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Abstract

An Architectural Power Model for Networks on Chip

by

Animesh Agrawal

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Borivoje Nikolic, Chair

Motivated by the breakdown of Dennard scaling and current slowdown in CMOS scaling,
SoC designers have increasingly embraced heterogeneity to meet power, performance, and
area constraints. As SoC designs increase in scale, networks-on-chip (NoCs), have grown
in prominence and complexity, becoming responsible for a significant fraction of an SoC’s
power consumption. However, NoCs are highly parameterizable and support a diverse set
of constructions, making it crucial for designers to have access to feedback about a NoC
design’s power consumption early in the design phase.

In this thesis, we present an ML-based, workload aware, architectural power model for net-
works on chip (NoCs). We identify NoC architectural parameters most relevant to power
consumption and construct a framework to generate a diverse training dataset of NoC con-
figurations covering a range of power responses. We use the identified parameters and gen-
erated dataset to train a machine learning model capable of estimating NoC router power
consumption and evaluate our model on realistic NoC designs routing simulated network
tra�c. Finally, we also present our progress towards constructing a NoC power model for
NoC routers with heterogeneous channel configurations.
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Chapter 1

Background and Project Introduction

Power e�ciency is critical for modern systems-on-chip (SoCs). With the end of Moore’s
law, architects are increasingly relying on heterogeneity to balance performance and power
targets, resulting in ever-growing SoCs with dozens of specialized functional units. In build-
ing these high-complex and interconnected SoCs, data transfer between components quickly
becomes a limiting factor, with traditional bus-based interconnects unable to meet perfor-
mance requirements. Networks-on-chip (NoCs) have emerged as a solution to this challenge,
providing scalable, low-latency, and high-bandwidth communication.

However, NoCs are often responsible for a significant fraction of an SoC’s power con-
sumption. For application-specific SoCs running communication-heavy applications, NoCs
can comprise nearly 40% of the SoC’s overall power consumption [5]. Further, as fabrication
processes improve, NoC power consumption decreases slower than compute and memory
components [3]. Thus, accurate power characterization and estimation for networks-on-chip
is crucial.

1.1 Background

1.1.1 Networks on Chip (NoCs)

An interconnection network, broadly, provides a programmable system that transports data
between end points, formally known as terminals. For on-chip interconnection networks,
these terminals can be memory arrays, system registers, CPU/GPU cores, and programmable
accelerators [4].

SoC interconnects have historically been a system of shared buses that connect all ter-
minals with a shared channel. Each message transmitted over the bus is received by all
terminals in serial order, even when the message is intended only for a single recipient ter-
minal. Replies from the recipient are again sent over the shared channel, creating a serial
ordering of all interconnect communication. Shared bus interconnects have the benefits of
being easy to implement and inexpensive to manufacture. However, they do not scale to
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large SoCs. In addition to physical limitations that prevent large buses from operating
at high-speeds, aggregate bandwidth demand scales with the number of SoC components.
Further, messages issued on the interconnect are often intended for a single terminal, for
example when a processor requests a value from a memory bank. Since shared buses provide
only a single channel, only one such point-to-point message can be sent at a time, posing
an unnecessary serial constraint on a large system. At the same time, however, dedicated
wiring between each pair of terminals would unnecessarily waste limited wiring resources as
terminals communicate only sporadically.

Figure 1.1: A NoC for a large, heterogeneous, SoC [20].

Networks-on-chip aim to address these limitations by compromising between the two
approaches. NoCs consist of a collection of router nodes that connect to terminals and other
router nodes via channels. Unlike dedicated wiring, the network is shared by terminals,
freeing up already scarce space on the chip.

Compared to the shared bus interconnection architecture, NoCs only deliver messages to
the intended destination terminals, removing the need for terminals to process and discard
messages not intended for them. Further, multiple messages from di↵erent terminals can
be resident within the NoC at the same time, increasing communication bandwidth and
improving scaling.

To communicate over the NoC, terminals send messages as packets of data. To ensure fair
allocation of its limited resources, NoCs may also o↵er quality-of-service (QoS) features to
ensure packets meeting specific requirements are guaranteed a certain level of performance.
Conversely, NoCs may also o↵er certain classes of packets only best-e↵ort guarantees; packets
in these service classes can experience arbitrary delay and may even be dropped by the
network. Within a NoC, packets are decomposed into small, fixed-size, flits to simplify
routing logic.
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Figure 1.2: NoC Router Node Architecture [4].

Router Nodes

As shown in Figure 1.2, each channel into a router node connects to an input unit within the
router node. When an input unit receives a flit sent along the channel into the router node,
the flit is bu↵ered in a FIFO queue. There, it waits for, among other things, routing logic
to compute the packet’s next hop in the network and the downstream network components
to become available. To prevent an input unit from stalling when a flit’s downstream node
is not available, multiple virtual channels (VCs) can be multiplexed onto a single physical
channel. When the flit at the head of a virtual channel’s bu↵er is ready and able to be routed
to its next destination, the virtual channel requests allocation of the physical channel. If the
request is granted, the flit is sent to the switch.

The switch connects input units to output units, which forward the flit to the next router
node along the path to its destination terminal. Similar to input units, output units contain
logic to manage virtual channels and allocation [4].

Building a NoC

When designing a NoC, architects can vary a number of parameters to customize the NoC’s
performance, power consumption, and capabilities. Below, we present some major parame-
ters in a non-comprehensive fashion.

At the network level, NoC designers can customize the NoC topology, which specifies the
static arrangement of router nodes and channels within the interconnection network (exam-
ples in Figures 1.3 and 1.4). More interconnected topologies have greater routing bandwidth
and can transmit packets to their destination with fewer hops through the network, but also
consume more space on the SoC and have a greater power consumption.
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Figure 1.3: Tree Topology [20]
Figure 1.4: 2D Mesh Topology [20]

At the router level, NoC designers can customize the number of virtual channels per
input or output channel, the number of packets the switch can route per cycle, and whether
requests from a virtual channel to acquire the physical channel and switch can happen in
parallel. While designers can select the number of entries in each input and output unit’s
bu↵ers, the number of physical input and output units are implicitly decided by the topology,
which governs the number of channels into and out of each router node.

Heterogeneous NoCs

Heterogeneous NoCs feature di↵ering design parameters per sub-graph or per-router within
the network [7]. At the network level, certain sub-graphs of router nodes could be configured
with deeper bu↵ers and more virtual channels per physical channel to, for example, better
service connected terminals that are higher-bandwidth than the rest of the SoC. At the router
level, certain NoC routers may contain channels and input units with di↵ering numbers of
virtual channels and bu↵er sizes. For example, such a router may be used to connect the
more performant network sub-graph discussed earlier with the rest of the NoC.

1.1.2 Constellation

Constellation is a Chisel-based [2] NoC generator framework that is capable of synthesizing
highly-irregular and heterogeneous NoCs based on a high-level specification provided by the
SoC architect. Constellation includes a diverse set of pre-constructed network topologies
and routing algorithms and produces synthesizable RTL. To evaluate a constructed NoC,
Constellation includes a tra�c injection and measurement framework capable of simulating
user-specified tra�c and reporting granular statistics on the NoC’s throughput and latency.
While the generated NoCs are communication protocol agnostic, Constellation provides pro-
tocol converters that allow Constellation-generated NoCs to be integrated into larger systems
on chip [20].

Chipyard is a comprehensive SoC design, simulation, and implementation environment
[1]. Constellation features plug-and-play integration with Chipyard, allowing for the simu-
lation of entire SoCs containing Constellation-generated NoCs.
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Constellation’s Performance Evaluator

To benchmark and evaluate NoC performance, Constellation includes a C++ performance
evaluator. To test a specific NoC configuration with a specific packet tra�c pattern, users
specify a flow matrix ⇤ where matrix entry �ij indicates the rate of tra�c, or number of
packets per cycle on average, from source terminal i to destination terminal j.

Figure 1.5: NoC tra�c for ⇤ [4].


0 0.1
1 0

�

Figure 1.6: Tra�c Matrix ⇤.

The network depicted in Figure 1.5 has 2 flows: one from node 0 to node 1 and another
from node 1 to node 0. According to the tra�c matrix in Figure 1.6, flow 0 routes 0.1 packets
per cycle (injected by node 0) on average, while flow 1 routes 1 packet per cycle (injected by
node 1) on average.

Constellation’s framework reports the NoC’s throughput, or percentage of requested traf-
fic that can be fulfilled at steady-state, and average latency for user-specified specified tra�c
patterns. If the NoC can service all of the tra�c requested by the tra�c matrix, Con-
stellation reports a throughput of 1. Constellation’s performance evaluation framework is
primarily run within Chipyard, leveraging Chipyard’s RTL simulation environment.

QoS Guarantees in Constellation NoCs

Constellation NoCs, at time of writing, do not o↵er performance classes or performance
guarantees for routed packets. However, Constellation does guarantee that packets will
eventually reach their destination once accepted into the network.

Flow Control

Router nodes in Constellation NoCs have two distinct connections to channels passing data
into the router: Ingress ports and Input ports.

Figure 1.7: A NoC router (node 2) with 1 input channel and 1 ingress channel.
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Ingress ports connect routers directly to network input terminals. The router communi-
cates with the terminal via a ready-valid interface, where the terminal drives a valid signal,
indicating a packet for the NoC is available, and the router drives a ready signal indicating
the router is ready to receive a new packet – data is transferred when both ready and valid
are driven. This allows the NoC to defer new tra�c until the network has the capacity to
bu↵er and route additional packets.

Input ports connect routers to other routers in the network, and flits transmitted along
input channels are part of packets currently being routed by the network. Therefore, when
an upstream node (for example node 0 in Figure 1.7) transmits a flit to a downstream node
(node 2 in Figure 1.7), it is important to ensure the downstream node has the capacity to
receive and bu↵er the transmitted flit so it is not dropped by the network. Constellation
NoCs accomplish this with a credit-based flow control system, where upstream nodes receive
a credit for every bu↵er entry found in the downstream node’s receiving input unit. When an
upstream node transmits a flit, it spends a credit, and when the downstream node routes said
flit to its next hop in the network, a credit is returned to the upstream node. Thus, upstream
nodes can never transmit more packets than the downstream node has the capability to
receive.

1.2 Prior Work

1.2.1 Power Estimation Tools

Industry-standard state-of-the-art power estimation tools, such as Joules, replay simulation
traces on gate-level representations of the hardware design and calculate the capacitive load
and switching activity of each component [10, 15]. While these tools are highly accurate,
they are also expensive, proprietary, and slow, largely due to the unavoidably large amount
of memory and compute necessary to track the state of every gate in a large design.

Automatic proxy selection models for runtime introspection reduce the number of tracked
signals by observing that signals with similar switching activity have similar e↵ects on power
consumption and selecting a small subset of signals to serve as proxies representing the
entire design. Proxy selection models are highly accurate, with errors within 9% of industry-
standard tools, while using as few as 0.05% of the available RTL signals [13, 18]. However,
these models still require cycle-by-cycle simulation of all RTL signals, limiting their usefulness
for pre-RTL design stage exploration.

1.2.2 Architectural Power Models

Architectural power models address these shortcomings by predicting a design’s power con-
sumption solely on its architectural parameters and high-level runtime statistics. Architec-
tural models are component-specific, as they rely on assumptions about a design’s microar-
chitectural construction to select appropriate input architectural parameters. Despite being
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less accurate than runtime-based power models and tools, architectural models allow design-
ers to quickly verify their designs are approximately within power constraints and evaluate
the power consumption implications of high-level design decisions. This allows designers to
quickly narrow large design spaces and eliminate performant designs that don’t meet power
constraints [8].

Existing power models for NoCs primarily focus on modeling the power consumption of
NoC routers because the power consumption of NoC channels varies significantly based on
distance between the NoC router nodes they connect. This distance is often SoC-specific
and determined at P&R time, making it di�cult to accurately model.

Analytical architectural power models for NoC router nodes present mathematical equa-
tions to calculate the capacitance of individual NoC router components based on archi-
tectural parameters and aggregate runtime statistics, such as average Hamming distance
between consecutive packets [12]. Learning-based architectural power models, in contrast,
use trained models to predict post-synthesis power traces from architectural features that
correlate with power consumption. When tested on datasets extracted from the training
dataset, and on datapoints out of the domain of the training dataset, learning models have
exhibited average errors of approximately 10% in their power estimations [11, 16]. Com-
pared to analytical models, learning models can be automatically updated on new training
data as improving manufacturing processes change the power relationship between architec-
tural features. Learning models also do not require model developers to possess an intimate
understanding of the component’s physical implementation.

Prior work in architectural learning models for NoC router nodes identifies four key router
architectural parameters in estimating power consumption: the number of input units, the
number of virtual channels per physical channel, the number of bu↵er entries per channel,
and flit width (the flit’s size in bits). Prior work also identifies switching activity, or the
frequency with which a signal toggles, as the relevant dynamic factor in estimating the
router’s power consumption [11].

1.3 Project Goals

Understanding the power consumption of NoCs is crucial when designing SoCs, and early
approximation of NoC power consumption saves time both in design-space exploration and
in working to meet physical constraints.

While existing architectural learning power models for NoC routers indicate acceptable
performance on testing datasets derived from their training dataset, our exploration indicates
significantly higher average errors when estimating the power of NoC nodes in larger networks
or in irregular topologies. Existing power models also do not support heterogeneous routers
with channels of varying specifications, limiting their coverage of the available design space.
Finally, some existing power models for NoC routers are not workload-aware, returning a
static power prediction regardless of the dynamic activity run on the NoC.
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In this thesis, we present our work towards an improved architectural learning power
model for NoCs, focusing on NoC routers in specific for reasons similar to those presented
in prior work. We first discuss our work towards building a framework to generate NoC
router training data o↵ of RTL for entire NoCs and industry-standard state-of-the-art power
estimation tools in an automated fashion. Then, we discuss cases where existing models
struggle to provide accurate predictions and present modifications to existing work to improve
the performance of models and make them workload-aware. Finally, we share our approach
for building learning power models for irregular, highly heterogeneous, NoC routers.
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Chapter 2

Implementation

Building an accurate learning-based architectural model requires a large training dataset
of highly accurate power data. For NoCs, this data needs to capture both the domain
of architectural parameters found in di↵erent NoCs and the dynamic factors found in the
packets injected into and delivered by the NoC.

2.1 Building NoC Router Architectures

Static NoC power consumption varies significantly based on the NoC’s architecture. More
complex topologies require additional channels (and therefore more wiring) in between NoC
routers, while more performant NoC routers contain additional virtual channels and bu↵er
entries.

2.1.1 Training Architectures

Prior work identifies certain router-level architectural parameters as most relevant to power
consumption:

• the number of input units to each router node
• the number of virtual channels per physical channel
• the number of bu↵er entries per channel
• flit size (in bits)

Prior work also provides a database of router architectures that vary these parameters
[11]. We translated these architectures into Constellation configurations to create a dataset
of NoC router architectures to train our learning model on.

To generate more realistic training data, we simulated the NoC routers of interest as
part of a larger network instead of a standalone simulation. Router nodes with the same
parameters as the test router are synthesized and connected to all but one of the NoC router’s
input ports; the remaining port is synthesized as an ingress port and connected directly to a
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network terminal. Output ports are constructed identically to input ports, with all but one
of the NoC router’s output ports connected to identically synthesized router nodes.

Figure 2.1: Example topology for power evaluation.

Figure 2.1 depicts an example network we use for generating training data, with Node 2
being the router node of interest. Two of Node 2’s input ports are connected to other nodes
in the network and the remaining ingress port is connected directly to a network terminal.

2.1.2 Testing Architectures

To evaluate model quality on real-world NoCs, we construct 10 NoCs of varying topolo-
gies, architectural parameters, and sizes. Tested topologies include 2D mesh, torus, and
butterfly networks. Although the NoC is simulated as a complete system, relevant architec-
tural parameters are extracted on a per-router basis and each router’s power consumption
is individually estimated by the learning model.

2.2 Generating Traces on NoCs

Dynamic NoC power consumption varies significantly based on the tra�c carried by the
NoC; an idle NoC would consume significantly less power than a fully saturated network.
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2.2.1 Prior Approaches to Dynamic Activity

Prior work simulates the dynamic e↵ects of packet tra�c into a NoC by using power analysis
tools to set switching activity for NoC router input signals, varying both how often input
signals switch and the percentage of time each signal is set to 1 [11].

While faster than running gate-level simulations to capture realistic toggle rates, this
approach can be inaccurate. First, the power analysis tools used in prior work use a zero-delay
simulator to propagate user-annotated switching activity to the entire system; this method
cannot capture glitching power, which can account for a nontrivial portion of a system’s
power consumption [17]. Further, power analysis tools rely on statistical assumptions when
propagating user-annotated switching activity through the system, a↵ecting accuracy due to
issues related to signal correlation or re-convergence [19]. Finally, while annotation allows
for comprehensive coverage of possible toggle rates, it can also generate toggle scenarios not
found in realistic workloads.

2.2.2 Trace-Generation with Tra�c Simulation

To avoid the inaccuracies present when using user-annotated switching activities, we used
Constellation’s tra�c injection framework to simulate real packet tra�c in our training
dataset of NoCs. To capture representative samples of the tra�c generated by real NoC
workloads, we generate 2 classes of tra�c matrices:

1. Structured Tra�c: Each flow in the network, or entry in the tra�c matrix ⇤, is
individually activated, with the rest of the flows in the network set to route 0 packets
per cycle. The active flow is run at increasing flow rates until Constellation reports a
throughput less than 1, indicating the network cannot service the requested tra�c and
the flow’s saturating point has been found. After all individual flows are simulated,
the methodology is repeated with all flows active.

2. Random Tra�c: A global target flow rate is randomly pre-selected and each valid
flow in the network is set to a random flow rate, collectively summing up to the
selected global target. If Constellation reports a throughput less than 1, the datapoint
is discarded because Constellation was unable to accept the entirety of the requested
tra�c and therefore did not achieve the requested utilization rate.

Simulations are run for 25,000 cycles, giving the network su�cient time to achieve steady-
state performance. The granularity at which flow rates are incremented for structured tra�c
and the number of points gathered for random tra�c are progressively increased until model
performance no longer significantly improves.

We instrumented Constellation with performance counters to capture each channel’s uti-
lization rate, which we define to be the number of flits per cycle, on average, traversing
the channel. We use utilization rate as an architectural-level abstraction for prior work’s
switching activity [14].
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2.2.3 Trace-Generation with Formal Tools

We also explored the use of formal methods for tra�c scenario generation. Random injection
of tra�c as presented in section 2.2.2 requires lengthy simulation of tra�c matrices that may
prove to request more tra�c than the NoC can handle. Perhaps more importantly, edge-
case utilization rates may be achievable with carefully constructed inputs that random tra�c
simulation may not generate.

To more rigorously examine utilization rates random tra�c injection was not able to
achieve, we embedded formal cover statements on specific utilization rates within the Con-
stellation RTL and used JasperGold, an industrial formal verification tool, to generate min-
imal satisfying traces – input sequences that satisfy the cover property [9].

Cover Statement Construction

Constellation contains instrumentation that tracks the utilization, or number of flits entering,
each input or ingress port within each NoC router. We add additional registers to separately
aggregate the utilization across all input and ingress ports within each NoC routers.

We then embed cover statements requiring a specific utilization value for both ingress
and input ports within a specific number of cycles; the latter constraint allows us to achieve
a specific utilization rate, or specific number of flits per cycle on average. For example, to
achieve a utilization rate of 0.1, we require the router receive 1 packet over 10 cycles. We
also add constraints related to the Hamming distance between adjacent flits to ensure that
flit content isn’t set to 0 by the formal tool, as that would unrealistically decrease power
consumption.

Formally-Generated Traces Evaluation

We find that formal trace generation is capable of achieving higher utilization rates than
random tra�c injection. We also observe that formally generated traces have similar power
responses to tra�c generated by Constellation’s tra�c simulator at utilization rates that
Constellation’s simulator is able to achieve, indicating that the formally-generated traces
provide data that is representative of real tra�c.

2.3 Power Estimation

In addition to tra�c statistics, Constellation’s injection framework provides a waveform from
simulation, and we use Joules to estimate the NoC’s average power consumption on these
traces. Joules is the only power estimation tool with a built-in synthesis flow; all standard
synthesis optimizations are performed on the provided RTL design and all power analysis is
done on the post-synthesis gate-level design. While this approach takes longer than other
power tools, it yields a significantly more accurate estimation of circuit power consumption
[6, 10, 15].
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Through Joules, we synthesize each NoC on the Intel 16 fabrication process, using typical
parameters. We configure Joules to use medium e↵ort to optimize leakage power and allow
it to insert clock gating logic if doing so would reduce power consumption. We set a target
clock period of 5ns, and configure synthesis to use medium e↵ort to optimize the design and
meet timing constraints. Average power across the simulation is computed.

2.4 Dataset Generation

Figure 2.2: The dataset generation workflow.

We combined the approaches presented above to build a workflow to automatically gen-
erate model training datasets. Generated Constellation NoC configs are simulated using
the evaluation harness to generate a series of simulation traces, which are passed into the
Joules power estimation tool. Finally, the power data is combined with the NoC router’s
architectural parameters into a spreadsheet to create the dataset of training parameters and
expected power responses. To sanity-check the data and visually understand power trends
in the data, our workflow also graphs the power consumption of every router node in each
specification as a function of utilization rate.

2.5 Learning Model Construction

Prior work uses a range of learning modeling techniques, often with di↵ering modeling ar-
chitectures [11, 14]. To recreate prior work and benchmark our improvements, we built a
framework to post-process training data and flexibly train multiple models ranging from
linear regression to gradient-boosted decision trees.
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2.5.1 An Initial Model

Prior work in architectural learning models for NoC power estimation presents a model that
uses

• P: the number of inputs into in the NoC router
• V: the number of virtual channels per physical channel
• B: the number of bu↵er entries per virtual channel
• F: flit size (in bits)

as input parameters and outputs a static prediction of average power consumption for
the NoC router architecture [11]. However, as mentioned in section 2.2, we consistently find
that NoC power consumption varies dramatically based on the tra�c routed through the
network. For a router in a Constellation-generated 2D mesh network, for example, power
consumption when no tra�c is present is less than half its peak power consumption when
routing the maximum serviceable amount of tra�c.

We decide this discrepancy in power responses necessitates building a workload-aware
model. Based on the findings of prior work, we add utilization rate – the number of packets
entering the NoC router per cycle, on average – as an additional parameter to the model
[14]. For application-specific NoCs, the inclusion of dynamic parameters makes the model’s
predictions more relevant to the design scenario of interest. Conversely, if the NoC is not
designed for a specific application, power predictions at a range of utilization rates can be
averaged to recreate a workload-agnostic prediction.

In doing so, we construct and present a port of prior work in NoC learning architectural
power models for the Constellation NoC generator platform. The inclusion of this model,
when combined with Constellation’s performance evaluation harness, allows designers to
consider both performance and power consumption when designing a NoC in Constellation.
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Chapter 3

A Power Model for Constellation NoCs

3.1 Evaluating The Initial Model

Using the methods described in Chapter 2, we recreate prior work on NoC router learning
architectural models and modify the resulting model to be workload aware.

3.1.1 Evaluation with Train-Test Split

Prior work evaluates learning model performance by partitioning the dataset into training
and test subsets [11]. When replicating this approach, our model performs similarly to prior
work, with a normalized average error (NMAE) of 11.7%. When using a more advanced
class of learning models, such as gradient-boosted decision trees, error further decreases to
8.8%.

Figure 3.1: Actual power consumption versus predicted power consumption for a gradient-
boosted regressor evaluated on train-test split.
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In Figure 3.1, we see error is higher when the model overestimates power consumption,
as opposed to when the model underestimates power consumption. While over-estimation
of power consumption unnecessarily pushes designers towards more conservative architec-
tures, resulting architectures still meet the set power ceilings. Under-estimation of power
consumption, in contrast, risks producing designs that violate power consumption ceilings.

3.1.2 Evaluation with Realistic Topologies

While prior work indicates relatively low error when evaluating model performance via train-
test split, the training data of individual NoC routers may not be representative of real-world
NoC designs. To validate this hypothesis, we tested our recreation of models proposed by
prior work on the testing NoC architectures presented in Section 2.1.2.

Ransac Regressor Gradient Boosting Regressor SVM with RBF Kernel
MAPE 0.28 0.24 0.22
R2 -0.24 0.49 0.10

Table 3.1: Performance of prior-work-based architectural learning models on realistic NoCs

On realistic NoCs, we find prior work performs noticeably worse than train-test split
evaluation. The consistently low R2 across models indicates the models’ predictions are not
significantly correlated with the evaluation dataset, either due to missing model parameters
or due to the training dataset being unrepresentative of our evaluation dataset.

3.2 Identifying Additional Model Parameters

3.2.1 Utilization Rate

Prior work presents the number of packets entering a NoC router in each cycle, on average,
as an architectural abstraction for circuit switching activity – we refer to this metric as
utilization rate [14]. To validate utilization’s rate e↵ectiveness as an architectural abstrac-
tion for switching activity, we explored the relationship between utilization rate and power
consumption for NoC routers of various configurations.
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Figure 3.2: Power consumption as a function of utilization rate for a router in a large mesh-
topology NoC.

Consistently, with one example shown in Figure 3.2, we find that there is no clear relation-
ship between power consumption and utilization rate. Figure 3.2 uses data-points collected
with the structured tra�c approach presented in section 2.2.2; green data points represent
tra�c matrices with one flow active and gray data points represent tra�c matrices with all
flows active. While power consumption is linear with respect to utilization rate when all
flows are active, tra�c matrices with one flow active create two distinct non-linear plots. As
a result, the same utilization rate can have three distinct power responses on the structured
tra�c generation approach.

We also witness a similar trend in data generated using random tra�c, as shown in
Figure 3.3. In random tra�c scenarios, distinct curves are less pronounced because a random
number of flows are active. Further, likely for the same reasons, the number of distinct power
responses for similar utilization rates increases. In Figure 3.3, for example, up to 4 unique
power responses for similar utilization rates are visible.

Utilization rate, or an equivalent, is the only dynamic factor considered by prior work.
For data-points collected on the same NoC router architecture (as in Figure 3.2), then,
utilization rate is the only di↵erentiating factor for the learning model to predict power
consumption with. To enable the model to di↵erentiate between di↵erent power scenarios,
additional model parameters are necessary.
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Figure 3.3: Power consumption as a function of utilization rate for a single router node from
a power evaluation topology.

We used data from the router depicted in Figure 3.3 to investigate additional model pa-
rameters. Specifically, we investigated data points 109 and 179: two data points with similar
utilization rates but significantly di↵ering power consumption. Recognizing the di↵ering
power consumption must be caused by di↵erences in router-internal switching activity, we
examined the traces yielding both power responses.

Figure 3.4: Trace for data point 109 (high
power consumption)

Figure 3.5: Trace for data point 179 (low
power consumption)
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Figures 3.4 and 3.5 depict very similar utilization rates caused by di↵ering tra�c patterns.
While the tra�c for data point 109 (Figure 3.4) is distributed across all input and ingress
ports, the tra�c for data point 179 (Figure 3.5) is concentrated on the single ingress port into
the router node. As characterized in section 1.1.2, the architecture of ingress ports and input
ports varies significantly. The crediting logic for input ports in particular requires additional
state and logic to send credits back to upstream router nodes, non-trivially di↵erentiating
the power characteristics of input and ingress ports.

We address this by reporting input unit utilization rate and ingress unit utilization rate
as separate model parameters, with results reported in table 3.2.

Ransac Regressor Gradient Boosting Regressor SVM with RBF Kernel
MAPE 0.27 0.17 0.20
R2 0.48 0.67 0.72

Table 3.2: Performance of architectural learning models on realistic NoCs after input port
and ingress port utilization rates are separated.

As compared to 3.1, average percent error decreases and R2 increases for each model,
indicating the separation of these parameters are significant.

3.2.2 Flit Hamming Distance

We also examine the relationship between the Hamming distance of adjacent flits and power
consumption. Despite routing logic within NoCs being data-independent, data composition
may a↵ect the signal transitions of data-bus wires within NoC channels and bu↵ers.

We use the formal trace generation method presented in section 2.2.3 to create traces
with consistent Hamming distances between flits; this reduces variance in power response.
We tested four Hamming distances, each inspired by specific classes of workloads:

• Hamming distance 0: All flits have the same content. This simulates, for example, an
operating system using memset to clear a page of memory.

• Hamming distance 2: A sparse matrix in an uncompressed format consists of many
entries that are set to 0, resulting in a low Hamming distance on average.

• Hamming distance 32: The expected number of di↵ering bits between two 64-bit ran-
dom values, such as 64-bit wide flits, is 32.

• Hamming distance 64: The contents of adjacent flits are bitwise negations of each
other. This represents an adversarial power scenario in which the switching activity of
data lines is maximized.
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Figure 3.6: Router power consumption
when adjacent flits have a Hamming dis-
tance of 0.

Figure 3.7: Router power consumption
when adjacent flits have a Hamming dis-
tance of 2.

Figure 3.8: Router power consumption
when adjacent flits have a Hamming dis-
tance of 32.

Figure 3.9: Router power consumption
when adjacent flits have a Hamming dis-
tance of 64.

The data in Figures 3.6 - 3.9 was collected on a NoC router node from the training dataset
with 5 input ports, 3 virtual channels, and 3 bu↵er entries per virtual channel. We see that
power consumption at similar utilization rates increases as the Hamming distance between
adjacent flits increases. Figures 3.8 and 3.9 also indicate Hamming distance’s e↵ects on
power consumption is dependent on utilization rate. While power consumption for Hamming
distances of 32 and 64 are relatively similar at lower utilization rates, the di↵erence in power
consumption becomes more pronounced as utilization rate increases.
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Although it is evident Hamming distance has an e↵ect on power consumption, we do
not integrate it into our power model as a parameter. Generating model training data that
covers both the space of utilization rate and Hamming distance exponentially increases the
domain of training data necessary to build an accurate model. Further, since the average
Hamming distance between packets in a particular workload can be easily characterized, it is
relatively quick and easy to train a model with the specific Hamming distance characteristics
found in workloads of interest.

3.3 A Power Model for Constellation NoCs

We construct an architectural learning-based power model for NoC routers using the findings
presented above. Our model’s architectural parameters are

• P1: the number of input units in the NoC router
• P2: the number of ingress units in the NoC router
• V: the number of virtual channels per physical channel
• B: the number of bu↵er entries per virtual channel
• F: flit size (in bits)
• U1: Aggregate utilization rate across router input ports
• U2: Aggregate utilization rate across router ingress ports

and the model’s output is the router’s estimated power consumption. Hamming distance is
implicitly encoded; all training and evaluation data is constructed on tra�c with the same
average Hamming distance. We continue to use a variety of modeling techniques, as no one
technique yields the best performance.

3.3.1 Model Evaluation

When trained and evaluated on a train-test split, our model reports an average percent error
of 5.1% and an R2 of 0.97, indicating strong correlation between the model’s predictions and
the training dataset.

When trained and evaluated on the datasets presented in sections 2.1.1 and 2.1.2, our
model reports the statistics depicted in table 3.3.

Gradient Boosting Regressor SVM with RBF Kernel
MAPE 0.15 0.17
Max Error 0.79 0.78
R2 0.72 0.66

Table 3.3: Performance of our architectural learning model on realistic NoCs.
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On realistic NoC topologies injected with simulated tra�c, our model displays an average
percent error similar to models from prior work that were trained on annotated activity
factors and evaluated using a train-test split.

Model Shortcomings

Prior work using an SVM regressor with an RBF Kernel presented a maximum prediction
error of 20% [11]. In contrast, our model reports a significantly higher max prediction
percent error. This could potentially indicate that, as compared to annotated activity fac-
tors, simulated tra�c results in a greater diversity of power scenarios that cannot be fully
characterized by the model parameters we present.

Figure 3.10: Training dataset, evalua-
tion dataset, and model predictions ver-
sus ingress utilization rate.

Figure 3.11: Training dataset, evaluation
dataset, and model predictions versus in-
put utilization rate.

Figures 3.10 and 3.11 compare model predictions to the training and evaluation datasets.
To better reflect model inputs, the horizontal axes depict ingress and input utilization rates
scaled to unit variance after the mean is removed; this standardization is expected by many
machine learning estimators.

In Figure 3.10, we see a set of evaluation data points outside the range of the training
dataset. This indicates that our training dataset of router architectures, derived from prior
work, may lack coverage for smaller NoC designs. These smaller NoC designs are relevant
because, as depicted in the graph, they can still service relatively large utilization rates
since packets need only a few hops to reach their destination. In Figure 3.11, the model
significantly mispredicts the power consumption of evaluation datapoints between 1 and 2
mW. When examining the depicted training dataset, we see a decreased density of training
dataset points between 1 and 2 mW as compared to the 2 to 2.5 mW range, potentially
again indicating a lack of coverage in the training dataset.
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As an aside, we caveat this representation with the disclaimer that model predictions,
when accurate, obscure the underlying evaluation data point. This format, then, visually
emphasizes data-points with higher prediction error. We also acknowledge the evaluation
dataset does not cover the entire domain of the training dataset, particularly excluding higher
power consumption scenarios. This is intentional: although the model training dataset ought
to cover adversarial and edge-case power scenarios, we focus on evaluating our model in more
typical use-cases.

3.3.2 Model Usability

Despite the documented shortcomings, our power model for Constellation NoCs achieves
performance similar to prior work in architectural ML-based power models for NoCs, except
on realistic NoC designs.

Gradient Boosting Regressor SVM with RBF Kernel
Training Time (seconds) 0.27 0.76
Prediction Time (seconds) 0.11 0.39

Table 3.4: Model training and prediction time.

Table 3.4 depicts the time, averaged across 10 runs, needed to train and infer on the
modeling techniques used for our power model. We train and infer on a 32-core machine
with Intel Xeon Gold 6134 CPUs @ 3.2 GHz and 1.1 terabytes of RAM. In comparison, the
reference power tool takes approximately 2 days to generate the training dataset on the same
machine. The quick runtime of our power model makes it well-suited for high-level design
space exploration and iteration in pre-RTL development.
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Chapter 4

Heterogeneous NoC Router Power

Modeling

Introduced in chapter 1.1.1, heterogeneity in NoCs can be found at both the router and chan-
nel level. While the architectural power model for NoC routers presented in chapter 3 can
model the power consumption of NoC routers of varying architectural configurations, it as-
sumes that all input and ingress channels into a NoC router have identical micro-architectural
parameters. However, as presented in section 1.1.1, NoC routers with irregular channel con-
figurations may be necessary when designing heterogeneous NoCs.

Figure 4.1: An example heterogeneous NoC router. Input 0 has two virtual channels with
one and two bu↵er entries respectively, while Input 1 has one virtual channel with three
bu↵er entries.

Building a learning power model for heterogeneous NoC routers with varying per-channel
configuration requires providing the model with per-channel data. Unfortunately, there is
no immediately intuitive way to construct a model that predicts the power consumption
of a heterogeneous router in aggregate while allowing training data to be channel-index
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agnostic. For this reason, we decide to model the power consumption of router components
individually.

4.1 Router Power Consumption Decomposition

We begin by breaking down the power consumption of NoC routers into individual micro-
architectural components to identify router components that contribute significantly to a
router’s overall power consumption.

Figure 4.2: Power per-component for a
router in a large torus network

Figure 4.3: Power per-component for a
router in a large 2d mesh network

Figures 4.2 through 4.5 depict the power consumption per router component for NoC
routers of various configurations and in various topologies as a function of the router’s
utilization rate. Consistently, we see that power consumption is dominated by input channels
and ingress channels, with other router components consuming a negligible amount of power
given the amount of error typically found in architectural-level learning power models.

For ease of representation, our graphs revert to utilization rate aggregated across input
and ingress channels despite their di↵erent power consumption characteristics. This oversim-
plification explains sudden decreases in power consumption when utilization increases seen
on the presented graphs, as these drops represent cases where ingress unit tra�c comprises
a proportionately greater percentage of overall utilization.
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Figure 4.4: Power per-component for a
router in a butterfly network

Figure 4.5: Power per-component for a
router from the training dataset

Figure 4.5 graphs data collected from a NoC router with 7 input ports, each with 7
virtual channels. As expected, the power consumption for the router switch and virtual
channel allocator – both absolutely and relative to other components – are greater than in
Figures 4.2 through 4.4. However, power consumption remains dominated by the router’s
ingress and input units.

Thus, we believe that, to build an architectural-level learning model for Constellation-
based heterogeneous NoC routers, it is su�cient to accurately model the power consumption
of the router’s input and ingress channels.

4.1.1 Input and Ingress Unit Power Characteristics

To evaluate the di�culty of modeling ingress and input unit power consumption, we also an-
alyze the power consumption of ingress and input units with respect to their utilization rates.
Here, we specify utilization rate to mean the number of packets entering each individual unit
per cycle, on average.
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Figure 4.6: Input and ingress unit power
consumption in a line topology.

Figure 4.7: Input and ingress unit power
consumption in a large mesh topology.

Figure 4.6 depicts ingress and input unit power consumption for all routers in a small
line-topology NoC. As expected, power consumption is linear with respect to unit utilization
rate. When utilization rate is 0, power consumption for ingress and input units are nearly
identical because the credit system found in input units is inactive. However, for small
but non-zero utilization rates, such as 0.05, we see a significant discrepancy between ingress
and input unit power consumption, illustrating the significant power overhead of the credit
system. This di↵erence in power response also quantifies the need to separate ingress and
input unit utilization rates in the homogeneous router power model presented in section
3.2.1.

Figure 4.7 depicts ingress and input unit power consumption for all routers in a large
mesh topology. Similar to Figure 4.6, input unit and ingress unit power consumption are
similar at a utilization rate of 0, but quickly diverge as utilization rate increases. Unlike
Figure 4.6, however, Figure 4.7 depicts a range of power consumptions for input units with
similar utilization rates. This is likely due to complexities within the credit system, but even
when compounded, we believe it is unlikely this fuzziness in power response will result in
significant error when predicting power for a NoC router in aggregate.

4.2 Constructing a Heterogeneous Router Power

Model

Recognizing input and ingress unit power consumption dominates overall power consumption
within a NoC router, our heterogeneous power model estimates NoC router power consump-
tion by aggregating individual estimations of the power consumption of all ingress and input
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ports on the router. The heterogeneous model uses the same parameters as the homogeneous
model characterized in 3.3.

When attempting to model router-internal components other than ingress and input
units, we find model estimations are inaccurate and correlation between model predictions
and both the training and evaluation datasets are low. This indicates that our model pa-
rameters su�ciently capture power-relevant architectural features for input and ingress ports
but are insu�cient for modeling other NoC router components. However, since ingress and
input port power consumption dominate overall NoC router power consumption, we can still
accurately model router power consumption.

4.3 Component-specific Model Performance

Figure 4.8: Actual vs predicted power
consumption for NoC router ingress units.

Figure 4.9: Actual vs predicted power
consumption for NoC router input units.

When comparing model predictions against reference power consumption for NoC router
ingress and input units, we see that input unit predictions are less accurate as power con-
sumption increases – this is expected. The micro-architectural parameters considered by the
model do not clearly capture the behavior of the credit system used by input units, and higher
power consumption scenarios correlate with greater activation of crediting logic. Further,
since individual crediting logic is synthesized for each channel between NoC routers, model
parameters that capture the behavior of crediting logic would be micro-architectural specific
and require knowledge of, for example, the routing algorithm used by the NoC. Since the
architectural model is intended to be high-level, we choose not to include these parameters.
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Input Channel Predictor Ingress Channel Predictor
MAPE 0.08 0.01
Max Error 0.34 0.03
R2 0.82 0.99

Table 4.1: Performance of our architectural learning model built on a gradient-boosted
regressor on NoC input and ingress units.

In table 4.1, we see that ingress unit power consumption can be predicted more accu-
rately than input unit power consumption, again likely because of the crediting logic found
in input units. Since input and ingress unit power consumption dominate NoC router power
consumption in all tra�c scenarios, accurate modeling of input and ingress unit power con-
sumption likely leads to accurate NoC router power prediction. Further, the decomposition
of utilization rate as a per-channel metric, as opposed to an aggregate NoC router metric,
leads to more accurate power predictions.
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Chapter 5

Conclusion

In this thesis, we present our progress towards building an architectural-level workload-
aware power model for networks on chip. We specifically target pre-RTL exploration and
build a model that o↵ers an estimation of NoC power consumption solely using the NoC’s
architectural features and coarse metrics for the workloads expected to run on the SoC.
We evaluate our model on realistic NoCs of varying topologies and architectures to validate
model performance. Additionally, we present progress towards a NoC power model for
heterogeneous router architectures. We document the power breakdown of NoCs built on
Constellation and leverage our findings to build component-specific power models that can
be used to predict the power consumption of a channel-level heterogeneous NoC router.

Compared to prior work, we generate training datapoints for our ML-based power model
by simulating tra�c on the training dataset of NoC architectures. Instead of annotating
switching activity within the power estimation tool, power training data is gathered by re-
playing traces of tra�c on NoCs synthesized using the Intel 16 manufacturing process. Fur-
ther, while previous architectural power models o↵er static predictions for an architecture’s
power consumption, our model is capable of o↵ering workload-specific power estimations. For
application-specific NoCs, this makes the model’s predictions more relevant to the design sce-
nario of interest. If the NoC is not designed for a specific application, power predictions with
varying dynamic factors can be averaged to recreate a workload-agnostic prediction. Finally,
we generalize our power model to support per-channel heterogeneity. While prior work as-
sumes NoC router channels have uniform architectures, our heterogeneous power model is
capable of providing power estimations for routers with irregular channel constructions, such
as those that bridge NoC sub-networks of di↵ering performance levels.

While our heterogeneous model appears to accurately model NoC component power
consumption, its applicability for design space exploration appears reduced. Although per-
channel utilization rates can be extracted by running workloads on Constellation-generate
RTL, these metrics are di�cult to calculate pre-RTL. As manufacturing processes improve,
data movement has increasingly begun to dominate power consumption. The challenges of
characterizing this movement, in addition to identifying other data-relevant power modeling
parameters, indicates there remains an abundance of research opportunities for NoC power
modeling.
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