
Going Beyond Hyperscaler Clouds in the Sky

Ecosystem with SkyPilot

Edward Zeng

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-179

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-179.html

May 17, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

First, I would like to thank Ion Stoica, my advisor. I would also like to thank
Zongheng Yang for his constant support, encouragement, and advice.
Finally, I would like to thank the wonderful SkyPilot team: Zongheng Yang,
Zhanghao Wu, Wei-Lin Chiang, Romil Bhardwaj, Woosuk Kwon, Siyuan
Zhuang, and others.

 Going Beyond Hyperscaler Clouds in the
 Sky Ecosystem with SkyPilot

 by Edward Weicheng Zeng

 Research Project

 Submitted to the Department of Electrical Engineering and Computer Sciences,
 University of California at Berkeley, in partial satisfaction of the requirements for the
 degree of Master of Science, Plan II .

 Approval for the Report and Comprehensive Examination:

 Committee:

 Professor Ion Stoica
 Research Advisor

 (Date)

 * * * * * * *

 Zongheng Yang
 Second Reader

 (Date)

Going Beyond Hyperscaler Clouds in the
Sky Ecosystem with SkyPilot

Edward Zeng
edwardzeng@berkeley.edu

May 2023

Abstract

SkyPilot is an intercloud broker being developed at UC Berke-
ley. Until recently, SkyPilot only supported three hyperscaler clouds:
AWS, Azure, and GCP. In this report, we document the addition of
a new cloud, Lambda Cloud. We describe the implementation chal-
lenges of LambdaCloud support and discuss howwe overcame them.
Finally, we provide a guide for adding new clouds to SkyPilot.

1

mailto:edwardzeng@berkeley.edu

Contents
1 Introduction . 3

2 Sky Computing with Intercloud Brokers 4
2.1 What is an intercloud broker? 4
2.2 How do intercloud brokers mitigate cloud lock-in? 4

3 SkyPilot . 5
3.1 Ray . 5
3.2 SkyPilot Architecture . 6

4 Lambda Cloud . 7

5 Integrating Lambda Cloud into SkyPilot 8
5.1 Overview . 8
5.2 Supporting Instance Tags on Client Side 9
5.3 Disallowing Instance Suspension on Client Side 15

6 Conclusions and Future Work . 16

7 Acknowledgements . 17

8 References . 17

A Adding a New Cloud to SkyPilot 19
A.1 Introduction . 19
A.2 Implementation . 19
A.3 Instance Suspension (if FluffyCloud supports it) 23

2

1 Introduction
Cloud computing is a critical component of themodern information infras-
tructure, providing scalable computation and storage for a wide variety of
applications and services. In an era where massive amounts of data are
generated, transmitted, and processed every day, cloud computing has
become an indispensable tool for businesses and users alike.

There are many cloud providers (also known as clouds) in the cloud
ecosystem – some prominent examples [1] include Amazon Web Ser-
vices (AWS), Google Cloud Platform (GCP), Microsoft Azure (Azure), IBM
Cloud, and Oracle Cloud. Cloud users have a wide range of competing
options to choose from, each with their benefits and drawbacks.

However, this multitude of options comes with a downside. Many
cloud providers emphasize proprietary interfaces over cross-cloud com-
patibility, leading to a phenomenon known as cloud lock-in, where cloud
users find it difficult to migrate their workloads between clouds.

Cross-cloud compatibility, however, has become increasingly impor-
tant. First, many businesses do not want their infrastructure to be tied to
one particular cloud. This makes them vulnerable to large-scale outages at
the cloud level, reduces their negotiating leverage with their chosen cloud,
and also prevents them from taking advantage of services offered by other
clouds. Keeping infrastructure on one cloud might even not be possible:
if business A acquires a business that uses a different cloud, then busi-
ness A’s infrastructure will be inherently multi-cloud. Second, data and
computational sovereignty regulations restrict enterprises from running or
storing data in certain locations. Asmost clouds do not have datacenters in
all countries, cross-cloud workload migration may be necessary to satisfy
these regulations.

To mitigate the problem of cloud lock-in, Stoica and Shenker [2] pro-
posed the concept of Sky Computing, where instead of submitting jobs to
cloud providers, users submit jobs to an intercloud broker.

SkyPilot [3] is an intercloud broker being developed at UC Berkeley.
For a long time, SkyPilot was an intercloud broker only supporting three
hyperscaler clouds: AWS, Azure, and GCP. In this report, we document
the addition of a new cloud: Lambda Cloud. The Sky Computing vision
allows smaller specialized clouds to participate actively in the Sky; Lambda
Cloud integration is the first step in this direction.

This report is organized as follows. In Section 2wediscuss SkyComput-

3

ing and intercloudbrokers. In Section 3wedescribe SkyPilot’s architecture.
In Section 4 we introduce Lambda Cloud, and in Section 5 we describe the
challenges of Lambda Cloud support. Finally, in Appendix A, we provide
a guide for adding new clouds to SkyPilot.

2 Sky Computing with Intercloud Brokers

2.1 What is an intercloud broker?
In simplest terms, an intercloud broker takes a job submitted by users,
chooses a cloud, and then executes the job on that cloud (Figure 1).

Figure 1: A Simple Intercloud Broker

Cloud selection can depend on various factors, such as estimated cost
or latency.

2.2 How do intercloud brokers mitigate cloud lock-in?
Consider Cloud A in Figure 1. With an intercloud broker, users do not
need to know Cloud A’s interface to be able to run jobs on Cloud A. More
precisely, a user can run a job on Cloud A if:

4

• The intercloud broker supports Cloud A, and

• CloudA can run the job (the job does not require special functionality
only found in Cloud B, for instance).

Hence, the success of Sky Computing as introduced in [2] will follow
from two conditions:

1. There exists an intercloud broker that supports many clouds.

2. Most clouds can run most jobs.

This report is about achieving the first condition.

3 SkyPilot
SkyPilot is an intercloud broker being developed at UC Berkeley. In this
section, we describe the architecture of SkyPilot.

3.1 Ray
SkyPilot builds on Ray [4], an open-source distributed execution frame-
work that also originates from UC Berkeley. A core component of Ray
is the Ray autoscaler (also known as the Cluster Launcher), which han-
dles the launch and termination of virtual machines (otherwise known as
nodes) on the cloud. The interface between the Ray autoscaler and a cloud
is a Ray node provider, which translates internal Ray function calls into
cloud-specific API calls. A brief overview of the node provider class [5] is
shown below:

class NodeProvider:
def non_terminated_nodes(self, tag_filters):

Returns a list of node ids filtered by tag_filters
def is_running(self, node_id):

Returns whether the given node is running or not
def node_tags(self, node_id):

Returns the tags of the given node
def external_ip(self, node_id) -> str:

Returns the external ip of the given node

5

def create_node(...):
Creates some nodes

def terminate_node(self, node_id):
Terminates specified node

...

Each cloud that Ray supports must implement a node provider (Figure
2).

Figure 2: Ray Autoscaler Architecture

3.2 SkyPilot Architecture
Figure 3 provides an overview of SkyPilot’s architecture.

6

Figure 3: How SkyPilot uses Ray

A cloud catalog is a listing of the instance types a cloud offers, along
with instance details like pricing, number of GPUs, amount of RAM, etc.
When given a job, SkyPilot’s optimizer chooses a cloud and instance type
to run that job based on instance preferences and price. (There is work
being done to generalize the optimizer to optimize over other variables,
like estimated latency.) Once the cloud and the instance type are chosen,
the provisioner launches a cluster (along with the SkyPilot runtime) on
the specified cloud with the specified instance type. Finally, the executor
runs the job on the launched cluster.

4 Lambda Cloud
Lambda GPU Cloud (not to be confused with AWS Lambda) is a low-
cost GPU cloud [6] hosted by Lambda, a startup that specializes in deep
learning compute.

Until recently, SkyPilot only supportedAWS,Azure, andGCP.We chose
Lambda GPU Cloud (also known as Lambda Cloud) to be the first small
cloud provider to support. Our reasons were the following. First, Lambda
Cloud is very cost-effective compared to its competitors, which is very
important at a timewhereAI compute costs are skyrocketing. For instance,

7

an instance with 8 V100 GPUs costs 5x cheaper on Lambda Cloud than
AWS or GCP, which is very important at a time where AI compute costs
are skyrocketing [7].

Figure 4: Cost Comparisons

Second, Lambda Cloud’s interface is very different from AWS, Azure,
and GCP – it is very minimalistic. Thus, Lambda Cloud integration would
provide valuable insight into how to add support for a wider variety of
clouds.

Third, the Sky Computing vision as laid out in [2] allows smaller, spe-
cialized clouds to participate actively in the Sky. Adding Lambda Cloud,
a small cloud that specializes in deep learning compute, is the first step in
this direction.

5 Integrating Lambda Cloud into SkyPilot

5.1 Overview
We implemented Lambda Cloud support for SkyPilot (merged in SkyPilot
release version v0.2.5). Lambda Cloud support for single-node clusters
required 1300 lines of (Python) code [8], and extending Lambda Cloud
support for multi-node clusters required another 300 lines of code [9].

8

Of the many changes made to SkyPilot, the most notable were:

1. Lambda Cloud node provider

2. SkyPilot optimizer updates

3. Lambda Cloud catalog management

4. Lambda Cloud credential management

5. Lambda Cloud ssh setup

6. Lambda Cloud end-to-end failover

More detail about these changes is described in Appendix A. In this
section, we describe the key challenges we faced: the handling of two
important non-natively supported features – tagging and instance suspen-
sion.

5.2 Supporting Instance Tags on Client Side
A tag is a key-value pair. On AWS, Azure, and GCP, users can add
tags to virtual machines. This allows users and applications to track
virtual machine metadata. For instance, the Ray autoscaler has a tag
ray-cluster-name: xxx to identify the cluster a node is a part of, and
a tag ray-node-type: xxx to identify whether the node is the head node
of the cluster or a worker node.

Figure 5: Tags

The necessity of instance tags for the Ray autoscaler is reflected in the
node provider: every node provider must provide a function to set the

9

tags of a node and a function to read the tags of a node. However, because
Lambda Cloud does not provide instance tags, our implementation of the
Lambda Cloud node provider required a workaround. In this section, we
go over different workarounds we considered and discuss their strengths
and weaknesses. We start with single-node clusters and then move to
multi-node clusters.

5.2.1 Single-Node Clusters

When a single-node SkyPilot cluster is launched, the client machine is the
only machine that will update the tags of the single (head) node of the
cluster.

Design Candidate 1: Tag File on Head Node (Not Adopted). The first
design we considered was to keep a file on the head node to store its tags.
Every time we needed to update or read the tags of the head node, we
would update or read the tag file.

Figure 6: Tag File on Head Node

In pseudocode,

10

read_tags():
if on client:

over ssh:
with file lock:

read from tag file
elif on head node:

with file lock:
read from tag file

write_tags():
if on client:

over ssh:
with file lock:

write to tag file
elif on head node:

with file lock:
write to tag file

The correctness of this design is easy to verify becausewe are replicating
tagging functionality in its entirety. However, this design has two large
drawbacks. First, the ssh overhead turns out to be significant because
of frequent tag reads. Second, if the head node crashes, then reading or
writing tags will hang, making SkyPilot stall.

Design Candidate 2: Tag File on Client (Not Adopted). To improve our
first design, we observed that the head node does not update its own tags
in the Ray autoscaler. Thus, in our second design, we moved the tag file
from the head node to the client machine. In this scheme, every time the
client needed to update the head node tags, it would update its local tag
file and send the updated local tag file to the head node (Figure 7).

11

Figure 7: Tag File on Client

Sending the updated tag file is necessary because the head node needs
to read its own tags. In pseudocode,

read_tags():
if on client:

read local tag file
elif on head node:

read most recent tag file received

write_tags():
assert on client
write to local tag file
send tag file to head node over ssh

By only using ssh on tag file writes, this design mitigates the ssh
overhead problem from the first design. However, it still uses ssh, which
is not desirable – SkyPilot can still stall if the head node crashes.

Dynamic Tags on Client (Temporarily Adopted). This design was used
when Lambda Cloud support for single-node clusters was shipped. The

12

key idea is that we can classify the tags that Ray uses into two types: static
tags, which are determined at launch, anddynamic tags, which can change
its value over its lifetime.

In Ray, dynamic tags of the head node are only read and updated by
the client, not the head node. As a result, we decided to store the dynamic
tags of the head node in the client’s tag file and the static tags of the head
node in its (statically-determined) name (Figure 8). Thisway, both the head
node and client can access all necessary tag information without needing
to send tag updates over the internet.

Figure 8: Dynamic Tags on Client

read_tags():
if on local:

read from local tag file
elif on head:

extract static tags from VM name

write_tags():
assert on client
write to local tag file

13

5.2.2 Multi-Node Clusters

Dynamic Tags on Launching Machine (Current Design). The current
design, design 4, is a generalization of design 3 to multi-node clusters. The
key idea is that the dynamic tags of any node in a cluster are only read and
updated by the machine that launched it. In other words, only the client
will read and update the tags of the head node, and only the head nodewill
read and update the tags of the worker node(s). Hence, we can store static
tag information in the node names and the appropriate dynamic tags on
the client and the head node. Like before, this design allows all machines
to access necessary tag information without needing to send updates over
the internet.

Figure 9: Dynamic Tags on Launching Machine

read_tags(node x):
if on client and x is head or on head and x is worker:

read local tag file
else:

extract static tags from x’s VM name

write_tags(node x):
assert on client and x is head or on head and x is worker

14

write to local tag file

5.3 Disallowing Instance Suspension on Client Side
Instance suspension is a feature where users can shut down a VM on the
cloud but keep the VM’s storage. This allows users to relaunch the VM
in the future by reattaching the storage. Instance suspension is useful
when the user has valuable data stored on a VM but does not want to pay
compute costs. With instance suspension, the user only needs to pay for
storage.

SkyPilot provides a feature known as autostop, which automatically
suspends idle instances to save on cost. When launching a SkyPilot cluster,
SkyPilot users can specify if they want to use autostop.

AWS,Azure, andGCP support instance suspension, but LambdaCloud
does not. This means that SkyPilot cannot autostop Lambda VMs. Thus,
autostop must be disabled for clusters on Lambda Cloud. The simplest
way to do this is to disallow autostop when the user chooses to launch
on Lambda Cloud. However, this solution misses the case where the user
does not choose Lambda Cloud, but rather the optimizer chooses Lambda
Cloud. Hence, we decided to make a fundamental change to the SkyPilot
optimizer.

Originally, the SkyPilot optimizer only took into account price and the
user’s instance type preferences. However, we decided to change the opti-
mizer to also take into account the requested features of a job (Figure 10).
If the user requests a feature such as autostop, the optimizer automatically
rules out clouds that do not support instance suspension, like Lambda
Cloud.

15

Figure 10: Skypilot Optimizer

In hindsight, this makes perfect sense – intercloud brokers should not
enforce a compatibility set, and therefore the optimizer has to take into
account if the user requests features that only some clouds support. Sur-
prisingly, this issue did not come up until the implementation of Lambda
Cloud support.

6 Conclusions and Future Work
Lambda Cloud is the first small specialized cloud provider to be integrated
with SkyPilot, marking an important step in the road to Sky Computing.

The most difficult part of Lambda Cloud integration was Lambda
Cloud’s lack of tagging and instance suspension. By overcoming these
challenges, we showed that clouds only need minimal functionality to be
added to SkyPilot.

Other parts of Lambda Cloud support closely mirror the implementa-
tion of AWS, Azure, andGCP support (more details are found inAppendix
A). We believe we can make SkyPilot integration easier for clouds by re-
ducing code duplication in this area. This will be our future work.

16

7 Acknowledgements
First, I would like to thank Ion Stoica, my advisor. I would also like to thank
Zongheng Yang for his constant support, encouragement, and advice. Fi-
nally, I would like to thank the wonderful SkyPilot team: Zongheng Yang,
Zhanghao Wu, Wei-Lin Chiang, Romil Bhardwaj, Woosuk Kwon, Siyuan
Zhuang, and others.

8 References
[1] Top 10 cloud service providers globally in 2023. https://dgtlinfr
a.com/top-10-cloud-service-providers-2022/.

[2] Ion Stoica and Scott Shenker. From cloud computing to sky comput-
ing. In Proceedings of the Workshop on Hot Topics in Operating Systems,
HotOS ’21, page 26–32, New York, NY, USA, 2021. Association for
Computing Machinery.

[3] Zongheng Yang, ZhanghaoWu, Michael Luo, Wei-Lin Chiang, Romil
Bhardwaj, Woosuk Kwon, Siyuan Zhuang, Frank Sifei Luan, Gautam
Mittal, Scott Shenker, and Ion Stoica. SkyPilot: An intercloud broker
for sky computing. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), pages 437–455, Boston, MA,
April 2023. USENIX Association.

[4] https://github.com/ray-project/ray.

[5] https://github.com/ray-project/ray/blob/master/python/ra
y/autoscaler/node_provider.py.

[6] https://lambdalabs.com/service/gpu-cloud.

[7] Navigating the high cost of ai compute. https://a16z.com/2023/04
/27/navigating-the-high-cost-of-ai-compute/.

[8] https://github.com/skypilot-org/skypilot/pull/1557.

[9] https://github.com/skypilot-org/skypilot/pull/1718.

[10] https://github.com/ewzeng/skypilot-new-cloud.

17

https://dgtlinfra.com/top-10-cloud-service-providers-2022/
https://dgtlinfra.com/top-10-cloud-service-providers-2022/
https://github.com/ray-project/ray
https://github.com/ray-project/ray/blob/master/python/ray/autoscaler/node_provider.py
https://github.com/ray-project/ray/blob/master/python/ray/autoscaler/node_provider.py
https://lambdalabs.com/service/gpu-cloud
https://a16z.com/2023/04/27/navigating-the-high-cost-of-ai-compute/
https://a16z.com/2023/04/27/navigating-the-high-cost-of-ai-compute/
https://github.com/skypilot-org/skypilot/pull/1557
https://github.com/skypilot-org/skypilot/pull/1718
https://github.com/ewzeng/skypilot-new-cloud

[11] https://lambdalabs.com/service/gpu-cloud.

18

https://lambdalabs.com/service/gpu-cloud

A Adding a New Cloud to SkyPilot

A.1 Introduction
This appendix is an operational guide for adding a new cloud to SkyPilot,
along with a new cloud support repository [10]. This guide and repository
have been used by developers from Samsung and Oracle to add support
for their clouds.

In this guide, we call our new cloud FluffyCloud.

A.1.1 What Does FluffyCloud API Need to Support?

The successful integration of LambdaCloud shows that only aminimalistic
API is necessary for SkyPilot integration. More specifically, FluffyCloud’s
interface only needs to be able to:

1. Launch an ssh-able instance in given region/zone.

2. Terminate an instance given instance id.

3. List details (e.g. id, status, ip, name) of currently running instances.

A.2 Implementation
The rest of this appendix is a step-by-step implementation guide on how
to add FluffyCloud to SkyPilot.

First, we suppose that FluffyCloud has the following Python interface:

def launch(name:str,
instance_type:str,
region:str,
api_key:str,
ssh_key_name:str):

"""Launches an INSTANCE_TYPE instance in REGION with
given NAME.

API_KEY is a secret registered with FluffyCloud.
It is per-user. SSH_KEY_NAME corresponds to a ssh key
registered with FluffyCloud. After launching, the user

19

can ssh into INSTANCE_TYPE with that ssh key.

Returns INSTANCE_ID if successful, otherwise None.
"""

def remove(instance_id:str, api_key:str):
"""Removes instance with given INSTANCE_ID."""

def list_instances(api_key:str):
"""Lists instances associated with API_KEY.

Returns a dictionary:
{

instance_id_1:
{

status: ...,
tags: ...,
name: ...,
ip:

},
instance_id_2: {...},
...

}

Although we do require clouds to support some (minimalistic) func-
tionality as described in the previous section, we do not expect their inter-
face to be the same as FluffyCloud’s interface. Hence we point out parts
of this implementation guide that may change depending on interface
specifics.

A.2.1 Setup

1. Clone SkyPilot [11] and install from source.

2. Clone the new cloud support repository [10].

Notation. In this guide, the path sky/ means skypilot-repo/sky/ and
the path fluffycloud/means new-cloud-support-repo/fluffycloud/.

20

A.2.2 Implement Node Provider

1. Read through the node provider class definition [5].

2. fluffycloud/node_provider.py provides some template code for
implementing the node provider. Use it to implement FluffyCloud’s
node provider.
Note: If your cloud has a different API than FluffyCloud, then you
may need to make substantial tweaks to the template code.

To add FluffyCloud’s node provider to SkyPilot:

1. Create the directory sky/skylet/providers/fluffycloud/

2. Create a copy of fluffycloud/__init__.py and place it at

sky/skylet/providers/fluffycloud/__init__.py

This is a one-line file, no changes are needed. (Of course, you may
need to rename FluffyCloud to the name of the cloud you are adding.)

3. Place FluffyCloud’s node provider at

sky/skylet/providers/fluffycloud/node_provider.py

A.2.3 Add Catalog

A Skypilot catalog is a csv file with the following columns:

InstanceType,AcceleratorName,AcceleratorCount,vCPUs,
MemoryGiB,Price,Region,GpuInfo,SpotPrice

For instance, a catalog entry for Lambda Cloud would look like:

gpu_8x_v100,v100,8.0,92.0,448.0,4.4,us-east-1,
"{’gpus’: [{’name’: ’v100’, ’manufacturer’: ’nvidia’,
’count’: 8.0, ’memoryinfo’: {’sizeinmib’: 16384}}],
’totalgpumemoryinmib’: 16384}",

Your task:

21

1. Create a catalog at

~/.sky/catalogs/v5/fluffycloud/vms.csv

and add one catalog entry (more can be added later).

A.2.4 Catalog parsers

Now let’s implement some functions that parse and read the catalog. This
is very easy since most of this functionality has been implemented; we are
simply calling the appropriate functions.

1. Implementsky/clouds/service_catalog/fluffycloud_catalog.py
by copying sky/clouds/service_catalog/lambda_catalog.py and
making appropriate changes.

A.2.5 Implement FluffyCloud Class

Now let’s create the FluffyCloud class. This class calls some service catalog
functions and contains code that checks FluffyCloud credentials. Many of
the functions in this class are also straightforward to implement and can
be copied from other clouds.

1. Create a copy of fluffycloud/fluffycloud.py and place it at

sky/clouds/fluffycloud.py

Most of code can be used as is, with the exception of a few marked
locations.

A.2.6 Implement ssh setup

This code is executed (via ssh) after a cluster is launched. Most of this
code is very similar to the existing setup code for other clouds, and can be
copied from them.

1. Implement sky/templates/fluffycloud-ray.yml.j2 by copying

fluffycloud/fluffycloud-ray.yml.j2

22

and making appropriate changes.

2. Update _get_cluster_config_template in

sky/backends/cloud_vm_ray_backend.py

A.2.7 Implement end-to-end failover

Now let’s add support for end-to-end failover for FluffyCloud. Like the
previous step, most of this code is very similar to the existing code for other
clouds.

1. Copy _update_blocklist_on_fluffycloud_error from

fluffycloud/failover.py

and place it in sky/backends/cloud_vm_ray_backend.py.

2. Update _update_blocklist_on_error in

sky/backends/cloud_vm_ray_backend.py

A.2.8 Miscellaneous updates

Finally, there are somemiscellaneous places that we need to make changes
to. They are described in fluffycloud/misc.py.

A.3 Instance Suspension (if FluffyCloud supports it)
SkyPilot supports instance suspensionby settingcached_stopped_nodes: true
in the generated Ray yaml. Hence, to support instance suspension, it suf-
fices to make the node provider stop instances in terminate_node instead
of terminating them if cached_stopped_nodes is set to true.

23

