen at 60Hz. In practice, however,

the trajectory optimizer’s computation lasts longer. As such, once a push is registered, the

robot starts listening for following torque signals only after the update is complete.

Imagine this process in the context of a typical user experience. Once the person

begins pushing, the robot instantly starts updating � and optimizing the new induced

path. While the person is applying their correction, the planner eventually finishes its

computation and passes the updated trajectory to the robot controller. The user can

immediately feel that the robot changed course and stops intervening.

Solving (7.21). We used SLSQP, an off-the-shelf sequential quadratic programming pack-

age [163], to solve (7.21). In practice, the method can fail to return a good result if the

initialization is bad. We found that if we initialize the minimization with a guess that

does not satisfy the constraint (e.g. 0), it returns a reasonable estimate of the true 𝑢∗
𝐻

.

Sensitivity Analysis. Both (7.24) and (7.30) rely heavily on � and �.

Setting � affects the magnitude of the resulting estimated situational confidence �̂� in

(7.24). This magnitude plays an important role when later estimating � via (7.30) because

it affects 𝑃(𝐸 | �̂�). However, note that to compute this probability we use 𝑃(�̂� | 𝐸), which

is an entirely data-driven empirical distribution, where the observed �̂� is also computed

via (7.24). As such, we are not relying on absolute magnitudes of the estimated situational

confidence but on relative ones. Therefore, the choice of the hyperparameter � does not

affect our method’s estimates as long as they are computed with the same hyperparameter

that is used for learning 𝑃(�̂� | 𝐸).
In the case of precision � in (7.25), how spread out the Gaussian noise centered around

Φ(x𝑅) is affects the denominator in (7.30). When � → 0, the Γ(Φ𝐷 , 𝐸 = 0) term in the

denominator goes to 0, which means that (7.30) reduces to (7.31): our method always

learns and never identifies misalignment. On the other hand, when � → ∞, we can use

the L’Hospital rule to see that Γ(Φ𝐷 , 𝐸 = 0) → 0 as well, as long as | |Φ𝐷 − Φ(x𝑅)| |2 ≠ 0,

which is true unless there is no correction to deform x𝑅, in which case we do not need to

update � at all. Therefore, it is important that � is set not too high and not too low in order

for our method to work properly.

The best practice for setting � also involves using the offline data calibration from

Sec. 7.5.2: after computing the empirical 𝑃(�̂� | 𝐸) distribution, when 𝐸 = 0 the updated

� should not change much, whereas when 𝐸 = 1 the � parameter should change appro-

priately. Without the offline data calibration in Sec. 7.5.2, both � and � affect the � and 𝛽
estimation, and can have profound effects on the efficacy of our method. Unfortunately,

we cannot do this calibration automatically yet, which is a limitation of our work.

Trajectory Deformation Parameter Choice. When deforming the robot’s trajectory given
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a human interaction, there are many choices of the deformation matrix𝐴 and the deforma-

tion magnitude parameter �. 𝐴 can be an explicit design choice (for example, constructing

𝐴 from a finite differencing matrix [25]), can be solved for via an optimization problem

which penalizes the undeformed trajectory’s energy, the work done by the trajectory de-

formation to the human, and variation’s total jerk as in [191], or can even be learned

from human data [147]. The magnitude of the deformation � can also be tuned for best

performance, for example to be robust to the rate at which deformations occur (see [190]

for more details).

7.8.3 Laplace Approximation in Equation (7.19)

Let the cost in the denominator in (7.19) be denoted by:

𝐶Φ𝐷 (�̄�) = �∥�̄�∥2 + �∥Φ(x̄𝐷) −Φ𝐷 ∥2, (7.32)

for an observed Φ𝐷 .

First, our cost function can be approximated to quadratic order by computing a second

order Taylor series approximation about the optimal human action 𝑢∗
𝐻

(obtained via the

constrained optimization in (7.21)):

𝐶Φ𝐷 (�̄�) ≈ 𝐶Φ𝐷 (𝑢∗𝐻) + ∇𝐶Φ𝐷 (𝑢∗𝐻)
⊤(�̄� − 𝑢∗𝐻) +

1

2

(�̄� − 𝑢∗𝐻)
⊤∇2𝐶Φ𝐷 (𝑢∗𝐻)(�̄� − 𝑢

∗
𝐻) . (7.33)

Since ∇𝐶Φ𝐷 (�̄�) has a global minimum at 𝑢∗
𝐻

then ∇𝐶Φ𝐷 (𝑢∗𝐻) = 0 and the denominator of

(7.19) can be rewritten as:∫
𝒰
𝑒−𝛽𝐶Φ𝐷

(�̄�)𝑑�̄� ≈ 𝑒−𝛽𝐶Φ𝐷
(𝑢∗
𝐻
)
∫
𝒰
𝑒−

1

2
(�̄�−𝑢∗

𝐻
)𝛽∇2𝐶Φ𝐷

(𝑢∗
𝐻
)(�̄�−𝑢∗

𝐻
)𝑑�̄� . (7.34)

Since 𝛽∇2𝐶Φ𝐷 (𝑢∗𝐻) > 0 for 𝑢∗
𝐻

≠ 0, the integral is in Gaussian form, which admits a

closed form solution: ∫
𝒰
𝑒−𝛽𝐶Φ𝐷

(�̄�𝐻)𝑑�̄�𝐻 ≈ 𝑒−𝛽𝐶Φ𝐷
(𝑢∗
𝐻
)

√
2𝜋𝑘

𝛽𝑘 |𝐻𝑢∗
𝐻
|
,

where 𝐻𝑢∗
𝐻
= ∇2𝐶Φ𝐷 (𝑢∗𝐻) denotes the Hessian of 𝐶Φ𝐷 at 𝑢∗

𝐻
. Replacing 𝐶Φ𝐷 (�̄�𝐻) with the

expanded cost function, we arrive at the final approximation of the observation model:

𝑃(𝑢𝑡𝐻 | 𝑥
0, u𝑅;Φ𝐷 , 𝛽) ≈

𝑒−𝛽�(∥𝑢
𝑡
𝐻
∥2)

𝑒−𝛽(�∥𝑢
∗
𝐻
∥2+�∥Φ(x∗

𝐷
)−Φ𝐷 ∥2)

√
𝛽𝑘 |𝐻𝑢∗

𝐻
|

2𝜋𝑘
.
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Chapter 8

Misalignment Detection in Teleoperation

This chapter is based on the paper ”Situational Confidence Assistance for Lifelong Shared Auton-
omy” [313], written in collaboration with Matthew Zurek, Daniel Brown, and Anca Dragan.

Figure 8.1: We propose an approach for lifelong shared autonomy that enables a robot to detect when its set

of known human intents is insufficient to explain the current human behavior. Rather than trying to assist

for the wrong intent, the robot learns from novel teleoperations to learn a model of the new intent, allowing

for lifelong confidence-based assistance.

In shared autonomy [9, 89, 240, 192, 110, 5, 189, 181, 92, 52, 75], robots assist human

operators to perform their objectives more effectively. Here, rather than directly executing

the human’s control input, a typical framework has the robot estimate the human’s intent

and execute controls that help achieve it [89, 145, 210, 225, 240].

These methods succeed when the robot knows the set of possible human intents a

priori, e.g. the objects the human might want to reach, or the buttons they might want to

push [89, 145]. But realistically, users of these systems will inevitably want to perform tasks

outside the repertoire of known intents – they might want to reach for a goal unknown to
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the robot, or perform a new task like pouring a cup of water into a sink. This presents a

three-fold challenge for shared autonomy. First, the robot will be unable to recognize and

help with something unknown. Second, and perhaps more importantly, it will attempt

to assist with whatever wrong intent it infers, interfering with what the user is trying to

do and hindering their performance. This happens when the robot plans in expectation

[145], and, as our experiments will demonstrate, it happens even when the robot arbitrates

the amount of assistance based on its confidence in the most likely goal [89]. Third, the

new task remains just as difficult as the first time even after arbitrarily many attempts.

Our key idea is that the robot should detect that the user is trying something new and

give them control. This then presents an opportunity for the robot to observe the new

executed trajectory, learn the underlying intent that explains it, and add it to its repertoire

so that it can infer and assist for this intent in the future.

To achieve this, we need two ingredients: 1) a way for the robot to detect its repertoire

of intents is insufficient, and 2) a representation of intents that enables learning new tasks

throughout its lifetime, adding them to its repertoire, and performing inference over them

in a unified way with the initial known intents. For the latter, we use reward functions

to unify goals and general skills like pouring into the same representation. This then

enables the former: when the human acts too suboptimally for any of the known reward

functions, it suggests the robot lacks the correct set of rewards.

Our approach takes inspiration from Chapter 7 on representation misalignment where

the robot recognizes when its reward function features are insufficient to explain hu-

man demonstrations and corrections [38], and updates the reward in proportion to the

situational confidence in these features’ ability to explain input. We extend detecting rep-

resentation misalignment to the context of shared autonomy, in which there are multiple

intents, represented as reward functions, and the robot seeks to recognize whether any of

the known intents explain the human input sufficiently. The robot can then arbitrate its

assistance based on its confidence in the most likely intent being what the human wanted.

Our approach, which we call Confidence-Aware Shared Autonomy (CASA), allows

the robot to ascertain whether the human inputs are associated with a known or new

task. By arbitrating the user’s input based on the confidence in the most likely intent,

CASA follows a standard policy blending assistance approach if the task is known, and

otherwise gives the user full control. Additionally, CASA allows the user to provide a

few demonstrations of the new intent, which the robot uses to learn a reward function

via Inverse Reinforcement Learning (IRL) [96] and add it to its set of intents. This enables

lifelong shared autonomy, where the robot helps when it is confident in what the user

wants and learns new intents when it detects that the human is doing something novel,

so that it can assist with that intent in the future.

We test our approach in a expert case study and a user study with a simulated 7DoF

JACO assistive robot arm. Our results suggest that CASA significantly outperforms prior

approaches when assisting for unknown intents, maintains high performance in the case

of known ones, and successfully learns new intents for better lifelong shared autonomy.
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8.1 Approach: Confidence-Aware Shared Autonomy
We consider a human teleoperating a dexterous robot arm to perform everyday ma-

nipulation tasks. The robot’s goal is to assist the person in accomplishing their desired

skill by augmenting or changing their input. While the robot possesses a predefined set

of possible intents, the human’s desired motion might not be captured by any of them.

We propose that since the robot might not understand the person’s intentions, it should

reason about how confident it is in its predictions to avoid assisting for the wrong intent.

8.1.1 Preliminaries
Formally, let 𝑠 ∈ 𝒮 be the continuous robot state (e.g. joint angles), and 𝑎 ∈ 𝒜

the continuous robot action (e.g. joint velocity). The user controls their desired robot

configuration by providing continuous inputs 𝑎𝐻 ∈ 𝒜ℋ via an interface (e.g. GUI, joystick,

keyboard commands, etc). These inputs are mapped to robot actions through a direct
teleoperation function 𝒯 : 𝒜ℋ → 𝒜. Define a person’s trajectory up until time 𝑡 as the

sequence �0→𝑡 = (𝑠0, 𝑎0

𝐻
, . . . , 𝑠𝑡 , 𝑎𝑡

𝐻
).

The robot is equipped with a set of known intents Θ, one of which may represent the

user’s desired motion. Each intent is parameterized by a reward function 𝑅�, which may

be hand-engineered or learned from demonstrations via IRL [311, 214]. For example, if

the intent represents moving to a goal 𝑔, the reward function can be given by the distance

to the goal: 𝑅𝑔(�) = −
∑
𝑥∈� ∥𝑥 − 𝑔∥. If the intent is pouring a cup, the reward can be a

neural network with parameters 𝜓, 𝑅𝜓. Our shared autonomy system does not know the

intent a priori, but infers it from the human’s inputs. Given the user’s trajectory so far,

�0→𝑡 , a common strategy is to predict the user’s intent � ∈ Θ, compute the optimal action

for moving accordingly, then augment the user’s original input with it [89].

However, what if none of the intents match the human’s input, i.e., the person is doing

something the robot does not know about? We introduce a shared autonomy formalism

where the robot reasons about its confidence in its current set of intents’ ability to explain

the person’s input, and uses that confidence for assistance. This confidence serves a dual

purpose, as the robot can also use it to ask the human to demonstrate the missing intent.

8.1.2 Intent Inference
To assist the person, the robot has to first predict which of its known tasks the person is

trying to carry out, if any. To do that, the robot needs a model of how people teleoperate it to

achieve a desired motion. We assume the Boltzmann noisily-rational decision model [27]:

𝑃(� | �, 𝛽) = 𝑒𝛽𝑅�(�)∫
�̄
𝑒𝛽𝑅�(�̄)𝑑�̄

, (8.1)
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where the person chooses the trajectory � proportionally to its exponentiated reward 𝑅�.

The parameter 𝛽 ∈ [0,∞) controls how much the robot expects to observe human input

consistent with the intent �. Typically, 𝛽 is fixed, recovering the Maximum Entropy IRL

observation model [311], which is what most inference-based shared autonomy methods

use [89, 145]. Inspired by work on confidence-aware human-robot interaction [100, 98, 38],

we instead reinterpret 𝛽 as the robot’s situational confidence in its ability to explain human

data, given the known intents Θ, and we show how the robot can estimate it in Sec. 8.1.3.

Given (8.1), if the reward 𝑅� of intent � is additive along the trajectory �, we have that:

𝑃(�0→𝑡 | �, 𝛽) = 𝑒𝛽𝑅�(�0→𝑡)

∫
�̄𝑡→𝑇

𝑒𝛽𝑅�(�̄𝑡→𝑇 )∫
�̄0→𝑇

𝑒𝛽𝑅�(�̄0→𝑇 )
, (8.2)

where𝑇 is the episode length. In high-dimensional manipulation spaces, evaluating these

integrals is intractable. We follow [89] and approximate them via Laplace’s method:

𝑃(�0→𝑡 | �, 𝛽) ≈ 𝑒𝛽(𝑅�(�0→𝑡)+𝑅�(�∗𝑡→𝑇 )−𝑅�(�∗
0→𝑇 ))

√(
𝛽

2𝜋

) 𝑡𝑘 |∇2𝑅�(�∗
0→𝑇)|

|∇2𝑅�(�∗𝑡→𝑇)|
, (8.3)

where 𝑘 is the action dimensionality, and the trajectories �∗
0→𝑇 and �∗

𝑡→𝑇 are optimal with

respect to 𝑅� and can be computed with any off-the-shelf trajectory optimizer1.

Now, given a tractable way to compute the likelihood of the human input, the robot

can obtain a posterior over intents:

𝑃(� | �0→𝑡 , 𝛽) =
𝑃(�0→𝑡 | �, 𝛽)∑

�′∈Θ 𝑃(�0→𝑡 |�′, 𝛽)
, (8.4)

assuming 𝑃(� | 𝛽) = 𝑃(�) and a uniform prior over intents.

Prior inference-based shared autonomy work [89, 145] typically assumes 𝛽 = 1. We

show that the robot should not be restricted by such an assumption and it, in fact, benefits

from estimating �̂� and reinterpreting it as a confidence.

8.1.3 Confidence Estimation
In the Boltzmann model in (8.1), we see that 𝛽 determines the variance of the distri-

bution over human trajectories. When 𝛽 is high, the distribution is peaked around those

trajectories � with the lowest reward 𝑅�; in contrast, a low 𝛽 makes all trajectories equally

likely. We can, thus, reinterpret 𝛽 to take a useful meaning in shared autonomy: given an

intent, 𝛽 controls how well that intent’s reward explains the user’s input. A high 𝛽 for an

intent � indicates that the intent’s reward explains the input well and is a good candidate

1
We use TrajOpt [255], based on sequential quadratic programming.
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for assistance. A low 𝛽 on all intents suggests that the robot’s intent set is insufficient for

explaining the person’s trajectory.

We estimate 𝛽 and use it for assistance. We use the model (8.3) to write the 𝛽 posterior

𝑃(𝛽 | �0→𝑡 , �) =
𝑃(�0→𝑡 | �, 𝛽)𝑃(𝛽)∫

�̄�
𝑃(�0→𝑡 |�, �̄�)𝑃(𝛽)𝑑�̄�

. (8.5)

If we assume a uniform prior 𝑃(𝛽), we may compute an estimate of the confidence param-

eter 𝛽 per intent � via a maximum likelihood estimate:

�̂�� = arg max

�̄�
𝑒 �̄�(𝑅�(�0→𝑡)+𝑅�(�∗𝑡→𝑇 )−𝑅�(�∗

0→𝑇 ))
(
�̄�

2𝜋

) 𝑡𝑘
2

, (8.6)

where we drop the Hessians since they don’t depend on 𝛽. Setting the derivative of the

objective in (8.6) to zero and solving for 𝛽 yields the following estimate:

�̂�𝑀𝐿𝐸
� =

𝑡𝑘

2(𝑅�(�∗
0→𝑇) − 𝑅�(�0→𝑡) − 𝑅�(�∗𝑡→𝑇))

. (8.7)

Alternatively, we chose to add an exponential prior with parameter �, 𝐸𝑥𝑝(�) to obtain

�̂�𝑀𝐴𝑃
� =

𝑡𝑘

2(� + 𝑅�(�∗
0→𝑇) − 𝑅�(�0→𝑡) − 𝑅�(�∗𝑡→𝑇))

. (8.8)

The denominators in equations 8.7 and 8.8 can be interpreted as the “suboptimality” of

the observed partial trajectory �0→𝑡 compared to the reward of the optimal trajectory for

the particular �, 𝑅�(�∗
0→𝑇). Note that �̂�� is inversely proportional to the suboptimality

divided by the number of time steps 𝑡 that have passed. Intuitively, the user has more

chances to be a suboptimal teleoperator as time goes on, so dividing for 𝑡 corrects for the

natural increase in suboptimality over time.

If this normalized suboptimality is low for an intent �, then the person is close to a

good trajectory for that intent and �̂�� will be high. Thus, a high �̂�� means that the person’s

input is well-explained by that intent. On the other hand, high suboptimality per time

means the person is far from good trajectories, so �’s reward model 𝑅� does not explain

the person’s trajectory and �̂�� will be low.

8.1.4 Confidence-based Arbitration

Armed with a confidence estimate �̂�� for every � ∈ Θ, the robot can predict the most

likely one �∗ = arg max�∈Θ 𝑃(� | �0→𝑡 , �̂��) using (8.4). From here, one natural style of

assistance is “policy blending” [89]. First the robot computes an optimal trajectory under

the most likely intent, �∗ = arg max�
∑
𝑠∈� 𝑅

∗
�(𝑠), the first action of which is 𝑎∗. Then the
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robot combines 𝑎∗ and 𝒯 (𝑎𝑡
𝐻
) using a blending parameter 𝛼 ∈ [0, 1], resulting in the robot

action 𝑎𝑡 = 𝛼𝒯 (𝑎𝑡
𝐻
) + (1 − 𝛼)𝑎∗. We also refer to 𝛼 as the human’s control authority.

Prior work proposes different ways to arbitrate between the robot and human actions

by choosing 𝛼 proportional to the robot’s distance to the goal or to the probability of the

most likely goal [89]. However, when using 𝑃(�∗ | �), �∗ might look much better than the

other intents, resulting in the robot wrongly assisting for �∗. Distance-based arbitration

ignores the full history of the user’s input and can only accommodate simple intents.

Instead, we propose that the robot should use its confidence in the most likely intent,

�̂��∗ , estimated according to Sec. 8.1.3, to control the strength of its arbitration:

𝑎𝑡 = min(1, 1/�̂��∗)𝒯 (𝑎𝑡𝐻) + (1 −min(1, 1/�̂��∗))𝑎∗ (8.9)

When �̂��∗ is high, i.e. the robot is confident that the predicted intent �∗ can explain the

person’s input, 𝛼 is low, giving the robot more influence through its action 𝑎∗. When �̂��∗
is low, i.e. not even the most likely intent explains the person’s input, 𝛼 increases, giving

the person’s action 𝑎𝑡
𝐻

more authority.

8.1.5 Using Confidence for Lifelong Learning

Estimating the confidence �̂�� also lets the robot detect misalignment inΘ: if all estimated

�̂�� for � ∈ Θ are below a threshold 𝜖, the robot is missing the person’s intent. Once the

robot has identified that its intent set is misaligned, it should ask the person to teach it. We

represent the missing intent�𝜙 as a neural network reward parameterized by 𝜙 and learn it

via deep maximum entropy IRL [96]. The gradient of the IRL objective with respect to the

reward parameters 𝜙 can be estimated by: ∇𝜙ℒ≈ 1

|𝒟∗ |
∑

𝜏∈𝒟∗∇𝜙𝑅𝜙(𝜏)− 1

|𝒟𝜙 |
∑

𝜏∈𝒟𝜙∇𝜙𝑅𝜙(𝜏).
𝒟∗ are demonstrations of the person executing the missing intent via direct teleoperation,

and𝒟𝜙
are trajectories sampled from the 𝑅𝜙 induced near the optimal policy.

Once we have a new intent �𝜙, the robot updates its intent set Θ ← Θ ∪ �𝜙. The

next time the person needs assistance, the robot can perform confidence estimation, goal

inference, and arbitration as before, using the new library of intents. While the complexity

scales linearly with |Θ |, planning can be parallelized across each intent.

Learned rewards fit naturally into our framework, allowing for a simple way to compare

against the known intents. One could also imagine adapting our method to other ways to

learn an intent, from imitation learning [136, 241] to dynamic movement primitives [220].

For instance, if we model intents via policies, we can derive a similar confidence metric

based on probabilities of human actions under a stochastic policy rather than rewards.

8.2 Experiments: Confidence Estimation Case Study
We now introduce three manipulation tasks and use expert data to analyze confidence

estimation and assistance. In Sec. 8.3 we will test CASA’s assistive capacity in a user study.
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Figure 8.2: Expert case study results. For each task we compute confidence estimates before learning and,

for the misaligned tasks (middle, bottom), we recompute the confidence estimates after learning. We plot

the strength of assistance before and after learning and compare to a policy blending baseline [89].

8.2.1 Experimental Setting
We conduct our experiments on the simulated 7-DoF JACO arm shown in Fig. 8.2. We

use the pybullet interface [74] and teleoperate the robot via keypresses. We map 6 keys to

bi-directional 𝑥𝑦𝑧 movements of the robot’s end-effector, and 2 keys for rotating it in both

directions. We performed inference and confidence estimation twice per second.

We test CASA on 3 different tasks. In the Known Goal task, we control for the well-

aligned setting: the robot must assist the user to move to the known green goal location

in Fig. 8.2. In the other tasks, we test CASA’s efficacy in the case of misalignment, where

the user’s desired intent is initially missing from the robot’s known set Θ. In the second

task, Unknown Goal, the person teleoperates the robot to the red goal which is unknown to

the robot. Finally, in the third and most complicated task, Unknown Skill, the person tries

to pour the cup contents at an unknown goal location.

For the Unknown Goal and Unknown Skill tasks, we first run CASA before learning

the new intent (CASA before learning). Detecting low confidence, the robot asks for demon-

strations to learn the missing intent via IRL. We then teleoperate with CASA after learning
to assess the quality of robot assistance after learning the new intent.
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Figure 8.3: Analysis of arbitration methods. After tracking an optimal trajectory for the Unknown Goal

task, we show the robot’s belief and confidence estimates for each known goal (left), as well as the 𝛼 values

under the distance, belief, and confidence-based arbitration schemes (right).

8.2.2 Arbitration Method Comparison
We compare CASA to a policy blending assistance (PBA) baseline [89] that assumes

𝛽 = 1 for all intents. PBA arbitrates with the distance 𝑑�∗ to the predicted goal: 𝛼 =

min(1, 𝑑�∗/𝐷), with 𝐷 some threshold past which the robot does not assist. More sophis-

ticated arbitration schemes use 𝑃(�∗ | �) or the full distribution 𝑃(� | �), but they are

less robust to misalignment. This is because when the user teleoperates for an unknown

intent, 𝑃(� | �) will be low for all known � ∈ Θ; however, forming 𝑃(� | �) requires

normalizing over all known intents, after which 𝑃(�∗ | �) can still be high unless the user

happened to operate in a way that appears equally unlikely under all known intents.

We analyzed this phenomenon by tracking a reference trajectory for the Unknown Goal

task which moves optimally towards the unknown goal (see Fig. 8.2 for the task layout).

We compared the performances of the distance and confidence arbitration methods, as

well as a belief-based method which sets 𝛼 = (𝑃(�∗ | �)|Θ | − 1)/(|Θ | − 1) (chosen so that

𝛼 = 0 when 𝑃(�∗ | �) = 1/|Θ |, 𝛼 = 1 when 𝑃(�∗ | �) = 1). In Fig. 8.3, the confidence in each

goal stays low enough that the robot would have left the user in full control; meanwhile,

the relatively higher likelihood of one goal causes the belief 𝑃(�∗ | �) to quickly go to 1

and thus set the user’s control authority to 0 under the belief-based arbitration scheme.

We examined one belief-based arbitration method here, but since 𝑃(�∗ | �) rapidly

goes to 1, any other arbitration that is a function of the belief 𝑃(� | �) would similarly

try to assist for the wrong goal, motivating our choice of the simpler but more robust

distance-based arbitration baseline.

8.2.3 Well-aligned Tasks
Fig. 8.2 (top) showcases the results of our experiment for the Known Goal task. Looking

at the confidence plot, we see that �̂�� increases with time for the correct green goal, while it

remains low for the alternate known purple goal. In the arbitration plot, as �̂��∗ increases,
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𝛼 gradually decreases, reflecting that the robot takes more control authority only as it

becomes more confident that the person’s intent is indeed �∗. Similarly, since there is no

misalignment, PBA arbitration steadily decreases the human’s contribution to the final

control. Both methods result in smooth trajectories which go to the correct goal location.

8.2.4 Misaligned Tasks
CASA distinguishes itself in how it handles misaligned tasks. During the Unknown

Goal task, in Fig. 8.2 (middle), CASA before learning estimates low �̂�� for both goals, since

neither goal explains the person’s motion moving towards the red goal. The estimated �̂��
is slightly higher for the green goal than for the purple one because it is closer to the user’s

input; however, neither are high enough to warrant an arbitration 𝛼 below 1, and thus the

robot receives no control. In Fig. 8.2 (bottom), we observe almost identical behavior before

learning for the Unknown Skill task: the known intents do not match the user’s behavior,

and thus the user is given full control and completes the task.

This contrasts PBA, which, for both Unknown Goal and Unknown Skill, predicts the

green goal as the intent. Since in both cases the user’s desired trajectory passes near the

green goal, PBA erroneously takes control and moves the user towards it, requiring the

human to counteract the robot’s controls to try to accomplish the task.

In the middle plots for each of the misaligned tasks, we observe for CASA after learning,

the newly-learned intents receive confidence estimates which increase as the robot is able

to observe the user, and thus CASA contributes more to the control as it becomes confident.

8.3 User Study: Confidence-Aware Assistance
We present our user study testing how well CASA can assist non-expert users.

8.3.1 Experimental Design
Due to the COVID-19 pandemic, we were unable to perform an in-person user study

with a physical robot. Instead, as described in Sec. 8.2, we replicated our lab set-up in a

pybullet simulator [74] in which users can teleoperate a 7 DoF JACO robotic arm using

keyboard inputs (Fig. 8.2).

We split the study into four phases: (1) familiarization, (2) no misalignment, (3) mis-

alignment before learning, and (4) misalignment after learning. First, we introduce the

user to the simulation interface by asking them to perform a familiarization task. In the

next phase, we tested the Known Goal task. In the third phase, we tested the two mis-

aligned tasks, Unknown Goal and Unknown Skill, then asked participants to provide 5

demonstrations for each intent. Finally, in the fourth phase, we retested the misaligned

tasks using reward functions learned from the demonstrations.
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Figure 8.4: Our user study objective metrics. We measured error with respect to an intended trajectory

(left), smoothness of the executed trajectory (middle), and effort relative to direct teleoperation (right).

Independent Variables: For each experiment, we manipulate the assistance method with

three levels: no assistance (NA), policy blending assistance (PBA) [89], and Confidence-

Aware Shared Autonomy (CASA). For Unknown Goal and Unknown Skill, we compared

our method before and after learning new intents against the NA and PBA baselines.

Dependent Measures: Before each task, we displayed an exemplary reference trajectory

to help participants understand their objective. As such, for our objective metrics, we

measured Error as the sum of squared differences between the intended and executed

trajectories, Efficiency reward as the sum of squared velocities across the executed trajectory,

and Effort as the number of keys pressed. To assess the users’ interaction experience,

we administered a subjective 7-point Likert scale survey, asking the participants three

questions: (1) if they felt the robot understood how they wanted the task done, (2) if the

robot made the interaction more effortless, and (3) if the assistance provided was useful.

Participants: We used a within-subjects design and counterbalanced the order of the assis-

tance methods. We recruited 11 users (10 male, aged 20-30) from the campus community,

most of whom had technical background.

Hypotheses:
H1: If there is no misalignment, assisting with CASA is not inferior to assisting with PBA,

and is superior to NA.

H2: If there is misalignment, assisting with CASA before learning is more accurate,

efficient, and effortless than with PBA and not inferior to NA.

H3: If there is misalignment, assisting with CASA after learning is more accurate, efficient,

and effortless than NA.

H4: If there is misalignment, participants will believe the robot understood what they

want, feel less interaction effort, and find the assistance more useful with CASA after

learning than with any other baseline.

8.3.2 Analysis
Objective. Fig. 8.4 summarizes our main findings. For Known Goal, which is well-

aligned, CASA does no worse than PBA and better that NA in terms of relative effort and
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Figure 8.5: Subjective user study results. When there is no misalignment (left), our method is not inferior

to PBA; when there is misalignment (center, right), participants prefer CASA after learning a new intent.

error. We confirmed this by running an ANOVA, finding a significant main effect for the

method (𝐹(2, 30) = 104.93, 𝑝 < .0001 for effort; 𝐹(2, 30) = 8.93, 𝑝 = .0009 for error). In

post-hoc testing, a Tukey HSD test revealed that CASA is significantly better than NA

(𝑝 < .0001 for effort, 𝑝 = .0013 for error). We also performed a non-inferiority test [173],

and obtained that CASA is non-inferior to PBA within a margin of 0.065 for effort, 0.025

for efficiency, and 0.26 for error. These findings are in line with H1 and were expected,

since the robot should have no problem handling known intents.

For the two misaligned tasks, we first ran an ANOVA with the method as a factor, and

the task as a covariate, and found a significant main effect (𝐹(2, 62) = 11.8255, 𝑝 < .0001

for effort; 𝐹(2, 62) = 6.119, 𝑝 = .0038 for error). A Tukey HSD revealed that CASA is

significantly better than PBA (𝑝 = .0005 for effort, 𝑝 = .005 for error). We also ran a

non-inferiority test, and obtained that CASA is non-inferior to NA within a margin of

0.035 for effort, 0.02 for efficiency, and 1.4 for error for Unknown Goal, and 0.03 for effort,

0.09 for efficiency, and 4.5 for error for Unknown Skill. For both unknown tasks, CASA

before learning is essentially indistinguishable from NA since a low �̂��∗ would make the

robot rely on direct teleoperation. Both the figure and our statistical tests confirm H2,

which speaks for the consequences of confidently assisting for the wrong intent.

For efficiency reward, we did not find an effect, possibly because Fig. 8.4 shows that

PBA is more efficient for the Unknown Skill task than other methods. Anecdotally, PBA

forced users to an incorrect goal thus preventing them from pouring, which explains the

lower efficiency reward. By having a high arbitration for the wrong intent, PBA can cause

a smooth trajectory, since it lowers the control authority of the possibly-noisy human

inputs. However, this trajectory does not accomplish the task. When running an ANOVA

for each of the tasks separately, we found a significant main effect for the method for

Unknown Goal (𝐹(2, 30) = 9.66, 𝑝 = .0006), and a post-hoc Tukey HSD revealed CASA is

significantly better than PBA (𝑝 = .0032), further confirming H2.

Lastly, we looked at the performance with CASA after learning the new intents. For

Unknown Goal, a simple task, the figure shows that CASA after learning doesn’t improve

efficiency and error, but it does reduce relative effort when compared to NA. For Unknown
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Skill, a more complex task, CASA after learning outperforms NA. This is confirmed by

an ANOVA with the method (NA, CASA after learning) as the factor, where we found a

significant main effect (𝐹(1, 41) = 53.60, 𝑝 < .0001 for effort; 𝐹(1, 641) = 8.6184, 𝑝 = .0054

for efficiency reward), supporting H3.

Subjective. We show the average Likert survey scores for each task in Fig. 8.5. In line with

H1, for the Known Goal task, users thought the robot under both PBA and CASA had a

good understanding of how they wanted the task to be done, made the interaction more

effortless, and provided useful assistance. The results are in stark contrast to NA, which

scores low on all those metrics. For Unknown Goal and Unknown Skill, all methods fare

poorly on all questions except for CASA after learning, supporting H4.

8.4 Discussion
In this chapter, we formalized a confidence-aware shared autonomy process where

the robot can adjust its assistance based on how confident it is in its prediction of the

human intent. We introduced an approximate solution for estimating this confidence,

and demonstrated its effectiveness in adjusting arbitration when the robot’s intent set is

misaligned and enabling continual learning of new intents.

While our confidence estimates tolerated some degree of suboptimal user control, an

extremely noisy operator attempting a known intent might instead appear to be perform-

ing a novel intent. Moreover, due to COVID, we ran our experiments in a simulator,

which does not replicate the difficulty inherent in teleoperating a real manipulator via

a joystick interface. Despite these limitations, we are encouraged to see robots have a

more principled and robust way to arbitrate shared autonomy, as well as decide when

they need to learn more to be better teammates. We look forward to applications of

our confidence-based ideas beyond manipulation robots, to semi-autonomous vehicles,

quadcopter control, or any other shared autonomy scenarios.
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Part IV

Using Aligned Representations to
Interpret Human Behavior

Thus far, this thesis has showcased several implications and benefits of aligning hu-

man and robot representations, from more robust and generalizable reward learning, to

personalized motion planning, to introspective robots that can autonomously detect mis-

alignment. However, once we agree that representations should not be just functional

but also human-aligned, we can also fundamentally rethink how robots model people

internally, and, thus in turn, interpret their behavior. In Part IV, we observe that when

humans make decisions, their representation affects how they view the options amongst

which they are choosing. For example, although there are many paths around an obstacle,

humans may group them into “left” and “right” when deciding between them. Instead

of seeing human decisions as a choice from a set of behaviors, as current models do,

we develop a novel computational model of human decision-making that reinterprets the
available choices from the lens of the human-aligned representation. We demonstrate that this

better reflects how humans make decisions, and that robots make better inferences if they

interpret human input as such. Crucially, our model has wide-reaching impacts beyond

robotics, to artificial intelligence, econometrics, and cognitive science.
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Chapter 9

A Novel Human Decision-Making Model

This chapter is based on the paper “LESS is More: Rethinking Probabilistic Models of Human
Behavior” [44] written with Dexter Scobee, Jaime Fisac, Shankar Sastry, and Anca Dragan.
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Figure 9.1: (Top) Contrary to Boltzmann (gray), when adding more options on the right LESS (orange) does

not drastically reduce the probability of selecting the left option. (Bottom) We test LESS on learning from

user demonstrations for a 7DOF JACO arm.

What we do depends on our intent – our goals and preferences. When robots collabo-
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rate with us, they need to observe our behavior and infer our intent from it, so that they

can help us achieve it. They also need to anticipate or predict our future behavior given

what they have inferred, so that they can seamlessly coordinate their behavior with ours.

Both inference and prediction require a model of human behavior conditioned on intent.

A very popular such model is Boltzmann rationality [27, 282]. It formalizes intent via

a reward function, and models the human as selecting trajectories in proportion to their

(exponentiated) reward. Boltzmann rationality has seen great successes in a variety of

robotic domains, from mobile robots [164, 280, 131, 312, 226] to autonomous cars [311,

291, 157] to manipulation [150, 43, 96, 198, 199], in both inference [175, 311, 150, 164, 96,

232, 7, 280, 131] and prediction [157, 198, 312, 199, 226].

Despite its widespread use, Boltzmann predictions are not always the most natural.

At the core of the Boltzmann model is the view that behavior is a choice among available

alternatives; the probability of any trajectory thus heavily depends on the available alter-

natives. This has some unforeseen side-effects. One of the simplest examples is at the top

of Fig. 9.1. Imagine first that there are two possible trajectories to a goal, left and right,

both equally good. Boltzmann would predict a .5 probability of choosing to go to the left.

Next, imagine that we change the set of alternatives: we add two similar trajectories to

the right. Just because there are more options to go to the right, Boltzmann now predicts

a higher probability that you will decide to do so: for these four equally good trajectories,

Boltzmann assigns .25 probability each, and estimates going left with only .25 probability

instead of .5 as before. Should this change in alternatives – the addition of similar options

to go to the right – really be reducing the prediction that you will go left by that much?

This example seems artificial – when do we have a) a group of similar trajectories, and b)

an imbalance in the number of similar trajectories for each option, so that Boltzmann shows

this side-effect? Unfortunately, it is quite representative of real-world trajectory spaces.

Spaces of trajectories are continuous and bounded, so they naturally contain a continuum of

alternatives of varying similarity to each other, just like the right-side trajectories in our

example. Further, trajectories will have varying amounts of similarity to the rest of the

space: just like our left-side trajectory was dissimilar from the other alternatives, in the real

world, trajectories closer to joint limits or that squeeze in between two nearby obstacles

will be dissimilar from the rest of the trajectory space. In other words, the features that

the space exhibits affects how similar certain trajectories are to others.

Unfortunately, the Boltzmann model was not designed to handle this. It has its roots

in the Luce axiom of choice from econometrics and mathematical psychology [195, 194],

which models decisions among discrete and different options. When we move to trajectory

spaces, the options now are all connected to some degree via their feature representation:

Our insight is that we need to rethink how to generalize the Luce axiom to trajectory spaces, and
account for how representation similarity in trajectories should influence their probability.

We take a first step towards this goal by introducing an alternative to the Boltzmann

model that accounts not just for the reward of each trajectory, but also for the feature-space
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similarity each trajectory has with all other alternatives. That is, we use the human-aligned

representation features to account for the similarity amongst trajectory options. We name

our model LESS: Limiting Errors due to Similar Selections. We start by testing that our

model does better at predicting human decision (Sec. 9.2), and then move on to analyze its

implications for inference. We first conduct experiments in simulation, with ground truth

reward functions, to show that we can make more accurate inferences using our model

(Sec. 9.3). Finally, we test inference on real manipulation tasks with a 7DOF arm, where

we learn from user demonstrations (Sec. 9.4)– though we no longer have ground truth, we

show that we can improve the robustness of the inference if we use LESS.

9.1 Approach: The LESS Human Decision Model
Motivated by human prediction and reward inference for robotics, we seek an im-

proved human behavior model, designed for trajectory spaces rather than abstract discrete

decisions. To develop this theory, we first turn to the literature on human decision making.

9.1.1 Background
9.1.1.1 Human Decision Making. One of the preeminent theories of human decision

making in mathematical psychology is based on Luce’s axiom of choice [194, 195]. Here,

we consider a set of options 𝒪, and we seek t quantify the likelihood that a human will

select any particular option 𝑜 ∈ 𝒪. The desirability of each option can be modeled by a

function 𝑣 : 𝒪 → R+, where 𝑣 produces higher values for more desirable options. As a

consequence of Luce’s choice axiom, the probability of selecting an option 𝑜 is given by

𝑃(𝑜) = 𝑣(𝑜)∑
�̄�∈𝒪 𝑣(�̄�)

. (9.1)

If we further assume that each option 𝑜 has some underlying reward 𝑅(𝑜) ∈ R, and

we allow desirability to be an exponential function of this reward, then we recover the

Luce-Shepard choice rule [261]:

𝑃(𝑜) = 𝑒𝑅(𝑜)∑
�̄�∈𝒪 𝑒𝑅(�̄�)

. (9.2)

When the options being chosen by the human are trajectories � ∈ Ξ, i.e. sequences

of (potentially continuous-valued) actions, we refer to (9.2) as the Boltzmann model of

noisily-rational behavior [282, 27]. The reward 𝑅 is typically a function of a feature vector

𝜙 : Ξ→ R𝑘 , giving the probability density 𝑝 over continuous Ξ as

𝑝(�) = 𝑒𝑅(𝜙(�))∫
Ξ
𝑒𝑅(𝜙(�̄))𝑑�̄

. (9.3)
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9.1.1.2 Handling Duplicates. Since the introduction of the Luce axiom, related works

[79, 114] have pointed out its duplicates problem, where inserting a duplicate of any option

𝑜 into 𝒪 has an undue influence on selection probabilities. To address this, various exten-

sions of the Luce model have been proposed which attempt to group together identical

or similar options [32, 283]. Further extending these ideas, Gul, Natenzon, and Pesendor-

fer [114] recently introduced the attribute rule, which reinterprets options as bundles of

attributes but maintains Luce’s idea that choice is governed by desirability values.

Analogous to [114], let 𝒳 be the set of all attributes, let 𝒳𝑜 ⊆ 𝒳 be the set of attributes

belonging to 𝑜, and let 𝒳𝒪 ⊆ 𝒳 be the set of attributes which belong to at least one option

𝑜 ∈ 𝒪. Define an attribute value, 𝑤 : 𝒳 → R+, that maps attributes to their desirability, and

an attribute intensity, 𝑠 : 𝒳 × 𝒪 → N, that maps pairs of attributes and options to natural

numbers, usually 0 or 1, to indicate the degree to which an attribute is expressed. For

instance, an attribute could be the property “green” and 𝑠(“green”, 𝑜) could return 1 if

option 𝑜, say one of a set of cars, is green, and 0 otherwise.

According to the attribute rule, the probability of choosing 𝑜 is

𝑃(𝑜) =
∑
𝑥∈𝒳𝑜

𝑤(𝑥)∑
�̄�∈𝒳𝒪 𝑤(�̄�)

· 𝑠(𝑥, 𝑜)∑
�̄�∈𝒪 𝑠(𝑥, �̄�)

, (9.4)

which describes a process where the human first chooses an attribute 𝑥 ∈ 𝒳𝒪 according to

a Luce-like rule, then an option 𝑜 ∈ 𝒪 with that attribute according to another Luce-like

rule. Note that (9.4) reduces to (9.1) if no pair of options in 𝒪 shares any attributes; for

example, if each 𝑜 has a single unique attribute, the first sum in (9.4) disappears, and the

second fraction evaluates to 1. In this work, we want to take advantage of the attribute

rule’s graceful handling of duplicates while extending its functionality to trajectories with

continuous-valued features and not only categorical attributes.

9.1.2 The LESS Human Decision Model
In this paper, we take inspiration from the attribute rule to derive a novel model of

human decision making in continuous spaces. Key to our approach is introducing a

similarity measure on trajectories. This could be directly in the trajectory space, but more

generally it is in feature space, where features could, in one extreme, be the trajectory itself.

We first instantiate the attribute rule with features as the attributes, and then soften it

to account for feature similarity. Indeed, the Boltzmann rationality model given by (9.3)

already assigns selection probabilities based only on trajectory features, so we look to

modify the decision space to depend directly on features as well.

9.1.2.1 Accounting for Trajectories with Identical Features. We derive our model by

starting from (9.4) and defining the set of attributes to be Φ, the set of all possible feature

vectors. Accordingly, the set of attributes that belong to � is a single element Φ� = {𝜙(�)},
and the attributes represented in a set Ξ′ ⊆ Ξ are ΦΞ′ = {𝜙(�′) | �′ ∈ Ξ′}. Combining this
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convention with the reward model (9.3), the modified attribute rule for trajectories over a

finite subset Ξ 𝑓 ⊂ Ξ becomes

𝑃(�) = 𝑒𝑅(𝜙(�))∑
�̄�∈ΦΞ 𝑓

𝑒𝑅(�̄�)
·

𝑠(𝜙(�), �)∑
�̄∈Ξ 𝑓

𝑠(𝜙(�), �̄)
. (9.5)

In the original attribute rule, the attribute intensity 𝑠 mapped to natural numbers. A con-

venient mapping here would be to use 𝑠 as an indicator function, where 𝑠(𝑥, �) evaluates

to 1 only if 𝑥 = 𝜙(�). With this formulation, if all trajectories have a unique feature vector,

then the rightmost term of (9.5) is identically 1 and we recover the Boltzmann model (9.3),

as applied to a finite sample of trajectories Ξ 𝑓 . If, on the other hand, multiple trajectories

share the exact same feature vector, then they will effectively be considered as a single

option, and the selection probability will be distributed equally among them. This effect is

desirable: since the features 𝜙(�) capture all the relevant inputs to the reward, trajectories

with the same features should be considered practically equivalent.

9.1.2.2 Softening to Feature Similarity. We suggest that such a notion of attribute

intensity is too stringent for continuous spaces, and we redefine 𝑠 to be a soft similarity
metric 𝑠 : Φ × Ξ → R+, which should be symmetric (𝑠(𝜙(�), �̄) = 𝑠(𝜙(�̄), �)) and positive

semidefinite (𝑠(𝑥, �) ≥ 0), with 𝑠(𝜙(�), �) = max𝑥∈Φ,�̄∈Ξ 𝑠(𝑥, �̄) for all � ∈ Ξ.

Using this redefined similarity metric 𝑠, we extend (9.5) to be a probability density on

the continuous trajectory space Ξ, as in (9.3):

𝑝(�) =
𝑒𝑅(𝜙(�))∫

Ξ
𝑠(𝜙(�),�̄) 𝑑�̄∫

Ξ

𝑒𝑅(𝜙(�̂))∫
Ξ
𝑠(𝜙(�̂),�̄) 𝑑�̄ 𝑑�̂

∝ 𝑒𝑅(𝜙(�))∫
Ξ
𝑠(𝜙(�), �̄) 𝑑�̄

, (9.6)

where 𝑠(𝜙(�), �) and the integral over ΦΞ are omitted because they are constant over Ξ

and cancel out during normalization.

Under this new formulation, the likelihood of selecting a trajectory is inversely pro-

portional to its feature-space similarity with other trajectories. This de-weighting of

trajectories that are similar to others is precisely the effect we seek, and we adopt the

probability given by (9.6) as our LESS model of human decision making.

9.1.3 Similarity as Density
The main innovation that differentiates our model from previously proposed rules is

the use of a similarity metric that reweights trajectory likelihoods based on the presence

of other trajectories that are nearby in feature space. The integral of this similarity over

trajectories, the denominator of (9.6), is akin to a measure of trajectory density in feature

space. We estimate similarity as a density by selecting our similarity metric as a kernel
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function and performing Kernel Density Estimation (KDE). There are many choices of

kernel functions, each parametrized by some notion of bandwidth. In our experiments,

we used a radial basis function, which peaks when 𝑥 = 𝜙(�), then exponentially decreases

the farther away 𝑥 and 𝜙(�) are from one another in feature space:

𝑠(𝑥, �) =
(

1

𝜎
√

2𝜋

)
exp

(
−
∥𝑥 − 𝜙(�)∥2

2𝜎2

)
, (9.7)

where the bandwidth 𝜎 is an important parameter that dictates, for a given feature dif-

ference between two trajectories, how much that difference affects the ultimate similarity

evaluation. Higher 𝜎 means a higher bandwidth and makes everything look more similar.

We find an optimal bandwidth 𝜎∗ automatically by using a finite set of samples Ξ 𝑓 ⊂ Ξ

and maximizing the sum of the log of their summed similarities, which is equivalent to

maximizing their likelihood under a probability density estimate produced by KDE:

𝜎∗ = arg max

𝜎∈R

∑
�∈Ξ 𝑓

log

©«
∑
�̄∈Ξ 𝑓

𝑠(𝜙(�), �̄)ª®¬ . (9.8)

9.1.4 Inference and Prediction with LESS
Let � ∈ Θ parametrize the reward function 𝑅. To predict what the human will do

given a belief 𝑏(�), we marginalize over �:

𝑝(�) =
∫
Θ

𝑏(�)𝑝(�|�)𝑑� , (9.9)

with 𝑝(�|�) given by (9.6). To perform inference over � given a human trajectory, we

update our belief using Bayesian inference:

𝑏′(�) =
𝑏(�)𝑝(�|�)∫

Θ
𝑏(�̄)𝑝(�|�̄)𝑑�̄

. (9.10)

In practice, calculating the integrals in the denominators of (9.10) and (9.6) can be in-

tractable, so we use a discretized set of � parameters and finite trajectory sample sets in

our experiments. The specific sampling of the trajectory choice space can significantly

impact inference, and we explore its implications in Sec. 9.4.

9.2 User Study: LESS as a Human Decision Model
We start by testing the hypothesis that LESS is a better model for human decision

making than the standard Boltzmann model.
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(a) Control trial (b) Experimental trial (c) Left and Right distributions. (d) Distributions within Right

Figure 9.2: The human decision model experiment. a and b show the trajectories used for the two trials. In

c, LESS predictions more closely match the observed Left-Right distribution. In d, both models miss users’

slight preference for R2 (the trajectory which visits the most states in the rightmost column in b).

9.2.1 Human Decision Model Experiment Design
We design a browser-based user study in which we ask participants to make behavior

decisions, and measure which model best characterizes these decisions. We select a simple

navigation task as our domain, where different behaviors correspond to different ways of

traversing the grid from start to goal, as shown in Fig. 9.2.

Main Design Idea. The key difficulty in designing such a study is that both models

require access to a ground truth reward function, i.e. user preferences over trajectories.

Even though we can provide participants with some criteria – in our case optimizing for

path length while avoiding the obstacle –, this does not mean our criteria are the only ones

they care about. For instance, people might implicitly prefer trajectories that go closer to

or further from the obstacle, or that go around the obstacle to the left or right.

Our design idea is to introduce a control trial in which we gather data about relative
preferences among two dissimilar options: left and right. These relative preferences then

enables us to make predictions, under each model, about the experimental trial, where

we add trajectories similar to the option on the right.

For the control trial, participants saw the grid world shown in Fig. 9.2a with one

obstacle in the middle and three trajectories travelling between the start and goal. Two of

the trajectories traversed an equal amount of tiles (optimal) and were symmetric along the

diagonal of the grid (left and right), and a third trajectory went through the obstacle and

visited more tiles than the others (not optimal). We were only interested in what specific

optimal trajectory people chose (Left versus Right), and we used the third suboptimal

trajectory as an attention test to check if subjects had paid attention to the instructions.

We chose the two optimal trajectories to be symmetric and of the same color to reduce

possible confounds, such as bias people might have for extraneous features like number

of turns, distance from obstacle, color, etc.

For the experimental trial, shown in Fig. 9.2b, we had the same setup as in the control,
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with the addition of two other optimal trajectories on the right. They had the same color,

number of turns, and number of tiles traversed as the original right-side trajectory. In

this setup, there were two visible clusters of options: one trajectory on the left, and three

clustered on the right, which we denote as the Left and Right groups, respectively.

Manipulated Variables. We manipulated the model used for decision-making in the

experimental trial to be Boltzmann vs. LESS. Having access to the ratio � that participants

chose the left trajectory over the right in the control trial means that regardless of their

reward function 𝑅(�), 𝑒𝑅(�𝑙𝑒 𝑓 𝑡) = �𝑒𝑅(�𝑟𝑖𝑔ℎ𝑡), according to (9.3). This enables us to make

predictions using both models as a function of � for the experimental trial, despite not

knowing 𝑅 itself. For these computations, we assumed that all trajectories in the Right

group had the same reward, that the reward of trajectories in the Left and Right groups

would be equal to those estimated from the control trial, and (for LESS) that the Left

trajectory had density one while the Right trajectories had density three.

Under the Boltzmann model, the addition of two trajectories similar to the one on the

right decreases the probability that the left trajectory is chosen. This is most obvious when

� = 1, i.e. if users liked both trajectories equally – then, 𝑃(�
left
) would go from .5 all the

way down to .25, as there are now 4 good options. On the other hand, LESS accounts for

the similarity of the trajectories on the right and keeps 𝑃(�
left
) closer to the control value.

Dependent Measures. We report the selection proportion of each trajectory in the exper-

imental trial, and compute agreement between each model and the users’ decisions.

Subject Allocation. We recruited 80 participants (24 female, 56 male, with ages between 18

and 65) from Amazon Mechanical Turk (AMT) using the psiTurk experimental framework

[117]. We excluded 3 participants for failing our attention test. All participants were from

the United States and had a minimum approval rating of 95%. The treatment trial was

assigned between-subjects: participants saw only one of the sets of trajectory options.

Hypotheses.
H1: For the experimental trial, the Boltzmann proportion prediction is significantly dif-

ferent from the observed proportion.

H2: For the experimental trial, the LESS proportion prediction is equivalent to the ob-

served proportions.

9.2.2 Analysis
In the control trial, users chose the Left trajectory 47.5% of the time. Fig. 9.2 plots

the observed proportions for the experimental trial, along with each model’s predictions.

The experimental trial resulted in an observed probability of .41 for the Left trajectory,

whereas Boltzmann predicts .23 and LESS predicts .475. The models both predict a

uniform distribution among the Right trajectories.

We performed a chi-square test of goodness of fit to see if the observed distribution of

left vs. right from the experimental group differed from the predicted distributions. In line

with our hypotheses, we found a significant difference between the observed values and
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the Boltzmann prediction (𝑋2(1, 𝑁 = 37) = 6.27, 𝑝 < 0.05), and no significant difference

between the observations and the LESS prediction (𝑋2(1, 𝑁 = 37) = 0.72, 𝑝 = 0.4).

To test for equivalence, we performed an equivalence test for multinomial distributions

as described by Wellek [288]. This test evaluates the null hypothesis that the Euclidean

distance between the multinomial distribution and a reference is greater than some 𝜖
(where the distance is computed by taking each distribution to be a vector in [0, 1]𝑘 , where

𝑘 is the number of trajectories represented by the distribution). We do not have an a

priori estimate for which values of 𝜖 are practically insignificant in this vector space of

probability distributions, so we instead invert the test to find the minimum 𝜖 for which the

observed distribution matches the predicted distribution at a significance level of 𝛼 = 0.05.

We found that the minimum 𝜖 bound for equivalence at the 𝛼 = 0.05 level was 0.22 for the

LESS prediction and 0.39 for the Boltzmann prediction.

The results across all trajectories are analogous, albeit slightly weaker because users

tended to favor one of the three Right trajectories more than the other two. The chi-square

test revealed a significant difference with the Boltzmann predictions,𝑋2(1, 𝑁 = 37) = 9.72,

𝑝 < 0.05, but no significant difference between the observations and the LESS prediction

𝑋2(1, 𝑁 = 37) = 5.76, 𝑝 = 0.12.

The equivalence test found the observed distribution matches the LESS-based pre-

dicted distribution at a significance level of 𝛼 = 0.05 when the 𝜖 bound is 0.29, and 0.36 for

Boltzmann. Despite LESS’ tighter 𝜖, neither prediction aligns perfectly with the empirical

data in Fig. 9.2d. This discrepancy is likely due to some unmodeled features (e.g. distance

from the obstacle), which may influence participants’ preferences. However, while un-

known features may affect both Boltzmann’s and LESS’ performance, LESS still corrects

Boltzmann’s errors from mishandling similarity. We explore the specific effects of feature

misalignment further in Sec. 9.3.3.

Overall, although neither model is a perfect predictor of behavior, we find that LESS

is a better fit: Boltzmann is significantly different from the observed, and LESS provides

a tighter equivalence bound.

9.3 Experiments: Using LESS for Robot Inference
In Sec. 9.2, we provided evidence supporting that LESS can more accurately capture

human decisions. This has direct implications for how robots predict behavior – increasing

the model accuracy by definition increases prediction accuracy. We now hypothesize that

it also has implications for how robots infer human preferences from behavior: using a

higher accuracy model when performing inference leads to more accurate inference.

9.3.1 Boltzmann and LESS Inference Comparison
We first design an experiment to test that if people do act according to the LESS

distribution, modeling them as such leads to better inference than modeling them via
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(a) 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 for LESS sampling model.
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(b) 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 for Boltzmann sampling model.

Figure 9.3: TruePosterior results for the inference comparison experiment in Sec. 9.3.1. Legends indicate

which inference method was employed for those results. We found a significant interaction effect between

sampling method and inference method, which can be seen in the change of relative performance for LESS

and Boltzmann between a and b.

Boltzmann. To control for potential confounds, we also verify the opposite: if instead

people acted according to Boltzmann (which Sec. 9.2 does not support), then modeling

them as Boltzmann would instead be better for inference.

We created a grid world environment with two objects, where humans have to teach a

robot to navigate from a start to a goal and learn preferences for whether to stay close or

far from the objects. We simulated hypothetical human demonstrations Ξ𝐷 by sampling

trajectories according to LESS and Boltzmann. To do so, we fixed a particular objective �∗

and a confidence parameter 𝛽, and randomly chose trajectories according to probabilities

given by either (9.6), for LESS, or (9.3), for Boltzmann. We then utilized these trajectories

as “human” demonstrations and performed inference using either Boltzmann or LESS as

the underlying choice model. Our goal was to analyze how each model’s inference quality

depends on the sampling model used across a range of objectives �∗.

Manipulated Variables. We used a 2-by-2 factorial design. We manipulated the sampling
model with two levels, Boltzmann and LESS, and the inference model, Boltzmann and LESS.

Other Variables. For variation, we tested inference quality across eight different �∗ values,

and used 150 random seeds for sampling demonstrations. For a given sampling method,

the combination of a �∗ and a seed determine the demonstration set that the inference will

use. Therefore, we generated 1200 demonstration sets for each sampling method.

Dependent Measures. To analyze each model’s inference quality, we use two metrics:

Accuracy of a-posteriori inference: once we obtain a posterior probability induced by the

sampled Ξ𝐷 , we verify that the maximum a-posteriori �𝑀𝐴𝑃
matches the original �∗.

Thus, we define a binary variable that takes value 1 if they match and 0 otherwise:

𝑇𝑟𝑢𝑒𝑀𝑎𝑡𝑐ℎ = 1{�𝑀𝐴𝑃 = �∗}.



CHAPTER 9. A NOVEL HUMAN DECISION-MAKING MODEL 176

Magnitude of posterior�∗ probability: this gives a softened, continuous indication of inference

performance by capturing the posterior probability mass assigned to the correct �∗:

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 𝑃(�∗ | Ξ𝐷).

Hypotheses.
H3: When human input is generated using LESS, inference quality is significantly higher

with LESS than with Boltzmann.

H4: When human input is generated using Boltzmann, inference quality is significantly

higher with Boltzmann than with LESS.

Analysis. Fig. 9.3 summarizes the results by showing how TruePosterior varies by inference

method. To analyze these results, we ran a factorial repeated measures ANOVA. We found

a significant interaction effect between the sampling and inference methods (𝐹(1, 1199) =
965.06, 𝑝 < 0.001), which can be seen with the change in relative performance of Boltzmann

and LESS from Fig. 9.3a to Fig. 9.3b. A factorial logistic regression for the TrueMatch
results also revealed a significant interaction between sampling method and inference

method (𝑝 < .001). In post-hoc testing, a Tukey HSD test revealed that TruePosterior was

significantly higher when the inference method matched the sampling method (𝑝 < .001

for both), and logistic regressions similarly showed that the probability of TrueMatch = 1

is greater when sampling and inference agree (𝑝 < .001 for both).

These results strongly support both H3 and H4, as they reveal that inference perfor-

mance is superior when the inference method agrees with the sampling method. Given

that the experiment in Sec. 9.2 suggests that LESS can be a better model of human sam-

pling behavior, these results provide evidence that using LESS-based inference could give

better performance when learning from humans.

9.3.2 Qualitative Analysis of LESS Inference
Based on what we have seen thus far, LESS clearly leads to different robot inferences. In

this section we provide some qualitative intuition about what contributes to this difference.

The important change from Boltzmann to LESS is the strength of the inference as a

function of the feature density at the demonstrated trajectory. If a demonstrated trajectory

lies in a high-density area, i.e. its features are similar to those of many other possible trajec-

tories, Boltzmann inference will under-learn. This is because there are many high-reward

alternatives in the normalizer of (9.3), which lowers the probability of the demonstration.

For the analogous reason, if a demonstration lies in a low-density area, Boltzmann infer-

ence will over-learn. Because LESS weighs each trajectory � by the inverse of the density

at its location in feature space 𝜙(�), the resulting weighted density will be approximately

uniform, not allowing the feature density to influence the strength of the inference: other

options with similar features do not skew the probability as much anymore.

To visualize this, we chose two sets of demonstrations from the previous experiment.

One set, Ξ𝐵, comes from one of the ground truth rewards for which Boltzmann performed
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(a) Ξ𝐿 and the resulting inferred posterior

(b) Ξ𝐵 and the resulting inferred posterior

Figure 9.4: Visualizations of Ξ𝐿 and Ξ𝐵, and the LESS and Boltzmann inferred posteriors over �. a: LESS

learns the correct �, whereas Boltzmann under-learns. b: Boltzmann learns the correct �, while LESS is

split between avoiding both obstacles vs. avoiding the top one but being ambivalent about the bottom one.

better (�4 in Fig. 9.3a). The other set, Ξ𝐿, comes from one for which LESS performed

better (�3 in Fig. 9.3b). Fig. 9.4 shows the samples Ξ𝐿 and Ξ𝐵, along with the inference for

each model. For Ξ𝐿, LESS confidently identifies the ground truth, whereas Boltzmann’s

posterior is higher entropy. Fig. 9.5 shows that Ξ𝐿 does fall in a high-density region, which

indeed leads to Boltzmann under-learning and finding many alternative explanations.

For Ξ𝐵, on the other hand, something very interesting happens. Looking at where the

samples lie (blue dots in Fig. 9.5), two of them are in relatively high-density areas (call them

Ξ𝑑𝑒𝑛𝑠𝑒
𝐵

), whereas the others are in a very sparse region (call them Ξ
𝑠𝑝𝑎𝑟𝑠𝑒

𝐵
). Ξ𝑑𝑒𝑛𝑠𝑒

𝐵
are the

two with lower 𝜙2 in Fig. 9.5 (right). They correspond, in Fig. 9.4b, to the two trajectories

that go closer to the bottom obstacle. To the LESS inference, which is more agnostic to the

feature density, this gives evidence for two hypotheses: Ξ𝑑𝑒𝑛𝑠𝑒
𝐵

support the hypothesis that

the robot should stay far from the top obstacle, but be ambivalent about the bottom one,

whereas the other trajectories, Ξ
𝑠𝑝𝑎𝑟𝑠𝑒

𝐵
, support that the robot should stay far from both

obstacles. This is why we see two hypotheses inferred by LESS in Fig. 9.4b. The Boltzmann

inference, however, learns much more from the trajectories that lie in the low-density area,

essentially ignoring Ξ𝑑𝑒𝑛𝑠𝑒
𝐵

. This is what leads to the very confident inference of only one

of the hypotheses. In this case, this happens to be the correct hypothesis. In general

though, the opposite could have happened – had the two trajectories that go closer to the
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Figure 9.5: Left: actual feature density (gray), adjusted by LESS (orange). The Ξ𝐿 points (red) are in dense

areas, thus Boltzmann inference under-learns. The Ξ𝐵 points are in sparse areas, but two of them are in

a slightly more dense area, which makes Boltzmann reduce their relative influence and ignore the � they

suggest. Right: 2D density with Ξ𝐵, Ξ𝐿 overlaid.

obstacle been the ones to lie in a sparse area, Boltzmann would have confidently inferred

the wrong objective. In summary, Boltzmann, by being sensitive to feature densities, can

under- or over-learn.

9.3.3 LESS and Feature Misalignment
LESS uses information from features to compute similarity, even when those features

do not affect the reward. For example, if the reward is solely about efficiency, LESS

captures that people treat "right-of-the-obstacle" options as similar. What if the robot does

not have access though to these additional features?

Experimental Design. We generate demonstrations using LESS, but we include two

additional features: the average 𝑥 and average 𝑦 coordinate of the trajectory. The two new

features do not influence the reward values, but they do influence the similarity metric. To

induce a misalignment, the robot performing inference is unaware of these new features.

For this experiment, we only manipulate the inference model: LESS vs. Boltzmann.

H5: When the robot’s feature space is misspecified, inference quality with LESS is still

superior to inference quality with Boltzmann for LESS-sampled demonstrations.

Analysis. For TruePosterior, we performed a one-way repeated measures ANOVA, and

as hypothesized, the test revealed that LESS inference was still significantly better than

Boltzmann, in spite of the feature misalignment (𝑝 < .001). Similarly for TrueMatch,
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Figure 9.6: Results for the laptop task in the robustness analysis experiments. In a, LESS significantly

outperforms Boltzmann at low sample sizes, but they converge for the largest sample sizes. For the batch

inference task in b, Boltzmann outperforms LESS at the lowest sample size, but the two methods converge

towards zero as sample size increase.

a logistic regression revealed that the odds of having TrueMatch = 1 were significantly

greater when using LESS (𝑝 < .001), strongly supporting our hypothesis.

We take this result with a grain of salt: in the worst case, if an unspecified feature

completely differentiates all options for the human, then even a human sampling according

to LESS would exhibit behavior approaching the Boltzmann distribution. Then, based on

Sec. 9.3.1, Boltzmann inference could yield superior results. However, this experiment

suggest that in practical rather than adversarial cases, it is still preferable to use LESS

inference on an incomplete set of features. Further, it is always possible to default in LESS

to using the trajectory space directly for the similarity metric 𝑠 and not rely on features.

9.4 Experiments: Robust Inference for High-DOF Arms
Sec. 9.3 teased that Boltzmann inference performance is highly dependent on the

structure of the environment, and, more precisely, the feature space density induced by

all possible trajectories. However, we demonstrated this on a toy task with simulated

human data and ground truth access. We now put the same hypothesis to test in a

real world high-dimensional scenario with a 7DoF robotic manipulator and real human

demonstrations, without access to the full trajectory space nor the ground truth reward.

9.4.1 Single Demonstration Inference

Study Goal. Since for such an environment calculating the denominator in (9.3) exactly

is intractable, practitioners typically sample the space of trajectories, obtaining varying

subsets. Given the Boltzmann model’s high dependency on the feature space density, we

speculate that different sample sets would result in vastly varying inference results. In this
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section, we investigate how LESS can mitigate this effect and help inference robustness.

We collect demonstrations from participants for different tasks, and run inference using

different sets of trajectory for computing the normalizer.

Manipulated Variables. We used a 2-by-5 factorial design. We manipulated the inference
model with two levels, Boltzmann and LESS, as well as the size 𝑆 of the sampled trajectory

sets used for inference, with five levels: 10, 30, 100, 300, and 1000. We sample 10 different

trajectory sets of each size.

Other Variables. We tested our hypothesis across three household manipulation tasks

where the robot learned to carry a coffee mug from a start position to a goal according to

the person’s preferences. In the first task, which we dub table, the participants were asked

to move the robot arm from start to goal while maintaining the end-effector close to the

table, to prevent the mug from breaking in case of a slip. In the second task, dubbed laptop,

the participants were instructed to avoid spilling the coffee over a laptop by providing a

demonstration that keeps the robot’s end-effector away from the electronic device. Lastly,

in the third task, dubbed human we asked the participants to keep the end-effector away

from their body, to avoid spilling coffee on their clothes.

In all scenarios, the robot performs inference by reasoning over three features: one

feature of interest (distance from the table, distance from the laptop, and distance from

the human, respectively), a second feature drawn from that set, and an efficiency feature

computed as the sum of squared velocities across the trajectory.

Dependent Measures. In total, for each task 𝑇, sample size 𝑆, inference method 𝑀, and

user 𝑖, we obtained 10 posterior distributions 𝑃𝑇,𝑖
𝑀,𝑆
(�̂ | �𝑇,𝑖) constituting a set 𝒫𝑇,𝑖

𝑀,𝑆
. Our

goal was to test how robust (or consistent) each method’s inference result was across

the ten different trajectory sets. We used an aggregate Kullback-Leibler divergence as a

measure of how much the posterior distributions 𝑃 ∈ 𝒫𝑇,𝑖
𝑀,𝑆

differ from one another:

𝐾𝐿𝐴𝑔𝑔𝑟𝑒 𝑔𝑎𝑡𝑒 = −
∑

𝑃∈𝒫𝑇,𝑖
𝑀,𝑆

∑
𝑄∈𝒫𝑇,𝑖

𝑀,𝑆

∑̂
�∈Θ

𝑃(�̂ | �𝑇,𝑖) log

(
𝑄(�̂ | �𝑇,𝑖)
𝑃(�̂ | �𝑇,𝑖)

)
.

Hypothesis.
H6: Performing single inference with LESS across multiple trajectory sets results in higher

robustness and, thus, a lower KLAggregate measure than inference with Boltzmann.

Subject Allocation. We recruited 12 users (3 female, 9 male, aged 18-30) from the campus

community to physically interact with a JACO 7DOF robot arm and provide demonstra-

tions for three tasks. Fig. 9.7 (left) illustrates the demonstrations collected for the table
task. Before giving demonstrations, each person was allowed a period of training with

the robot in gravity compensation mode to get accustomed to interacting with the robot.

Analysis. As seen in Fig. 9.7, given two different trajectory sets, inference with each

method can have drastically different outcomes. With LESS (top), we see that the resulting
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Figure 9.7: Single-demonstration (blue) inference posteriors for the table task with two different trajectory

sets of 100 samples. The distributions reveal that both Boltzmann and LESS produce the same �MAP
, but

there is less variability between the LESS posteriors, leading to lower KLAggregate.

posterior distributions are fairly similar, whereas with Boltzmann inference (bottom), they

differ in entropy/confidence.

For each sample task 𝑇, we performed a factorial repeated-measures ANOVA. The

results for the laptop task are summarized in Fig. 9.6a. As the trend in the figure indi-

cates, we found a significant interaction effect between inference method and sample size

(𝐹(4, 44) = 40.37, 𝑝 < .001). A post-hoc Tukey HSD test revealed that LESS produced

significantly lower KLAggregate than Boltzmann for 𝑆 = 10, 30, and 100 (𝑝 < 0.001 for

all), but there was no significant difference found for 𝑆 = 300 or 1000 (𝑝 ≈ 1.00 for both).

This trend supports our hypothesis that LESS provides more robust single-demonstration

inference, and it reveals that the difference in KLAggregate between LESS and Boltzmann

disappears with increasing sample size. Results from the table task also support this trend,

with a significant main effect of inference method.

While the human task did reveal a significant interaction between inference method and

sample size (𝐹(4, 44) = 2.85, 𝑝 < .05) it stands apart from the other two: a post-hoc Tukey

HSD test only found a difference for sample size 1000 (𝑝 < .001). This pattern indicates

that demonstrations from this task may be generally more ambiguous and present a more

difficult inference problem than the other two.

9.4.2 All Demonstrations Inference
We repeated the same experiment, except this time we run inference by aggregating

all users’ demonstrations for a task (batch inference). This would happen in practice if

we were interested in teaching the robot about what the average user wants, rather than

focusing on customizing the behavior to each user. Here, we found the opposite results,

also shown in in Fig. 9.6b: LESS has higher divergence (lower robustness). We attribute this

to the phenomenon described in Sec. 9.3.2. When we had only one demonstration before,

Boltzmann was not robust because, depending on the set of samples, the demonstration

could fall in low- or high-density regions, thus leading to different Boltzmann inferences
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for different sets. Now, with 12 demonstrations at once, the chances of one demonstration

falling in a low-density area are much higher. As we’ve seen in Sec. 9.3.2, when there

are multiple demonstrations, Boltzmann inference will be dominated by those lying in

low-density areas. This leads to a more consistent posterior distribution, so long as the

low-density demonstrations suggest the same reward function.

9.5 Discussion
We propose a new probabilistic human behavior model and present compelling ev-

idence that it better captures human decision making and it attenuates inference errors

that arise due to similar selections, increasing accuracy and robustness.

Our 12-person aggregate inference results in Sec. 9.4 show that LESS can lead to less

robust inference. We attributed this outcome to the phenomenon in Sec. 9.3.2, but it is

unclear whether this leads to less accurate inference, or whether Boltzmann is actually

preferable in situations with enough varied demonstrations. Moreover, although our

experiments in Sec. 9.3.3 reveal that LESS still performs better inference than Boltzmann,

it is unclear whether this outcome is due to the effect of hypothesis H3 or if our method is

truly unaffected by misalignment. More experiments are needed for complete clarification.

Lastly, the Mechanical Turk study in Sec. 9.2, although compelling, illustrates simplistic

datasets of human choices. Further studies on human behavior in more realistic settings

would be useful, but complicated by lack of access to the "ground truth" reward.

Despite these limitations, Boltzmann rationality has become so fundamental to how

robots do inference and prediction, that designing a counterpart for continuous robotics

domains is sorely needed. We are excited to have taken a step in this direction.
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Chapter 10

Conclusion and Future Work

Robots are making their way into our society but seamless interaction with humans

where each agent truly grasps why the other does what they do is still elusive. In

this thesis, we approached interaction by explicitly tackling representation alignment,

rather than hoping it will naturally emerge. However, the core of this work had the

human in the teacher role feeding the robot data about their representation. In reality,

seamless human-robot collaboration demands more than just passive data absorption:

representation alignment should be a bi-directional process where the robot is an active

participant in the interaction, for as the human interacts with the robot their representation

of the task may also change. This opens up a broader research question: how can robots
help the human-robot team converge to a shared representation?

I envision future work expanding upon what representation alignment should look like

in human-robot interaction and bringing us closer to robots that interact with us seamlessly

because we both understand why the other behaves the way they do. Us, humans, are

remarkably good at this: when we coordinate and teach each other new concepts, we do

so in an interactive way, where the teacher probes the learner’s knowledge, the learner

explains what they do and don’t know, and this is all possible because we are actively trying

to reach a shared representation and we have an “interface” – a common language for

communicating about it. Amongst some of the challenges in translating this to robots, we

need progress on making robot failures more transparent so that humans can understand

what’s missing in its representation, enabling the robot to explain its representation if it

holds more complete task knowledge than the human, and ultimately achieving a smooth

bi-directional communication. I am excited to see future work towards aligning robot and

human representations, perhaps even moving beyond embodied systems: personal robots

in the home or on space stations handling the human’s possessions with the same care that

they do, autonomous vehicles that behave according to user expectations, recommender

systems that easily adjust to different preferences for frictionless personalization, drones

that respect our personal space, or assistive robots that adapt to different and changing

human capabilities. In this final chapter, I briefly outline a few future research directions

towards such seamless human-robot interaction.
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Humans Teaching Robots about their Representations
This thesis has made progress in enabling robots to learn human-aligned representa-

tions with explicit representation-specific feedback, but it opens the door to more alterna-

tive research directions in this space.

Alternative Representation Input Types. Beyond the feature traces and labels we saw in

Part II, there remains a vast array of new types of human feedback about the representation

to be explored: comparisons and rankings choosing or ordering behaviors more expressive

of a certain feature of the representation, equivalences and improvements finding behaviors

similarly or more expressive of the feature, natural language describing the feature, or gaze
identifying it. We could even imagine having the robot actively select the representation

query that is both most informative and most effortless, or even combining them with

data augmentation techniques to provide larger amounts of feedback at once.

Representation-Specific Tasks. When the human teaches their representation explicitly,

they have to break it down into the features that compose it. In Chapter 6, we saw that

we can enable the robot to also implicitly extract the person’s representation by having

them solve representation-specific tasks – proxy tasks designed to learn an embedding

of what matters all-at-once from their behavior. One example was a behavior similarity

task, where we observed that if a person decides two robot behaviors are similar, they

must also internally represent them similarly, enabling us to extract their representation.

In the future, I plan to study other such proxy tasks, and even leverage unsupervised

pre-training methods for improving sample efficiency. Another exciting avenue of work

is designing better visual interfaces for human data collection, taking advantage of the

insight that similarly represented robot behaviors should be visualized similarly.

Robots Teaching Humans about their Representations
Effective representation alignment also demands facilitating the reverse information

pathway: robots that communicate new features to the human or explain their behavior

by referring to their representation.

Revealing the Robot’s Representation to the Human. So far the human’s representation

was fixed and fully captured the desired task, but the robot may sometimes hold a more

complete representation: for example, it could see a useful tool that the human cannot, or

it may know how to use that tool in a way that the human does not. I aim to enable robots to
share their representations with the human and teach them new task aspects they were not

aware of before. By leveraging visualization tools and natural language, I hope to make

robot representations interpretable and help humans update their task understanding.

Explaining Robot Behavior. Whether the robot succeeds or fails, explaining its behavior

can help humans have better insight into its representation. Since seeing bad behavior

is often not informative of the underlying reason for the failure, I propose the robot can

use its representation, even if incomplete, to describe what caused its behavior. Having
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human-aligned features should increase explainability, more clearly indicating whether

the robot’s representation is missing something or is poorly learned and needs repair.

Bidirectionally Evolving a Shared Representation
In some scenarios, neither the robot nor the human individually holds a complete

representation, and must both communicate features they each know about. This moti-

vates the need for developing a formalism for bidirectional communication of human and

robot representations. Chapter 2 is a first step in this direction, but I want to further ex-

plore what are the best interfaces for sharing representations, from versatile and intuitive

natural language to informative visualizations. By alternating between the direct (robot

learning about the human’s representation) and the reverse (robot teaching the human

about its representation) channels of communication, I hope to enable seamlessly reaching

a mutual task representation. I am particularly interested in demonstrating what benefits

this could have in areas beyond learning and predicting human intended tasks, to robot

policy learning, exploration, or even human-robot coordination without explicit learn-

ing. Lastly, I’m interested in studying interesting connections to game-theory, which may

rigorously couple the influence between the human, the robot, and their representations.
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