
Liberating the Siloed Gateway: Application-Agnostic

Connectivity and Interaction for the Internet of Things

Thomas Zachariah

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-165

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-165.html

May 12, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Liberating the Siloed Gateway:
Application-Agnostic Connectivity and Interaction for the Internet of Things

by

Thomas P. Zachariah

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Associate Professor Prabal Dutta, Chair
Professor Edward Lee

Associate Professor Kimiko Ryokai
Professor Scott Shenker

Spring 2023

Liberating the Siloed Gateway:
Application-Agnostic Connectivity and Interaction for the Internet of Things

Copyright 2023
by

Thomas P. Zachariah

1

Abstract

Liberating the Siloed Gateway:
Application-Agnostic Connectivity and Interaction for the Internet of Things

by

Thomas P. Zachariah

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Associate Professor Prabal Dutta, Chair

At its inception, the Internet of Things (IoT) was predicted to connect trillions of inex-
pensive smart devices to the Internet in mere decades, embedding paradigm-shifting utility,
communication, and convenience into everyday things. Since then, a number of connected
speakers, thermostats, doorbells, lights, and wearables have entered the market and our
homes, but devices and sensors further constrained by processing power, memory, energy,
and networking capabilities struggle to find their way to market. This is due, in part, to the
prevailing model in industry of requiring a different application-layer gateway — often in the
form of a device-specific router box or smartphone app — to link each unique IoT device to
the Internet and allow users to interact with it. Unfortunately, this siloed approach cannot
sustain the true scale, density, and capability of the IoT vision.

To break free from such siloed gateway standards which restrict scalability, affordability, and
accessibility for constrained IoT devices, we propose a set of application-agnostic approaches
to connectivity and interaction. For connectivity, we design a general-purpose network archi-
tecture consisting of ubiquitous short-range gateways that openly facilitate data transport for
constrained devices to the Internet. By simplifying the gateway to its most essential parts,
communications and processing, we can implement the architecture on inexpensive off-the-
shelf system-on-chips and on existing smartphone infrastructure. These static and mobile
approaches provide coverage for both reliable data throughput scenarios and ephemeral con-
nectivity needs. For interaction, we design a browsing architecture that provides a seamless,
scalable approach to discovering and interacting with nearby Things. The system takes ad-
vantage of multiple network patterns and modern web technologies to automatically detect
devices and supply users with rich device interfaces that can enable interaction directly over
local networking protocols. We implement and deploy a mobile-based browsing platform
to facilitate this and provide tools for device developers. We further explore techniques for
more physically-tied interaction, including extension to mixed reality.

2

The proposed approach to IoT connectivity and interaction opens up exciting possibilities
for the future of the Internet of Things. By breaking down the barriers imposed by siloed
gateway standards and introducing a set of approaches that form a general-purpose alterna-
tive, this work paves the way for the creation of more innovative and versatile IoT devices
and interfaces. The design principles presented provide a simple, yet dynamic framework
for enabling Internet connectivity for IoT devices, and for users to interact with them in a
more intuitive and seamless way. These architectures represent significant steps forward in
realizing the full potential of the Internet of Things, making it more accessible to everyone,
and further advancing the development of the smart and connected world of the future.

i

For my family — especially my parents & siblings.

For my friends — past, present & future.

For my heart — Sybil.

For you.

ii

Contents

Contents ii

List of Figures vii

List of Tables xiv

Acknowledgments xvi

I The Gateway Problem 1

1 Introduction 2
1.1 The Gateway Problem . 3
1.2 Thesis Statement . 7
1.3 Contributions . 7

2 Architectural Overview 9
2.1 Connectivity . 10
2.2 Interaction . 11
2.3 Network Technologies . 12

II Connectivity 14

3 Static Gateways 15
3.1 Background & Related Work . 15
3.2 Network Overview . 16

3.2.1 BLE Profile Proxy . 16
3.2.2 End-to-End IPv6 Routing . 17

3.3 ESP32 Characteristics . 18
3.3.1 Bluetooth Broadcast Packet Reception 18
3.3.2 Power Draw . 18
3.3.3 Bluetooth Connected Data Transport 19

iii

3.3.4 Radio Coexistence . 19
3.4 Static Gateway Analysis . 20

3.4.1 Forwarding . 20
3.4.1.1 Simple Forwarding . 20
3.4.1.2 Simple Optimized . 21
3.4.1.3 Priority Switching . 21
3.4.1.4 Reboot Method . 21

3.4.2 Multiple Forwarders . 21
3.4.2.1 Uncoordinated Gateways 21
3.4.2.2 Coordinated Gateways . 22

3.4.3 Connecting . 23
3.4.4 Multi-SoC Gateway . 24

3.4.4.1 Dual-ESP Gateway . 24
3.4.4.2 ESPxNRF Gateway . 25

3.5 Discussion . 25
3.5.1 Design . 25
3.5.2 Security . 26
3.5.3 Industry . 26

3.6 Summary . 27

4 Mobile Gateways 28
4.1 Background & Related Work . 30

4.1.1 Delay Tolerant Networking. 30
4.1.2 Data Muling. 30
4.1.3 Existing Services for IoT Devices. 31
4.1.4 BLE Proximity Services . 31
4.1.5 Interfacing Using Web Technologies 31

4.2 Applications . 32
4.2.1 Ambient Data Collection . 32
4.2.2 Cross Platform Connectivity . 33
4.2.3 Masking Smartphone Failures . 33

4.3 Gateway Overview & Design . 34
4.3.1 Network Scheme . 34
4.3.2 Application-Specific Apps . 35
4.3.3 Service Parameters . 36
4.3.4 Gateway Administration . 37
4.3.5 Operation . 38

4.4 Mobile Gateway Implementation . 40
4.4.1 Gateway App . 40
4.4.2 Peripherals . 42
4.4.3 Web Server . 42

4.5 Mobile Gateway Analysis . 43

iv

4.5.1 Gateway Functionality and Performance 43
4.5.2 Gateway Power Usage . 45
4.5.3 Gateway Data Usage . 45
4.5.4 Summon Data Usage . 46
4.5.5 Summon Latency . 46

4.6 Discussion . 47
4.6.1 Reducing Advertisement Overhead 47
4.6.2 Extending to Multiple Platforms . 47
4.6.3 Security Considerations . 47

4.7 Summary . 48

III Interaction 49

5 Browsing the Web of Things 50
5.1 Background & Related Work . 52

5.1.1 IoT Ecosystems and Initiatives . 53
5.1.2 Discovering Content in Physical Space 53
5.1.3 Bluetooth from the Browser . 54
5.1.4 App-ifying the Web . 54

5.2 Browsing Architecture & Design . 55
5.2.1 Discovery . 55
5.2.2 Web Apps . 56
5.2.3 Device as a Web Resource (Origin Policy) 57
5.2.4 Persistence . 57
5.2.5 Aggregation . 58
5.2.6 Orchestration . 59

5.3 Browsing Implementation . 60
5.3.1 Browser App on Android and iOS . 60
5.3.2 Destination Resolution . 61
5.3.3 Caching . 63
5.3.4 Peripheral Devices . 64
5.3.5 Web Apps . 65

5.4 Browsing Analysis . 65
5.4.1 Paradigms of Real Applications . 65
5.4.2 Device Discovery . 68
5.4.3 Web App Size . 68
5.4.4 User Action . 69
5.4.5 Energy Usage . 71

5.5 Discussion . 72
5.5.1 Bluetooth and Denial of Service . 72
5.5.2 Feasibility of Background Service . 73

v

5.5.3 Adaptation of Origin Policy . 73
5.5.4 Extending the Architecture . 73

5.6 Summary . 74

6 Browsing Things in Mixed Reality 75
6.1 Background & Related Work . 78

6.1.1 Interaction Standards for IoT Devices 78
6.1.2 Unified Control on Mobile Platforms 78
6.1.3 Device Discovery . 79
6.1.4 Early Inspirations for AR-Like Modalities 79
6.1.5 Point-and-Shoot Photography . 79
6.1.6 AR on Mobile Platforms . 79
6.1.7 Mobile AR Systems in Practice . 80
6.1.8 Target Identifiers . 80
6.1.9 Localization . 80
6.1.10 Smart Space Interaction . 81

6.2 AR Browsing & Discovery . 81
6.2.1 Platform . 81
6.2.2 Targets . 81
6.2.3 Target Proxies . 83
6.2.4 Interfaces . 84
6.2.5 Scope . 85

6.3 AR Browsing Scenarios . 85
6.3.1 Smart Home Devices . 85
6.3.2 Device Setup . 86
6.3.3 Ephemeral Devices . 86

6.4 AR Point-and-Shoot Interaction . 86
6.4.1 Point-and-Shoot Platform . 86
6.4.2 Applications . 87
6.4.3 Mapping . 87

6.5 AR Point-and-Shoot Applications . 88
6.5.1 Paint the Lights . 88
6.5.2 Drag-and-Drop Share . 89
6.5.3 Smart Space Snap . 90
6.5.4 Quick-View Sensor Readings . 91

6.6 Alternative Platform Paradigms . 92
6.7 Discussion . 92

6.7.1 Location Determination & Accuracy 92
6.7.2 Communication Topology . 93
6.7.3 Usability & User Experience . 93
6.7.4 Developer Experience . 93
6.7.5 Browsing Model . 94

vi

6.7.6 Data & Privacy . 94
6.7.7 Power Usage . 95

6.8 Summary . 95

IV Reflections & References 96

7 Conclusion 97

Bibliography 99

vii

List of Figures

1.1 IoT Devices. Objects of a variety of form factors are embedded with an
(often constrained) set of computational resources to create peripheral devices
that enable “smart” capabilities in a variety of applications, such as lighting,
power monitoring/control, personal health tracking, and environmental sensing. 3

1.2 Wi-Fi Routers vs IoT Gateways. Currently, a separate physical router or
smartphone application must be provided in order to enable gateway services for
each type of IoT device deployed. This contrasts with any mobile computer’s
ability to connect to the Internet via a single Wi-Fi router. 4

1.3 Application-specific gateway approach. Currently, each of the devices in
Figure 1.1 requires its own gateway as shown in (a) and/or an application like
those shown on the smartphone in (b) in order to function. Each gateway in (a)
and each application in (b) does not support more than a single type of device.
Each gateway in (a) connects directly to the Internet through either a computer,
Wi-Fi, or wired Ethernet connection. 5

1.4 The Gateway Problem. Current state-of-the-art for reliable low-power IoT
connectivity still typically incorporates a siloed, over-provisioned, and expensive
stationary gateway for each brand or class of device. The other popular data
transport mechanism is the use of device-specific apps on the owners’ phones,
which can opportunistically form a bridge to the Internet as a background process,
but only through meager allowances of time—dictated by the OS—to receive,
transmit and process data. [49, 132] . 6

2.1 Gateway model for device connectivity. In the proposed architecture, we
specify the use of simplified gateways that openly facilitate data transport for con-
strained devices to the Internet. By focusing design on the essential functions in-
volving communications and processing, the model allows for gateway implemen-
tation on inexpensive off-the-shelf system-on-chips and on existing smartphone
infrastructure, providing coverage for both reliable data throughput scenarios and
ephemeral connectivity needs. 10

viii

2.2 Browsing model for device interaction. Smart devices (light bulb, thermo-
stat) and beacons make their presence known by broadcasting information about
themselves. The browser, which can run on a smartphone, scans the local vicinity
and displays to the user a selection of available user interfaces for nearby devices.
When the user makes a selection, the interface for the chosen device is opened
from a specified location hosted locally or online, presenting a user interface that
can facilitate direct interaction with the device using browser-extended APIs for
local network communication protocols. 11

2.3 Comparison of radios technologies. The graph depicts relative trade-offs in
data, power, and range between major wireless radio technologies [57]. Bluetooth
Low Energy (BLE) is a popular choice in constrained IoT devices due to its low
power benefits and its compatibility with smartphone platforms. 12

3.1 Architecture. We apply a data transport approach that considers two primary
transmission mechanisms: (1) via IPv6, using the gateway as an IPv6 router and
treating the peripheral as an IP-connected end host, and (2) via proxy, using the
gateway to forward the device’s BLE profile to the cloud. 16

3.2 BLE packet reception rates. A comparison between the PRRs of a $3 ESP32,
a Linux-based gateway, and a professional $1000 Teledyne scanner (channel av-
erage) during 10 minutes of scanning with BLE devices sending unique packets
every 100 ms. The dashed line is ideal reception accounting for probability of loss
due to packet collision [170]. 17

3.3 BLE read/write transmission rates on ESP32. 19
3.4 Forwarding performance with different approaches. Tested with unique

advertisement packets sent every 100ms, 500ms, and 1s over 10 minute periods. 20
3.5 Timing diagram of the coordinated approach. Depicts communication

between two gateways (GW1 & GW2). 22
3.6 Voltage and current waveforms at Influx, viewed on Grafana. The

ESP32 can connect to a PowerBlade, retrieve calibration values, and read 1260
values of voltage and change of current—representing 0.5s of data—from the raw
sample service. The gateway then adjusts the data using the calibration figures,
calculates the real-time current values, timestamps every point, and sends the
final voltage and current waveform data to an Influx database via HTTP POST.
The entire process takes around 82s. 23

3.7 Dual-ESP gateway setup. Two ESP32 boards are connected via SPI. One
ESP32 is dedicated to performing BLE scans, while the other solely sends the
scanned data over Wi-Fi. This effectively yields near-optimal forwarding perfor-
mance, roughly equivalent to the BLE scanner’s PRR. 24

3.8 Gateway hardware. Our design distributes BLE, Wi-Fi, and 802.15.4 roles
between two ESP32s and an nRF52840. 25

ix

4.1 Mobile Gateway Model. In a mobile gateway architecture, the existing net-
work of smartphones could collectively act as an open, ambient bridge of con-
nectivity between constrained IoT devices (via Bluetooth) and the cloud (via
cellular/Wi-Fi). 29

4.2 Approach: Decoupling core gateway services from mobile apps. With
this approach, a separate (ideally, OS-run) general gateway service on smart-
phones facilitates networking between potentially any device and the cloud. The
UI can continue to retrieve data from the cloud. The UI also may, itself, be
retrieved from the cloud, at a location specified by the device. 30

4.3 Proposed architecture. The gateway architecture introduced in Chapter 3
is applied and extended to mobile infrastructure. In it, Internet connectivity
for BLE devices could be facilitated: (1) via IPv6, using the smartphone as a
temporary IPv6 router and treating the peripheral as an IP-connected end host,
and (2) via proxy, using the smartphone to forward the peripheral’s BLE profile
to the cloud. 33

4.4 BLE Profile Proxy In default operation, the smartphone facilitates connec-
tion and profile-based communication between the BLE peripheral and the cloud
endpoint specified in its advertisement. 35

4.5 Extended services for BLE profile proxy. If the peripheral requests data
augmentation services (a), the phone can provide additional data (e.g. location,
time) in the peripheral’s communication with the cloud. If the advertisement
points to a UI location (b), the specified URL can be opened on the phone to
allow the user to interact with the device. 36

4.6 Advertisement Packet Format. The layout of a Gateway-compatible BLE
advertisement packet, broadcast from a participating peripheral, by byte. . . . 37

4.7 Operational flow of Gateway upon receiving an advertisement. The
smartphone gateway scans for peripherals, and upon receiving a compatible ad-
vertisement, determines the specified URL and the mode of operation. If Summon
mode is requested, the user is notified and can choose to open the URL-specified
web app. Otherwise, the gateway parses the remaining parameters (see Table 4.1),
and, if permitted by user preferences, attaches and sends data to the destination
URL, to which the destination server can respond with a request for BLE con-
nection. 39

4.8 Settings screen for Gateway Android app. The Gateway app lets smart-
phone owners set fine-grained access control preferences for each of the parameters
based on their own comfort level. This way, the service can run in the background,
while maintaining the smartphone owner’s peace of mind. 40

x

4.9 Device manager screen and device-based web apps. If a peripheral adver-
tises being in Summon mode, the user is notified that the peripheral has a UI,
and it is listed in the device manager. When the user selects a device, Gateway
“summons” the Cordova[11]-based HTML/Javascript app at the specified URL.
Since it is opened within the Gateway framework (as opposed to a browser), the
page will be able to act like a native app installed on the phone. 41

4.10 Comparison of data arrival patterns. For this experiment, two peripherals
are set up to be scanned, connected, and read by the smartphone, which in turn
sends the data to the destination webserver. Each data arrival point represents
the conclusion of a full iteration of the process. In the first scenario (a), the
smartphone uses a siloed application setup in which two different smartphone
applications implement their own version of a gateway by hardcoding the entire
process to specifically cater to one of the peripherals. In the second scenario
(b), the smartphone uses Gateway, which instead receives instruction from the
webserver on which specfic actions to take and still manages to send data in
reasonable time. Due to the siloed nature of the (a) scenario, the smartphone
operating system is forced to context-switch between the applications in order
to send data. Because (b) uses a core standard service, arrival is more evenly
distributed. 44

4.11 Native app vs Summon web app: startup times. Average startup times
from initial launch to receiving Bluetooth data (over 10 runs each on a Nexus
4) of the HTML/JavaScript based apps, tested both natively (installed on the
phone), and in the Summon service (retrieved from web server, uncached). . . . 46

5.1 Native App, Physical Web, and Web Bluetooth. The native app model
(a) requires that a user have prior knowledge of a device and install an app to
interact with it. The Physical Web model (b) allows discovery of URLs broadcast
by nearby devices, but does not provide device details to the user. The Web
Bluetooth model (c) requires that, once a user manually navigates to a website,
the user select the device to pair with the website. Even if, perhaps, (b) and (c)
are used together, the user would still need to identify the correct device without
information on which device pointed to the site. 51

5.2 Proposed model of discovery, connection, and interaction. We suggest a
scheme in which the device broadcasts a URL that is both a link to its UI and
its declaration of origin. Users are shown a list of URLs along with details of
corresponding devices associated with each. The user can select the link to open
the corresponding website, which, with browser-extended APIs, can access devices
that have declared it, enabling seamless interaction while providing transparency
to users and preventing mismatch of device and UI. 52

xi

5.3 The Web App UI Model. Web apps may consist of typical web content:
HTML, JavaScript, CSS, images, etc. An app can use a provided JS BLE API to
interact directly with associated devices. By providing a manifest file for service
registration, the web app can request special permissions and storage to enable
persistent state for regularly-used devices. 56

5.4 Potential background services for persistent-use devices. If background
mode is supported, an event could be passed to service-registered web app scripts
when the phone detects the nearby device. In a data muling scenario (a), a
phone in the user’s pocket could mule data on behalf of the web app, with user
permission. In a proximity-based action scenario (b), the web app could trigger
some proximity based actions like turning on a light or setting the thermostat
temperature to a preset setting when the user is nearby. 58

5.5 Using a single interface with multiple devices. With aggregation (a),
devices pointing to the same interface location could be accessible from a single
instance of the interface, rather than opening a separate instance for each device.
With orchestration (b), different classes of devices could be accessible from the
same interface, which might be used to set up device-to-device interactions. . . 59

5.6 Summon— Browser implementation for mobile phones. If the browser
detects a device that links to an interface, it is listed in the device browser (a). If
multiple devices link to the same interface, they are grouped under one list item.
When the user selects an item, its web app (c) is opened. Since the interface
is opened within a controlled framework (instead of a regular browser), it can
use provided JavaScript bindings to behave like a native app and interact with
associated devices. If a device’s native app is detected on the phone, it is opened
instead. The UI options, linked devices, and list of features used by the web app
are visible in detail view (b). 61

5.7 Overview of the implemented flow of device discovery and presentation
between the device, the mobile browser, and the cloud. With help
from an implemented destination-resolution cloud service, the browser can obtain
detailed information on the interface at the device’s advertised URL, and present
it to the user. 62

5.8 A selection of real “browsable” devices . 63
5.9 Subset of web apps for real devices. All interact directly with correspond-

ing devices (Figures 5.8a to 5.8c) directly over BLE using a browser-defined
JavaScript API. 64

5.10 HTML & JavaScript of an Interactive Web App. When opened in
Summon, this simple UI connects to the BLE light bulb device that linked to it,
reads state from the device, and writes to the device to toggle the light when a
button is clicked. 66

5.11 Device discovery latency for varying advertising intervals. The solid
point is the mean of recorded latencies at each interval. Measurements taken on
a first-generation Google Pixel. 67

xii

5.12 Size of example web apps vs native apps. Web app size accounts for bare
web resources—HTML, JS, CSS, images, etc. Browser-provided JavaScript APIs
allow web apps to use native smartphone features like BLE at run time. Because
native apps repackage large commonly-used libraries into their binaries, they are
significantly larger than web UIs. 69

6.1 AR Browsing discovery model. In this model, users can open a “browser”
on their smartphone or tablet, which uses the camera to identify devices and
discover their associated web interfaces in physical space. When an interface is
opened, it can use a JavaScript Bluetooth API or network protocol to interact
with the device. 76

6.2 AR Point-and-Shoot interaction model. With point-and-shoot, an appli-
cation can present a user interface on top of an augmented camera feed that maps
virtual device objects to real smart devices in the space. The phone treats objects
that intersect the frustum of the camera’s view as actionable targets. Effectively,
the phone‘s viewport acts as a filter to select one or more devices on which a
desired action can be taken. In this example, the user sets devices in part of an
office to day settings (lights on, shade up, A/C to 70° F) by selecting a button
and facing the camera towards the items. 77

6.3 Components of point-and-shoot. The phone uses an overlaid virtual map on
the realtime camera feed to both guide the user and keep track of virtual objects
that map to real smart devices in the space. The phone‘s viewport acts as a filter
to select groups of devices upon which users can perform context-specific actions
in web-based interfaces. 78

6.4 Screenshots of an early implementation of the mobile augmented real-
ity browser. In this proof-of-concept implementation, the smartphone camera
identifies the target and displays an indicator (the favicon for the target’s URL)
which the user may touch to open the device’s linked web interface. Once opened,
the interface, an HTML web page, uses JavaScript and a local network protocol
to allow the user to interact with the Wi-Fi-connected device, and toggle the light
on or off. 83

6.5 Screenshots of AR Browser implementation. For the general-purpose AR
Browser implementation, targets/interfaces are typically identified via QR codes
(a). The app is also trained to detect visual cues from an image set of known
device types (c), such as the BLEES environmental sensor [97]. It can visually
identify the target and place the marker for the associated web app URL. When
selected, the web app can be opened and display data from the device (b), received
via BLE or other local network protocols. 84

6.6 Application: Paint the Lights. An implemented web application using We-
bXR that allows users to control smart lights in a space by simply selecting a
color button or the off button from on-screen controls, and turning the phone’s
camera towards the lights they would like to change. 88

xiii

6.7 Application: Drag-and-Drop Share. AWebXR application that allows users
to share images to network displays, printers, and computers, by dragging them
to the device on the augmented camera feed. Users may also send media to all
devices or all of a device type by dragging to corresponding on-screen action icons
representing aggregates of all items in view. 89

6.8 Application: Smart Space Snap. An implemented web application using
WebXR that allows users to control devices in a space by taking a picture of a
targeted selection of devices and choosing actions to perform on them from a set
of options catered specifically to the selection. 90

6.9 Concept: Integration with native camera app. In a hypothetical OS-level
integration, point-and-shoot could be employed in a quickly-accessible mode in
the smartphone camera app. The mode would present a set of applets that enable
AR/XR overlays, as well as an app store to find relevant third-party applets. The
user could, for instance, swipe to an applet that displays a virtual switch for all
smart lights in view. 91

xiv

List of Tables

3.1 Power and current at various BLE and Wi-Fi states on ESP32. 18
3.2 Single & multi-SoC gateway approaches. 26

4.1 Advertisement parameters. The set and structure of the parameters to be
advertised by the peripheral. Any BLE peripheral wishing to use the Gateway
service, need only encode these parameters in the advertisement service data. If
Summon mode is set, instead of sending an HTTP post of the advertisement
to the specified URL, the gateway can open the URL as a fully-functioning
HTML/Javascript-based user-facing app. 38

4.2 Peripherals using Gateway. The set of peripherals set up to use the Gate-
way API. All devices work successfully with the Gateway, and each demonstrate
a unique feature. Three peripherals, in particular, demonstrate the proximity-
based application “summoning”. Reading, writing, and receiving notifications
are actions that the gateway can perform on a peripheral after a connection to
the peripheral has been established. 43

4.3 Daily energy usage for the Gateway service. Energy usage of the Gateway
service is broken into LCD, BLE + CPU, and Wi-Fi categories. The service was
run as a background process on a Nexus 5 with 3 peripherals spread 10 ft away.
The battery percentage represents the portion consumed of the smartphone’s
2300mAH battery. Part of the high Wi-Fi usage is attributed to extra data being
sent to servers for debug-viewing purposes. 45

5.1 User gesture analysis. The table compares the steps of actions necessary to
perform tasks of discovery, setup, and interaction with BLE devices using Phys-
ical Web, Web Bluetooth, native app and our browser. Our approach generally
requires fewer user gestures to accomplish tasks than the alternative methods,
while also enabling better ambient discovery of devices and their UIs. Variables
u, n, p, and q represent gesture counts when typing URL, username, password,
and search query respectively. 70

xv

5.2 Phone energy usage while discovering devices. The listed total is an
average of 10 one-minute trials on a Motorola Nexus 6 with a 3200mAh battery
while in a setting with 5 URL-beaconing peripherals (4 BLE, 1 mDNS) and
5 other broadcasting peripherals (2 BLE, 3 mDNS), and with screen at lowest
brightness. Measurements are recorded using PowerTutor and Trepn Profiler. . 71

xvi

Acknowledgments

The path to this dissertation has been a long and winding one, and I have been fortunate
to have had the support of many people along the way.

I am immensely grateful for my advisor, Prabal Dutta, who encouraged pushing bound-
aries and allowed me to follow random tangents in my research pursuits. At the same time,
he provided a deft guiding hand and a keen sensibility for the bigger picture when I would
get lost in the weeds. And through many ups and downs over the years, both academic and
personal, he has been incredibly helpful and understanding throughout.

I would like to thank the members of my dissertation committee: Edward Lee, Kimiko
Ryokai, and Scott Shenker. They have graciously given their time and have provided invalu-
able feedback during the thesis process. I would also like to thank Shirley Salanio who has
made life so much easier administratively during my transition to and time in Berkeley.

My interest in research was sparked in a high school course taught by Altair Maine,
where we conducted independent studies in STEM. I was further encouraged to pursue
this path by professors at Loyola Marymount University, including Barbara Marino, David
Berube, Jeremy Pal, John Dionisio, and Gustavo Vejarano, as well as colleagues at Virginia
Tech, Hyomin Kim and Kshitija Deshpande. At University of Michigan, Karem Sakallah
and Mark Brehob were additional sources of inspiration and support. I am grateful to all of
them for their encouragement and guidance.

In the midst of this wild journey, I somehow tripped and fell in love. Sybil has brought
an immense amount of joy to my daily life and has been unjustifiably patient through this
entire experience. I owe so much to her. The best part of reaching this milestone was
completing it with her.

I would also love to express my unending gratitude to my family, who have all been
my constant support during this endeavor, especially my parents — Anna and Thomas, my
in-laws — Saramma and Jacob, and my siblings — Pushpa, Anu, and Solo (/Cait). These
last few years have also seen the passing of three loving and wise women who helped raise
me and foster my love of learning: Mariamma Zachariah, Mariamma Onattu, and Vimala
Philip. I miss them dearly and am grateful to have experienced their radiant and nurturing
presence in my life. I would also like to thank my adopted families in Michigan and Northern
California — people in the community who, without question, took me in and treated me as
family almost immediately when I arrived for grad school in both locations. I love you all.

By a set of bizarre, but welcome coincidences, two childhood friends happened to move,
at the exact right times, into the two towns that I have had the pleasure of calling home
during my graduate studies: Ke’ale Louie (Ann Arbor) and Rahim Ramzan (Berkeley).
Once upon a time for a Spanish class project at one North Hollywood High School, we three
would create a film consisting almost entirely of us being utter, unabashed fools dressed in
pirate costumes. Somehow, we aced it. Apparently, years later, we foolish buccaneers would
set sail together to new, far-off lands. Could not have picked finer roommates for this grand
voyage. Gracias mis piratas.

xvii

I have encountered some truly incredible and brilliant people during my time in grad
school. Walter Zarate, Ram Srivatsa, Kartik Joshi, and Salessawi Ferede were key figures
of support and friendship at Michigan. We all met and naturally clicked in a computer
architecture course, and would go on to form a project team named using the only acronym
that seemed to work for us, Team TWRKS. In Lab11, I have had a number of collaborators
who contributed to work that partly forms the basis for this dissertation, including Noah
Klugman, Brad Campbell, Josh Adkins, Neal Jackson, Meghan Clark, and Branden Ghena.
Additionally, as the fellow lab member relegated to the dungeons at Michigan (which was
actually a pretty nice office) due to overflow, I got to share space with Rohit Ramesh, with
whom many cherished hours were had whiteboarding complex problems and discussing the
finer points of life, the universe, and everything. I spent copious amounts of time talking,
eating, laughing, and travelling the world with the rest of lab, including Andreas Biri, Sam
DeBruin, Bernhard Grosswindhager, Will Huang, Ben Kempke, Ye-Sheng Kuo, Pat Pannuto,
Shishir Patil, Matt Podolsky, Ambuj Varshney, and Jean-Luc Watson. I am honored to have
worked with and just messed around with all of them.

This work was supported in part by the TerraSwarm Research Center, one of six cen-
ters supported by the STARnet phase of the Focus Center Research Program (FCRP), a
Semiconductor Research Corporation program sponsored by MARCO and DARPA. This
work was supported in part by the CONIX Research Center, one of six centers in JUMP,
a Semiconductor Research Corporation (SRC) program sponsored by DARPA. This mate-
rial is based upon work supported by the U.S. Department of Energy’s Office of Energy
Efficiency and Renewable Energy (EERE) under the award number DE-EE0008220. This
material is also based upon work partially supported by the National Science Foundation
under grants grants CNS-1111541, CNS-1239031, CNS-1350967, and CNS-1824277, as well
as by the NSF/Intel Partnership on CPS Security and Privacy under grant CNS-1822332.
Finally, this work has been supported by generous gifts from Intel, Qualcomm, and Texas
Instruments.

1

Part I

The Gateway Problem

2

Chapter 1

Introduction

The Internet of Things (IoT) is a growing network of physical items that are embedded with
electronics, software, sensors, and connectivity. Examples of such devices like “smart” light
bulbs and power meters are pictured in Figure 1.1. The Internet of Things represents the
extension of the Internet into the physical world, connecting devices and enabling them to
communicate with each other and with their users. The oft-cited goal of IoT is to create a
more interconnected, automated, and data-driven world, where devices can be monitored,
controlled, and optimized wirelessly, and where data can be analyzed to improve efficiency,
productivity, and convenience in various domains, including home, healthcare, transporta-
tion, agriculture, and manufacturing.

Adapting computational resources to accommodate for such a wide array of IoT appli-
cations often presents a set of stringent operating requirements, such as a small form factor
and long battery lifetime. This means the success of the Internet of Things relies heavily
on the ability to connect devices that are constrained by processing power, energy, memory,
and, most notably, networking capabilities. While we have seen an increasing number of
smart devices such as thermostats, lights, and wearables on the market, there remains a
need for more accessible and affordable devices that can further handle these constraints. If
devices in the Internet of Things must operate under such limitations, a natural question
arises: How do we connect Things to the Internet?

Mobile computers, including laptops, tablets, and smartphones, have experienced un-
paralleled success due in no small part to an abundance of wireless connectivity. Widespread
Wi-Fi and cellular networks provide universal and transparent access to the Internet and
cloud-powered applications. This has driven the success of mobile computing.

The coming wave of tiny, embedded, low-power, wireless, mobile, and wearable devices,
however, does not currently enjoy the same level of ubiquitous and universal access to the
Internet. Due to battery constraints and lifetime considerations, these devices tend to rely on
low-power wireless communications like Bluetooth Low Energy (BLE), Zigbee, and Thread
instead of more well-connected, but also more power intensive, Wi-Fi and 4G/5G cellular
radios, despite their increasing ubiquity.

CHAPTER 1. INTRODUCTION 3

Figure 1.1: IoT Devices. Objects of a variety of form factors are embedded with an
(often constrained) set of computational resources to create peripheral devices that enable
“smart” capabilities in a variety of applications, such as lighting, power monitoring/control,
personal health tracking, and environmental sensing.

The Internet of Things has grown in recent years, permeating the consumer and indus-
trial market sectors. There are now over 20 billion devices connected to the Internet across
the globe today [87]. This number, however, is less than half of the estimate industry leaders
predicted for the anticipated IoT-infused market a decade ago [37, 46]. This outcome is due,
in part, to the gateway problem.

1.1 The Gateway Problem

To connect to the Internet, resource-limited IoT devices require an application layer gateway—
a system capable of translating data from the low-power link to the Internet at large. How-
ever, there remains a lack of affordable, application-agnostic infrastructure through which
such devices could access the Internet. Current implementations of these low-power links
do not provide an Internet gateway, but rather, as Figure 1.2 depicts, a narrow connection
to a device-specific application that must be installed on a smartphone or laptop, or to a
completely separate device-specific hardware router.

CHAPTER 1. INTRODUCTION 4

������������������ ����������������

�����������
��������
����������

���������������������
��������

���������
����������

���

�������

��
�����

���

�������������

��������������������
�������

Figure 1.2: Wi-Fi Routers vs IoT Gateways. Currently, a separate physical router or
smartphone application must be provided in order to enable gateway services for each type
of IoT device deployed. This contrasts with any mobile computer’s ability to connect to the
Internet via a single Wi-Fi router.

CHAPTER 1. INTRODUCTION 5

(a) IoT Gateways (b) IoT Apps

Figure 1.3: Application-specific gateway approach. Currently, each of the devices in
Figure 1.1 requires its own gateway as shown in (a) and/or an application like those shown
on the smartphone in (b) in order to function. Each gateway in (a) and each application
in (b) does not support more than a single type of device. Each gateway in (a) connects
directly to the Internet through either a computer, Wi-Fi, or wired Ethernet connection.

The industry standard of using application-layer gateways both in software and hard-
ware, only provides application-specific connectivity to the Internet—an issue especially for
constrained IoT devices, as illustrated in Figure 1.4. Opening a new webpage on a laptop
does not require a new application on the Wi-Fi router, but connecting a new IoT device
does require a new smartphone app, a new laptop dongle, or a new basestation device, such
as those seen in Figure 1.3. It is evident that gateways are the Achilles heel of low-power
connectivity for the Internet of Things.

A number of factors have helped alleviate some of the past critical issues with IoT
networks. For instance, alliances between several organizations across the industry have
formed to agree on common standards for data protocols and user accessibility, limiting the
number of custom solutions required [41, 67, 152]. Furthermore, popular cloud services and
frameworks now facilitate orchestration and automation between multiple device classes,
which are all assumed to have reliable network connectivity [18, 85]. The introduction
of smart speakers presents an additional access point to several brands of devices in the
consumer space through user-prompted controls and “scenes” [8, 19, 63].

CHAPTER 1. INTRODUCTION 6

C L O U D

B L U E T O O T H /
8 0 2 . 1 5 . 4

W I - F I /
E T H E R N E T /
C E L L U L A R

D E V I C E

G A T E W A Y

S T A T I C

$ 1 0 0 $ 6 0

M O B I L E

X

Figure 1.4: The Gateway Problem. Current state-of-the-art for reliable low-power IoT
connectivity still typically incorporates a siloed, over-provisioned, and expensive stationary
gateway for each brand or class of device. The other popular data transport mechanism
is the use of device-specific apps on the owners’ phones, which can opportunistically form
a bridge to the Internet as a background process, but only through meager allowances of
time—dictated by the OS—to receive, transmit and process data. [49, 132]

But devices—particularly those on the edge that rely on low-power operation—still
often require their own custom infrastructure to establish connection to the Internet and
to enable user interaction. Current application-specific hardware gateways are expensive
one-off systems that implement different custom communication protocols for each device.
The continuing standard of requiring users to obtain one for each brand of device — or even
just installing a new app for each device — is untenable if the IoT market is to grow.

A worldwide collection of Internet-connected smartphones and inexpensive off-the-shelf
system-on-chips (SoCs) may provide an unprecedented opportunity to deliver last-inch con-
nectivity and interaction for the billions of IoT devices expected to emerge in the next few
years, crucially, without requiring each phone to load every application-specific gateway app
or each IoT device to have an expensive application-specific gateway router within proxim-
ity. On one end of the spectrum, networks built atop a few inexpensive SoCs could provide
reliable Internet access to stationary sensors tasked with monitoring homes, offices, cities, or
other areas without the need for device-specific gateway hardware. On the other, mobile or
remote nodes could piggyback on passing smartphones to offload or receive data instead of
requiring extensive mesh networks to relay data back to a set of dedicated Internet-connected
gateways. Indeed, we have witnessed siloed versions of such approaches used with Fitbit [48],
Apple Airtag [12], and Tile [153] devices.

CHAPTER 1. INTRODUCTION 7

1.2 Thesis Statement

We can use an application-agnostic approach to break free from siloed gateway standards
which restrict scalability, affordability, and accessibility for constrained IoT devices by
creating:

(1) general-purpose network architectures for connectivity to the Internet, and

(2) browsing platforms for seamless discovery of and interaction with Things.

1.3 Contributions

This work explores solutions for the major hindrances caused by siloed gateway standards
which are impacting the growth of the Internet of Things, especially for the many envi-
sioned applications and scenarios requiring constrained devices. The dissertation presents
the design of open, application-agnostic architectures enabling connectivity and interaction
for such IoT devices. The feasibility and utility of these designs is demonstrated with a series
of implementations, often using inexpensive off-the-shelf components or leveraging existing
mobile infrastructure. This document incorporates and references writing from a number
of published works. Notably, the impetus for this work — the identification of the central
issue discussed in this chapter — was originally presented in “The Internet of Things Has
a Gateway Problem”, published at the 16th International Workshop on Mobile Computing
Systems and Applications (ACM HotMobile 2015) [171]. The following is a breakdown of
the remaining chapters.

Chapter 2 presents a brief overview of the architectures proposed in this work. This
includes design and implementation of general-purpose network architectures for data trans-
fer and processing [169, 171], and browsing architectures for seamless device discovery and
interaction [166, 168]. The chapter also covers some background on network protocols and
topology, particularly with regard to Bluetooth Low Energy. This references material pre-
sented in “ReliaBLE: Towards Reliable Communication via Bluetooth Low Energy Adver-
tisement Networks”, published at the 2022 International Conference on Embedded Wireless
Systems and Networks (EWSN 2022) [170].

Chapter 3 explores design and implementation of a general-purpose network architec-
ture built atop inexpensive and ubiquitous off-the-shelf system-on-chips. This covers mate-
rial presented in “The Internet of Things Still Has a Gateway Problem”, published at the
the 23rd International Workshop on Mobile Computing Systems and Applications (ACM
HotMobile 2022) [169].

Chapter 4 explores design and implementation of a general-purpose network architec-
ture leveraging existing mobile infrastructure via smartphone integration. This covers and
expands on initial concepts presented in “The Internet of Things Has a Gateway Problem”,
published at ACM HotMobile 2015 [171].

CHAPTER 1. INTRODUCTION 8

Chapter 5 presents design, implementation, and deployment of a browsing platform for
seamless discovery and interaction for IoT devices. This work is published as “Browsing the
Web of Connectable Things” at the 2020 International Conference on Embedded Wireless
Systems and Networks (EWSN 2020) [166].

Chapter 6 considers extension of the browsing model to mobile-based mixed reality.
Part of this work is explored in “Browsing the Web of Things in Mobile Augmented Re-
ality”, published at the 20th International Workshop on Mobile Computing Systems and
Applications (ACM HotMobile 2019) [168].

Chapter 7 summarizes the implications of this work, discusses possible future directions,
and concludes.

9

Chapter 2

Architectural Overview

To begin to break free from siloed gateway standards impacting constrained devices in the
Internet of Things (IoT), we consider the functionality they provide. Each siloed gateway
is effectively a re-implementation of the same core functions. The gateway is set up to
discover and detect its own corresponding devices. It then collects data from the device over
the low-power link, and possibly performs some local processing of that data. Additionally,
when the gateway is implemented in a device-specific smartphone app, it has the ability to
provide the user with a rich user interface that can enable interactions with the device by
communicating directly over the low-power link. Finally, the gateway provides a bridge for
communication to the Internet through its higher-power Wi-Fi, Ethernet, or cellular link,
typically enabling data transfer to and from an associated cloud service.

In this work, we design an alternative set of architectures for device connectivity and
interaction that can satisfactorily handle these core gateway functions using an application-
agnostic approach.

For connectivity, we design a general-purpose network architecture consisting of ubiqui-
tous short-range gateways that openly facilitate data transport for constrained devices to the
Internet. In the design, we simplify the gateway to its most essential parts: communications
and processing. This allows us to implement the architecture on inexpensive off-the-shelf
system-on-chips (SoCs) and on existing smartphone infrastructure, providing coverage for
both reliable data throughput scenarios and delay-tolerant/ephemeral connectivity needs.

For interaction, we design a browsing architecture that provides a seamless, scalable
approach to discovering and interacting with nearby Things. The system takes advantage
of multiple network patterns and modern web technologies to automatically detect devices
and supply users with rich device interfaces that can enable interaction directly over local
networking protocols. This serves as the basis for a mobile-based browsing platform and set
of developer tools we implement and deploy. We also explore application of the approach in
mixed reality for more physically-tied interaction.

The concepts of the architecture can be applied broadly to support several network
technologies. In this work, we focus primarily on Bluetooth Low Energy (BLE), due to its
popular use in constrained IoT devices and compatibility with mobile OSes.

CHAPTER 2. ARCHITECTURAL OVERVIEW 10

Figure 2.1: Gateway model for device connectivity. In the proposed architecture, we
specify the use of simplified gateways that openly facilitate data transport for constrained
devices to the Internet. By focusing design on the essential functions involving communica-
tions and processing, the model allows for gateway implementation on inexpensive off-the-
shelf system-on-chips and on existing smartphone infrastructure, providing coverage for both
reliable data throughput scenarios and ephemeral connectivity needs.

2.1 Connectivity

To enable connectivity, we specify the relationships and protocols linking three major com-
ponents in the IoT network: the device, the gateway, and the cloud. A model of these links
is depicted in Figure 2.1.

Devices would make themselves known to nearby gateways by sending periodic broad-
casts over the low-power radio. These packets would contain, at minimum, some form of
identifying device information. Additionally, they can include basic parameters specifying
what type of gateway services the device would like to use and the location of the endpoint
to communicate with. These broadcasts can also incorporate a small amount of the device’s
own service data, such as readings from a sensor.

Gateways would continuously listen for such broadcasts. When one is detected, the
gateway can facilitate the services requested, which may include some form of data processing
and one- or two-way communication with a cloud endpoint. The main transport mechanism
we design is a simple proxy of the device’s communication profile, translating the low-power
link data/commands to an IP-compatible data structure when sending from the device to the
cloud, and vice-versa when sending from cloud to device. We also discuss the technologies
that can enable end-to-end IP-based communication, and the associated trade-offs.

Focusing on just the essential functions involving communications and processing opens
up several implementation options for gateway platforms. We present a static approach using
inexpensive off-the-shelf system-on-chips, which is capable of handling scenarios requiring
reliable data throughput. We also present a mobile approach using existing smartphone
infrastructure, which can provide support for remote and ephemeral connectivity needs.

CHAPTER 2. ARCHITECTURAL OVERVIEW 11

LIBRARY

70°

Lamp
42

Welcome to the Library!
http://library.local
LibBcn (CD:EF:12:34:56:AB)

CoffeeShop | Order Coffee
CoffeeShop App
CSbn123 (AB:CD:EF:12:34:56)

Light Switch (Lamp42)
https://light.switch.com/app?lamp=42&...
Lamp42 (EF:12:34:56:AB:CD)

Thermostat (1st Floor)
Loadable UI from Device
Tstat (12:34:56:AB:CD:EF)

--°

L

42

Figure 2.2: Browsing model for device interaction. Smart devices (light bulb, thermo-
stat) and beacons make their presence known by broadcasting information about themselves.
The browser, which can run on a smartphone, scans the local vicinity and displays to the
user a selection of available user interfaces for nearby devices. When the user makes a selec-
tion, the interface for the chosen device is opened from a specified location hosted locally or
online, presenting a user interface that can facilitate direct interaction with the device using
browser-extended APIs for local network communication protocols.

2.2 Interaction

In the design of the browsing architecture, we extend the device broadcasting scheme to
enable device discovery and interaction for the user. The illustration in Figure 2.2 depicts
this model.

In this model, the device broadcast would typically include reference to a user interface
location — most commonly a URL for a remote web page. This location can also be a
page hosted on the local network or content stored on the device. If the phone detects that
a corresponding native app is already installed, the browser can link to it as the default
interface for the device. If no location is specified, the browser may be able to auto-generate
an interface if the device implements known standard services.

By detecting these broadcasts, the browser can present interfaces for the nearby devices.
When the user makes a selection, the interface for the chosen device is opened from the
determined location. The interfaces can be built using standard web technologies, and the
browser can extend APIs that enable communication over the phone’s low-power radio to
facilitate direct interaction with the device.

The standard implementation would present interfaces as a list. We also envision a
version of the browser that displays the selection of interfaces in mixed reality to more
physically tie the interface to the device. The browser may additionally extend APIs to
allow interfaces to use mixed reality as a mode of interaction with their devices.

CHAPTER 2. ARCHITECTURAL OVERVIEW 12

Bluetooth Classic

Wi-Fi

3G

4G

Bluetooth LE (BLE)

Zigbee / Thread

Low-Power
Wide-Area Networks

(LPWANs)

2G
Data

Throughput

Range
Lower
Power

Higher
Power

Figure 2.3: Comparison of radios technologies. The graph depicts relative trade-offs
in data, power, and range between major wireless radio technologies [57]. Bluetooth Low
Energy (BLE) is a popular choice in constrained IoT devices due to its low power benefits
and its compatibility with smartphone platforms.

2.3 Network Technologies

Bluetooth Low Energy (BLE) is a wireless communication technology that enables short-
range communication between devices with low power consumption, whose protocol was
defined by the Bluetooth Special Interest Group in 2010 [30]. Figure 2.3 shows how BLE
compares to other radio technologies. While BLE shares a name and some similarities with
classic Bluetooth networks, it is a distinct protocol. It achieves lower power consumption
through a number of mechanisms, including low duty cycle operation, shorter packet lengths,
and reduced complexity in the protocol stack.

Low-Power Wide-Area Network (LPWAN) and 802.15.4 (Zigbee/Thread) radios are
alternative low power link options that are suitable for long- and short-range applications,
respectively [36, 152, 175]. These systems show significant promise for IoT applications,
and are gaining traction within industry [41, 59]. The approaches presented in the work
are motivated by aspects of each of their protocols, and would largely be applicable to
these technologies. However, due to the high adoption rate of BLE in IoT devices and its
ubiquitous presence in nearly all modern user-facing computers and smartphones, we choose
to implement our approaches primarily using Bluetooth Low Energy.

CHAPTER 2. ARCHITECTURAL OVERVIEW 13

BLE networks are typically implemented with a single-hop, star-topology, in which
there exists a central device (the gateway, in our case) that scans for and connects to one
or several peripheral devices. The device broadcasting schemes used in the connectivity and
interaction architectures can be facilitated using the BLE advertisements — simple, periodic,
broadcast messages. Our approaches can support networks of devices that exclusively use
advertisements for communication needs, a choice that is sometimes made due to resource
constraints [167, 170]. Higher throughput data transport can be achieved by entering a
two-way connection mode with the peripheral device.

14

Part II

Connectivity

15

Chapter 3

Static Gateways

The gateway problem has created a gap in the availability of good quality, affordable bridging
mechanisms for low-powered end devices in the Internet of Things (IoT). To begin to address
this, we propose the use of ubiquitous, low-cost static gateways in scenarios and environments
requiring long-term reliable throughput, especially with connection-less data transport for
low-power devices.

In pursuit of this effort, we simplify the gateway to its most essential parts — commu-
nications and processing — and we consider inexpensive off-the-shelf components that might
satisfactorily work to fulfill this role. Notably the ESP32, a $3 system-on-chip (SoC) which
has recently grown in popularity, incorporates Wi-Fi and Bluetooth Low Energy (BLE)
radios as a convenient single package with a built-in dual-core processor and memory [47].

We explore and optimize the design and performance of gateway functions using single
and multi-microcontroller implementations, particularly for reliable opportunistic data for-
warding, as well as support for application needs like simple device provisioning, high-rate
two-way communication, and Internet Protocol (IP) compatibility.

3.1 Background & Related Work

Previous studies identify ESP32 as a desirable option for IoT applications, but focus on
suitability as part of the end device [113]. While its relative low power is highlighted,
its typical consumption is orders of magnitude higher than a standalone BLE SoC—the
difference between lasting years on a battery instead of days [56, 90, 111]. ESP32 is, perhaps,
better suited as a wall-powered IoT gateway.

For optimizing gateway performance, we look to previous work that investigates BLE
IoT networks and provides strategies to set parameters for maximizing throughput [129],
expand coverage with multiple gateways [57, 170], adapt to changes in the spectral environ-
ment [75, 110], efficiently filter and transform traffic at the network layer [115, 174], and
create systems built on multi-SoC designs [58].

CHAPTER 3. STATIC GATEWAYS 16

D E V I C E G A T E W A Y C L O U D

I P v 6 B
L

E

W
 I

F
I

S E N S O R S

A T T R I B U T E S

M E T A I N F O

B L E

P R O F I L E
H T T P

A C K N O W L E D G E M E N T

Figure 3.1: Architecture. We apply a data transport approach that considers two pri-
mary transmission mechanisms: (1) via IPv6, using the gateway as an IPv6 router and
treating the peripheral as an IP-connected end host, and (2) via proxy, using the gateway
to forward the device’s BLE profile to the cloud.

Examples of broader static gateway approaches exist, providing insight into the feasibil-
ity of supporting larger scale networks, but still use a closed, application-specific approach [9].
BLE mesh network techniques have been explored by academic, commercial, and standards
organizations, including a strategy that builds a mesh network on top of BLE advertisements
[42, 92]. A study on IPv6 over BLE explores how to establish IP-based connections with 4–8
Bluetooth devices through a central gateway system [149]. These approaches could provide
support for wider coverage and IP compatibility in our gateway design.

3.2 Network Overview

To facilitate data transport between devices and the cloud on the simplified static gateway,
we propose applying an approach that specifies two general and reusable techniques for
transferring data that can support many applications over a system like ESP32. An overview
of the architecture is shown in Figure 3.1.

3.2.1 BLE Profile Proxy

In this data transport mechanism, the gateway acts as a proxy for the information contained
in the BLE data structures on the peripheral. At a high level, the gateway relays the
advertisements, services, characteristics, and attributes shared with it from the BLE device
to a remote endpoint in the cloud.

CHAPTER 3. STATIC GATEWAYS 17

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 5 10 50

Pa
ck

et
 R

ec
ep

tio
n

Ra
te

Number of Bluetooth Devices

BPA Pro Scanner
Linux Gateway
ESP32

Devices ESP32 BPA(avg) Linux

1 0.96052 0.96593 0.96696

10 0.88245 0.91357 0.77021

50 0.67458 0.71788

Figure 3.2: BLE packet reception rates. A comparison between the PRRs of a $3
ESP32, a Linux-based gateway, and a professional $1000 Teledyne scanner (channel average)
during 10 minutes of scanning with BLE devices sending unique packets every 100 ms. The
dashed line is ideal reception accounting for probability of loss due to packet collision [170].

This is compatible with most existing BLE device setups, as the data organization
between the peripheral and central nodes in current, application-specific BLE interaction
will not fundamentally change. The approach supports opportunistic data forwarding for
devices that primarily broadcast data via BLE advertisements—common for especially low
power devices. Also, acknowledgements from the server can include commands to initiate
connections and act as a proxy for two-way communication using standard BLE protocols.

3.2.2 End-to-End IPv6 Routing

The other data transport mechanism we consider is IPv6 packet transfer over BLE or Thread
6LoWPAN. This allows each IoT device to behave as any other IP end host and take advan-
tage of the flexibility and convenience of working at the network layer. To support this, the
peripheral and gateway devices must both include a 6LoWPAN network stack.

While 6LoWPAN specification exists for Bluetooth [123] and implementations of the
network stack are available [149], it is still not yet commonly utilized by most BLE peripher-
als. 6LoWPAN sees perhaps greater utilization on 802.15.4 SoCs like the Nordic nRF82540
[126] using Thread [152].

CHAPTER 3. STATIC GATEWAYS 18

State Power Current

Wi-Fi & BLE off .19 W 37 mA

BLE scanning (w/ Wi-Fi idle) .54 W 107 mA

HTTP POST (w/ BLE scan off) .44 W 89 mA

HTTP POST (w/ BLE scan on) .60 W 119 mA

Table 3.1: Power and current at various BLE and Wi-Fi states on ESP32.

The inclusion of both a BLE and Thread-capable SoC in a gateway device allows the
flexibility to support two different 6LoWPAN networks. While we consider and incorporate
designs to support this, we leave the implementation and evaluation of 6LoWPAN routing
to future studies.

3.3 ESP32 Characteristics

ESP32 is an SoC from Espressif that includes Wi-Fi, BLE, two Xtensa LX6 microprocessor
cores, and 520 kB internal SRAM, and can connect up to 64 MB external flash [47]. We
explore the characteristics of the ESP32 to gauge its operational parameters for performing
gateway operations.

3.3.1 Bluetooth Broadcast Packet Reception

To test the ESP32’s ability to receive BLE advertisement data, we run a series of 10-minute
scans in an isolated environment, with no external BLE interference. We compare with the
average results of a professional $1000 Teledyne BPA scanner which runs on a single BLE
channel at a time (3 total), as well as the results of a Linux-based gateway running Noble,
a NodeJS Bluetooth scanning library. With devices each sending a unique packet every
100 ms, the ESP32 achieves a packet reception rate (PRR) ranging from 96% for a single
device to 67% for 50, as shown in Figure 3.2. This performs better than the Linux-based
gateway and is comparable to the average performance of dedicated BPA scanners.

3.3.2 Power Draw

We take power readings using a Drok USB meter [45] at different states while running a
simple gateway application that performs an active BLE scan and sends raw data via HTTP
request over Wi-Fi. The readings are shown in Table 3.1. Most consumer Wi-Fi routers
require between 4–10W in normal operation [151]. Under the same power constraints, about
8–20 ESP32 devices could continuously run the gateway application. This number of ESP32-
based gateways is more than sufficient to achieve an amount of coverage similar to that of a
consumer Wi-Fi router.

CHAPTER 3. STATIC GATEWAYS 19

 600
 610
 620
 630
 640
 650
 660
 670
 680
 690

 0 100 200 300 400 500 600

Da
ta

 T
ra

ns
m

is
si

on
 R

at
e

(k
bp

s)

Time (s)

Peripheral -> Central (Read)
Central -> Peripheral (Write)

Figure 3.3: BLE read/write transmission rates on ESP32.

3.3.3 Bluetooth Connected Data Transport

To test read and write performance in a Bluetooth connection, we set up two ESP32s,
with one in central role and the other as peripheral. Both are set to use the maximum
transmission unit (MTU) of 517 bytes per read/write transaction. The central device writes
data to the peripheral for 10 minutes. Then, in the 10 minutes that follow, the peripheral
sends notifications to the central indicating it has data to be read. When the central receives
each notification, it initiates a read.

In the test, the peripheral takes 770 ms to connect and configure itself, and the central
takes 830 ms. The read/write transmission rate is plotted in Figure 3.3. The average transfer
during read is 664 kbps, and write is 683 kbps.

3.3.4 Radio Coexistence

We note that the ESP32 makes a compromise to enable coexistence between its BLE and
Wi-Fi radios. Both systems share the single on-board 2.4GHz radio module and antenna
connection to perform their respective tasks. When both BLE and Wi-Fi are required by
software, no one radio can continuously run for an extended period time. If an application
runs both simultaneously, the ESP32 divvies utilization of the radio module between the
two. While this still effectively facilitates connections and negotiated traffic quite reliably
due to built-in delay tolerance, it proves inadequate in performing comprehensive retrieval
of broadcast BLE data. When the Wi-Fi radio is running, the BLE radio only receives
approximately 50% of advertisement packets with default settings. Radio priority can also
be specified programatically when both radios are in use. Giving BLE priority increases
PRR to around 66%.

CHAPTER 3. STATIC GATEWAYS 20

0.0

0.2

0.4

0.6

0.8

1.0

Simple Forward

Simple Optimized

Priority Switching

Reboot Method

2 Uncoordinated GWs

2 Coordinated GWs

Single GW w/ 2 ESPs

Da
ta

 R
ec

ei
ve

d
at

 In
flu

x 100ms
500ms
1s

Figure 3.4: Forwarding performance with different approaches. Tested with unique
advertisement packets sent every 100ms, 500ms, and 1s over 10 minute periods.

3.4 Static Gateway Analysis

We test gateway operations on the ESP32 with a deployment of low-power BLE devices and
evaluate its performance. As a driving application, we explore and analyze services that
facilitate data transport functions for PowerBlade plug-through power meters [43]. These
low-footprint devices monitor loads plugged into power outlets and use Bluetooth to relay
power measurements.

3.4.1 Forwarding

A key indication of gateway reliability for low-power devices is performance while forwarding
data from advertised BLE packets to the Internet over Wi-Fi. We test with a basic imple-
mentation that forwards advertisement data to InfluxDB, a time-series database endpoint
in the cloud [86].

The devices for these tests send unique advertisement packets at intervals of 1 s, 500 ms,
and 100 ms for 10 minutes each. At these advertising rates, the test device effectively
simulates broadcast of the once-per-second power measurement payloads from 1, 2, and 10
PowerBlade devices respectively.

We improve forwarding using various strategies that change how the BLE/Wi-Fi coex-
istence ultimately impacts data reception at the cloud. The performance of each method is
shown in Figure 3.4.

3.4.1.1 Simple Forwarding

The gateway scans for BLE packets from the the test devices and sends parsed data to Influx
via HTTP POST. Without modifying default configuration values, approximately 35% of
packets are received at the cloud endpoint for all of the tested advertisement intervals.

CHAPTER 3. STATIC GATEWAYS 21

3.4.1.2 Simple Optimized

Performance improves when some of the default configuration values are modified. We
increase the scan window and interval to 100ms. Data is sent to the cloud in batches of up
to 160 advertisement packets. A second of delay is added after any HTTP request to allow
time for other background processes to take place, and reduce failures. This increases data
reception performance to nearly 50%.

3.4.1.3 Priority Switching

The gateway can only achieve 50% because of the way coexistence of Wi-Fi and BLE, and
sharing of radio hardware, is handled by the ESP32, as noted in Section 3.3.4. Programati-
cally switching priority of the radios as needed improves reception to about 66%.

3.4.1.4 Reboot Method

As we seem to reach the limit of simultaneous radio performance with the priority switching
technique, we consider an approach that instead handles BLE and Wi-Fi tasks sequentially
so that neither cannibalizes the other’s performance while running. The ESP32 performs a
BLE scan at startup. It waits until the batch limit is reached to start up Wi-Fi, connect to
the network, and send data. Then it reboots to deactivate Wi-Fi, restart BLE, and repeat
the process. Because ESP32 does not load a bloated OS on boot, the reset is less than half
a second.

At initial glance this seems to perform relatively well, particularly for fewer adver-
tisements. However, as the frequency of advertisements increases, the gateway struggles to
support the volume due to the scanning time lost during the switch. At 100 ms, it just
barely keeps up with the performance of the priority switching method.

3.4.2 Multiple Forwarders

Next, we explore how coverage increases when multiple gateways receive data from the same
peripherals.

3.4.2.1 Uncoordinated Gateways

We test the coverage of multiple gateways, using the priority switching method, without any
facilitated coordination. For two gateways situated two feet apart with the test device a
foot away from both, this uncoordinated approach yields about 80% reception. This setup,
however, leads to recurring periods of redundant reception when both are receiving BLE
data and—more worrisome—data loss when both are in Wi-Fi mode.

CHAPTER 3. STATIC GATEWAYS 22

Figure 3.5: Timing diagram of the coordinated approach. Depicts communication
between two gateways (GW1 & GW2).

3.4.2.2 Coordinated Gateways

In this approach, two ESP32s coordinate to alternately scan BLE packets from the test
device and HTTP POST data to Influx. This extends from the reboot approach in which
BLE tasks and Wi-Fi tasks are performed sequentially. Instead of waiting for batch limit
to be reached, the BLE-scanning gateway waits for a packet from the other gateway that
indicates that it has begun scanning. Once this signal is received the first gateway can halt
scanning, startup the Wi-Fi radio, and send its data. It then reboots, restarts BLE scanning,
and broadcasts a packet to inform the other gateway that its scanning has begun. Figure 3.5
depicts a timing diagram of this process. Using the same setup as before, this technique
yields roughly 96% reception.

CHAPTER 3. STATIC GATEWAYS 23

Figure 3.6: Voltage and current waveforms at Influx, viewed on Grafana. The
ESP32 can connect to a PowerBlade, retrieve calibration values, and read 1260 values of
voltage and change of current—representing 0.5s of data—from the raw sample service. The
gateway then adjusts the data using the calibration figures, calculates the real-time current
values, timestamps every point, and sends the final voltage and current waveform data to
an Influx database via HTTP POST. The entire process takes around 82s.

3.4.3 Connecting

For occasional scenarios requiring larger rates of data transfer from the device or commu-
nication from the cloud to the device, the gateway can facilitate high-throughput two-way
transmission via BLE connection proxy. We test collection of high-fidelity readings from
BLE services on PowerBlade.

The PowerBlade device has a raw sample collection service which provides a half-second
sample of values (1260 points) for voltage and change of current. The device also includes
a calibration service that provides the constants to adjusts the data points to known units.
To retrieve a sample, the ESP32 scans for and connects to the device. Once a connection
is established, the gateway reads the values from PowerBlade’s calibration service. Next, it
requests data from the device’s raw sample service by writing ‘1’ to the startup characteristic.
The ESP32 then reads a chunk of data from the data characteristic. It repeats these request
and read operations for 10 iterations. The gateway then disconnects, timestamps and adjusts
the data to proper voltage and current values, and sends the data to InfluxDB via HTTP
POST in two chunks. This full operation takes about 82 seconds (60 s for BLE, 22 s for
Wi-Fi). Figure 3.6 displays data received at InfluxDB using this method, viewed in graphical
form on Grafana.

CHAPTER 3. STATIC GATEWAYS 24

Figure 3.7: Dual-ESP gateway setup. Two ESP32 boards are connected via SPI. One
ESP32 is dedicated to performing BLE scans, while the other solely sends the scanned data
over Wi-Fi. This effectively yields near-optimal forwarding performance, roughly equivalent
to the BLE scanner’s PRR.

3.4.4 Multi-SoC Gateway

The promising results of the coordinated forwarding approach indicates that distributing
BLE and Wi-Fi roles to dedicated SoCs improves performance. As a result, we explore
creation of a single gateway from multiple SoCs. Table 3.2 compares the single- and multi-
SoC setups.

3.4.4.1 Dual-ESP Gateway

This approach uses two dedicated ESP32s that communicate via SPI to operate as a single
gateway. The BLE-focused ESP scans for BLE packets from peripherals. The Wi-Fi-focused
ESP forwards parsed data over Wi-Fi to an Influx database. This yields a reception rate
of about 96% while also avoiding scaling issues that occur in denser environments with the
reboot method. The setup is pictured in Figure 3.7.

CHAPTER 3. STATIC GATEWAYS 25

Figure 3.8: Gateway hardware. Our design distributes BLE, Wi-Fi, and 802.15.4 roles
between two ESP32s and an nRF52840.

3.4.4.2 ESPxNRF Gateway

Based on these results, we design a custom high-reception gateway system, as shown in
Figure 3.8. Using modularization to optimize performance and distribute gateway roles, the
design houses two ESP32 modules, SD storage, and a Nordic nRF52840 — a supplemental
chipset with Bluetooth Low Energy and 802.15.4 [126]. Using the two ESP32s for forwarding
performs the same as the dual-ESP setup. Inclusion of 802.15.4 opens the door for Thread-
based applications, including IPv6 connectivity [67, 152].

3.5 Discussion

In this section, we discuss lingering research questions and trade-offs that should be more
deeply explored when considering use of the low-cost static gateway approach outlined in
this chapter.

3.5.1 Design

Our gateway analysis reviews a range of techniques for facilitating communication between
device and cloud, each of which present a set of trade-offs. Table 3.2 presents a tabulated
comparison. The initial forwarding technique that runs on a single ESP32 is capable of re-
ceiving roughly two-thirds of broadcast advertisements from devices within moderate range.
This is likely suitable enough in more delay-tolerant deployments which only require pings at
frequencies of minutes, hours, or days. The multiple forwarder and multi-SoC setups are de-

CHAPTER 3. STATIC GATEWAYS 26

SoCs Price Approach

1x ESP32 <$5 Shared BLE & Wi-Fi

2x ESP32 <$10 Distributed BLE & Wi-Fi

2x ESP32 + 1x nRF52840 <$20 Distributed BLE, Wi-Fi, 802.15.4

Table 3.2: Single & multi-SoC gateway approaches.

signed to handle more frequent forwarding in more dense deployments. Our hardware design
is driven by the needs of the PowerBlade deployment, which produces frequent output from
devices at potentially every outlet in a household. These setups remain relatively low cost
and low power even when multiple SoCs are used. Though it may be limited in resources,
it runs on a simpler processing loop, and is capable of quickly recovering from crashes as it
does not need to load a bloated OS every time it starts. The benefits for the low-cost static
approach may fall off, however, when deployments demand highly-responsive, large-volume
throughput. But such demands are often excessive for low-power IoT device deployment
scenarios.

3.5.2 Security

When BLE devices broadcast data in advertisements as they do in the forwarding approach,
that data is accessible to any scanning BLE device within range. It is important to consider
this inherent risk in any deployment of BLE devices, as advertisements are a key component
of the Bluetooth protocol. At minimum, sensitive data can be encrypted by the device when
broadcast and translated by the trusted cloud endpoint or the gateway itself, if provisioned
properly for it. Alternatively, devices can broadcast requests for the gateway to establish
secure BLE connections if larger amounts of sensitive data need to be sent or if a more secure
transaction needs to be facilitated via profile proxy between the device and cloud.

3.5.3 Industry

It is understandable why the prevailing IoT approach adopted by industry has favored expen-
sive brand-specific gateways. At face value, it makes sense as a short-term business decision
as a means for a manufacturer to generate additional revenue, guarantee buy-in by its users,
and control the full pipeline between device and cloud. However, the cracks in this approach
grow more apparent — made evident by the relative stagnation of consumer IoT markets
and pushes for standardization between brands. The low-cost static gateway approach re-
duces the barrier to user entry, which reduces the barrier to device deployment, connectivity,
and orchestration. One potential way to support an industry transition to this approach, is
implementing a gateway-as-a-service which could run many virtual brand-specific gateways
on a single physical gateway.

CHAPTER 3. STATIC GATEWAYS 27

3.6 Summary

The gateway is a major pain-point in current state-of-the-art IoT architectures, particularly
with achieving reliable data transport for resource-constrained edge devices. We suggest an
approach that anchors networking infrastructure for such systems on low-cost, pared-down
open static gateways. We first test the approach on a standalone ESP32 BLE/Wi-Fi SoC, and
fine-tune to reduce contention and improve performance, particularly for connection-less data
forwarding scenarios in densely populated environments. For high-reliability scenarios we
develop a custom gateway design which distributes gateway tasks among two ESP32 modules
and an additional BLE/802.15.4 SoC. These setups can proxy as an Internet-connected BLE
profile or translate to IP using 6LoWPAN. If deployed widely in requisite environments,
our approach could provide inexpensive and reliable connectivity for a host of devices in a
currently-neglected category of constrained and low-power systems, perhaps reigniting the
growth of a more densely populated and useful Internet of Things.

28

Chapter 4

Mobile Gateways

To expand network access for low power IoT devices beyond the bounds of static coverage, we
consider the established global network of well-connected smartphones, which may provide
a promising foundation for ubiquitous, low-power, last-inch networking, particularly when
more ephemeral and delay-tolerant communication suffices. An example of such a model is
depicted in Figure 4.1. It is already common practice in industry to facilitate configuration
and administration of devices like smart home appliances in smartphone apps. However, this
siloed, segmented, and application-specific approach creates walled gardens that drastically
limit the wireless connectivity potential for the substantive class of constrained IoT devices.

Addressing this problem requires a networking architecture for low-power wireless de-
vices that better leverages the opportunities provided by mobile infrastructure. Such an
architecture would need to provide convenient and transparent access to the Internet for
low-power devices while offering data integrity, security, throughput, and lifetime for the
phone and device.

The proposed approach uses Bluetooth Low Energy (BLE), common on modern smart-
phones, as the primary link between low-power peripherals and capable smartphones. In
contrast to the application-specific design of device-phone interactions, however, we extend
the open gateway model introduced in the previous chapter. First, we envision that any
BLE device could leverage any smartphone as a temporary Internet Protocol (IP) router
and act as a normal IP end host. Second, any phone could proxy a Bluetooth profile to the
cloud on behalf of a device. The former allows for a high degree of flexibility while the latter
may be better suited to the power and processing constraints of the device. Both can be
implemented as part of an independent app or operating system (OS) service on the phone.
This chapter describes an implementation of the profile proxy approach as a background
Android application, Gateway.

Current applications cannot be entirely replaced by transparent gateways, however. The
asymmetry in capabilities between smartphones and peripherals leads to some application-
specific functionality, like location information or user interfaces, being handled by the phone.
To support some such usage scenarios, we further extend the architecture to allow devices to
request certain services from the paired smartphone, such as supplementing data sent with

CHAPTER 4. MOBILE GATEWAYS 29

Figure 4.1: Mobile Gateway Model. In a mobile gateway architecture, the existing
network of smartphones could collectively act as an open, ambient bridge of connectivity
between constrained IoT devices (via Bluetooth) and the cloud (via cellular/Wi-Fi).

information like the phone’s location, the current time, or measurements from on-phone
sensors. Services like these may be critical to the application but difficult for a cost-and
energy-constrained peripheral device to acquire on its own. Additionally, we introduce a
service to present smartphone users with an associated dynamically loadable interface to
interact with the device, without requiring a device-specific app. An early implementation
of such a service, Summon, is included in the Gateway application. This extension of the
architecture suggest a possible new role for the smartphone—as an opportunistic context
server for nearby devices.

With this approach, the gateway is decoupled from apps, as depicted in Figure 4.2. It
eliminates the need for for siloed networking components within apps, and instead allows
any nearby phone to collect data for them using a core gateway service. The app’s unique
and novel user interface (UI) could be retained and continue to pull data from the cloud, or
in some cases, the need for a native app can be eliminated in favor of linked dynamically
loadable interfaces, built using standard web technologies.

In this chapter, we make a case for the architecture by describing a number of motivating
applications and propose an open mobile gateway architecture. We explore the design,
implementation, and evaluation of Gateway, an implementation of BLE profile proxy via
smartphones, and Summon, an included service that enables proximity-driven availability
and opening of full-featured, interactive, and remote interfaces for BLE devices using web-
technologies.

CHAPTER 4. MOBILE GATEWAYS 30

User InterfaceNetworking

Figure 4.2: Approach: Decoupling core gateway services from mobile apps. With
this approach, a separate (ideally, OS-run) general gateway service on smartphones facilitates
networking between potentially any device and the cloud. The UI can continue to retrieve
data from the cloud. The UI also may, itself, be retrieved from the cloud, at a location
specified by the device.

4.1 Background & Related Work

The proposed approach is motivated by previous related work that spans delay tolerant
networking, data muling, existing IoT ecosystems, BLE proximity services, and web-based
interfaces.

4.1.1 Delay Tolerant Networking.

The use of mobile phones as gateways leads to challenges stemming from the lack of con-
tinuous network connectivity. Mobile wireless ad hoc networks allow for the continuation of
previously disrupted communication when the mobile node is in range of the network. This
type of routing has been demonstrated in many projects involving delay tolerant networking
[71, 130]. Consideration of work that describes the tradeoffs of delay tolerant networks in
energy, latency, and storage is helpful for implementation of the architecture [147].

4.1.2 Data Muling.

Many projects demonstrate that data mules, mobile surrogates such as smartphone gateways
that can transport data between two hosts that would otherwise be unable to communicate
with one another, can provide connectivity for sensor networks [35, 88]. Additionally, data
muling over Bluetooth on human-carried mobile phones has been shown to provide a reliable
network, even for remote sensor deployments [128].

CHAPTER 4. MOBILE GATEWAYS 31

4.1.3 Existing Services for IoT Devices.

Over the past couple of years, a number of companies have announced services promoting
the connection of smart products. Thread, for instance, is described as a home-based mesh
network capable of connecting hundreds of products within a house and enabling online
control via a border router connection to Wi-Fi [152]. Helium is a platform developed
for metropolitan-sized networks of low-powered connected devices using a modified 802.15.4
protocol and IPv6 addressing, but optimized for very low data transfer [77]. Apple’s Homekit
is a framework available since the release of iOS 8 that enables communication and control of
connected products in the house which meet Apple’s technical specification [18]. The AllSeen
Alliance is a group of consumer brands promoting mainstream adoption of an interoperable
and universal software framework for the Internet of Things based on the AllJoyn open source
project [7]. Similarly, the Connectivity Standards Alliance is working on Matter, another
interoperability protocol for devices connected through Wi-Fi or Thread [41].

4.1.4 BLE Proximity Services

In 2013, Apple introduced iBeacon, a low-powered and low-cost BLE-based proximity so-
lution that specifies the public transmission of unique application-specific identifying in-
formation in a BLE peripheral’s advertisements for which iPhones specifically scan as a
background operation [20]. Detection of an application’s known peripheral identifier on
an iPhone can prompt various actions based on the peripheral’s signal strength, enabling
services like location-based advertisements and rough indoor navigation.

In 2014, Google introduced UriBeacon, which goes in a slightly different direction by,
instead of prompting actions in an app, opening a URL specified by the nearby beacon
within the mobile phone’s browser [70]. Similarly, in the implemented Gateway protocol,
a peripheral specifies a URL, and if the peripheral advertises a request for Summon mode,
Gateway can open the URL—not, however, as just a site in a browser, but as a native-like
interactive application.

4.1.5 Interfacing Using Web Technologies

Apache Cordova [11] and its popular distribution, Adobe PhoneGap [5], are mobile devel-
opment frameworks that allow software programmers to develop mobile device applications
using JavaScript, HTML, and CSS, instead of relying on platform APIs like ObjectiveC/Swift
for iOS or Android-flavored Java. This is enabled by wrapping the code in an embedded
web view with Javascript bindings for native functions on the respective device. While the
software is developed with web technologies, they are not meant to be opened in the web
browser, as they lose all or most functionality. Instead, they are typically package as native
apps for distribution on each platform. This is a popular choice among developers who in-
tend on porting their application to multiple platforms, or who are just more well-versed in
web development.

CHAPTER 4. MOBILE GATEWAYS 32

Inspired by this approach, the proposed Summon service allows peripherals to open what
are essentially unpackaged Cordova apps hosted online. Once pulled up on the smartphone,
the apps are provided with appropriate bindings to act like native apps, and can interact
with the device that “summoned” the application without the hassle of having to actually
install an app. To enable, this, a Summon mode flag is introduced in the Gateway API for
peripherals. While this chapter presents an early implementation of the service, the next
chapter features a more significant focus on and expansion of this concept.

4.2 Applications

To motivate the need for a well-defined, cross-platform architecture for connecting low-
power devices and sensors to the Internet, we explore several applications that are enabled
or improved by the proposed gateway architecture.

4.2.1 Ambient Data Collection

Sensors installed in buildings, homes, cities, remote environments, and other locations can
provide invaluable streams of data for monitoring, control, analysis, and prediction applica-
tions. Retrieving data from each device, however, is often challenging due to sensor power
constraints, poor wireless connectivity, or expensive data links. One solution that has been
extensively studied is to mesh-network sensors to allow data packets to hop through the net-
work, but this often fails in areas with poor RF characteristics, and the demands of packet
forwarding take a substantial toll on sensor lifetime.

In contrast, the proposed BLE gateway architecture would leverage the smartphones
that people already carry to collect data from installed sensors. As an example, consider
scientists seeking to measure temperature and relative humidity in a forest by deploying
sensors. Rather than requiring a cellular data plan for each sensor or the scientists to visit
each node periodically, one could imagine a system where hikers traveling on well-defined
trails can provide connectivity for these sensors. As a hiker walks by a sensor, the sensor
will attempt to use the hiker’s mobile phone as a gateway. Because the sensors conform to
a common architecture, a hiker would not need to download any software to connect to the
sensors. The phone, which may be disconnected from a data network, could hold the data
for some time before forwarding it. Hikers may be interested in being a courier for the data
because of its scientific nature [10], or because the scientists will compensate them [93].

This method of data retrieval can extend to other applications as well. Sensors installed
in buildings, particularly older buildings with challenging RF characteristics, could use the
daily occupants of that building to relay their data. In this case, the occupants may be
incentivized by obtaining controls for temperature and lighting on their smartphones in
exchange for forwarding sensor data.

CHAPTER 4. MOBILE GATEWAYS 33

Peripheral Smartphone Cloud

IPv6 BL
E

W
iF

i/4
G

Sensors

Attributes

Meta Info

BLE
Profile

HTTP

Acknowlegment

Figure 4.3: Proposed architecture. The gateway architecture introduced in Chapter 3
is applied and extended to mobile infrastructure. In it, Internet connectivity for BLE devices
could be facilitated: (1) via IPv6, using the smartphone as a temporary IPv6 router and
treating the peripheral as an IP-connected end host, and (2) via proxy, using the smartphone
to forward the peripheral’s BLE profile to the cloud.

4.2.2 Cross Platform Connectivity

Some devices are limited by the model of smartphone to which they are capable of connecting.
For example, many devices are only compatible with iOS. This closed, siloed approach is
detrimental to the growth and usefulness of this class of device.

With an open gateway architecture, any device could potentially ask any smartphone it
encounters to agree to act as a gateway. The phone could then provide a connection for low-
bandwidth Internet applications running on the device. Certain applications which are highly
user-specific, such as notifications on the smartphone, may still require a specific smartphone
or app running on the phone. The device can, however, link to its own dynamically loadable
web-based interface, which, when detected and opened on the phone, may enable some
aspects of device-user interaction, regardless of the phone platform or the presence of an
associated native app.

4.2.3 Masking Smartphone Failures

Requiring a BLE peripheral or wearable device to link to exactly one smartphone inserts
an unnecessary failure point for these devices. If the paired smartphone is not present or is
discharged, the otherwise functional tethered device loses its ability to send or receive data.
An open gateway model would allow devices to use any nearby smartphones to forward or
receive data. In certain situations, such as when using a fitness monitor at the gym or after
a smartphone’s battery has depleted, it would be preferable not to lose functionality because
a specific phone is unavailable, as many do today.

CHAPTER 4. MOBILE GATEWAYS 34

4.3 Gateway Overview & Design

To provide Internet connectivity for resource-constrained devices, we propose a smart-phone-
centric approach. Smartphones can act as useful gateways due to their near-constant Internet
connection, mobility, and ubiquity, but doing so means they also dictate what wireless proto-
col compatible IoT devices must use. Although Wi-Fi is ubiquitous throughout much of the
world, and is presently implemented in many IoT devices, its large power requirements make
it unsuitable for low-power applications. While some low-power links, like IEEE 802.15.4,
provide features that would be useful in this regime, their lack of smartphone support make
them unattractive. Bluetooth Low Energy (BLE), on the other hand, is a more promising
protocol for connecting IoT devices via mobile infrastructure. Its widespread deployment in
smartphones and suitably low-power draw make it an attractive solution. So we design the
gateway architecture using BLE as the underlying technology.

4.3.1 Network Scheme

BLE is a link-based, point-to-point protocol between two devices, one in peripheral mode
and the other in central mode. In the proposed architecture, the smartphone remains in
central mode while all IoT devices behave as peripherals. Peripheral nodes transmit periodic
beacons, termed advertisement packets, to notify nearby central nodes of their presence.
Once a central device hears an advertisement, it can establish a connection between the
two devices to transfer information. This connection process is standardized by the BLE
specification. How and which information is transferred between the device and smartphone
is specific to each application, however. To allow the phone to behave as a generic gateway,
we consider the architecture from Chapter 3, which suggests two general and reusable data
transport mechanisms that many applications could use. An overview of the architecture is
shown in Figure 4.3.

IPv6 Routing. The first data transport mechanism between BLE peripherals and
smartphones is a raw IPv6 packet transfer over BLE. This would allow each IoT device to
behave as any other IP end host and to take advantage of the flexibility of working at the
network layer. The phone acts as an IPv6 router between its Internet connection and the
peripheral. The mechanisms for building this IP network on a BLE link are currently being
formalized by the IETF and Bluetooth SIG [31, 123, 124], and early versions of IPv6 stacks
for BLE peripherals and phones shows promise for future work [82, 131, 145, 162].

The primary challenge to using this data transport is the complexity of communicating
at the IP layer. All resource-constrained peripherals should not be expected to support a
full IP stack, on top of BLE. Further, this class of sensor can benefit from offloading work
to a more capable device. In addition, network IPv6 support for smartphones is growing
slowly, but remains sparse [64]. While the flexibility of providing an IP layer is extremely
beneficial for supporting a wide variety of applications, we look to the second data transport
option which offers less flexibility but is better optimized for immediate use with the BLE
specification and contemporary IoT device applications.

CHAPTER 4. MOBILE GATEWAYS 35

P

ADV: Server
Address,

Data
HTTP POST

Data

ResponseRead/Write

Figure 4.4: BLE Profile Proxy In default operation, the smartphone facilitates connec-
tion and profile-based communication between the BLE peripheral and the cloud endpoint
specified in its advertisement.

BLE Profile Proxy. The second data transport mechanism operates by using the
smartphone gateway as a proxy for the information contained in the BLE data structures on
the peripheral. At a high level, the gateway relays the services, characteristics, and attributes
shared with it from the BLE peripheral to a remote server. This more naturally aligns with
existing BLE devices, as the data organization between the peripheral and central node in
existing, application-specific BLE interactions does not fundamentally change.

To support this proxy architecture, IoT peripherals must extend the data they send to
the phone with meta information that dictates how the phone should proxy the BLE profile
data. This configuration meta information can be contained in the peripheral’s broadcasted
advertisements, to which the gateways will have access without requiring an explicit connec-
tion with the device. This meta information can include parameters specifying destination,
reliability, and user incentives for sending the data, as shown in Figure 4.4. In addition, in
this model, there is a unique opportunity for the peripheral to request the smartphone to
supplement the data with its own inputs, like GPS data, time, or measurements from its
on-board sensors, as in Figure 4.5a.

4.3.2 Application-Specific Apps

The proposed architecture separates core gateway components from siloed peripheral-specific
apps, as shown in Figure 4.2. However, the architecture is not intended to replace all
peripheral-specific apps on a smartphone. Some apps utilize or display data that is collected
by the peripheral. These apps can be designed primarily to display information from the
backend cloud service, and should, instead of implementing a custom siloed gateway for the
peripheral, allow all forwarding data requirements to be handled by the gateway service
on any nearby smartphone. But, there are services that may be built on top of the gate-
way architecture that enable simpler access to device-specific interactive applications, as in
Figure 4.5b. Implementation of such a service, Summon, is described later.

CHAPTER 4. MOBILE GATEWAYS 36

Data with
Time, GPS

P
ADV: Request
GPS, Time

(a)

P

ADV: UI
address HTTP GET

Read/Write WEB
APP

P

(b)

Figure 4.5: Extended services for BLE profile proxy. If the peripheral requests data
augmentation services (a), the phone can provide additional data (e.g. location, time) in the
peripheral’s communication with the cloud. If the advertisement points to a UI location (b),
the specified URL can be opened on the phone to allow the user to interact with the device.

4.3.3 Service Parameters

To use the service, BLE peripherals must specify certain configuration parameters. These
parameters, as specified in Table 4.1, are communicated in the peripheral’s broadcasted
advertisements (shown in Figure 4.6), to which the gateways have access without requiring
connection with the peripheral.

Destination and Reliability. As part of the parameters advertised, the peripheral
must, first, indicate the target destination to which to send and/or receive data. The des-
tination specified should be a shortened URL (e.g. a bit.ly or goo.gl address) of up to 14
characters in length. The parameters should also specify the level of reliability of service it
expects, or effectively how UDP-like or TCP-like the gateway connection should be.

Modes: Default and Summon. The Summon parameter flag indicates in which
mode the peripheral wishes the gateway to operate: default mode or Summon mode. In the
default mode, communication with servers at the the specified target URL is facilitated by
sending data over HTTP POSTs and POST responses. In Summon mode, the target URL
is treated as the address for a user interface. No data is transmitted until the user chooses
to open the application, which itself can control communication.

Smartphone Services. Because the gateway is a smartphone device, peripherals
may wish to take advantage of some of the unique data inputs the phone can provide. For
example, information about the location of the peripheral or the current global time may
be difficult for the device to ascertain, but is straightforward for a smartphone, which can
append the information to the data being sent. For this purpose, the addition of readings
of time, GPS, acceleration, ambient light, pressure, and magnetic field can be requested
by peripherals in default mode. In Summon mode, the called application can access these
features on its own.

CHAPTER 4. MOBILE GATEWAYS 37

Figure 4.6: Advertisement Packet Format. The layout of a Gateway-compatible BLE
advertisement packet, broadcast from a participating peripheral, by byte.

User Incentivization. The incentive level parameter allows the peripheral to specify
what incentives it is willing to provide to the gateway owner to allow the smartphone to
facilitate the connection in the background. In default mode, the current simulated scheme
is a system where the level indicates participation in a particular payment program, which
is validated upon retrieval of advertisements. In Summon mode, the incentive parameter is
ignored, as no data is used until the user opens the corresponding application. The assumed
incentive of opening the application is the exchange of potential services in return for data,
much in the same way Google Maps provides map services in exchange for traffic data [24].

4.3.4 Gateway Administration

Gateway owners should be able to configure how and to what extent their smartphone is
utilized as a gateway. The gateway configuration settings allow owners to cap the data rate
and set preferences for the service parameters, like what modes of operation are supported,
which smartphone services can be used for data augmentation, and what incentives are
acceptable for data transport. Additionally, a gateway should maintain a whitelist and
blacklist to enable fine-grained access control.

CHAPTER 4. MOBILE GATEWAYS 38

Parameter Value Bits

Shortened Destination URL Up to 14 chars 112

Incentive Level 0-15 4

Reliability Level 0-15 4

Requested Phone Services

Time Access 0,1 1

GPS Access 0,1 1

Accelerometer Access 0,1 1

Ambient Light Sensor Access (0/1) 0,1 1

Barometer Access (0/1) 0,1 1

Magnetic Field Sensor Request (0/1) 0,1 1

Requested Mode

Summon (URL is an address for a UI) 0,1 1

IP [Reserved] 0,1 1

Optional

Custom App Data 0-10 bytes 0-80

Table 4.1: Advertisement parameters. The set and structure of the parameters to be
advertised by the peripheral. Any BLE peripheral wishing to use the Gateway service, need
only encode these parameters in the advertisement service data. If Summon mode is set,
instead of sending an HTTP post of the advertisement to the specified URL, the gateway
can open the URL as a fully-functioning HTML/Javascript-based user-facing app.

4.3.5 Operation

In the Gateway service, the smartphone gateway continually scans for peripherals in the
background. Upon discovering a peripheral and receiving an advertisement, the service takes
steps depicted in the operational flow diagram shown in Figure 4.7. From, the advertisement,
it can determine the destination URL and the mode of operation.

If Summon mode is requested by the peripheral and is allowed by the administration
preferences, placed in a device list and the smartphone owner is notified about the nearby
peripheral has an interactive application associated with. The owner can view the device
list to see the peripheral and URL associated with it. If the owner chooses, he can select the
peripheral to open the application at that URL.

If Summon mode is not selected, the gateway parses and verifies allowance of the re-
maining parameters in the administration settings. Once verified, it attaches any additional
data from the requested smartphone services, and sends data to the destination URL, to
which the destination server can respond with a request for BLE connection and specify
actions.

CHAPTER 4. MOBILE GATEWAYS 39

Peripheral Discovered

Advertisement
 matches
 protocol?

Stop

 No

Get advertised short URL

 Yes

Stop

Expanded URL
 available in

 cache?

Expand URL & cache

 No

Summon
 UI service

 requested?

 Yes

Parse parameters

 No

Send HTTP POST to URL with
 advertisement & requested

 phone service data

Notify user of available UI
 & open URL if selected

 Yes

Requested parameters
 allowed by set

 user preferences?

 No Yes

Figure 4.7: Operational flow of Gateway upon receiving an advertisement. The
smartphone gateway scans for peripherals, and upon receiving a compatible advertisement,
determines the specified URL and the mode of operation. If Summon mode is requested, the
user is notified and can choose to open the URL-specified web app. Otherwise, the gateway
parses the remaining parameters (see Table 4.1), and, if permitted by user preferences,
attaches and sends data to the destination URL, to which the destination server can respond
with a request for BLE connection.

CHAPTER 4. MOBILE GATEWAYS 40

Figure 4.8: Settings screen for Gateway Android app. The Gateway app lets smart-
phone owners set fine-grained access control preferences for each of the parameters based on
their own comfort level. This way, the service can run in the background, while maintaining
the smartphone owner’s peace of mind.

4.4 Mobile Gateway Implementation

The implementation consists of (1) an Android Gateway application with the Summon ser-
vice, (2) a number of peripherals set up to use the Gateway API, (3) a web server to serve
as the target destination for the peripherals’ data and instruct the Gateway to perform con-
nections and actions on its behalf, and (4) a few Cordova-based applications that allow users
to interact with the BLE peripheral. All of the implementation for the project is available
on Github [98].

4.4.1 Gateway App

Gateway is implemented as an application layer service that runs on Android 4.3 and up. It
fulfills the role of the BLE Profile Proxy Gateway in the open gateway network architecture.

Operation. The application runs in the background and scans for peripherals that
advertise according to the parameter specification shown in Table 4.1. Once it receives
the advertisement, it follows the operational flow shown in Figure 4.7 and discussed in
Section 4.3.5.

CHAPTER 4. MOBILE GATEWAYS 41

Figure 4.9: Device manager screen and device-based web apps. If a peripheral
advertises being in Summon mode, the user is notified that the peripheral has a UI, and it
is listed in the device manager. When the user selects a device, Gateway “summons” the
Cordova[11]-based HTML/Javascript app at the specified URL. Since it is opened within
the Gateway framework (as opposed to a browser), the page will be able to act like a native
app installed on the phone.

Administration. The application has a settings screen, shown in Figure 4.8, that
allows the owner to enable access for particular smartphone services, specify the allowed
incentives, When an advertisement comes in, the application parses out the payload data
and checks the values against against the access preferences, to determine whether or not to
facilitate the data transport. In addition, the owner can specifically set what services the
Summon applications may use.

Default Mode. The application handles requests for both default mode and Summon
mode at the same time. In default mode, the application sends an HTTP POST of the
advertisement data to the specified destination URL. A POST response can be sent back to
the gateway with instruction to initiate connection and perform read, write, and notification
requests over Bluetooth. After actions are performed, the gateway sends the data back to the
URL via HTTP POST, and may receive another response with more actions. This process
can continue iteratively as long as the connection remains established.

Summon Mode. In Summon mode, Gateway adds the advertised peripheral and its
destination URL to a device manager list, and notifies the smartphone user of the presence
of a peripheral with an interactive application. As shown in Figure 4.9, the smartphone user
can open the device manager screen to view a list of the nearby peripherals and corresponding
applications. If the user selects one to open, the URL is opened within the Gateway context.

CHAPTER 4. MOBILE GATEWAYS 42

Because Apache Cordova [11] JavaScript bindings are built-in to Gateway, the HTML page
of any application developed using the Cordova or PhoneGap [5] framework can open like a
native application on the smartphone. Included is support for Bluetooth Low Energy [39],
allowing the application to access the device that “summoned” it.

Platforms. This implementation has been tested on a Blu Dash JR [27], an HTC
One [80], two Nexus 4s[65], and two Nexus 9s [66].

4.4.2 Peripherals

A number of peripherals have been set up to use the Gateway API. A list of the devices used
can be seen in Table 4.2. Each of the devices are programmed to demonstrate a different
unique feature.

The Nexus 9 [66] runs an Android app can build and test any Gateway-compatible
advertisement. This is particularly useful for testing all of the parameters and attachment
of data from the set of smartphone services.

The Raspberry Pi [50], using a Kinivo BTD-400 Bluetooth dongle, runs a NodeJS app
that increments a readable characteristic value every time the gateway connects to it.

The Tessel [150], using a BLE113A Bluetooth Smart module, runs a NodeJS application
that sets up a temperature and humidity service. A connected gateway can read temper-
ature and humidity characteristics, and write to a characteristic that specifies whether the
temperature reading should be in Celsius or Fahrenheit.

The Opo [99], using a Nordic nRF8001 Bluetooth component, sets up a large-scale
data offload service. A connected gateway, receiving notifications every time a characteristic
changes, continuously re-reads a characteristic after every notification to collect a large
stream of data sent in 20 byte chunks.

Two Squalls [76], using the Nordic nRF51822 Bluetooth component, and the Robosmart
Light Bulb demonstrate the use of Summon mode of operation. Each one specifies a URL in
their advertisement that contains a corresponding application that allows interaction with
the device. One Squall has a UART over BLE application. Another has a temperature
reading application. The light bulb has a light control application.

4.4.3 Web Server

A remote web server is implemented to receive, store, and respond to data from the pe-
ripherals operating in default mode. The server is able to instruct the gateway to form
BLE connections and perform any actions, like read, write, or receive notifications on its
behalf. For instance, when the initial HTTP POST message containing Tessel’s advertise-
ment is received at the destination web server, it sends a POST response with instruction
to connect, read the temperature (initially in Celsius) and humidity characteristics, write to
the temperature format characteristic to toggle to Fahrenheit, and re-read the temperature
characteristic (now in Fahrenheit). The read data and confirmation of write is then sent
back to the web server.

CHAPTER 4. MOBILE GATEWAYS 43

Device Feature Mode Advertise Read Write Notify User Interface

Squall [76] Temperature in Advertisement Summon Yes No No No Temperature Display

Squall [76] UART Service with Notification Summon Yes Yes Yes Yes UART Console

Squall [76] Static Test Data in Advertisement Default Yes No No No No

Tessel [150] Temperature/Humidity Service Default Yes Yes Yes No No

Nexus 9 [66] Any Parameter in Advertisement Default Yes No No No No

Opo [99] Large Data Service with Notification Default Yes Yes Yes Yes No

Robosmart Bulb [148] Light Control Service Summon Yes Yes Yes No Light Switch Control

Raspberry Pi [50] Connect Counter Service Default Yes Yes No No No

Table 4.2: Peripherals using Gateway. The set of peripherals set up to use the Gateway
API. All devices work successfully with the Gateway, and each demonstrate a unique feature.
Three peripherals, in particular, demonstrate the proximity-based application “summoning”.
Reading, writing, and receiving notifications are actions that the gateway can perform on a
peripheral after a connection to the peripheral has been established.

Also hosted on the server are the three HTML/JavaScript Summon applications. They
make use of the Apache Cordova framework and are successfully able to interact with their
corresponding devices when opened on a Gateway.

4.5 Mobile Gateway Analysis

A set of evaluations were performed to verify and characterize the functionality, ability, and
operation of Gateway and Summon.

4.5.1 Gateway Functionality and Performance

Every one of the peripherals listed in Table 4.2 have been able to successfully demonstrate
their respective unique feature, as described in Section 5.3.4. Three peripherals, in particu-
lar, successfully demonstrate “summoning” of applications deployed online that interact with
the corresponding devices. The web server implementation properly interacts with Gateway
in response to proxied advertisements in order to establish connections with peripherals, and
perform BLE operations. In terms of overall performance, the use of a central standard
gateway service allows more evenly distributed and often higher throughput than when the
smartphone attemps to context-switch between all of the siloed application-specific imple-
mentations of gateways. To illustrate this, Figure 4.10 compares the times at which data
arrives at the destination web server in both a siloed application setup and a Gateway setup.
This is a demonstration using only one smartphone gateway. The availability of a universal
gateway on multiple smartphones can drastically increase accessibility to the Internet.

CHAPTER 4. MOBILE GATEWAYS 44

(a) Arrival pattern for peripheral data through siloed applications

(b) Arrival pattern for peripheral data through Gateway

Figure 4.10: Comparison of data arrival patterns. For this experiment, two peripher-
als are set up to be scanned, connected, and read by the smartphone, which in turn sends the
data to the destination webserver. Each data arrival point represents the conclusion of a full
iteration of the process. In the first scenario (a), the smartphone uses a siloed application
setup in which two different smartphone applications implement their own version of a gate-
way by hardcoding the entire process to specifically cater to one of the peripherals. In the
second scenario (b), the smartphone uses Gateway, which instead receives instruction from
the webserver on which specfic actions to take and still manages to send data in reasonable
time. Due to the siloed nature of the (a) scenario, the smartphone operating system is forced
to context-switch between the applications in order to send data. Because (b) uses a core
standard service, arrival is more evenly distributed.

CHAPTER 4. MOBILE GATEWAYS 45

Energy % Battery

LCD Screen 4 J ~0.0127%
BLE + CPU 616 J ~1.9578%
Wi-Fi 1400 J ~4.4495%
Total 2020 J ~6.4200%

Table 4.3: Daily energy usage for the Gateway service. Energy usage of the Gateway
service is broken into LCD, BLE + CPU, and Wi-Fi categories. The service was run as
a background process on a Nexus 5 with 3 peripherals spread 10 ft away. The battery
percentage represents the portion consumed of the smartphone’s 2300mAH battery. Part
of the high Wi-Fi usage is attributed to extra data being sent to servers for debug-viewing
purposes.

4.5.2 Gateway Power Usage

While power efficiency has not been a primary focus while implementing Gateway, it is
generally beneficial to consider power usage of background services that continuously run on
smartphones. To evaluate, approximate power measurements were taken using PowerTutor,
an energy profiler tool made for Android. With measurements taken over 10-second intervals,
the tool touts an accuracy within 0.8% on average with at most 2.5% error[172]. It was used
to measure energy consumption of the background Gateway service over the course of 24
hours with 3 connecting peripherals spread 10 ft away. Table 4.3 shows the energy usage
broken into CPU, Wi-Fi, and LCD categories. It shows that the application consumed a little
over 2kJ—an average power draw of about 25mW. Bluetooth’s usage is contained within the
CPU category. It should be noted that part of the high Wi-Fi usage is attributed to extra
data being sent to servers for debug-viewing purposes.

4.5.3 Gateway Data Usage

Approximate web data usage measurements were taken using Android’s built in data usage
monitoring tool. Measurements were taken on a Nexus 4 over the course of 2 weeks. During
those two weeks, the phone was present around 1-3 Gateway-compatible peripherals at any
given time. The smartphone used approximately 160 MB of data. 75% of this usage is
attributed to the background service of Gateway. The other 25% is attributed to the opening
of Summon applications approximately 3000 times.

CHAPTER 4. MOBILE GATEWAYS 46

Light App

Temperature App

UART App

0.0 0.5 1.0 1.5 2.0

Native App Summon Web App

Startup Time (s)

Figure 4.11: Native app vs Summon web app: startup times. Average startup
times from initial launch to receiving Bluetooth data (over 10 runs each on a Nexus 4) of
the HTML/JavaScript based apps, tested both natively (installed on the phone), and in the
Summon service (retrieved from web server, uncached).

4.5.4 Summon Data Usage

The data usage measurements indicate that the 3 Summon web applications have an average
download size of 13kB. These applications are minimal and fairly light weight. This repre-
sents a rough lower bound on usage size. For reference, the download of an average web page
in a mobile browser, uses approximately 1156kB of data according HTTPArchive [81]. And
with average native application sizes at over 6 MB [1], Summon seems to provide a reason-
able alternative to the many one-time-use, event-specific, and location-specific applications
on the smartphone app stores.

4.5.5 Summon Latency

Figure 4.11 shows a comparison of the Apache Cordova-based apps running natively and
in the Summon service, called from a web server. The latency of opening a web app with
Summon varies with the quality of Internet connection, but in most cases, took 1-2 seconds
from initial launch to receiving Bluetooth data, when no data was previously cached. Timing
was recorded using the logging console in AndroidStudio. No noticeable difference in the
speed of performance during the actual runtime of a Summon application was observed in
comparison to that of its native counterpart.

CHAPTER 4. MOBILE GATEWAYS 47

4.6 Discussion

In this section, we discuss further topics about the mobile gateway approach explored in this
chapter.

4.6.1 Reducing Advertisement Overhead

Currently, as seen in Table 4.1, the advertisement parameters take up a minimum of 16 bytes
of what is essentially a 26 byte payload. This is less overhead than encoding an iBeacon[20]
or a UriBeacon[70]. Still, lower overhead in the precious advertising space makes it easier
for peripherals to adopt the Gateway API while still being able to use space for other
purposes. One way to improve could be to refactor the URL space, which is currently fixed
at 14 bytes, to instead dynamically size to fit the URL length. In addition, a byte can be
encoded to truncate the URL even further for the most popular short URL base domains
(e.g. bit.ly, goo.gl, t.co). For instance, the URL “https://goo.gl/jRMxE0”, which currently
occupies a space of 14 bytes, could be truncated down to 7 bytes:“jRMxE0” plus a byte code
representing “https://goo.gl”.

4.6.2 Extending to Multiple Platforms

The implementation of the Gateway service has been created for Android smartphones. This
has been primarily due to the flexibility the OS software provides with regard to Bluetooth
processes. That being said, the gateway architecture is intended to be a universal standard.
It is imperative that the architecture be portable to other platforms. The port to iOS is
possible, and would require a few notable tweaks to the overall protocol, but transferring
over the Summon service is most promising, due to the inherent platform-agnosticity of the
web technologies upon which it is based. Supplementing the mobile gateway approach with
the previous chapter’s static approach enables greater coverage of the architecture even in
areas where smartphones are not as prevalent.

4.6.3 Security Considerations

The proposed network architecture relies on shared access using untrusted, crowd-sourced
gateways. It is conceivable that a peripheral owner can localize a gateway owner by receiving
data through that gateway from peripherals at known locations. Conversely, a peripheral
moving through a collection of colluding gateways could be localized. Various works explore
the security and accountability implications to access control over mobile devices, and solu-
tions for policy and anonymization when interacting with devices and gateways of unknown
origin, provenance, and intention [3, 9, 26, 44].

CHAPTER 4. MOBILE GATEWAYS 48

4.7 Summary

We propose a general-purpose IoT gateway on modern smartphones as a software service
that provides universal and ubiquitous Internet access to BLE-connected IoT devices. This
provides a scalable alternative to the narrow, application-specific gateway structure ham-
pering the development and growth of IoT networks today. The described implementation,
Gateway, successfully utilizes the smartphone as a BLE proxy for peripherals, relaying pro-
file data from IoT devices to the cloud. It also introduces an early version of Summon,
a convenient mechanism for presenting to a smartphone user, device- and location-specific
user interface applications built and deployed using web technologies, instead of the current
model of requiring installation of additional software. In following chapters, we expand on
this to create a full-featured standalone interaction solution for IoT devices and ecosystems.

If successfully implemented on the global smartphone infrastructure, the proposed gate-
way architecture could help expedite the growth of a global, highly-connected, robust Internet
of Things in a cost-effective and convenient manner. However, even if the vision of any IoT
device connecting to any smartphone proves too radical a departure from the status quo,
the current implementation shows that the basic ideas could still be deployed in more con-
strained administrative domains, like a home, office, or university campus. This approach
provides most of the benefits sought while relaxing the more challenging aspects of security,
privacy, and trust in the network, opening the door to a post-MANET for the post-mobile
era.

49

Part III

Interaction

50

Chapter 5

Browsing the Web of Things

The embedded sensors and devices that make up the Internet of Things (IoT) primarily forego
physical on-device user interfaces (UIs), like buttons and displays, in favor of more fully-
featured software UIs in the form of native apps or websites that run remotely on personal
devices like mobile phones. Recently, a variety of tools, protocols, and ecosystems have
materialized to help facilitate device interaction on mobile platforms. Unfortunately, due to
the amount of burden these systems place on both users and devices, and the poor handling
of tasks like device discovery, configuration, and local interaction, the IoT user experience
remains awkward, disruptive, and often unintuitive. Even the most successful tools fail to
mesh together in a logical way that can fully support a meaningful experience, while also
scaling with the rising population of new devices in diverse contexts and constraints.

Currently, the popular form of mobile software interface for IoT devices is the native
app. This, by nature, requires the involved process of app installation for every new device
and assumes the user will have knowledge of the device prior to doing so. The user may not
be aware of all nearby devices or have the appropriate apps required to interact with them,
as shown in Figure 5.1a. Additionally, the developers who make these devices are tasked
with creating and deploying a mobile app for multiple OSes, informing potential users of
the existence of the device’s corresponding app, and convincing them to download it. As a
general purpose model for the increasing number of IoT devices, this does not scale well.

Furthermore, most mobile-based IoT ecosystems and tools require that both the device
and smartphone maintain an Internet connection to operate and to facilitate device inter-
action. This expectation is not practical for many usage scenarios. Users should be able to
browse nearby devices and immediately load dynamic, interactive, and context-specific UIs
for devices that are not otherwise Internet-connected. Devices should be allowed to take
advantage of the reduced power and complexity of interacting using local network protocols.

We can begin to bridge these divides by associating web content with these connectable
devices themselves—effectively tying the things to the Internet. This concept has been
referred to as the Web of Things (WoT) [73]. Recognition of the issues with native apps
has led to developments in web standards to support various components of WoT. Notably,
the Physical Web project enables discovery of URLs broadcast by nearby devices on a user’s

CHAPTER 5. BROWSING THE WEB OF THINGS 51

���������������������
������������������������

���������������������
���������������������������

���

��������������������
������������������������

��������

�
����

�
����������

(a) Native App

���� �������������������

��������������������

����

� ����������������������

(b) Physical Web

����

�������������������

����������

���������������

��������������

���������������

��������

�����������

(c) Web Bluetooth

Figure 5.1: Native App, Physical Web, and Web Bluetooth. The native app model
(a) requires that a user have prior knowledge of a device and install an app to interact with
it. The Physical Web model (b) allows discovery of URLs broadcast by nearby devices, but
does not provide device details to the user. The Web Bluetooth model (c) requires that, once
a user manually navigates to a website, the user select the device to pair with the website.
Even if, perhaps, (b) and (c) are used together, the user would still need to identify the
correct device without information on which device pointed to the site.

mobile phone [69], as depicted in Figure 5.1b. While useful, it hides device information
when presented to user, which means no association can be made between the device and
web content. Web Bluetooth is a drafted W3C standard JavaScript API that allows web
pages to communicate directly with Bluetooth devices [161], as depicted in Figure 5.1c. But
it requires that, once a user manually navigates to a website, the user select the device that
a website should pair with.

By re-focusing on and intuitively extending web standards to better support discovery,
connectivity, interactivity, and persistence, we design a browsing architecture that facilitates
a broad set of both common and new paradigms for the Web of Things that provides a more
seamless user experience and can more feasibly scale. With simple modifications to current
web standards and browser-provided APIs, we allow IoT devices to point smartphones to
rich app-like web interfaces, that enable greater interactivity than regular websites, fewer
memory and latency impacts than native apps, and overall greater flexibility on the device
and smartphone. Like a website, the contents of the interactive web interface can be down-
loaded from the Internet, but it can also immediately interact directly with the smart device
over a local network protocol—most commonly over Bluetooth, as depicted in Figure 5.2.

CHAPTER 5. BROWSING THE WEB OF THINGS 52

���������������������
������������������������

���������������������
���������������������������

���

��������������������
������������������������

����
�������������������
���������������
����������

�������������������
��������������
����������

�

����

�
����������������������
���������������
����������

���������������������
������������������������

���������������������
���������������������������

���

��������������������
������������������������

����

�������������������

������������������

Figure 5.2: Proposed model of discovery, connection, and interaction. We suggest
a scheme in which the device broadcasts a URL that is both a link to its UI and its decla-
ration of origin. Users are shown a list of URLs along with details of corresponding devices
associated with each. The user can select the link to open the corresponding website, which,
with browser-extended APIs, can access devices that have declared it, enabling seamless in-
teraction while providing transparency to users and preventing mismatch of device and UI.

Furthermore, we introduce an origin policy that treats devices as resources of their websites,
which when enforced, enables seamlessness between discovery, connection, and interaction.

In this chapter, we sketch out the major design points of the browsing architecture,
taking into consideration contributions from recent works that help address some of the
highlighted challenges. We then describe and evaluate a new version of Summon—a full-
featured browser implementation as a smartphone app—and its utilization for real devices
by a variety of engineers and developers from the embedded systems community. We identify
insights gained, challenges encountered, feedback received, and improvements made in the
iterative design process and during the two-year deployment period.

5.1 Background & Related Work

As the Internet of Things has grown in popularity, a set of disparate practices, standards, and
ecosystems have emerged to attempt to support it. Unfortunately, most are pieced together
with only a limited set of devices in mind. However, new initiatives for web standards
have sprung up to more broadly address various portions of this goal. We explore the
contributions and vulnerabilities of these systems which have partially motivated how we
design our architecture.

CHAPTER 5. BROWSING THE WEB OF THINGS 53

5.1.1 IoT Ecosystems and Initiatives

The number of ecosystems intended to interact with the Internet of Things has grown with
the ubiquity of the devices themselves. Ecosystems are useful for providing groupings of
interoperable devices, but the protocols and standards are typically only designed for or
applicable to a narrow set of products (e.g. AndroidThings [60], Apple Homekit [17, 21],
Samsung SmartThings [144], Nest [121, 122]). Many of the “standards” set for these ecosys-
tems are not always extensible to network- or energy-constrained settings and are often only
scoped to devices in a house or office. Additionally, they still usually require a native app
for each device and, often, that the device have its own Internet connection either through
its own Wi-Fi radio or a dedicated stationary gateway. Many also require the use of energy-
intensive processes on the devices themselves. Ultimately, in our architecture, developers are
afforded the flexibility to design for any such desired ecosystem, while also being provided
opportunities for improvements in discovery, device setup, and persistent interaction.

Network communities are making efforts to advance the protocols for wireless commu-
nication for IoT applications (e.g. Bluetooth SIG [29], W3C [163], Thread Group [152],
ZigBee [175]). Because we focus on mobile platforms, we delve mostly into Bluetooth and
Wi-Fi. Notably, due to its low power usage, low cost, well-structured application-level pro-
tocol [28], and presence in smartphones, Bluetooth Low Energy (BLE) is an increasingly
popular choice in IoT devices. In fact, it is experiencing the most rapid growth in adoption
in the embedded device industry [155], and is especially useful for devices made for casual or
public use. Ultimately, however, we believe our browsing architecture is extensible to other
forms of local wireless communication that are integrated in mobile platforms or computers
and have a broadcast protocol.

Many initiatives and architectures have been proposed to form a Web of Things by
integrating embedded IoT devices into the current open infrastructure of the Internet [73,
74, 171] and extending features like search and web analytics [116, 154]. Prior work has ex-
plored spontaneous interaction with nearby devices [55, 164], use of smartphones as universal
device remote controls [84], device abstraction for resource-sharing among several interfaces
[107], discovery and interaction in mobile augmented reality [168], and device browsing with
platform-agnostic interfaces [23, 53, 141, 142]. While these are parts of the solution, none
quite provides a generalized framework to enable users to browse nearby devices and retrieve
rich user interfaces that interact with devices directly.

5.1.2 Discovering Content in Physical Space

In the theme of “webifying” everything, Google launched the Physical Web project to enable
discovery of web content related to smart devices and environments in one’s proximity [89,
160]. In this model, the Eddystone beacon protocol is used to embed a URL in broadcasts
of BLE devices that can prompt nearby smartphones to navigate to specific web pages [69].

CHAPTER 5. BROWSING THE WEB OF THINGS 54

This achieves the goal of providing smart devices with rich, scalable web content, how-
ever it does not necessarily provide rich, scalable web interfaces because there is currently no
cross-platform API that enables web pages to interact directly with a non-Internet-connected
smart device from the phone’s browser. Additionally, in practice, the system obfuscates de-
vice information — opting to simply present physically relevant web content to users. Recent
work has further described challenges with Physical Web [136, 143]. Google has notably re-
moved Physical Web support from mobile platforms [3, 120].

5.1.3 Bluetooth from the Browser

Web Bluetooth is a newly-drafted W3C standard and JavaScript API that enables connection
with BLE devices from websites [161]. It is currently implemented in Android, but not iOS.
Just like with native apps, discovery of ambient devices is difficult with Web Bluetooth alone.
The current implementation requires that the user have prior knowledge of the device and
its associated website prior to manually navigating to that particular site. Once opened, the
page requires the user to choose the device to connect to it from a, possibly filtered, list of
nearby peripherals. The user is tasked with figuring out which device is the appropriate one.

This security model is meant to closely resemble the classic Bluetooth pairing flow.
However in practice, this disrupts the flow of operation, places burden of accuracy and
authentication on users, and exposes a number of risks from malicious, careless, or unin-
formed actors. Malicious webpages may spoof the webpages of real devices, tricking users
into pairing with those devices. Alternatively careless webpages may present any number
of inappropriate devices to the user. Malicious or careless devices can simply use the same
name or service ID as a real device and easily trick users into pairing it with legitimate
webpages. Malicious users may purposefully initiate an inappropriate pairing of device and
webpage, or careless and confused users may do so accidentally. It is both too permissive
for security and too restrictive for usability.

Discovery could potentially be improved by combining with Physical Web — devices
broadcast a link to a page that uses Web Bluetooth. However, because Physical Web obfus-
cates device information, users do not actually know which device linked to the page. And
even though the browser could technically possess that information, it still requires the user
to choose the appropriate device to connect to the page, of which they are not necessarily
informed. As a result, this model is also disruptive for usability and unsafe for security.

5.1.4 App-ifying the Web

Since the introduction of the smartphone as a platform, developers have primarily chosen
to design their software as native apps. Compared to websites, they would typically load
quicker, and could make use of the additional space that the frame of a browser window would
normally use. However, new and upcoming web and mobile standards are enabling fairly ex-
tensive app-like capabilities for websites [54, 68]. By adding a manifest with metadata about
the content and providing some extra JavaScript to specify a “Service Worker”, websites can

CHAPTER 5. BROWSING THE WEB OF THINGS 55

explicitly cache content on phones for quick loading and offline access in a browser-less view,
send push notifications from the websites’ servers, and, in network-constrained scenarios, can
queue requests for content to be fired when appropriate network connections are established
even if the site is not opened.

Initiatives for web standards like Physical Web, Web Bluetooth, and Service Workers
are decent starts, but they are currently missing key components that would actually make
web-based device interfaces viable and usable, and enable seamless discovery, connectivity,
interactivity, and persistence.

5.2 Browsing Architecture & Design

In the design of the browsing architecture, we aim to extend web standards in a manner
that emphasizes usability and extensibility. We focus specifically on enabling discovery,
connectivity, and interaction for devices in both ephemeral and persistent contexts, while
ensuring a seamless experience between each of these stages.

We have chosen to design primarily for devices using BLE. While the architecture does
not necessarily require BLE, it is useful to work through and address its challenges and
patterns for local discovery, interaction, and security that emerge in the context of IoT, as
many subsets of the same design decisions apply to other network systems, including Wi-Fi.

5.2.1 Discovery

To prompt smartphone users to interact with a peripheral device, the device can use a
simple broadcasting protocol. In its broadcast parameters, the peripheral need only indicate
a target location from which to receive the interface. This location can be expressed as a
URL to a web app.

Like Physical Web, the browser can receive broadcasts from BLE advertisements. The
browser can be compatible with peripherals that broadcast using Bluetooth’s URI protocol
[28], or Eddystone-URL protocol [69]. To accommodate size constraints in BLE advertise-
ments, a long URL can be specified using a shortened address (e.g. a bit.ly URL).

When the phone detects a device URL and displays the result to the user, it should
be transparent about the associated device information. This keeps users informed of the
ambient devices in their vicinity and builds a reasonable understanding of the devices an
interface could potentially connect with. As localization techniques improve, the browser
could even possibly use augmented reality to more tangibly tie results to the devices in
physical space [168].

CHAPTER 5. BROWSING THE WEB OF THINGS 56

BLE

D
ev

ic
es

OS

Br
ow

se
r

Sm
ar

tp
ho

ne
HTML

JS
CSS

Media
ManifestW

eb
 A

pp Lamps

70

. . .

. . .o

W
eb

 A
pp

...

OUTLET #5

13W W
eb

 A
pp

...

THERMOSTAT

70o

Service
Registration
(Persistence)

Browser-
Extended
 APIs (BLE)

Core W3C
Standards
Support

Figure 5.3: The Web App UI Model. Web apps may consist of typical web content:
HTML, JavaScript, CSS, images, etc. An app can use a provided JS BLE API to interact
directly with associated devices. By providing a manifest file for service registration, the web
app can request special permissions and storage to enable persistent state for regularly-used
devices.

5.2.2 Web Apps

Like ordinary websites, web apps should be developed using web standards (HTML, CSS,
JavaScript, etc.), but they also need to be able to interact directly with devices, often
through BLE. The browser can provide APIs to facilitate this. When a web app is retrieved,
the browser can open the interface within its own context, providing the app with a set of
standard library calls to native OS APIs. In this way, interactive web apps can interact
directly with their associated devices over BLE, as depicted in Figure 5.3.

These interfaces may also wish to use other resources the smartphone can provide. For
example, information about the location of the peripheral or the current global time may be
difficult for the device to obtain, but is straightforward for a smartphone, which can expose
the information for use by the user interface. For this purpose, access to items like time,
GPS, acceleration, ambient light, pressure, and magnetic field can, with user permission, be
provided to the web apps through browser-extended calls to the native API.

CHAPTER 5. BROWSING THE WEB OF THINGS 57

5.2.3 Device as a Web Resource (Origin Policy)

Web Bluetooth uses a user-select pairing model to associate a device with an interface. While
done as an apparent security measure, this introduces more potential vulnerabilities to the
device, user, and interface, while also presenting a disruptive user experience. To fix this, we
can start treating “Web of Things” devices as actual things of the web—specifically, devices
can be made resources of websites themselves.

This is possible if devices can declare the sites to which they belong or from which
they can be accessed. Conveniently, in this architecture, devices are already broadcasting
their web app’s location in order to enable discovery. So the browser can at least take this
as a declaration of origin. Since the browser would also be transparent about the devices
associated with a web app listing, the user is informed of the devices it can access. When
the web app is opened, the browser can enable BLE access exclusively for devices that have
declared their association to the site or indicated some form of cross-origin access. This
way, the need for the Web Bluetooth pairing model is eliminated. And developers, if they
so choose, still have the ability to implement any additional authentication mechanism they
normally would in the interface itself.

5.2.4 Persistence

While seamless discovery and interaction is nice, users will likely end up having regular
interactions with a particular set of devices, like those in their home or office. In these cases,
it is useful to have a method to save web apps (service registration) like caching, installing,
or saving to home-screen, to be able to reload the UI quickly and work offline if necessary,
as well as storing any local items like authentication data that might be used to connect
with a device that the user owns. This is similar to the way Service Workers enable explicit
caching of a website’s content.

Furthermore, it would be useful for these apps to specify scripts to run in the back-
ground. For instance, a phone in the user’s pocket could mule data for the device (with user
permission), as in Figure 5.4a, or perform proximity based actions like turning on a light
or setting the thermostat temperature to a preset setting when the user is near by, as in
Figure 5.4b.

To make this work, the web app’s script could specify a callback function to run when
the browser, while scanning opportunistically in the background, detects the device. When
this happens, the browser can pass a “device-detected” event to the web app’s script and
run the event’s callback.

We have implemented examples of these scenarios in native Android apps, but the
ability to run such background tasks for multiple web apps is currently limited by both
Android and iOS, due to energy-saving optimizations. Service Workers, as implemented, do
not yet support background operations. However Google and Apple’s renewed commitment
to progressive web app standards make such services seem feasible in the near future. We
discuss this further in Section 5.5.2.

CHAPTER 5. BROWSING THE WEB OF THINGS 58

70°

NAME: HomeThermostat
URL: https://thermo.stat

Temperature DB

thermo.stat

(a) Data Muling

70°

NAME: HomeThermostat
URL: https://thermo.stat

6:30
70° Welcome home!

Setting to 70°

(b) Proximity-Based Action

Figure 5.4: Potential background services for persistent-use devices. If background
mode is supported, an event could be passed to service-registered web app scripts when the
phone detects the nearby device. In a data muling scenario (a), a phone in the user’s pocket
could mule data on behalf of the web app, with user permission. In a proximity-based action
scenario (b), the web app could trigger some proximity based actions like turning on a light
or setting the thermostat temperature to a preset setting when the user is nearby.

5.2.5 Aggregation

In some cases, simultaneous interactions with and between multiple devices may be desired
from a single interface. We can, for instance, consider a scenario in which a person walks
into a room with three power-metering devices and opens the browser on a smartphone.
Instead of showing three instances of the power meter interface with each accessing only one
corresponding device, the browser could show one common instance, which when opened can
access any of the three. This concept can be extended to groups of multiple device classes—
like the lights, speakers, and projector of a conference room being controllable from a single
room-wide interface.

In order to enable such interactions while maintaining the standard of expected behavior
between devices, user, and interface, we can provide web apps access to nearby peripherals
that advertise its URL, instead of just to the single peripheral the user selects in the device
list. An example of this is depicted in Figure 5.5a. We can also potentially extend to
allow ecosystem web apps to claim devices from participant companies, either by having
devices simultaneously broadcast a link to the ecosystem or by allowing the sites to specify
cross-origin sharing whitelists for devices.

CHAPTER 5. BROWSING THE WEB OF THINGS 59

huw e

https://huwebulb.io

Living Room Bulb 1

Living Room Bulb 3

NAME: LivingRoomBulb3
URL: https://huwebulb.io

NAME: LivingRoomBulb1
URL: https://huwebulb.io

NAME: LivingRoomBulb2
URL: https://litex.lighting

(a) Aggregation

https://home.things

HomeThings Alliance

DEVICES

RECIPES

Living Room
Bulb 2

ON

Home

Thermostat

70°

THENIF

 --° > 80°

+

+
= OFF

NAME: LivingRoomBulb1
URL: https://huwebulb.io

NAME: LivingRoomBulb2
URL 1 : https://litex.lighting
URL 2 : https://home.things

70°

NAME: HomeThermostat
URL 1 : https://thermo.stat
URL 2 : https://home.things

(b) Orchestration

Figure 5.5: Using a single interface with multiple devices. With aggregation (a),
devices pointing to the same interface location could be accessible from a single instance of
the interface, rather than opening a separate instance for each device. With orchestration
(b), different classes of devices could be accessible from the same interface, which might be
used to set up device-to-device interactions.

5.2.6 Orchestration

Different classes of devices could be accessible from the same interface, which could be
used to set up device-to-device interactions. This could be done by providing extensions for
“ecosystem” services like HomeKit [18] or IFTTT [85] for devices the user owns or has access
to, as shown in Figure 5.5b.

In a different scenario, the browser can provide an interface for a stationary hardware
gateway (or the gateway can provide its own interface) that allows users to setup connec-
tions between devices. The gateway can then handle operation of the services thereafter.
Additionally, if a phone detects a device in its proximity that is out-of-range for a gateway,
it could act as a bridge between the gateway and the device.

Alternatively, the browser could provide some interface that allows users to set rudi-
mentary connections between devices. This can ultimately register a background service to
facilitate device-to-device interaction through the phone.

In specific contexts, the browser could use location to enable customization for personal-
, business-, or institution-based control and aesthetic. When a link for a verified device is
detected in a participating organization’s location, the user interface could be opened under
the organizations own theme. This would minimize setup time for IoT device owners and

CHAPTER 5. BROWSING THE WEB OF THINGS 60

enable quick deployability within controlled contexts. For instance, a hotel room could
provide a single interface for all the devices in it with a theme for that specific hotel.

5.3 Browsing Implementation

As a proof-of-concept of key components of the proposed architecture, we have implemented:
(1) a browser application for Android and iOS, (2) a broadcast specification for devices, (3) a
cloud-hosted web service to scrape and obtain information about the peripheral’s advertised
interface location, and (4) an HTML/JavaScript API for web apps.

5.3.1 Browser App on Android and iOS

The browser is implemented as an application, called Summon, that runs on Android and
iOS [100, 101]. It fulfills the role of the user-facing platform for discovering devices and
viewing interfaces. The browser adds the advertised peripheral and its destination URL to
a device manager list, and notifies the user of the presence of a peripheral with a linked
interface. The smartphone user can open the device manager screen to view a list of the
nearby peripherals and corresponding interfaces, as shown in Figure 5.6. When the user
selects an item, an interactive web app is typically retrieved from the broadcast URL or
from local cache, and is opened within a browser-controlled context. Alternatively, a native
app or regular website may be opened.

For web apps, Summon provides a controlled context and native API bindings that
are derived from core Apache Cordova frameworks [11]. Systems like Apache Cordova and
PhoneGap [5] allow developers to write native applications for mobile phones in HTML that
can access the phone’s native API using JavaScript. The browser app provides a special
Cordova-based context in which to open web content. In this context, the web content can
access and utilize a set of JavaScript libraries that the browser provides as native smartphone
APIs. In implementation, web apps are effectively websites that make use of these APIs. In
particular, the provided BLE API allows web apps to interact directly with devices. Web
apps can also request permission to use APIs that access smartphone sensor data, storage,
and information.

Notably, Summon extends its own APIs, as newer web standards—particularly Web
Bluetooth and Service Worker APIs—had not yet matured at the time of initial implemen-
tation. A Web Bluetooth-compatible shim-layer was added at a later stage.

Users are able to configure how and to what extent their smartphone is utilized as a user
interface platform. They can enable or disable caching, choose which radios the browser can
use to discover devices (BLE / Wi-Fi via mDNS), and allow or reject permissions associated
with each web app. Additionally, users can filter by device or UI name, as well sort UI
listings by device discovery time, device signal strength, and UI popularity.

CHAPTER 5. BROWSING THE WEB OF THINGS 61

(a) (b) (c)

Figure 5.6: Summon— Browser implementation for mobile phones. If the browser
detects a device that links to an interface, it is listed in the device browser (a). If multiple
devices link to the same interface, they are grouped under one list item. When the user
selects an item, its web app (c) is opened. Since the interface is opened within a controlled
framework (instead of a regular browser), it can use provided JavaScript bindings to behave
like a native app and interact with associated devices. If a device’s native app is detected
on the phone, it is opened instead. The UI options, linked devices, and list of features used
by the web app are visible in detail view (b).

5.3.2 Destination Resolution

When the browser application receives a broadcast URL, it determines if the URL is a
website or a fully-featured web app that requests use of the browser’s extended APIs. It
also checks to see if a native application for the device exists and is already installed. If the
device does not broadcast a URL or the smartphone is not connected to the Internet, the
browser checks its cache of web apps to check if any are already associated with the device’s
address or advertisement profile. This way, when a user makes a selection, the browser can
take the appropriate action, whether that be opening a native app, or retrieving a web app
from the Internet or local cache.

CHAPTER 5. BROWSING THE WEB OF THINGS 62

DEVICE BROWSER CLOUD

1. Device broadcasts URL

2. Browser parses URL to
determine web app location

BLE Light

5. Service returns

details of web app

3. Browser requests

details of web app

4. Service scrapes
web app content

& checks own DB
to obtain details

6. Browser lists
web app w/ details

8. Web app isdownloaded

7. User selects web app9. Web app is opened
(& cached for future use)

10. Web app reads/connects
device & user interacts

Figure 5.7: Overview of the implemented flow of device discovery and presen-
tation between the device, the mobile browser, and the cloud. With help from an
implemented destination-resolution cloud service, the browser can obtain detailed informa-
tion on the interface at the device’s advertised URL, and present it to the user.

To assist the browser in obtaining information on the interfaces corresponding to URLs
advertised by devices, we have set up a link resolution web service. The service sits in the
cloud and responds to requests from the browser application. Figure 5.7 depicts the flow of
this process. When the browser discovers a device, it sends a request containing the broad-
cast URL to the service. The service first resolves short URLs or any URL redirects in order
to determine the full-form address of the actual web app location. It then scrapes the linked
content, and returns useful data like the website or web app’s title, description, potential
native applications to check for, icon image location, browser-extended APIs used, and re-
quested smartphone permissions. The service also stores this information in a database to
provide a rapid response when the same URL is requested again from any phone. Addition-
ally, it monitors popularity and usage of each web app, which can be used to sort web apps
by relevance in the browser. While not fundamentally vital to the design of the architecture,
the service provides useful information that will better inform the user about the relevant
web apps prior to potentially opening one of them, while reducing latency in response time.

CHAPTER 5. BROWSING THE WEB OF THINGS 63

(a) Environment Sensor
(BLEES [97])

(b) Smart LED Light
(Torch [95])

(c) Smart City Platform
(Signpost [4])

(d) CO Breathalyzer
(Monoxalyze [2])

(e) Localization Tag
(Polypoint [91])

(f) Power Meter
(PowerBlade [43])

Figure 5.8: A selection of real “browsable” devices

5.3.3 Caching

To further enable device interactions without requiring connection to the Internet, the im-
plemented browser can also cache web apps. By default, the browser caches all of the web
app’s details when it is originally listed in the browser and caches the web app’s resources
when it is first opened. This is essentially Summon’s version of service registration. Unless
specified otherwise in the HTTP header of a web app, the browser caches all web content
for an indefinite period of time until the user manually clears it or until app cache capacity
is reached, at which point the least-recently used resources are replaced. If a known de-
vice is detected again while the phone does not have Internet connection, the smartphone
can retrieve the web app details and the web app itself from memory. When connection is
available, the cached UI can be loaded if header-request validates that online resources have
not changed. This improves load time and data usage. The cached UI details also allow for
quicker response when scanning for devices when the phone is online and quicker loading of
the actual UI when it is used often.

CHAPTER 5. BROWSING THE WEB OF THINGS 64

(a) (b) (c)

Figure 5.9: Subset of web apps for real devices. All interact directly with correspond-
ing devices (Figures 5.8a to 5.8c) directly over BLE using a browser-defined JavaScript API.

5.3.4 Peripheral Devices

During the study, a number of peripherals have been configured to be discoverable by the
browser app, including embedded devices like power meters, software-defined lighting con-
trollers, indoor localization systems, environmental sensors, smoking cessation meters, and
BLE tags. Some of these systems are shown in Figure 5.8. Examples of both BLE- and Wi-
Fi-based peripherals have also been successfully set up on Android smartphones and tablets,
Nordic nRF51/nRF52 and Espressif ESP32-based embedded devices, Raspberry Pis, and
Linux and Mac computers.

The devices specify a URL in a BLE broadcast linking to corresponding user-facing
content that can interact directly with the device without the peripheral requiring Internet
access. While Summon is primarily used with BLE devices, the browser also detects and
lists URLs that are broadcast from devices on the local Wi-Fi network via mDNS, a zero-
configuration network service discovery protocol. Conveniently, some network-connected
devices, like printers, already advertise web interfaces using this protocol, and are readily
visible in the browser.

CHAPTER 5. BROWSING THE WEB OF THINGS 65

5.3.5 Web Apps

Concurrently, a number of web apps have been built specifically for use with our Summon
browser application using standard web tools. Device advertisements link to the correspond-
ing web app, which may be fetched from an online location or from the phone itself (if the
interface is cached). Once loaded, the interface can enable interaction with the device and
use native smartphone features via browser-extended JavaScript APIs. Notably, web apps
have been made for each of the embedded devices listed earlier, some of which are shown
in Figure 5.9. Figure 5.10 contains code for a simple web app, which requests and uses the
Summon Bluetooth API to enable interaction with its corresponding light bulb device.

During a two year period, approximately 20 embedded developers created web apps
for use with corresponding embedded devices and the Summon browser received about 1000
downloads on iOS and Android. The set of embedded developers were primarily from the
academic community and included undergraduates, graduates, and faculty from multiple
institutions. There was also participation from a couple of interested hobbyists. Developers
chose to use the browser for their device interaction needs based on discussions and demon-
strations that made apparent the relative ease of the development and deployment process
for device user interfaces. No formal recruitment campaign was involved. Developers were
provided online documentation, code samples, and informal tutorials to help create their
web-applications and configure devices [102]. While most of the developers had little or no
web and mobile app development experience, they were able to create fully functioning and
moderately aesthetic interfaces that successfully enable user interaction with the devices.

5.4 Browsing Analysis

For the purpose of evaluation, we test the browser with a range of devices. Along with
observing the general functionality between the browser, user, and devices, we quantify some
tradeoffs between web apps and native apps. We explore the mechanics of device discovery
and impacts on presentation.

5.4.1 Paradigms of Real Applications

For a high-level qualitative assessment, we have made the implemented browser app, APIs,
and template code for web apps available to embedded developers to create prototype in-
terfaces for their devices. By using standard web tools (HTML, JavaScript, CSS, etc) to
create web apps and making slight modifications to appropriately configure their respective
devices, the developers have been able to create easily discoverable, powerfully interactive
interfaces. A subset of the devices and web apps are shown in Figure 5.8 and Figure 5.9.
The ability to directly control devices and offload real-time data have been notably appeal-
ing to developers, particularly for those of energy- and network-constrained devices. The
following real examples describe interaction paradigms for web apps and devices supported
in the browser implementation.

CHAPTER 5. BROWSING THE WEB OF THINGS 66

<!DOCTYPE html>

<html>
<head>
<summon request="bluetooth"/>
<title>BLE Light Bulb</title>

</head>
<body>
<h1>BLE Light</h1>

<button>Off</button>
<script src="index.js"></script>

</body>
</html>

(a) HTML - index.html

var ble, state, device;
var serviceID = "ABCD"; // Service ID of bulb's light switch service

var stateID = "1234"; // Characteristic ID of switch's state data (on/off)

var button = document.querySelector("button"); // <button> element

// When UI finishes loading -> onReady

document.addEventListener("ready", onReady, false);

// UI Ready Event Callback

function onReady() {
ble = summon.bluetooth; // get Bluetooth API from Summon

ble.connectDevice(onConnect); // scan for device; when connected -> onConnect

}

// BLE Device Connect Callback

function onConnect(device) {
ble.read(device.id, serviceID, stateID, onRW); // read state of light; when read -> onRW

button.addEventListener("click", onClick, false); // set click event: if button clicked -> onClick

}

// Button Click Callback

function onClick() {
ble.write(device.id, serviceID, stateID, [!state], onRW); // set light on or off; when written -> onRW

}

// BLE Read/Write Callback

function onRW(data) {
state = data[0]; // get bool state from returned data

button.innerHTML = state ? "On" : "Off"; // update button state

}

(b) JavaScript - index.js

Figure 5.10: HTML & JavaScript of an Interactive Web App. When opened in
Summon, this simple UI connects to the BLE light bulb device that linked to it, reads state
from the device, and writes to the device to toggle the light when a button is clicked.

CHAPTER 5. BROWSING THE WEB OF THINGS 67

 0

 5

 10

 15

 20

 25

 30

 0.1 0.2 0.5 1 2 5 10 20

Ti
m

e
un

til
 D

is
co

ve
re

d
(s

)

Advertising Interval (s)

Figure 5.11: Device discovery latency for varying advertising intervals. The solid
point is the mean of recorded latencies at each interval. Measurements taken on a first-
generation Google Pixel.

Advertisement-only. The 1-inch round environmental sensor system shown in Fig-
ure 5.8a, continuously broadcasts BLE advertisements, sending out its shortened web app
URL and sensor readings in alternate packets once a second. The browser detects the URL
advertisement, obtains data for the linked URL from the browser’s cloud service, and lists
the web app in the device browser. When the user selects the listing, the web app, shown
in Figure 5.9a, loads and immediately begins receiving and parsing the sensor reading ad-
vertisement packets to retrieve temperature, humidity, illuminance, air pressure, and motion
data from the device. The display is updated with the corresponding readings in real time.
If a user enters a room with one of these environmental sensors on the wall and opens the
web app, updated data is typically displayed every 2 to 6 seconds (accounting for dropped
packets), while taking approximately a quarter of a second to parse and format the data
when each packet is received. Running on a coin cell battery, the environmental sensor de-
vice has a lifetime of approximately 6 months while continuously broadcasting and taking
sensor readings.

Connection. The software-defined lighting system shown in Figure 5.8b, continuously
advertises its URL. After the browser discovers the device and its corresponding web app,
shown in Figure 5.9b, is opened, it is able to automatically connect with the device over
BLE. Connection typically occurs within one second of the web app opening. The web app
obtains the light’s current brightness level and displays it on a slider interface. Whenever
the user uses the slider interface to change the brightness level, the new value is immediately
written to the device, and the light’s brightness is changed accordingly. Since the device
is in connection mode with the phone, there is low transmission latency and light state is
visibly updated in approximately half a second.

CHAPTER 5. BROWSING THE WEB OF THINGS 68

Multiple Devices. The system shown in Figure 5.8c is a solar-powered city-scale
sensing platform that is mounted on a signpost. It contains 6 sensor modules, a control
module, and a power module, each of which send its own data via BLE. Because each
module advertises the same URL, the browser aggregates them all under one listing in the
device browser. The user can view all associated devices accessible by the web app in the
listing’s detail view. When the web app is opened, as in Figure 5.9c, it can scan for, obtain
data from, and display appropriate interfaces for each associated module.

5.4.2 Device Discovery

The browser’s ability and performance in discovering BLE peripherals depends on the ad-
vertisement rate, physical proximity, and transmit signal strength of the device. Figure 5.11
depicts how much of an effect the advertising rate has on the speed of discoverability, for
intervals ranging 10ms to 10s. By default, the browser app displays results in the order
in which devices are discovered. Devices with higher advertisement rates, as well as closer
proximity and higher transmit signal strength, will have noticeably higher chances of early
detection.

However, the only metric the phone can provide when it discovers a device is the received
signal strength (RSSI). RSSI of BLE devices vary significantly over time due to transmission
parameters, environmental factors, and interference. Ordering by device RSSI can still be
useful, but doing so in real-time yields an unstable presentation to the user. User feedback
has indicated that even slight changes to the ordering of the list of devices in real-time can
cause significant user error when attempting to select a list item. To accommodate users
who desire it, a sorting scheme using a sliding average of RSSI is presented as an option in
the browser app.

5.4.3 Web App Size

While browsing, the user would likely be accessing and downloading web apps relatively
often. This leads to concerns about Internet data usage, especially when the smartphone
uses cellular network data. Most web apps developed during the deployment period have
been on the order of 10 kB - 100 kB each. While the average web site is over 1 MB [81], the
browser’s environment seems to be more conducive of higher quantities of interfaces for short
connections and speedy interactions. However, even when web apps contain rich elements
typically seen on the average flashier websites, the usage impact is typically much less than
native apps. A 2012 study revealed that the average mobile phone application was, at that
time, 23 MB for iOS and 6 MB for Android, increasing 16% and 10%, respectively, over a
6 month period [1]. To meet growing demands in the past couple years, both Android and
iOS app stores increased their app size limits to 4 GB (with a 100 MB network delivery
limit) respectively. Without overhead of re-imported native libraries, web apps can also be
cached trivially for repeated or offline use.

CHAPTER 5. BROWSING THE WEB OF THINGS 69

0.0

0.5

1.0

1.5

2.0

Basic
Door Lock

Environmental Sensor

Indoor Localization

Power Meter

Smart LED

Software-Defined Light

Thermometer

UI
 /

Ap
p

Si
ze

s
(M

B)

Android App iOS App Web App

Figure 5.12: Size of example web apps vs native apps. Web app size accounts for bare
web resources—HTML, JS, CSS, images, etc. Browser-provided JavaScript APIs allow web
apps to use native smartphone features like BLE at run time. Because native apps repackage
large commonly-used libraries into their binaries, they are significantly larger than web UIs.

Apps for casual interaction can be quite lightweight, but each must often re-import
its own instance of commonly-used libraries, which ultimately bloats the size of the app
binary. With the support of web-based interfaces, the browser app reduces size requirements.
Figure 5.12 shows that the size of web-based interfaces are low (k̃Bs) when compared to the
size of native apps (M̃Bs). In an experiment measuring the data usage of repeatedly opening
a small web app with and without cache, the first opening consumed 92 kB of data both
times. Without cache, the full 92 kB were used in each subsequent opening. With cache, 4
kB were used for each subsequent request to detect if any changes were made to the web app.
While web apps sizes are already low, caching further diminishes impact on network data
costs, especially when compared to those of installing full apps. This experiment illustrates
that caching keeps the data usage cost of repeated web app downloads at a nearly negligible
amount, all without the permanent memory requirements of an installed native application.
While, still, native apps can provide very rich user interfaces and could actually reduce data
costs when devices have high repeated use, we foresee a great increase in ambient interaction
use cases in the near future of the Internet of Things, and find that this browser model will
offer lower memory and data costs for those cases.

5.4.4 User Action

As an examination of seamlessness and ease of use in our approach, we consider a set of
common tasks that the browser would be expected to handle. We perform a rudimentary
analysis by calculating the number of gestures required to accomplish each task, and compare
with Physical Web, Web Bluetooth, and native apps. This is depicted in Table 5.1.

CHAPTER 5. BROWSING THE WEB OF THINGS 70

Steps for... Physical Web Web Bluetooth Phys. Web + Web BT Native App Summon (Our Browser)

Ambient device/UI
discovery

- Open list screen - 1
(obfuscates device info)
≈ 1 gestures

N/A
(no ambient discovery)
≈ ∞ gestures

- Open list screen - 1
(obfuscates device info)
≈ 1 gestures

N/A
(no ambient discovery)
≈ ∞ gestures

- Open list screen - 1
≈ 1 gestures

First-time setup of a
device/UI requiring an
associated account

N/A
(no device interaction)
≈ ∞ gestures

- Open browser - 1
- Type URL - u
- Press go/enter - 1
- Type username - n
- Type password - p
- Press signup/login - 1
- Perform trigger action- 1
- Pick device in prompt - 1
- Press “pair” - 1
- Confirm/add device - 1
≈ 7 + u+ n+ p gestures

- Open list screen - 1
- Press listing - 1
- Type username - n
- Type password - p
- Press signup/login - 1
- Perform trigger action- 1
- Pick device in prompt - 1
- Press “pair” - 1
- Confirm/add device - 1
≈ 7 + n+ p gestures

- Open app store - 1
- Enter search query - q
- Press search/enter - 1
- Find app, tap install - 1
- Open app - 1
- Type username - n
- Type password - p
- Press signup/login - 1
- Confirm/add device - 1
≈ 6+q+n+p gestures

- Open list screen - 1
- Press listing - 1
- Type username - n
- Type password - p
- Press signup/login - 1
- Confirm/add device - 1
≈ 4 + n+ p gestures

General interaction N/A
(no device interaction)
≈ ∞ gestures

- Open browser - 1
- Type URL - u
- Press go/enter - 1
- Perform trigger action- 1
- Pick device in prompt - 1
- Press “pair” - 1
≈ 5 + u gestures

- Open list screen - 1
- Press listing - 1
- Perform trigger action- 1
- Pick device in prompt - 1
- Press “pair” - 1
≈ 5 gestures

- Open app - 1
(app autoconnects)
≈ 1 gestures

- Open list screen - 1
- Press listing - 1
(UI autoconnects)
≈ 2 gestures

Table 5.1: User gesture analysis. The table compares the steps of actions necessary
to perform tasks of discovery, setup, and interaction with BLE devices using Physical Web,
Web Bluetooth, native app and our browser. Our approach generally requires fewer user
gestures to accomplish tasks than the alternative methods, while also enabling better ambient
discovery of devices and their UIs. Variables u, n, p, and q represent gesture counts when
typing URL, username, password, and search query respectively.

We first examine how ambient device and UI discovery is facilitated. In our model,
simply opening the browser will reveal ambient devices and their corresponding interfaces.
While users can open a similar list screen from a Physical Web notification, device informa-
tion is obfuscated.

In the general interaction scenario, an interface for a known device would need to be
opened and receive data from the device. When a Web Bluetooth-enabled web page is
opened, it requires that the user perform a trigger action, like pressing a button on the
page, before then prompting the user to select the appropriate device. This is in addition
to requiring the user to manually navigate to the device’s page. Using Physical Web to
direct users to the Web Bluetooth UI helps to reduce some work for the user. However, our
implementation would allow a UI opened from the browser list screen to immediately receive
data from its associated device. If a native app is already installed, it likely requires the
same or less user action.

Next, we explore the actions a user might need to take to open a new UI for the first
time for a device that requires a user to set up an account and link the device to their
account. In the native app model, a user would need to have knowledge of the device’s app
and install it from the app store prior to creating a user account, scanning for the device,

CHAPTER 5. BROWSING THE WEB OF THINGS 71

Energy % Battery

LCD Screen 24.00 J ~0.0563%
App Processes 7.18 J ~0.0168%
Wi-Fi 0.88 J ~0.0021%
Bluetooth Low Energy 0.72 J ~0.0017%
Total 32.78 J ~0.0769%

Table 5.2: Phone energy usage while discovering devices. The listed total is an
average of 10 one-minute trials on a Motorola Nexus 6 with a 3200mAh battery while in
a setting with 5 URL-beaconing peripherals (4 BLE, 1 mDNS) and 5 other broadcasting
peripherals (2 BLE, 3 mDNS), and with screen at lowest brightness. Measurements are
recorded using PowerTutor and Trepn Profiler.

and adding it to their account within the app. The Web Bluetooth interface would face
the same hurdles as its general interaction case. Our browser implementation would allow
users to jump right into account setup and device confirmation immediately after opening
the interface from the list screen.

5.4.5 Energy Usage

Peripherals do not require their own connection to the Internet via an on-board Wi-Fi or
GSM chip, or through an external hardware gateway. They can, instead, leverage the smart-
phone’s network connectivity, while using the energy efficient, short-distance communications
of BLE. As a result, our architecture can help eliminate high power costs generally associated
with such communication systems on peripherals. In the architecture, BLE peripherals need
only operate in the low power advertising mode. NRF51822, the most common BLE chip
used on our developers’ devices, averages <80 µW (dependent on transmit power and pay-
load), when advertising once per second [125]. It should be noted that most BLE peripherals
already advertise, so adherence to our protocol does not likely impact typical consumption
significantly.

While power efficiency has not been a primary consideration in the browser implementa-
tion, it is useful to know a rough breakdown of energy dependence of individual components
of the system, particularly with the communications systems and application processing. To
obtain a rough breakdown, approximate power measurements are taken using the PowerTu-
tor tool [172] for the Android platform. The tool offers an accuracy within 0.8% on average
with at most 2.5% error. Additionally, Qualcomm’s Trepn Power Profiler [135] is used to help
determine energy usage distribution among hardware components in finer detail. Table 5.2
depicts the average usage breakdown over 10 one-minute trials on a Nexus 6.

CHAPTER 5. BROWSING THE WEB OF THINGS 72

In this evaluation, usage is broken into four categories: LCD, Wi-Fi, BLE, and app
processing. As with many native apps, most of the energy is consumed by the LCD screen,
taking up nearly 75% of overall consumption. The Summon browser only operates in the
foreground, so the application must be open and on screen to be active. Application process-
ing consumes approximately 20%, which is mostly spent creating and manipulating visual
elements in the graphical interface of the browser. The remaining 5̃% is consumed by the
BLE and Wi-Fi radios, with a slightly higher percentage attributed to the latter. Cellular
network connectivity is inactive on the tested mobile device, but generally consumes about
as much as Wi-Fi when used instead. Unless the phone screen remains on throughout the
day, the browser’s consumption does not raise major concern. Additionally, this should have
diminishing impact as phone batteries continue to improve.

5.5 Discussion

During this study, we have gained insights from developers and users about their experiences,
and have encountered and contemplated various technical challenges. In this section, we more
deeply discuss questions regarding these challenges, examine how our system has evolved over
time, and explore methods to better improve.

5.5.1 Bluetooth and Denial of Service

BLE peripherals have two primary modes of operation: advertising and connected. Periph-
erals typically spend most time advertising to broadcast identifying information. However,
for interaction, it is often required that the phone connect to the peripheral. During the
deployment, developers noticed that many BLE software stacks do not allow simultaneous
advertisements and connections. Moreover, most stacks only allow a peripheral to be in
one connection at a time. This means connecting to a BLE device could create a denial of
service for other phones. While a one-to-one connection is useful for personal devices like
the smoking cessation breathalyzer, it can limit casual interactions with ambient devices
designed to be accessible to multiple users.

Possible solutions to this problem include imposing connection time limits either on the
peripheral device itself or in the our browser application. While these solutions would help
with the problem, starvation is inherent to a peer-to-peer networking architecture like BLE.
Another approach could be to have phones rebroadcast connected peripherals’ information
and virtualize their services to other nearby users. This scheme would also allow the phone
to absorb the energy cost of broadcasting while in a connection, instead of the peripheral
device, which is more likely to be energy-constrained. However, this solution weakens the
notion of spacial locality upon which our system relies, and raises the security concerns of
untrusted phones facilitating connections. In order to prevent denial of service, developers
should more often utilize interaction models that cut out or significantly reduce time in
connected mode.

CHAPTER 5. BROWSING THE WEB OF THINGS 73

5.5.2 Feasibility of Background Service

Due to how the mobile OSes (both iOS and Android) regulate native applications’ back-
ground service tasks, particularly with respect to services running BLE, web apps currently
must share from the quota of background service execution time that is allotted to the
browser application (bursts of approximately 5s periodically at unspecified intervals on iOS
[16]). Native apps are able to claim their own background service that would, hypothetically,
be able to run as long and often as the entirety of the browser app’s allotment for all web app
background services combined. This means that a native app can perform tasks like com-
municating with a corresponding device in the background for longer than individual web
app. For example, we have successfully implemented a native app version of a background
data muling service similar to the one in Figure 5.4a, albeit on a less restrictive Android
5 device. With both Apple and Google invested in Progressive Web App standards, it is
possible the respective mobile OSes will evolve to offer better support and web apps could
eventually gain a larger allotment of such OS resources.

5.5.3 Adaptation of Origin Policy

While we have developed and implemented a stand-alone browser application that success-
fully accomplishes most of the design goals of the browsing architecture, traditional browsers
may benefit from at least integrating the key notion of treating devices as web resources.
This device origin policy would still be applicable and useful in the typical type-and-go web
browsing model. Friction can be drastically reduced in web apps that make use of Web
Bluetooth by allowing devices to claim their origin, restricting website’s access to speci-
fied/approved origins, and providing transparency to users rather than making them choose
devices blindly—perhaps in the form of a permissions request prompt with a clear listing of
associated devices that is displayed once, akin to geolocation request prompts in the browser.

5.5.4 Extending the Architecture

While we focus primarily on a mobile implementation that enables discovery of user inter-
faces for BLE devices, the architecture has been applied to a number of different platforms,
contexts, and networks. For instance, the browser has been implemented and is regularly
used on MacOS—the same web-apps can be discovered, enabling interaction with devices
around the desktop using BLE and Wi-Fi. In the Android implementation, an API was
provided to support discovery and communication over NFC. For settings in which Internet-
connectivity is limited, the browser had also supported a custom BLE service that allows
downloading of user interfaces directly from the device. Chapter 6 also explores how aug-
mented reality could be used to improve the browsing approach by making discovery a more
tangible user experience.

CHAPTER 5. BROWSING THE WEB OF THINGS 74

5.6 Summary

We have introduced a mobile browsing architecture that extends web standards to provide a
seamless and open approach to discovering, connecting, and interacting with nearby “things”
for both ephemeral and persistent use cases. The approach enables direct local access to
and smartphone-mediated interaction with proximal devices, while embracing modern web
technologies and open standards, and taking advantage of native smartphone capabilities.
Through the implementation and distribution of Summon, a smartphone browser application
that employs this architecture, we have learned that the approach scales better than current
models of mobile-based interactions, particularly with low-power embedded devices, and
provides intuitive, natural functionality for both users and developers. Insights from the
deployment of this architecture can be generally applied in the creation and improvement of
“webification” tools and in the development of a new generation of interfaceable devices.

To further facilitate the “webification” of the Internet of Things and aid the development
of future web standards, we aim to help expose which architectural design choices achieve
the highest level of simplicity, usability, comprehensiveness, and comfort for both the user
and developer, while also ensuring enhanced reliability and security. If deployed on the
worldwide network of smartphones, our approach could finally provide a user-interfacing
solution that adequately enables, supports, and handles an increasingly global, robust, and
intimate Internet of Things.

75

Chapter 6

Browsing Things in Mixed Reality

The advent of the Internet of Things (IoT) has brought with it a slew of new technologies
and devices that together transform ordinary places into smarter, more connected spaces and
environments. As noted in previous chapters — to facilitate interaction with smart devices,
the trend for developers has been to create soft graphical interfaces in the form of smart-
phone apps that can potentially enable more comprehensive or complex levels of control,
while drastically reducing, simplifying, or removing physical interfaces. Voice-based virtual
assistants, which are accessed through smartphones and stationary smart home speakers,
provide an additional means of device control.

While these modalities can provide for useful and novel functionality, they form a phys-
ical and cognitive barrier between the user and the object with which he or she intends to
interact. This denies the user a measure of intuitive connection and tangibility that direct
manipulation of tactile on-device interfaces more often elicit. Furthermore, these modalities
often complicate fine-grained, filtered, and grouped control of devices with structural se-
mantics and complex abstractions, or lack functionality altogether [32]. Additionally, these
systems are still challenging for visitors to discover and access, and makes performing basic
ephemeral tasks, like turning on a light, nontrivial.

In the last chapter, we begin to rectify some of these lapses with Summon, using
network-based discovery of devices and dynamic loading of device-linked interactive web
user interfaces. To further eliminate barriers between the user and device, we can look
to smartphone- and tablet-based augmented reality (AR), or mixed reality (XR). In such
mobile-based AR, virtual content can be overlaid onto a video feed of the real world from
the perspective of the smartphone’s camera. Having experienced a significant growth in ca-
pability and reliability in recent years, mobile AR provides tools that can, perhaps, be used
to provide a more intuitive, tangible, and creative approach to interaction.

In this chapter, we explore the use of mobile AR in both discovery of and interaction
with IoT devices. The approach for discovery makes use of mobile AR to allow users to
identify new devices and easily access regularly-used devices in the physical space of their
environment. It could enable immediate interaction with quickly-obtainable user interfaces
(UIs) from the web, and provide developers with a convenient platform to display, within

CHAPTER 6. BROWSING THINGS IN MIXED REALITY 76

Figure 6.1: AR Browsing discovery model. In this model, users can open a “browser”
on their smartphone or tablet, which uses the camera to identify devices and discover their
associated web interfaces in physical space. When an interface is opened, it can use a
JavaScript Bluetooth API or network protocol to interact with the device.

perceived physical space, custom interfaces for their devices that can be created using stan-
dard web tools. This mobile augmented reality browsing concept is depicted in Figure 6.1.
In our study, we consider a few of the driving applications that could be supported, demon-
strate with a set of early proof-of-concept implementations, and we explore some of the
opportunities and challenges that arise in the development of such a system.

For more dynamic control in interaction, we also design a point-and-shoot model, in
which users, guided by mobile AR, can find and select a single device or group of devices
using their smartphone camera, and issue immediate action with custom interfaces. In this
model, which is depicted in Figure 6.2, the phone’s view acts as a framed physical search
filter that directs the smartphone to the devices with which it should communicate. Using
the entire screen as a selection mechanism relaxes the level of precision often required to
interact with AR interfaces, while still providing a level of accuracy that is intuitive for
use on mobile platforms. The targeting mechanism is partly inspired by frustum culling
— the efficient practice in 3D graphics of only rendering objects that lie in front of the
virtual camera rather than all objects in the environment. The components of the model are
depicted in Figure 6.3.

CHAPTER 6. BROWSING THINGS IN MIXED REALITY 77

Figure 6.2: AR Point-and-Shoot interaction model. With point-and-shoot, an ap-
plication can present a user interface on top of an augmented camera feed that maps virtual
device objects to real smart devices in the space. The phone treats objects that intersect
the frustum of the camera’s view as actionable targets. Effectively, the phone‘s viewport
acts as a filter to select one or more devices on which a desired action can be taken. In this
example, the user sets devices in part of an office to day settings (lights on, shade up, A/C
to 70° F) by selecting a button and facing the camera towards the items.

For the user, this removes the cognitive struggle of needing to know or recall the struc-
tural and semantic abstractions associated with a device in order to interact with it. The user
should effectively be able walk into a room with their smartphone, see the “smart things”
in the augmented space, use the camera to filter the scope of targeted devices, and interact
using an appropriate interface. With this model, many actions can be performed on one or
many smart devices with as little as a single on-sceen gesture and a motion to direct the
camera. Additionally, use of the model inherently provides the user with a more useful and
intuitive understanding of the devices in a space and their capabilities.

We present experiences and initial findings from building a prototype of the system
and web applications that run on it that leverage, among other standards and technologies,
an early version of the draft W3C WebXR API. The point-and-shoot work consists of: (a)
a model for viewport-based filtering of smart space devices through which users may select
groups of items on which to perform actions, (b) a prototype of a mobile platform for running
AR-enabled web applications that can interact with smart spaces, (c) tools for developers to
create web interfaces that can utilize the AR selection/filtering mechanism and access local
network protocols (Bluetooth, mDNS, UDP) to communicate with devices, and (d) example
applications to demonstrate functionality with various infrastructure strategies.

CHAPTER 6. BROWSING THINGS IN MIXED REALITY 78

Figure 6.3: Components of point-and-shoot. The phone uses an overlaid virtual map
on the realtime camera feed to both guide the user and keep track of virtual objects that
map to real smart devices in the space. The phone‘s viewport acts as a filter to select groups
of devices upon which users can perform context-specific actions in web-based interfaces.

6.1 Background & Related Work

We consider current standards for discovery and interaction in the Internet of Things, and
technologies that enable the proposed mobile AR approaches.

6.1.1 Interaction Standards for IoT Devices

Device-specific apps are the current standard for interaction in the Internet of Things. They
allow fine-grain setup and control of specific devices in an interface aesthetic of the developer’s
choosing. But this requires knowledge of the device and download of its app. It is also
typically only accessible by the owners of the device, which discourages opportunities for
ephemeral discovery and interaction.

6.1.2 Unified Control on Mobile Platforms

Unified control systems like Apple Home and Google Home begin to alleviate the problem
by providing a single interface to control multiple devices in a house [13, 62]. As their names
indicate, they are primarily intended for use in the home and limit scope to devices that
implement specific proprietary protocols and are owned by the user. This still often requires
download of the devices’ apps for setup. It also imposes a standard aesthetic and provides
a limited offering of control interfaces (e.g switches and sliders).

CHAPTER 6. BROWSING THINGS IN MIXED REALITY 79

6.1.3 Device Discovery

Google’s Physical Web allows discovery of nearby devices via Bluetooth Low Energy (BLE)
[69]. The device broadcasts a URL which a phone can detect and open in a browser. The
URL can point to a web page that acts as an interface for the device. If the device is
connected to the Internet or the page uses a JavaScript Bluetooth API, users can interact
with the device in real time. This enables immediate interaction in an interface of the
developer’s choosing. Unfortunately as the number of devices scales up, the listing model
becomes overwhelming and it is often difficult for users to map the appropriate interface to
device. This may be, in part, why Google has removed Physical Web support on Android
and iOS. However, the concept of associating nearby physical devices with web content via
a broadcast service may be useful in the context of a mobile AR browser that more tangibly
connects interfaces to devices.

6.1.4 Early Inspirations for AR-Like Modalities

In 1987, a Bell Labs study on human-system communication discovered that users struggle to
identify canonical names and keyword commands for systems using voice or type interfaces
[52], indicating that visual articulation might be more effective. This problem continues
today in IoT, where users must identify available devices, brands, and associated apps prior to
any form of interaction, even with voice-control agents. A 2000 Microsoft study on emerging
interfaces for smart devices examined user experiences of touch and speech interfaces [33].
While the study did not discuss AR as a modality, it suggested that the functionality of
systems could improve when interfaces are reinforced with an input that provides location-
awareness (e.g. gaze or gesture) to help disambiguate a target device.

6.1.5 Point-and-Shoot Photography

The interaction model discussed in this chapter draws inspiration from the spirit, princi-
ples, and impact of point-and-shoot cameras. They played a significant role in the rise of
vernacular photography, democratizing capture of people, moments, and scenes to a greater
non-professional population [38, 134]. In similar fashion, the point-and-shoot model could
put greater accessibility and control of sophisticated devices and systems safely and mean-
ingfully in the hands of average individuals who may not be as technically inclined, using a
platform that has become the modern-day point-and-shoot camera [158].

6.1.6 AR on Mobile Platforms

In recent years, mobile platforms have featured increasingly advanced support for augmented
reality (AR) with dedicated software frameworks and more capable hardware. Apple and
Google have introduced ARKit and ARCore, software development kits that allow quicker
and easier creation of AR-based applications [15, 61]. Some of the latest smartphone models

CHAPTER 6. BROWSING THINGS IN MIXED REALITY 80

improve AR functionality with infrared and LIDAR-based depth-sensing [15]. With native
support for AR and more capable hardware on smartphones and tablets, mobile augmented
reality has become a practical reality and exposes the technology to a large user-base. Prior
to this, third-party mobile AR frameworks existed, but much work in AR tended to focus
on head-worn display devices rather than mobile. Still, surveys of existing consumer AR
technologies from the last decade indicate that while industry interest in AR is high, it lacks
compelling practical applications [108, 156].

6.1.7 Mobile AR Systems in Practice

Mobile AR systems designed to enable interaction with objects in an environment usually
only work with a specific set of devices, and limit the type of controls devices can have and
how they are presented to the user. Some of the most popular mobile AR applications work
only in highly specific environments like an outfitted office, classroom, or exhibit [25, 94, 114].
Many of these employ computer vision with limited training sets, which is made easier with
built-in machine learning frameworks on mobile platforms, like Google’s ML Kit and Apple’s
Core ML [13, 62]. HP Reveal is an example that uses image recognition to identify objects
“anywhere”, but requires the user to manually narrow the search-space by subscribing to a
“channel” of objects [127]. It is primarily used to demonstrate object identification, rather
than interaction.

6.1.8 Target Identifiers

Standard visual identifiers like QR codes or AprilTags are often used for general use cases.
The mobile AR browser could potentially make use of such identifiers, but they may be
obtrusive or distracting in the long run. They still generally require users to be somewhat
informed about the environment around them and limit discovery when markers are not
visible on screen. Early tablet-based AR control systems for appliances in homes with preset
interfaces and tags have been studied, but not widely adopted [106]. Some work has been
done to create AR systems with more subtle or visually appealing markers [79, 133]. Recent
work in visible light communication (VLC) enable data dissemination through modulation of
LEDs, which can be captured on a smartphone camera, while remaining mostly imperceptible
to the human eye [96, 137]. This can potentially act as a visual “landmark” for devices in
mobile AR.

6.1.9 Localization

Recent work has demonstrated integration of novel indoor localization techniques in AR.
ALPS makes use of ultrasound beacons that broadcast audio that can be picked up on
smartphone microphones and used to accurately determine location and orientation of the
user [105]. Similarly, use of ultra-wideband (UWB) can accurately locate tags that can be
attached to phones or other objects [138]. The location information obtained from these

CHAPTER 6. BROWSING THINGS IN MIXED REALITY 81

techniques can be used to help render an accurate and persistent AR environment for all
users and between multiple uses [104, 117].

6.1.10 Smart Space Interaction

Previous work has considered various novel methods of device and smart space interaction.
NaviCam and HomeWindow are early approaches for augmented interaction with real-world
environments using portable devices [103, 139]. HomeBLOX is a graph-based user interface
for IoT authoring [140]. Reality Editor and CAPturAR extend the approach to mobile and
head-worn AR [78, 159]. Snap-To-It allows users to open a device interface by taking a
picture of the object [51]. Summon allows discovery of web-based interfaces for multiple
devices in a space in list and in-situ AR views [168]. Point-and-shoot builds on these works,
providing selective device interaction in AR, through web interfaces.

6.2 AR Browsing & Discovery

To begin developing an AR-based browsing architecture, we consider design decisions about
platform, target identification, user interfaces, and scope. To help aid the understanding of
requirements and limitations, a demo prototype, shown in Figure 6.4, and a general-purpose
implementation, shown in Figure 6.5, have been created. This demonstrates one mechanism
for AR-based discovery and interaction in a known environment, and helps inform some of
the design decisions that would need to be considered.

6.2.1 Platform

The most straightforward implementation of the mobile AR browser requires an Internet-
connected mobile phone or tablet that has sufficient hardware and processing support for
augmented reality. Most modern flagship smartphones are capable of this, at least with
third-party software. Since 2018, iOS and Android platforms have had official support for
mobile AR with dedicated software development kits (SDKs) from Apple and Google [13,
62]. Making this a mobile-based system, rather than one based on a head-worn device
or a webcam, makes it more accessible to a larger population of current users and the
touch interface can make it intuitive to use. Our prototype and general-purpose browser
implementations are built on iOS using Apple’s AR SDK, ARKit.

6.2.2 Targets

One of the more challenging parts of this system is defining how smart devices are identified
as “targets”—locations which, when viewed on the phone’s camera, prompt the phone to
overlay associated content (e.g. images, videos, or, in our case, a linked fully-functioning
user interface for the device).

CHAPTER 6. BROWSING THINGS IN MIXED REALITY 82

One of the common ways to do this is with image recognition. If the phone’s AR browser
is trained to recognize the image of the device, it can overlay the interface relatively easily.
The prototype is an implementation of such a system, as depicted in Figure 6.4. In this
example, the target is identified visually using a trained image of the lamp. The challenge
with this is one of scalability. It is unlikely that the browser can be trained to recognize
every device in every angle and lighting scenario.

Alternatively, the geolocation (GPS coordinates) of devices can be obtained during the
setup of the device. This, however, would likely only apply to stationary devices and would
not account for mobile or wearable devices. Additionally, geolocation on phones is still quite
coarse-grained (m-level accuracy) and development of a global map of devices may prove to
be an intractable problem.

More recent phones are capable of creating their own local mapping of targets in their
environment. It is possible for local mappings to be shared from phone to phone, but the
variance in data and lack of a common origin point of reference may render the data useless
when trying to load it on a different phone or even reload it on the same phone at a different
time. A possible method to improve accuracy with local mappings might be to have users
initially place their devices on a designated origin when they enter an IoT-outfitted space.
This could re-calibrate the device’s orientation to allow the phone to more accurately place
known targets in a space, and to enable persistence of location between uses. One could also
envision using a mount outfitted with NFC (near-field communication) or Bluetooth as the
designated origin, which could provide a URL to load a space’s map on to the phone. This
way, any smartphone or tablet entering the space can retrieve the appropriate local mapping
instead of needing to rely on global geolocation.

The devices themselves can broadcast their presence to the phone over the local Wi-Fi
network or Bluetooth Low Energy. Like in the browsing architecture discussed in Chapter 5,
the devices can provide a URL in their broadcast advertisements that would both help
to identify the device and point to an address where the device’s user interface is served.
This can also help to simplify how devices are found. While fine-grained location (cm-level
accuracy) cannot be obtained from the detection of Wi-Fi or Bluetooth, it indicates the
relative proximity of the device, which can 1) inform the user of its presence and 2) provide
a more simplified, scoped search-space for the phone to identify targets.

For example, a light bulb can advertise https://lightswit.ch/control, the address
of its user interface, over Bluetooth Low Energy. Once detected on a user’s phone, the device
can be listed on-screen as a nearby “thing”. At the same time, the phone can also refine its
search-space of targets to objects that look like light bulbs associated with the lightswit.ch
URL or, perhaps, known geolocations of such devices. If the phone is unable to identify the
device, but the user has knowledge of its location, he or she can potentially contribute a
picture or an updated coordinate to help identify the device in the future.

CHAPTER 6. BROWSING THINGS IN MIXED REALITY 83

Figure 6.4: Screenshots of an early implementation of the mobile augmented
reality browser. In this proof-of-concept implementation, the smartphone camera identifies
the target and displays an indicator (the favicon for the target’s URL) which the user may
touch to open the device’s linked web interface. Once opened, the interface, an HTML web
page, uses JavaScript and a local network protocol to allow the user to interact with the
Wi-Fi-connected device, and toggle the light on or off.

6.2.3 Target Proxies

The reality in many environments is that the device itself may not be a desirable target.
For instance, a smart power meter outlet may not be visible when in use since the plug for
the appliance it is metering may obscure it. Additionally, the data is directly related to the
metered appliance, and the user may more naturally associate the interface for the meter
with the appliance rather than the meter itself. The user may prefer that the interface
for the meter be placed closer to the actual appliance. Figure 6.4 is also an example of
this. The lamp was a chosen as the target location for the interface rather than the smart
switch device at the outlet, as it more closely relates to the object of the intended activity of
interaction. Consideration for these situations provide greater reasoning for allowing users
to define/modify the placement of interfaces for the devices they own, or utilizing standard
visual identifiers like QR codes that can be placed at the desired location, as is done general-
purpose browser implementation shown in Figure 6.5.

CHAPTER 6. BROWSING THINGS IN MIXED REALITY 84

(a) (b) (c)

Figure 6.5: Screenshots of AR Browser implementation. For the general-purpose
AR Browser implementation, targets/interfaces are typically identified via QR codes (a).
The app is also trained to detect visual cues from an image set of known device types (c),
such as the BLEES environmental sensor [97]. It can visually identify the target and place
the marker for the associated web app URL. When selected, the web app can be opened and
display data from the device (b), received via BLE or other local network protocols.

6.2.4 Interfaces

Once a target has been identified, the browser should be able navigate to and display a
linked user interface for the device that can display data from and interact with the device.
To facilitate this in a general and scalable manner, standard web tools can be used to create
the interface content. This means that the UIs are, in effect, web pages created with HTML,
JavaScript, and CSS. This would allow developers to maintain their own creative liberties
with the interaction model and interface aesthetic. The interface can make use of a browser-
provided JavaScript Bluetooth API, a local networking protocol, or commands issued via
cloud to enable communication between the browser and the device. More dynamic AR-based
web interfaces are explored with the point-and-shoot approach described in Section 6.4.

In Figure 6.4, the opened interface is a web page served on the local Wi-Fi network.
When the user toggles the switch , it issues a server-side command to the network-connected
switch device through a UPnP protocol. In Figure 6.5, the opened interface is a remote web
page which uses the JS BLE API to access and display data broadcast from the sensor.

CHAPTER 6. BROWSING THINGS IN MIXED REALITY 85

6.2.5 Scope

Though it potentially limits a range of possibilities with public and ephemeral discovery,
the browsing model can work as a local system that is focused on operating with devices
in a user’s home or work environment. Users can easily feed the system images of the
devices in the actual environment they reside, providing targets that can be recognized more
reliably. Alternatively, the user can define or correct an object’s location using a drag and
drop interface which will then be stored as coordinates in the phone’s local mapping of the
environment.

However, a system that is capable of working at a larger scale is more desirable. Iden-
tifying things as targets by image recognition is made more feasible when using the devices’
Bluetooth or Wi-Fi broadcasts to refine the search-space. Use of standardized visual identi-
fiers such as QR codes or AprilTags may improve performance, especially when devices are
not stationary. Locations can be defined/corrected by the crowd using a drag-and-drop style
interface to obtain new images of the target or modified geolocation.

Overall, defining and determining how the physical scope for interaction is interpreted
will be important. Depending on the technologies used, a “nearby” device could be consid-
ered one within the device’s Bluetooth range, on the device’s Wi-Fi network, in identifiable
visual range of the phone’s camera, or within an arbitrary distance of the phone’s geolocation.

6.3 AR Browsing Scenarios

In the mobile AR browsing model, a user would be able to point their phone at the device
of interest, and immediately discover the interface for it. The interface would link to a web
page which can make use of a cloud service, a local network protocol, or a browser-provided
JavaScript Bluetooth API to interact with the device. We explore a few applications for
which an MAR-based browsing model might be useful.

6.3.1 Smart Home Devices

The smart home has been the primary focus for the consumer IoT market. Home apps,
like Apple Home and Google Home, provide a single console interface for all the smart
devices in a house. When a moderate number of compatible devices are present, it is often
difficult to remember which interface corresponds with which device, even when each one
is appropriately labeled on the console, and used regularly. Additionally, to be compatible
with such consoles, devices must utilize specific proprietary protocols, and are limited in the
type of interface they can display on the console. For this reason, many IoT manufacturers
struggle to or opt not to integrate with these consoles. Regardless of compatibility, each
device still typically requires installation of its own mobile app to function.

With the mobile AR browser, finding the interface for a device would be similar to
finding one in the physical world. Instead of the Home apps’ strategy of relying on the user’s
recall of a particular device, the browser would utilize the user’s recognition by allowing

CHAPTER 6. BROWSING THINGS IN MIXED REALITY 86

the user to find the appropriate interface by pointing to the device of interest, much like
inspecting a lamp to find a switch.

6.3.2 Device Setup

To ease the process of connecting devices to the Internet in a home, the mobile AR browser
could potentially enable a quicker and more convenient method for device setup and configu-
ration. Instead of requiring the user to download an app and to go through a setup process of
entering ID numbers or accessing settings to initiate a connection, the device’s interface can
be opened in the browser and it can use visual verification methods and a direct connection
via Bluetooth to sync with a particular device. Additionally, users can place target locations
for device interfaces in the augmented reality space during this process.

6.3.3 Ephemeral Devices

Breaking out of the confined scope of the smart home, an mobile AR browser could po-
tentially be utilized to enable new opportunities for quick, ephemeral interaction with new
and easily-discoverable interfaces in the global Internet of Things. Interactive devices and
interfaces could be deployed in public (e.g. stores, sidewalks, conference rooms, exhibits).
Users would explore these spaces by effectively using the browser as an AR “window” into
the public web. Support for device discovery and ephemeral interaction of this kind would
be a major departure from the app-per-device and single-scoping models that are prevalent
in IoT. Enabling this, however, will require important consideration of the methods for re-
trieval of data about devices in public and both the virtual and physical association of the
appropriate interfaces to those systems.

6.4 AR Point-and-Shoot Interaction

To flexibly facilitate implementation of a range of point-and-shoot applications, we create a
platform that incorporates support for emerging web technologies — particularly, WebXR, a
W3C draft API for developing AR and VR experiences on the web, while leveraging native
platform AR SDKs and hardware [157]. This allows developers to easily and quickly create
AR point-and-shoot applications in HTML and JavaScript, and provides opportunities for
potential cross-platform support. Additionally, we extend native networking capabilities and
shims for device APIs as Javascript libraries.

6.4.1 Point-and-Shoot Platform

In order to run WebXR-based point-and-shoot applications, we implement a new version of
the mobile AR browser as an iOS app. Central to the platform is a specialized webview that
runs native elements derived from Mozilla’s WebXR Viewer [118, 165] in the background

CHAPTER 6. BROWSING THINGS IN MIXED REALITY 87

to enable WebXR support for HTML webpages and interface with iOS’s native augmented
reality SDK, ARKit [15]. As in the previous browser implementations, the platform extends
the webview with interfaces for local network protocols (mDNS, UDP/datagram sockets,
Bluetooth) to allow point-and-shoot applications to communicate with local devices. While
remote webpages can be loaded on the platform, we have baked all of our implemented
applications into the iOS app for quick access. If desired, any web app can be packaged with
the platform’s libraries to operate as a standalone native iOS app.

6.4.2 Applications

With the platform support in place, point-and-shoot applications can make use of Mozilla’s
WebXR JavaScript API [72, 119]. This, in a few lines of code, can transform a blank HTML
webpage into a camera-fed canvas for augmented reality with hooks to key features of the
native AR SDK.

Our implemented applications also make use of ThreeJS, a web-based 3D graphics
library [34]. Using it, we create a core set of tools that generates the virtual object repre-
sentation of devices and facilitates the tracking functionality that understands when devices
are within the viewing frustum of the smartphone camera.

To communicate with local devices, the applications can use special JavaScript APIs
provided by the point-and-shoot platform. These APIs provide access to the platform’s
extended local network protocols. We have further implemented a set of shims to interface
with the existing network communication protocols for a set of popular brands of devices.

6.4.3 Mapping

To simplify and aid in configuration of the virtual maps of outfitted spaces, we provide
tools for applications to incorporate a quick-setup procedure that dynamically populates a
selection list of discovered relevant devices. This allows users to manually tap to place a
corresponding virtual object near the physical location of the target device and interact with
it using the application’s interface in the matter of seconds. Depending on the application and
target devices, the phone can use multiple discovery methods using the JavaScript network
APIs extended through the platform. Most of the implemented applications discover devices
by listening for zero-configuration services like Bonjour/mDNS, querying with device-specific
local network protocols, or scanning for Bluetooth Low Energy broadcasts. The application
can save the map and reload it as necessary, or even share to other devices. Some of
the implemented applications discussed in Section 6.5 use this method for object placement.
Additionally, for real-time automatic localization of devices in a smart space, we can consider
techniques and technologies employed by various systems, such as visual markers like QR
codes [78, 79, 168], light-based anchors [6, 96, 112, 146], ultrasound beacons [105], vibratory
sensing [173], ultra-wideband tags [14, 22, 83], trained images [51, 127], and other computer-
vision based mechanisms.

CHAPTER 6. BROWSING THINGS IN MIXED REALITY 88

Figure 6.6: Application: Paint the Lights. An implemented web application using
WebXR that allows users to control smart lights in a space by simply selecting a color
button or the off button from on-screen controls, and turning the phone’s camera towards
the lights they would like to change.

6.5 AR Point-and-Shoot Applications

We explore and validate the capabilities of the point-and-shoot model with a series of web-
based applications implemented using WebXR, ThreeJS, and extended network APIs.

6.5.1 Paint the Lights

“Paint the Lights” is a simple application that makes use of this model and demonstrates
the ability to perform instantaneous action on devices in view. Augmented reality is used
to label and mark the locations of smart RGB LED lights in the space. The screen presents
options for colors, as well as an option for “off”. If the user selects one of the options, she
can point the phone’s camera towards any of the lights, which are then changed instantly
to the state indicated by the selection. The screenshots shown in Figure 6.6 depict the user
selecting the color red and pointing the phone at the light above to change its color instantly.

This is achieved on the phone by keeping track of the virtual object representing the
light. Any time the object enters the phone’s viewport, the phone issues a command via
REST API or through the local network to take the selected action on the light corresponding
to the virtual object.

CHAPTER 6. BROWSING THINGS IN MIXED REALITY 89

Figure 6.7: Application: Drag-and-Drop Share. A WebXR application that allows
users to share images to network displays, printers, and computers, by dragging them to the
device on the augmented camera feed. Users may also send media to all devices or all of a
device type by dragging to corresponding on-screen action icons representing aggregates of
all items in view.

6.5.2 Drag-and-Drop Share

A second application, “Drop Share”, allows users to share media to identified devices like
displays and printers with a drag-and-drop action. Like before, locations of compatible
devices are marked on an AR overlay. The interface contains a photo picker bar at the
bottom of the screen, as well as a set of action/summary icons for all devices and classes of
device, each of which contain counts of the corresponding devices in view. The image can
be dragged from the picker to a device’s location on camera to share with it. For example,
dragging a photo to a printer on the camera feed will initiate a job to print the photo on that
device. An example of this is depicted in Figure 6.7. Alternatively, users can drag media to
one of the action icons to share with all visible devices or class of devices in a single drop
gesture. In the final panel of the figure, an image is dropped on the “All” icon, which will
both display and print the image.

CHAPTER 6. BROWSING THINGS IN MIXED REALITY 90

Figure 6.8: Application: Smart Space Snap. An implemented web application using
WebXR that allows users to control devices in a space by taking a picture of a targeted
selection of devices and choosing actions to perform on them from a set of options catered
specifically to the selection.

When the user initiates a drop action, the app obtains the local address and callback
function associated with the target device’s virtual object — metadata that is assigned
automatically in the mapping phase. Calling the function with the known address sends the
dropped file to the device using the appropriate network protocol (e.g. Internet Printing
Protocol [IPP] for printing, UDP/datagram APIs for casting). By keeping track of objects
that enter or exit the viewport, the app allows the user to initiate aggregate action to a
desired subset of devices at any moment.

6.5.3 Smart Space Snap

In an application we call “Smart Space Snap”, augmented reality is again used to mark and
label smart devices. A shutter button is present on screen to allow users to take a picture of
the device or a set of devices with which they desire to interact. The button is only available
to the user when a virtual object is present on screen. When the shutter button is pressed,
the camera feed pauses on the last frame and the virtual mapping is frozen in place. In the
example shown in Figure 6.8, the user sees multiple devices in the room, settles on two, takes
a snap, chooses the devices to interact with (all two on screen), selects an action (turn off),
and submits the command.

With this application, actions could be applied to devices of different classes. For
example, a snap of a smart light and smart window shades might provide a “darken” action
that would dim the light and close the blinds.

CHAPTER 6. BROWSING THINGS IN MIXED REALITY 91

Figure 6.9: Concept: Integration with native camera app. In a hypothetical OS-
level integration, point-and-shoot could be employed in a quickly-accessible mode in the
smartphone camera app. The mode would present a set of applets that enable AR/XR
overlays, as well as an app store to find relevant third-party applets. The user could, for
instance, swipe to an applet that displays a virtual switch for all smart lights in view.

6.5.4 Quick-View Sensor Readings

In a “Quick-View” application, the phone displays real-time readings from plug-load power
meters and environmental sensors (temperature, humidity, pressure, light) in a space. Read-
ings are obtained directly from the devices via Bluetooth Low Energy broadcasts sent once
every second. The metrics are displayed on the augmented feed at the corresponding sensor
locations. On the bottom of the screen, the interface also displays average environmental
sensor readings and aggregate power usage for all the sensors in view.

A version of this application uses QR codes for automatic localization, rather than
requiring a mapping phase. The QR image contains encoded identification information to
automatically link the appropriate Bluetooth data to the corresponding device. It also serves
as a visually unique feature on which to place the virtual object. However, for the initial
placement, the phone camera must be within roughly 1 meter of a 7.5 sq cm QR code for
proper detection.

CHAPTER 6. BROWSING THINGS IN MIXED REALITY 92

6.6 Alternative Platform Paradigms

As an alternative to our web-based implementation, the point-and-shoot model could poten-
tially be integrated as a quickly-accessible feature on smartphone OSes. In Figure 6.9, we
envision an XR mode in the phone’s camera app (like Video, Photo, Pano, Portrait, etc).
A selection of XR applets is presented at the bottom of the screen including app store and
third-party options (similar to the app selection above the keyboard in iOS Messages app).
Like the implementations described in Section 5.4.1, these applets could enable specialized
XR “skins”, “filters”, or views of the environment that discover, identify, and interact with
associated devices. This, for instance, may be the perfect place for iOS platforms to feature
an AR-based “Find My” applet, where other devices with ultra-wideband technology can be
located. The figure depicts a “Home” applet which overlays simplified controls for multiple
device types, like those one might find in smartphone “Home” apps. The phone can detect
nearby devices in order to sort applets by relevance to the space or suggest applets that users
may not have. This mode could also feature applets for games and immersive experiences.

One such experience could provide further insight and encourage experimentation with
the various components and spaces in a user’s smart home (e.g. suggesting how one might be
able to save energy by trying out different settings, providing personal recommendations of
different “mood lighting” one may have not tried before, etc.) by displaying a simulated view
of the changes in their home. This could make alternative scenarios visible and accessible in
situ, and provide an option to make such changes immediately.

While this chapter focuses on mobile mixed reality, the browsing architecture and point-
and-shoot model could be applied to AR-enabled headsets or other integrated vision-based
platforms in future work. As such head- or eye-worn devices become efficient, compact, and
portable enough for regular wear, we can envision enabling quick and intuitive control of
devices in a variety of surrounding environments using eye tracking and head movement as
potential targeting mechanisms.

6.7 Discussion

In this section, we discuss some research challenges and questions that should be considered
when designing and further implementing the mobile AR browsing architecture.

6.7.1 Location Determination & Accuracy

A key consideration for the mobile AR browser is determining where interfaces are placed in
augmented reality and ensuring that the placement corresponds with a user’s intuitive un-
derstanding of how that interface relates to the physical environment. What are the methods
to accomplish this? Can we do this without — or at least with minimal — user setup? Can
we support both stationary and mobile objects of interest? How do we properly identify and
distinguish interfaces for multiple targets in close proximity? How will different types and

CHAPTER 6. BROWSING THINGS IN MIXED REALITY 93

levels of lighting affect the accuracy of target identification and interface placement? We
discussed some of these considerations in Sections 6.2.2 and 6.2.3. Some solutions for im-
provement might include updating location by crowd-sourcing user location (verification by
proximity), storing device location meta-data in the cloud which can be downloaded based
on user location, or “annotating” locations and devices of interest with QR codes that link
to well-defined schema.

6.7.2 Communication Topology

Once a web-based user interface is opened, how do we enable direct interaction with the
device? We suggest enabling support for local interaction using a JavaScript Bluetooth API
for Bluetooth devices. Interfaces for Wi-Fi devices can implement local network protocols
if the web content is served on the local network. Alternatively, as many mobile apps
currently do, the interface can issue commands through a dedicated cloud service for devices
with continuous Internet connectivity. This would effectively allow developers to create and
deploy app-like UIs for their own devices.

6.7.3 Usability & User Experience

The intention of this browsing model is to begin taking steps to make software-based in-
teraction with IoT devices feel as intuitive as physical interaction with our surrounding
environment. Besides physical placement of interfaces, what are the design decisions that
help interface feel more tangibly and physically tied to the devices they control? Can we
make interaction via mobile as convenient as on-device interfaces? Can we ensure that this
gives developers the power to create interfaces suitable for their product rather than con-
straining the product to a minimal set of services that are available? How do we design the
browser to better promote ephemeral discovery and interaction in public?

Augmented reality, while intuitive in many ways, can still generally feel awkward to
users. Will users adjust to the paradigm of placing a phone between them and the world
around them? Interesting approaches have been taken in the past to help reduce awkwardness
in MAR, like using camera attachments to facilitate a more comfortable screen angle [40] or
incorporating novel methods of feedback [109].

While not entirely important at least with initial prototypes, consideration of occlusion
and other visual features that help provide a sense of realism to the virtual objects in physical
space will eventually be useful for improving the user experience.

6.7.4 Developer Experience

Ideally, the process of creating devices that are compatible with the browser, and developing
interfaces that are discoverable and operable on the browser should be a relatively convenient
process compared to the current siloed mobile app approach. What should the programming
environment look like and what tools should be made available to developers?

CHAPTER 6. BROWSING THINGS IN MIXED REALITY 94

Because the browser would essentially run on an extension of web standards, developers
could still make use of a typical web programming environment to create the interfaces. As
shown in implementation, browser-defined APIs are useful to facilitate systems like BLE and
WebXR. They could also extend camera and visual verification protocols. Determining the
exact set of functions required will be vital. For device development, standard advertisement
services over BLE or Wi-Fi (e.g. mDNS) can be used to broadcast URL and other metadata
to the phone. The developer can also set up a server to host a UI on the device itself.

6.7.5 Browsing Model

The UIs displayed on a user’s smartphone can be physically tied to the devices they control
or to a relevant point in physical space. But does this present a larger benefit than previous
paradigms, like simple linking through Physical Web or QR codes alone? While Physical
Web provides a convenient means for content discovery, it can either overwhelm the user with
notifications for a long list of web pages or prevent relevant results from being presented in
an attempt to filter that list. Additionally, it could be difficult for the user to determine
which interface is associated with which device.

QR-linking does enable more physically-tied associations of content to target objects.
However, at present, the common uses for QR seem to be very deliberate, single-time actions
like linking to a download for an app or to a configuration web page within a browser. It also
requires switching back and forth between camera and browser to open multiple interfaces.
The mobile AR browser would effectively be combining camera, browser, and local network
protocols to allow for a more seamless experience when inspecting and interacting with a
space.

Once a model for linking interactive web interfaces to target devices is established,
are there more interesting and novel features that could be supported through the mobile
AR browser? Perhaps, for instance, a method could be established to allow users to easily
perform trigger-action programming connecting multiple devices in their environment.

6.7.6 Data & Privacy

Because the system uses camera, location, and data about devices in local and private envi-
ronments, there are risks associated with the size and sensitivity of the data. It is important
to determine exactly what data is necessary to save locally or send online, and develop mea-
sures to ensure that no more than the necessary amount is retained, transmitted, or shared.
Additionally, the browser model will likely require some defined notions of ownership and
permission, and rules to enforce them. Safeguards will also need to be put in place to detect
and prevent links to malicious web interfaces. It is essential that, at least, the standard
practices of web security are preserved and supported through the browser.

CHAPTER 6. BROWSING THINGS IN MIXED REALITY 95

6.7.7 Power Usage

Currently, use of augmented reality is a notable drain on phone batteries, which may dis-
courage people from using the browser, especially in public, where phone charging is often
limited. Phone companies seem to be allocating a considerable amount of effort into making
it more efficient. Considering what practices make more efficient use of energy will be useful
when implementing the design. For example, using flat imagery like favicons and standard
rectangular web page interfaces in the mobile AR browser will generally require less energy
than rendering 3D objects and controls, like the interfaces using point-and-shoot.

6.8 Summary

In this chapter, we have presented mobile AR-facilitated browsing and interaction models,
in which users can discover, select, and perform action on one or many smart devices by
controlling the view of their smartphone’s camera. We implement these models in a series
of applications and a set of underlying system prototypes that leverage mobile, web, and
network technologies. This represents a step towards the more natural usage patterns of
direct manipulation, but enhances it with interaction akin to point-and-shoot photography.
To operate at scale, key decisions will need to be made on standards, particularly for tar-
get recognition and device discovery. Further studies will be required to better assess and
improve the usability of a such a system, but utilization of this architecture may enable us
to begin taking steps to break free of the walled-garden infrastructure that is stifling the
Internet of Things, while also providing compelling use cases for the augmented reality tech-
nology that is becoming more prevalent on our mobile devices. This has the potential to be a
key enabling methodology in both mixed reality and IoT applications, but poor accessibility,
implementation, and user experience can render it a short-lived paradigm if it is overtaken
by misguided practices.

96

Part IV

Reflections & References

97

Chapter 7

Conclusion

The Internet of Things (IoT) is a growing industry, with an ever-increasing number of smart
devices being connected to the Internet everyday. However, the potential of that growth is
hampered by the endemic utilization of siloed application-layer gateways as a stopgap for
connectivity and interaction in IoT industry. The prevalence of this isolating practice is
restricting scalability, affordability, and accessibility for a broader range of constrained IoT
devices.

To address these limitations, this work has presented a set of application-agnostic ap-
proaches to connectivity and interaction for IoT devices. The proposed network architecture
uses ubiquitous short-range gateways to openly facilitate data transport for constrained
devices to the Internet, while the browsing architecture provides a scalable approach to dis-
covering and interacting with nearby devices. These architectures offer a simple, yet dynamic
framework for enabling Internet connectivity and user interaction for IoT devices, breaking
down the barriers imposed by siloed gateway standards.

Furthermore, the proposed methodology for IoT connectivity and interaction opens up
exciting possibilities for the future of the IoT industry. By providing a more versatile and
accessible approach to IoT, this work paves the way for the creation of more innovative
and intuitive IoT devices and interfaces. The design principles presented in this work offer
a foundation for researchers and device developers to build upon, further advancing the
development of the smart and connected world of the future.

The scope of this work can be broadened by applying the proposed approaches to
alternative network systems and protocols. As different low-power wireless technologies
find their way into smartphones, computers, microcontrollers, and other emerging platforms
over time, these architectures could continue to provide a means to facilitate discovery,
open connectivity, and interaction for devices. Implementing support for end-to-end IPv6
could allow devices to participate and communicate as full-fledged citizens of the Internet.
Additionally, conducting comprehensive studies on user and developer experiences would
offer valuable insights to further validate and improve the browsing mechanism for device
discovery and interaction.

CHAPTER 7. CONCLUSION 98

If major smartphone manufacturers were to embrace the mobile gateway and device
browsing techniques as operating system-level services, it could unlock enormous potential
in the coverage and availability of IoT connectivity and interaction capabilities. The prolifer-
ation of inexpensive general-purpose static gateway hardware can further empower unprece-
dented accessibility for IoT devices. Furthermore, the mixed reality browsing approach could
provide a significantly enhanced user experience when integrated with new technologies that
enable accurate fine-grained localization while maintaining low power operation, as well as
upcoming AR headsets and platforms.

Overall, the proposed application-agnostic approaches to connectivity and interaction
represent a significant step forward in realizing the full potential of the IoT industry. By
providing a general-purpose alternative to the current siloed gateway standard, this work
opens up new possibilities for the development of more advanced, dynamic, and affordable
IoT devices — making the Internet of Things more accessible to everyone.

99

Bibliography

[1] ABI Research. Average Size of Mobile Games for iOS Increased by a Whopping 42%
between March and September. Oct. 2012. url: https://www.abiresearch.com/press/
average-size-of-mobile-games-for-ios-increased-by-/.

[2] Joshua Adkins and Prabal Dutta. “Monoxalyze: Verifying Smoking Cessation with
a Keychain-sized Carbon Monoxide Breathalyzer”. In: Proceedings of the 14th ACM
Conference on Embedded Network Sensor Systems. SenSys ’16. Stanford, CA, USA:
ACM, 2016, pp. 190–201. isbn: 978-1-4503-4263-6. doi: 10.1145/2994551.2994571.
url: http://doi.acm.org/10.1145/2994551.2994571.

[3] Joshua Adkins, Branden Ghena, and Prabal Dutta. “Freeloader’s Guide Through
the Google Galaxy”. In: Proceedings of the 20th International Workshop on Mobile
Computing Systems and Applications. HotMobile ’19. Santa Cruz, CA, USA: ACM,
2019, pp. 111–116. isbn: 978-1-4503-6273-3. doi: 10 .1145/3301293 .3302376. url:
http://doi.acm.org/10.1145/3301293.3302376.

[4] Joshua Adkins et al. “The Signpost Network: Demo Abstract”. In: Proceedings of the
14th ACM Conference on Embedded Network Sensor Systems. SenSys ’16. Stanford,
CA, USA: ACM, 2016, pp. 320–321. isbn: 978-1-4503-4263-6. doi: 10.1145/2994551.
2996542. url: http://doi.acm.org.proxy.lib.umich.edu/10.1145/2994551.2996542.

[5] Adobe Systems. Adobe PhoneGap. Apr. 2018. url: http://phonegap.com/.

[6] Karan Ahuja et al. “LightAnchors: Appropriating Point Lights for Spatially-Anchored
Augmented Reality Interfaces”. In: Proceedings of the 32nd Annual ACM Symposium
on User Interface Software and Technology. UIST ’19. New Orleans, LA, USA: Asso-
ciation for Computing Machinery, 2019, pp. 189–196. isbn: 9781450368162.

[7] AllSeen Alliance. Open Source IoT to Advance the Internet of Everything. url: https:
//allseenalliance.org.

[8] Amazon. All-new Echo (4th Gen) — With premium sound, smart home hub, and
Alexa. Oct. 2021. url: https://www.amazon.com/All-New-Echo- 4th-Gen/dp/
B07XKF5RM3.

[9] Amazon. Amazon Sidewalk Privacy and Security Whitepaper. Tech. rep. Amazon,
Sept. 2020. url: https : / /m .media - amazon . com/ images/G/01/ sidewalk/final
privacy security whitepaper.pdf.

https://www.abiresearch.com/press/average-size-of-mobile-games-for-ios-increased-by-/
https://www.abiresearch.com/press/average-size-of-mobile-games-for-ios-increased-by-/
https://doi.org/10.1145/2994551.2994571
http://doi.acm.org/10.1145/2994551.2994571
https://doi.org/10.1145/3301293.3302376
http://doi.acm.org/10.1145/3301293.3302376
https://doi.org/10.1145/2994551.2996542
https://doi.org/10.1145/2994551.2996542
http://doi.acm.org.proxy.lib.umich.edu/10.1145/2994551.2996542
http://phonegap.com/
https://allseenalliance.org
https://allseenalliance.org
https://www.amazon.com/All-New-Echo-4th-Gen/dp/B07XKF5RM3
https://www.amazon.com/All-New-Echo-4th-Gen/dp/B07XKF5RM3
https://m.media-amazon.com/images/G/01/sidewalk/final_privacy_security_whitepaper.pdf
https://m.media-amazon.com/images/G/01/sidewalk/final_privacy_security_whitepaper.pdf

BIBLIOGRAPHY 100

[10] David P. Anderson et al. “SETI@Home: An Experiment in Public-resource Com-
puting”. In: Commun. ACM 45.11 (Nov. 2002), pp. 56–61. issn: 0001-0782. doi:
10.1145/581571.581573. url: http://doi.acm.org/10.1145/581571.581573.

[11] Apache Software Foundation. Apache Cordova. Mar. 2019. url: https ://cordova.
apache.org/.

[12] Apple. Airtag - Apple. Apr. 2021. url: https://apple.com/airtag/.

[13] Apple. Apple Developer Documentation. Oct. 2018. url: https://developer.apple.
com/documentation/.

[14] Apple. AR Quick Look - Apple Developer. Nov. 2020. url: https://developer.apple.
com/augmented-reality/quick-look/.

[15] Apple. ARKit — Apple Developer Documentation. Feb. 2021. url: https://developer.
apple.com/documentation/arkit.

[16] Apple. Extending Your App’s Background Execution Time. Sept. 2019. url: https://
developer.apple.com/documentation/uikit/app and environment/scenes/preparing
your ui to run in the background/extending your app s background execution time.

[17] Apple. HomeKit - Apple Developer. Sept. 2019. url: https://developer.apple.com/
homekit/.

[18] Apple. HomeKit — Developing Apps and Accessories for the Home. June 2021. url:
https://developer.apple.com/homekit/.

[19] Apple. HomePod. Oct. 2021. url: https://www.apple.com/homepod/.

[20] Apple. iBeacon — Apple Developer. Apr. 2017. url: http://developer.apple.com/
ibeacon.

[21] Apple. iOS - Home - Apple. Sept. 2019. url: https://www.apple.com/ios/home/.

[22] Apple. Nearby Interaction — Apple Developer Documentation. Jan. 2021. url: https:
//developer.apple.com/documentation/nearbyinteraction.

[23] Sungho Bae et al. “Browsing Architecture with Presentation Metadata for the Internet
of Things”. In: 2011 IEEE 17th International Conference on Parallel and Distributed
Systems. Dec. 2011, pp. 721–728. doi: 10.1109/ICPADS.2011.36.

[24] David Barth. The bright side of sitting in traffic: Crowdsourcing road congestion data.
2009. url: http ://googleblog .blogspot . com/2009/08/bright - side - of - sitting - in -
traffic.html.

[25] P. Belhumeur et al. “Searching the World’s Herbaria: A System for Visual Identifi-
cation of Plant Species”. In: 2008, pp. 116–129. doi: 10.1007/978-3-540-88693-8 9.
url: http://dx.doi.org/10.1007/978-3-540-88693-8 9.

https://doi.org/10.1145/581571.581573
http://doi.acm.org/10.1145/581571.581573
https://cordova.apache.org/
https://cordova.apache.org/
https://apple.com/airtag/
https://developer.apple.com/documentation/
https://developer.apple.com/documentation/
https://developer.apple.com/augmented-reality/quick-look/
https://developer.apple.com/augmented-reality/quick-look/
https://developer.apple.com/documentation/arkit
https://developer.apple.com/documentation/arkit
https://developer.apple.com/documentation/uikit/app_and_environment/scenes/preparing_your_ui_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/app_and_environment/scenes/preparing_your_ui_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/documentation/uikit/app_and_environment/scenes/preparing_your_ui_to_run_in_the_background/extending_your_app_s_background_execution_time
https://developer.apple.com/homekit/
https://developer.apple.com/homekit/
https://developer.apple.com/homekit/
https://www.apple.com/homepod/
http://developer.apple.com/ibeacon
http://developer.apple.com/ibeacon
https://www.apple.com/ios/home/
https://developer.apple.com/documentation/nearbyinteraction
https://developer.apple.com/documentation/nearbyinteraction
https://doi.org/10.1109/ICPADS.2011.36
http://googleblog.blogspot.com/2009/08/bright-side-of-sitting-in-traffic.html
http://googleblog.blogspot.com/2009/08/bright-side-of-sitting-in-traffic.html
https://doi.org/10.1007/978-3-540-88693-8_9
http://dx.doi.org/10.1007/978-3-540-88693-8_9

BIBLIOGRAPHY 101

[26] Alex Bellon, Alex Yen, and Pat Pannuto. “TagAlong: Free, Wide-Area Data-Muling
and Services”. In: Proceedings of the 24th International Workshop on Mobile Comput-
ing Systems and Applications. HotMobile ’23. Newport Beach, California: Association
for Computing Machinery, 2023, pp. 103–109. doi: 10.1145/3572864.3580342. url:
https://doi.org/10.1145/3572864.3580342.

[27] BLU. BLU Dash JR. url: http://www.bluproducts.com/index.php/dash-jr-4-0-k.

[28] Bluetooth Special Interest Group. Bluetooth Core Specifications. July 2017. url:
https://www.bluetooth.com/specifications/bluetooth-core-specification.

[29] Bluetooth Special Interest Group. Bluetooth SIG. Sept. 2019. url: https://www.
bluetooth.com/.

[30] Bluetooth Special Interest Group. Core Specification 4.0 — Bluetooth Technology
Website. June 2010. url: https://www.bluetooth.com/specifications/specs/core-
specification-4-0/.

[31] Bluetooth Special Interest Group. Internet Protocol Support Profile — Bluetooth
Technology Website. Dec. 2014. url: https://www.bluetooth.com/specifications/
specs/internet-protocol-support-profile-1-0/.

[32] Julia Brich et al. “Exploring End User Programming Needs in Home Automation”.
In: ACM Transactions on Computer-Human Interaction 24.2 (Apr. 2017). issn: 1073-
0516. doi: 10.1145/3057858. url: https://doi.org/10.1145/3057858.

[33] B. Brumitt and J. Cadiz. “” Let There Be Light”: Examining Interfaces for Homes
of the Future.” In: INTERACT. Vol. 1. 2001, pp. 375–382.

[34] Ricardo Cabello. three.js: Javascript 3D Library. Mar. 2021. url: https://github.
com/mrdoob/three.js/.

[35] Arnab Chakrabarti, Ashutosh Sabharwal, and BehnammAazhang. “Using Predictable
Observer Mobility for Power Efficient Design of Sensor Networks”. In: ISPN, 2003,
pp. 129–145. url: http://www.isi.edu/∼johnh/PAPERS/Park11a.pdf.

[36] Bharat S. Chaudhari, Marco Zennaro, and Suresh Borkar. “LPWAN Technologies:
Emerging Application Characteristics, Requirements, and Design Considerations”.
In: Future Internet 12.3 (2020). issn: 1999-5903. doi: 10 . 3390 / fi12030046. url:
https://www.mdpi.com/1999-5903/12/3/46.

[37] Cisco. The Internet of Things: How the Next Evolution of the Internet Is Changing
Everything. Tech. rep. Cisco, Apr. 2011. url: https://www.cisco.com/c/dam/en us/
about/ac79/docs/innov/IoT IBSG 0411FINAL.pdf.

[38] Paul Cobley and Nick Haeffner. “Digital cameras and domestic photography: com-
munication, agency and structure”. In: Visual Communication 8.2 (2009), pp. 123–
146.

[39] Don Coleman. Bluetooth Low Energy (BLE) Central Plugin for Apache Cordova. Jan.
2017. url: https://github.com/don/cordova-plugin-ble-central.

https://doi.org/10.1145/3572864.3580342
https://doi.org/10.1145/3572864.3580342
http://www.bluproducts.com/index.php/dash-jr-4-0-k
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/
https://www.bluetooth.com/
https://www.bluetooth.com/specifications/specs/core-specification-4-0/
https://www.bluetooth.com/specifications/specs/core-specification-4-0/
https://www.bluetooth.com/specifications/specs/internet-protocol-support-profile-1-0/
https://www.bluetooth.com/specifications/specs/internet-protocol-support-profile-1-0/
https://doi.org/10.1145/3057858
https://doi.org/10.1145/3057858
https://github.com/mrdoob/three.js/
https://github.com/mrdoob/three.js/
http://www.isi.edu/~johnh/PAPERS/Park11a.pdf
https://doi.org/10.3390/fi12030046
https://www.mdpi.com/1999-5903/12/3/46
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://github.com/don/cordova-plugin-ble-central

BIBLIOGRAPHY 102

[40] A. Colley et al. “Changing the Camera-to-screen Angle to Improve AR Browser Us-
age”. In: Proceedings of the 18th International Conference on Human-Computer In-
teraction with Mobile Devices and Services. MobileHCI ’16. Florence, Italy: ACM,
2016, pp. 442–452. isbn: 978-1-4503-4408-1. doi: 10 .1145/2935334 .2935384. url:
http://doi.acm.org/10.1145/2935334.2935384.

[41] Connectivity Standards Alliance. Matter is the Foundation for Connected Things.
June 2021. url: https://buildwithmatter.com/.

[42] Seyed Mahdi Darroudi and Carles Gomez. “Bluetooth Low Energy Mesh Networks:
A Survey”. In: Sensors 17.7 (2017). issn: 1424-8220. doi: 10.3390/s17071467. url:
https://www.mdpi.com/1424-8220/17/7/1467.

[43] Samuel DeBruin et al. “PowerBlade: A Low-Profile, True-Power, Plug-Through En-
ergy Meter”. In: Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems. SenSys ’15. Seoul, South Korea: Association for Computing Machin-
ery, 2015, pp. 17–29. isbn: 9781450336314. doi: 10 . 1145/2809695 . 2809716. url:
https://doi.org/10.1145/2809695.2809716.

[44] Tess Despres et al. “Where the Sidewalk Ends: Privacy of Opportunistic Backhaul”.
In: Proceedings of the 15th European Workshop on Systems Security. EuroSec ’22.
Rennes, France: Association for Computing Machinery, 2022, pp. 1–7. isbn: 9781450392556.
doi: 10.1145/3517208.3523757. url: https://doi.org/10.1145/3517208.3523757.

[45] Drok. Portable USB Doctor Multifunction Digital Meter. June 2019. url: https://
www.droking.com/usb- tester/Portable-USB-Doctor-USB-Voltmeter -Ammeter-
Capacity -Meter - Energy-Meter -Temperature -Meter -Running-Time-Tester - 6in1-
Multifunction-Digital-Meter.

[46] Ericsson. CEO to Shareholders: 50 Billion Connections in 2020. Apr. 2010. url:
https://www.ericsson.com/en/press-releases/2010/4/ceo-to-shareholders-50-billion-
connections-2020.

[47] Espressif Systems. ESP32. July 2020. url: https://www.espressif.com/en/products/
socs/esp32.

[48] Fitbit. Fitbit. Jan. 2017. url: http://fitbit.com.

[49] Flic. Flic — The Smart Button for Lights, Music, Smart Home and More. Mar. 2021.
url: https://flic.io/.

[50] Rasberry Pi Foundation. Raspberry Pi. Jan. 2017. url: https://www.raspberrypi.
org/.

[51] Adrian A de Freitas et al. “Snap-to-it: A user-inspired platform for opportunistic
device interactions”. In: Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems. CHI ’16. New York, NY, USA: ACM, 2016, pp. 5909–5920.

https://doi.org/10.1145/2935334.2935384
http://doi.acm.org/10.1145/2935334.2935384
https://buildwithmatter.com/
https://doi.org/10.3390/s17071467
https://www.mdpi.com/1424-8220/17/7/1467
https://doi.org/10.1145/2809695.2809716
https://doi.org/10.1145/2809695.2809716
https://doi.org/10.1145/3517208.3523757
https://doi.org/10.1145/3517208.3523757
https://www.droking.com/usb-tester/Portable-USB-Doctor-USB-Voltmeter-Ammeter-Capacity-Meter-Energy-Meter-Temperature-Meter-Running-Time-Tester-6in1-Multifunction-Digital-Meter
https://www.droking.com/usb-tester/Portable-USB-Doctor-USB-Voltmeter-Ammeter-Capacity-Meter-Energy-Meter-Temperature-Meter-Running-Time-Tester-6in1-Multifunction-Digital-Meter
https://www.droking.com/usb-tester/Portable-USB-Doctor-USB-Voltmeter-Ammeter-Capacity-Meter-Energy-Meter-Temperature-Meter-Running-Time-Tester-6in1-Multifunction-Digital-Meter
https://www.droking.com/usb-tester/Portable-USB-Doctor-USB-Voltmeter-Ammeter-Capacity-Meter-Energy-Meter-Temperature-Meter-Running-Time-Tester-6in1-Multifunction-Digital-Meter
https://www.ericsson.com/en/press-releases/2010/4/ceo-to-shareholders-50-billion-connections-2020
https://www.ericsson.com/en/press-releases/2010/4/ceo-to-shareholders-50-billion-connections-2020
https://www.espressif.com/en/products/socs/esp32
https://www.espressif.com/en/products/socs/esp32
http://fitbit.com
https://flic.io/
https://www.raspberrypi.org/
https://www.raspberrypi.org/

BIBLIOGRAPHY 103

[52] George W. Furnas et al. “The Vocabulary Problem in Human-system Communica-
tion”. In: Commun. ACM 30.11 (Nov. 1987), pp. 964–971. issn: 0001-0782. doi:
10.1145/32206.32212. url: http://doi.acm.org/10.1145/32206.32212.

[53] J. Antonio Garcia-Macias et al. “Browsing the Internet of Things with Sentient Vi-
sors”. In: Computer 44.5 (May 2011), pp. 46–52. issn: 0018-9162. doi: http://doi.
ieeecomputersociety.org/10.1109/MC.2011.128.

[54] Matt Gaunt. Service Worker. Sept. 2019. url: https://developers.google.com/web/
ilt/pwa/introduction-to-service-worker.

[55] Hans Gellersen et al. “Supporting Device Discovery and Spontaneous Interaction with
Spatial References”. In: Personal Ubiquitous Comput. 13.4 (May 2009), pp. 255–264.
issn: 1617-4909. doi: 10.1007/s00779-008-0206-3. url: http://dx.doi.org/10.1007/
s00779-008-0206-3.

[56] Mohammad Ghamari et al. “Detailed Examination of a Packet Collision Model for
Bluetooth Low Energy Advertising Mode”. In: IEEE Access 6 (2018), pp. 46066–
46073. doi: 10.1109/ACCESS.2018.2866323.

[57] Branden Ghena. “Investigating Low Energy Wireless Networks for the Internet of
Things”. PhD thesis. EECS Department, University of California, Berkeley, Dec.
2020. url: http ://www2.eecs .berkeley.edu/Pubs/TechRpts/2020/EECS- 2020-
209.html.

[58] Branden Ghena, Jean-Luc Watson, and Prabal Dutta. “Embedded OSes Must Em-
brace Distributed Computing”. In: Proceedings of the 1st International Workshop
on Next-Generation Operating Systems for Cyber-Physical Systems. NGOSCPS’19.
Montreal, Canada: Association for Computing Machinery, Apr. 2019. url: https :
//www.cse.wustl.edu/∼cdgill/ngoscps2019/papers/NGOSCPS2019 Ghena etal.pdf.

[59] Branden Ghena et al. “Challenge: Unlicensed LPWANs Are Not Yet the Path to
Ubiquitous Connectivity”. In: The 25th Annual International Conference on Mobile
Computing and Networking. MobiCom ’19. Los Cabos, Mexico: Association for Com-
puting Machinery, 2019. isbn: 9781450361699. doi: 10.1145/3300061.3345444. url:
https://doi.org/10.1145/3300061.3345444.

[60] Google. Android Things. Aug. 2019. url: https://developer.android.com/things.

[61] Google. ARCore Overview — Google Developers. Nov. 2020. url: https://developers.
google.com/ar/discover.

[62] Google.Google Developers. July 2018. url: https://developers.google.com/products/.

[63] Google. Google Nest Smart Speakers and Displays. Sept. 2021. url: https://store.
google.com/us/magazine/compare nest speakers displays.

[64] Google. IPv6 - Google. Oct. 2021. url: https ://www.google .com/intl/en/ipv6/
statistics.html.

[65] Google. Nexus 4. Jan. 2016. url: http://www.google.com/nexus/4/.

https://doi.org/10.1145/32206.32212
http://doi.acm.org/10.1145/32206.32212
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/MC.2011.128
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/MC.2011.128
https://developers.google.com/web/ilt/pwa/introduction-to-service-worker
https://developers.google.com/web/ilt/pwa/introduction-to-service-worker
https://doi.org/10.1007/s00779-008-0206-3
http://dx.doi.org/10.1007/s00779-008-0206-3
http://dx.doi.org/10.1007/s00779-008-0206-3
https://doi.org/10.1109/ACCESS.2018.2866323
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-209.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-209.html
https://www.cse.wustl.edu/~cdgill/ngoscps2019/papers/NGOSCPS2019_Ghena_etal.pdf
https://www.cse.wustl.edu/~cdgill/ngoscps2019/papers/NGOSCPS2019_Ghena_etal.pdf
https://doi.org/10.1145/3300061.3345444
https://doi.org/10.1145/3300061.3345444
https://developer.android.com/things
https://developers.google.com/ar/discover
https://developers.google.com/ar/discover
https://developers.google.com/products/
https://store.google.com/us/magazine/compare_nest_speakers_displays
https://store.google.com/us/magazine/compare_nest_speakers_displays
https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/intl/en/ipv6/statistics.html
http://www.google.com/nexus/4/

BIBLIOGRAPHY 104

[66] Google. Nexus 9. Jan. 2016. url: http://www.google.com/nexus/9/.

[67] Google. OpenThread — An Open Foundation for the Connected Home. June 2021.
url: https://openthread.io/.

[68] Google. Progressive Web Apps. Sept. 2019. url: https://developers.google.com/web/
progressive-web-apps/.

[69] Google. The Physical Web. June 2017. url: https://google.github.io/physical-web/.

[70] Google. UriBeacon — The Web Uri Open Beacon for the Internet of Things. July
2015. url: https://github.com/google/uribeacon.

[71] Matthias Grossglauser and M. Vetterli. “Locating nodes with EASE: Last encounter
routing in ad hoc networks through mobility diffusion”. In: INFOCOM 2003. Twenty-
Second Annual Joint Conference of the IEEE Computer and Communications. IEEE
Societies. Vol. 3. Mar. 2003, 1954–1964 vol.3. doi: 10.1109/INFCOM.2003.1209217.

[72] Immersive Web W3C Working Group. WebXR Polyfill. May 2020. url: https : //
github.com/immersive-web/webxr-polyfill.

[73] Dominique Guinard, Vlad Trifa, and Erik Wilde. “A resource oriented architecture
for the Web of Things”. In: 2010 Internet of Things (IOT). Nov. 2010, pp. 1–8. doi:
10.1109/IOT.2010.5678452.

[74] Dominique Guinard, Vlad Mihai Trifa, and Erik Wilde. “Architecting a mashable
open world wide web of things”. In: Technical report/Swiss Federal Institute of Tech-
nology Zurich, Department of Computer Science. Vol. 663. ETH Zurich, Feb. 2010.

[75] Albert F. Harris et al. “Smart LaBLEs: Proximity, Autoconfiguration, and a Constant
Supply of Gatorade(TM)”. In: 2016 IEEE/ACM Symposium on Edge Computing
(SEC). IEEE. New York, NY, USA: IEEE, 2016, pp. 142–154. doi: 10.1109/SEC.
2016.43.

[76] Helena Project. Squall: Low cost 1 inch round BLE sensor tag. Sept. 2017. url:
https://github.com/helena-project/squall.

[77] Helium Systems. Helium. Jan. 2016. url: https://helium.co.

[78] Valentin Heun, James Hobin, and Pattie Maes. “Reality Editor: Programming Smarter
Objects”. In: Proceedings of the 2013 ACM Conference on Pervasive and Ubiqui-
tous Computing Adjunct Publication. UbiComp ’13 Adjunct. Zurich, Switzerland: As-
sociation for Computing Machinery, 2013, pp. 307–310. isbn: 9781450322157. doi:
10.1145/2494091.2494185. url: https://doi.org/10.1145/2494091.2494185.

[79] Valentin Heun, Shunichi Kasahara, and Pattie Maes. “Smarter Objects: Using AR
Technology to Program Physical Objects and Their Interactions”. In: CHI ’13 Ex-
tended Abstracts on Human Factors in Computing Systems. CHI EA ’13. Paris,
France: Association for Computing Machinery, 2013, pp. 961–966. isbn: 9781450319522.
doi: 10.1145/2468356.2468528. url: https://doi.org/10.1145/2468356.2468528.

http://www.google.com/nexus/9/
https://openthread.io/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://google.github.io/physical-web/
https://github.com/google/uribeacon
https://doi.org/10.1109/INFCOM.2003.1209217
https://github.com/immersive-web/webxr-polyfill
https://github.com/immersive-web/webxr-polyfill
https://doi.org/10.1109/IOT.2010.5678452
https://doi.org/10.1109/SEC.2016.43
https://doi.org/10.1109/SEC.2016.43
https://github.com/helena-project/squall
https://helium.co
https://doi.org/10.1145/2494091.2494185
https://doi.org/10.1145/2494091.2494185
https://doi.org/10.1145/2468356.2468528
https://doi.org/10.1145/2468356.2468528

BIBLIOGRAPHY 105

[80] HTC. HTC One. Jan. 2016. url: http://www.htc.com/us/smartphones/htc-one-
m8/.

[81] HTTPArchive Mobile. Interesting Stats. Feb. 2016. url: httparchive.org/interesting.
php.

[82] Jonathan W. Hui and David E. Culler. “IP is Dead, Long Live IP for Wireless Sensor
Networks”. In: Proceedings of the 6th ACM Conference on Embedded Network Sensor
Systems. SenSys ’08. 2008, pp. 15–28.

[83] Ke Huo et al. “Scenariot: Spatially Mapping Smart Things Within Augmented Reality
Scenes”. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems. New York, NY, USA: Association for Computing Machinery, 2018, pp. 1–13.
isbn: 9781450356206. url: https://doi.org/10.1145/3173574.3173793.

[84] Liviu Iftode et al. “Smart Phone: an embedded system for universal interactions”. In:
Distributed Computing Systems, 2004. FTDCS 2004. Proceedings. 10th IEEE Inter-
national Workshop on Future Trends of. May 2004, pp. 88–94. doi: 10.1109/FTDCS.
2004.1316598.

[85] IFTTT. IFTTT — Do More With the Things You Love. Oct. 2021. url: https :
//ifttt.com/.

[86] InfluxData. InfluxDB Time Series Platform. Dec. 2020. url: https://www.influxdata.
com/products/influxdb/.

[87] IoT Analytics. State of the IoT 2020: 12 billion IoT connections, surpassing non-IoT
for the first time. Nov. 2020. url: https://iot-analytics.com/state-of-the-iot-2020-
12-billion-iot-connections-surpassing-non-iot-for-the-first-time/.

[88] Sushant Jain et al. “Exploiting Mobility for Energy Efficient Data Collection in Wire-
less Sensor Networks”. In: Mobile Network Applications 11.3 (June 2006), pp. 327–
339. issn: 1383-469X. doi: 10.1007/s11036-006-5186-9. url: https://doi.org/10.
1007/s11036-006-5186-9.

[89] Scott Jenson et al. “Building an On-ramp for the Internet of Things”. In: Proceedings
of the 2015 Workshop on IoT Challenges in Mobile and Industrial Systems. IoT-
Sys ’15. Florence, Italy: ACM, May 2015, pp. 3–6. isbn: 978-1-4503-3502-7. doi:
10.1145/2753476.2753483. url: http://doi.acm.org/10.1145/2753476.2753483.

[90] Wha Sook Jeon, Made Harta Dwijaksara, and Dong Geun Jeong. “Performance Anal-
ysis of Neighbor Discovery Process in Bluetooth Low-Energy Networks”. In: IEEE
Transactions on Vehicular Technology 66.2 (2017), pp. 1865–1871. doi: 10 . 1109/
TVT.2016.2558194.

[91] Benjamin Kempke, Pat Pannuto, and Prabal Dutta. “PolyPoint: Guiding Indoor
Quadrotors with Ultra-Wideband Localization”. In: 2015 ACM Workshop on Hot
Topics in Wireless. HotWireless ’15. Paris, France, Sept. 2015.

http://www.htc.com/us/smartphones/htc-one-m8/
http://www.htc.com/us/smartphones/htc-one-m8/
httparchive.org/interesting.php
httparchive.org/interesting.php
https://doi.org/10.1145/3173574.3173793
https://doi.org/10.1109/FTDCS.2004.1316598
https://doi.org/10.1109/FTDCS.2004.1316598
https://ifttt.com/
https://ifttt.com/
https://www.influxdata.com/products/influxdb/
https://www.influxdata.com/products/influxdb/
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://doi.org/10.1007/s11036-006-5186-9
https://doi.org/10.1007/s11036-006-5186-9
https://doi.org/10.1007/s11036-006-5186-9
https://doi.org/10.1145/2753476.2753483
http://doi.acm.org/10.1145/2753476.2753483
https://doi.org/10.1109/TVT.2016.2558194
https://doi.org/10.1109/TVT.2016.2558194

BIBLIOGRAPHY 106

[92] Hyun-Soo Kim, Jungyub Lee, and Ju Wook Jang. “BLEmesh: A Wireless Mesh Net-
work Protocol for Bluetooth Low Energy Devices”. In: 2015 3rd International Con-
ference on Future Internet of Things and Cloud. IEEE. New York, NY, USA: IEEE,
2015, pp. 558–563. doi: 10.1109/FiCloud.2015.21.

[93] Aniket Kittur, Ed H. Chi, and Bongwon Suh. “Crowdsourcing User Studies with
Mechanical Turk”. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. CHI ’08. Florence, Italy: ACM, 2008, pp. 453–456. isbn: 978-
1-60558-011-1. doi: 10.1145/1357054.1357127. url: http://doi.acm.org/10.1145/
1357054.1357127.

[94] Neeraj Kumar et al. “Leafsnap: A Computer Vision System for Automatic Plant
Species Identification”. In: Computer Vision – ECCV 2012. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 502–516. isbn: 978-3-642-33709-3.

[95] Ye-Sheng Kuo, Pat Pannuto, and Prabal Dutta. “System Architecture Directions for
a Software-Defined Lighting Infrastructure”. In: 1st ACM Workshop on Visible Light
Communication Systems. VLCS ’14. Maui, Hawaii, USA, Sept. 2014.

[96] Ye-Sheng Kuo et al. “Luxapose: Indoor Positioning with Mobile Phones and Visible
Light”. In: Proceedings of the 20th Annual International Conference on Mobile Com-
puting and Networking. MobiCom ’14. Maui, Hawaii, USA: Association for Computing
Machinery, 2014, pp. 447–458. isbn: 9781450327831. doi: 10.1145/2639108.2639109.
url: https://doi.org/10.1145/2639108.2639109.

[97] Lab11. BLEES: Bluetooth Low Energy Environmental Sensors. Feb. 2017. url: https:
//github.com/lab11/blees.

[98] Lab11. Internet of Things Gateway. June 2015. url: https://github.com/lab11/iot-
gateway.

[99] Lab11. Opo. Aug. 2016. url: https://github.com/lab11/opo.

[100] Lab11. Summon [Lab11] - Apps on Google Play. Oct. 2016. url: https://play.google.
com/store/apps/details?id=edu.umich.eecs.lab11.summon.

[101] Lab11. Summon [Lab11] on the App Store. Oct. 2016. url: https://apps.apple.com/
us/app/summon-lab11/id1051205682.

[102] Lab11. Summon: Browser for the Local Web of Things. May 2017. url: https ://
github.com/lab11/summon.

[103] Paul Lapides, Ehud Sharlin, and Saul Greenberg. “HomeWindow: An Augmented
Reality Domestic Monitor”. In: Proceedings of the 4th ACM/IEEE International
Conference on Human Robot Interaction. HRI ’09. La Jolla, California, USA: As-
sociation for Computing Machinery, 2009, pp. 323–324. isbn: 9781605584041. doi:
10.1145/1514095.1514197. url: https://doi.org/10.1145/1514095.1514197.

https://doi.org/10.1109/FiCloud.2015.21
https://doi.org/10.1145/1357054.1357127
http://doi.acm.org/10.1145/1357054.1357127
http://doi.acm.org/10.1145/1357054.1357127
https://doi.org/10.1145/2639108.2639109
https://doi.org/10.1145/2639108.2639109
https://github.com/lab11/blees
https://github.com/lab11/blees
https://github.com/lab11/iot-gateway
https://github.com/lab11/iot-gateway
https://github.com/lab11/opo
https://play.google.com/store/apps/details?id=edu.umich.eecs.lab11.summon
https://play.google.com/store/apps/details?id=edu.umich.eecs.lab11.summon
https://apps.apple.com/us/app/summon-lab11/id1051205682
https://apps.apple.com/us/app/summon-lab11/id1051205682
https://github.com/lab11/summon
https://github.com/lab11/summon
https://doi.org/10.1145/1514095.1514197
https://doi.org/10.1145/1514095.1514197

BIBLIOGRAPHY 107

[104] Patrick Lazik, Anthony Rowe, and Nicholas Wilkerson. ALPS: The Acoustic Location
Processing System. 2018. url: https://www.microsoft.com/en-us/research/uploads/
prod/2017/12/Patrick Lazik 2018.pdf.

[105] Patrick Lazik et al. “ALPS: A Bluetooth and Ultrasound Platform for Mapping and
Localization”. In: Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems. SenSys ’15. Seoul, South Korea: Association for Computing Machin-
ery, 2015, pp. 73–84. isbn: 9781450336314. doi: 10 . 1145/2809695 . 2809727. url:
https://doi.org/10.1145/2809695.2809727.

[106] Jangho Lee et al. “A Unified Remote Console Based on Augmented Reality in a Home
Network Environment”. In: 2007 Digest of Technical Papers International Conference
on Consumer Electronics. New York, NY, USA: IEEE, 2007, pp. 1–2. doi: 10.1109/
ICCE.2007.341516.

[107] Amit A. Levy et al. “Beetle: Flexible Communication for Bluetooth Low Energy”. In:
Proceedings of the 14th Annual International Conference on Mobile Systems, Appli-
cations, and Services. MobiSys ’16. Singapore, Singapore: ACM, June 2016, pp. 111–
122. isbn: 978-1-4503-4269-8. doi: 10.1145/2906388.2906414. url: http://doi.acm.
org/10.1145/2906388.2906414.

[108] Haibin Ling. “Augmented Reality in Reality”. In: IEEE MultiMedia 24.3 (2017),
pp. 10–15. issn: 1070-986X. doi: 10.1109/MMUL.2017.3051517.

[109] Can Liu et al. “Evaluating the Benefits of Real-time Feedback in Mobile Augmented
Reality with Hand-held Devices”. In: Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems. CHI ’12. Austin, Texas, USA: ACM, 2012,
pp. 2973–2976. isbn: 978-1-4503-1015-4. doi: 10.1145/2207676.2208706. url: http:
//doi.acm.org/10.1145/2207676.2208706.

[110] Jia Liu et al. “Adaptive Device Discovery in Bluetooth Low Energy Networks”. In:
2013 IEEE 77th Vehicular Technology Conference (VTC Spring). IEEE. New York,
NY, USA: IEEE, 2013, pp. 1–5. doi: 10.1109/VTCSpring.2013.6691855.

[111] Jia Liu et al. “Energy Analysis of Device Discovery for Bluetooth Low Energy”. In:
2013 IEEE 78th Vehicular Technology Conference (VTC Fall). IEEE. New York, NY,
USA: IEEE, 2013, pp. 1–5. doi: 10.1109/VTCFall.2013.6692181.

[112] Edward Lu et al. “FLASH: Video-Embeddable AR Anchors for Live Events”. In: 2021
IEEE International Symposium on Mixed and Augmented Reality (ISMAR). New
York, NY, USA: IEEE, 2021, pp. 489–497. doi: 10.1109/ISMAR52148.2021.00066.

[113] Alexander Maier, Andrew Sharp, and Yuriy Vagapov. “Comparative Analysis and
Practical Implementation of the ESP32 Microcontroller Module for the Internet of
Things”. In: 2017 Internet Technologies and Applications (ITA). IEEE. New York,
NY, USA: IEEE, 2017, pp. 143–148. doi: 10 .1109/ITECHA.2017 .8101926. url:
https://doi.org/10.1109/ITECHA.2017.8101926.

https://www.microsoft.com/en-us/research/uploads/prod/2017/12/Patrick_Lazik_2018.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2017/12/Patrick_Lazik_2018.pdf
https://doi.org/10.1145/2809695.2809727
https://doi.org/10.1145/2809695.2809727
https://doi.org/10.1109/ICCE.2007.341516
https://doi.org/10.1109/ICCE.2007.341516
https://doi.org/10.1145/2906388.2906414
http://doi.acm.org/10.1145/2906388.2906414
http://doi.acm.org/10.1145/2906388.2906414
https://doi.org/10.1109/MMUL.2017.3051517
https://doi.org/10.1145/2207676.2208706
http://doi.acm.org/10.1145/2207676.2208706
http://doi.acm.org/10.1145/2207676.2208706
https://doi.org/10.1109/VTCSpring.2013.6691855
https://doi.org/10.1109/VTCFall.2013.6692181
https://doi.org/10.1109/ISMAR52148.2021.00066
https://doi.org/10.1109/ITECHA.2017.8101926
https://doi.org/10.1109/ITECHA.2017.8101926

BIBLIOGRAPHY 108

[114] Diana Marques and Robert Costello. “Skin & bones: an artistic repair of a science
exhibition by a mobile app”. In:MIDAS. Museus e estudos interdisciplinares 5 (2015).

[115] Steven McCanne and Van Jacobson. “The BSD Packet Filter: A New Architecture for
User-Level Packet Capture”. In: Proceedings of the USENIX Winter 1993 Conference
Proceedings. USENIX’93. San Diego, California: USENIX Association, 1993, p. 2. doi:
10.5555/1267303.1267305. url: https://dl.acm.org/doi/10.5555/1267303.1267305.

[116] Mateusz Mikusz et al. “Repurposing Web Analytics to Support the IoT”. In: Com-
puter 48.9 (Sept. 2015), pp. 42–49. doi: 10.1109/MC.2015.260.

[117] John Miller et al. Realty and Reality: Where Location Matters. 2018. url: https :
//www.microsoft.com/en-us/research/uploads/prod/2017/12/John Miller 2018.pdf.

[118] Mozilla. Project WebXR Viewer: An AR Project by Mozilla. Sept. 2019. url: https:
//github.com/mozilla-mobile/webxr-ios.

[119] Mozilla.WebXR Viewer Javascript. May 2020. url: https://github.com/MozillaReality/
webxr-ios-js.

[120] Ritesh M Nayak. Discontinuing support for Android Nearby Notifications. Oct. 2018.
url: https://android-developers.googleblog.com/2018/10/discontinuing-support-
for-android.html.

[121] Nest Labs. Weave. Mar. 2018. url: https://nest.com/weave/.

[122] Nest Labs. Works with Nest. Mar. 2018. url: https://nest.com/works-with-nest/.

[123] Johanna Nieminen et al. IPv6 over BLUETOOTH(R) Low Energy. RFC 7668. Oct.
2015. doi: 10.17487/RFC7668. url: https://www.rfc-editor.org/info/rfc7668.

[124] Johanna Nieminen et al. Transmission of IPv6 packets over Bluetooth low energy
“draft-ietf-6lo-btle-10”. Feb. 2015. url: https://tools.ietf.org/html/draft- ietf-6lo-
btle-10.

[125] Nordic Semiconductor. nRF51822 - Multiprotocol Bluetooth low energy/2.4 GHz RF
System on Chip. 2014. url: https://infocenter.nordicsemi.com/pdf/nRF51822 PS
v3.1.pdf.

[126] Nordic Semiconductor. nRF52840 - Bluetooth 5.2 SoC. Aug. 2019. url: https ://
www.nordicsemi.com/Products/nRF52840.

[127] Hewlett Packard. HP Reveal. Apr. 2020. url: https://www.hpreveal.com/.

[128] Unkyu Park and John Heidemann. “Data Muling with Mobile Phones for Sensornets”.
In: Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems.
SenSys ’11. Seattle, Washington: ACM, 2011, pp. 162–175. isbn: 978-1-4503-0718-5.
doi: 10.1145/2070942.2070960. url: http://doi.acm.org/10.1145/2070942.2070960.

[129] David Pérez-Diaz de Cerio et al. “Analytical and experimental performance evalua-
tion of BLE neighbor discovery process including non-idealities of real chipsets”. In:
Sensors 17.3 (2017), p. 499. doi: 10.3390/s17030499.

https://doi.org/10.5555/1267303.1267305
https://dl.acm.org/doi/10.5555/1267303.1267305
https://doi.org/10.1109/MC.2015.260
https://www.microsoft.com/en-us/research/uploads/prod/2017/12/John_Miller_2018.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2017/12/John_Miller_2018.pdf
https://github.com/mozilla-mobile/webxr-ios
https://github.com/mozilla-mobile/webxr-ios
https://github.com/MozillaReality/webxr-ios-js
https://github.com/MozillaReality/webxr-ios-js
https://android-developers.googleblog.com/2018/10/discontinuing-support-for-android.html
https://android-developers.googleblog.com/2018/10/discontinuing-support-for-android.html
https://nest.com/weave/
https://nest.com/works-with-nest/
https://doi.org/10.17487/RFC7668
https://www.rfc-editor.org/info/rfc7668
https://tools.ietf.org/html/draft-ietf-6lo-btle-10
https://tools.ietf.org/html/draft-ietf-6lo-btle-10
https://infocenter.nordicsemi.com/pdf/nRF51822_PS_v3.1.pdf
https://infocenter.nordicsemi.com/pdf/nRF51822_PS_v3.1.pdf
https://www.nordicsemi.com/Products/nRF52840
https://www.nordicsemi.com/Products/nRF52840
https://www.hpreveal.com/
https://doi.org/10.1145/2070942.2070960
http://doi.acm.org/10.1145/2070942.2070960
https://doi.org/10.3390/s17030499

BIBLIOGRAPHY 109

[130] Charles E. Perkins and Elizabeth .M. Royer. “Ad-hoc on-demand distance vector
routing”. In: Mobile Computing Systems and Applications, 1999. Proceedings. WM-
CSA ’99. Second IEEE Workshop on. Feb. 1999, pp. 90–100. doi: 10.1109/MCSA.
1999.749281.

[131] Hauke Petersen, Thomas C. Schmidt, and Matthias Wählisch. “Mind the Gap: Multi-
Hop IPv6 over BLE in the IoT”. In: Proceedings of the 17th International Confer-
ence on Emerging Networking EXperiments and Technologies. CoNEXT ’21. Virtual
Event, Germany: Association for Computing Machinery, 2021, pp. 382–396. isbn:
9781450390989. doi: 10 . 1145/3485983 .3494847. url: https : //doi . org/10 .1145/
3485983.3494847.

[132] Philips. Smart Lighting — Hue. Oct. 2021. url: https://www.philips-hue.com/.

[133] Juri Platonov et al. “A mobile markerless AR system for maintenance and repair”. In:
2006 IEEE/ACM International Symposium on Mixed and Augmented Reality. Oct.
2006, pp. 105–108. doi: 10.1109/ISMAR.2006.297800.

[134] Annebella Pollen. “Objects of Denigration and Desire: Taking the Amateur Photogra-
pher Seriously”. In: The Handbook of Photography Studies. London, UK: Bloomsbury
Academic, 2020.

[135] Qualcomm Technologies. When Mobile Apps Use Too Much Power: A Developer
Guide for Android App Performance. Dec. 2013. url: https://developer.qualcomm.
com/download/trepn-whitepaper-power.pdf.

[136] Dave Raggett. “The Web of Things: Challenges and Opportunities”. In: Computer
48.5 (May 2015), pp. 26–32. issn: 0018-9162. doi: 10.1109/MC.2015.149.

[137] Niranjini Rajagopal, Patrick Lazik, and Anthony Rowe. “Visual light landmarks for
mobile devices”. In: IPSN-14 Proceedings of the 13th International Symposium on
Information Processing in Sensor Networks. Apr. 2014, pp. 249–260. doi: 10.1109/
IPSN.2014.6846757.

[138] Niranjini Rajagopal et al. “Welcome to My World: Demystifying Multi-user AR with
the Cloud: Demo Abstract”. In: Proceedings of the 17th ACM/IEEE International
Conference on Information Processing in Sensor Networks. IPSN ’18. Porto, Portugal:
IEEE Press, 2018, pp. 146–147. isbn: 978-1-5386-5298-5. doi: 10.1109/IPSN.2018.
00036. url: https://doi.org/10.1109/IPSN.2018.00036.

[139] Jun Rekimoto and Katashi Nagao. “The World through the Computer: Computer
Augmented Interaction with Real World Environments”. In: Proceedings of the 8th
Annual ACM Symposium on User Interface and Software Technology. UIST ’95. Pitts-
burgh, Pennsylvania, USA: Association for Computing Machinery, 1995, pp. 29–36.
isbn: 089791709X. doi: 10 .1145/215585.215639. url: https ://doi .org/10.1145/
215585.215639.

https://doi.org/10.1109/MCSA.1999.749281
https://doi.org/10.1109/MCSA.1999.749281
https://doi.org/10.1145/3485983.3494847
https://doi.org/10.1145/3485983.3494847
https://doi.org/10.1145/3485983.3494847
https://www.philips-hue.com/
https://doi.org/10.1109/ISMAR.2006.297800
https://developer.qualcomm.com/download/trepn-whitepaper-power.pdf
https://developer.qualcomm.com/download/trepn-whitepaper-power.pdf
https://doi.org/10.1109/MC.2015.149
https://doi.org/10.1109/IPSN.2014.6846757
https://doi.org/10.1109/IPSN.2014.6846757
https://doi.org/10.1109/IPSN.2018.00036
https://doi.org/10.1109/IPSN.2018.00036
https://doi.org/10.1109/IPSN.2018.00036
https://doi.org/10.1145/215585.215639
https://doi.org/10.1145/215585.215639
https://doi.org/10.1145/215585.215639

BIBLIOGRAPHY 110

[140] Michael Rietzler et al. “HomeBLOX: Introducing Process-Driven Home Automation”.
In: Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Com-
puting Adjunct Publication. UbiComp ’13 Adjunct. Zurich, Switzerland: Association
for Computing Machinery, 2013, pp. 801–808. isbn: 9781450322157. doi: 10.1145/
2494091.2497321. url: https://doi.org/10.1145/2494091.2497321.

[141] Christof Roduner. “BIT–A Browser for the Internet of Things”. In: Proceedings of the
CIoT Workshop 2010 at the Eighth International Conference onPervasive Computing
(Pervasive 2010). May 2010, pp. 4–12.

[142] Enrico Rukzio, Sergej Wetzstein, and Albrecht Schmidt. “A Framework for Mobile
Interactions with the Physical World”. In: Wireless Personal Multimedia Communi-
cation. WPMC ’05. Aalborg, Denmark, Sept. 2005.

[143] Michele Ruta et al. “From the Physical Web to the Physical Semantic Web: Knowl-
edge Discovery in the Internet of Things”. In: The Tenth International Conference
on Mobile Ubiquitous Computing, Systems, Services and Technologies (UBICOMM
2016). Oct. 2016.

[144] Samsung. Smart Home - Home Monitoring, Smart Things. Sept. 2019. url: https:
//www.samsung.com/us/smart-home/.

[145] Teemu Savolainen and Minjun Xi. “IPv6 over Bluetooth low-energy prototype”. In:
Aalto University Workshop on Wireless Sensor Systems, Aalto, Finland. 2012.

[146] Rahul Anand Sharma et al. “All that GLITTERs: Low-Power Spoof-Resilient Optical
Markers for Augmented Reality”. In: 2020 19th ACM/IEEE International Conference
on Information Processing in Sensor Networks (IPSN). New York, NY, USA: IEEE,
2020, pp. 289–300.

[147] Tara Small and Zygmunt J. Haas. “Resource and Performance Tradeoffs in Delay-
tolerant Wireless Networks”. In: Proceedings of the 2005 ACM SIGCOMM Workshop
on Delay-tolerant Networking. WDTN ’05. Philadelphia, Pennsylvania, USA: ACM,
2005, pp. 260–267. isbn: 1-59593-026-4. doi: 10.1145/1080139.1080144. url: http:
//doi.acm.org/10.1145/1080139.1080144.

[148] SmartBotics. RoboSmart Wireless LED Light Bulb. url: http://www.smartbotics.
com/%5C#!products/c218d.

[149] Michael Spörk et al. “BLEach: Exploiting the Full Potential of IPv6 over BLE in
Constrained Embedded IoT Devices”. In: Proceedings of the 15th ACM Conference
on Embedded Network Sensor Systems. SenSys ’17. Delft, Netherlands: Association for
Computing Machinery, 2017. isbn: 9781450354592. doi: 10.1145/3131672.3131687.
url: https://doi.org/10.1145/3131672.3131687.

[150] Technical Machine. Tessel. Jan. 2016. url: http://tessel.io.

[151] The Power Consumption Database. The Power Consumption Database. Jan. 2022.
url: http://www.tpcdb.com/list.php?type=11.

https://doi.org/10.1145/2494091.2497321
https://doi.org/10.1145/2494091.2497321
https://doi.org/10.1145/2494091.2497321
https://www.samsung.com/us/smart-home/
https://www.samsung.com/us/smart-home/
https://doi.org/10.1145/1080139.1080144
http://doi.acm.org/10.1145/1080139.1080144
http://doi.acm.org/10.1145/1080139.1080144
http://www.smartbotics.com/%5C#!products/c218d
http://www.smartbotics.com/%5C#!products/c218d
https://doi.org/10.1145/3131672.3131687
https://doi.org/10.1145/3131672.3131687
http://tessel.io
http://www.tpcdb.com/list.php?type=11

BIBLIOGRAPHY 111

[152] Thread Group. Thread. July 2021. url: https://threadgroup.org/.

[153] Tile. Tile. Jan. 2017. url: http://thetileapp.com.

[154] Nguyen Khoi Tran et al. “Searching the Web of Things: State of the Art, Challenges,
and Solutions”. In: ACM Computing Surveys 50.4 (Aug. 2017), 55:1–55:34. issn:
0360-0300. doi: 10.1145/3092695. url: http://doi.acm.org/10.1145/3092695.

[155] UBM Technology Group. “2017 Embedded Markets Study”. In: Embedded Systems
Conference. Embedded Systems Conference. Boston, MA, USA, May 2017.

[156] D. Van Krevelen and R. Poelman. “A Survey of Augmented Reality Technologies,
Applications and Limitations”. In: International Journal of Virtual Reality 9.2 (June
2010), pp. 1–20. issn: 1081-1451. url: http://www.ijvr.org/issues/issue2- 2010/
paper1%5C%20.pdf.

[157] W3C. WebXR Device API - W3C Working Draft. July 2020. url: https://w3.org/
TR/webxr.

[158] Daisuke Wakabayashi. “The Point-and-Shoot Camera Faces Its Existential Moment:
As More Users Opt for Smartphones, Companies Wonder What’s Next”. In: The Wall
Street Journal 262.21 (July 2013).

[159] Tianyi Wang et al. “CAPturAR: An Augmented Reality Tool for Authoring Human-
Involved Context-Aware Applications”. In: Proceedings of the 33rd Annual ACM
Symposium on User Interface Software and Technology. New York, NY, USA: As-
sociation for Computing Machinery, 2020, pp. 328–341. isbn: 9781450375146. url:
https://doi.org/10.1145/3379337.3415815.

[160] Roy Want, Bill N. Schilit, and Scott Jenson. “Enabling the Internet of Things”. In:
Computer 48.1 (Jan. 2015), pp. 28–35. issn: 0018-9162. doi: 10.1109/MC.2015.12.

[161] Web Bluetooth W3C Community Group. Web Bluetooth Draft Community Report.
Aug. 2019. url: https://webbluetoothcg.github.io/web-bluetooth/.

[162] Alexander Wieland. “IPv6 over Bluetooth Low Energy on Android OS”. MA thesis.
Institute of Technical Informatics, Graz University of Technology, Aug. 2020. url:
https://diglib.tugraz.at/download.php?id=60a4ea6a34af4&location=browse.

[163] World Wide Web Consortium. World Wide Web Consortium (W3C). Sept. 2019.
url: https://www.w3.org/.

[164] Lina Yao et al. “Unveiling Correlations via Mining Human-Thing Interactions in
the Web of Things”. In: ACM Transactions on Intelligent Systems and Technology
8.5 (June 2017), 62:1–62:25. issn: 2157-6904. doi: 10 . 1145 / 3035967. url: http :
//doi.acm.org/10.1145/3035967.

[165] Thomas Zachariah. Cordova WebXR Plugin. Oct. 2019. url: https://github.com/
tzachari/cordova-plugin-webxr.

https://threadgroup.org/
http://thetileapp.com
https://doi.org/10.1145/3092695
http://doi.acm.org/10.1145/3092695
http://www.ijvr.org/issues/issue2-2010/paper1%5C%20.pdf
http://www.ijvr.org/issues/issue2-2010/paper1%5C%20.pdf
https://w3.org/TR/webxr
https://w3.org/TR/webxr
https://doi.org/10.1145/3379337.3415815
https://doi.org/10.1109/MC.2015.12
https://webbluetoothcg.github.io/web-bluetooth/
https://diglib.tugraz.at/download.php?id=60a4ea6a34af4&location=browse
https://www.w3.org/
https://doi.org/10.1145/3035967
http://doi.acm.org/10.1145/3035967
http://doi.acm.org/10.1145/3035967
https://github.com/tzachari/cordova-plugin-webxr
https://github.com/tzachari/cordova-plugin-webxr

BIBLIOGRAPHY 112

[166] Thomas Zachariah, Joshua Adkins, and Prabal Dutta. “Browsing the Web of Con-
nectable Things”. In: Proceedings of the 2020 International Conference on Embed-
ded Wireless Systems and Networks. EWSN ’20. Lyon, France: Junction Publishing,
2020, pp. 49–60. isbn: 9780994988645. doi: 10.5555/3400306.3400313. url: https:
//dl.acm.org/doi/10.5555/3400306.3400313.

[167] Thomas Zachariah, Meghan Clark, and Prabal Dutta. “Bluetooth Low Energy in
the Wild Dataset”. In: Proceedings of the First Workshop on Data Acquisition To
Analysis. DATA ’18. Shenzhen, China: Association for Computing Machinery, 2018,
pp. 27–28. isbn: 9781450360494. doi: 10.1145/3277868.3277882. url: https://doi.
org/10.1145/3277868.3277882.

[168] Thomas Zachariah and Prabal Dutta. “Browsing the Web of Things in Mobile Aug-
mented Reality”. In: Proceedings of the 20th International Workshop on Mobile Com-
puting Systems and Applications. HotMobile ’19. Santa Cruz, CA, USA: Association
for Computing Machinery, 2019, pp. 129–134. isbn: 9781450362733. doi: 10.1145/
3301293.3302359. url: https://doi.org/10.1145/3301293.3302359.

[169] Thomas Zachariah, Neal Jackson, and Prabal Dutta. “The Internet of Things Still
Has a Gateway Problem”. In: Proceedings of the 23rd Annual International Workshop
on Mobile Computing Systems and Applications. HotMobile ’22. Tempe, Arizona:
Association for Computing Machinery, 2022, pp. 109–115. isbn: 9781450392181. doi:
10.1145/3508396.3512881. url: https://doi.org/10.1145/3508396.3512881.

[170] Thomas Zachariah et al. “ReliaBLE: Towards Reliable Communication via Bluetooth
Low Energy Advertisement Networks”. In: Proceedings of the 2022 International Con-
ference on Embedded Wireless Systems and Networks. EWSN ’22. Linz, Austria: As-
sociation for Computing Machinery, 2023, pp. 96–107.

[171] Thomas Zachariah et al. “The Internet of Things Has a Gateway Problem”. In: Pro-
ceedings of the 16th International Workshop on Mobile Computing Systems and Ap-
plications. HotMobile ’15. Santa Fe, New Mexico, USA: Association for Computing
Machinery, 2015, pp. 27–32. isbn: 9781450333917. doi: 10.1145/2699343.2699344.
url: https://doi.org/10.1145/2699343.2699344.

[172] Lide Zhang et al. “Accurate Online Power Estimation and Automatic Battery Behav-
ior Based Power Model Generation for Smartphones”. In: Proceedings of the Eighth
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and Sys-
tem Synthesis. CODES/ISSS ’10. Scottsdale, Arizona, USA: ACM, 2010, pp. 105–114.
isbn: 978-1-60558-905-3. doi: 10.1145/1878961.1878982. url: http://doi.acm.org/
10.1145/1878961.1878982.

[173] Yang Zhang, Gierad Laput, and Chris Harrison. “Vibrosight: Long-Range Vibrometry
for Smart Environment Sensing”. In: Proceedings of the 31st Annual ACM Symposium
on User Interface Software and Technology. UIST ’18. Berlin, Germany: Association
for Computing Machinery, 2018, pp. 225–236. isbn: 9781450359481. doi: 10.1145/
3242587.3242608. url: https://doi.org/10.1145/3242587.3242608.

https://doi.org/10.5555/3400306.3400313
https://dl.acm.org/doi/10.5555/3400306.3400313
https://dl.acm.org/doi/10.5555/3400306.3400313
https://doi.org/10.1145/3277868.3277882
https://doi.org/10.1145/3277868.3277882
https://doi.org/10.1145/3277868.3277882
https://doi.org/10.1145/3301293.3302359
https://doi.org/10.1145/3301293.3302359
https://doi.org/10.1145/3301293.3302359
https://doi.org/10.1145/3508396.3512881
https://doi.org/10.1145/3508396.3512881
https://doi.org/10.1145/2699343.2699344
https://doi.org/10.1145/2699343.2699344
https://doi.org/10.1145/1878961.1878982
http://doi.acm.org/10.1145/1878961.1878982
http://doi.acm.org/10.1145/1878961.1878982
https://doi.org/10.1145/3242587.3242608
https://doi.org/10.1145/3242587.3242608
https://doi.org/10.1145/3242587.3242608

BIBLIOGRAPHY 113

[174] Yuhong Zhong et al. “XRP: In-Kernel Storage Functions with eBPF”. In: 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 22). Carlsbad,
CA: USENIX Association, July 2022, pp. 375–393. isbn: 978-1-939133-28-1. url:
https://www.usenix.org/conference/osdi22/presentation/zhong.

[175] Zigbee Alliance. Zigbee Alliance. May 2019. url: http://www.zigbee.org/.

https://www.usenix.org/conference/osdi22/presentation/zhong
http://www.zigbee.org/

	Contents
	List of Figures
	List of Tables
	Acknowledgments
	 The Gateway Problem
	Introduction
	The Gateway Problem
	Thesis Statement
	Contributions

	Architectural Overview
	Connectivity
	Interaction
	Network Technologies

	 Connectivity
	Static Gateways
	Background & Related Work
	Network Overview
	BLE Profile Proxy
	End-to-End IPv6 Routing

	ESP32 Characteristics
	Bluetooth Broadcast Packet Reception
	Power Draw
	Bluetooth Connected Data Transport
	Radio Coexistence

	Static Gateway Analysis
	Forwarding
	Simple Forwarding
	Simple Optimized
	Priority Switching
	Reboot Method

	Multiple Forwarders
	Uncoordinated Gateways
	Coordinated Gateways

	Connecting
	Multi-SoC Gateway
	Dual-ESP Gateway
	ESPxNRF Gateway

	Discussion
	Design
	Security
	Industry

	Summary

	Mobile Gateways
	Background & Related Work
	Delay Tolerant Networking.
	Data Muling.
	Existing Services for IoT Devices.
	BLE Proximity Services
	Interfacing Using Web Technologies

	Applications
	Ambient Data Collection
	Cross Platform Connectivity
	Masking Smartphone Failures

	Gateway Overview & Design
	Network Scheme
	Application-Specific Apps
	Service Parameters
	Gateway Administration
	Operation

	Mobile Gateway Implementation
	Gateway App
	Peripherals
	Web Server

	Mobile Gateway Analysis
	Gateway Functionality and Performance
	Gateway Power Usage
	Gateway Data Usage
	Summon Data Usage
	Summon Latency

	Discussion
	Reducing Advertisement Overhead
	Extending to Multiple Platforms
	Security Considerations

	Summary

	 Interaction
	Browsing the Web of Things
	Background & Related Work
	IoT Ecosystems and Initiatives
	Discovering Content in Physical Space
	Bluetooth from the Browser
	App-ifying the Web

	Browsing Architecture & Design
	Discovery
	Web Apps
	Device as a Web Resource (Origin Policy)
	Persistence
	Aggregation
	Orchestration

	Browsing Implementation
	Browser App on Android and iOS
	Destination Resolution
	Caching
	Peripheral Devices
	Web Apps

	Browsing Analysis
	Paradigms of Real Applications
	Device Discovery
	Web App Size
	User Action
	Energy Usage

	Discussion
	Bluetooth and Denial of Service
	Feasibility of Background Service
	Adaptation of Origin Policy
	Extending the Architecture

	Summary

	Browsing Things in Mixed Reality
	Background & Related Work
	Interaction Standards for IoT Devices
	Unified Control on Mobile Platforms
	Device Discovery
	Early Inspirations for AR-Like Modalities
	Point-and-Shoot Photography
	AR on Mobile Platforms
	Mobile AR Systems in Practice
	Target Identifiers
	Localization
	Smart Space Interaction

	AR Browsing & Discovery
	 Platform
	 Targets
	 Target Proxies
	 Interfaces
	 Scope

	AR Browsing Scenarios
	 Smart Home Devices
	 Device Setup
	 Ephemeral Devices

	AR Point-and-Shoot Interaction
	Point-and-Shoot Platform
	Applications
	Mapping

	AR Point-and-Shoot Applications
	Paint the Lights
	Drag-and-Drop Share
	Smart Space Snap
	Quick-View Sensor Readings

	Alternative Platform Paradigms
	Discussion
	Location Determination & Accuracy
	Communication Topology
	Usability & User Experience
	Developer Experience
	Browsing Model
	Data & Privacy
	Power Usage

	Summary

	 Reflections & References
	Conclusion
	Bibliography

