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Abstract
Cloudless and Mixclaves
by
Vikranth Srivatsa
Master of Science in Electrical Engineering and Computer Science
University of California, Berkeley

Professor Joseph E. Gonzalez, Chair

This thesis brings together two reports that focus on building a simplified secure compute
abstraction across the cloud-edge. Cloudless is a serverless execution hierarchy that spans
a multi-cloud to edge continuum and provides transparent function invocation across hy-
brid infrastructure. Cloudless provides a multi-cloud edge abstraction, enabling a simplified
vendor-agnostic serverless computing model. Communicating with multiple regions brings
about privacy concerns around authentication, anonymization, and integrity. Mixclaves is a
metadata private messaging architecture that builds on hardware enclaves to provide a cost-
efficient, low latency messaging service implementation deployable in public clouds. The
work Cloudless and Mixclaves works towards the vision of an anonymous, cost-efficient, low
latency, scalable computing paradigm that operates on multi-cloud and edge.
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Chapter 1

Cloudless Computing: Serverless
Across Hybrid Multi-Cloud /Edge
Infrastructure

We introduce Cloudless Computing, a serverless execution hierarchy that spans a multi-cloud-
to-edge continuum and provides transparent function invocation across hybrid infrastructure.
It provides the illusion of infinite capacity at the edge, achieved by a simple RPC layer
over the abstractions offered by serverless providers. The edge becomes an entry point,
either serving function requests locally or routing them to the middle or the cloud, based
on scheduling decisions and policies. We present a conceptual architecture and an open-
source implementation of this abstraction and evaluate it using machine learning workloads.
Our results show 7.3-29.3% improvement in response time and 2.9-73.9% reduction in cost
compared to using a single cloud provider for some workloads.
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Abstract

We introduce Cloudless Computing, a serverless execu-
tion hierarchy that spans a multi-cloud-to-edge continuum
and provides transparent function invocation across hybrid
infrastructure. It provides the illusion of infinite capacity at
the edge, achieved by a simple RPC layer over the abstrac-
tions offered by serverless providers. The edge becomes an
entry point, either serving function requests locally or routing
them to the middle or the cloud, based on scheduling deci-
sions and policies. We present a conceptual architecture and
an open-source implementation of this abstraction and eval-
uate it using machine learning workloads. Our results show
7.3-29.3% improvement in response time and 2.9-73.9% re-
duction in cost compared to using a single cloud provider for
some workloads.

1 Introduction

Computing has swung between centralization and decentral-
ization for decades. Recently, we see a trend back towards
decentralization, i.e., away from the cloud, driven by the re-
quirements of real-time applications: low latency, intermittent
connectivity, limited network bandwidth, privacy, and related
regulations [1]. However, wide adoption of edge paradigms
is hindered by the complexity of resource management, het-
erogeneity of infrastructure, and limited capacity [2].

Similarly, there is growing interest in adopting multi-cloud
strategies for enterprise applications to avoid vendor lock-in
and single provider failures, improve service reliability, adhere
to changing business constraints and regulations, and reduce
costs by taking advantage of different price offerings [3]. But
due to similar infrastructure management complexity and
heterogeneity reasons, multi-cloud strategies remain largely
unmaterialized and are currently limited to running different
applications on different clouds as opposed to running the
same application across clouds [4].

The authors in [4] advocate for reciprocal peering as a key
enabling step in achieving the Sky Computing [3,4] paradigm,

where true utility computing is achieved by combining multi-
cloud and edge computing via brokers that allow users to
select the desirable cloud or edge provider.

In this paper, we demonstrate the viability of sky computing
by proposing a serverless broker, which simplifies combining
resources across multiple clouds and along the tiers of the
cloud-to-edge continuum to support latency sensitive work-
loads while optimizing the placement of compute and data
independently.

In particular, we introduce Cloudless Computing: a multi-
tier serverless execution hierarchy that enables transparent
function invocation across the tiers of the multi-cloud-to-
edge continuum and allows users to easily switch between
serverless providers. We present a conceptual architecture and
an open-source implementation for such a framework, which
supports function deployment and invocation across multiple
clouds, remote-edge, and local-edge providers.

The cloudless framework exploits differentiated compute
and pricing scheme from multiple serverless providers to
lower the cost and response time for serverless workloads.
It supports executing a series of dependent functions (i.e. a
DAG of stateful functions), with each function independently
deployed as its own service (similar to AWS Step Functions),
with state transitions enabled by a uniform storage abstraction.

Cloudless leverages two adaptive scheduling policies
(heuristics and linear programming) and periodic benchmark-
ing to continuously optimize function invocations using multi-
ple QoS objectives (e.g., cost, response time), and can be eas-
ily extended to use any scheduling policy or objective. Cloud-
less takes advantage of variability in performance across time,
provider, and resources for different workloads [5, 6] to opti-
mize the overall response time and cost.

Cloudless supports commercial Function as a Service
(FaaS) platforms including services from AWS, Azure, and
GCP which operate on either the Cloud or the Remote Edge
tier. Further, Cloudless supports function execution on Kuber-
netes clusters via multiple open-source serverless platforms
(OpenFaas, Kubeless, Fission).



1.1 Contributions

In this paper, we introduce the cloudless computing frame-
work to abstract the hybrid multi-cloud/edge continuum. We
present this abstraction in order to reduce vendor lock-in, min-
imize costs, and latency.

We present the following contributions:

* We introduce Cloudless open-source framework, which
supports a multi-tier serverless execution hierarchy
across a multi-cloud-to-edge continuum that enables
transparent function invocation and deployment across
tiers and allows users to easily switch between cloud
service providers.

We provide adaptable dynamic scheduling systems (via
heuristics and linear programming) in order to optimize
over invocations multiple objectives (e.g., cost, response
time) using benchmarked data

We provide memory and cost heuristics that finds the
optimal cpu and memory configuration for each system
based on benchmarks for cloud providers and kubernetes
systems

We provide evidence for how current single-cloud sys-
tems have suboptimal cost, latency, throughput, and fault
tolerance over cloudless.

2 Background

2.1 The Computing Continuum

There is a growing body of work in computing models and
frameworks that focuses on the ability to execute computation
outside of a cloud environment, either on end devices them-
selves or somewhere in the middle, to reduce latency [7, 8] .
This work has proposed a variety of terms including edge com-
puting [2], fog computing [9], and Mobile Edge Computing
(MEC) [10].

We do not aim to taxonomize the terms that others have
proposed, as the distinctions are not important for our pur-
poses. Instead, we restrict ourselves to four distinct tiers of
resources (see Figure 1) that span the continuum from the
cloud to the extreme edge. We define these tiers and list their
respective properties below.

The extreme edge refers to end devices where data is gener-
ated and/or consumed (e.g., sensors and actuators, cameras).
Their processing power is very limited, but it can be enhanced
by custom hardware (e.g., FPGAs). The extreme edge is clos-
est to data sources (lowest latency) but exhibits the most
heterogeneity in terms of hardware and kernels.

The local edge refers to local resources that are always on
and one network hop (usually wireless but possibly wired)
from the extreme edge (e.g., cloudlets [11], gateways, micro
clusters). They have higher capacity and computational power,

but are still limited. Edge resources can take advantage of
virtualization, containers, or a serverless platform to simplify
resource management.

The remote edge refers to resources between the cloud and
the local edge (e.g., CDNGs, ISP local stations, network PoPs,
cell tower base stations). Remote edge resources can take ad-
vantage of virtualization, containers, or a serverless platform
to simplify resource management. Further, a few commer-
cial offerings [12-14] provide “as a Service” abstractions,
where users can take advantage of a pay-as-you-go model,
on-demand access, and elasticity.

The cloud refers to large data centers accessible over the
Internet. The cloud provides the illusion of infinite capac-
ity, elasticity, state-of-the-art hardware, pay-as-you-go billing,
and on-demand access. However, cloud resources are furthest
from data sources and actuators, thereby introducing addi-
tional latency when processing requests.

These tiers form a computing hierarchy similar to the
memory-to-disk hierarchy, which we use as inspiration to
implement a serverless execution hierarchy across the contin-
uum. Similarly, for storage, there exists a parallel for each of
the computing tiers with similar capacity and latency trade-
offs (i.e., with larger capacity but higher latency storage at the
cloud). Further, within each tier there are multiple storage ab-
stractions (e.g., databases or key-value stores) with different
trade-offs in terms of cost, latency, and consistency, which
is important to consider when optimizing the placement of
stateful functions across the continuum.
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Figure 1: The four computing tiers in our system model that
form a computing continuum.

2.2 Serverless Computing and the Continuum

Serverless computing has emerged as a paradigm for sim-
plifying cloud programming [15, 16]. It provides: a) unified
programming abstractions (e.g., event-driven function invo-
cations), b) auto-scaling policies that can scale functions up
or down from zero to many replicas based on workload, and
¢) a fine-grained, pay-as-you-go model, where users only pay
for usage during function execution.

In this paper, we contend that serverless computing is a key
enabler for programming the continuum and materializing
sky computing. In particular, the serverless model decouples
compute, network, and storage thereby allowing providers to



manage and scale them independently while simplifying pro-
cess management and state migration [17, 18]. The cloudless
framework takes advantage of this decoupling to optimize the
selection of serverless providers as well as optimize the place-
ment of function invocations and migration across providers.

3 Use Case Scenario & Systems Requirements

Global demand for air transportation is increasing with pro-
liferation of air passengers and cargo transportation across
rural and urban areas, involving Unmanned Aerial Vehicles
(UAVs). Operating UAVs requires solving a diverse set of
problems in real-time, such as handling video feeds, image
recognition/detection, trajectory planning, and collision avoid-
ance. The environment these UAV's are in may rapidly change
as they fly through different geographical zones with differing
levels of population. For instance, when traveling through a
highly populated city, there are requirements for higher accu-
racy, thereby necessitating larger machine learning models.

Given the limited capacity of on-board computing, some
of these computations have to be off-loaded to nearby cell
tower base stations or all the way to the cloud (for non-latency
sensitive workloads). Offloading computation from drones to
edge, swarm, and for applications like deep learning has been
explored in the past [19-21]. However, implementations of
such approaches are hindered by the complexity of managing
heterogeneous infrastructure across the continuum. This is
further complicated by varying network bandwidth and la-
tency as the vehicle travels from one area to another. As a
result, while combining resources (on-board the vehicle and
across the continuum) can provide the necessary scale and ca-
pacity for UAV workloads, dynamically allocating resources
and distributing workloads under varying requirements and
environments remains a challenge.

To support this use case and many other latency sensitive

edge applications, we enumerate the following requirements:
Unified Framework across the Continuum: We need a
framework that enables the transparent execution of work-
loads across distributed infrastructure. It should provide a
uniform abstraction that allows developers to write code once
and run it on heterogeneous infrastructure. The framework
must support a wide variety of workloads with arbitrary code.
Multi-cloud and High Availability: During the duration of
a UAV’s flight, it might come across many different regions
and zones with different network reliability. This requires
a system that support a highly available multi-region/multi-
cloud/multi-edge to provide optimal cost/performance over
the flight time. It needs to be more available and more fault
tolerant than any single provider.
High scalability and adaptability: The system must be
highly scalable and adaptable to support varying workloads,
dynamic network, compute, and other resource requirements,
which might change over the course of the UAV’s flight.

Edge Aware Scheduling: The local-edge (i.e., UAV on board
computing) has limited compute, memory, and battery life.
The system must transparently auto-scale up/down and in/out
across the continuum to meet varying workloads, dynamic
network, compute, and storage availability, while meeting
local-edge capacity constraints, latency and cost requirements.
Extensible: the framework should be extendable to allow
for new infrastructure providers, scheduling algorithms, and
optimization objectives to be added over time.

4 Conceptual Architecture

Cloudless computing provides transparent function invoca-
tion across a serverless execution hierarchy that spans a multi-
cloud-to-edge continuum. Following the use case require-
ments in Section 3, we present a conceptual architecture in
Figure 2, which includes 1) one or more serverless platforms
at each tier, 2) a control plane that monitors and schedules
the execution of functions across platforms and tiers, and 3) a
uniform storage abstraction. Note — In our work, we choose
not to continue exploring the extreme edge because it requires
custom hardware and kernel support.

Figure 2: Conceptual architecture of a cloudless computing
framework, composed of serverless platforms at each tier and
a control plane that enables function invocations across tiers
based on QoS objectives.

Cloudless Control Plane. The control plane is responsi-
ble for deploying new functions to tiers and invoking them
based on QoS objectives and policies. It combines the com-
ponents of an extensible framework, uniform execution, and
scheduling. It includes the following components.

(a) Function Deployment Engine: prepares a function and
deploys it to the different serverless platforms. Once de-
ployed, the engine exposes an API endpoint, typically
one per function per tier per platform, to invoke the func-
tion.

(b) Function Benchmarking and Invocation Engine: bench-
marks and invokes workflows across tiers, including sin-
gle functions and DAGs. The engine collects perfor-
mance metrics for deployed functions based on requests



generated by a client at the extreme edge. The engine can
also monitor local-edge utilization and function request
rate to account for the limited capacity at the edge.

(c) Universal Storage: provides an interface that allows func-
tions to store intermediate or final results. Underneath
this layer, different storage providers at different tiers can
be used, each with their associated cost and performance
trade-offs. A Storage Engine monitors the performance
(latency and bandwidth) and costs of data transfers across
tiers and informs the Function Scheduling Engine.

(d) Function Scheduling Engine: schedules functions invo-
cations across platforms and tiers. Engine decides where
to run a function (or a DAG) based on collected met-
rics and edge utilization. The engine leverages a sched-
uler and different QoS policies (e.g., cost, response time)
to forward requests to one or more platforms or tiers.
The scheduling engine is extensible to new policies and
adapts to new metrics.

(e) Cache: stores function information to optimize similar
invocations. For functions that can be memoized, this
will eliminate repeated calls.

(f) Authentication & Authorization Service: manages user
credentials and security related tasks across providers.

(g) Billing Engine: administers and monitors billing and
costs across all providers . It can monitor providers cost
and inform the Function Scheduling Engine.

Serverless Platforms. Each tier contains one or more
serverless platforms that support the deployment of new func-
tions and the invocation of existing ones. These can be based
on commercial offerings (e.g., AWS Lambda, Google Cloud
Functions) or open-source and research platforms (e.g., Open-
FaaS [22], Fission [23], OpenLambda [24], Cloudburst [18]).
Cloudless extends serverless’s high scalability properties. Typ-
ically, a FaaS stack is deployed on top of a cluster of resources
and is composed of the following elements.

(a) Resource Manager: responsible for managing the un-
derlying computing cluster. It provides mechanisms for
monitoring nodes, handling failures, and scaling nodes.

(b) Execution Environment: encapsulates functions and its
dependencies, used to deploy functions on heterogeneous
infrastructure, and provide function isolation.

(c) Scheduler: responsible for orchestrating functions, mon-
itoring their performance and availability, and auto-
scaling functions based on different metrics.

(d) Front End: responsible for deploying new functions, pro-
viding ingress (e.g., HTTP(s) endpoints) to route requests
and invoke functions.

5 Implementation

We followed the conceptual architecture in Section 4 to de-
velop a prototype implementation of the Cloudless framework.
We describe the main components of the implementation be-
low.

5.1 Control Plane
5.1.1 Function Deployment Engine

To support deploying functions across the continuum, we use
Docker containers to simplify handling heterogeneous archi-
tectures. For providers, this removes function sizes limits (up
to 10 GB), supporting various workloads. For open-source
frameworks and the edge, we leverage Kubernetes for simpli-
fied infrastructure, auto-scaling, and network management.

The Function Deployment Engine can deploy a single func-
tion to multiple regions/clouds to allow for fault tolerance,
larger throughput, and better availability. This comes at the
cost of maintaining deployments and endpoints at each loca-
tion, mostly comprising of low storage costs. The deployment
engine has quality of life improvements to deploy in parallel
and retry failed deploys.

5.1.2 Function Benchmarking and Invocation Engine

Compute Metrics. Developers can record custom statistics
and information about their invocations. Custom benchmark-
ing algorithms must inherit from a base class and implement
two methods: a function that is run before invocation, and
another that is run afterwards. Our current benchmarking
functions includes the following information:

(a) execution time: Time to execute function (7).

(b) network delay: Time spent in the network (7;,) (including
time to send a request and time to receive a response)

(c) warm start: Platforms that support caching can amortize
function cold start costs across invocations. Routing and
scheduling mechanisms within a platform can introduce
additional latency or bottlenecks. Auto-scaling policies
and the unit of scaling (e.g., processes, containers, VMs)
can also impact performance. We chose to focus our anal-
ysis on invoking with warm containers. We record warm
start state by checking if global cache was modified.

(d) memory usage over time: We poll memory usage every
0.1 seconds. This helps us estimate cost for providers
where RAM usage is part of pricing (ex. Lambda charges
more for compute tiers with higher memory limits).

(e) Cloudless overhead time: Control plane scheduling deci-
sion overhead (Tj)

Compute Cost We collect compute cost information,
which is essential for the optimization of function placement.
Each provider offers multiple levels of compute and memory
configurations (i.e., compute bins). For example, AWS
Lambda offers 13 compute bins with different CPU and



memory allocations, and different pricing. To simplify our
optimization and determine cost information, we use the
following cost models. Note: We exclude the free tier from
our cost model. We consider the case for three different types
of providers:

(a) Commercial serverless providers: services like AWS
Lambda, Azure Cloud Functions, and GCP Cloud Func-
tions or Cloud Run all offer pricing models that charge
by execution time and/or memory. As a result, given ex-
ecution time and memory usage of a function, we can
estimate pricing per invoke for a function and workload.

(b) Kubernetes providers: it is difficult to estimate the cost
per function for serverless offering where we spin up
Kubernetes clusters and use open-source serverless plat-
forms. We model cost for a single invocation as its execu-
tion time in seconds multiplied by the cost of the cluster
per second.

(c) Edge providers: For edge providers, we use a simplifying
assumption that running on the edge is free, since users
will usually own the infrastructure at the edge.

Although the cost models above are simple, our framework
is built such that it is easily extendable to different cost models
(which may need different types of benchmarking informa-
tion), and types of compute/memory nodes for each provider.
Additionally, we have implemented a uniform mechanism
to collect benchmarking information in a vendor-agonstic
manner to minimize vendor lock-in.

Networking For each function, we look at the round trip
delay for sending a request and receiving a response. We use
an empty function packaged with all the same dependencies
to quickly find the scheduling delay. To simulate a similar
network delay to the function, we send an input packet and
return output packets that is around the same size as the one
used in the function. To support this, for each function, we
also measure the average bytes of the input/output.

Using the dependency tree for multi function workflows,
we measure the networking delays between, from, and to
each of these functions. For these DAGs, we consider three
different types of node networking. For example in Figure
4, there is the network delay between client and function 1,
function 1 and function 2, and function 2 and client.

Storage Cost All three storage providers that Cloudless
currently supports offer monthly pricing with costs associated
for networking and storage. To approximate pricing, we con-
sider a simple cost model:

cm = cost/gb/month
Cop = cost/operation

eop = expected operations
storage Cost = Cp * Sqyg * My + €op * Cop

Savg = storage avg./month
m,, = months

We significantly reduce storage cost by storing our interme-
diary DAG results temporarily— these results can be removed

from storage after they are read by all functions nodes that
need them. Similar to compute, we consider edge storage free.

5.1.3 Universal Storage

Cloudless enables stateful function execution and function
DAGs by providing a thin abstraction layer on top of existing
KV storage offerings. In the cloud, Cloudless uses AWS S3,
Google Cloud Storage, and Azure Blob Storage to store the
intermediate output of functions or persist the final results. At
the remote and local edge, we leverage Redis as the under-
lying KV store. We create these resources in different cloud
providers and use lithops storage [25] as a way to access
and perform uniform GET and PUT operations. The different
storage offerings have vastly different access patterns and
requirements that change based on the workload [26].

5.1.4 Function Scheduling Engine

Cloudless maximizes QoS objectives by optimizing function
configuration, invocation, and placement. Each provider has
different function configuration (defined by the amount of
memory and/or CPU available), with corresponding cost. The
performance and cost of these providers can drastically vary
over time [6]. Cloudless takes advantage of this variability to
optimize function configurations and invocations.

A@edge \ H@edge
(v

f3@edge

Figure 3: Search space of function placements with the
providers azure and edge. The dependencies between the
function are shown in Figure 7.

Given a list of providers, we create a search space of func-
tion placements (see Fig. 3). The graph edges encode stor-
age cost and time (including read/write time) to move data
between different providers. The graph nodes encode infor-
mation about: provider location, function cost, and function
response time. To reduce our search spaces, we use a heuristic
to determine the best storage to read and write to based on
the average read, write, and cost metrics for every storage.
There are other formulations of the cloud-edge search space.
Costless [27] presents an alternate approaches to pruning the
search space by only moving from the edge to the cloud and
considering combining nodes for better cost.

Cloudless implements two sample scheduling policies: pe-
riodic and live scheduling. Cloudless can be easily extended
to include more policies.

Cloudless implements periodic scheduling via periodically
running scheduling algorithms that are heuristics and linear



programming based. The linear programming policy opti-
mizes the search space using a modified constrained shortest
path algorithm. Since an optimal solution is intractable, we
choose to minimize the overall cost sum of all edges and
nodes. The heuristic scheduling based decision tree chooses
the best function independent of every other function.

Cloudless also supports a live scheduling policy: it im-
plements an invocation server that dynamically determines
which provider to forward incoming requests to. Cloudless
employs a multi-threaded worker architecture which main-
tains a shared queue with a buffer of jobs. The server stores
recent latencies for each provider via a thread-safe queue,
and the outstanding invocations via atomic operations. For
live scheduling, we implement four different algorithms for
selecting the provider to invoke: (1) least outstanding invo-
cations (LOI) (2) least cost (3) least latency, where we select
the provider that with the lowest moving average latency, and
(4) linear combination of any subset of the above policies.

To make our approach more robust, we incorporate a proba-
bility of randomly selecting a provider for invocation, regard-
less of recent performance. This mitigates the possibility of
overlooking providers which recovers from temporary perfor-
mance degradation.

Live scheduling (1) effectively extends the Cloudless con-
currency limit, (2) adapts to changing response times or costs,
and (3) is fault tolerant against subsets of providers failures.

For scheduling based on cost, the scheduler assumes the
edge is free and we leave modelling of the edge’s cost model
to other work. The scheduler will not schedule everything on
the edge due to computer and memory constraints provided
on the edge.

Workflows DAGs. Function orchestration of DAG work-
flows can simplify coordination of subsystems, and deploy
complex workflows to multiple containers. This allows us
to allocate the most appropriate resources for each subfunc-
tion to improve end to end response time, reduce cost, and
improve security. Cloud providers like AWS, GCP, and Azure
have workflow as a service offerings (AWS Step functions,
Google Cloud Functions, and Azure Durable Function). How-
ever, none of the mentioned services support multi-cloud or
combining cloud and edge resources. Serverless workflow
frameworks also have limitations on the number of transitions,
request size, and maximum number of workflow executions.
Cloudless surpasses these limits by combining resources uni-
formly. For example, AWS has a IMB limit on request sizes,
while Cloudless request size is limited to as much storage
provider can handle (e.g. STB with AWS S3).

We represent function workflows as a DAGs. Each node is
a function and each edge is a state transition. We store a DAG
representation of a function workflow at the control plane,
including indications on where to deploy and invoke each
function. We support parallel workflows by using a Thread
Pool to invoke the node as soon as their parents execute.

To move data between two nodes or two functions, we

{clientH fl@aws ]M@Lad{ R2@gcp Hclient}

Figure 4: ex. of inter-cloud data movement. Function 1 in
AWS writes output to S3. Function 2 in GCP reads from S3.

use our storage abstraction to store the intermediate results.
Figure 4 shows an example of moving data between two
clouds. The best storage location to write to and read from
between the nodes is calculated based on the benchmarks
metrics. Further, we support writing to intermediate results to
multiple locations allowing DAGs that fail midway to rerun
without restarting the entire workflow.

To support credentials for DAGs across the multi-cloud,
we currently store the credentials required to connect to each
of the different locations. However, in the future, we plan to
implement a token-authentication service at the control plane
using temporary IAM or JWT tokens.

5.2 Serverless Platforms

Cloudless supports arbitrary code execution using serverless
providers in all tiers of the continuum.

In the cloud, Cloudless deploys and invokes functions us-
ing Google Cloud Run, AWS Lambda, and Azure Functions.
It also deploys functions to open-source serverless frame-
works including OpenFaaS [22] and Fission [23]), running on
managed Kubernetes [28] clusters. Cloudless automatically
creates these clusters using AKS, EKS, and GKE services
from Azure, AWS, and Google respectively. To more closely
simulate a serverless model, where cost is zero when no func-
tions are invoked, we scale down pods and resources when not
in use. By running Kubernetes clusters and provisioning our
own compute instances, Cloudless is able to take advantage
of special types of instances that are not provided by commer-
cial serverless offerings. For example, Cloudless can select
memory-optimized or high performance compute instances
for a given workflow.

In the remote edge, Cloudless can deploy functions to
a 5G cell tower base station offered by AWS Wavelength.
It automatically creates a Kubernetes cluster and runs the
open-source serverless frameworks on it.

At the local edge, Cloudless leverages a local Kubernetes
cluster to run the open-source serverless frameworks. This
allows us to maintain a serverless abstraction at the local edge
where there are no dedicated serverless offerings.

5.3 General Pipeline

For Cloudless to be adaptive in changing environments, busi-
ness requirements, and objectives, a general pipeline exists to
optimize the deployment engine and the invocation engine.
(a) Deployment: Cloudless users begin by writing a config
file with information like the filepath to their code and
what providers they want to deploy to. Users then deploy



their function via Cloudless CLI to signal the Function
Development Engine to begin setup locally: deployment
state are created and stored inside a build folder. Then,
providers from the config file are deployed. An endpoint
is specified for each provider-function pair.

(b) Benchmarking: Cloudless collects metrics on compute,
memory costs and other analytics of each provider. This
is done either (1) periodically, including first deployment,
and/or (2) live, as invocations occur naturally.

(c) Scheduling: We have two scheduling policies: (1) Peri-
odic scheduling algorithms process periodic benchmarks
to determine where to initially deploy functions to op-
timize for user defined objectives (i.e. cost, execution
time, or a linear combination of both). If the scheduling
determines it, we redeploy services required. (2) Live
scheduling chooses where to dispatch invocations based
on live benchmarking (recent peformance metrics) based
on scheduling subpolicies including: least outstanding
invocations (LOI), least cost, and least latency.

(d) Cleanup Engine: In order to minimize costs, the metrics
from the scheduling algorithm can be used to clean up
services that are not scheduled as optimal. Redundancy
can be introduced by keeping multiple services deployed,
and is dependent on business constraints on cost and
uptime reliability. For serverless providers, costs are kept
to a minimum since pricing is based on a pay-as-you go
model. Costs incurred here are mainly storage.

The pipeline enables the UAV use case described in Sec-
tion 3. It accounts for varying latency and cost for different
workloads and adapts accordingly. The pipeline also helps
users avoid vendor lock in. As benchmarking numbers like
cost or execution times change, users using Cloudless can
automatically switch between vendors to optimize for their
QoS, and allow for function independence.

Finally, the Cloudless control plane can run at the local-
edge (i.e., on-board computing of a UAV) or in the cloud.
When running at the local-edge, invocation requests can run
locally or be routed to the remote-edge or different clouds
based on the control plane decision and local-edge utilization.
Alternatively, the control plane can run in the cloud to support
multiple workloads (i.e., from multiple UAVs). Incoming
requests can be routed based on a global optimization, which
can account for the flight paths of multiple UAVs.

6 Evaluation

As discussed in Section 3, we motivate the need for a multi-
tier network continuum via UAVs. UAVs have flight patterns
that may cause them to change the closest cloud regions they
are in and have big shifts in workloads. While UAVs are
heavily constrained by battery-life, we leave the modeling of
this and other constraints to other work, and chose to model
the work to have limited edge compute and memory. For
our experiment, we use a Intel(R) Xeon(R) CPU E7-8870

v3 @ 2.10GHz to represent the edge. We use the same local
computing cluster for all experiments ran on the local-edge
to keep results consistent.

The evaluation is split into the multiple sections to demon-
strate the different parts of a UAV workload and to evaluate
the Cloudless framework. Since UAV's have variable networks,
we first evaluate network overheads, latencies, and bottle-
necks. In order to assess the workload of a UAV moving to
different locations, we evaluate our framework using different
sizes [29] of the image classification model ResNet [30] to
model changing requirements and workloads. To model com-
plex periodic benchmarking scheduling as the UAV moves
between regions, we use a DAG as represented in Figure 7,
demonstrating that different workloads can be scheduled to
places that best suite the workload (such as compute heavy
jobs running in compute heavy machines). Since UAV flight
patterns change over time, we measure variance and adapt-
ability of a UAV workload over time, including analyzing:
fault tolerance, live scheduling, and response time variance.

By providing these different modes of evaluation, we hope
to demonstrate the adaptability of Cloudless rather than ana-
lyzing the benchmarking that occurs at this point in time.

6.1 Networking

Function location makes a large impact on the network per-
formance over different benchmarks. Additionally, providers
have different service availability depending on region. For
our benchmarks, we chose to deploy functions and clusters to
the nearest region to the control plane on the edge: (AWS: us-
west-1, GCP: us-west2, AZURE: us-west, AWS Wavelength:
us-west-2-wll-sfo-wlz-1).

Serverless systems have a scheduling delay, of finding a
warm container or spinning up a new one, to route the in-
vocation to a container. Docker runtimes generally require
a higher scheduling delay than managed runtimes provided
by cloud serverless providers (such as the Python runtime);
however, Docker runtimes allow for higher limits on deploy-
ment filesize and timeouts. Packet size and input processing
can contribute to scheduling delay. To measure scheduling
delay, we deploy an empty function packed in the relevant
Docker containers and benchmark data over 100 invokes. We
verify there is no network bottleneck for parallel invocations
by testing the response time to each of cloud with increasing
payload size.

6.2 Function invocation

With the motivating example of an UAV moving to differ-
ent locations requiring different accuracies, we evaluate our
framework using the image classification model ResNet [30]
(trained on ImageNet), at different ResNet sizes. Previous
UAV work like [29] have also used the ResNet architecture
as a representative drone workload. Additionally, ResNet
is found in many serverless benchmarking workloads like
Sebs [5]. The different ResNet sizes can be motivated by



the UAV moving to a highly populated location, requiring
different accuracy threshold.

Previous works such as Sebs [5] describe the presence
of the tradeoff between time and cost as different offerings
withing serverless providers are chosen. We extend this work
to also benchmark over node type since they heavily affect
the performance of the workload. We replicate similar results
with the performance-cost tradeoff. For the rest of our paper,
we consider picking the tier that is the most cost effective.

We choose to benchmark on the ResNet sizes 18, 50,
and 152, which have different compute and memory require-
ments [31]. The larger ResNets have higher accuracy. We ran
a workload with 4MB payload of 30 images, and computed
classifications serially (batch size of 1). Figure 5 shows that
the fastest provider changes depending on the model: for ex-
ample, AWS fission performs relatively better on ResNet18,
but worse on higher ResNet sizes. These differences in QoS
metrics between providers for different workloads necessi-
tates the use of Cloudless framework to automatically pick
the best provider and position to compute.

Execution Time Across Providers over Model Size
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Figure 5: Execution times of ResNet over various providers
over different model sizes. The differing ResNets have differnt
memory and compute footprints, causing different providers
to perform better than others.

6.3 Storage

UAVs can choose to persist results or temporary computation
at different locations, which has various performance and cost
tradeoffs. Cloudless supports the storage providers: AWS S3,
GCP Cloud Storage, Azure Blob Storage, and Redis.

For each function, Cloudless runs a set of storage bench-
marks to compute the amount of average read and write cost
to every datastore and analyze patterns, including bottlenecks

at large packet sizes. Figure 6 shows a heatmap plot of writing
to the different locations with 64MB.
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Figure 6: A heatmap of the network delay from source com-
pute nodes to destination storage for a 64MB payload. We see
differing patterns of read & write times that can be optimized.

We also ran a set of storage benchmark scans from 1B to
64MB to analyze for any interesting patterns between differ-
ent payload sizes in Figure 2?2.

6.4 DAGS and Periodic Scheduling

To extend our motivating example to more complex work-
flows, we use the DAG in Figure 7 to represent our workflow.
We first take an input image, preprocess it to resize to the
correct size, run both VGG and ResNet, and then persist the
data to every single cloud storage. We decided to use VGG to
represent the common task of object detection, while ResNet
to represent the common task of classification. We used the
preprocess function to represent the connection the client,
which can represent a video processing node that constantly
processes input images.

[clienthreprocess Persist Hclient}

Figure 7: Sample UAV serverless workflow

Using the strategy to collect DAG metrics mentioned in
Section 5.1.2, we benchmark the dag, computing the network
delay, storage, and execution time. Depending on the objec-
tive required, our scheduler picks an optimized path through
the searching the search space. Using the linear program-
ming heuristic described in 5.1.4, we compute placements for
time, cost, and few configurations on a single provider(such
as all on AWS). From the results in Table 1, we can see that
scheduling across multi-cloud performs better than any single
provider or location. We can also see the benefit of combining
edge and cloud resources. Based on the workload and the net-
work connections with the client machine, the exact network



results and time will vary. Using periodic scheduling, we can
periodically find the best location to run every function.

6.5 Evaluation over time

Since UAVs constantly are constantly running and move
around during the flight, we ran an evaluation over time to
measure changes in latency and cost. We perform a thousand
consecutive invokes on the providers we are studying. We
also ran a sample experiment of evaluation over a short num-
ber of multiple days as well, but did not notice a significant
change. Our results show a noisy variation over time. This is
due to the variability of serverless infrastructure or network,
which can be another stability metric to schedule over. The
graph also shows the edge used has higher variability(due to
other processes running on the edge), similar to live UAV.

6.6 Live Scheduling

Cloudless supports a live scheduling policy for a UAV that
needs realtime scheduling as it flies. We evaluated this pol-
icy by having Cloudless adapt to concurrency limits of each
provider without awareness of what they are. We scaled the
number of threads making invocations over time. We utilized
Lambda with global concurrency limit of 10; Azure with a
simulated limit of 20; the GCP service autoscaling limit of
30 and container concurrency limit of 1; and Edge with a
simulated limit of 5. Note that settings deviate from defaults,
which could impact performance. As shown in Fig. 8 Cloud-
less supports the concurrent requests increasing over time,
past individual cloud limits, and reaches higher throughput
than any individual provider. Between time 0 and 15, most
of the invocations go to AWS because its the fastest. After
second 30, all cloud providers are used as we go above the
concurrency limit of GCP and Azure combined.
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Figure 8: Throughput of Cloudless on each provider on
ResNet18, smoothed with window size of 3. AWS has a con-
currency limit of 10, Azure 20, GCP 30, and EDGE 5. Number
of concurrent global requests are increased over time from 0
to 40 seconds.

Our results demonstrate that Cloudless does the following:
(1) Cloudless addresses the problem of limited concurrency
limits in individual providers via increasing total throughput
by invoking to multiple providers. (2) Cloudless addresses
issues with changing concurrency limits for functions by adap-
tively invoking to other providers when invocations go past
the concurrency limit in one. For example AWS has a global
account concurrency limit across all functions within an ac-
count. (3) Cloudless adapts to changing workloads and re-
sponse times by minimizing cost and latency in real time.
As demonstrated in section 6.5, response time can change
significantly over time on edge, and workloads can change
over time.

The live and periodic scheduling policies show the extensi-
bility of the scheduling provided by Cloudless.

6.7 Fault Tolerance

To evaluate the fault tolerance of the system, we ran an exper-
iment that began with multi-cloud servers and the edge, and
turned off each of the clouds at different intervals until only
the edge was available (Figure 9). The scheduler chooses the
lowest latency cloud that is available, and we see that its able
to instantly change this over time. Cloudless continues to run
when clouds fail.

Figure 9: The graph displays the lowest latency policy. It
sends all invocations to the fastest provider available at any
given timepoint. After each vertical line, we simulate a cloud
returning errors for all invocations(from AWS, GCP, then
Azure). When no clouds are available, the edge is used.

7 Discussion

Argument for Multi-cloud Adoption of multi-cloud strate-
gies in enterprise has been gaining attention in recent years;
however, there is still a lack of widespread adoption of so-
lutions that arbitrages many providers [4]. Some argue the
lock-in of data stores and the complexity of current industry
applications are deterrents for enterprises to adopt multi-cloud.



Table 1: We display the scheduling results of the example DAG workflow in Figure 7. The following is optimizing for time given

an unlimited cost constraint.

name time(s) cost($) | persist resnet preprocess vgg

defaultlp | 2.531045 | 0.000298 | aws-openfaas | aws-openfaas | edge-openfaas | azr-functions
no edge 2.977129 | 0.000298 | aws-openfaas | aws-openfaas | aws-openfaas | aws-openfaas
aws only 2.866828 | 0.001145 | aws-openfaas | aws-openfaas | aws-openfaas | aws-openfaas
gcp only 3.581388 | 0.000982 | gcp-cloudrun | gep-cloudrun | gep-openfaas | gep-openfaas
azure only | 2.730473 | 0.000307 | azr-fission azr-fission azr-fission azr-functions

Our focus is not to make a statement about the economic con-
siderations for the future of multi-cloud, but rather to develop
a technological solution that can enable the use of multi-cloud.

In terms of developing Cloudless, differences in API made
it challenging to find the best option (such as the autoscal-
ing and caching) for each workload even with the serverless
paradigm. Cloudless navigates around these limitations with
periodic benchmarking, but future multi-cloud tools need to
be careful to consider the subtle differences in the offerings.

Security, Authentication and Billing There is a lack of a
single authority for billing scenarios and credentials, which
leads to a wider attack surface and other security concerns.
We hope that future multi-cloud solutions will work on pro-
viding better solutions to identity and billing management.
State can also be shared across invocations for warm server-
less invocations, which can potentially leak of customer data.
Better isolated function caching might help mitigate attacks.

Storage While running our experiments, a key insight we
found is: when moving between clouds, the indirect path to
access storage can be faster to due to network congestion and
potential egress limiting. However, for large amounts of data
movement, egress fees can be expensive and act as a limiting
factor. We hope future work can optimize these solutions.

Scheduling and Workload Shifts A generalized serverless
system may struggle in making good assumptions about the
nature of workloads in order to optimize itself, in part due to
shifts in the distribution of data. Cloudless addresses this via
its extensible scheduling system. For a DAG workflow with
varying workloads on each node, we demonstrate the ability
to optimize for different requirements. For example, secure
computation can be run on an enclaves in the cloud while
parallel jobs can run in compute heavy nodes. Furthermore,
depending on the workload and the data requirements, the
different network tiers can play a large part in the scheduling.
We hope others will take advantage of this layered architecture
to better localize data and compute.

Debugging and Logging The multi-cloud brings chal-
lenges in operation and maintenance. This is due to lack
of debugging dashboards, lack of metrics, and longer deploy
times. In the future, we hope to support a better logging sys-
tem to nicely display the logs across the providers.

Adapatability of the Framework Lot of the results men-
tioned above are based one point in time for a specific con-
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figuration. An adaptable framework like Cloudless helps by
optimizing for resources at different points in time. These
numbers may dramatically change based on the region, band-
width, latency and business constraints.

Kubernetes Deciding to provide serverless on Kubernetes
comes with some tradeoffs. Kubernetes has open source
serverless offerings that simplify building multi-cloud server-
less. However, extreme edge kubernetes support is limited.
Additionally, we found that Kubernetes clusters creation was
much slower than serverless offerings from the vendors we
support. There is also additional cost of operating the over-
head across all providers but edge.

Fault Tolerance Cloudless develops fault tolerance via
deploying to multiple providers, staying available as long as
one of the providers remains online and one of the storage
options remains accessible. Cloudless users are able to choose
how redundant they want their compute and storage to be, with
a trade off of higher cost for more availability. We plan to
examine fault tolerance in depth in a future work.

7.1 Framework Details

Our framework is designed to extensible and flexible to use
for any benchmark and any workload. Below we display how
the DAG shown in 7 can be written in code. We designed the
framework to be very similar to other serverless frameworks.

Listing 1: The 4 Functions used to represent the steps of the
DAG. The input of each function is the previous step in the
DAG. These functions can also acess the storage if needed

def resnet(preprocess):
def vgg(preprocess,):

def preprocess(event):
def persist(resnet, vgg):

In order to validate Cloudless’s support of different types of
functions, we implemented the PyBenchmarks and Function-
Bench [32]. These will be available as open-source samples.

Developers can also import the cloudless library in python
and use custom providers for all tasks including deployment
and invocation. Custom providers must inherit from our base
class and implement a number of abstract methods. We have
14 provider classes which developers can use as an example.



8 Related Work

Previous work discuss the multi-cloud and edge in context of
performance, architecture, cost, storage, compute offloading,
and workflows. However, while most of these works consider
these factors independently, we use the Cloudless framework
to examine the combination of these resources together.

Serverless Platforms Performance Evaluation. Prior
work categorizes and taxonomizes existing serverless
providers. The authors in [33] evaluate the performance of
commercial serverless offerings and provide insights into
architecture, resource utilization, and performance isolation
efficiency for Amazon, Azure, and Google. Similarly, [5,32]
proposes a set of workloads for evaluating cloud serverless
functions, which can be used to extend our workloads. [34]
and [35] compare the features and performance of four open-
source frameworks using a micro cluster in the cloud and
at the edge respectively. The authors of [36] examines the
throughput of different cloud providers and proposes a differ-
ent architecture for the control plane.

Edge and Hybrid Serverless Frameworks. [37] presents
a framework for low-latency offloading of computation via
serverless at the edge. Unlike Cloudless, it does not include
cloud resources or account for finite resources at the edge. [38]
presents a vision and challenges for a framework where real-
time analytics are processed on edge and advanced analytics
on the cloud. Our work extends this vision to all tiers of the
computing continuum. [39] proposes using a proxy at Edge to
dynamically invoke serverless functions either locally via IoT
devices, or cloud. The proxy uses historical execution times
to determine routing. We found that embedded devices are
too slow to support a serverless platform, and that offloading
computations to an edge cluster was faster. [40] proposes a
serverless edge platform tailored to Al applications, support-
ing serving, training, and monitoring AI models at the edge,
while scheduling according to policies like privacy and reg-
ulations. The work Costless [27] discusses the combination
of cloud and edge resources by creating a search space that
moves function execution from the edge to the cloud. We
build on top of this work to support resources in both cloud
and edge platforms.

Serverless Frameworks: Lithops [25] supports running
python programs on multiple serverless providers in mas-
sively parallel fashion. However, lithops doesn’t support com-
bining cloud edge resources, workflows, and open source
severless platforms. We use lithops in order to create the stor-
age abstraction across the mulit-cloud. Serverless framework
[41] supports building and deploying functions to multiple
cloud providers. We take inspiration to extend a similar in-
voking and deploying interface with workflows, storage, and
more providers.

Storage: Other work has explored building a storage ab-
straction across the multi-cloud. DepSky [42] considers stor-
ing reliable and secure data. Anna [43] builds a distributed
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high performance key value storage, extending the limitations
of current storage systems. We hope to extend this work to
include a better storage abstractions, options, caching and
optimizations for the multi-cloud.

Serverless Workflows: Another line of research is around
analyzing and building function workflows. [44] studies the
performance of AWS Step Functions, Google Cloud Com-
poser, and Azure Durable Functions. The authors of SAND
[45] build out a way to optimize performance of multiple
function chaining and interaction. However, these works don’t
consider workflows across mult-cloud. With future work, we
hope to be able to generate and compare the performance
across these different workflow composers.

9 Conclusion

We presented Cloudless, an extensible generic framework
that handles and schedules serverless execution over multiple
tiers and adapts to changes in the environment. We defined a
variety of providers, measure various benchmarking metrics
over storage and compute, implement scheduling algorithms,
and implement a number of memory and time optimizations.
However, these serve as an initial set to evaluate our frame-
work, and is easily extensible to improve. We show that in its
current state, Cloudless is adaptable.

Using the Cloudless framework, users can dramatically cut
costs, simplify stateful workflows, and remove vendor lock-
in issues. Cloudless also shows the benefit of multi-cloud
and how it’s better than any single provider. As more multi-
cloud frameworks like Cloudless are created, we speculate
an overall trend toward cloud specialization based on the
dramatic differences in cost, rel ability, and offerings. We
hope that using the cloudless framework, we can move closer
to a true "deploy once invoke everywhere."
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Chapter 2

Mixclaves: Enclave-Based Mixnets

All secure messaging systems protect the content and integrity of users’ messages, but the
oblivious routing of messages concealing who communicates with whom (metadata-private
messaging) is increasingly crucial for privacy. Existing techniques conceal routing metadata
using miz networks (mixnets) made up of multiple nodes that batch and forward traffic to
confound traffic analysis. State-of-the-art mix networks remain resilient to a passive global
adversary even as attackers compromise up to 20% of the mix nodes.

As infrastructure moves to the cloud, threat models for metadata-private messaging must
assume an adversary that is both active and even present on machines routing user data.
This paper proposes Mixclaves, a scalable, metadata-private messaging architecture that
builds on hardware enclaves to provide a cost-efficient, low-latency mixnet implementation
deployable in public clouds. Building on stronger guarantees provided by enclaves not only
simplifies the implementation of mixnets, it also admits novel features and lower operating
costs. Compared to Loopix and Groove, two popular mixnet implementations, mizclaves are
54% cheaper on cost to achieve the same message throughput.
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All secure messaging systems protect the content and integrity of
users’ messages, but the oblivious routing of messages concealing
who communicates with whom (metadata-private messaging) is
increasingly crucial for privacy. Existing techniques conceal routing
metadata using mix networks (mixnets) made up of multiple nodes
that batch and forward traffic to confound traffic analysis. State-of-
the-art mix networks remain resilient to a passive global adversary
even as attackers compromise up to 20% of the mix nodes.

As infrastructure moves to the cloud, threat models for metadata-
private messaging must assume an adversary that is both active and
even present on machines routing user data. This paper proposes
Mixclaves, a scalable, metadata-private messaging architecture that
builds on hardware enclaves to provide a cost-efficient, low-latency
mixnet implementation deployable in public clouds. Building on
stronger guarantees provided by enclaves not only simplifies the
implementation of mixnets, it also admits novel features and lower
operating costs. Compared to Loopix and Groove, two popular
mixnet implementations, mixclaves are 54% cheaper on cost to achieve
the same message throughput.
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We kill people based on metadata.

Gen. Michael Hayden, former NSA Director, 2014 [23, 42]

They are not looking at people’s names, they’re not looking at
content, but by sifting through this so-called metadata, they
may identify potential leads with respect to folks who might
engage in terrorism.

Barack Obama. 2014 [23]

1 INTRODUCTION

The scope of state-sponsored and corporate surveillance is so wide-
spread, it is no longer covert; it is assumed. While communication
providers safeguard users’ confidentiality and integrity with au-
thenticated encryption, communication metadata implicate users
in friends’ and acquaintances’ lives. Churn in relationships and
fluid boundaries of illicit conduct over time make it impossible to
freely associate without fear of an unjust inference made using
those metadata. As concrete examples, a logged call to a medical
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ing any information about the content of the call. Communication
metadata among company executives and their legal council reveals
material, non-public information about a potential merger.

The series of leaked documents made available by Edward Snow-
den [26] revealed extensive, passive surveillance programs operated
by the US Government. These programs primarily targeted meta-
data from communications, such as monitoring with whom and
when someone communicates, rather than the content of commu-
nication. With the revelations that the capabilities of intelligence
agencies approach that of passive global observers, leaving the
metadata of communications exposed has been a dangerous attack
vector.

Instant messaging has quickly become the dominant form of
remote communication compared to traditional phone calls. The
majority of these messages are sent over Short Message Service, an
insecure service that is part of almost all mobile phones.

Secure and private messaging is a growing desire among the
general public, especially for journalists, whistleblowers, activists,
business executives, and those involved in the government or elec-
tions. The leading secure communication services Signal [37], What-
sApp [47], iMessage [28] support end-to-end encryption, guarding
the contents of a communication, but they still expose metadata and
do not have mechanisms to keep communication entirely anony-
mously.

Continued work has emerged to enhance privacy, known as
metadata private messaging protocols. These aim to completely
hide any information someone could learn about a user’s communi-
cations. At the heart of these designs are mix networks, or mixnets.
Mixnets are a series of proxy servers that bounce messages through
the network. Similar to Tor, messages are wrapped in encrypted lay-
ers, with a given layer only readable to a designated node. Mixnets
assume any node in a network may be untrusted. This affects the
number of nodes a message must route through to achieve privacy.

A significant limitation of previous mixnets has been their high
latency. For example, Vuvuzela [45] exhibits a 55-second end-to-
end latency, while Pung [5] and Stadium [43] are even higher.
Groove [9], one of the most recent designs that makes some of the
strongest privacy guarantees, operates with 30-second or greater
latencies at load. Such performance hinders the adoption of this
approach to metadata-private messaging. One design in particular,
Loopix [38], does make progress with latencies near one to two
seconds. However, it makes weaker privacy claims compared to
designs like Groove. We chose Loopix as our reference design, but
aim to provide stronger privacy guarantees.

Recent work expanding the Internet architecture to support
interposition has made general computing on secure hardware
more accessible. Specifically, the Extensible Internet proposal [8]
offers service attestation while running in secure enclaves on the
public internet. With more widely available secure computing, we
may form a stronger assumption about the hardware running the
nodes of a mixnet.
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In this project, we conjecture that enclaves simplify the assump-
tions for the number of nodes to run a probabilistically secure
mixnet. We present Mixclaves, a design and implementation that
utilizes enclaves to run a mixnet. Mixclaves withstand powerful
adversaries that can observe all traffic flowing through a network
and that may even control underlying hardware and a majority of
other clients. We compare the performance of our approach run-
ning in enclaves to the traditional mixnet design Loopix operating
on commodity hardware.

We claim the following contributions. To the best of our knowl-
edge, this is the first implementation of a mixnet that relies on
hardware enclaves to not only facilitate metadata-private commu-
nication asserting differential privacy, but also to enable dynamic
scaling via a covert control channel.

Cost. Partitioning the mixnet into trust domains can collapse the
mix network to a single node, saving up to 82% in cloud settings.

Elasticity. Metrics from enclave mix nodes are securely sampled
and used to scale mixnet capacity within a trust domain by adding
nodes to the mixnet.

Anonymous administration. Monitoring and control traffic
are mixed with synthetic and real traffic from users.

Oblivious mix nodes. Memory traces of buffered traffic cannot
be correlated within mix node enclaves. By leveraging the con-
fidentiality and attestation guarantees of hardware enclaves, the
Mixclaves architecture can provide more robust guarantees than a
mix network. These guarantees apply to a single-node Mixclave.

The paper is structured as follows. Section 2 outlines the assump-
tions and operating environment for Mixclaves. These diverge from
traditional mixnets and shape our goals for the platform. Section 3
describes the Mixclaves architecture, particularly how its design
satisfies our goals from Section 2. Section 4 describes our prototype
instantiation of the architecture, including caveats and practical
details. Section 5 measures our prototype against our goals from
Section 2. Section 6 contrasts the Mixclaves architecture with exist-
ing work before discussing future work and extensions in Section 7.
Section 8 concludes.

2 MODEL AND GOALS

In the following sections, we provide a brief background on hard-
ware enclaves. We then define and discuss the threat model and
operating environment, with particular attention to points that dis-
tinguish our setting from traditional mixnets. We then enumerate
the goals for Mixclaves in this context.

2.1 Enclaves

2.1.1  Enclave Overview. Secure enclaves are a hardware isolation
boundary within a CPU that offers confidential computing (so that
even privileged users cannot see inside) and memory encryption.
They also support techniques to offer attestation, which is a process
running inside the enclave that enables external systems to verify
the identity and code running in the enclave [3].

Both AMD and Intel support enclaves in their modern server
processors. Intel’s SGX implementation runs individual binaries
in enclaves. Its design encourages programs to run partially in
the trusted execution area and partially in the normal computing
environment. Then, information would pass between the two as
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mory dddress
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Figure 1: Message buffering access patterns in Loopix (left)
vs Mixclaves (right). Loopix has a a correlation coefficient of
0.738 from input to output address accesses, whereas Mix-
claves is 0.03.

Figure 2: Intel SGX enclaves versus AMD SEV-SNP [25].

shown in Figure 2. In contrast, AMD’s SEV approach runs an entire
VM inside the enclave. Mixclaves are designed to operate almost
entirely within the enclave; our architecture could apply to either
setting.

We assume two properties of hardware enclaves. First, we as-
sume the code executed inside the enclave is attested and both
operators and clients can verify its integrity. Consequently, any
code inside the enclave that should execute, will run; we assume
a fail-stop model and exclude Byzantine mixnet nodes within a
trust domain (Section 2.3). Second, we assume code removing a
layer of encryption from the packet and examining its metadata
inside the enclave leaks no information to an adversary, conced-
ing that in the various enclave implementations this comes with
caveats [33, 36, 46]; attested code executes confidentially, excluding
side-channels discussed in Section 2.1.2.

2.1.2  Oblivious Data Structures. While enclaves offer stronger
guarantees compared to traditional computing, there remain two
attack vectors from an adversary with control over the network
and underlying hardware: (1) monitoring network traffic in and
out of the enclave and (2) monitoring memory access patterns. For
the former, existing mixnets by design already prevent network
observer attacks. However, they do not address memory access
pattern leaks, so we investigate how to address this.

Because mixnet nodes store messages for a random delay before
resending to the next hop, they need to buffer the messages in
memory. This leads to a potential vulnerability with coordinating
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Figure 3: To preserve privacy, clients must route packets
through at least one honest node or privacy may be compro-
mised. Within a trust domain, it is sufficient to route packets
through a single Mixclave node.

packets entering and leaving the enclave with memory access pat-
terns. The buffering is taken care of in Twisted, an event-driven
network engine that powers Mixclaves and the reference mixnet
Loopix [38]. We examined the messages stored between process-
ing and sending. Twisted appends new messages generated by a
task to the end of an array. When the task completes, the array is
sorted by its target execution time and the next task is dequeued
from the front. Loopix and Mixclaves messages are delayed by a
random value (see Section 4.1. This process rearranges some of the
messages in the buffer, but there remains a strong, positive correla-
tion between the input and output addresses (R=0.738), as shown
in Figure 1. This is especially problematic if two users exchange
significant traffic; then it becomes possible to correlate that the two
are communicating, revealing metadata about the communication.

We altered Twisted’s packet append operation to instead insert
at a random location in the buffer before sorting. This modification
obscures the original memory address of a particular message so
that once it is accessed for sending, the packets leaving the enclave
cannot be correlated to the original storage address. The correlation
coefficient of store vs read memory addresses became R=0.03, as
illustrated in Figure 1.

2.2 Mixclaves Threat Model

We assume our adversary can passively observe the entire network
and memory traces on mixnet nodes. We further assume that an
attacker can inject traffic into the network, also dropping, replaying,
and delaying traffic arbitrarily. All information shared with clients
is also known by the adversary. Mixclaves relies on the Sphinx
packet format [17, 18] to provide bitwise unlinkability for messages
passing through the mixnet. All Sphinx messages are padded to the
same length and allow for detection of tagging attacks and replay
attacks.

We assume a computationally restricted adversary, so the cryp-
tography is sound and decrypting packets (particularly those cho-
sen by the adversary) inside the enclave cannot leak information
about the decrypted packet or any other traffic. As we discuss in
section 2.1.2, delays chosen by an attacker must be obscured by
Mixclaves when the message is queued.

We assume that any application over the mixnet generates suf-
ficient cover traffic to conceal its workload between the mixnet
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and its endpoints. As in Groove [9] and Loopix [38], an applica-
tion can deploy provider nodes that generate continuous, synthetic
cover traffic if endpoints are only intermittently online. Similarly,
any property of or over the data such as forward secrecy is main-
tained by the application. The mixnet also generates cover traffic
between nodes, following an exponential distribution chosen by
the operator [38].

Recall from Section 1 that traditional mixnets distribute trust in
the mix network, relying on a sufficient fraction of honest nodes
to preserve privacy. In contrast, Mixclaves adopt a federated trust
model that partitions the network into independently operated
trust domains. Each trust domain is mutually suspicious. Mix nodes
and endpoints within a trust domain can verify the integrity of
attested code on mix nodes, but not necessarily of mix nodes in other
domains. For example, in Figure 3, Blue endpoints can be confident
that the Blue mix node is honest, but can make no assumptions
about Blue or Orange nodes beyond what is assumed in traditional
mixnets. We discuss the consequences of a federated trust model
in Section 2.3.

Finally, we assume that endpoints can learn the public keys
not only for other endpoints, but also to at least one node in the
active mixnet. Bootstrapping metadata-private communication is
not necessarily out of band [31]. Section 3 describes how endpoints
learn about the keys for previously unknown nodes in the mixnet.

2.3 Deployment Model

2.3.1 Distributed Trust. Relay networks like Tor [19] are deployed
by volunteers, placing few or no restrictions on who may join
the network. This distributed model for trust resists analysis by
requiring an attacker to add malicious nodes until its targets route
sufficient traffic through its network. The probability of clients
choosing paths through not only corrupt nodes, but corrupt nodes
controlled by a particular attacker is unknowable, but assumed to
be sufficiently low that every path through the mixnet encounters
at least one “honest” node, as in Figure 3.

In a distributed model, nodes may enter and leave without any
controls or accountability. This affords operators of mix nodes full
flexibility, but since the client chooses the path and mix nodes gain
no information about the packets routed through it, operating mix
nodes with an SLO entails an unbounded obligation to the network.
Capacity planning for an application with no insight into the health
of the network, no ability to predict how failures will impact traffic,
and no identifying metadata is more art than science. As mentioned
in Section 1, operating a mix net also carries liabilities [6, 24] that
may deter providers from donating infrastructure to a mix network,
even if the operator derives a fractional benefit by improving it.

Egalitarian architecture deployed on volunteer infrastructure
succeeded spectacularly in the early evolution of the public internet.
Today, the resources and expert knowledge necessary to operate a
secure service— particularly one that draws the attention of state-
sponsored surveillance— exceed the grasp of most enthusiasts.

2.3.2 Federated Trust. In contrast, Mixclaves build on a federated
trust model that partitions mixnet nodes into trust domains. Nodes
within a trust domain share a common operator interested in main-
taining the health of the mixnet, but particularly for its subset of
users. A trust domain is not a datacenter or region, but a set of
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servers; one could even collocate mix nodes from different trust
domains in the same datacenter. The full mixnet is a federation of
trust domains. Trust within a domain is grounded in guarantees
provided by the hardware enclaves (Section 2.2).

Where trust domains are managed by established providers,
peering relationships could meter, manage, and price traffic through
the federated mixnet. Endpoints could verify their right to access
the mixnet in that domain without associating their identity [4, 21,
34], while traffic between domains could be shaped to do credible
capacity planning. Aligning incentives for honest operation of trust
domains is outside our scope, but we note that an operator has
more flexibility for its subset of endpoints than in the distributed
trust model. Section 2.3.3 highlights several contexts aligned with
Mixclaves’ trust model.

It must be acknowledged that trust is less diffuse in Mixclaves
than in traditional mixnets; a compromised node in a trust domain
may taint all the nodes in that domain. Endpoints benefit from the
efficiency of shorter paths, but if the trust domain is compromised
then clients must rely on attestation of audited code and the opacity
of metrics available to the operator to preserve their privacy. This
is also true of traditional mixnets, but Mixclaves not only exchange
metrics among mix nodes in a trust domain, they also encourage
users to accept even a single-node mix as sufficient.

To address the risk of correlated compromise, Mixclave networks
adopt three remediations. First, Mixclaves support anonymous ad-
ministration by processing control traffic obscured as mixnet traffic.
Signed control packets can generate a response from within the
enclave; the mix node collects statistics useful to an administrator
(e.g., node queue lengths, CPU utilization) and construct a reply
to a return address that can be routed back through the mixnet.
Second, metrics reported should not leak sensitive information be-
yond what can be inferred by our threat model, so a compromised
administrator cannot aid traffic analysis. Third, code run by the
mixnode is attested by the enclave, so an administrator pushing
new code to mix nodes can be detected.

We argue that a path through a single Mixclave node is suffi-
cient to operate a differentially private mixnet. Applying oblivious
extensions from Section 2.1.2, enclaves allow a mix node to scale
up the anonymizing function that a scale out mix network provides.
This leans heavily on the attestation and confidentially guarantees
implemented in hardware enclaves.

2.3.3 Deployment Context. As we believe volunteer nodes joining
a mixnet at random is not plausible for practical deployment, we
instead envision that the edge is the more practical solution to build
a mixnet with the federated deployment model of Mixclaves. The
rise in the availability of this compute type is another reason why
Mixclaves is conceivable as a design today.

Applications continue to move computation off end user devices
to servers. These servers sometimes are positioned in the cloud, but
more and more are pushed to the edge to reduce latency. Specific
applications that benefit from this include multiplayer gaming,
voice assistants, and autonomous vehicle systems, among others.
The Cloudlet model, introduced by M. Satyanarayanan in 2008 [49],
was composed of a vision for decentralized VM based Cloudlets
to enable nearby computation offload for mobile devices. Modern
edge computing has materialized in a different light, more in the
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flavor of colocation than in the original Cloudlet vision, but the
importance of moving compute to many nodes has shown virtue.
Mixclaves works well in the VM edge computing model as it lacks
the need for any centralized cloud.

In a similar light, the rapid expansion of cloud and content
providers (CCPs) has exposed the architectural deficiencies of the
public Internet architecture for a service based economy. CCPs oper-
ate massive private networks to increase the performance available
to their services. These manifest in two parts, a large backbone
network (essentially a private WAN) that carries traffic between
datacenters, and many user facing points of presence (PoPs) near
to the clients. The PoPs intercept (and process) all traffic for a CCP,
a process termed interposition.

The Extensible Internet (EI), proposed in [8], introduces interpo-
sition to the public internet with the deployment of service nodes
(SNs). These allow execution of arbitrary services in the network,
assumed to be backed with hardware enclave computing. Mixclaves
already operates on a federated trust and inter-domain model, so a
platform like EI makes the deployment of Mixclaves easier while
maintaining the same guarantees of the current implementation.

2.4 Improving Performance via Differential
Privacy

With Differential privacy, we can prove that we require only 1
mixclave node to provide strong privacy garuntees to the client.
Differential privacy describes the promise from a data holder to a
user that “You will not be affected, adversely or otherwise, by allow-
ing your data to be used in any study or analysis, no matter what
other studies, data sets, or information sources, are available” [22].
When applied to a mixnet, this means that the network guarantees,
for a pair of users Alice and Bob, that the probabilities that the
two are communicating or not communicating are close, as defined
by the parameters €, [30] (e€ is a multiplicative factor, and § is
additive). So the users may statistically deny any communication
has taken place.

Differential privacy is composable, so a user may reason about
multiple cover stories. If the probability that Alice spoke with Bob
is within (e, §) of her speaking to no one, which in turn is within (e,
) of her communicating with Charlie, there is a total probability
difference of (2¢, 25). Based on the selection of parameters, a user
may claim many different scenarios which are statistically probable.

Based on previous work in mixnets, a message must route through
at least one honest node in the network to be differentially pri-
vate [9, 30]. Consider a message sent between two clients, Alice
and Bob. The probability that this condition fails to hold is the
probability of meeting 0 honest nodes on a path of length L in the
mixnet, i.e. BinomialCDF(0, L, p). And therefore the probability
that the condition does hold is 1 - BinomialCDF(0, L, p). In previous
work, the likelihood p of meeting an honest node has always been
less than 1. But with Mixclaves, a client will always select an honest
node, so p = 1. Therefore, Mixclaves always achieves differential
privacy, even with a network as small as 1 node.

Mixclaves dramatically decrease the number of nodes needed
to route between two clients while maintaining the same privacy.
This also simplifies the threat model compared to those used in
Groove or Loopix, as discussed previously.
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Figure 4: Mixclave mix node

2.5 Goals

Without compromising the privacy guarantees demonstrated in
previous work, Mixclaves proposes to improve the efficiency and
operability of mix networks.

Our principal metric is cost for delivering a target throughput
for mix networks’ opaque payloads at a latency comparable to a
state-of-the-art, low-latency reference implementation. For a fixed
number of nodes and target throughput, operating a Mixcalves mix
network should be less expensive with comparable or lower latency.
Since introspection of mix network traffic is impossible by design,
we focus on aggregate throughput of saturating, low-latency packet
flows.

To lower costs further, we extend the functionality of mix net-
works by proposing anonymous administration. Confidential
compute and code attestation by hardware enclaves present an op-
portunity unavailable to earlier implementations. We apply these
capabilities to add mix network elasticity. Elasticity can lower
costs by adapting to changes in workload, rather than provisioning
for peak throughput. We demonstrate that an operator can moni-
tor nodes in a trust domain anonymously and use monitoring data
to reconfigure the trust domain.

3 ARCHITECTURE

In this section we describe the Mixclave architecture in detail. Sec-
tion 4 describes how our prototype implements this architecture to
evaluate its practicality.

3.1 System Overview

A Mixclave node is composed of service modules, as shown in
Figure 4. Nodes expose two public APIs, accept(packet) and
config(). Sphinx packets routed to accept are inserted into an
oblivious buffer inside the hardware enclave (Section 2.1.2). Once
decrypted inside the enclave, DROP messages are discarded. Unsur-
prisingly, ROUTE messages are reinserted into the oblivious buffer to
be forwarded after the user-configured delay. Cover traffic in Mix-
claves are generated following an exponential distribution across
all known mix nodes, as in Loopix [38].

What distinguishes a Mixclave node from a traditional mix node
are the control packets (cTRL). These packets are signed by an
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administrator key recorded in the enclave. Control packets can co-
ordinate updates to the trust domain membership, gather statistics,
and change internal configuration state, like parameters for cover
traffic. We discuss these in greater detail in the following sections.
Once committed, the epoch digest is published through the config
APL

3.2 Deployment and Operation

Mixclaves support anonymous administration by processing control
packets signed by an operator within the enclave. Control pack-
ets can collect metrics, change settings, or add and remove nodes
from the trust domain (reconfiguration, see Section 3.3). Control
packets appear as normal mixnet traffic outside the enclave, but
are distinguished in three ways.

First, control packets are signed by an operator whose public key
is associated with permissions to the mixnet node. Our prototype
does not partition operator capabilities, but one could separate mon-
itoring, scaling, and reconfiguration across keys, or even include a
“poison pill” that destroys the mixnode. Second, control packets may
contain a return address. The mix node has the public key for the
operator to verify the control packet, but it needs to know where
to route the response. Not all control traffic generates a response.
For example, one could implement a “warrant canary” packet that
affirms the operator has not been forced to disclose information
by means that are illegal for it to acknowledge [48]. Third, control
packets may read metrics from nodes. Normal packets can push
updates, but cannot read metric data. Control packets querying
metrics are written and routed through the broader mix net back
to the return address.

Control packets may be sent either by an operator or by other
Mixclave nodes in the trust domain. Traffic loops could gather not
only the round-trip time from a node, but also reliable observations
from other nodes in the trust domain. Most importantly, all the op-
erator traffic is concealed by the cover and real traffic to the enclave.
Building a control plane in traditional mixnets would require one
to adopt Byzantine protocols and the overheads of running at least
3f + 1 control nodes, as in systems like Tapestry [50]. By adopting
hardware enclaves and adopting a federated trust model, we can
operate a system with similar or stronger guarantees at a fraction
of the cost (see Table 1).

3.3 Reconfiguration

To meet our goals for elasticity, an operator (or an agent in an
enclave) must be able to add and remove mix nodes. Since mixnets
offer only best-effort delivery and persist no state, applications writ-
ten for mixnets tolerate data loss; we are principally concerned with
preserving anonymity during and after a reconfiguration. When
nodes are added to a mixnet, cover traffic must include the new
nodes before user traffic can be routed to it. In our architecture, an
application is responsible for ensuring its own cover traffic was
added to the mix before informing its clients, if necessary.

To see why this may be necessary, recall the provider nodes in
the Loopix messaging service generate cover traffic in the mixnet.
Before informing users, a Loopix service could first require consen-
sus among its providers on the new nodes to ensure cover traffic
includes them uniformly; mix nodes also generate noise, but they
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Figure 5: a) Messaging client C and provider A are at an epoch
Y, provider B is at epoch X, X C Y. C changes providers from
A to B, but since B sends no cover traffic to the new node,
traffic to N must be from C.

cannot cover asymmetric traffic from application services. Consider
the scenario in Figure 5 with no cover traffic. Assume the epoch
changes from X to Y and Y adds a new node N. If a client changes
providers from A at epoch Y to B at the earlier epoch X, then all
traffic addressed to N from B will be client traffic'. Whether the
cover traffic generated by the client and mixnet is sufficient is a
choice for the application and trust domain operator and outside
the purview of the mixnet.

Reconfiguration can be subtle [2], particularly when an operator
supports concurrent reconfigurations from multiple operators or
avoids pauses during reconfiguration (online reconfiguration). For
example, virtual synchrony [11] maintains both group membership
within a view and offers a reliable broadcast service, but typically
pauses to install a new view. With a trust domain composed of
widely distributed, small clusters of machines [49] may make differ-
ent tradeoffs than one running in well-connected datacenters [8].

While we ruled out Byzantine behavior in the threat model from
Section 2.2, attacks on hardware enclaves continue to evolve and
could include a full architectural break. Even if an operator ex-
cluded the node, if a node can be prevented from shutting down,
even when the node is isolated from the trust domain a client with
an outdated view of the network could validate a compromised,
Byzantine mix node. One solution could include a signed, times-
tamped lease recording the last contact with the operator. The client
could use the lease to detect parts of the network abandoned by the
operator or unreachable during reconfiguration?, though rendering
the domain unusable when an operator misses a check-in or asking
a client to set a threshold for staleness both harm usability.

We conclude that selecting a particular reconfiguration algo-
rithm entails material tradeoffs for a mixnet operator. In a federated
model, the operator of a trust domain can select an algorithm for
reconfiguration independently without affecting or informing the
rest of the federation.

We do constrain reconfiguration by requiring that each mix node
provide an API exposing the list of nodes, public keys, and optional
node metadata with which it is configured. This epoch digest must

!There are many fixes the application could apply, such as B dropping routes to
unknown mix nodes or forcing refresh at B, but both of these policies are affected by
the implementation of mixnet reconfiguration in the trust domain.

2This could also serve as a “canary” for a compromised network.
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be timestamped, versioned, and signed by the operator or infras-
tructure key that committed the reconfiguration. The epoch digest
should also be signed by the mix node, including a nonce chosen by
the client. Versions do not need to be totally ordered, but they must
form a join semilattice such that concurrent reconfigurations have
a deterministic merge function [2]. As a consequence, reconfigura-
tions can never be retracted once committed; if an operator wants
mix nodes to rejoin the mixnet after a crash (rather than as a new
node with a new identity), the mix node must persist the digest
before installing a new configuration. Epoch digests are public and
can be used both by clients and also by other trust domains.

4 IMPLEMENTATION

In this section we describe the prototype implementation of the
architecture in Section 3 to inform the evaluation in Section 5.

4.1 System Overview: Loopix

Our prototype for Mixclaves extends Loopix [38]. Loopix is a message-
based mixnet that adds a random delay to every layer of encryption
to confound traffic analysis. The random delay is drawn from an
exponential distribution. Loopix uses a stratified topology for its
traffic, as shown in Figure 6. The mixnet is separated into layers
such that each node is connected only to the mix nodes in adjacent
layers; traffic flows in one direction.

Internally, Loopix uses the Twisted network engine [16] not
only to schedule delivery of UDP packets, but also to schedule
periodic system functions. As discussed earlier in Section 2.2, Loopix
includes a provider node responsible for generating cover traffic
and hosting mailboxes for intermittently connected users of its
messaging service. Clients poll the provider at regular intervals for
messages, retrieving authentic messages for the user, drop packets
generated by other clients, and synthetic messages generated by
the provider. When clients exchange messages, the path includes
their respective providers on either side of the mixnet.

Mixclaves are intended as a general-purpose mixnet, so we focus
our evaluation on its peak throughput, overheads on latency, and
operating cost. To measure these across applications, we modify
the Loopix implementation by merging its client and provider into
a load generator that measures round-trip latency of self-addressed
paths through a mixnet. Measuring Mixclave packet latency rather
than Loopix message latency eliminates the client’s polling loop
its mailbox at the provider. We also eliminate application-specific
noise generated by the provider so we can measure the aggregate
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throughput of the network using only benchmark packets and
intra-mixnet noise.

Our prototype does not enforce a topology among mix nodes
among servers, so clients may choose any path. A malicious client
could encode up to 20 hops before the Sphinx format cannot encode
it given the target message size, but this is a mild optimization of a
denial-of-service attack when the Sphinx library can generate 360M
three-hop messages per second on a GCP n2d-standard-2 ma-
chine. Since clients will choose short routes uniformly distributed
among nodes in a trust domain, a fully connected topology allows
Mixclaves to expand elastically and uniformly receive load as clients
learn of new resources.

We modify the message buffer for the Twisted network engine
as described in Section 2.1.2 so messages in the send buffer cannot
be correlated. We did not implement a signature scheme for control
packets, as the overhead of validation is negligible in our evaluation.

To demonstrate both anonymous administration and scaling, we
implement an updater by creating a variant of the Loopix client.
The updater samples metrics using the covert control plane de-
scribed in Section 3. The updater is also responsible for informing
the mixnet of a new epoch when nodes are added to the trust do-
main. Benchmark clients are informed by the mixnet via a polling
loop. Anonymously gathering statistics, resizing the mixnet, and
informing clients that refresh their topology to include new nodes is
sufficient as a proof of concept of the scalable Mixclave architecture.

An epoch is a monotonically increasing counter used to identify
the set of mix nodes in the trust domain. Nodes are added to the
cluster in a particular epoch. The set of public keys for generating
synthetic traffic and authenticating messages is stored locally in
a database, versioned by epoch. In our prototype, the node starts
with a database populated for its epoch. If the update fails to con-
verge, the updater will refresh and retry adding its nodes at the
next-highest epoch. Since the updater for our cluster is outside
the mixnet, if it crashes during reconfiguration then it may leak
resources. If the updater receives acknowledgements from all nodes,
then it updater can commit the result by sending a message to the
mixnet nodes. Once committed, any mixnet can publish the new
set of nodes in that epoch. Any mix nodes that do not learn the
epoch from the updater can learn that it is active when client traffic
in that epoch is routed to it.

4.2 Cloud Deployment

Our prototype uses Docker [20] and Terraform [27] to automate
deployment and the initial setup. Terraform not only provisions
VMs for each entity, but it also configures a private overlay network
(VPC) among the nodes in the mixnet. We also use Terraform to al-
locate new nodes and include them in the mixnet VPC. Docker adds
some overhead that adversely impacts overall performance [13], but
relative comparisons of mix nodes operating in and out of enclaves
should be comparable. As shown in Figure 7, while these tools
greatly simplified our packaging and deployment, they also added
significant provisioning overhead and consequently, hysteresis to
scaling decisions. We will explore strategies for reducing allocation
overheads in future work.
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4.3 Reconfiguration

Our prototype uses control packets to update mixnode membership.
Rather than implementing reliable broadcast or distributed consen-
sus, we demonstrate the control path using a simple gossip protocol.
We implement the updater client described in Section 3.1 by polling
the mixnet node(s) with a control packet querying metrics, includ-
ing a return address for the updater. The node generates a reply
packet with its current throughput using the updater’s public key.
We use the throughput measured in Section 5 to populate a table
for scaling thresholds. If the throughput exceeds a threshold, the
updater will allocate a new node to the mix net. Once configured,
the updater generates a new database for the epoch and copies it
to the mix nodes.

The updater then repeatedly sends control packets to mix nodes,
instructing them to install the database assigned to that epoch. If
the mix node is at an epoch below the threshold, it will attempt
to load the database for that epoch. If successful, it generates a re-
sponse packet to the updater. Clients query the epoch digest, which
in our prototype is implemented using the same, straightforward
notification protocol for the current epoch.

While straightforward, this reconfiguration procedure demon-
strates that Mixclaves can pass information in and out of the enclave,
use those data to make scaling decisions, and conceal its reconfigu-
ration traffic with cover and benchmark traffic. Populating updates
to the database with control packets, implementing signing and
certificates, and fault-tolerant protocols we leave to future work.

5 EVALUATION

In this section, we measure the performance of Mixclaves and
compare against our reference implementation. We investigated the
performance of Mixclaves running in Google Cloud Platform (GCP).
Each mixnode and load generator ran in its own VM. Except where
explicitly noted, we use N2D instances in the n2d-standard-2
profile with 2 vCPUs, 8 GB of RAM, and 10 Gbps of bandwidth.
These machines are configured with AMD SEV-SNP enclaves.

Provisioning time not only from the provider but for our pack-
aging is significant, even after tuning. Since these overheads are
not critical for our evaluation, and general techniques for reducing
these overheads are well-known [39], we pre-allocate a pool of VMs
where elasticity applies. Our measurements varied significantly,
but we show the rough breakdown of allocation cost in Figure 7.

Recall from Section 4.1 our benchmark client that creates self-
addressed loops through the mixnet. Benchmark packets include an
experiment identifier, timestamp, and sequence number. We draw
the delay per layer of encryption from an exponential distribution
around 1ms in all experiments unless noted. The client records
the round-trip time (RTT) of these loops as the latency of the mix
net, which should match applications’ experience. Since latency is
recorded by the same process, we avoid any issues with clock drift
across machines. If the latency exceeds a configurable threshold
then the packet is recorded as dropped. Late-arriving packets also
report latency using the embedded timestamp.

5.1 Microbenchmarks

5.1.1  Enclave overhead. To demonstrate that the enclave would not
become a bottleneck, we ran a network benchmark to saturation in
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Figure 7: Breakdown of salient platform and framework pro-
visioning costs.

Figure 8: Throughput vs latency for a single node. Running
in enclaves reduces peak throughput by around 200 messages
per second.

and outside of enclaves using iperf3. We omit the graph for space,
but the latency at lower throughput was indistinguishable and
peak throughput saturated above 9.73Gbps outside the enclave and
9.55Gbps within it. This tranquilized any anxiety around the enclave
implementation creating a network bottleneck for the Mixclave
prototype. Docker did add a significant overhead for network traffic
running in an enclave, reducing measured throughput to 4.98Gpbs.

5.1.2  Single Node. Figure 8 shows the throughput/latency for a
single mix node running outside the enclave and within the enclave,
with and without oblivious mitigation enabled (Section 2.1.2). The
oblivious buffer adds overhead that lowers peak throughput per
node. The enclave adds only a slight overhead for the low-latency
workload, as expected.

5.2 Scalability

To evaluate the scalability of Mixclaves, we measure throughput of
the mix network to saturation in multiple, fixed configurations, illus-
trated in Figure 9. The six-node mixnet (labeled “Loopix”) records
the round-trip latency through a three-hop network of non-enclave
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Figure 9: A network of six Loopix nodes saturates below 2400
messages per second (3 hops), but Mixclave cluster of three
nodes saturates above 3000 messages per second at 54% of
the cost.

Figure 10: Adding nodes as throughput increases. A node is
added to the mixnet at every dashed line, preserving latency.

machines. We increase the load on one through four Mixclaves
nodes until saturation, recording the round-trip latency and with
drop logic disabled. The oblivious buffer is disabled for the “Loopix”
experiments, which run with the Mixclaves topology rather than
the stratified topology of the original system.

Despite slightly lower performance per node, a Mixclave network
supports higher throughput at lower cost than a multi-hop network.
Decreasing packet path length more than overcomes the enclave
overhead.
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Mixnet ‘ # Nodes ‘ Peak Throughput (msg/s) ‘ Monthly Cost ($) ‘
Loopix 6 <2400 /s $296.04
Mixclaves 1 <800/s $53.34
Mixclaves 2 <2000/s $106.68
Mixclaves 3 <3600/s $160.02
Mixclaves 4 <4800/ s $213.36

Table 1: Cost and throughput comparison of Loopix to two
different Mixclave topologies.

5.3 Elasticity

To demonstrate support for reconfiguration (Sections 3.3 and 4.3),
we gradually increase client traffic and show that Mixclaves through-
put increases beyond saturation points measured in Section 5.2. As
shown in Figure 10, during reconfiguration throughput sometimes
fluctuates for reasons as yet unexplained, but it recovers quickly.

5.4 Cost

As of this writing, running a cloud VM in an enclave adds an 8%
cost premium per node. Table 1 records the costs of operating a mix
network on a fixed set of nodes, per month in GCP [40]. As shown in
Figure 9, at or above the peak throughput the mix network saturates
and drops traffic to avoid collapse. The figure also suggests savings
available to an elastic network that can adapt to load, rather than
provision for peak traffic.

Enclaves set a higher minimum price for compute resources.
Public clouds offer less expensive VMs, particularly if an operator
is willing to accept preemption of those resources in spot instances
and preemptable VMs [40]. This is attractive as mix nodes persist
no state, but an “honest” mix node cannot be fully stateless without
accepting caveats for mix network availability. Frameworks rely on
honest nodes to detect replay attacks, so if a node is intermittently
available then an active attacker could bypass those protections.
If the node changes its identity on restart, this is akin to failure
and/or reconfiguration of the mix network (Section 3.3) with all
its attendant complexity and impact on mix network throughput.
The costs recorded in Table 1 reflect monthly costs for comparable
service.

5.5 Reconfiguration

At our scale, reconfiguration of the mixnet is near-instantaneous
after provisioning is completed. Dissemination of the updated epoch
digest to clients will vary depending on the application, as discussed
in Section 3.3. Our handful of benchmark clients usually noted and
applied the new node configuration in less than a second, though
recall from Section 4.3 that the updated epoch digest is already
copied locally; the update packet only records which epoch the
client should load for generating benchmark traffic.

Our experiments did reveal a challenge to concealing administra-
tive traffic to overloaded nodes. Services often expose a high-priority
channel reserved for administrative traffic— even running on a ded-
icated port— to ensure admin commands are processed promptly
and in a coherent order. These strategies are unavailable in our set-
ting, as admin traffic is designed to look identical to real traffic. Our
updater resends the update message to all nodes until it receives
an acknowledgment, but in heavily overloaded Mixnet networks
with dropping enabled, some reconfiguration attempts still failed.

CS262a Fall 2022, Advanced Topics in Computer Systems, UC Berkeley

6 RELATED WORK

David Chaum [15] proposed mixing networks (mixnets) in 1981.
This paper established the following criteria for anonymizing net-
work traffic in a mixnet. First, an adversary cannot correlate packet
payloads to infer a path between the source and destination on
either side of the mixnet. In a Chaum mixnet, layered encryption
removed at each node in the mixnet provides bitwise unlinkability;
subsequent work [18] ensures that other attributes like packet size
leak no signal to an adversary. Second, traffic analysis cannot reveal
correlations in time between packet flows. In a Chaum mixnet, mes-
sages are batched at each node until a threshold, then released to a
successor. Deduplication (resisting an attacker repeating a message
into a mix) and batching create anonymity sets of packets; given a
packet entering the mixnode, packets exiting the mixnode with a
non-zero probability of being derived from that packet are in its
anonymity set. While in Chaum mixnets that set is an explicitly
signed batch, in later mixnets the probability of a packet being in
that set may be a non-symmetric distribution®

Circuit mixnets like Real-Time Mixes [29], Vuvuzela [45], and
Groove [9] route traffic along a consistent path, rather than rout-
ing every message independently. Circuits can also be used to
build continuous, low-latency channels through a mixnet [29] for
telecommunications. Similar to Tor [19], these metadata-private
messaging systems connect endpoints using bidirectional circuits
through the mixnet. Pairs of endpoints rotate circuits periodically
based on a shared secret. In Groove, messages are not delivered
directly between endpoints but rather to an intermediate provider
node. Provider nodes solve the problem of intermittently-connected
clients. Any application using a mixnet for anonymity must ensure
that signal is buried in noise; little is accomplished if an attacker can
observe multiple rounds where Alice sends exactly k messages into
the mixnet and Bob subsequently fetches k messages. Providers
not only generate synthetic traffic into the mixnet that simulates
the application workload when clients are disconnected, they also
ensure traffic between clients confounds traffic analysis.

Metadata-private messaging services like Groove group mes-
sages in rounds, ensuring that every circuit in the network has at
least one message in each round. The 30 second message latency
in Groove and other systems in its pedigree is not inherent to cir-
cuit mixnets, but an application decision. To ensure at least one
honest node even in highly corrupt networks (20% adversarial),
Groove routes can exceed 11 hops. Trust in enclaves simplifies our
architecture and significantly reduces costs.

The Tor [19] network consists of a network of relay nodes and a
directory service. At regular intervals on the order of minutes, users
select a sequence of nodes from the directory based on configurable
weights for desired bandwidth, accepted ports, and other criteria.
The user creates a circuit through which their traffic is routed,
with consistent entry and exit nodes. Tor has been vulnerable to
analysis based on non-uniform packet sizes and timing attacks [7,
14]. Mixnets are designed to resist exactly this traffic analysis.

Loopix [38] is a low-latency mixnet that provides time indepen-
dence using a per-layer delay chosen by the client. The delay is

3For example, if packet A arrives at 4 and B arrives at ¢g, t4 < tp, packets emitted
between £4 and ¢ are in A’s anonymity set but notin B’s. As t4 < ¢, the probability
of B being in A’s anonymity set diminishes.
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chosen from an exponential distribution such that any packet en-
tering the node since it was last empty is a potential member of
its anonymity set. In practice this is vanishingly unlikely and the
client chooses delays that satisfy low-latency service-level objec-
tives (SLO) from the mixnet. Binary unlinkability is ensured by the
Sphinx [18] packet format, also used by Mixclaves.

All of these systems [9, 14, 15, 19, 29, 38, 45] rely on at least one
honest node in the mixnet.

One work in particular, "Towards User Privacy for Subscription
Based Services" [10] builds an implementation named "Mixnet"
that runs in trusted execution environments (Intel SGX), but this
name is something of a misnomer. The system is a proxy service
that scrambles user identities before connecting to a third party
subscription service. While an interesting use case of enclaves, this
work is unrelated to mixnets.

7 FUTURE WORK

Mixnet Reconfiguration. Our heuristics demonstrate that Mix-
clave networks can scale out based on confidential, intra-domain
metrics, but these cover only a small corner of the workload and
cost space. While a mixnet can safely add new nodes, we have not
proven that shrinking the cluster is safe; an honest mixnet should
generate plausible, diminishing cover traffic to ensure that not all
packets arriving at the old address are real traffic. Given an algo-
rithm to remove nodes, the workload could also scale vertically
to different VM instances. We did not explore “scale up” regions
of the cost space since Twisted makes limited use of multi-core
processors.

Oblivious scaling. We did not explore scaling strategies that
resist analysis. One would expect diurnal expansions and contrac-
tions of the mixnet, but expanding the size of the cluster out of
phase could leak information about traffic if the scaling decision
were not based solely on externally-visible data.

Health checks. Using intra-domain loops measuring round-trip
time, nodes in a trust domain could gather information about the
health of the broader mix network. This could not only inform
clients of failed or slow nodes in the network, but also direct clients
away from malicious or failed nodes while maintaining cover traf-
fic [32]. Packet delivery through the mixnet is only best-effort, but
the operator of a trust domain can improve reliability for its users
with these metrics. Our analysis was limited to scaling based on
traffic in a trust domain, but peering relationships between trust
domains could even define SLAs for loop traffic that cannot be
separated from real and cover traffic.

Multipath mixnets. All mixnet formats restrict packets to a
single path through the network, as offering mixnodes a choice
only helps corrupted nodes direct traffic to an adversary’s advan-
tage. Instead, if a symmetric key were encrypted with the public
keys of multiple nodes, a trusted Mixclave node could filter out
nodes it suspects have failed. The list of nodes (even in other fed-
erations) is not confidential, but requiring the client to discover
and resynchronize with the network state may be more brittle than
granting the forwarding nodes the option. Within a trust domain,
this technique could also load balance among mix nodes based on
queue lengths [35].
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Node labels. Vulnerabilities in hardware enclaves such as Plun-
dervolt [36], Foreshadow [44], and £PIC Leak [12] undermine a
core assumption of the Mixclave architecture. Since the Mixnode
will faithfully and accurately report its configuration from the en-
clave, users may elect to route their traffic through a diverse set of
architectures to avoid relying on a single vendor. We assume an
attacker already has this information in our threat model, so node
labels should grant an adversary no new advantages.

Utility noise. The cover traffic generated by modern mixnets [9,
38] is randomly generated. While Mixclaves only pass control traf-
fic among trusted nodes amid synthetic and user traffic, the ability
to examine metadata safely within the enclave also admits the pos-
sibility of self-addressed loops of data traffic, similar to Broadcast
Disks [1]. Data loops could pass through non-enclave nodes and
nodes in other trust domains, with random delays in minutes or
hours. Re-purposing packets with high delays as the payload for
cover traffic is also admissible; replicate a packet in the mixnet
such that fragments arrive approximately when it should be for-
warded. Given a time-to-live (TTL) and a forgiving retrieval SLO,
one could provide an archive storage service to subsidize the cost
and legitimize the purpose of an anonymizing mixnet.

Improved oblivious data structures. Metrics retained for
mixnet monitoring could leak information about traffic patterns, if
flushed to memory. Metadata derived from message flows within
the enclave must resist analysis, though these techniques are be-
yond the scope of this paper. While our oblivious algorithm worked
well for a low-latency workload with shallow queues, an adver-
sary could fill the queue with high-delay packets. Since message
dispatch does not require sorting but only oblivious sending of
messages that reached their deadline, one could integrate more
scalable oblivious data structures for the message queue [41].

8 CONCLUSION

This paper proposes Mixclaves, an enclave-backed mixnet for meta-
data-private communication. Mixclaves makes it easier to operate
mixnets, requiring fewer nodes and enabling administrative scala-
bility to be pushed into the network. It employs oblivious message
buffering to mask memory access patterns at a node, enabling a
mixnet to operate in a single enclave node while still maintaining
differential privacy. This enables Mixclaves to transition to a feder-
ated trust model from a distributed trust model in previous mixnets.
Mixclaves also enables elasticity by allowing the trusted enclave
nodes to measure performance characteristics of the network and
send control packets to signal a network expansion.

We implemented Mixclaves as an extension of Loopix, which
serves as our reference benchmark. We compared the performance
of both in VMs running in Google Cloud Platform, demonstrating
Mixclaves does see an overhead of the enclave, but that the cost
is lower and and overall bandwidth is higher in Mixclaves due to
messages routing through less nodes with our architecture. We
tested the control plane functionality of Mixclaves, and found that
the network proactively scaled at runtime to accommodate higher
throughput.
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