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Abstract

Algorithms for Suture Placement and Seed Placement:
Planar Geometric Optimization for Surgery and Agriculture

by

Varun Kamat

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Ken Goldberg, Chair

Professor Gerald Friedland, Co-chair

Computational Geometry and Geometric Optimization aims to arrange multiple objects in
a confined space to achieve some objective. In this thesis, I explore two such problems:
Surgical Suture Placement and Seed Placement for Polyculture Gardens.

Suture placement is crucial for patient outcomes, and surgeons typically rely on rules of
thumb and experience to choose needle entry and exit points for suture placement. I present
SP2DEEF: Suture Planning 2D Equalizing Elliptical Forces, an algorithm that computes
entry and exit points to optimize suture forces, improving wound closure and minimizing
scarring. SP2DEEF takes as input the wound curve along with scaling information as input,
and generates a full, optimized suture plan that can be fine-tuned by the surgeon. Ex-
periments suggest that our suturing algorithm outperforms a naive baseline, and physical
phantom experiments suggest that it performs comparably or superior to an expert sur-
geon. My team and I are currently in the process of developing a publicly-available website
which will make the SP2DEEF pipeline fully accessible, the link will be provided shortly at
https://github.com/BerkeleyAutomation/SP2DEEF.

The spatial arrangement of plants in a garden or small farm is especially important for poly-
culture agriculture to reduce water and pesticide use. We present PolyPoD, a new algorithm
for seed placement. Given a polygonal planting area boundary (convex or non-convex) and
number and types of seeds, PolyPoD generates the variable radius poisson disk distribution,
yielding viable seed placements. Results suggest that PolyPoD outperforms our previous
seed placement algorithm with the goal of avoiding over-competition for resources, under-
utilization of space, and plant segmentation di�culties. The PolyPoD platform will also o↵er
free access on a website for polyculture farmers worldwide. Source code, documentation, and
the website link are available at https://github.com/BerkeleyAutomation/PolyPoD.

https://github.com/BerkeleyAutomation/SP2DEEF
https://github.com/BerkeleyAutomation/PolyPoD
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Many problems in Computational Geometry [6] involve placing multiple objects in a
finite space, with some objective. Such problems include Packing Problems and Art Gallery
Problems. In Packing Problems, the goal is to densely pack objects together. The most
common variants deal with packing circles or squares into as small of a circle, square or
rectangle as possible [47]. In the Art Gallery Problem, there is an art gallery with walls, and
the goal is to place as few guards as possible in the gallery such that all areas of the gallery
are visible [46].

In this thesis, I explore two such problems: planning the layout of a garden, and placing
sutures on a wound. In the garden planning problem, the goal is to place plants in a garden
to satisfy multiple objectives: full utilization of the garden space, promoting polyculture
farming, and satisfying the user’s objectives. The full utilization aspect of this problem
essentially boils down to a version of the packing problem where instead of fixing the number
of objects to pack and attempting to minimize the size of the bin, we fix the size and shape of
the bin and try to maximize the number of plants / area to be filled in the bin. However, this
case is not very well-studied, especially in the case of arbitrary polygonal bin shapes as well
as di↵erent sized objects. In any case, most optimization frameworks would be intractable
in this setting due to highly non-convex constraints that ensure that di↵erent shapes do
not overlap, as well as many discrete elements. Other algorithmic techniques that generate
solutions are a more feasible route than closed-form optimization to finding solutions.

For the suture placement problem, the goal is to place sutures on a wound satisfying
three primary objectives: achieving even, ideal closure force along the wound, minimizing
shear force along the wound, and avoiding injury or damage to the tissue. I believe that
this problem is related to the Art Gallery Problem: both have objects to be placed (sutures
vs guards) that aim to exert influence (closure force vs clear line of sight) in a geometric
environment (wound vs gallery) with restrictions dictated by features of the environment
(wound curvature vs walls). The curves of the wound act very much like the walls of the art
gallery, because a curve limits the influence of sutures on either side of it. I suspect that if
there were a version of the Art Gallery Problem where each guard’s influence decreases over
space, similar to how suture force operates, and walls can have varying opacity based on the
location of the guards, there may be some reduction of the Suture Placement Problem to
the Art Gallery problem, although I have not worked through the details of such a reduction
yet. Unlike the Garden Planning problem, however, the suture placement problem is much
simpler: it operates on a single curve, and if we fix the number of sutures, an optimization
boils down to a number of relatively smooth, relatively convex set of constraints, although
the problem is not perfectly convex. Therefore, this problem is well-suited to closed form
optimization.
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Automating 2D Suture Placement
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2.1 Introduction

The suture placement work was done in conjunction with Viraj Ramakrishnan, Yashish
Mohnot, Harshika Jalan, Julia Isaac, Vincent Schorp, Yahav Avigal, Aviv Adler, Dr. Danyal
M Fer, and Prof. Ken Goldberg. In this project, I played a leading role, organizing meet-
ings and coordinating tasks and roles. I ideated most of this project by myself, including
the closed-form optimization framework with variables as points along the wound curve,
and the math for all of the distance calculations. I also came up with the idea for a dis-
tance/orientation based force model by myself, with inspiration from the Diamond Model,
and ideated the Elliptical Force model in conjunction with Aviv. I setup starter code for a
all of the optimization framework, and implemented all of the Elliptical Force / Shear Force
code by myself. I played a large role in the code for the other elements of the optimization as
well, building starter code, helping with debugging, developing some parts of the optimiza-
tion, as well as integrating di↵erent pieces of code together in our repository. Viraj, Harshika,
Yashish, and Julia contributed to development on the optimization framework and graphic
interface. Harshika and Viraj developed the distance calculations; Viraj, Yashish, Julia, and
Harshika worked on optimization; Viraj and Julia worked on the Graphic Interface; Yashish
and Harshika develped and ran code for the virtual experiments. Viraj and Harshika are in
the process of developing the website interface. Vincent helped with ideation for the form
of the suturing constraints as well as ideation for example wounds, and other areas of the
project. Yahav played a co-leadership role, helping to divide tasks and set priorities for the
project. Aviv contributed to ideation for the dimensions and equations for the Ellipse in
our model. Dr. Danyal Fer was our medical advisor; he provided medical guidance and
perspective on the usability of our algorithm, served as our expert surgeon in our physical
experiments, and provided the final evaluation for our physical experiments. Prof. Goldberg
oversaw the project and was our faculty advisor.

Suturing is the process of sewing a wound or laceration closed to allow it to heal naturally.
It is extremely common in surgery and trauma care and involves long sequences of precise,
repetitive movements – something that is often burdensome to humans.

This work focuses on one aspect of automating suturing: the sub-task of suture planning,
which is to find an appropriate sequence of needle insertion and extraction points. Having a
high quality placement of suture is crucial for healing, as having sutures that are too close
or tight may lead to ischemia (under-supply of oxygen to the tissue), while having sutures
too far apart may lead to insu�cient closing force on the wound to ensure the edges stay
together [12]. Furthermore, sutures may exert shear forces along the wound, which cause
more pronounced scarring and lead to cosmetically unappealing results [42] [27]. Thus, it is
ideal to plan sutures by directly optimizing the forces they are expected to generate. Humans
cannot directly estimate closure and shear forces as they suture, and typically rely on rules
of thumb, intuition, and experience to guide suture placement.

This project makes five contributions:

1. 1) A novel objective, optimizing Elliptical Force on the wound, based on an extension
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of the well-known ”diamond force model” [9, 10] to nonlinear 2D wound shapes.

2. A novel formulation of planar, non-linear suture planning as a constrained optimization
problem.

3. An analysis of the SP2DEEF algorithm’s output on wounds of varying degrees and
curvature.

4. Experiments comparing the suture placements from SP2DEEF to those chosen by a
human surgeon.

5. An interactive interface that allows surgeons to upload an image, trace the wound
curve, view proposed sutures and edit suture placement.
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C: Surgeon C: Z: Surgeon Z:

N/A N/A

Figure 2.1: Physical Experiments with chicken skin. Top row: ’s outputted placements;
Middle row: Surgeon’s initial state and physical ink markings of ’s placements; Bottom row:
after suturing. Left half: C-shaped wound; Right half: Z-shaped wound. First and third
columns: Surgeon’s placement; second and fourth columns: ’s placement. ’s placements were
evaluated as equal or better than the surgeon’s placement by the surgeon.
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2.2 Related Work

Automated and robot-assisted suturing has seen considerable study over the last decade,
with particular focus on two sub-tasks: 2D suture planning, which considers where to place
sutures (the focus of this work), and 3D needle path planning, which considers how to guide
the needle to best accomplish a desired suture. Automating either of these sub-tasks can
provide valuable assistance to a human surgeon, while having both may potentially lead to
a fully automated suturing system.

Needle Path Planning

Much of the work on autonomous suturing focuses on needle path planning in the vertical
plane (orthogonal to the wound line), as pushing a needle through deformable tissue repre-
sents a major challenge for sensing and control. In general, needle path planning focuses on
a single suture at a time.

Nageotte et al. [30] proposed a kinematic analysis and geometric modeling of the problem
of the stitching task in laparoscopic surgery. The work particularly uncovers the degree of
uncertainty which the surgeon has with regard to where the tip of the needle is; that is, the
exit point may not be exactly where desired.

Schulman et al. [38] applied the transfer trajectory algorithm to take trajectories from
human demonstrations and adapt them to new environment geometry for suture needle
path planning. Another approach developed by Sen et al. [39], was one of sequential convex
optimization. As with the other papers, the optimization was over the execution of a single
suture. Their approach considers multiple sutures, but the suture locations are chosen by
linear interpolation of the start and end points, and each suture is treated independently
thereafter. This method does not capture the constraints that the curvature of a wound
might place on suture placement. Later, Shademan et al. [40] studied suturing on intestinal
tissue. Various constraints for good suturing are discussed in this work: for instance, that
sutures should be perpendicular to the wound, and the gaps between the sutures must be
small enough to avoid leakage, but not too small as to prevent bloodflow. However, they are
primarily used as assumptions that hold for a set of planned sutures that have been decided
beforehand.

Other papers consider additional aspects of needle path planning: for example, Pedram
et al. [31] presented an algorithm that takes in the desired suture entry and exit points on
a wound as input and computes the needle shape, diameter and path so that the execution
of the suture satisfies recommended suturing guidelines. These guidelines included: a mini-
mization of tissue trauma, orthogonal sutures, positioning the needle to allow for successful
grasps, suture symmetry and being able to enter and exit at the points defined by the sur-
geon. The optimization weights were selected based on the recommendation of surgeons and
fine-tuned during simulations. Jackson et al. [21] proposed a Kalman filter to model the
internal deformation force generated by a needle as it is driven through tissue. Similarly, Pe-
dram et al. [32] described a needle stitch path planning algorithm which deals with optimal
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motion of the needle inside the tissue, with the goal of entering the tissue perpendicularly;
reaching specific suture depth; and minimizing tissue trauma.

The Suture Planning Problem

There is prior work in planning the location of suture entry and exit points in the hori-
zontal plane, for specific wounds, and in certain controlled settings. In particular, robotic
minimally-invasive surgery (RMIS) must conform to the robot’s kinematic constraints and
the potentially very tight space in which the operation takes place.

Saeidi et al. [37] describe a planning algorithm for autonomous suturing using a seg-
mented point cloud and demonstrated its application with the Smart Tissue Autonomous
Robot (STAR) system. However, their technique assumed a straight-line wound (as can
be expected in surgery, where the wound is the result of a surgical incision). Similarly,
Thananjeyan et al. [44] studied suture planning for a circular wound.

The primary constraints in both works were limitations to the robot’s movement ability,
either from kinematics or from a sharply bounded workspace, with the objective being to
ensure evenly-spaced sutures with the gaps between them being as close as possible to an
ideal distance.

However, when dealing with more complex wound shapes, sutures may interact with each
other in more complex ways, and thus planning and evaluating an e↵ective set of sutures
may require a more detailed model of how the sutures hold the wound together.
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Figure 2.2: Wound centerline shown in red, with two entry points (red) and two exit points
(blue). Consider the distance between extraction points e0, e1. If the distance is between �min

and �max, i.e. the green zone, it meets the constraints. Hence e0 and e1 violate constraints.
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2.3 Problem Statement

Given an image with points along the wound selected by the surgeon, the suture planning
problem consists of choosing the number and placement of sutures to best close the wound.
We denote the number of sutures as n, and, for most of what follows, we treat it as fixed and
consider the optimization problem which represents the task of finding the best placement of
n sutures; we discuss how n is selected in Section 2.4. The parameters of this problem come in
two types: the first type denote physical constraints or objectives. For example, the minimum
allowable distance between any two skin puncture points or the ideal distance between the
insertion and extraction points of a single suture (which we refer to as the suture width, ↵)
We represent such constraints with Greek letters. The second kind of parameter are scalar
weights which set the relative importance of di↵erent components of the objective function,
and are represented by c

? where the superscript ? denotes the corresponding component.
Let ↵ be the suture widths, that is, the distance between the insertion and extraction

points of a single suture. These two points are placed at equal distance apart from the
wound such that their midpoint lies on the wound curve. Additionally, no two insertion
and/or extraction points should be closer than a certain minimum distance, denoted �min,
and no two consecutive insertion and/or extraction points should be further than a certain
maximum distance, denoted �max. We also define the suture distance which is the straight
line distance between the midpoints of two stitches. Guidance for surgeons suggests that an
ideal suturing distance is 5mm [15]. Let � be this target distance between sutures, and let
` be the length of the wound.

Let Ld be the Mean Squared Error (MSE) defined as average di↵erence between computed
suture distance and the target suture distance �. Let Lvar center be the variance of computed
suture distances. Let Lvar ins ext be the variance of the distances between consecutive suture
insertion and extraction points. In this term, we sum up the variance of the distance between
insertion points and the variance of the distance between exraction points. Let L

f be the
MSE between the closure force at each point along the wound curve and an ideal value.
Similarly, Let Lshr be the MSE between the shear force at each point of the wound and an
ideal value. Note that these target values are defined directly from the surgeon’s input to
the system.

Assume the suture planning is constrained to a given suture width ↵. Further assume
that sutures are constrained to be orthogonal to the wound curve; therefore it is su�cient
to specify the number n of sutures and at which points 0  s1  · · ·  sn  tmax along
the wound they are placed, to describe a complete suture plan of needle insertion and ex-
traction points. Here, si serve as our decision variables (the center of suture i being w(si)).
Additional we impose hard constraints that concern minimum and maximum distances al-
lowed between consecutive insertion and extraction points. We denote these as constraints
A

min
, A

max. Finally, we enforce that sutures should not ’cross.’ That is, if we draw a line
from corresponding insertion point to extraction point for each suture, it should be the case
that none of these lines are crossing. This constraint is denoted as Ac.

Each of the optimization terms L· is weighted with a factor c·. The objective is then to
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find the sequence of si for all i 2 {1, ..., n} satisfying:

min c
d
L
d+

c
var center

L
var center+

c
var ins ext

L
var ins ext+

c
f
L
f + c

shr
L
shr

s.t.

A
min

, A
max

, A
c

0  s1  · · ·  sn  tmax

(2.1)

Note that the number of sutures n is fixed in this problem; to minimize the loss over all
possible suture plans, the problem needs to be solved with various di↵erent values of n,
which we choose heuristically; see Section 2.4 for details.

The objective function consists of three geometric cost terms (Ld, Lvar center and L
var insext)

and two force model-based cost terms, both measuring the mean squared error. Its solution
represents a sequence of suture midpoints which should be close to evenly spaced while also
explicitly ensuring good closure forces over the wound. We will set the weights to emphasize
L
f (closure forces), with the other components there to provide numerical stability and

refinement.
See sections 2.4, 2.4 and 2.4 for a complete mathematical description of the objective

function and constraints.
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2.4 Methodology

The SP2DEEF algorithm is divided into three distinct phases:

A. Input, in which the system queries the surgeon for points along the wound curve, desired
suture width, and scaling information;

B. Optimization with elliptical force model, in which the system plans a set of sutures to
minimize an objective function under constraints, utilizing an explicit model to estimate
forces applied by the sutures to the wound;

C. Adjustment, in which the surgeon can optionally adjust the suture plan computed by the
system.

Input

The interface first collects surgeon input, via a clicking interface, as depicted in Fig. 2.6.
The surgeon selects two points on the image and inputs the measured distance between those
points as well as the desired suture width.

The program scales the image based on the calibration points provided. The surgeon
then clicks a sequence of points on the image tracing the shape of the wound. We then
use the scipy interpolation function scipy.interpolate.splprep to generate a smooth B-
spline that approximates a curve that goes through all points specified. We then generate
an initial placement of sutures to ’warm start’ the optimization. To that end, the algorithm
computes the initial number of sutures by dividing the length of the wound curve by the
ideal suture distance �. It then places the corresponding number of equally spaced suture
midpoints along the wound curve. The insertion and extraction points are determined by
the perpendicularity constraint between the sutures and the curve as well as by the surgeon-
specified suture width.

Optimization

SP2DEEF solves the placement of sutures on a wound as a constrained optimization problem.
In order for the healing process to occur, the two sides of the wound must be brought together.
Ideally, we would use a detailed model to predict skin deformation after suture placement.
However, the mechanical behavior of skin is complex and influenced by the location on the
body of the wound and the patient’s height, weight, and age, amongst other factors, [12]
making full modeling impractical. Instead of this, surgeons usually employ heuristics to
plan where to place sutures. These heuristics state that sutures should be orthogonal to the
wound, or that they should be spaced evenly and as close as possible to some ideal distance
apart. However, relying exclusively on such rules can lead to solutions which leave parts
of the wound insu�ciently closed, because of insu�cient closure force from sutures in the
region. Thus, it is desirable to combine surgical heuristics with a model of the forces imparted
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by the sutures to ensure that the entire wound is held su�ciently closed by the sutures. This
‘hybrid’ optimization problem leverages surgeons’ experience while also ensuring that each
point along the wound receives acceptable closure forces.

We assume that the wound lies on a 2D plane and place the sutures using only a 2D
image of the wound as seen by an overhead camera; we assume that the wound has been
positioned and rotated to minimize the distortion incurred by perspective e↵ects. The wound
is thus represented by a parametric spline computed by interpolating over points clicked
by the surgeon on the image, which we denote as a function w(t) = (x(t), y(t)) where
w : [0, tmax] !2.

Since this optimization problem is in general nonconvex, we solve it with the SLSQP
algorithm [22], which performs constrained optimization using linear approximation.

To find the best number n of sutures, we execute a bi-linear search from an initial naive
estimation n̂, as for a typical wound there is only a small range of ‘reasonable’ values of
n. We use n̂ = b`/�c, as this is the number of sutures resulting from naively spacing the
sutures at distance � along the length-` wound, and is therefore likely to be close to the best
number of sutures. We estimate ` via linear approximation and compute n̂; then we solve
the optimization problem (2.1) for all integers n such that 0.5 ⇤ n̂  n  1.4 ⇤ n̂ and return
the suture plan with the lowest loss.

For evaluating the hyperparameter settings we use the same loss as our training loss.

Suture regularity constraints and objectives

The suture width ↵ is given by the surgeon in the input phase of the process and the number
of sutures n is selected by the algorithm. The other parameters �min, �max, �, are assumed
to be constant. For our experiments, we set these values based on consulting an expert in
the field of surgery1 These parameters are depicted in Fig. 2.2. We also include several key
conditions for suture placement:

(i) All sutures should cross the wound at their midpoint and be orthogonal to the wound
at that point.

(ii) Sutures should have width (distance between insertion and extraction points) of ↵.

The hyperparameters ↵, �min, �max, �, ✏ are set via... Since in general these conditions cannot
be perfectly satisfied, some conditions are hard-coded as constraints and others are encoded
via penalty terms in the objective function. Conditions (i) (orthogonality of sutures to the
wound) and (ii) (suture width) mean that if the suture crosses the wound at some w(s),
the insertion and extraction points are uniquely determined (up to swapping); therefore, as
discussed above, our decision variables are the points 0  s1  · · ·  sn  tmax along the
wound at which we want the sutures to cross, with suture i crossing at w(si). Since the

1we consulted our co-author Danyal Fer, MD, Department of Surgery, University of California San
Francisco East Bay.
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wound w is represented as a B-spline, it has a well-defined derivative w0(t) = (x0(t), y0(t)) at
each t. Then, interpreting w(t), w0(t) as vectors in 2, the insertion and extraction points are

a
0(si), a

1(si) = w(si)±
↵

2


0 �1
1 0

�
w

0(si)

w0(si)
(2.2)

Here a
0 corresponds to the insertion point and a

1 corresponds to the extraction point and
both are vectors in 2. The side that corresponds to insertion and the side which corresponds
to extraction was chosen arbitrarily and can be swapped if desired.

Conditions (iii) and (iv) are coded as the constraints labeled A
crs and A

min
, A

max respec-
tively. A

crs states that for any i 6= j, the line segments (a0(si), a1(si)) and (a0(sj), a1(sj))
cannot cross; Amin states that no two di↵erent insertion and/or extraction points can be
within �min of each other; and A

max states that for any i 2 [0, n] and z(·) 2 {a0(·), a1(·), w(·)}

z(si+1)� z(si)  �max (2.3)

(no consecutive suture insertion points, extraction points, or midpoints can be more than
�max apart).

Condition (v) states that the distance between the sutures should be as close as possible
to the ideal suture distance � while condition (vi) ensures that the sum of variances of the
insertion, center and extraction points is low. To measure how well a set of sutures satisfies
conditions (v) and (vi), we use mean squared error and variance. To encode the constraint
concerning the endpoints of the wound, we add ‘phantom’ sutures at s0 = 0 and sn+1 = tmax,
giving:

L
idl(s1, . . . , sn) =

X

z(·)

1

n+ 1

nX

i=0

(z(si+1)� z(si)� �)2 (2.4)

L
var(s1, . . . , sn) =

X

z(·)

�
{z(si+1)� z(si)}ni=0

�
(2.5)

where
P

z(·) indicates summing the function inside three times, with the points z(si) being

a
0(si), a

1(si) and w(si), i.e. we take the average di↵erence squared from ideal and the
variance using the insertion points, the extraction points, and the midpoints and add them
up. Conditions (i), (ii), (iii) and (iv) are treated as constraints while (v) and (vi) are encoded
as penalty terms and in the objective function and optimized over.

Generalizing the Diamond Force Model

We supplement the suture regularity constraints and objectives with a model that aims to
quickly estimate the forces applied by the sutures to the wound, inspired by the diamond
force model [9, 10] on a linear wound, in which the force imparted on the wound by a suture
has a particular intensity at the crossing point and drops o↵ linearly (to a minimum of 0)
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Figure 2.3: Diamond Force Model.. The diamond model does not generalize well to
non-linear wounds. As shown to the left, the curve pulls away from the diamond line, and
thus it is non-obvious how to calculate distances.

according to distance from the crossing point. An interesting feature of this model is that
placing each suture at the point where the force from the previous suture drops to 0 yields a
constant force across the wound. However, this model only considers linear wounds and does
not generalize well when applied to curved wounds, as depicted in Fig. 2.3. We extend this
to curved wounds by modifying it so that the forces imparted from an insertion or extraction
point on the skin are parallel to the suture and decrease linearly (to a minimum of 0) based
on an elliptical norm aligned with the suture. We choose an elliptical norm to represent the
fact that the force of pushing on an elastic medium is transferred more strongly to points in
line with the force than those to the side. We normalize the magnitude of the forces in our
model by letting 1 unit of force be the ideal amount applied to close any given point on the
wound, which is the amount applied by a suture to its midpoint. Since by symmetry the
insertion and extraction points of a wound exert the same amount of force on the center, in
opposite directions (since the suture center is the midpoint of the insertion and extraction
points), this means that each insertion or extraction point exerts 0.5 units of force on its
respective center. Thus, given a parameter 0 < "  1 denoting the ratio of the shorter axis
to the longer axis of the ellipse which defines the norm (to be discussed later), in our model
the insertion point a0(si) has a suture-aligned distance from a point z 2 R2 of

d
0(z, si) =

q
d0k(z, si)

2 + (d0?(z, si)/")
2 (2.6)
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ain(si)
<latexit sha1_base64="1QKJh2qKYCUy0ezMirSVaQ3mjSo=">AAAB+3icbVBNS8NAEN34WetXrEcvi0Wol5JUQY9FLx4r2A9oY9hst+3SzSbsTqQl5K948aCIV/+IN/+N2zYHbX0w8Hhvhpl5QSy4Bsf5ttbWNza3tgs7xd29/YND+6jU0lGiKGvSSESqExDNBJesCRwE68SKkTAQrB2Mb2d++4kpzSP5ANOYeSEZSj7glICRfLtEHtMesAmkXGZZRfv83LfLTtWZA68SNydllKPh21+9fkSTkEmggmjddZ0YvJQo4FSwrNhLNIsJHZMh6xoqSci0l85vz/CZUfp4EClTEvBc/T2RklDraRiYzpDASC97M/E/r5vA4NozX8UJMEkXiwaJwBDhWRC4zxWjIKaGEKq4uRXTEVGEgomraEJwl19eJa1a1b2o1u4vy/WbPI4COkGnqIJcdIXq6A41UBNRNEHP6BW9WZn1Yr1bH4vWNSufOUZ/YH3+AEgFlJY=</latexit>

aex(si)
<latexit sha1_base64="o56qOuYLR2xhrkcVlmkxudrFZjM=">AAAB/XicbVDJSgNBEO1xjXEbl5uXwSDES5iJgh6DXjxGMAskY+jp1CRNeha6ayRxGPwVLx4U8ep/ePNv7CwHTXxQ8Hiviqp6Xiy4Qtv+NpaWV1bX1nMb+c2t7Z1dc2+/rqJEMqixSESy6VEFgodQQ44CmrEEGngCGt7geuw3HkAqHoV3OIrBDWgv5D5nFLXUMQ/pfdpGGGIKwywrqk7Ks9OOWbBL9gTWInFmpEBmqHbMr3Y3YkkAITJBlWo5doxuSiVyJiDLtxMFMWUD2oOWpiENQLnp5PrMOtFK1/IjqStEa6L+nkhpoNQo8HRnQLGv5r2x+J/XStC/dFMexglCyKaL/ERYGFnjKKwul8BQjDShTHJ9q8X6VFKGOrC8DsGZf3mR1Msl56xUvj0vVK5mceTIETkmReKQC1IhN6RKaoSRR/JMXsmb8WS8GO/Gx7R1yZjNHJA/MD5/ACMylag=</latexit>

w(si)
<latexit sha1_base64="mZ21d1tNDHX8PI5NgUm0Kl0/1hs=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBDiJexGQY9BLx4jmAckS5idTJIhs7PrTK8SlvyEFw+KePV3vPk3TpI9aGJBQ1HVTXdXEEth0HW/nZXVtfWNzdxWfntnd2+/cHDYMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmMbqZ+85FrIyJ1j+OY+yEdKNEXjKKVWk8l003F5KxbKLpldwayTLyMFCFDrVv46vQiloRcIZPUmLbnxuinVKNgkk/yncTwmLIRHfC2pYqG3Pjp7N4JObVKj/QjbUshmam/J1IaGjMOA9sZUhyaRW8q/ue1E+xf+alQcYJcsfmifiIJRmT6POkJzRnKsSWUaWFvJWxINWVoI8rbELzFl5dJo1L2zsuVu4ti9TqLIwfHcAIl8OASqnALNagDAwnP8ApvzoPz4rw7H/PWFSebOYI/cD5/AMNwj8k=</latexit>

�
<latexit sha1_base64="+wSBPeL8nxBdvzPXA2qswhGhfpg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3btZhN2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKrR6KZIT9csWtunOQVeLlpAI5Gv3yV28Q0zRi0lCBWnc9NzF+hspwKti01Es1S5COcci6lkqMmPaz+bVTcmaVAQljZUsaMld/T2QYaT2JAtsZoRnpZW8m/ud1UxNe+xmXSWqYpItFYSqIicnsdTLgilEjJpYgVdzeSugIFVJjAyrZELzll1dJq1b1Lqq1+8tK/SaPowgncArn4MEV1OEOGtAECo/wDK/w5sTOi/PufCxaC04+cwx/4Hz+AIzPjxw=</latexit>

vin(w(t), si)
<latexit sha1_base64="pZgrZU9Jsu70vRv/WUEiMfSsi/Y=">AAACAHicbVC7SgNBFJ31GeNr1cLCZjAICUjYjYKWQRvLCOYBybrMTmaTIbMPZu5Gw7KNv2JjoYitn2Hn3zh5FJp4YOBwzr3cOceLBVdgWd/G0vLK6tp6biO/ubW9s2vu7TdUlEjK6jQSkWx5RDHBQ1YHDoK1YslI4AnW9AbXY785ZFLxKLyDUcycgPRC7nNKQEuueTi8TzvAHiHlYZYVH4pQOlUuL7lmwSpbE+BFYs9IAc1Qc82vTjeiScBCoIIo1batGJyUSOBUsCzfSRSLCR2QHmtrGpKAKSedBMjwiVa62I+kfiHgifp7IyWBUqPA05MBgb6a98bif147Af/S0dHiBFhIp4f8RGCI8LgN3OWSURAjTQiVXP8V0z6RhILuLK9LsOcjL5JGpWyflSu354Xq1ayOHDpCx6iIbHSBqugG1VAdUZShZ/SK3own48V4Nz6mo0vGbOcA/YHx+QNrUZZF</latexit>

w(t)
<latexit sha1_base64="Xz3Bk224qxiFs7GoEmXuWMCHWRc=">AAAB63icbVBNSwMxEM3Wr1q/qh69BItQL2W3CnosevFYwX5Au5Rsmm1Dk+ySzCpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBbHgBlz32ymsrW9sbhW3Szu7e/sH5cOjtokSTVmLRiLS3YAYJrhiLeAgWDfWjMhAsE4wuc38ziPThkfqAaYx8yUZKR5ySiCTnqpwPihX3Jo7B14lXk4qKEdzUP7qDyOaSKaACmJMz3Nj8FOigVPBZqV+YlhM6ISMWM9SRSQzfjq/dYbPrDLEYaRtKcBz9fdESqQxUxnYTklgbJa9TPzP6yUQXvspV3ECTNHFojARGCKcPY6HXDMKYmoJoZrbWzEdE00o2HhKNgRv+eVV0q7XvIta/f6y0rjJ4yiiE3SKqshDV6iB7lATtRBFY/SMXtGbI50X5935WLQWnHzmGP2B8/kDgZCN4g==</latexit>

Figure 2.4: Elliptical Force Model. Sutures (width ↵) with force model around insertion point
a
0(si) depicted as an ellipse showing the region of nonzero force imparted from a

0(si), with
forces decreasing linearly from the center, with isocontours of force being ellipses. Purple and
orange arrows show shear and closure forces generated at the wound point w(t) by a

0(si).

where d0k(z, si) is the distance between a
0(si) and z on the axis parallel to a

1(si)�a
0(si) and

d
0
?(z, si) is the distance between a

0(si) and z on the axis perpendicular to a
1(si) � a

0(si);
we define the distance d1(z, si) from the extraction point a1(si) analogously. Then, the force
exerted on z from a

0(si) is the vector

v
0(z, si) =

1

2

max(⌘ � d
0(z, si), 0)

⌘ � ↵/2

a
1(si)� a

0(si)

↵
(2.7)

where ⌘ =
p

(↵/2)2 + (�/")2. The force v
1(z, si) imparted by an extraction point a

1(si)
on z is defined analogously. The suture force model is shown in Fig. 2.4. Note that the
force vector is parallel to a

1(si)� a
0(si) and (since ↵ = a

1(si)� a
0(si) by definition) has the

following properties: (a) v
0(w(si), si) = 1/2 for any i (insertion points, and by symmetry

extraction points, exert a force of magnitude 1/2 on the suture center); and (b) on a linear
wound with sutures placed an ideal � distance apart, each suture center lies on the boundary
of the regions in which the previous and next suture exert forces of positive magnitude. We
then set " = 0.77 so that ideally-spaced sutures on a linear wound exert forces which are as
constant as possible along the length of the wound. These properties extend the diamond
force model to non-linear wounds.
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Closure and shear force objectives

Given the model described in Section 2.4 and Fig. 2.4 of how sutures exert force on skin,
what does this imply about the quality of the sutures? While the insertion and extraction
points are placed so that the suture (and thus the forces it exerts) are orthogonal to the
wound at the crossing point, if the wound is not linear then at other points on the wound
the exerted force may have both a closure force component orthogonal to the wound and
a shear force component parallel to the wound. The total force exerted by insertion points
(which push on one side of the wound) and the extraction points (which push on the other
side of the wound) on w(t), are denoted respectively as

F
0(t) =

nX

i=1

v
0(w(t), si) and F

1(t) =
nX

i=1

v
1(w(t), si) (2.8)

The total closure force at point w(t) on the wound is:

f
c(t) = (F 0(t)� F

1(t))
a1(si)�a0(si)

↵ (2.9)

(note the 1/↵ term to normalize the suture width). This value is normalized so that the
ideal value is 1 at every w(t).

To get the total shear force at a given point t on the wound, we take the components of
the forces parallel to the wound:

f
s(t) = (F 0(t)� F

1(t))

2

40 �1
1 0

3

5a1(si)�a0(si)
↵

(2.10)

Since shear forces do not hold the wound together but may cause misalignment, the ‘ideal’
magnitude of the shear force is 0 at every t.

Force closure objective

We take m points w(t1), . . . , w(tm) and use the model above to estimate the closure and
shear forces at these points. The average closure force penalty is then

Lc =
1

m

mX

j=1

(1� f
c(tj))

2 (2.11)

(penalizing deviation from the ideal value of 1) and the average shear force penalty is

Ls =
1

m

mX

j=1

f
s(tj)

2 (2.12)

(penalizing deviation from the ideal value of 0). As with the regularity objective function,
these components of the objective function are given weights cc and cs, respectively.
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Parameter settings

We take ↵ (suture width) as input from the user while we chose the values of �min, �max (min
and max distances between sutures) and � (ideal distance between sutures) by consulting
an expert in the field of surgery.

We developed the constraints using surgical suturing guidelines, setting �min = 2.5mm
between two sutures as consulted by an expert surgeon2 and �max = 10mm between consec-
utive sutures so as to not leave parts of the wound unclosed.

Adjustment

Finally, we provide a GUI for the surgeon to interact with. They are presented with the
suture points, superimposed over the wound. The surgeon is able to drag the points to the
desired place. See the top right of Fig. 2.6 for a view of the Adjustment Visualizer; the
surgeon manually clicks and drags points in this window to adjust the placement.

2We consulted our co-author Danyal Fer, MD, Department of Surgery, University of California San
Francisco East Bay.
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Figure 2.5: Results analyzing the suture placements for 5 synthetic splines. Top two rows
present the di↵erence in the sutures placed using the baseline, as compared to the optimiza-
tion algorithm. The bottom 2 rows present the shear forces and closure forces created by
the optimization suture placement

2.5 Experiments

Synthetic Splines

Our loss function contains weights on all 5 loss terms, which we manually tuned to the values:
c
d = 1; cvarcenter = 12; cvarinsext = 6; cf = 15; cs = 5.

Baseline Algorithm: We evaluate a baseline algorithm, which evenly places sutures
along the curve spaced at the ideal distance, on the splines. This can be implemented by
starting at one end of the wound, travelling the ideal distance along the wound, placing
sutures at increments of the ideal distance until the end of the wound.

We tested both SP2DEEF and the baseline on 5 splines generated manually. To evaluate
the robustness of the algorithms we created simple splines and splines with a higher degree
and curvature. The suture placement points generated by the algorithms are depicted in
Fig. 2.5. Our results show that the suture placements generated by SP2DEEF are relatively
consistent, robust and well spaced, especially for the simpler splines. SP2DEEF also deals
well with sharp curves (depicted in Spine 3) as it places a higher number of sutures close to
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Table 2.1: Suture Placement Results

Loss Type Algorithm Spline 1 Spline 2 Spline 3 Spline 4 Spline 5

Variance - Baseline 0.00 0.02 2.06 2.79 0.77

center points SP2DEEF 0.00 0.62 1.51 1.24 24.92
Variance - insertion / Baseline 0.00 0.05 28.12 18.50 47.66

extraction points SP2DEEF 0.00 1.25 28.40 13.65 87.12
Ideal distance Baseline 8.48 5.34 106.50 86.68 185.58

loss SP2DEEF 4.50 9.01 64.88 25.95 527.79
Closure Force Baseline 3431.70 9410.64 9828.90 7776.41 8283.97

loss SP2DEEF 0.61 5.68 0.01 0.00 9.54

Shear Force Baseline 0.00 54.86 29.00 104.66 17.52

loss SP2DEEF 0.00 0.55 39.13 32.00 113.43
Total Baseline 51483.98 141439.78 147878.44 117400.61 124827.93

loss (weighted) SP2DEEF 13.65 111.9 449.2 282.73 2059.8

Number of Baseline 6 13 40 15 51
Sutures SP2DEEF 7 14 39 15 53

the point of curvature.
SP2DEEF tended to choose a di↵erent number of sutures, when compared with the

baseline. An optimal placement over an optimal number of sutures results in a lower closure
force, while other terms tend to remain the same: the closure force that each suture exerts
on the wound decreases sharply as the curve turns away from being perpendicular to the
wound. To maintain su�cient closure force, it is necessary to increase the number of sutures.
The baseline algorithm was not able to provide consistent closure force, as it is able to vary
neither the number of sutures nor the placement to account for curvature.

While it reported high closure force losses, the baseline did well according to the variance
and ideal distance metric, since it was initialized to be evenly spaced. The variances for the
baseline aren’t always 0, because we used a greedy algorithm which approximately placed
sutures evenly. Furthermore, the insert and extract points may have additional variance on
curved segments of the wound even if the centers are approximately evenly spaced.

One major improvement SP2DEEF saw was that it always avoided sutures crossing over
and heavily penalized cases in which the sutures were placed too close to each other, in
contrast to the baseline algorithm, which did both of these.

Overall, SP2DEEF outperforms the baseline; we believe that closure force is the most
important metric as the main purpose of sutures is to provide closure forces to close a wound.
Our algorithm finds a placement almost as well spaced as the baseline, with similar shear
forces, while making sure that all the normalized closure forces are very close to the ideal.
Although it does not outperform the baseline in the variance (and the shear sometimes), it
makes up for this by returning a placement that optimizes the closure force.
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Physical Experiments on Chicken Skin

We tested SP2DEEF in a physical experiment using chicken (thigh) skin. To find the most
realistic wounds possible, we had a surgeon cut two wounds into the tissue with a scalpel2.
These two wounds, as can be seen in Fig. 2.1, were chosen by the surgeon for their relevance
to clinical wounds seen in practice, as well as their di�culty. As a baseline, we had a surgeon
suture the wound as they saw fit. We then fed an image of the wound without sutures into
our pipeline, clicked points to trace the wound shape, and recorded the optimized placement
of the sutures, the output of our optimizer. We manually marked this placement on the
phantom with ink, and had the surgeon implement the autonomous placement by suturing
on top of the ink markings with USP Size 2-0 thread and a suture needle type GS-22 as
depicted in Fig. 2.1.

Our placement was able to achieve wound closure on the phantom: we consulted an
expert surgeon2 who evaluated the sutures as equal or better than a human surgeon. In
the test case, having SP2DEEF’s placement marked on the skin helped the surgeon place
sutures with consistent spacing throughout the whole wound. In contrast, in the baseline
case, with no visual guides, the Surgeon stitches developed uneven spacing between suture
locations as the wound was deformed during the suturing process.

The optimization process takes time on a scale of 10-30 seconds for a low number of
sutures (6-10), and up to a few minutes for a large number of sutures (30-50). The runtime
appears to scale closer which is costly for an operating room environment. This is a result
that leaves room for improvement, as every minute spent in the operating room is very costly
in terms of machine use and medical personnel time. The operation is not very memory-
intensive, and does not scale exponentially with the size of the problem.
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Figure 2.6: The full autonomous pipeline for optimizing surgical suture place-

ment.. Input: Surgeon selects two points on the image (finger length) and inputs the
measured distance between those points as well as the desired suture width. The surgeon is
further asked to click points along the wound. Output: The wound fitted as a Bézier curve
(green) with the result of the suture optimization (red and blue points). The suture plan is
overlaid on the original wound image.
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2.6 Limitations

In our formulation, the wound is represented as a spline, and therefore the representation
cannot have sharp corners (or branches). It would not be di�cult to make a special user
interface feature and a curve fitting formulation such that we can accurately model such
curves. For the optimization process, based on guidance from our co-author Danyal Fer,
MD., the optimal way to suture a corner is to place the suture at the corner, such that it
bisects the angle created by the corner. This is an intuitive solution. Based on this advice,
assuming sutures on either side of the corner don’t interact with each other, the problem
of suturing the wound becomes subdivided into two independent problems of suturing each
half of the wound, and each can be independently solved. If sutures from opposite sides of
the corner do interact / intersect, an alternating optimization process may be utilized, or
a joint optimization with special constraints for sutures that have the potential to intersect
near the corner.

No information about the wound depth or width is incorporated. The wound width
sometimes varies in practice, and there are even cases where one flap of skin is longer than
the other, especially in cases where parts of the skin have to be debrided. Our representation
of the wound as a line is inaccurate in this case, and a potential solution is to model both
the left and right edge of the wound with a spline. Then, we can plan sutures that have two
spokes: one jutting out from the right half, and one from the left. They will be connected
together into a single, straight line segment when the skin is pulled together. New methods
will have to be devised to optimize in this new framework.

SP2DEEF assumes a fixed suture width as opposed to being able to modify it for par-
ticular sutures. In general, the width of the suture should be relatively constant, so it is
not a wildly inaccurate assumption. However, for tight curves, is is sometimes optimal to
decrease the width of the sutures so that there is more space between successive insertion
or extraction points; there may also be cases where it is necessary to do so to avoid suture
crossings.

The explicit model of suture forces is only a rough approximation of how skin behaves
under tension. In suturing, we are attempting to replace the inherent skin tension lost due
to the breaking of the skin, and add a slight amount more such that the two wound flaps
pull each other together. The inherent skin tensions varies from location to location on our
skin as well as from individual to individual. So, even if the closure force remains constant,
the amount of closure force that we need varies according to the individual and location
of the wound on the skin. In addition, the closure force may not be constant due to skin
curvature, varying thickness, etc. The skin is also multi-layered, so the epidermis, dermis,
and subcutaneous layers have very di↵erent material properties which we do not account for.

No objective, external measure of suture placement quality was used to evaluate the
algorithm. We are not sure of the existence of such a widely-accepted, scientifically reputable
measure.

The sutures may be re-planned during the operation due to the wound changing shape
when partially sutured. We do not have any re-planning process in our framework, but we
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can modify it to do so in future work.
The optimization process takes time on a scale of 10-30 seconds for a low number of

sutures (6-10), and up to a few minutes for a large number of sutures (30-50). The complexity
of the problem scales somewhat non-linearly with the number of sutures, it appears to be
more than linear but less than exponential. This is not surprising for a quadratic program,
which is NP-hard in worst case, but our case may not be the worst in practice. Placing 30 or
more sutures poses a large combinatorial set of choices to choose from, and a general-purpose
optimization process uninformed about common sense practice for suturing, i.e. the SLSQP
SciPy solver we use, may proceed slowly as it will not have ”intelligent” non-gradient-based
heuristics to deal with corners and curves of the wound, and may involve some level of
brute-forcing many of the possible suture placements and using the gradient to adjust. A
few minutes is costly for an operating room environment.
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2.7 Conclusions

Prior work on the suture planning problem focused primarily on achieving evenly placed
sutures on known wound shapes under kinematic or workspace constraints. This suggests
the possibility of combining such constraints with the wound-focused constraints and objec-
tive developed in this work, for instance by modifying the objective function to include a
consistency measure and also account for the di�culty of executing the planned sutures.

Having the surgeon e�ciently identify the wound avoids the uncertainty and instability
that comes with automated wound-detection from images, and having the surgeon be able
to provide adjustments to internal parameters such as wound width on a case-by-case basis
allows for a higher probability of successful placements in various medical environments
which may be beyond the scope of current automation to recognize and adapt to. The final
adjustment period, where the surgeon can optionally adjust the autonomous placement,
provides the groundwork for future work into a time-e�cient interactive human-machine
collaborative process for the placement of sutures.

The surgeon evaluated SP2DEEF’s placement as equal or better than their own, and
also remarked that the physical ink markings on the skin decreased their mental load when
suturing and helped them place sutures more evenly than they might have been able to do
otherwise. Thus, SP2DEEF’s autonomous placement provides the groundwork not only for
fully autonomous suturing systems, but also for real-time assistance of manual suturing, by
marking suture plans onto real skin with ink or, more e�ciently, with light in real time.

SP2DEEF operates on 2-dimensional wounds. However, real wounds occur in 3 dimen-
sions, so future work may include a generalization of SP2DEEF to 3 dimensions, where the
wound shape and sutures are represented in real space. This will likely require the usage of
a depth image of the scene, and an e↵ective, noise-resistant surface interpolation method to
determine the position of the skin and the wound at various points.

The algorithm can take a few minutes to run for large wounds. Perhaps the speed could
be improved by the use of deep learning warm-starting, or other medically-aware intelligent
warm-start heuristics.

The process currently runs in Python locally, but we are also in the process of creating
a website for this whole pipeline so that the tool is accessible from anywhere in the world.
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Chapter 3

PolyPoD: An Algorithm for

Polyculture Seed Placement
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3.1 Introduction

The PolyPoD project was done in conjunction with Shrey Aeron, Anrui Gu, Harshika Jalan,
Simeon Adebola, and Professor Ken Goldberg. I conducted all of the ideation and devel-
opment for the PolyPoD algorithm by myself. Simeon helped with ideation about which
features to include in the final website version, and target audience for the algorithm. Shrey
led development of the website and contributed to both back-end and front-end elements.
Harshika and Anrui contributed to back-end and some elements of the front-end for the
website. Prof. Goldberg oversaw the project and was our faculty advisor.

Polyculture farming has a number of advantages over monoculture farming, including
reduced pests, better resource (light, water and nutrient) e�ciency, soil preservation, com-
panionship, aesthetics and higher overall yield [36, 8, 17, 23]. Polyculture farming is more
sustainable [24] and similar to how plants grow in nature [8], but requires more planning and
tending than monoculture. A key question is deciding how to locate the seeds given that
some plant types grow much larger than others and need more space?

In this work we present a polyculture seed placement algorithm: PolyPoD, that allows
users to draw a polygonal boundary space to have a planting arrangement that includes all
the plants they want and uses all the space e�ciently (Fig. 3.1). Seed placement plays a
significant role not only in garden aesthetics but also in plant-plant interaction and symbiosis,
which are key for polyculture planting [4].
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Figure 3.1: Seed Placement. The plants are colored by plant type; voids–desired spaces
without any seeds–are colored black. shrinks the bounding polygon by the plant radius to
determine the appropriate planting area. Note that the planting area example here is non
convex.
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3.2 Related Work

Precision Agriculture

Precision Agriculture makes use of sensors and analysis tools to reduce the use of water and
pesticides, make better decisions, and improve crop yield. Trogo et al. [45] combines Decision
Support System for Agrotechnology Transfer (DSSAT) with Automated Weather Station
(AWS) sensors so that farmers can consider climate factors during the planting season. The
interface allows them to run DSSAT by sending an SMS inquiry and identify the best dates
to plant and harvest crops. Other prior work developed an autonomous agricultural robot
that waters the plants based on soil moisture and pH level and captures pictures to identify
diseases in plant leaves in real time [20]. Dong et al. [11] uses high resolution remote sensing
images and machine learning methods to map the spatial distribution of soil nutrients in
plain and mountainous areas.

Plant Companionship Scoring

It is critical to encourage the symbiotic relationship between a carefully selected group of
plants, which requires managing complex information about the plant species as well as their
relationship with the environment in terms of factors like nutrient utilization and chemical
interactions [35]. Avigal et.al [3] determines companionship scores by empirical observation,
and places the seeds of plants with a positive symbiotic relationship close to each other
and vice versa for plants with a negative relationship. PolyPoD uses the AlphaGarden
companionship metric by clustering plants with positive companionship, enforcing them
with utility functions and expanding it to account for more objectives.

Poisson Disk Sampling

Poisson disk sampling is a geometric algorithm for generating tightly-packed points that
are all some minimum distance from one another (Fig. 3.2). In [29], the authors enhance
Poisson-disk sampling with three generalizations. [7] proposes a new algorithm that takes
O(N) time to generate N Poisson disk samples where sample candidates are drawn only from
a region near existing samples, and rejection sampling is used to find permitted regions.
While this algorithm is fast [13], it does not allow variable radii. Mitchell et al. [29] is an
example of an algorithm that allows variable radii.

Seed Placement

Seed placement has a significant impact on the ability of crops to grow consistently and
their yield potential. Several optimization algorithms have been explored in prior works.
The seed placement algorithm described in prior work [3] has undesirable properties such
as clustering plants close together, planting near borders, and allowing for overlap between
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Figure 3.2: Samples from Random vs Poisson Distribution. Sampling from the ran-
dom distribution causes clumping, whereas samples from the Poisson distribution are more
evenly spaced [26].

plants of the same type. This leads to over-competition, under-utilization of garden space,
and plant segmentation di�culties.

The invasive weed algorithm proposed by Mehrabian and Lucas [28] uses the observation
that weeds can colonize a territory unless their growth is carefully controlled. In addition,
in the invasive weed algorithm, if the maximum number of plants in the colony has been
exceeded, the population size is reduced by eliminating the least fit plants so that best
plants are not lost between iterations. Premaratne et al. propose the paddy field algorithm
[33] which operates by dispersing seeds in the given space. The fittest plants give rise to
the greatest number of seeds and out of these, depending on the number of neighbors of the
plant, only a small subset become viable due to pollination. GrowVeg [25] is a seed placement
planning website that draws on surveys of companionship research to form a large database
of companionship planting information, which yields companionship recommendations to
users. However, they mostly support straight line rows and do not o↵er much automation.

Seed placement has also been formalized in a simulation context. Gou et al. [18] proposes
a simulation environment supporting the analysis of various seed placements but restricts
to the strip intercropping setting. Simulation methods are transferrable to real-world agri-
cultural policy: [5] minimizes the Mean Absolute Error (MAE) between simulated and real
world individual plants.

AlphaGarden

The project [4, 3, 1, 5, 34, 2] seeks to develop an automated system for polyculture farming
using sensors, customized pruning tools, and computer vision and deep learning based policies
for irrigation and pruning. In addition to the system itself, practitioners in the field can also
take advantage of relevant software and subcomponents of AlphaGarden. [34] and [2] used
the PolyPoD algorithm as part of the pipeline.



CHAPTER 3. POLYPOD: AN ALGORITHM FOR POLYCULTURE SEED
PLACEMENT 32

3.3 Problem Statement

Given a polygonal boundary shape with n plants of K types with up to nk of each type,
including a type called ’void’ which must be placed with no overlap allowed, to mitigate
overcrowding.

Each plant type has a Growing Radius Rk, which represents the plants’ average radius
and an Inhibition Radius rk which represents the radius within which overlap from other
plants’ growing circles is not allowed. We define an overlap factor ok 2 [0, 1], which controls
what proportion of plant radius can overlap with another plant. ok defines a relationship
between Rk and rk:

rk = ok ⇤Rk

We want to place all plants in the garden space such that no circle of radius Rk around
any plant center intersects with a circle of radius rj centered at any other plant center, i.e.
there is no overlap between the Inhibition radius of one plant and the Growing radius of any
other plants.

S is number of points in the grid: a standard grid is placed within the garden; the user
can select the grid cell size. n is number of plants, as defined above. Let Ggrow be the
Growing Radius Proximity Grid which contains the distance to the nearest growing radius,
and Ginhibit be the Inhibition Radius Proximity grid which contains the distance to the
nearest inhibition radius. One can access the entry corresponding to point p via Ggrow(p)
and Ginhibit(p).



CHAPTER 3. POLYPOD: AN ALGORITHM FOR POLYCULTURE SEED
PLACEMENT 33

3.4 PolyPoD Algorithm

We present Polyculture Poisson Disk (PolyPoD), a greedy seed placement algorithm.

Enforcing the Variable Radius Poisson Disk Distribution;

Algorithm Overview

PolyPoD discretizes the garden space into a grid: one unit on the grid represents 1cm2

of space. PolyPoD first places voids (see 3.4) and then places all plants in the garden in
descending order of average radius. Once a plant is placed, it does not move. PolyPoD is a
greedy algorithm as it places plants optimally based on the current state, and then moves
on to the next plant without tracing, which is suboptimal.

PolyPoD uses the Variable Radius Poisson Disk distribution to ensure each plant of type
k is at least rk away from other plants. We develop a novel algorithmic technique that
guarantees satisfaction of the Variable Radius Poisson Disk constraints, as well as a data
structure called the Proximity Grid which reduces the runtime from O(SN3) to O(SN).

Two data structures are used: the Inhibition Radius Proximity Grid and the Growing
Radius Proximity Grid. These are the same shape as the garden; each grid has one entry
corresponding to each discrete point in the garden. The grids are initialized to have infinite
value in each cell. The algorithm starts with a list of all points in the garden llegal. The cur-
rent plant type to be planted is k. To enforce the Variable Radius Poisson Disk constraints,
PolyPoD iterates over all points in llegal and filters out points p which do not satisfy:

Ggrow(p) > ((1� ok) ⇤ rk)
Ginhibit(p) > rk

The algorithm also filters out points that do not meet other constraints, described in 3.4.
After filtering out points which do not meet the Variable Radius Poisson Disk constraints

as well as the constraints in section 3.4, llegal consists of all legal planting locations in the
garden. By default, to choose a location to plant in, the algorithm chooses a point uniformly
at random from llegal. However, upon specification, the algorithm can also use a user-defined
utility function to select locations according to some non-uniform function of the locations.

Once the algorithm chooses a position p to place the plant of type k, PolyPoD adds (p, k)
to a list xplanted of plant locations in the garden. PolyPoD updates the value of each grid
cell in the Growing Radius Proximity Grid such that each cell contains the distance to the
nearest Growing radius (measured by the distance from the cell point to the closest point
on the other plant’s radius). It also updates the value of each grid cell in the Inhibition
Radius Proximity Grid such that each cell contains the distance to the nearest Inhibition
radius (Fig. 3.3). This is achieved by: for each point s in the garden, setting the values:

dgrow = max(dist(s, p)� rk, 0)

dinhibit = max(dist(s, p)� (1� ok) ⇤ rk, 0)
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Figure 3.3: Proximity Grids Before and After Placement. Top: two plants are
already in the garden. Bottom: a third plant has been planted. Growing Radius (red)
and Inhibition Radius (blue) Proximity Grids are shown, as are the distances to the nearest
Growing Radius (left) and Inhibition Radius (right).

where
dgrow is distance from s to growing radius of plant k
dinhibit is distance from s to inhibition radius of plant k.
Then,
If dgrow < Ggrow(m), then set Ggrow(m) = dgrow.
If dinhibit < Ginhibit(m), then set Ginhibit(m) = dinhibit

If one uses a naive approach that keeps track of only xplanted, a list of locations planted in
the garden, then when filtering out points from llegal, one has to check all locations in xplanted

to see if a constraint is violated, and the runtime grows by a factor of S2. Using a proximity
grid replaces this expensive operation with a constant-time reference to the grids. For all N
plants planted, the proximity grid version of the algorithm has to perform a constant-time
check over all S locations in the garden, yielding a runtime of O(SN). For all N plants
planted, the naive list-based version of the algorithm must perform a O(N2) check through
xplanted over all S locations in the garden, thus its runtime is O(SN3). However, PolyPoD
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runs in O(SN).

Additional Constraints

PolyPoD ensures that an additional set of constraints are met as well. It ensures that no
plant radius Rk overlaps with the voids, and that the voids are su�ciently spaced apart from
each other and from borders. It is possible to have di↵erent overlap (o) values for pairs of
plant types, and PolyPoD uses this option to set the overlap of the voids with any other
plants to zero, regardless of the overlap values of other plants.

PolyPoD can also optionally ensure that no plant overlaps with a plant of the same type.
This can be achieved by setting the o value of one plant with another plant of the same type
to zero. Preventing overlap of similar types of plants can greatly improve automated plant
segmentation, because segmentation algorithms can easily confuse one type of plant with
another if plants of the same type overlap [34].

PolyPoD also ensures that no plant radius Rk crosses any border. The border polygon b

can be of any shape. Thus, PolyPoD uses the geometry library Shapely [16] to shrink b by
the plant radius Rk to produce bshrink. Then, we can plant the center of the plant anywhere
in bshrink and ensure that the plant’s radius does not cross b.

Utility Function

As a special case, to select which location to plant from llegal, PolyPoD can, upon speci-
fication, use a user-defined utility function u(p, k,M,Ggrow, Ginhibit, xplanted) which takes a
proposed location p for a plant of type k in a garden whose state is described by Ggrow,
Ginhibit, and xplanted, and some relation between plants described by the matrix M . Then,
instead of selecting a location uniformly at random from llegal, PolyPoD selects location
p with probability proportional to u(p, ...). While one can design many di↵erent utility
functions that achieve di↵erent planting e↵ects, in this paper we focus on a class of utility
functions that cluster plants together. They enable companionship planting and can cluster
plants of the same type or cluster plants in pairs (Fig. 3.4).

To enable companionship planting, M is assigned to the companionship matrix C, where
Cij describes the companionship relation between plants i and j as described in [3]. Cij = 1 if
plants i and j have a positive companionship relation, 0 if they have a neutral companionship
relation, and -1 if they have a negative companionship relation. The utility function is then,
for planting a plant of type i at location p, with dist(a, b) being the Euclidean distance
function:

(
X

(x,j)2xplanted

Cij

dist(x, p)2
)h
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Figure 3.4: Clustering Strategies. can cluster according to plant companionship scores.
Top: paired clusters of plants. Bottom: same-plant clustering ensures the same type of
plants are close together.
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The exponent h can be adjusted to vary how drastically companionship a↵ects the prob-
ability distribution: lower values yield a distribution closer to uniform at random, and higher
values yield distributions that are skewed towards companionship-favorable locations.
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3.5 Utility Function, Clustering, and Companionship

Planting
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Figure 3.5: Varying Densities. Top: High Density Distribution with medium overlap and
an uneven 3-dominant distribution. Bottom: Low Density Distribution with low overlap and
an uneven 2-dominant distribution.

3.6 Garden Layout Features

PolyPoD supports a few garden layout features that provide customizability. Some poly-
culture farmers care about the aesthetics of their garden and may have other constraints
that require placement adjustments, such as increasing the density of plants if the farmer is
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Figure 3.6: Placement of Voids. The sizes and number of voids (black) can vary according
to user preferences. Garden represented in 3-dimensional form with plants as cylinders.

space-constrained relative to their garden yield requirement.
The flexibility of the utility function defined in IV-C enables the clustering of plants of the

same type together by inputting M = I into u, where I is the identity matrix. Another way
to cluster plants that further supports companionship planting and provides visual appeal is
the paired-plant clustering strategy, which clusters pairs of plants together. This is achieved
by defining a matrix P where Pij = 1 if plants i and j are paired, and inputting M = P + I

into u.
One can adjust the density of the garden by scaling the total number of each plant by a

constant d 2 [0, 1]: 0 represents an empty garden and 1 represents a full garden. See Fig.
3.5 for two seed placement examples of varying densities.

In a full garden, it is often desirable to have some empty space that mitigates overcrowd-
ing, creates visually aesthetic gaps, and provides useful features such as walkways. Fig. 3.6
shows a garden with numerous small circular voids. The voids serve to define sections of the
garden devoid of plants, and the algorithm assumes that plants are present outside of these
voids. The algorithm also supports the inverse framework, where the user defines spaces
of the garden containing plants called Bounded Clusters, and the algorithm assumes that
plants are not present outside of this space. This enables customized results like English-style
gardens (Fig. 3.7).

One can also make gardens with 2-way or 4-way symmetry as a visual feature (Fig. 3.8)
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Figure 3.7: Bounded Clusters. An English-style Garden generated by
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Figure 3.8: Di↵erent Symmetries. Top: 2-way symmetry in the vertical direction. Bot-
tom: 4-way symmetry.
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3.7 Results

Take an example case of n = 16 plants, K = 9 types (1 type = voids with 2 instances), nk

= 2, to be planted in a 1.5m⇥ 1.5m garden space. Running PolyPoD, Each seed placement
takes about 30 seconds on a 2018 MacBook Pro. If PolyPoD cannot place all plants in the
garden without violating constraints, it returns a garden with fewer plants than specified.

Note that the algorithm works with non-convex polygons as well; see Fig. 3.1 for an
example.

In real-world physical experiments, a placement from PolyPoD was planted as a part of
related work on the Alphagarden project [34] and [2]. Fig. 3.9 shows the seed placement
arrangements and plants used in [34].

We have also made a website where users can input their garden specifications through
a UI and receive a seed placement. Please visit our code repository
(https://github.com/BerkeleyAutomation/PolyPoD) for the link, and see Fig. 3.10 for an
image of the website. url breakurl [breaklinks]hyperref [block=ragged, maxbibnames=99]biblatex
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Figure 3.9: Physical Experiments. Top: Seed placement generated by mirrored. Bottom:
The physical garden reflecting the two placements above, mirrored across the centerline.
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Figure 3.10: The PolyPoD website. Users can draw the shape of their garden, and input
seed specifications via a UI. The website link can be found at
https://github.com/BerkeleyAutomation/PolyPoD.
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3.8 Limitations

PolyPoD currently does not contain any optimization process at all: plants are successively
placed in one of any random locations that do not violate the Poisson Disk requirements.
There could be some optimization process that optimizes plants further, if the objective is
to give plants as much space as possible: for example, in Fig. 3.11, the blue plant in the
bottom right corner could be moved into the corner to give it more space.

Figure 3.11: Limitation on Seed Placement: The indicated blue plant could be moved to the
corner to give it more space.

PolyPoD in its final form is setup to handle polygonal garden shapes, and does not
support curved garden shapes. However, mathematically this is not a di�cult problem to
solve, and I have made draft versions of PolyPoD that have worked with curved garden
shapes: the method used an upper and lower boundary function for the garden shape, and
the user could define the function to be anything. However, this functionality was removed
in the final version because non-polygonal garden shapes were not thought to be common
enough and it may add too much complexity to our user interface.

PolyPoD does not return results instantaneously: the algorithm takes a few minutes
to run. It would be nice if users were able to see gardens in seconds displayed by their
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specification: that would allow them to adjust parameters and interact with the garden
design process in more or less real time. This may be necessary if we want users to be able
to fine tune parameters such as density: with so many of them, fine-tuning in the current
framework may take a hour. It would also be nice to quickly generate multiple garden
candidates for a specification, and give the user multiple options to choose from. One of the
main bottlenecks is the process that checks whether plants are in the border or not: we may
be able to speed this process up by using a more e�cient process than our current one, as
removing this bound-checking process speeds the algorithm up by a factor of 10.

Ultimately, the growing radius of a plant is only an average and an estimation: plant size
varies significantly from case to case, and plants also may not take up a perfectly circular
area. They also tend to grow unevenly in one direction, often towards the light, but may
exhibit other random, unpredictable growth patterns. Thus, there are limitations to how
e↵ective any seed placement algorithm can be guaranteed to be, and it may be beneficial to
have a rolling planting process over time that plants an extra plant if one fails to germinate
or is much smaller than expected. This process can also be used to replace plants that die,
etc.
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3.9 Conclusions

PolyPoD is an algorithm for polyculture seed placement that improves on a previous seed-
planting algorithm. Myself and the team have built a website where users can input their
garden shape and the specifications they want for their garden, and receive a seed placement
by PolyPoD.

Another potential approach is to formulate the seed placement problem as an optimiza-
tion problem where each seed is assigned a value at the user’s discretion and the goal is to
place seeds of maximum total value while satisfying the spacing conditions. This can be
formulated as a nonconvex mixed-integer constrained quadratic program (MIQCP), which
is generally NP-hard but in practice can sometimes achieve viable results with solvers or
heuristics.

As the goal is usually to place plants relatively uniformly over the garden, we can make
heuristics that consider multiple plants: for the biggest plants, if there are four plants to be
placed they can be placed all at once evenly spaced from each other and the walls, either
in a line or in a square, whichever one leads to more space in between the walls. However,
extensive research may be required to design e↵ective heuristics for variable-sized plants,
and test each one thoroughly over a range of possible garden shapes. The problem may
become intractable very quickly as we have to account for di↵erent plant sizes, numbers,
garden shapes, densities, etc. Ultimately, by generating multiple placements with the same
settings and analyzing patterns that are correlated to success between successive runs of the
algorithm, we may be able to quantify which planting locations are optimal based on the
settings inputted by the user.

Perhaps we could use some of the tools from Packing Problem literature to find solutions
to gardens, because optimal to moderately-optimal solutions to maximal-density packing of
N unit circles in a square exist for all N < 10, 000, see Specht, [43]. However, the variable-
radius case has not gotten as much attention, and literature on arbitrary garden (bin) shapes
may not exist.

Additionally, there are other ways to stochastically adjust placements to improve them -
one idea involves treating the plant circles as balls and moving them around in space, having
them elastically collide with each other. This type of simulation is applied in ”Hard Sphere”
molecular simulations [14, 41]. While attempting to plant a plant with radius r, if there are
currently no holes bigger than radius r for the plant to fit, we could do a ”Hard Sphere”
simulation, frequently check the simulation for holes that open wider than r and place the
new plant in that hole, give it a random direction, and continue the simulation. After all
plants have been planted, we could also continue the simulation and periodically check for
garden attributes such as companionship values, perhaps recording the best placement so far
and stopping when some amount of time has passed, or when we are confident that we have
come across a relatively good placement. Another idea is to ”magnetize” certain balls to
be attracted to each other; if companionable plants are attracted to each other and tend to
move towards each other, they will naturally cluster together after enough simulation time
has passed.
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Ultimately, both of these projects are similar in that one has to consider how the di↵erent
objects, sutures and plants, interact with each other and their environment, the wound and
garden. Interestingly, the objects both reduce to points, as the orientation of the plant is not
relevant here. The garden problem is relatively intractable and thus I develop an algorithm
that generates solutions by iteratively placing plants and ensuring that plants abide by the
Variable Radius Poisson Disk distribution to give each plant enough space. The suture
placement problem is tractable, and thus I develop a closed-form optimization framework
with hard-coded constraints and a hand-designed Closure Force and Shear Force model.

Both problems could be formulated as a quadratic optimization problem involving the
placement of certain point variables in space, which is a relatively similar formulation.

The suturing problem is solved relatively well with an analytic optimization solution, so
bringing in Machine Learning to the actual optimization process may work well, but also
has the possibility to reduce robustness and add complexity, and could add computation
and training time in a very safety-critical application. For the garden problem, I think that
machine learning may be of aid here to o↵er some level of optimization, but I think that
many of the most e�cient ways to pack shapes into containers are not obvious - see Specht
[43] - it is a challenging problem for machine learning to come up with more e�cient solutions
to these as any patterns that govern how the problem scales with the number of circles are
very hard to spot. As our case has variable radii and arbitrarily polygonal garden shapes as
well, learning to generalize across all of these variables may prove challenging for a machine
learning system. However, given impressive advances in deep learning, I would not consider
either of the optimization processes to be beyond the scope of deep learning.

Nonetheless, even if it is not involved with the optimization process itself, deep learn-
ing has significant potential to speed up both the Suture Placement and Seed Placement
optimization by providing intelligent warm starts. Previous research has shown that warm-
starting quadratic programs with the aid of machine learning can yield very good opti-
mization speed improvements, see DJ-GOMP by Ichnowski et al. [19]. Both the Suture
Placement and the Seed Placement algorithms are fast enough (worst case on the scale of a
few minutes) to generate plenty of training examples for a machine learning system to train
on, and then a deep network could provide good ”warm starts” for future optimizations.

Simulation is an element that can improve both algorithms as well. For PolyPoD, stochas-
tic methods such as a ”Hard Sphere” simulation [14, 41] are likely to work well as they
naturally represent the spatial constraints of the plants - see the last paragraph of Section
3.9 for an outline of such a system. For suturing, simulation of the skin and how the Closure
Force dissipates through it, likely using FEM techniques, may help to build a more accurate
model than our analytic one.

Both of these problems have been framed as planar geometric problems, but both in fact
operate in 3 dimensions. For gardens, the third dimension is actually important as taller
plants can block sunlight / provide shade for other plants: some small plants will prefer this,
and some will prefer direct sunlight. Additionally, sturdy, tall plants such as corn can be used
as sca↵olding for less sturdy plants to latch onto, such as grapes or green beans. This could
be modeled in 3D. For the suture placement, the distribution of forces in 3 dimensions is not



CHAPTER 4. CONCLUSIONS 51

obvious, as the orientation of the skin can change along two axes, and the wound can curve
along the third. A new analytical model can be built to accommodate all of these orientation
changes, perhaps penalizing the skin orientation changes less that wound orientation changes
relative to the skin surface. Additionally, simulating the skin with sutures in 3 dimensions
may provide the most accurate results, although this may prove challenging due to the
complexities of running FEM in 3 dimensions, as well as the thin nature of the string; in 2
dimensions, it would be easier to input point forces to the simulation.
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