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Abstract

Improve Model Inference Cost with Image Gridding

by

Shreyas Krishnaswamy

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Joseph E. Gonzalez, Chair

The overwhelming success of AI has spurred the rise of Machine Learning as a Service (MLaaS),
where companies develop, maintain, and serve general-purpose models such as object detectors and
image classifiers for users that pay a fixed rate per inference. As more organizations incorporate
AI technologies into their operations, the MLaaS market is set to expand, necessitating cost
optimization for these services, particularly in high-volume applications. We explore how a simple
yet effective method of increasing model efficiency, aggregating multiple images into a grid before
inference, can significantly reduce the required number of inferences for processing a batch of
images with varying drops in accuracy. To counter the slight decrease in object detection accuracy,
we introduce ImGrid, an innovative technique that decides when to reprocess gridded images at
a higher resolution based on model confidence and bounding box area assessments. Experiments
on open-source and commercial models show that ImGrid reduces inferences by 50%, while
maintaining low impact on mean Average Precision (mAP) for the Pascal VOC object detection
task.
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Chapter 1

Introduction

Recently, large models such as DINO and ChatGPT have shown remarkable progress on a wide
range of tasks in computer vision and natural language processing. However, developing, train-
ing, and serving these models requires significant up-front investment in hardware, engineering,
and data. As a consequence, large organizations like Microsoft, Google, and AWS, have taken
a lead in developing these technologies and are increasingly offering Inference-as-a-Service to
provide smaller organizations access to these large-scale pre-trained models. By using these in-
ference services, smaller organizations are able to bypass the costly up-front investments needed
for state-of-the-art predictions and instead pay a fixed rate per inference request. Meanwhile, large
organizations are able to leverage economies of scale to reduce the costs of maintaining and serving
these models while also gaining access to usage data that allows them to further refine their models
and services.

In order for inference services to be cost-effective on hardware accelerators, requests must be pro-
cessed in batches. Batching inputs improves arithmetic intensity [16] and can significantly increase
the overall throughput of inference hardware [5]. However, this also means that inference services
must transform their inputs into fixed-size structures that can be batched together effectively. This
presents a unique opportunity for users of inference services to reduce the number of prediction
requests – and as a consequence their costs – by cleverly packaging multiple inputs into a single
request.

For example, consider object detection services which take a single image and return the bounding
boxes of detected objects in the image, such as the example boxes proposed in Figure 1.1. To lever-
age efficiencies from batching, companies providing these object detection services must scale input
images to a fixed size, so multiple images can be packed together into a single tensor. To remain
competitive, these companies must also ensure their models maintain high accuracy across diverse
and challenging images with many objects at different scales. For complex tasks that require high
accuracy, such as semantic segmentation, this means the user must provide high resolution images
that contain information even when scaled to a smaller fixed size before batching. However, many
common applications (such as doorbell cameras detecting a person at the door) don’t require the full
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Figure 1.1: Object detection result on an image from the COCO dataset [11]. The object contains
a person and a dog inside a truck. The ML model proposes different bounding boxes and labels for
these objects.

resolution of the image and may be down-scaled without significant accuracy loss. This creates an
opportunity for service users to down-scale multiple images and arrange them in one larger image
to send as a single prediction request. In other words, spatially batching images makes better use
of a single prediction request by packing more information into the same fixed input size of a model.

This paper investigates the utility of image gridding, a straightforward technique that consolidates
multiple images into a single inference. Contrary to traditional batching, which stacks images in a
tensor for computational efficiency, image gridding spatially arranges images into a grid. Instead
of submitting a single image per query, the user can query the model on the grid of images and
post-process the results to obtain the per-image predictions. By reducing the number of inferences
needed to analyze a set of images, this technique enhances model efficiency and reduces user cost.
For example, Figure 1.2 shows 25 images packed together into a single image grid. The resulting
bounding boxes and labels were detected via a single inference.

The primary tradeoff for this technique is balancing efficiency against accuracy. Given that models
have a maximum input size, images must be resized to lower resolutions to fit within the grid. As
a result, the more images incorporated into the grid, the more likely it is that the accuracy for each
individual image will decline. For instance, while the image grid in Figure 1.2 offers cost savings,
some of the images contain objects that were missed or misclassified, reducing the model’s accuracy.
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Figure 1.2: Object detection result on an image grid constructed from COCO dataset images [11].
Many of the images’ objects are successfully detected, providing significant cost savings. However,
some objects are missed or misclassified.

To address this accuracy tradeoff, we introduce ImGrid, a method to determine which images likely
produced inaccurate model inferences and should be retried at a higher resolution. With ImGrid,
users can initially grid their images at a high grid size, such as a 5x5 grid containing 25 images,
and submit the grid to the model. ImGrid uses the confidence scores and the bounding box sizes in
the results to determine which images should then be retried at a lower grid size, such as a 2x1 or
even a 1x1 (individual image).

Image gridding and ImGrid substantially reduce inferences needed to process a set of images.
Across open source and commercial models, we observe that ImGrid can reduce inferences by 50%
for object detection tasks on the Pascal VOC datasets with a typically low reduction in mAP.
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Chapter 2

Background

2.1 Cost Model
MLaaS providers [8][1][2] typically charge by usage. Each inference incurs a small fee per task
requested on the inference. For instance, suppose a user requests two tasks on a single image: face
detection and object detection. The MLaaS provider will charge once for the face detection and
once for the object detection. However, they typically will not charge for the number of faces or
objects in the image; they’ll only charge once for the overall task. Regardless of the number of
objects detected, the user will pay the same amount. Table 2.1 contains sample prices for object
detection across different cloud providers.

2.2 Size Limits
MLaaS providers do not typically impose a resolution limit on input images. Rather, they impose a
moderate file size limit (about 4-5 MB per image). Users may submit images with large height and
width dimension to the MLaaS provider, as long as the image’s file size remains small. However,
while particular details about the MLaaS provider’s ML model is usually black-boxed, typical
computer vision models resize images to a fixed maximum size before processing them. In other
words large images are likely downscaled before processing.

Cloud Provider (Region) Base Price per Image (USD) Base Tier Limit

Google Cloud Vision $0.0015 5,000,000
AWS Rekognition (us-east-2) $0.001 1,000,000

Azure Cognitive Service (Central US) $0.001 1,000,000

Table 2.1: Price per image for object detection task across different cloud providers. The prices
provided are for the base tier, which is limited by a number of inferences per month. Once a user
exceeds the base tier inference limit, the price changes.
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Chapter 3

Method

3.1 Image Gridding
Given a constant stream of data to label, we aim to maximize model utilization by minimizing the
number of model forward passes required to label a window of images. We assume a small labeled
dataset of images to use for profiling.

A model has a fixed input image height � and input image width , , meaning the model takes
in a total fixed input size of � ⇥ , . We arrange A rows of images with 2 images each into an
image grid, so the grid contains A · 2 total images, each with the same dimensions ⌘8<6 ⇥ F8<6.
We then resize each grid, so the total grid size is � ⇥, , which matches the model’s input size.
This image grid is then submitted to the model API as a single image and the model predictions
are post-processed to obtain per-image labels. As an aside, fixing the input size is straightforward
for open source models, since the model’s input size is usually well-documented. However, details
about the MLaaS providers’ ML model architectures are rarely advertised. We emulate the effect
of the model’s fixed size by resizing all grids in our evaluation to the same fixed size. This should
be reasonable since the MLaaS provider can then resize the fixed image sizes to the true input size,
a transformation that’s consistent across all image grids submitted to the API.

We sketch this process for a few sample tasks.

Object Detection: Running an object detection model over a grid of images returns a set of bounding
boxes, labels, and confidence scores. Since the model treats the overall grid as a single image,
the coordinates for each bounding box are mapped to the overall grid, rather than the specific
image that it belongs to. Each bounding box can be mapped back to its image by converting its
grid-based coordinates to the image coordinates. Given a bounding box’s grid-based coordinates
(G6,<8=, H6,<8=, G6,<0G , H6,<0G) and image size ⌘8<6 ⇥ F8<6:
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Definition 1: Converting gridded coordinates to image coordinates

Image row index = �A =
�
H6,<8= + H6,<0G

2 · ⌘8<6

⌫

Image col index = �2 =
�
G6,<8= + G6,<0G

2 · F8<6

⌫

G8<6 = G6 �
�
�2 · F8<6

�

H8<6 = H6 �
�
�A · ⌘8<6

�

G8<6 and H8<6 are the image coordinates for the bounding box. This formulation assumes that
the bounding box is mapped to the image containing its midpoint, so there’s no ambiguity when
assigning a bounding box to an image when the box intersects multiple images. Alternatively,
clients can simply discard a bounding box if it intersects multiple images.

Classification: Classification can be performed by running an object detection model on the
grid, assigning each bounding box to an image, and aggregating the bounding boxes’ labels for
each image. Generally, running object detection inferences is more expensive than simple image
classification; however, the gains from image gridding may outweigh the added cost, depending on
the particular model and dataset.

Safe Search: Safe search models provide a likelihood that the image is unsafe. Since pure object
detection models are rarely trained to detect unsafe images, users can adopt a divide-and-conquer
strategy. If an image grid is determined unsafe, it likely contains at least one unsafe image. The grid
can then be divided into two subgrids, and each subgrid can be rerun. This recurses until the specific
unsafe images are found. If the number of unsafe images in the dataset is relatively small, this
approach can save inferences by quickly accepting entire groups of images that lack unsafe material.

We focus on object detection in our experiments due to its popularity.

3.2 ImGrid
We describe ImGrid, a method that uses cascading grid sizes to preserve accuracy while still
capturing image gridding efficiency gains. The key intuition behind ImGrid is that for typical
object classes, most instances are either relatively hard to detect, meaning downscaling them
would cause them to be missed or misclassified, or they’re relatively easy to detect, meaning even
when they’re downscaled relatively aggressively (e.g. by being placed in a 5x5 grid), they’re still
classified correctly. We address this by running all images in a high grid size (e.g. 5x5) where



CHAPTER �. METHOD 7

they’re relatively cheap to run, and then we use features in the model’s response to determine
whether to retry some images at a lower grid size (e.g. 2x1).

High grid sizes offer the greatest savings since they pack together many images in a single inference.
However, resizing images to lower resolutions inherently removes information. Therefore, in
general, as the grid size increases and individual image resolution decreases, model accuracy
tends to diminish. We can group these detection failures at high grid sizes into two categories:
misclassifications and missed detections. The challenge is detecting which images contain these
errors. We thus rely on model confidence to detect potential false positives and average bounding
box area to infer potential missed detections.

Figure 3.1: Heatmap of confidence score thresholds for the “motorcycle” object in the COCO
dataset [11]. These scores were constructed using 100 images that contain motorcycles. The x-axis
represents the grid size that the motorcycle was detected in, and the y-axis represents the maximum
grid size in which the motorcycle can still be detected. For instance, on average, motorcycles that
can be detected in a 4x4 grid have a confidence score of 0.42 when gridded in a 1x1. Only square
grids (1x1 to 5x5) were profiled for these values, but a similar map could be constructed using
rectangles. Note that having a max grid size of 5x5 in this figure means only that the object is
still detectable in a 5x5. We did not profile higher grid sizes, so some of the motorcycles in this
category may still be detected in higher grid sizes. During inference, if an object’s confidence score
is lower than the corresponding threshold, the image is retried.

ImGrid– Profiling: The first step of ImGrid is profiling the dataset to collect the average bounding
box area per image and the average model confidence score per class. If ground truth data is not
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available, the user can approximate these values by running the profiling set through their object
detection model and using the predicted boxes instead.

To collect the average bounding box area per image, we average the ground truth bounding box
areas from the profiling set. Any image area covered by multiple bounding boxes must be double
counted (once for each bounding box covering the area).

Second, we run each image in the profiling set at each grid size that’s feasible given the user’s
budget. The predicted bounding boxes during profiling must be grouped across three axes (1)
their class label, (2) the grid size that their image used, and (3) the highest grid size in which
they remain detectable. Then, each group’s average model confidence score must be recorded.
Figure 3.1 contains an example of these confidence scores for the “motorcycle” class in COCO [11].

Finally, we select a set of grid sizes from highest to lowest. During inference, all images will be
sent to the highest grid size, and each image that remains under the confidence score or bounding
box area threshold will be retried at higher grid sizes until the image is accepted, or the highest
grid size has processed it. The particular grid sizes to use is a hyperparameter and can be chosen
through trial-and-error.

Figure 3.2: Diagram of the ImGrid method. In this example, all images are initially run using
a 2x2 grid and then rerun individually as 1x1 grids. Images 1 and 4 contain a handful of valid
detections (denoted as green rectangles) that cover a sufficiently high bounding box area, so they
are not retried. However, image 2 contains one detection that covers a tiny area of the image. This
is lower than the bounding box area threshold, so it’s retried as a 1x1. Image 3 contains a detection
with a lower-than-required confidence score (denoted as a red box), so it too is retried as a 1x1.
The 1x1 results for images 2 and 3 are kept, and their 2x2 results are discarded.

ImGrid– Inference: For inference, all images are first gridded at the highest grid size. Next,
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two conditions are checked for each image. First, if the bounding box area in the image (scaled
up to the corresponding area in a 1x1) is smaller than the average bounding box area recorded in
profiling, the image is retried at the next highest grid setting and the current results are discarded.

Second, if any bounding box’s confidence score is lower than the profiling set’s average confidence
score for bounding boxes corresponding to (1) the same label, (2) the same grid size as the image,
and (3) a max grid size equal to the image’s grid size, then the image is retried, and its previous
results are discarded.

Otherwise, the image’s results are kept. This process repeats as images are retried at lower and
lower grid settings, until they’re either processed or tried at the lowest grid setting, at which point
the results are kept regardless of bounding box area or confidence. An example of this process is
depicted in Figure 3.2.

By thresholding on the average bounding box size, ImGrid forces images with potentially missed
detections to be retried at a larger grid size. Similarly, by thresholding on the confidence scores,
ImGrid forces images with potentially misclassified detections to also be retried. Note that if using
the mean as the threshold is too conservative or liberal for a particular task and inference budget,
the thresholds can be adjusted by a constant factor or be replaced with a threshold some number of
standard deviations above or below the mean.

3.3 Other approaches
Throughout our work, we pursued two high-level approaches to boost image gridding accuracy:
grid-level augmentations and content-aware grid sizing. We limited our studies to the domain of
object detection since it’s a popular use case and since it can support other gridding use cases, such
as classification. We studied two grid-level augmentations: black borders, where black stripes
are inserted between neighboring images, and blurred borders, where borders between images are
blurred with a Gaussian filter. Both augmentations seemed to slightly lower accuracy on grids.

The second approach– content-aware grid sizing– was motivated by an empirical observation:
some objects within images tend to remain detectable even when scaled down a lot while the
rest tend to become undetectable or misclassified even when scaled down moderately. In other
words, for object detection, some images are “easier” and others are “harder” since they contain
easier-to-detect (or harder-to-detect) objects. Our motivating hypothesis was that easier images
should be gridded at higher grid sizes to maximize cost savings, while harder images should be
gridded at lower grid sizes to maximize accuracy. Choosing the most suitable grid size for a
particular image requires leveraging info about the image’s content to determine whether it’s an
easy or hard image.

A natural question would be if it’s possible to learn what size an image could be gridded into by
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using some feature representation. To test if this was possible, we trained a classifier to predict the
optimal grid size for a given image, meaning the smallest resolution at which objects in the image
can still be correctly predicted. We annotated each image in our profiling set with its optimal grid
size and trained the classifier on each image’s CLIP embedding. Since our classifier was unable
to achieve accuracy that surpassed chance, we concluded that more work needed to go towards
improving the model architecture and image featurization, which are promising areas for future
work.
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Chapter 4

Experiments

We benchmark ImGrid’s cost savings and accuracy on object detection tasks across different open
source and commercial models on the Pascal VOC and COCO datasets. Our goals are to: (1)
explain how ImGrid can save cost while maintaining high accuracy, (2) evaluate ImGrid’s cost
savings against sending individual images, (3) explore the image gridding cost-accuracy tradeoff,
and (4) benchmark some grid-level augmentations.

Setup: We ran our experiments across three models and two datasets. The models were the
Detection Transformer (DETR) [3], Faster Region-based Convolutional Neural Network (Faster-
RCNN) [14] with ResNet 50, and AWS Rekognition [1]. We used open source implementations
of Faster-RCNN [13] and DETR [6] that were trained on COCO. AWS Rekognition [1] offers
a closed source vision model that charges per inference. We use two datasets: Pascal VOC
2012 [7] and COCO 2017. Unless otherwise stated, for Pascal the average bounding box
threshold was collected by averaging over all the bounding box areas for all the images in the
validation set, and the average confidence thresholds were collected by assessing 800 images
from the validation set per class. Results were collected by running image gridding on the
training set. Similarly, unless otherwise stated, for COCO the bounding box threshold was
collected by averaging across all training images. The confidence thresholds were collected
by assessing up to 800 images from the training set. Results were collected over the entire
validation set. When performing benchmarks over Pascal, we manually remapped the output
labels from the open source models to Pascal labels, instead of retraining the models altogether.
This better emulates the setup for many commercial MLaaS models that cannot be retrained cheaply.

COCO Case Study: we start by investigating how ImGrid processes a sample COCO image on an
object detection task using an RCNN. For this case study, we profile COCO using 100 images per
class, and we run ImGrid using a two-layered cascade: first, all images are run through a 5x5 grid,
and then ImGrid retries one at a time any images that don’t meet the confidence score or bounding
box area thresholds.

Figure 4.1 compares a single image downscaled to fit inside a 5x5 grid against the original image
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(a) Image in 5x5 grid (b) Image in 1x1 grid

Figure 4.1: This is an image from the COCO dataset. The left hand side is an image that has been
downscaled to fit inside a 5x5 grid, and the image on the right is the same image scaled to fit inside
a 1x1 grid. The image in a 5x5 contains misclassifications (e.g. “motorcycle”) that are corrected
in the 1x1.

Label Confidence Threshold

person 0.8302 0.415
bicycle 0.6745 0.447

motorcycle 0.3998 0.402

bbox area 29,909 14,580

Table 4.1: Confidence and bounding box area thresholds from profiling COCO. The middle column
contains the confidence scores (and total bounding box area) of the predicted bounding boxes when
the image from Figure 4.1 is placed in a 5x5. Since the motorcycle bounding box’s confidence
score is lower than the threshold, the image is retried.

scaled to run individually. The 5x5 version places a misclassified bounding box (“motorcycle”) on
the person. This bounding box disappears in the 1x1 grid. ImGrid successfully retries the image in
a 1x1 due to the thresholds set during profiling. As shown in Table 4.1, the motorcycle bounding
box in the 5x5 has a lower than required confidence score, signifying that the model is unconfident
about the prediction. Indeed when ImGrid retries the image, this box is removed altogether.

Cost tradeoffs: We now show the cost tradeoffs for ImGrid by benchmarking different config-
urations against one-at-a-time performance. Table 4.2 compares accuracy and cost metrics for
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ML Model Grid Strategy Inferences per Image % Inf. Saved mAP � mAP

Faster R-CNN
One-at-a-time (1x1) 1 0% 0.706 0
ImGrid{ (5,5) , (1,1) } 0.881 11.9% 0.684 �0.022
ImGrid{ (5,5) , (2,1) } 0.461 53.9% 0.659 �0.047

DETR
One-at-a-time (1x1) 1 0% 0.753 0
ImGrid{ (5,5) , (1,1) } 0.862 13.8% 0.732 �0.019
ImGrid{ (5,5) , (2,1) } 0.451 54.9% 0.676 �0.077

AWS Rekognition
One-at-a-time (1x1) 1 0% 0.782 0
ImGrid{ (5,5) , (1,1) } 0.830 17.0% 0.760 �0.022
ImGrid{ (5,5) , (2,1) } 0.434 56.6% 0.735 �0.047

Table 4.2: ML model and gridding strategy performance on the Pascal dataset[7]. The �mAP
figures are calculated using the 1x1 baseline.

different ImGrid configurations on the Pascal dataset. Generally speaking, cost and accuracy
are inversely related, with more cost savings resulting in a higher accuracy drop. However,
large cost savings can still be achieved with relatively little drop in accuracy. For instance,
by cascading a 5x5 grid to a 2x1 grid, AWS Rekognition can process the Pascal validation set
in less than half as many inferences as one-at-a-time, incurring a relatively minor mAP cost of 0.047.

Figure 4.2: These are image gridding mAP scores on Pascal using different models. Each dot
represents a rectangular grid configuration that the dataset was profiled with. The square grid
configurations, as well as the 2x1 configuration, are labeled. Each scatterplot has a logistic
trendline overlayed.

Image gridding: We also show results for gridding images without retrying. The scatter plots in
Figure 4.2 and Figure 4.3 shows the cost-accuracy tradeoff across different grid settings. Simple
image gridding can also provide large cost savings with moderate accuracy loss. However, as the
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Figure 4.3: These are image gridding mAP scores on COCO using different models.

trend shows, accuracy falls extremely quickly for high grid sizes, such as 5x5. Intuitively, this
makes sense since the downscaling imposed by high grid sizes results in missed or misclassified
objects. This does pose a lost opportunity, though, since some images can actually benefit from
high grid sizes. Capturing this optimization requires a mechanism to differentiate between harder
images that should be gridded at low sizes and easier images that should use high sizes. ImGrid’s
retry mechanism allows it to save results for easy images at high grid sizes while retrying harder
images at low grid sizes, attaining the best of both worlds.

Figure 4.4: Sample grids from the Pascal dataset with black borders and blurred borders augmen-
tations. 3.75% of each image is blacked out/blurred out at each side.

Augmentations: This section contains results from two grid-level augmentations that we assessed:
black borders and blurred borders. See Figure 4.4 for example grids with these augmentations. The
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ML Model Grid Size Baseline mAP Augmented mAP � mAP

Faster R-CNN
(1x1) 0.706 0.706 0
(2x2) 0.642 0.617 �0.025
(3x3) 0.530 0.513 �0.017
(4x4) 0.433 0.414 �0.019
(5x5) 0.334 0.320 �0.014

DETR
(1x1) 0.753 0.753 0
(2x2) 0.645 0.617 �0.028
(3x3) 0.528 0.497 �0.031
(4x4) 0.427 0.393 �0.034
(5x5) 0.334 0.307 �0.03

Table 4.3: mAP scores over Pascal for grids with the black borders augmentation. Each image had
3.75% of each side blacked out.

ML Model Grid Size Baseline mAP Augmented mAP � mAP

Faster R-CNN
(1x1) 0.706 0.706 0
(2x2) 0.642 0.614 �0.028
(3x3) 0.530 0.503 �0.027
(4x4) 0.433 0.404 �0.029
(5x5) 0.334 0.314 �0.03

DETR
(1x1) 0.753 0.753 0
(2x2) 0.645 0.608 �0.037
(3x3) 0.528 0.500 �0.028
(4x4) 0.427 0.402 �0.025
(5x5) 0.334 0.316 �0.018

Table 4.4: Blurred borders augmentation. 3.75% of each side in each image was blurred.

black borders augmentation inserts black stripes between consecutive images. We hypothesized
that this could signal to the model that each image in the grid is unrelated. However, as shown by
Table 4.3, this led to slightly worse results.

We performed the blurred borders augmentation by smoothing the seams between consecutive
images using a symmetric Gaussian filter with a standard deviation of 7. We hypothesized that this
would remove sharp changes in pattern between consecutive images, making the grid seem more
like a natural image that better matched the model’s training set. However, as shown in 4.4, this
also generated slightly worse results than the baseline.
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Chapter 5

Related Works

Optimizing MLaaS usage: Recent work for optimizing MLaaS usage has focused primarily
on cascading models across different MLaaS providers or on aggregating results from different
providers. For instance, FrugalML [4] optimizes MLaaS usage by providing a strategy to pick
which MLaaS provider to send a particular request to. It leverages a multi-step process where a
request is first sent to one model and then, based on a profiling step, sent to follow-on providers if
necessary. Similarly, Armol [17] uses RL to aggregate results across different providers while still
minimizing cost. This work, however, optimizes computer vision usage even with a single MLaaS
provider.

Modifying the model: Some recent work, as well as traditional techniques, has focused on
reducing ML inference cost by modifying the model itself. For instance, Nvidia’s A-ViT model
architecture adaptively modifies inference cost based on an image’s complexity, reducing cost
for easier images while accepting higher cost for difficult images. ImGrid also reduces inference
cost based on image complexity; however, it doesn’t require changing the model itself making it
better suited for applications that rely on MLaaS. As another example, neural group testing [10]
also recognizes the potential to save inference cost by combining multiple images for content
moderation. However, it achieves this by proposing a model architecture that combines multiple
images during the inference, rather than taking in an image grid. Unlike ImGrid, this requires
a new model architecture altogether. In the same vein, traditional techniques like quantization
also require modifying the model itself to reduce inference cost, making them incompatible with
MLaaS APIs.

Combining images: Combining images to improve ML has been a common tactic used throughout
the ML development process. For instance, one common data augmentation during training is
to combine training images [15] when passing them into the model. This can be achieved by
gridding training images together or by interpolating between them. Image gridding and ImGrid,
on the other hand, combine images spatially during inference rather than training in order to drive
down inference cost. One common practice in inference is stacking images into a microbatch
and running a model on the batch to leverage computational efficiencies to reduce inference cost.
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Image gridding is entirely compatible with the pattern. Image grids can be batched together
allowing any efficiency savings across the two techniques to be multiplied.

Hardware inference speedup: To expedite model inference, some organizations have focused
on building custom hardware. Some examples include Google Cloud’s TPUs [9] or Tensorflow
Lite microcontrollers [12]. These help reduce inference latency, but by the nature of hardware,
they’re more challenging and expensive to deploy and upgrade quickly. ImGrid can be performed
immediately on existing models, and it’s hardware agnostic, so once these hardware innovations
are deployed, their gains can be amplified by ImGrid.
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Chapter 6

Conclusion

In this work, we introduce image gridding and ImGrid, which lets MLaaS users pack multiple
images into a single inference for tasks such as object detection. This helps improve model
efficiency and reduces the cost of commercial vision models offered as a service. Empirical results
demonstrate that ImGrid can achieve significant cost savings while keeping accuracy loss low.
Interesting areas of future work include extending ImGrid to more computer vision tasks, studying
more image features that could better determine what grid sizes they should use, and researching
potential grid augmentations that could improve the accuracy of grids overall.
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