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Abstract

Smash: A Dictionary-Free String Distance Metric that Considers Acronyms,
Abbreviations, and Typos

by

Joshua Wu

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Aditya Parameswaran, Chair

String matching is the operation of identifying and matching similar strings according to a
similarity function or distance metric. It is a historically difficult problem that has many
real world applications such as data cleaning, entity deduplication, and search. Traditional
string distance metrics only consider either acronyms, abbreviations, or typos, but do not
consider all three together. Prior research has attempted to address string matching with
acronyms and abbreviations by leveraging a dictionary of generated synonyms. However,
this approach is limited because it must trade off between potentially leaving incorrect rules
in the dictionary or potentially removing correct rules during a refinement procedure.

We propose Smash, a new character-based string distance metric for applications in string
matching. We also propose an efficient dynamic programming algorithm that leverages
Smash and captures abbreviations, acronyms, and misspellings, three of the most common
data modifications in real world data. We evaluate our metric on real world datasets to show
that our metric’s accuracy outperforms that of state-of-the-art string distance metrics and
similarity measures. In particular, we evaluate Smash on police roster data from the NACDL
(National Association of Criminal Defense Lawyers) and show that it achieves the highest
F-score among different metrics on a police roster dataset as well as on other benchmark
datasets. We also show that Smash is practical to integrate into a data cleaning workflow.
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Chapter 1

Introduction

String data is ubiquitous in datasets across domains and often contains problematic incon-
sistencies due to human oversight. In this project, we worked with public defender datasets
from the National Association of Criminal Defense Lawyers’ for the purpose of cleaning the
data before it is ingested into their database of police misconduct. With police officer data
aggregated from sources nationwide, the wide range of sources alongside manual mistakes
in data entry results in many unwanted modifications to the string data to be ingested into
the database. For example, perhaps there are extra spaces in a value (“Sheriff’s Office”
vs. “ Sheriff’s Office ”), or the value is missing apostrophes where they should have them
(“Sheriff’s Office” vs. “Sheriff S Office”). In either of these cases, ingesting the data into the
database would be actively harmful because if a user makes a selection on “Sheriff’s Office”
or joins on the appropriate column, these other cases would not be included in the result
even though they are referring to the same entity.

Here, we will first discuss common problems the NACDL faced and potential solutions
we implemented. Then, we will turn our attention to focus on one specific difficult problem
of string matching.

1.1 Data Cleaning for NACDL Database Ingestion

The National Association of Criminal Defense Lawyers hosts the Full Disclosure Project, a
public database housing information for public defenders. They aim to make police infor-
mation more transparent, allowing lawyers to easily get access to any history of misconduct
for a particular officer. However, because of the various errors in their data, much manual
labor has to be expended to comb through and clean the data before it can be added to their
database. The NACDL approached us to help build tools that can help reduce the manual
labor required. They handed us a list of problems, and we were very quickly able to create
a simple application, seen in Figures 1.1 and 1.2, that addresses these issues one by one.

The following is a summary of the issues they have brought forward to us and our
approach to reduce the manual effort required in ingesting new data.
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Figure 1.1: Interface for our cleaner app

Figure 1.2: Sample warnings from our cleaner app

• Extraneous whitespace between words and around words: Automatically de-
tect and remove whitespace, modifying values.

• Missing apostrophes: Detect potential cases and output a warning with the sheet
name and value, does not modify values. For example, “Sheriff S Office” is likely an
incorrectly parsed version of “Sheriff’s Office.”

• Invalid phone numbers: Detect invalid phone numbers with a regex and output a
warning, does not modify values.

• Invalid emails: Detect invalid emails with a regex and output a warning, does not
modify values.
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• Certain columns need values to be distinct: Run a check on those columns and
output warnings, does not modify values. For example, we would not want there to be
multiple records that have the same id.

• Alias columns have extraneous values: Some records have both a name field (e.g
“John Smith”) as well as an alias field, which is a list of aliases for the same entity
(e.g [“Johnny”, “Mr. Smith”]). For each record, we make sure that the alias field does
not contain the main name nor any duplicate aliases that are just in different case,
removing these values if they exist. In the previous example, “john smith” and “mr.
smith” would be removed from the list if they were also present.

• Relation’s own external id present in fields where they do not belong: Remove
a record’s own external id from columns such as belongs to. For example, if a police
officer record’s external id field is 0 and reports to field is [0, 71, 53], then we would
want to remove 0 from the reports to field because it does not make sense to report to
oneself.

• Invalid external ids: Check that each referenced external id exists, and output a
warning if it does not.

• Name field exists but not first or last name: Automatically create first name and
last name columns, populating the values based on the name column; output warning
and leave cell blank if the name field does not contain a two-word string.

• Invalid dates: Verifies that dates are integers with 1 ≤ month ≤ 12 and days are
valid for the given month; ensures that the start date field for a record is less than or
equal to the end date field.

However, we soon realized that there was one problem that required the most amount of
human effort and was going to be the most difficult to solve: title matching. The rest of this
report will focus on addressing the issue of title matching, and more broadly, approximate
string matching.

1.2 The Problematic Case: Title Matching

The wide range of data sources from which the dataset was constructed alongside manual
mistakes in data entry resulted in multiple string variations for the same officer title. The
dataset may identify one officer as having rank “Lieutenant” and another having rank “Lt.”
In reality, both strings represent the same rank but one string has been abbreviated. This is
just one example of many in which the same entity is being represented by multiple different
strings because of data inconsistency.

The primary problem we tackle is cleaning a dataset with such inconsistencies. The
traditional approach is to have an expert expend many work days to create a dictionary of
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Figure 1.3: Some groups of equivalent police titles that get matched through running our
workflow

rules establishing equivalency between a string and its modified form, for example, having a
mapping from “Lt.” to “Lieutenant.” This process often takes days, according to the person
working with the data at a specific midwestern public defender office we worked with. To
automate part of the data cleaning process, we can look to string matching or approximate
string joins.

Approximate string join (ASJ) is an operation that identifies and matches similar strings
and is adopted in a variety of applications, such as data cleaning and integration, record
linkage, information retrieval, and recommendation systems [5, 2, 9, 21, 11]. In data cleaning,
ASJ can match similar strings from different data sources that refer to the same entity, which
improves data quality and reduces errors.

ASJ evaluates the similarity of two strings using a similarity function (e.g., Jaccard
similarity [18]) or distance metric (e.g., Levenshtein distance [19]). Two strings are regarded
as a match if their similarity score is higher than (or their distance metric is smaller than)
a user input threshold.

Real-world datasets pose significant challenges to accurately measure the similarity of
two strings since they include strings that use various forms of acronyms and abbreviations
to represent the same entities and have many typos due to human mistakes in data entry.
The police dataset includes a lot of acronyms (e.g., “school resource officer” vs. “sro”),
abbreviations (e.g., “deputy marshall” vs. “dpty mrsl”), and typos (e.g., “sergeant” vs.
“sargeant”). Several more examples of real equivalent titles we discovered in the police
officer dataset may be seen in Figures 1.3 and 1.4.

Traditional similarity measures, such as Levenshtein distance [19] and affine gap dis-
tance [3], only consider the scenarios that include typos or acronyms, but do not consider
the scenarios that involve acronyms, typos, and abbreviations together. We will discuss
previous work on similarity measures in detail in Chapter 2.
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school resouce officer sro
Short StringLong String

Acronym
Abbreviation-1
Abbreviation-2

Typo
Mixed-1
Mixed-2

deputy marshall dpty mrsl
dpty marshall deputy mrsl

inspector imspector
inspector ims

assistant park manager apmngr

Figure 1.4: Motivating examples for designing our metric

1.3 Our Approach

We propose Smash, the first dictionary-free string distance metric that considers typos,
acronyms, and abbreviations. Smash is able to effectively capture these cases without the
limitations of dictionary-based methods which we will discuss in Chapter 2. Given a long
and a short string, the intuition of Smash is that for every word in the long string, some
representation of it (the full word or its abbreviation) should appear as a substring in the
short string. Therefore, we first partition the short string into k substrings, where k equals
the number of words in the long string. The metric Smash is defined as the minimal
sum of the distances between each word in the long string and its corresponding substring.
The distance between a word and a substring will be computed based on a combination of
traditional measures, such as affine gap [3] or subsequence [20]. Next, we develop a novel
dynamic programming algorithm to compute Smash and extend this algorithm to consider
stop words (e.g., “in” or “at”).

We also introduce a new clustering workflow by creating an extension package introducing
the Smash metric to OpenRefine, an open-source data cleaning tool. Since Smash is good
at assigning a string and its acronym, abbreviation, or misspelled form to be close to each
other, OpenRefine clustering produces reasonably good clusters. This process allows users to
save time compared to manual standardization. The full specifics and an illustrative demo
can be found in Chapter 5.

Finally, our experiments on real-world datasets show that Smash outperforms traditional
measures and a state-of-the-art dictionary-based metric. Specifically, Smash achieves the
highest F-score out of all metrics we test on all four test datasets Large Disease, Small
Disease, Location, and Police Roster: 0.55, 0.89, 0.86, and 0.84, respectively. In
comparison, the next best F-scores on these datasets across different string matching methods
and a variety of thresholds are only 0.34, 0.83, 0.85, and 0.59, respectively.

In summary, our contributions are as follows:

1. A new string distance metric, Smash, that captures all three of abbreviations, acronyms,
and misspellings at once without the use of dictionaries.
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2. An efficient dynamic programming algorithm that implements the aforementioned met-
ric running in polynomial time.

3. An optional metric improvement in the form of stop words.

4. A new OpenRefine extension package and user walkthrough for how to use our metric.

5. Evaluation results on four real world datasets: Police Roster, Large Disease,
Small Disease, and Location against four benchmarks: Levenshtein, Affine Gap,
Jaccard, and pkduck showing both the practical speed and efficacy of our metric.

The rest of this thesis is organized as follows: In Chapter 2, we discuss the limitations
of prior work to understand why Smash is necessary. In Chapter 3, we provide some back-
ground on string matching and how Smash calculates the distance between strings. Then,
we explain the dynamic programming algorithm for computing the Smash metric and its
implementation details in Chapter 4. In Chapter 5, we discuss how the Smash metric is
implemented in OpenRefine and give a demo of the data cleaning process. We describe a
variety of experiments we conduct to assess Smash’s efficacy and their results in Chapter 6.
We briefly discuss potential improvements to Smash and other potential interesting lines of
work in string matching in Chapter 7. Finally, we conclude this report in Chapter 8.
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Chapter 2

Related Work

Various approaches to string similarity metrics exist, including character and token-based ap-
proaches [8, 17, 10], syntactic and synonym-based approaches [15, 16, 14, 13], and phonetic-
based approaches [6].

Character-based approaches use only the individual characters of the two strings to mea-
sure their similarity. For example, one of the most well known character based distance
measures is Levenshtein distance or edit distance [19]. This metric measures the similar-
ity of two strings by counting the minimal number of insertions, deletions, or substitutions
required to edit one string to match the other.

Although Levenshtein distance is still widely used in applications to this day and easily
captures small typos, it is especially ineffective in capturing acronyms. In practice, clustering
using Levenshtein distance will match acronyms not with the correct longer string, but rather
with other short words. This happens because it could take many deletions to get from the
long string to the short string compared to a few substitutions to get from one short string
to another.

An alternative is the Affine Gap distance metric [3], which modifies edit distance by
assigning a smaller penalty to continuous insertions or deletions compared to the initial in-
sertion or deletion. Figure 2.1 gives a visual example of how it is computed. This formulation
is good at capturing acronyms since the characters that follow the first letters of each word
in the longer string are treated as “gaps” in the shortened string and are penalized at a

i n s  p 

i m s - 

e c t o r

- - - - -
A Gap with length 6 
Delete 6 charaters 

Short String

Long String

Substitute n with m 

Figure 2.1: An example that showcases the affine gap distance
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Useful rule:     sro => school resource officer
Useful rule:     dpty mrsl => deputy marshall
Useful rule:     cor off => corrections officer
Harmful rule:   cor off => community resource officer
Harmful rule:   cor off => conservation officer

Useful rule:     sro => school resource officer
Useful rule:     dpty mrsl => deputy marshall

Refine

A Subset of Candidate Rewriting Rules

Figure 2.2: A subset of rewriting rules generated by pkduck [15] for police officer title data

discount. In practice, however, the out-of-the-box Affine Gap metric does not apply to our
problem in cleaning the police roster dataset, due in large part to abbreviations. Because
abbreviations can take characters from any position in the longer string in addition to the
first letters, gaps would oftentimes not be long enough to benefit from the discount, resulting
in a string and its abbreviation having a large distance.

Other methods in the literature include token-based approaches where each string would
be split into tokens of 1 or more characters, and those tokens would then be compared to
measure distance. For example, the Jaccard [18] method splits each string into a set of
n-grams and then takes the proportion of the size of the intersection of both sets over the
size of the union of both sets. Both character-based similarity and token-based similarity
approaches have also been labeled as syntactic similarity approaches, because they use only
some combination of the characters found in the two strings to determine distance.

Like Levenshtein however, Jaccard is unable to capture acronyms. For example, the
bigrams “sr” and “ro” from “sro” appear nowhere in the set of bigrams formed from “school
resource officer.” Even the high performing fuzzy matching algorithms such as FuzzyED
[17], which combine characteristics from both edit distance and Jaccard, fail to capture
all acronyms since neither edit distance nor Jaccard can capture acronyms that are highly
condensed, and, at the same time, do not share tokens with the longer string.

In contrast to syntactic similarity, much research has also been focused on semantic
similarity, which seeks to rank the similarity of strings based on their meaning. These
approaches often store rules for rewriting a shorter string to a longer string (e.g., “sro” →
“school resource officer”). To evaluate the similarity of two strings, this line of research
adopts a semantic dictionary to rewrite the two strings and adopts Jaccard similarity or its
variant to compute the similarity.

We opted not to explore synonym-based approaches because of three main reasons. First,
the target datasets which we intend to clean largely contain strings consisting of individual
words or short phrases. As such, there is not as much opportunity to use the rules to replace
one word with another. Consequently, there is not as much benefit to be gained from the
synonym rules. Besides, if there were many opportunities to use the rules, we would more
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or less already have what we desire: a ground truth dictionary mapping each word to its
modified form! Such a dictionary would likely have to be manually constructed, however,
which brings us back to the original problem. The second reason is that synonyms are
often collected from data freely available on the web, while we are working in a low data
environment. Even if it would be helpful to have certain rules for multi-word strings, it
is not guaranteed that we can even find them due to the nature of how arbitrarily these
acronyms and abbreviations are created. We could scrape the web and fairly easily discover
a rule mapping “VLDB” to “Very Large Data Bases,” for example, but will likely fail to find
anything suggesting that “apr” is equivalent to “Assistant Park.”

However, the synonyms do not necessarily have to be manually constructed or scraped
from the web. There exist dictionary-based approaches that can generate their own dictio-
nary of synonyms [15]. Even if this is the case, there is a more fundamental limitation to
dictionary-based approaches: one short string may map to multiple long strings, which sig-
nificantly reduces the precision, but refining the dictionary may wrongly delete useful rules,
leading to a low recall score. Consider the example in Figure 2.2, which shows a subset of
rewriting rules that are generated by a state-of-the-art dictionary-based approach, pkduck,
for the police officer title dataset before and after the refinement. pkduck generates candi-
date rewriting rules based the the longest common sequence of each pair of strings, where
a short string maps to many long strings. For the example in Figure 2.2, “cor off” maps to
“corrections officer”, “community resource officer”, and “conservation officer”. But the latter
two rules are incorrect because “cor off” should only map to “corrections officer”. Therefore,
they adopt several refinement rules, where one refinement is to discard the rewriting rules if
the ratio between the number of consonants of the short and the long strings are smaller than
a pre-defined threshold (0.6 by default) based on the assumption that an abbreviated short
string should include a large fraction of consonants from the long string. This refinement
rule, while discarding the harmful rules, will also discard the useful rules (e.g., “cor off” →
“corrections officer” in Figure 2.2 is discarded because its ratio is 4

11
= 0.37 and smaller than

0.6). Note that pkduck uses a guardrail rule to ensure the acronym rules are maintained
(e.g., “sro” → “school resource officer”).

Finally, phonetic-based approaches seek to match strings by how they sound. These
approaches have merit in easily catching typos that people can make naturally by confusing
homophones for example. However, it isn’t hard to see how the phonetics for an acronym or
abbreviation could be vastly different from those of the original string, not to mention that
many acronyms would be difficult to fit an accurate pronunciation to in the first place. For
these reasons, we opt to explore a character-based approach.
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Chapter 3

String Metrics

We will begin by introducing some definitions to formalize the problem. Then, we will
explain Smash, our new string distance metric.

3.1 Problem Formulation

We define a string s to be a sequence of characters where s[i] refers to the ith character of
s and s[i, j] refers to the substring of s from the ith character to the jth character. For
example, if s1 = “Police Officer”, then s1[7] = ‘O’. Note that the space is not skipped. We
define a modification as any operation which changes the characters in a string. We refer to
entities as real world concepts which are represented by strings. Multiple strings may refer
to the same entity in a given dataset, and entity resolution is a primary goal of data cleaning
in the context of this report. We also define string clustering as the process by which similar
strings are grouped into clusters according to a string distance metric.

Our dataset cleaning problem can be split into two parts: the clustering algorithm C
and the string metric m. The objective is to design m such that clustering with C and m
produces as many clusters containing strings that all refer to the same entity as possible.
We additionally want to minimize the number of incorrect clusters to make the process as
straightforward as possible for the user, since the end goal is to maximize the time the user
can save by using m over manually constructing the ground truth.

In this paper, we will not focus on C; we only focus on m. In Section 5 where C
is applicable, we use k-means clustering. We want to design m such that the distance
d = m(s1, s2) is minimized if s1 is a modified version of s2, both referring to the same entity,
and maximized otherwise. In this project, the modifications we focus on are abbreviations,
acronyms, and misspellings. This way, if s1 is an abbreviation of s2 for example, they are
likely to be close according to m and thereby put in the same cluster. If the two strings are
unrelated, it is unlikely that there will be a cluster grouping them together.
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Long String

m tokenized words

m substrings, n charaters

Short String

Figure 3.1: The intuition for capturing acronyms, abbrevia- tions, and typos between two
strings

3.2 Our Similarity Metric

The new Smash metric is designed with the goals outlined in the previous section in mind
and addresses a shortcoming in existing work: the lack of a metric that can simultaneously
capture abbreviations, acronyms, and misspellings.

The core intuition behind the algorithm is that for every word in the longer string, some
representation of it should appear as a substring in the shorter string. This intuition actually
comes from our desire to capture abbreviations and acronyms. Figure 3.1 visualizes this
intuition. We found that for acronyms, the first letter of each word would be taken to form
the acronym: “School Resource Officer” −→ “SRO”. On the other hand, for abbreviations,
the first letter along with some other subsequence of characters of each word would be taken
to represent that word in the abbreviation. One example is “Assistant Park Manager” −→
“APrMngr”.

We represent the longer string as a sequence of words and the shorter string as a sequence
of characters. At a high level, the algorithm will match each word in the longer string
to contiguous substrings of characters in the shorter string. For each of these pairings,
it computes a distance based on the rules explained below and returns the sum of these
distances across pairs.

The distance between a word w from the longer string and a substring s of the shorter
string is defined as follows:

• If their first letters of w and s don’t match, return a large number to signify no match.
Once again, we do this because we know that acronyms and abbreviations will both
have the first letter of each word in the short form. Unfortunately, our metric is less
resilient to typos that occur in the first letter of a word as a result.

• Otherwise, if either w or s is a subsequence of the other, return 0. We do this because
it would satisfy the conditions of being an abbreviation: both the first letter and some
subsequence appears in the shortened string.
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• Finally, the base case is to simply return the affine gap distance [3, 1] between w and
s. We opt to use affine gap over Levenshtein because we still want to capture near
abbreviations and acronyms. This choice makes the metric more resilient to certain
typos. As an example, imagine if “ins”, an abbreviation for “inspector”, was misspelled
“ims”. In this case, to get from “inspector” to “ims,” we would make one substitution
“m” → “n” and six deletions for “p” through “r.” The affine gap metric is able to
discount the removal of “pector,” making it more likely to capture this case than
standard edit distance.

One final addition we made to the metric was adding a functionality to skip words,
specifically short words or words added to the stop words list as discussed in Section 4.3. If
we did not implement word skipping, pairs like (“Special Agent in Charge”, “sac”) would
not be matched because there is no “i” corresponding to “in” in the short word. Cases of
suffixes that do not change the entity the string refers to such as “mci3” not having a second
“i” to match with “Motor Carrier Inspector III” are similarly problematic. If we have the
option to skip short words when necessary, a lot of these additional cases are captured.

Section 4 describes the algorithm that is used to implement this metric in code and goes
into more detail on certain aspects of the metric.
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Chapter 4

The Algorithm

We present a dynamic programming algorithm with the following substructure to efficiently
calculate the Smash metric:

score(s1[1, k], s2[1, p]) = min(

dist(s1[k], s2[p
′, p]) + score(s1[1, k − 1], s2[1, p

′]) for p′ in [1, p]) (4.1)

Here, dist refers to the distance calculated according to our rules and score(s1[1, k−1], s2[1, p′])
is the call to the subproblem whose results are precomputed and memoized.

The algorithm is implemented with two main functions. The smash function primarily
does preprocessing on the input strings s1 and s2 then calls the dp function. Notably, we
make sure that s1 is always the longer string and s2 is the shorter string. The dp function
is defined to return the distance between the s1 to the kth word and the s2 up to the pth
character, so the smash function calls dp with the arguments k=number of words in s1,
p=number of characters in s2.

The base cases for the dp function are when k or p are 0. If they are both 0 (empty string
matched with the empty string), then we return 0. If only one is 0, then we have part of one
string being matched to the empty string, so we just count that as not a match and return a
large number. After checking for base cases, we first initialize the distance to be infinity or
make another call to dp if the kth word can be skipped. This way, if no shorter distance is
found that includes the kth word, the distance without it is returned. Next, the algorithm
essentially loops to finds the best way to match the kth word of s1 to a substring of s2 that
ends at the pth character by selecting the match resulting in the lowest total distance. We
do not limit this substring to be up to the same length as the word, allowing the algorithm
to search to the beginning of s2 to start this substring. The objective is to find the best
point to start this substring such that the sum of the distance between the substring and the
kth word and the distance between everything that comes before the substring and all the
words that come before the kth word is minimized. The latter comes from the recursive step
and is memoized. The former is calculated as explained in Section 3.2. The total distance
is calculated by the sum of these two values and the returned value of the dp function is the
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Figure 4.1: Visualization of three iterations of the step-by-step process in the loop of the
Smash algorithm.

smallest distance found across all starting points for the substring. Pseudocode for the two
functions is provided below and a visualization of the algorithm is provided in Figures 4.1
and 4.2.
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Figure 4.2: Continuation of previous visualization: cached results are used when k advances.

Algorithm 1 smash

Input: Strings s1 and s2
Output: distance between them
s1, s2 = trim(lower(s1)), trim(lower(s2))
if length(s2) > length(s1) then

s1, s2 = s2, s1

if s1[0]! = s2[0] then
return ∞

arr1, arr2← arrays containing the words in s1, s2
if both arrays have a suffix then

remove last word from arr1 and s2
add spaces to the end of each word in arr1
return dp(length(arr1), length(s2))

4.1 Proof of Correctness

Proof. We will prove the correctness of the Smash algorithm through induction.
Base case: The base case is when p = 0 or k = 0. If both of them are 0, then we should
return 0. We can think of this case as the algorithm having just matched the last word
in str1 to the last set of characters in str2 in which case there should be no additional
penalty. Alternatively, we can think of it as matching an empty word to the empty string
which should trivially get a distance of 0. If only one of p or k is 0, however, we should
return a large number to signify that there was not a match. If p is 0 and k is not, then
all of the characters in str2 have been used up in matching to words in str1, but there are
still words left unmatched. If k is 0 and p is not, then all of the words in str1 have been
matched to a substring of str2, but there is still a substring of characters in str2 that has
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Algorithm 2 dp

Input: Integers k and p
Output: the distance between s1 up to the kth word and s2 up to the pth character
if k = 0 ∧ p = 0 then

return 0 (base case)

if k = 0 ∨ p = 0 then
return ∞ (base case)

word← arr1[k]
rest← s2[: p]
substr ← “”
if we can skip the current word because it is short or in an ignore list then

mindist← dp(k − 1, p)
else

mindist←∞
while p ̸= s2[0] do

move p one character to the left
if we can ignore p (e.g. if p is punctuation) then

continue
substr ← p+ substr
if word[0] ̸= substr[0] then

value←∞
else if substr is a subsequence of word or vice versa then

value← 0
else

value← Affine Gap Distance between word and substr

if arr1[k − 1][0] = rest[p] then
mindist← min(mindist, value+ dp(k − 1, p))

else
skip making the recursive call

return mindist
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not been matched to any word. In either of these cases, it would be best to return a penalty
representing a “no match.”
Inductive hypothesis: Assume that for all p and k up to an arbitrary p = p′ and k = k′,
the dp function will return the correct distance between the first k words of str1 and the
first p characters of str2.
Inductive step: We will prove that the hypothesis holds for p = p+ 1 and k = k + 1.

p + 1 case: We will show that dp(k, p + 1) will return the correct result. If word k
can be skipped, the distance is initialized to dp(k − 1, p + 1) which ends up being another
version of the p+1 case or the base case if k reaches 0. In the loop, we calculate mindist =
min(mindist, value + dp(k − 1, p′)) for p′ < p + 1, where value is the distance between the
kth word and the substring from p′ to p + 1. We know value will be correct because it is
calculated through the rules we define. dp(k− 1, p′) will also be correct because p′ will range
from 0 to p, all of which are covered under the inductive hypothesis. For each iteration of the
loop, the total distance found will be the sum of the two distances and thus also be correct
according to how we defined the metric. Finally, dp(k, p + 1) will return the minimum of
these correct distances and thus also yield the correct distance between the k words and
p+ 1 characters.

k+1 case: We will show that dp(k+1, p) will return the correct result. If word k+1 can
be skipped, the distance is initialized to dp(k, p) which is a correct distance by the inductive
hypothesis. In the loop, we calculate mindist = min(mindist, value+ dp((k+1)− 1, p′)) =
min(mindist, value + dp(k, p′)) for some p′ < p, where value is the distance between the
k + 1th word and the substring from p′ to p. We know value will be correct because it
is calculated through the rules we define, and dp(k, p′) yields a correct result through the
inductive hypothesis. dp(k+1, p) will return the minimum of the sums between these correct
distances, thus also yielding a correct distance between the k+1 words and p characters.

4.2 Complexity Analysis

The time complexity of dynamic programming problems can be expressed as the number of
unique subproblems times × time taken per state. For Smash, each subproblem is defined
as finding the distance between s1 up to the kth word and s2 up to the pth character. If s1
has m words and s2 has n characters, then the total number of subproblems is mn.

For each subproblem, in the worst case, the algorithm must scan through the entirety
of s2 in the while loop, until p becomes the first character of s2. Appending to substr and
checking the first characters are constant time operations. Checking whether one substring
is a subsequence of the other is linear in the length of the larger of the two inputs. The affine
gap algorithm is linear in the length of its inputs. In the worst case, the input to the affine
gap algorithm would be the entirety of s1 and entirety of s2, so O(mn). Thus, the overall
runtime complexity is O(mn× n×mn) = O(m2n3).
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4.3 Stop Words

A problem that may occasionally occur in string matching is when a word appears in one
modification of a string but is completely absent in the other. Examples include suffixes (e.g.
“Motor carrier inspector III” vs. “mci”) or common words such as “the” (e.g. “transient
osteoporosis of the hip” vs. “toh”). In these cases, we can simply choose to “ignore” such
short words by creating a branch in the algorithm that explores the path in which that word
is skipped, essentially matching it to nothing. However, what if it is a longer word that is
missing from the modified form? We can know “123 Detective Squad” to be equivalent to
“123DET”, but the word “Squad” is not represented at all in the abbreviation.

To address the problem, we introduce a list of stop words: we can have a list of words
such that if any word appears within the list, we are free to skip that word, essentially
matching it to the empty string within the modified representation. In the following section,
we discuss the integration of Smash in the data cleaning software OpenRefine [12]. We have
additionally found that it is possible to modify OpenRefine such that it can generate and
append to a stop word list from user actions: if the user manually standardizes “AUD&ACC”
to “Audits & Accounts Section”, for example, we will be able to recognize that “Section”
does not appear in the modified representation and thus does not contribute to the meaning
of the string in a way that impacts its equivalence to its modification. Thus, we then add
“Section” to the stop words list so that next time it may be skipped.
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Chapter 5

Integration with OpenRefine

To investigate the practical applications of Smash, we created an extension package for
OpenRefine [12], an open source data cleaning software. The extension allows users to select
Smash as one of the metrics for clustering string values in OpenRefine. In this section, we
will discuss implementation details and present a walkthrough detailing how a user would
use our algorithm to clean string data in OpenRefine.

5.1 Implementation

We create a Java file that containing a single class that implements the algorithm in Sec-
tion 4. OpenRefine has an internal interface SimilarityDistance which we implement with
our class. In the controller.js file within the extension package, we add Smash to the inter-
nal DistanceFactory object to ensure that it shows up in the dropdown menu. We finally
package everything into the file structure OpenRefine desires for their extensions.

To implement the stop words list update, we directly edited the MassEditOperation.java
file in the source code such that whenever a mass edit occurs, we call a new function
updateIgnoreList with the old string and the new string. This function determines whether
the stop words list, which we have implemented as a simple text file, should be updated. If
so, the function writes the word to ignore to a new line in the file.

5.2 Demo

To begin cleaning with OpenRefine, the user will first create a project from the dataset they
wish to clean. After creating a new project, users can then cluster values of a specific column
by clicking on the arrow next to the column name, going to “Edit cells,” and then clicking
“Cluster and edit.”

As seen in Figures 5.1, 5.2, using the default methods does not produce very useful
clusters for the police roster dataset we are using for demonstration. Many of them produce
an extremely limited selection of clusters, while Levenshtein especially tends to just group
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Figure 5.1: Found clusters using the key collision method and fingerprint as the keying
function

the shortest titles together. We can change the distance metric to Smash if the extension is
installed by selecting it from the dropdown with the nearest neighbors method selected.

Figure 5.3 shows some of the initial clusters produced by using nearest neighbors clus-
tering with Smash. OpenRefine lists the largest clusters at the top so they are more likely
to contain incorrect equivalencies. Users will scroll toward the bottom where the finer grain
clusters are located and check the boxes next to clusters they would like to merge along the
way. By default, OpenRefine assigns the most common string in the cluster as the name for
the new group, but the new name can be manually edited as the user wishes. Once the user
is done picking clusters, they will click the “Merge selected & re-cluster” button. This will
standardize every value in each cluster to the value entered as the name of the group and
then generate new clusters. Cleaning the data is often an iterative process and the user may
have to re-cluster multiple times. To get more or different clusters to show up, users can
also use the interactive bars to the right or change the radius. We recommend users to start
with a small radius (radius ≈ 1.0) and increase the radius after merging all desired clusters
should they desire to find more clusters.

It is possible that there are still equivalent strings that have not been captured by the
clustering process. In this case, users are able to open text facets for the column by clicking
the arrow next to the column name, going to “Facet,” and clicking on “Text facet.” Figure 5.4
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Figure 5.2: Found clusters using nearest neighbor clustering with Levenshtein distance

shows the box that appears upon opening text facets. If the user wants to change “Dpty
Chf” to “Deputy Chief”, they can do so by clicking edit and entering the desired value. If the
stop words list is implemented, this action will cause any “ignored” words to be appended
to the list.

Finally, users can revert to any point in their edit history in the “Undo / Redo” tab.
They can also extract all changes, including those applied through the text facets feature,
up to their current point in the edit history as a json object. This json can be saved and
reused later to repeat operations on a different dataset.
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Figure 5.3: Found clusters using nearest neighbor clustering with Smash distance
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Figure 5.4: Text facet interface in OpenRefine
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Chapter 6

Experiments and Results

6.1 Experimental Settings

We evaluate Smash on four different real life datasets:

1. Police Roster contains 31,516 rows of police officer data with 154 distinct values
for “Title” column. Police Roster is the same dataset of police officer titles that
has been mentioned in previous sections. We have manually constructed a ground
truth for this dataset. However, not every string in the dataset has a modified form,
so the ground truth only contains the modified forms present in the dataset and their
corresponding standard forms. We also use this dataset as a motivating example for
adopting our OpenRefine workflow in Section 5.

2. Large Disease contains 405,543 rows of medical data relating to disease. Each row
has a short form of the medical term, its corresponding long form, and some additional
metadata. There are no misspellings in this dataset, but it includes many acronyms
and abbreviations.

3. Small Disease contains 634 distinct disease names along with their short forms. Like
the Large Disease dataset, it contains acronyms and abbreviations.

4. Location contains 112,394 distinct location names (street names, city names, etc.)
that were collected by Tao et al. [15] from 7,515 tables crawled from Data.gov. The
authors sampled approximately 5% of these strings (5677 distinct strings) and manually
paired strings that referred to the same location to construct a ground truth dataset
containing 116 equivalent pairs of location names. It should be noted that this dataset
contains some equivalencies that are not in line with our task of cleaning string data
that has primarily been modified by acronyms, abbreviations, and misspellings. We
will touch upon this note again in future sections.

As seen in Figures 1.3, 6.1, 6.2, and 6.3, which show some sample strings from the above
four datasets, both abbreviations and acronyms are common across all four datasets.
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Figure 6.1: Sample longform and shortform string pairs in Large Disease

Figure 6.2: Sample similar string pairs in Small Disease taken from the pkduck paper

Figure 6.3: Sample similar string pairs in Location taken from the pkduck paper
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6.2 Evaluation Against Baselines

We begin evaluation by comparing against three baseline metrics described in Section 2:
Levenshtein, Affine Gap, and Jaccard. For Affine Gap, we use the default parameters of
matchWeight = 1, mismatchWeight = 11, gapWeight = 10, spaceWeight = 7, and
abbreviation scale = .125. For Jaccard, we use n-grams of 3.

We will briefly return to the motivations behind the Smash algorithm: the need for a
general purpose algorithm that can clean messy string datasets. With this in mind, a good
metric would be one that makes the workflow easy for the user when integrated into their
data cleaning process such as discussed for OpenRefine in Section 5. In OpenRefine, the
user is presented with possible clusters depending on how close the strings are to each other.
Then, any modified forms of a string should ideally be closer to the correct string than any
other strings such that the user would be presented with clusters containing the string and
its modified forms with minimal tweaking from the user.

We now present the capture counts metric for evaluation with the above reasoning as
motivation. First, we define a longform as an unmodified string, and a shortform as a
shorter modified form of the corresponding longform string. For a given dataset with defined
longform and shortform pairs, we compute the full distance matrix containing the pairwise
distances between strings. Then for each shortform, if the correct longform appears in the set
of k closest words, then we count that shortform as “captured.” In practice, we sampled 500
rows from Large Disease five times and averaged the results across trials. In Figure 6.4, we
show the capture counts for a few metrics, varied across k. As we can see, Smash performs
far above existing common distance metrics in this regard. Even at k = 1, Smash captures
nearly 300 shortforms, meaning that out of the 500 shortforms, over half of them have the
correct longform as the closest word according to Smash.

Next, we will look at the runtime performance. First, we sampled some amount of rows
from Large Disease. Then for every metric, we time how long it takes to compute the
distance matrix on the sampled shortforms and longforms. Figure 6.5 shows the runtime
across number of sampled rows. While it is asymptotically more complex, in practice, Smash
ends up taking similar time to run as affine gap.

We also investigated how the runtime scales with word length. In the next experiment,
we again sample 500 rows from Large Disease and compute the distance matrix. For each
comparison, we keep track of the length of the longer string and how long it took to do the
comparison. For each length, we average the runtimes of the comparisons and further average
the results across 100 trials with different sampled rows. Figure 6.6 displays the results of
this experiment. While the other three metrics display a clear trend in how their runtime
varies across word length, has a very noisy and jagged graph. We believe the jagged trend
can be explained by the different heuristics we have included into the algorithm, allowing
many comparisons to stop short regardless of their length.
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Figure 6.4: Comparison of Smash, Jaccard, Levenshtein, and Affine Gap using the capture
counts metric defined earlier on the large disease dataset

6.3 Evaluation Against State-of-the-Art

Next, we test Smash against the pkduck algorithm from [15]. The pkduck metric is a
synonym based approach that is rather unique in that it generates its own dictionary of
synonyms based on finding the longest common subsequence between a pair of strings and
checking whether it is a close match to the shorter of the two strings. In the paper, the
authors run experiments on the Small Disease and Location datasets, recording the
precision, recall, and F-Measure. These measures also make sense to compare in the context
of our OpenRefine workflow because high recall would indicate higher chance of users seeing
correct matches, and high precision would indicate lower chance of seeing incorrect matches,
reducing the time spent sorting through matches. We compiled their best results on the two
datasets from the paper and compare them against ours in Table 6.1. We have a threshold
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Figure 6.5: Runtime comparison with sampled rows from the large disease dataset

distance below which any string is counted as a positive. We then count the true positives,
false positives, and false negatives for each string to calculate the statistics and select the
threshold producing the highest F-Measure. In Table 6.1, we can see that Smash has a
higher F-score than pkduck on both test datasets.

Rule Refiner

To corroborate the validity of our results above, we next decided to manually label the ground
truth for Police Roster and run both Smash and pkduck on the labeled Police Roster
dataset. To our surprise, pkduck performed rather poorly, so we decided to investigate why
pkduck was missing cases that it should theoretically capture. For example, it was missing the
rule that “Dmrsl” maps to “Deputy Marshall” despite the former being a direct subsequence
of the latter. We found that the culprit was the rule refiner that they implemented as part



CHAPTER 6. EXPERIMENTS AND RESULTS 29

Figure 6.6: Runtime comparison across word length with sampled pairs from the large disease
dataset

Precision Recall F-Measure Precision Recall F-Measure
(disease) (disease) (disease) (location) (location) (location)

pkduck 0.99 0.72 0.83 0.46 0.55 0.5
smash 0.90 0.88 0.89 0.95 0.78 0.86

Table 6.1: Comparison of Smash against pkduck on the Small Disease and Location
datasets
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Precision Recall F-Measure Precision Recall F-Measure
(Refiner on) (Refiner on) (Refiner on) (Refiner off) (Refiner off) (Refiner off)

θ = 0.7 0.83 0.33 0.48 0.73 0.50 0.59
θ = 0.8 0.83 0.25 0.38 0.72 0.43 0.54
θ = 0.9 1.00 0.25 0.40 0.79 0.43 0.56

Table 6.2: Comparison of pkduck refiner on Police Roster

of pkduck.
The rule refiner is put in place to filter out any unlikely rules that were generated

by the LCS process. Some examples they use in the paper are “ay” = “dictionary” and
“ia”=“information”. How it works in practice is that they check that the ratio of number
of consonants in the short form to number of consonants in the long form is greater than or
equal to 0.6. This explains why the previously mentioned case was missing from the rules in
the dictionary. We decided to compare the performance of pkduck on the Police Roster
dataset with the refiner on and off. As seen in Table 6.2, it achieves slightly higher perfor-
mance without the refiner on Police Roster. However, turning the refiner off does lower
precision, as the dictionary is populated with incorrect rules. For example, we saw “cor off”
= “conservation officer” and “sro” = “supervisor” were rules in the dictionary when their
correct matches should be “corrections officer” and “school resource officer”, respectively.

This example highlights the brittleness of dictionaries and gives some theoretical justi-
fication for taking a character-based approach like Smash as opposed to a synonym-based
approach to string metrics. Empirically, it can be noted that Smash outperforms pkduck
whether or not the refiner is turned off. For future experiments, we leave the rule refiner
turned on.

6.4 Further Experiments

Tuning Jaccard

It should be noted that while the authors of the pkduck paper found the best performance
of Jaccard on Location to have F-score=0.3 with θ = 0.7, we found that by increasing the
cutoff to 0.6 and using n-grams of size 3, it is able to achieve statistics of p=0.94, r=0.83,
and F=0.88 which outperforms Smash. However, as noted earlier in this section, we found
that the data in Location does not fully reflect the problem we try to solve with Smash.
The cases that Smash does not capture in this dataset can be summarized as follows: 1.
extra word ex. “south blue island” vs “south blue island avenue”, and 2. rearranged words
“b ave suite” vs “ave ste b”. The first case can be remedied through our stop words list
as explained in Section 4, while the second case is out of scope for now. Furthermore,
Jaccard’s performance on the Small Disease dataset, which moreso contains data in line
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with Smash’s intended use, is capped at F-score ≈ 0.1.
We decided to do further investigation on Jaccard following its somewhat surprising

performance on the Location dataset. Firstly, we note that it may be unreasonable to
expect the users to tune the metric’s threshold for each individual dataset but rather use some
common threshold that should work around equally as well across datasets. We found that
while Jaccard’s performance can vary wildly across different threshold values and datasets,
Smash performs reasonably well across a wider range of settings. For future experiments,
we will select the threshold T = 1 as the threshold for Smash, as we find that using T = 1
rather than the dataset optimal threshold does not result in a significant loss in performance
on any of our four test datasets. For Jaccard, we use T = 0.3 as it is the best performing
threshold from the pkduck paper.

Secondly, we have earlier selected n-grams of size 3 for Jaccard. This was because n = 3
allowed for the best performance on the Large Disease dataset when testing with the
capture counts metric. However, we later found that using n = 1, or character-wise Jaccard,
allowed for higher performance on both Small Disease and Police Roster when using
a threshold of 0.3.

Finally, while we were using Jaccard with n-grams, it is very common to use word-
wise Jaccard, where the tokens are the words within a string rather than n-grams. In
fact, this is what the pkduck paper used for Jaccard in their experiments. We thought
it would be beneficial to test word-wise Jaccard because there are some settings where
it may outperform character-wise Jaccard, such as the Large Disease datasets where
strings that have many words are a more common appearance (“Toll-IL-1 receptor domain-
containing adaptor-inducing IFN-beta” vs. “toll/interleukin-1 receptor domain-containing
adapter-inducing interferon beta” for example). The performance of Jaccard under these
conditions can be found in Figure 6.3.

Comparison against LLMs

Recent advances in large language models, such as ChatGPT and the GPT-3 model Chat-
GPT is built on [4], have the potential to significantly enhance the task of cleaning string
data. In this section, we finally compare the efficacy of string matching with LLMs to that
of Smash.

First, we attempt to use the ChatGPT interface to generate matching string pairs from
a list of assorted longforms and shortforms. To prompt the model, we first instruct it of
its task: “I will give you a list of strings. Can you tell me which of them are equivalent?”
and optionally include some example inputs and outputs. We gain a few insights from this
procedure. Figure 6.7 shows an instance of successful string matching. We sample 50 random
shortform-longform pairs from Large Disease, shuffle them, and then provide them as the
list of strings to ChatGPT. The model’s output includes 44 matched pairs, of which 42 are
correct.

However, our experiments also show that ChatGPT is extremely unreliable, especially
when the number of input strings grows larger. For example, when attempting to feed
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Figure 6.7: Most successful example of ChatGPT string matching

Figure 6.8: ChatGPT only outputs a few correct pairs

Small Disease as the input list of strings to ChatGPT, Figures 6.8, 6.9, and 6.10 showcase
the common outputs. The model will sometimes output only a few correct strings. Most
commonly, it will output some explanation for why the task cannot be done without further
context, and rarely, it will completely fail and assert that all of the strings are referring to
distinct entities.

Because of ChatGPT’s unreliability, we will instead turn our attention elsewhere for the
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Figure 6.9: ChatGPT avoids the task

Figure 6.10: ChatGPT outputs something completely untrue

remaining experiments. We introduce GPT for Sheets [7], a ChatGPT extension for Google
Sheets. GPT for Sheets includes a GPT MAP function that uses the text − ada − 002 −
embeddings model under the hood. It would make sense for us to compare against this
model because the latent embeddings of these LLMs likely contain some semantic insights
about how words and potential modified forms of those words would relate to each other.

The GPT MAP function finds the k closest longforms for each shortform and optionally
outputs a similarity score between 0 and 1 for each shortform longform pair. By turning
similarity scores on and setting k = len(longforms), we can compute the full distance matrix
using the embeddings model and find precision, recall, and F-score using a threshold as usual.
The results can be found in Table 6.3. It should be noted that the optimal threshold for the
GPT-based metric varies wildly across datasets. Should we use the optimal threshold for
each dataset, its performance with T = 0.21 on Small Disease would improve to F ≈ 0.54
and its performance with T = 0.11 on Location would match that of Smash’s. We selected
T = 0.15 to show results for GPT that are reasonable for all datasets.

Final Results

Table 6.3 shows the collective results of our experiments. Because the Large Disease
dataset was still too large to compute a distance matrix for in a reasonable amount of time,
we sampled 30, 000 rows or ≈ 7.4% of the dataset to run the experiments with. Despite
reducing the size of the dataset, GPT MAP was still unable to compute the distance matrix
and instead produced an error so we are unable to report those results. For Affine Gap and
Levenshtein, the threshold was chosen in a similar way to GPT. While the optimal threshold
was very different for Levenshtein across datasets, the optimal threshold for Affine Gap was
very similar on each dataset.
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Results
Distance Large Disease Small Disease Location Police
Metric P R F P R F P R F P R F

Smash (T=1) 0.47 0.66 0.55 0.89 0.88 0.89 0.95 0.78 0.86 0.94 0.77 0.84
Levenshtein (T=14) 0.79 0.22 0.34 0.93 0.07 0.13 0.12 0.99 0.22 0.32 0.8 0.46
Affine Gap (T=1.5) 0.93 0.08 0.14 0.58 0.43 0.5 0.95 0.78 0.72 0.84 0.42 0.56
Jac-Word (T=0.3) 1 0 0 1 0 0 0.53 0.21 0.3 0.98 0.12 0.21
Jac-Char (T=0.3) 0.96 0.05 0.1 0.99 0.02 0.04 0.71 0.86 0.78 0.86 0.39 0.54
pkduck (T=0.3) 0.12 0.15 0.13 0.88 0.74 0.81 0.76 0.55 0.64 0.83 0.33 0.48
GPT (T=0.15) ERR ERR ERR 0.98 0.11 0.19 0.59 0.95 0.73 0.53 0.57 0.55

Table 6.3: Final results

The precision, recall, and F-score for a given metric and dataset is calculated by finding
the distance from each shortform in the dataset to every longform in the dataset according to
the metric. Then, the true positives, false positives, and false negatives are found using the
computed distances, ground truth, and threshold. We bring this up because this formulation
is different from the pkduck paper’s experiments on all datasets but Small Disease so we
rerun their experiments on Location using their code.

The key takeaway from Table 6.3 is that using the same threshold, Smash is able to
achieve the highest F-score on each of the four evaluation datasets.

To match the experimental setup of the pkduck paper we also convert Smash to a
similarity measure, which we will define as having a range from 0 to 1, with 1 indicating that
the two strings are most similar and 0 indicating that they are completely dissimilar. We do
this by feeding the outputs of the Smash distance metric into an exponential decay function.
For a given pair of strings, if their similarity is above a threshold θ, they will count as a
match. For this final experiment, we vary θ in the range [0.7, 0.8, 0.9] and calculate PRF
across the same four datasets for the distance metrics that can be equivalently defined as
similarity measures. Table 6.4 displays the results of this experiment. The key takeaway here
is that while Smash performs well across thresholds, none of the other similarity measures
are able to beat Smash’s best F-scores even when using different thresholds.
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Results Varied Across Threshold
Similarity Large Disease Small Disease Location Police
Measure θ P R F P R F P R F P R F

0.7 0.29 0.73 0.41 0.65 0.89 0.75 0.89 0.78 0.83 0.77 0.82 0.8
Smash 0.8 0.41 0.68 0.51 0.85 0.88 0.87 0.95 0.78 0.86 0.94 0.77 0.84

0.9 0.48 0.65 0.55 0.89 0.88 0.89 0.95 0.78 0.86 0.94 0.75 0.83
0.7 1 0 0 1 0 0 0.99 0.22 0.35 0.98 0.12 0.21

Jaccard-Word 0.8 1 0 0 1 0 0 0.99 0.22 0.35 0.98 0.03 0.06
0.9 1 0 0 1 0 0 1 0.01 0.02 0.98 0.03 0.06
0.7 0.96 0.05 0.1 0.99 0.02 0.04 0.7 0.86 0.77 0.86 0.4 0.55

Jaccard-Char 0.8 0.99 0.02 0.04 1 0 0 0.92 0.72 0.8 0.89 0.28 0.43
0.9 1 0.01 0.01 1 0 0 0.99 0.41 0.58 0.98 0.23 0.38
0.7 0.12 0.15 0.13 0.88 0.74 0.81 0.76 0.55 0.64 0.83 0.33 0.48

pkduck 0.8 0.16 0.12 0.14 0.97 0.72 0.83 0.94 0.28 0.44 0.83 0.25 0.38
0.9 0.19 0.1 0.13 0.99 0.72 0.83 0.97 0.26 0.41 1 0.25 0.4
0.7 ERR ERR ERR 0.01 1 0.01 0.01 1 0.02 0.07 0.97 0.12

GPT 0.8 ERR ERR ERR 0.7 0.41 0.51 0.17 0.99 0.29 0.26 0.83 0.41
0.9 ERR ERR ERR 1 0.02 0.05 0.91 0.8 0.85 0.87 0.45 0.59

Table 6.4: Final results, varied across threshold
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Chapter 7

Future Work

The mismatch of the Location dataset to Smash’s use case, while introducing some prob-
lems we considered out of scope, highlights some limitations of character-based string match-
ing that could be further explored in future work. Those that come after us are free to look
into the more general cases in string data cleaning which we elected not to prioritize in lieu
of focusing on abbrevations, acronyms, and misspellings, such as the cases of extraneous
stop words and swapped words mentioned in Section 6. Smash may also be tweaked to
be less absolute in requiring the first letters to match; this would help capture cases where
the misspelling occurs in the first letter (“apple” vs. “bpple”, for example). It may also
be interesting to investigate whether it would be possible to adopt insights from semantic
similarity approaches and use existing dictionaries of synonyms alongside Smash to capture
more cases.

Despite the unreliability of current techniques we saw in Section 6, large language models
still hold much potential in the field of string data cleaning. These models are trained on
an extremely large corpus of data and would be able to make use of contextual information
which is missing with a character based approach. They could learn that “Lt.” is equivalent
to “Lieutenant” from the fact that they appear in the same contexts in the training data,
for example. More notably, this allows them to recognize that “Skin Cancer” is equivalent
to “NMSC” for example, a match that would be difficult to find with character-based ap-
proaches. We have also seen from the embedding model’s ability to capture many cases on
Location that some semantic insights are indeed being captured in the embeddings and
that they may be useful in capturing cases that metrics like Smash are unable to by design.

These large language models can be used to generate text that is semantically similar
to the input string, which can be used to detect and correct typos and spelling errors.
Additionally, they can be used to identify and remove irrelevant information, such as stop
words or unnecessary punctuation, from the input string. For another example, if the input
string contains a date, the model can generate text that contains a consistent and plausible
date format. As the field of language models continues to evolve, it is likely that even more
sophisticated techniques for cleaning string data will emerge.



37

Chapter 8

Conclusion

In this report, we explored data cleaning with the NACDL’s Full Disclosure Project and
discussed the problem of matching equivalent police titles. To address this problem, we
presented Smash, a new character-based string distance metric that can robustly detect
abbreviations, acronyms, and misspellings of words and short phrases without the use of
dictionaries. We explained how Smash recursively matches the words in the longer string to
substrings in the shorter string and the manner in which it assigns a score for the matched
strings. We looked at the field of string similarity measures and highlighted the limitations
of the current approaches with respect to our use cases. We explored the workflow intro-
duced by Smash’s integration with OpenRefine and explained how this process simplifies
data cleaning. Experimental results on four datasets show that Smash beats out not only
the standard baselines, but also the state-of-the-art and embedding based approaches in ap-
proximate string matching. We additionally show that Smash is efficient and scalable with
memoization.
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