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Abstract

Women have historically been underrepresented in software engineering, due in
part to an unwelcoming climate pervaded by the widely-held gender bias that men
outperform women at programming. Pair programming is both widely used in
industry and has been shown to increase student interest in computer science,
particularly among women; however if the gender biases are also present in pair
programming, its potential for attracting women to the field could be thwarted.
We aim to explore the effects of gender bias in pair programming, specifically, in a
distributed remote setting in which students cannot directly observe the gender of
their peers. Using deception we study whether the perception of the partner,
impacts the behavior during programming, the style of communication or the
perceived productivity and technical competency of the partner depending on the
perceived gender of their partner. To our knowledge, this is the first study
specifically focusing on the impact of gender stereotypes and bias within pairs in
pair programming.
We observed statistically significant effects with moderate to large sizes in four of
the 45 dependent variables within the experimental group, comparing how subjects
acted when their partners were represented as a man or a woman. When subjects
perceived their partners as women, they deleted more characters in the source code
window and they displayed lower frequency of informal utterances, reflections and
yes/no questions while communicating, compared to when they perceived their
partners as men. When partners perceived their subjects as men, they delete fewer
source code characters and communicate using more informal utterances,
reflections and yes/no questions. These results must be considered carefully
because of the small number of subjects; more replications are needed in order to
confirm or refute the results in the same and other computer science student
populations.
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1 Overview and Motivation

Pair programming is a process in which two individuals share a single computer to
work on a single program. The pair can traditionally switch between roles as the
driver and the navigator in certain intervals while collaborating on the same
analysis, design, implementation, and test. While it has been used in the industry
since 1970, with rise to popularity of the agile development and extreme
programming [2], pair programming is increasingly prevalent in computer science
education [29].
As a result there is a large literature [24] created over the last two decades
studying pair programming in higher education, particularly in introductory
programming courses. While studying pair programming, there are various metrics
and factors that authors used to categorize different cooperation aspects and
learning outcomes in different studies. These can be split into 2 main categories:

1. Metrics measuring the effectiveness: 4 main measures of effective pair
programming outcomes are technical productivity (total time spent,
skill/knowledge transfer, code accuracy/performance, amount of the task
completed, number of solutions found) , program design (quality score, code
coverage, expert opinion, number of passing tests, LOC, number of code
defects), academic performance (class/exam/lab/quiz/assignment scores,
retention rate, course completion rate), and satisfaction (enjoyment, social
interaction, positive attitude towards cooperation, opting in next time)

2. Factors impacting effectiveness: Compatibility factors such as personality
types (MBTI etc), documented or perceived skill levels, communication skills,
confidence in one’s code, self esteem in one’s ability, gender, ethnicity,
learning style, work ethic, time management ability, feel-good factor, type of
role taken (driver, navigator) and type of task at hand (debugging,
developing, refactoring)

Learning new concepts and solving programming questions are difficult for many
introductory computer science students. Drop-out, failure and withdrawal rates in
introductory courses of 33% or greater are not uncommon [4]. Throughout the
literature, educational benefits of pair programming include increased success rates
in introductory courses, success in later courses without difficulty switching to solo
programming [35, 37, 27] increased retention in a computing related major
[7, 34, 35], higher quality software (less complex and more cohesive solutions with
fewer compiling errors and fewer bugs) [25, 34, 39, 5, 3], higher student motivation
and confidence (in their solutions reliability and in finding bugs faster in the code)
[34, 25, 16, 6, 45, 36, 48] and improvement in perceived learning outcomes
including enjoyment [9, 48, 45, 34, 43, 23, 22, 37]). Therefore pair programming
may be an effective way to address difficulties in introductory CS courses generally.
Furthermore, female students in programming courses are frequently less confident
than men, even when their actual level of competence is the same [32]. This leads
them to conclude that they do not “belong” in computing, and they leave at higher
rates than men. Because fewer women than men attempt computing-related
majors in the first place, this higher drop rate results in a greater gender gap in
computing degrees. Luckily, though, the studies also suggest that pair
programming can help increase retention rates and positively influence class
performance, confidence and student motivation especially for women [40, 46].
This suggests that pair programming may have a positive impact to reduce the
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gender gap in computing, if we can maximize the benefits and remove any
potential hindrances for women in pair programming practices. The pair’s ability
to engage and collaborate with each other without being influenced by bias is key
to unlocking the benefits for all participants.
In this study we aim to explore the effects of gender bias [26, 33] in pair
programming, analyze the impact of perceived gender (separated from actual
gender) on both the productivity of and interactions between participants.
Specifically, in a remote setting in which students cannot directly observe the
gender of their peers. We study whether the perceived productivity, perceived
technical competency of the partner, and collaboration behaviors differ depending
on the perceived gender of their remote partner, (i.e scoring men and women
differently on similar tasks, communicating using different patterns or changing
their collaboration behaviors between a man and woman partner) even though
their partners remain the same across pair programming sessions.

2 Research Questions and Study Design

Inspired by Whiting et al[47] experiment, we have undergraduate Computer
Science students solve programming questions in a distributed pair programming
setting. They only communicate through text-based chat and a shared editor.
Although participants believe they are paired with two different partners, in reality
they will be paired with the same partner twice. In one of these sessions, one
participant perceives their partner as the opposite gender. Perceived gender is
communicated through gendered pseudonyms and avatars only to one partner
(treatment group) while the other partner sees no gender identifications. The
students are unknowingly paired with the same partner twice to solve coding
questions in a fixed time. All experiments are conducted under an approved IRB
protocol and participants are informed of the true purpose of the experiment after
completion.
The experiment consists of three programming sessions as shown in Figure 1: two
pair programming sessions separated by one solo programming session. Although
participants believe they are paired with different students each paired session, the
same two students are paired together twice. In either session 1 or session 3
(randomly-selected), one participant will perceive their partner as the opposite
gender. In order to remove other factors/confounds that may affect the pair
programming experience, our study uses deception in a within-subject analysis to
gain further insight into the impact of gender based bias. We limit all
communications to a text chat interface with an infrastructure to have gendered
names, avatars and pronouns displayed. To further ensure successful deception, we
instruct participants from revealing identifiable information, and we hold an
individual session between pair programming sessions to prevent participants from
suspecting that their partner hasn’t changed. This methodology will help us
determine the dimensions of gender bias, and specific behaviors that arise when
the perception of gender changes. In a remote pair programming setting where
partners can’t directly observe the gender of their collaborator, the goal of this
study is to identify the effects of gender bias by observing the control group when
their partner’s perceived gender changes. We use several methods to collect data
from multiple sources and apply triangulation [17] like human’s intrinsically do
[14]: (1) self-reported questionnaires to measure subject’s beliefs and perceptions,
(2) logs from the Twincode app during collaborative code writing to measure
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Figure 1: Diagram of the study consisting of three programming sessions.

behavioral changes, and (3) contents of the chat labeled with communicative labels
as shown in Figure 5.

2.1 Research Questions

In this study we aim to answer the following questions with respect to the
subjects’ perceptions, behaviors and communications:

1. Does gender bias affect perceived productivity compared to solo
programming? Do perceived differences between in-pair and solo productivity
depend on the perceived gender of the partner?

2. Does gender bias affect the partner’s perceived technical competency? Do
perceived difference between the technical competency of one’s own and
partner’s depend on the perceived gender of the partner?
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3. Does gender bias affect the partner’s perceived positive and negative aspects?
Do perceived positive and negative assesments depend on the perceived
gender of the partner?

4. Does gender bias affect how partner’s skills are compared? Do perceived skills
of the partner depend on their perceived gender?

5. Does gender bias affect the frequency of code additions, deletions, successful
validations and chat utterance behaviors?

6. Does gender bias affect (relative) frequency of formal and informal chat
utterances? Does formality of the communication depend on the perceived
partner’s gender?

7. Does gender bias affect the frequency of the different types of chat
utterances? Do the frequencies of the different types of messages depend on
the perceived partner’s gender?

While we recognize that students may not identify as either men or women, our
initial exploration focuses primarily on interactions between students who identify
as men or women. The potential biases in interactions involving gender-fluid,
gender-nonconforming and non-binary students is a complex topic deserving its
own subsequent study.

2.2 Twincode and Tag-a-Chat Platforms

In collaboration with University of Seville we developed an online
pair-programming platform called Twincode which allows students to participate
in distributed pair programming sessions and work collaboratively through a
shared code editor and limit communications to a text-based chat window.
Twincode manages the subjects’ random (and balanced) allocation into treatment
and control groups, the random allocation of pairs to match one control and one
treatment group subject, the random ordering of programming exercises for each
pair, the random swapping of the gendered avatars for the treatment group
between pair programming exercises, and the collection of interaction metrics as
logs as well as all messages in the chat window during collaboration.
Figure 2 shows the platform during a paired session from the perspectives of
control and treatment group subjects. Prior to the study Twincode presents a 5
minute practice exercise aimed at introducing the platform features and code
editor step by step using the “Start Guide” button. During this practice exercise,
the solution is given under the problem description so students can copy the
correct solution and inspect test cases failing to pass while following the guide as
shown in Figure 8. Partners can concurrently edit code and send messages, but to
foster communication, only one partner can run the autograder tests at the same
time. We instruct participants to iterate between navigator and observer roles and
communicate test results to their partner using the chat window. Also note that
the gendered avatar (as shown in Figure 4)and gender pronouns are only visible to
one student per pair, whichever student has been assigned to the treatment group.
Tag-a-Chat is the companion tool for twincode where the raw messages collected
during the paired exercises can individually get labeled using the set of utterance
tags as shown in Figure 3. It allows multiple labelers to work together and
automatically computes agreement metrics such as Fleiss’s kappa (in our case
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Figure 2: Twincode from the perspectives of control group (left) and treatment group (right).

White messages is one’s own, blue messages are of one’s partner during the paired exercise. The

chat window is disabled during the solo programming session.

Figure 3: Tag-a-chat platform labeling messages into utterance categories.
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Figure 4: Gendered avatars used in the chat windows of the subjects in the treatment group

generated at http://getavataaars.com/. The treatment subjects were also shown “Your partner

(he/him) is connected” or “Your partner (she/her) is connected.” above the chat window.

labeling was done by 3 organizers) to achieve inter-coder reliability assessment
[38, 42].
To the best of our knowledge this is first study to measure bias within pairs. A run
of the study using Javascript and in-person distributed pair programming setting
was done in University of Seville. The study run in UC Berkeley differs in some
aspects from that study: we ran the study in a remote setting during the
COVID-19 lockdown over Zoom, rather than in a physical classroom. We recruited
students towards the end of the semester using Python which required some
tweaking of the platform and the questions from the Seville version.
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3 Related Work

Considering the positive impact pair programming seems to have over learning
outcomes, it is no surprise that it has been the subject of various studies over the
decades, including its differential benefit for women.
Taking into account the high drop-out rates of computer science, frustration can
be a key aspect when it comes to predicting retention rates. When frustration
levels of students were investigated using a 5-point scale, the findings showed that
solo females are more frustrated than solo males. When students were paired,
female students who worked in pairs were less frustrated than working alone, but
also, to emphasize the added benefit of pair programming for women, there was no
difference in frustration between paired females and paired males [6]. These
findings indicate that pair programming can benefit women more and be a great
equalizer for frustration levels across male and female students.
In addition to lowering frustration levels, women’s impressions of the written
reports (as a means of increasing confidence, technical understanding, and
reflection) were higher than men’s for pair programming [45]. Female students
indeed had more positive impressions of pair programming than men in multiple
studies [45, 23, 46].
Paired women were more confident than solo women, and paired men were more
confident than solo men. Moreover, pair programming had a greater impact on the
confidence of women than that of men: Unpaired men indicated a confidence level
11.6 points higher than unpaired women, but for paired students the difference in
confidence levels between women and men was only 3.5 points [46].
Women in pair programming were more likely than those who worked alone to
take the final exam: 88.1% vs. 79.5%. There was also greater likelihood for women
to have actually declared such a major 1 year after taking an introductory course if
they were paired: for paired women, 55.5% were computing majors 1 year
later,compared with only 22.2% of the women who had worked alone [46].
These findings suggest that pair programming may help reduce the amount of
frustration experienced by female programmers and help increase female retention
rates in computer science.
Interestingly, having more women in pair programming seems to benefit everyone.
In a study using weekly attendance, and confidence metrics, it was found that
students who were randomly assigned a woman partner attended class more often,
and reported more confidence in the correctness of the finished product [28].
However, many factors may affect the outcomes of remote pair programming
sessions [15].
One potential factor is implicit gender bias [26, 28, 33], which we will be focusing
on in this report, such as assuming a female partner is less technically competent
than a male partner [33]. This bias is a widely observed phenomenon even in
highly-structured settings such as distributed pair programming [28, 15]. The
presence of implicit gender bias in pair programming settings is worth investigating
because social science research indicates that one’s behavior of an individual is
affected by the behavior of their peers [19]. Therefore implicit gender-bias may
have effects on one’s behavior based on how they are being perceived by peers,
potentially influencing pair programming experience negatively for some women.
Identifying and working towards removing such implicit gender bias can
potentially attract women to the field and mitigate the gender gap in the field by
tuning the pair programming process to maximize benefits for both partners.
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Another challenge of “tuning” the pair programming process is pair compatibility.
Previous research exploring what makes a pairing efficient and the session
productive looked into factors such as skill levels [43], autonomy with choosing
one’s partner [27] and different personality combinations [13, 7, 8] and gender
[11, 10, 31, 26]. It seems that students are most compatible with
perceived-to-be-similar skilled partners [30]. Following these results, we recruited
similar-skilled students from introductory programming courses in CS61A and
CS88 who have similar experience levels. The recruitment process is further
detailed in “Recruiting and Participants” section.
Though various studies investigated various gender pairings the findings are hardly
consistent as to whether mixed-gender or same-gender pairings are more
compatible [12, 10, 26, 31, 30], possibly because gender correlates with other
dimensions that may affect the pairs’ collaboration. Nevertheless, these studies
were useful in highlighting some of the differences between men and women
experiences in pair programming. For example, men were less aware and had
milder beliefs of the gender disparities in computer science. Women were
significantly more aware of the gender gap and felt significant efforts should be
made to reduce the gender gap [50, 49]. Amongst productivity, quality of source
code, compatibility and communication metrics, compatibility and communication
levels significantly vary between same gender pairs (man-man and woman-woman)
[12]. Across 3 gender compositions, productivity measurements were similar with a
greater variability of productivity for mixed gender pairs [21]. Unlike previous
findings which found no difference in productivity, one study also reported that
being assigned a woman partner was associated with completing a smaller
percentage of the assignment [28]. We combine qualitative self-reported survey
results and quantitative Twincode metrics while evaluating productivity in our
study.
Furthermore women reported higher levels of stress, lower levels of perceived
confidence in their skills, and less perceived choice compared to the men as
confirmed by their dialogue features [50]. Women seemed to be more relaxed if
their partner used a positive tone of language and sent longer messages on average
while communicating. To focus on these communication differences, one of the
data sources we analyze in this study will be chat messages using the tags in
Figure 5 below.
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Figure 5: The methodology used to label chat messages as defined by [Rodriguez et al (2017)]

consists of two parts: (i) first each message is categorized as either “formal” or “informal” then (ii)

labeled with one of 13 tag categories indicating the content of the message such as: statement,

uncertainty/opinion, acknowledgement, yes/no question, wh- question, meta comment, explicit

instruction, polite instruction, positive or non-positive feedback, off-task comment, answers to

yes/no and wh- questions.
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4 Experiments

4.1 Pilot Studies

In order to get early feedback on the Twincode platform and test the full run of
the study including participant instructions, questionnaires and programming
questions, we ran pilot studies in December 2021 with 4 pairs [20]. Following these
studies various changes were made on the platform, participant instructions as well
as recruiting and execution of programming sessions. The final study with more
participants was run in May 2022. This section reflects on the initial study
execution, the feedback received and the improvements made leading up to the
final study.
To monitor the interactions closely, the initial approach was to ask participants to
share their screens over zoom call and record the sessions using the screen sharing
feature. This meant that only one pair could go through the study at a time and it
required 2 organizers to meet each participant individually on zoom to onboard
them onto the platform. The survey links in between each programming session
were sent over the zoom by the organizers. Similarly the initial and the final
consent forms were shared with the participants as separate links when
participants stated they were done.
As supported by literature, scheduling and attending the programming sessions
were the biggest obstacle in running pilot studies. No contingency plan existed for
last minute no shows: on three occasions the organizers had to act as the second
programmer to handle such cases. Unfortunately, due to the automatic
randomization of the platform we had no way of controlling whether we get
assigned to the treatment or control group, thus rendering the pairs in which we
were assigned to the treatment group unusable.
As reported by the students retroactively, some reasons for not attending the
session were “worried about programming level” and “lack of confidence to solve
interview style questions correctly” as well as “busy/changed [their] mind about
the study”. There was one subject who left in the middle of the study without
signing the consent form saying they disliked having their sessions recorded and it
made them behave less authentically. Another participant went idle in the last 10
minutes (during the second paired exercises) because, the study went over the next
hour mark due to their partner joining late. As a result none of the pilot pairs’
data were usable, but it helped us update the execution flow and presentation of
the study.
To handle no-shows, we decided to host larger sessions with about 20 students
rather than recording individual pair sessions. We increased the frequency of
reminder emails coming up to the scheduled session, sent login codes to the
platform and and participant instructions prior to the study to give a sense of
responsibility to the participants and also improved the reliability of the Twincode
platform to collect more metrics and handle more participants rather than
individual relying on the recordings for evaluation. We also offered $15 Amazon
gift cards to all participants who successfully complete the study as an incentive for
participants to actually show up and complete the study which were sent after all
participants participated in the study. Furthermore, in recruitment announcements
and flyers we added an emphasis of “pair interaction and collaborative work” over
“correctly solving the questions.” An example of such “friendlier” announcements is
shown in Figure 7. These updates combined with a more aggressive recruiting
campaign increased participation, attendance and follow-through significantly.
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Figure 6: An announcement introducing the study written on public whiteboards in front of Soda

Hall labs where introductory programming courses meet for lab sections.

Figure 7: An example for the “friendlier” disclaimers for the study announcement.
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With the moving away of one-organizer-per-participant model for hosting
programming sessions, it was important to have a large enough group of
participants attending the zoom call so odds of participants having any sense of
whom their partner could be would be minimized. In order to manage scheduling
larger groups of people, instead of asking participants their free time we switched
to holding multiple big programming sessions on different days/times and asked
which one(s) they can participate in. Then participants were manually scheduled
based on their self-reported experience levels and self-reported gender identities to
keep a balanced session. This had a huge impact on easy scheduling and we never
cancelled another programming session or have an organizer fill in. Though in two
cases we had an odd number of participants and we asked them to reschedule to a
different session. We sent a zoom-etiquette instructions in reminder emails which
requested participants to be on time, keep their videos and microphones off and
ready their login codes in addition to restricting zoom messaging feature to
prevent private messaging.
The pilot studies also allowed us to address a lot of feedback about the platform,
to test running tests with python code correctly, add more feedback for validation
tests of the autograder and update the layout for a better user experience. The
feedback about the platform included “can’t view code editor, chat window and
problem description at the same time”, “scrolling makes it difficult to write code
and communicate with partner effectively (can’t see the chat window while coding
if partner has comments)” which led the UI to be updated to its final format with
3 side-by-side panels containing the problem description and example input and
outputs, the shared code editor and the chat window as shown in 8

Figure 8: The twincode platform with 3 panels: problem description (left), shared code editor

(middle), and chat window (right).

Finally the general feedback on running a full session helped us flash out an
automated official session flow using Twincode. We addressed participants’
requests for being presented with instructions beforehand to keep the introductions
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consistently short in the zoom calls, added a 5 minute walk-through practice
problem into the platform before the study to help students onboard Twincode
platform features as can be seen in Figure 8. We also integrated the surveys and
consent forms into the Twincode platform along with timers to indicate how much
time students in the programming session and to fill up each questionnaire rather
than sending links individually over zoom to the participants. After these updates
none of the official study sessions were went over an hour, and no student left at
the end of the session without finishing up the final consent forms.
Overall, the pilot studies allowed us to get early feedback on (i) the scheduling and
planning process leading up to the study (ii) the comprehensibility, internal
consistency and presentation of the instructions and questionnaires, (ii) the
usability and performance of the Twincode platform, and (iii) the applicability of
the chat-utterance labeling [40] as shown in Figure 5.
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4.2 Recruiting and Participants

The participants were undergraduate students enrolled in CS88 (Computational
Structures in Data Science) or CS61A (The Structure and Interpretation of
Computer Programs). The recruitment process included piazza/ed posts, in-person
lab announcements, email blasts through student organizations such as CS
scholars, whiteboard announcements and physical flyers (as seen in Figure 9) that
were located around Soda Hall’s indoor and outdoor student spaces such as
classrooms, elevators, bathrooms and study lounges. During the flyer-posting
process we also spread the information via word of mouth to many students and
TAs.

Figure 9: The physical flyers containing the recruitment call with a QR code linked to the partic-

ipation form.
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Figure 10: Some of the locations where flyers are posted in Soda Hall: lab rooms and Wozniak

Lounge.

A total of 155 students filled out the participation form during recruitment for in
the study. The distribution of where each student heard about the study is shown
in Table 1.

Sources of Recruitment Number of Students

Flyers in Soda Hall 71

CS61A lab & lecture announcements 55

CS88 lab & lecture announcements 28

Piazza (classroom question board) announcements 22

Student organization email announcements 11

Table 1: Where did students hear about the study?

In the participation interest form, students also self-reported their year, gender,
experience level with python, and confirmed that they are at least 18 years old.
Optionally, students also listed out any other programming languages they know
and the number of upper division courses they have taken (including the ones they
are currently taking). Data for all interested students can be seen in Table 11.
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Figure 11: The table shows the distribution of students for demographic information collected in

the participation form. The ones marked with * signals that these were optional questions in the

survey and not all students filled in a response, therefore no percentages are given. The experience

level in python required a multiple choice answer and the rest took free text input.

Interested students submitted an availability form to voluntarily take part in the
study as an interesting experience in remote pair programming, a phenomenon
they were familiar with through CS88 and CS61A as the study was primarily
advertised as a “pair programming study.”
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Figure 12: The table showing the demographic information collected from the 55 participants who

participated in the study (as opposed to Table 11 which included information on all interested

students. This table also includes invalid participants later dropped from the study for various

reasons.

Looking at all attendees (i.e who showed up and at least started the study) and
comparing it to the pool of all interested participants (11, there are a few
interesting changes in the pool of students. Firstly, in terms of the class levels
between interested vs participating students, while the percentage of freshmen and
senior students approximately remains the same, more sophomore students end up
actually joining the pair programming study than juniors: sophomores consisted of
the 25.81% of interested students, they consist of 30.91% of the students who
attended a study session; whereas juniors were 14.84% of the interested students
yet they ended up only covering 10.91% of the students who attended a session.
This could be a result of increasing coursework or already existing study groups
making it more difficult to attend the study as a junior, yet seniors did not show a
change in their representation and consistently make up around 9% of both
groups.This could be an indication that pair programming practices would be
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more useful if they are introduced in Freshman or Sophomore years as Juniors
might be less likely to opt-in for a new practice.
In terms of gender, of all the interested students 50.32% of them were women and
about 49% of students who attended. There were an equal number of men and
women in the attendance pool which shows a similar distribution as the interested
students pool.
Finally, comparing the self-reported experience levels in Python across the
interested vs attended students there is another interesting shift towards higher
experience levels. Amongst interested students 6.45% identified with “very low”
experience, which dropped significantly to 1.82% among students who attended a
session. As for students identifying with “low” experience levels, they consist of
24.52% of all interested students and 23.64% of students who ended up attending a
session, slightly decreasing. Similarly, “medium” skill level was 43.78% of interested
students and declined to 41.82% of students who attended a session. On the other
hand, “high” skill level identifications percentages displayed increased
representation in students attended-the-study compared to students
interested-in-study: 21.94% of interested students selected “high” experience with
python, which increased to a 29.09% amongst the students who attended the
study. Overall it looks like students with “very low” experience levels are least
likely to follow through with attending a pair programming session even when they
initially show interest. This could be linked to the low experienced students
fearing being judged or not getting anything out of the experience due to their lack
of confidence. Pair programming practices should be tailored to encourage such
students who self-report low experience levels so they can benefit from positive
learning outcomes of pair programming as well.

Figure 13: The table showing the demographic information collected from the 55 participants in

12 analyzed for each gender.

Figure 13 contains a table that separately looks at the men and women amongst
the students who have attended a pair programming session. In terms of
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distribution of class years, more women in higher levels attended the pair
programming study such as 5 seniors compared to 0 men in senior standing. This
is also reflected in the higher number of upper division courses taken by women
(i.e 7 women reported 6 or more upper division courses compared to 3 men) that
women could have a higher academic standing on average while still willing to
attend a pair programming session. For men, on the other hand, higher the
standing the fewer students attended pair programming. Interestingly despite
women’s higher class standing, more women self reported “Low” and “Very Low”
confidence in python experience compared to men. While both gender groups had
a median experience level of “medium” women experience distribution skewed
towards lower confidence. This is consistent with past literature where women
tend to underestimate their experience and skills, regardless of their real
experience or skill levels.
Among the 55 total attendees, 52 participants, or 26 pairs fully participated in the
study. Due to the platform failure in the very first session hosted (during the
practice exercise), all participants had to be rescheduled to a later session to
return and restart the study, but unfortunately 3 students did not return.
Amongst the 52 participants, 3 pairs were eventually dropped due to (i) a pair
disclosing their identities to one another violating the instructions, (ii) one idle
partner not actively participating in any paired exercises and letting one partner
working alone, and (iii) one partner who accidentally exited out of Twincode
during the second paired session, thus preventing metrics to be collected in the
second half of the study. The final number of accepted pairs was 23, with a total of
46 valid subjects. For the valid subjects, 26 identified as a woman (56.52%) and 20
(43.48%) identified as a man. The percentage of women participants is
significantly above the percentage of EECS undergraduate enrollment (23%) and
L&S Computer Science enrollment (26%) in UC Berkeley according to the Fall
2022 official statistics. One student who did not identify as a man or a woman
amongst the valid participants was one of the disqualified pairs, the other valid
participants all self-identified as man or woman. The demographic statistics of the
participants in the study is shown below. Note also that despite the 6 dropped
subjects, the percentage of women in the control (12 women, 52.17%) and
treatment (14 women, 60.87%) groups were close to each other. Compared to
students who showed interest in the study, more students who identified as women
ended up actually showed up to participate in the study.
All in all, the recruitment process lasted about a four weeks in order to recruit
enough participants from CS61A and CS88. During the recruitment phase the
emphasis was on the pair programming aspect of the study and no mention of
gender bias or involvement of deception was made. We remarked that this study
would not affect their grades or their class relationships in any way and that
participants should be at least 18 years old to participate. Once recruitment phase
was completed, sessions were organized based on responses from the participants in
the scheduling availability participants filled out during recruiting. Out of 155
students showing interest in the study, only 79 responded to the scheduling form,
all of which were invited to a study session.
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Figure 14: The information given to potential participants during scheduling. Potential partici-

pants then selected from a list of session dates and times given, which one(s) they could attend.

Based on the availability, 5 large sessions were organized out of the potential dates
and all 79 students received invitation emails with a link to the zoom meetings,
calendar invites as well as their individual login codes to the Twincode platform.
We asked the students to confirm they can attend to their assigned session dates
after receiving the invitation email, and sent continuous follow up reminders a week
before, 3-days before and 1-day before their assigned date. Almost all students who
confirmed via email or google event invite they could attend ended up attending.
The reminder emails also included instructions shown in Figure 21 at the end of
this section, and requested (i) participants to be on time at the beginning of the
hour, (ii) ready their Twincode login codes, (iii) keep their videos and microphones
off and only communicate with the hosts, and (iv) overall avoid revealing any
identifiable information about themselves, their courses, location, and so on.

4.3 Study Workflow

Once participants gathered together on the zoom call we went over the
instructions, answered any questions and made sure all participants fill out the
consent form before starting the session. Unfortunately during the first big study
session with over 40 participants joined in, the Twincode platform malfunctioned
and we had to reschedule those participants into later sessions, some of which have
not returned. Overall we hosted the remaining sessions over the course of 2 weeks
with a total of 52 students attending and completing the study. When all
registered students log into the Twincode platform, they were automatically
allocated into control and treatment groups. Then treatment and control groups
were randomly paired up to create partners by the platform and get presented
programming exercises (task #1 below) to work on collaboratively. To aid with
onboarding participants to the platform, we included a 5 minute exercise and a
tutorial before all the actual tasks. The order of the practice exercise was not
randomized unlike the remaining exercises and it was always the first exercise
displayed. The internal process of Twincode is shown in Figure 15.
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Figure 15: Random allocation into treatment and control groups made by Twincode. Twincode

also balances the proportion of women in each group as much as possible. Since our study had a

pretty balanced gender distribution, we can ensure that men and women were balanced in both

groups.

As presented with the participant instructions the rundown of the study was as
follows:

Figure 16: Diagram of the steps of the study for control and treatment groups.

1. welcoming and presenting instructions, initial consent form checking and
starting the Twincode session

2. 5 minutes: tutorial and practice exercise

3. 15 minutes: pair programming 1 (Task #1)

4. 5 minutes: individual survey on paired programming 1 (Quest #1)

5. 10 minutes: solo programming (Task #2)

6. 15 minutes: paired programming 2 (Task #3)

7. 8 minutes: individual survey on pair programming 2 AND a comparative
survey on both paired sessions (Quest #2 and #3)

8. signing the final consent form and exit

During each paired programming session, students were instructed to solve as
many questions as possible. Once a question was successfully solved, another
question would be presented to the pair until the timer runs down. These

25



questions were randomly selected from a pool of exercises previously vetted and
they were of similar complexity. During the pair programming steps subjects in
the control group had no information about the gender of their partners, but
subjects in the treatment group could see gender pronouns and a gendered avatar
in the chat window as previously described (Figure 4). After each pair
programming step (Task #1 and #3 in 16), participants were given time to
individually fill out a survey reflecting on the pair programming experience they
just had including questions about perceived productivity, partner’s technical
competency compared to their own as well as positive and negative aspects of their
partner (Quest. #1,#2,#3 in Figure 16).
To try to prevent the subject from recognizing they are working with the same
partner in both pair programming steps, we include a 10 minute solo session in
between (Task #2 in Figure 16). No survey is presented after the solo session and
subjects directly move to the second pair programming step (Task #3 in Figure
16). Similarly, if the subject passes all the tests and solves a question before the
countdown, another question would be presented from a separate pool of
previously vetted solo programming questions. The main purpose of the solo
session is therefore to try to get students to forget about their first partners and
prevent them from recognizing them in the next paired step.
After the solo programming step, the second pair programming step proceeds
under the same conditions as the first pair programming step except for the
swapped gender identifications presented to the treatment group. The control
group continues to have no gender information about their partners. The same
pair, though unknown to the partners themselves, proceeds to collaborate on new
questions until their time runs out. Twincode handles presenting the pair with new
questions from the pool of paired exercises that the pair didn’t see in the previous
pair programming step.
Once the second pair programming step is completed, the participants complete
another questionnaire (Quest #2 in Figure 16) which has the same questions as
Quest #1 in Figure 16 but now asking about their second partner and second pair
programming step they completed, followed by questions comparing the first and
second partners (Quest #3 in Figure 16). Even though Figure 16 marks them as
separate surveys in the diagram, the students were presented a single form with 2
pages, first referring only to the pair programming step they’ve just completed,
and second comparing the two partners they had throughout the study. The last
part also asks about whether the control group remembers the gendered avatars of
their partners or not.
Finally, after completing the final survey, all participants are informed about the
deception and the real purpose of the study, and they are given the option to
withdraw their data while filling out a final consent form. None of the participants
chose to withdraw.
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Figure 17: Instructions shared with the participants, page 1
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Figure 18: Instructions shared with the participants, page 2.
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Figure 19: Instructions shared with the participants, page 3.
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Figure 20: Instructions shared with the participants, page 4.
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Figure 21: Instructions shared with the participants, page 5.

5 Analysis: Data and Variables

The independent variables of the study are:

1. group: (treatment or control) that subjects are randomly assigned to

2. time: given in pair programming steps to the subjects for collaboratively
solving the questions

3. gender: representing the subject’s self-identified gender

4. ip_gender: induced gender of partner representing the treatment group’s
perception, control group has no ip_gender variable

The controlled variables of the study are:

• participants’ experience levels (technical skills)

• the pool programming exercises participants are given in paired tasks (similar
difficulty and in a randomly assigned order)

The depending variables of the study are grouped into 3 categories based on how
they are collected:

1. questionnaires for self-reported evaluation variables

2. Twincode platform logs for coding behavior variables

3. (labeled) chat messages for communication variables
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5.1 Perception: Self-Reported Surveys

The variables from the surveys measure subjects’ perceptions about the pair
programming experience and impressions of their partners. The questions are
composed of Likert scales and they are computed as the average of their
corresponding items. A scale of 0-10 is used in order to allow 5 to indicate a
midpoint.

pp interval variable composed of four 0–10 numerical response items measuring
the subject’s own perceived productivity during each pair programming task
compared to solo programming (relates to Research Question #1). Low
values correspond to better solo programming productivity (i.e., “solo
programming would have been more productive than pair programming”),
and high values correspond to better pair programming productivity (i.e.
“pair programming has been more productive than solo programming”).

pptc interval variable composed of four 0–10 numerical response items measuring
the subject’s partner’s perceived technical competency compared to their own
after each in-pair task (relates to Research Question #2). Low values
correspond to higher subject’s productivity, (i.e., “I have been more
productive than my partner”), and higher values correspond to higher
partner’s productivity (i.e. “My partner has been more productive than me”).
In these responses 0 corresponds to “me”; 10 corresponds to “my partner” and
5 corresponds to “my partner and I being equal.” The 4 response items are:
“During the programming exercises you just did, who do you think ...”

1. ... had more knowledge and technical skills, you or your assigned partner?
2. ... has been more cooperative, you or your assigned partner?
3. ... has had a faster pace at solving the exercises, you or your assigned

partner?
4. ... has led more to the solutions, you or the partner assigned to you?

ppa ratio variable counting the number of partner’s positive aspects identified by
the subject after each in-pair task (relates to Research Question #3). This
variable is automatically computed from an open question item in which
subjects are asked to write the most positive and negative aspects of their
partners in the previously performed pair programming step. They are
instructed to prefix positive aspects with a plus sign (+) and negative ones
with a minus sign (-). This variable is the result of automatically counting the
number of plus signs in the text of the open question “Describe your partner”.

pna ratio variable counting the number of partner’s negative aspects identified by
the subject after each in-pair task (relates to Research Question #3). In a
similar way to the ppa variable, this variable is the result of automatically
counting the number of minus signs in the text of the open question “Describe
your partner”.

ppgender nominal variable measuring the perceived partner’s gender during the
in-pair tasks. To measure this variable, subjects are asked in questionnaire
#3 whether they remember if their partners showed some avatars in chat
windows or not. If the answer is no or “I don’t remember” (idr), this variable
is assigned the none or idr levels. If the answer is yes, then the subjects are
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asked for the avatars of the first and second partner, having man, woman, or
idr as options.

cps interval variable composed of five 0–10 numerical response items measuring
whether the subject perceived better skills in their first or second partner in
the in-pair tasks, (i.e., compared partners’ skills (relates to Research Question
#4). Low values correspond to the first partner (i.e., “My first partner was a
better partner than my second partner”), and high values correspond to the
second partner (i.e. “My second partner was a better partner than my first
partner”). In these questions asking about “first or second partner?” 0
corresponds to “first partner”; 10 corresponds to “second partner” and 5
corresponds to “first partner and second partner being equal.” The 5 response
items are: “Comparing your partners in steps 1 and 3, who do you think ...”

1. ... provided more clear and constructive feedback, your first or second
partner?

2. ... was easier to communicate with, your first or second partner?
3. ... was more knowledgeable about the subject material, your first or

second partner?
4. .. would be a better project partner, your first or second partner?
5. ... would be a better Teaching Assistant, your first or second partner?

5.2 Behavior: Twincode Platform Logs

These variables are automatically collected by the Twincode platform and they
relate to the behavior during pair programming exercises (relates to Research
Question #5). In this section every variable represents a frequency, (i.e., a count),
and its associated relative frequency is computed with respect to the the sum of
the frequencies of the two subjects in a pair: For example, suppose that subjects i
and j are the two members of a pair, and vi and vj are the corresponding values of
the v variable. In that case, the relative frequency for each subject would be vi

vi+vj

and vj
vi+vj

, respectively.

sca / sca_rf Ratio scale variables representing the count and relative frequency
of characters added by a subject to the source code window during an in-pair
task (source code additions).

scd / scd_rf Ratio scale variables representing the count and relative frequency
of characters deleted by a subject from the source code window during an
in-pair task. (source code deletions).

okv / okv_rf Ratio scale variables representing the count and relative frequency
of successful (ok) validations of the source code performed by a subject
during an in-pair task.

kov / kov_rf Ratio scale variables representing the count and relative frequency
of unsuccessful (ko) validations of the source code performed by a subject
during an in-pair task.

dm / dm_rf Ratio scale variables representing the count and relative frequency
of d ialog messages (chat utterances) sent by a subject during an in-pair task.
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5.3 Communication: Chat Logs

The chat utterances registered in the Twincode platform during the in-pair tasks
were manually tagged according to two orthogonal dimensions described in Figure
5. First classifying each message as “formal” or “informal”, and then using the 13
tags proposed by [?] in a related work about collaboration in a remote pair
programming environment similar to Twincode. For categorizing a message as
“formal” we considered the way in which a university student would communicate
textually to a professor; otherwise the message was tagged as “informal”. For the
tagging process, we followed a process inspired by the work of [?], in which two
researchers each tagged 60% of the data, covering all dialogue messages. The
overlapping subset of 20%, which was used for the initial training, established the
inter-coder reliability using Cohen’s kappa, which was  = 0.796 for the
formal/informal tags and  = 0.754 for the tags in [?], both indicating substantial
agreement and sufficient reliability for further coding according to [?].
The response variables related to the manual tagging of the chat utterances
(relates to Research Question #6 and #7) correspond to the tags in Figure 5 and
are listed below. Every variable represents a frequency, i.e., a count, and its
associated relative frequency is computed with respect to the number of chat
utterances generated by the subject during an in-pair task, which is defined by the
dm variable specified in previous section as “dialogue messages.”

i / i_rf Ratio scale variables representing the absolute and relative frequency of
informal messages generated by a subject during an in-pair task.

f / f_rf Ratio scale variables representing the absolute and relative frequency of
f ormal messages generated by a subject during an in-pair task.

s / s_rf Ratio scale variables representing the absolute and relative frequency of
statement of information or explanation messages generated by a subject
during an in-pair task.

u / u_rf Ratio scale variables representing the absolute and relative frequency of
opinion or indication of uncertainty messages generated by a subject during
an in-pair task.

d / d_rf Ratio scale variables representing the absolute and relative frequency of
explicit or d irect instruction messages generated by a subject during an
in-pair task.

su / su_rf Ratio scale variables representing the absolute and relative frequency
of polite or indirect instruction or suggestion messages generated by a subject
during an in-pair task.

ack / ack_rf Ratio scale variables representing the absolute and relative
frequency of acknowledgment messages generated by a subject during an
in-pair task.

m / m_rf Ratio scale variables representing the absolute and relative frequency
of meta–comment or reflection messages generated by a subject during an
in-pair task.

qyn / qyn_rf Ratio scale variables representing the absolute and relative
frequency of yes/no question messages generated by a subject during an
in-pair task.
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qwh / qwh_rf Ratio scale variables representing the absolute and relative
frequency of wh- question (who, what, where, when, why, and how) messages
generated by a subject during an in-pair task.

ayn / ayn_rf Ratio scale variables representing the absolute and relative
frequency of answer to yes/no question messages generated by a subject
during an in-pair task.

awh / awh_rf Ratio scale variables representing the absolute and relative
frequency of answer to wh- question messages generated by a subject during
an in-pair task.

fp / fp_rf Ratio scale variables representing the absolute and relative frequency
of positive task f eedback messages generated by a subject during an in-pair
task.

fnon / fnon_rf Ratio scale variables representing the absolute and relative
frequency of non–positive task f eedback messages generated by a subject
during an in-pair task.

o / o_rf Ratio scale variables representing the absolute and relative frequency of
off–task messages generated by a subject during an in-pair task.

6 Results

The data analysis was performed only for valid subjects considered defined as
participants who: (i) have filled in all questionnaires and consent forms; (ii) have
their metrics correctly collected by the Twincode platform; (iii) have been paired
with another valid subject; and (iv) have not disclosed their identity (including
personal identity and gender information) or their partner’s during the in-pair
exercises; This resulted in 23 pairs, i.e. 46 valid subjects, with 3 pairs, i.e 6
subjects getting dropped because they violated the above criteria.

6.1 Correlation of Induced and Perceived Gender

We analyzed the correlation of the induced gender (ip_gender) and perceived
gender (ppgender) in both groups is analyzed to know whether the treatment is
effectively administered to the subjects.

Figure 22: Contingency table for induced and perceived genders.

As shown in Table 22 the percentage of subjects who were induced to think their
partner as a man and remember perceiving a man avatar is around 43.5% whereas

35



in the case of woman avatars the percentage is 39.13%. We decided to exclude the
treatment subjects for whom the induced gender did not match the perceived
gender, because we considered that the treatment had not been sufficiently
effective in their cases. We kept those subject in the control group who did not
perceive any avatar or didn’t remember it, and discarded the rest. As a result, we
kept 22 subjects in the control group (10 men, 12 women) but only 9 (3 men, 6
women) in the treatment group.

6.2 Between-groups Analysis

For the analysis between the treatment and control groups, distance between the
measurements collected from two paired steps as an absolute value is used. As per
our hypothesis claiming a gender bias effect, this distance should be smaller for the
control group since these subjects have no information about their partner’s
genders.
For every response variable except for cps one-tailed mean difference test is
performed between the groups and a t-test or a Mann-Whitney U test depending
on the results of the normality assumption tests. For the cps variable, we expected
the mean to be around the middle point (i.e 5) for the control group between
partners since they would unknowingly be comparing the skills of the same person.
For the treatment group, we expected the mean to be skewed towards 0 (i.e
perceiving man partner as more skilful) or 10 (i.e perceiving woman partner as
more skilful).

36



Figure 23: Boxplots of the 45 independent variables for between-groups analysis. No significant

differences are observed between treatment and control groups for any of the variables.

Contrary to our research hypothesis, no significant differences were observed for
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(↵ = 0.05) between the treatment and control groups for any of the independent
variables. Figure 23 shows the boxplots visualizing the means for each group
indicate that the differences are very small.

6.3 Within-groups Analysis

We analyzed whether there were differences between independent variables when
the same subjects perceived their partners as men or women according to our
research hypothesis. We performed a two-sided paired mean difference test for
every response variable except for cps using the perceived gender (ppgender) as a
within-subjects variable, and applying a t-test or a Wilcoxon test depending on the
results of the normality assumption tests.
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Figure 24: Boxplots of the 45 independent variables for between-groups analysis. Significant dif-

ferences are observed in 4 variables: source code deletions, relative frequency of informal messages,

relative frequency of informal messages, relative frequency of meta-comments or reflections and

relative frequency of yes/no questions.
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For the within-groups analysis, we also wanted to study the interaction between
perceived gender of the partner and the subject’s gender. We performed the
corresponding mixed-model two-way ANOVAs with the perceived gender
(ppgender) as a within-subjects variable and the subject’s gender (gender) as a
between-subjects variable. We find statistically significant differences at ↵=0.05 in
the following four response variables when using the perceived partner’s gender
(ppgender) as a within-subjects variable. As depicted in Figure 24 the
corresponding box blots show differences between means when partners are
perceived as men or women in the treatment group. Out of all independent
variables, four statistically significant differences are measured where these
variables passed the Shapiro-Wilk normality test and were analyzed using
two-sided paired t-test. Their effect sizes were computed using Cohen’s d.

• source code deletions (scd): the test detected that subjects deleted more
source characters when they perceived their partners as a woman, with a
moderate effect size (d = �0.775) and (p = 0.0485)

• relative frequency of informal messages (i_rf): the test detected that
subjects increased the relative frequency of informal messages when they
perceived their partners as a man, with a large effect size (d = 1.050) and
(p = 0.0138).

• relative frequency of meta-comments or reflections(m_rf): the test
detected that subjects increased the relative frequency of meta-comments or
reflections when they perceived their partners as a man, with a large effect
size (d = 0.829) and (p = 0.0377).

• relative frequency of yes/no questions (qyn_rf): the test detected that
subjects increased the relative frequency of yes/no questions when they
perceived their partners as a man, with a large effect size (d = 0.880) and
(p = 0.0297) .

6.4 Discussion, Limitations, Threats to Validity

In this study we only observed statistically significant effects within the treatment
group (when comparing how subjects acted when they perceived their partner as a
man and when they perceived their partner as a woman) in four of the 45
dependent variables. Among these variables, one was related to the changes in
behavior (source code deletions) and the other three were related with
communication (informal vs formal messages, meta-comments/reflections, yes/no
questions in chat utterances). We found that when perceiving one’s partner as a
woman, subjects tended to delete more source code and used a lower relative
frequency of informal messages, reflections, and yes/no questions.
We also observed a low effectiveness of the treatment factor. Operationalizing
implicit gender bias into a treatment is not a straightforward task, and given the
results in Figure 22, we may not have designed our treatment as adequately as we
intended, thus threatening construct validity.
While designing the treatment we wanted to avoid focusing too much of the
subject’s attention on gender to avoid suspicion or awareness of being observed
about that fact. We thought that explicitly letting students take note of the
gender of their partner as one of the observed factors could lead them to behave
unnaturally during the collaboration or accidentally expose gender information
during communications, thus invalidating the study.

40



Compared to the Seville study in which visually less-distinctive (smaller, black and
white, silhouette-based) avatars and no pronouns were used with an effectiveness
close to 60%, ours seems to have a lower treatment effectiveness of 40% despite
having used both gendered avatars and pronouns. This decrease in treatment
compared to the Seville study could have been affected by a few factors.
Firstly, in order to remove suspicion from gender and encourage participation
without students worrying about their skill levels, we placed a heavy emphasis on
“collaboration” and “pair interaction” while introducing the study and giving
instructions. This may have inadvertently caused students to not mind at all to
the induced gender information, assuming it has nothing to do with the task at
hand and only focus on working together, regardless of whom they may be paired
with. One of the participants responding “who cares” in the participant interest
form could be a signal in this direction.
Additionally, our study was hosted in a fully remote setting which increases the
likelihood of potential distractions compared to a tightly controlled laboratory
setting. Our experience with a few idle participants who joined the Zoom call,
followed the instructions, but then did not contribute any code or communication
(going completely idle once the study begins) signal that potential distractions
could also play a part.
Each pair programming session is only 15 minutes long, so students might not have
had enough time to commit the induced gender of their partner to memory long
enough to recall it correctly at the very end of the study. Another possible
external factor is the so-called “Zoom burnout” [41] describing the fatigue and
exhaustion caused by prolonged use of video conferencing during the pandemic,
which may have influenced the attention span, attention direction or performance
of participants. Since Zoom had been the default classroom setting for almost two
years at the time of our study, the students could also be selective in the
information they recalled about their partners. Having she/her pronouns in one’s
Zoom name and using various Zoom profile pictures have become standard
practices. Therefore students might not have paid attention to these bits of
information to recall them once the interaction was over. Perhaps asking the
gender of their partner as an open text question in each survey could have
remedied this issue.
As a result of the low contingency rate, the remaining accepted participants
represent a small number of selected subjects, especially in the treatment group
(n=9) so these results must be considered carefully. We can also note that unlike
majority of the studies studying pair programming, number of women in both
control and treatment groups represent the majority (with 6 out of the 9 people in
treatment group and 12 out of the 22 subjects in the control group identifying as
women) so these findings can shed light on interesting insights.
Overall the small sample size of the study and the low effectiveness of the
treatment group propose a clear threat to conclusion validity that could only be
mitigated by taking the outcomes as provisional and running more replications
with bigger samples.
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7 Future Work

This study explored the existence and extent of implicit gender bias in pair
programming interactions, finding evidence that implicit gender bias could affect
one’s coding and communication behaviors of pairs depending on the perceived
gender of an one’s partner. Building on our findings, future work could run the
study in 2 phases, going beyond identifying the gender bias within-subjects, but
attempting to counter it with various interventions.
The first phase helps us determine the dimensions of gender bias, and specific
behaviors that arise when the perception of gender changes as we attempted in
this study with a small sample size; and the second phase would allow us to
conduct a similar follow-up study with interventions that are designed to reduce
biased behaviors, so we can produce counter-gender-biased behaviors, increase the
productivity and efficiency of pair programming for all participants. Based on the
findings of this study, potential interventions could be (i) tweaking the platform to
enforce driver and navigator roles and only allowing the driver to edit code, thus
preventing excessive source code deletions, (ii) using a visualization of “skill” to
partners and to increment women’s self-reported skill levels as a way to counteract
self-underestimation and (ii) implementing another onboarding step for smoother
pair communications (just like the practice problem we decided to include after the
pilot studies, which taught us that subjects weren’t readily comfortable getting to
work on an newly introduced platform, future work could include a step for
kick-starting better pair interactions such as an icebreaker to get the pair talking
informally before the session so subjects can comfortably ask “easy” yes/no
questions without fear of judgement and make meta comments like “hmm”)
Research shows that identifying and reducing such bias and the gender gap is not
only better for companies [1], but also that there are indeed tangible things that
can be done to achieve it [44, 19]. Tuning pair-programming to detect and reduce
implicit gender bias during that task could help and we hope future studies will
consider a variety of interventions to measure their effectiveness in countering
implicit gender bias.
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