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Abstract

Control and Simulation of Power Electronic Dominated Power Systems

by

Ciaran Martin Roberts

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Duncan Callaway, Co-chair

Professor Seth Sanders, Co-chair

This dissertation is focused on how the integration of inverter-based resources into our power
grids are forcing a re-examination of the fundamental principles upon which we operate and
analyze these complex systems. Increased electrification and decarbonization of our energy
sources are critical if we are to mitigate the impacts of climate change.

Chapter 1 presents a high-level overview of why inverter-based resources are such a transfor-
mative technology for large-scale power systems. We discuss how our current power system
operational practices are designed around the inherent physical properties of synchronous
machines and how we may need to re-visit some of these practices moving forward.

Chapter 2 considers a model of a battery energy storage system and tries to understand,
for the voltage source inverter control scheme considered, the importance of modeling the
DC side dynamics on the overall behavior of the inverter. We show that, for the controllers
considered in this dissertation, we can model the DC side as a fixed voltage source without
any loss in accuracy.

Chapter 3 examines how the cyber-physical attack surface of our power systems is changing
with the inclusion of inverter-based resources. These dynamical devices perform active control
across timescales with their multi-layered digital control loops, whose interaction through
the network can result in unexpected system level dynamics. We consider the case of an
adversary seeking to control a power electronic load to induce an instability in the system.
We demonstrate how the outer-control loop and the phase-locked loop on inverter-based
resources might be most vulnerable to attack and what, if any, signatures might appear at
the system level during such an attack.

Chapter 4 considers how me might defend the system against the de-stabilizing attack con-
sidered in Chapter 3. We propose an adaptive controller that monitors the integrator state
of the phase-locked loop for any abnormal sustained oscillatory behavior. In the event that
this is present in the signal, we introduce a small amount of stochastic behavior into the
control logic of the inverter to invalidate the model of the system that the adversary used in
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controller design. We show the performance of the proposed controller through simulation
on a small microgrid system.

Chapter 5 explores how we might proactively increase the damping ratio of underdamped
system modes by using subspace identification to build a reduced-order model that captures
the interaction between a local inverter-based resource and the external grid. We show that,
by perturbing the reactive power channel of the inverter, we can build a reduced-order model
that we can use for controller design to improve the dynamical response of the inverter. We
compare the response of inverter-based resources with and without the proposed damping
controller in simulation and show improved dynamical response following the tripping of a
transmission line.

Chapter 6 moves from control to simulation of large-scale power electronic dominated power
systems and explores how the growing field of scientific machine learning might offer op-
portunities to accelerate time-domain simulations of these systems. Due to the high control
bandwidth of inverter-based resources, and their power rating relative to synchronous ma-
chines, the number of differential equations needed to analyze these systems is significantly
increasing. We show how echo-state networks, trained at the same timestep as was used by
an implicit adaptive ODE solver to solve the system, can rapidly, and accurately, predict the
system response for parameters outside the training set. We discuss how this approach could
be adapted by system operators today as well as some interesting future research directions.

Finally, this dissertation concludes with a brief summary and directions for future research.
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Chapter 1

Introduction

Electrical power systems have grown to form the backbone of modern-day society. From
charging electric vehicles, to running heat pumps, electricity has permeated every aspect
of our daily lives. The reliability of these networks has been one of the greatest engineer-
ing achievements of the 20th century. Maintaining this reliability, however, in the face
of increasing electrification and a changing generation fleet, is a new engineering chal-
lenge that we must rapidly face in order to mitigate the impacts of climate change. This
dissertation is motivated by these challenges, and is focused on the increased control and
modeling complexity of synchronously connected power systems as we continue to increase
the deployment inverter-based resources (IBRs) onto our networks. The dynamics of IBRs
are so disparate from fossil fuel generators that they are forcing a re-examination of the
fundamental principles upon which we operate our power systems.

Before we dive into the details, it is useful to take a step back and, at a high level,
understand why IBRs are such a transformative technology for power system operation. In
the late 1800’s, after a period knows as the war of the currents, AC power grids became the
accepted means of transmitting electricity. The capability to easily step-up, and step-down,
AC voltages through the laws of electromagnetism is what allowed us to transmit electricity
over very long distances. The subsequent interconnected AC power networks built during
the 20th century transformed people’s lives and revolutionized the economy. 1 During this
period, researchers and system operators would coalesce around a set of power system
control and operational practices based on the physical characteristics of synchronous
machines.

Synchronous machines are electrical machines that convert rotational mechanical en-
ergy to electrical power at a particular voltage and frequency. One of the key attributes of
a synchronous machine is an electromechanical coupling between the rotational speed of
its mechanical shaft and the frequency of the electricity it generates. This electromechan-
ical coupling was the cornerstone upon which power system control and operation was
designed. By measuring the speed of a synchronous mechanical machine’s shaft, we can

1A thorough exploration of the evolution of the power systems in North America can be found in [22].
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sense if there is an imbalance between supply and demand of electricity across the power
system, and take control accordingly. Additionally, generators also have an energy storage
element, in the form of rotational inertia, that ensures instantaneous balance between sup-
ply and demand of electricity during any control action delay. The key point to note here
is that frequency became the most important signal within a power system. Furthermore,
as a control signal for synchronous machines, it is a very well defined and stable signal,
i.e., the rotational speed of a synchronous machine’s mechanical shaft. Due to the physical
characteristics of a synchronous machine, its rotational speed cannot experience any dis-
continuities. This is advantageous in that we can reliably measure its rotational speed. On
the flip-side, however, it does mean than any control action to change this rotational speed
will be slow. 2

These aforementioned system properties, i.e., large inherent energy buffer, stable and
well-defined control signals, and slow control characteristics, allowed a number of im-
portant approximations and assumptions for analyzing these interconnected dynamical
systems, primarily based on singular perturbation theory [56]. Specifically, as shown in
Fig. 1.2, in power systems dominated by synchronous machines, there is a distinct timescale
separation between electromagnetic phenomena and electromechanical phenomena. This
timescale separation, and the fact that the electromagnetic dynamics were inherently stable,
allowed us neglect these fast timescale dynamics and instead approximate them by a set of
algebraic constraints. This, in turn, reduced the number of differential equations describing
the dynamical response of the system. This simplification, along with the rated power of
synchronous machines, in the range of 100’s of MVA, admitted a much more computa-
tionally tractable system model for controller design and time-domain simulations. The
importance of the latter point, i.e., the ability to quickly perform time-domain simulations,
cannot be overstated. System operators perform countless of these simulations every day
to ensure that the system is capable of withstanding, and recovering from contingencies,
e.g., loss of transmission lines, loss of generation and faults. It is critical that operators
continue to be able to carry out these simulations in order to retain the level of reliability
we have come to expect from our power systems.

IBRs are a distinctly different class of device to synchronous machines and do not inher-
ently have some of the properties outlined earlier. The most obvious of these differences is
that frequency does not have the same physical meaning for IBRs. An IBR can, in theory,
control the frequency of its locally modulated voltage completely independent of what is
happening on the network.3 This is in contrast to synchronous machines, whose mechanical
frequency is physically coupled to its local electrical frequency. Additionally, for the pur-
pose of control, an IBR does not easily have local access to a continuous stable frequency

2Another key attribute of synchronous machines is their ability to supply abnormally high levels of current
during a fault on the power system. Broadly speaking, the topic of protection and fault current will not be
explored within this dissertation, but it is worth noting as one of the other key features of a synchronous
machine that we have designed our power systems around.

3There are reasons why it may not want to do this. But for the purpose of understanding the differences,
it is possible.
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Figure 1.1: Historical time scale of power system dynamics [42]

measurement. Instead, it must estimate the frequency based on locally measured electrical
quantities. This can be very difficult during system disturbances, e.g. phase jumps due to
fault conditions [1]. Furthermore, and more importantly for the purpose of this work, IBRs
have a much higher control bandwidth as shown in Fig. 1.2. Consequently, the timescale
separation that historically allowed us to significantly simplify large-scale power systems
for analysis and simulation, is no longer inherently satisfied [68]. We may be able to design
IBR controllers to satisfy the requirements of singular perturbation theory, and continue
to use historical assumptions, but this may be difficult and network dependent, and is still
an open research question. One possible approach is to define performance requirements
through standards, e.g., [48], but it very difficult to sufficiently cover all possible system
conditions while not being too prescriptive such that it prohibits innovation. Therefore, at
least in the near term, we may need to model these previously neglected electromagnetic
dynamics.

Consideration of these electromagnetic dynamics increases the number of equations
required to model the system dynamics. This increase in the number of equations is com-
pounded by the relative size of synchronous machine to IBRs, i.e., for each synchronous
machine that is displaced, we are adding 10’s or 100’s of IBRs. This increase in equations
can result in unreasonable computation times for system analysis with very high penetra-
tions of IBRs [98] and/or unexpected oscillatory behavior at the system level due to models
used for controller design being unable to accurately capture the complex interactions
through the network [21].

This dissertation seeks to circumvent this increased system complexity on two fronts.
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Figure 1.2: Time scale of power system dynamics with IBRs[42]

Firstly, we examine how supplementary control loops, that do not require information about
the system or communication, can improve the dynamical response of IBRs. These types of
controllers can be broadly categorized as model-free approaches, although we do assume
that each IBR has detailed information about its own control scheme. Tuning a set of
control gains on IBRs can be challenging. As system strength changes, both temporally and
spatially, and inverter manufacturers perform firmware upgrades, the system dynamics,
and subsequently the dynamic response of an IBR with fixed control gains, might vary
considerably. The supplementary controllers proposed in this dissertation are meant to
minimize system oscillatory behavior due to adverse controller interactions among devices
and/or the network. Secondly, we examine ways of reducing the number of time-domain
simulations that operators have to carry-out on a daily basis to ensure the reliable operation
of their system. Specifically, we want to extract as much information from the minimum
number of simulations we can to rapidly, and accurately, predict the response of the system
under different conditions.

In summary, this dissertation first focuses on modeling of voltage-source converters
coupled with an electrochemical battery in Chapter 2, and uses these models for control
and simulation in Chapters 3-6. The core contribution in Chapter 2 is to show that, for the
particular IBR control scheme considered, the DC-side can be modeled as an ideal voltage
source. Chapter 3 considers the case where we have a collection of power electronics
devices connected through a microgrid and how a malicious actor might try to destabilize
IBRs on the network. We show how the multiple layered digital control loops that control
IBRs introduce a new attack vector for malicious actors seeking to disrupt the grid. Chapter
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4 continues at the microgrid level and proposes a local adaptive controller that seeks to
de-sensitize the IBR to attack vector proposed in Chapter 3. Specifically, we propose to
stochastically adjust the outer-loop controller bandwidth to nullify any controller resonance
and/or coupling that the adversary could exploit. This proposed defensive controller is
designed to remain inactive during normal operation and only be activated during sustained
abnormal operation.

Chapter 5 takes us up to the transmission grid and seeks to design a power oscilla-
tion damping (POD) controller that is periodically tuned online to improve the dynamic
response of IBRs. The wide range of operating conditions an IBR experiences, as the on-
line generation fleet changes throughout the day, complicates the tuning process. This is
particularly challenging for grid following (Gfl) inverters, whose phase-locked loop (PLL)
is typically tuned assuming a sufficiently strong external grid. Depending on temporal
and spatial factors, this assumption may not be valid at times. The proposed controller
first builds a reduced order model (ROM) of the IBR and its interaction with the grid.
Following this, it designs a POD controller to improve the eigenvalues of this ROM. We
show how the proposed controller improves the response of the IBRs and minimizes un-
desirable system oscillations following a disturbance. Chapter 6 moves away from control
to simulation and explores how recent advancements in the field of scientific machine
learning (SciML) can help us accelerate the process of simulating these large-scale complex
systems. As we replace large synchronous machine with hundreds and thousands of IBRs,
the computational complexity of simulating these systems significantly increases. SciML is
a rapidly growing cross-disciplinary research area that aims to blend the principles of scien-
tific computing with state-of-the-art machine learning techniques to achieve insights and
performance unattainable by either approach individually. Our work in Chapter 6 focuses
on using SciML to predict the response of a large interconnected power system following a
large loss of generation for different penetration of grid forming (GFM) & Gfl IBRs.

Finally, we conclude with some summarizing comments, key findings, and notes on
exciting research questions and directions. As described earlier, power systems are under-
going the largest transition since their inception. Not only is this a critical societal challenge
we must succeed in to decarbonize, it is also an incredibly interesting area of research and
one that is ripe for cross-disciplinary innovation. Power systems are truly one of the most
complex systems we have designed as humans. From millisecond distributed non-linear
control, to privacy preserving spatial and temporal optimization, to policy and behavioral
science, we need innovation and breakthroughs at all levels to succeed in decarbonizing
our world.
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Chapter 2

Modeling of Battery Driven Voltage
Source Converters

This chapter was co-authored with Jose Daniel Lara and Rodrigo Henriquez-Auba, both
PhD students at UC Berkeley at the time, Bala Kameshwar Poolla, then a Postdoc at UC
Berkeley, and Prof. Duncan Callaway, Associate Professor of Energy and Resources at the
University of California, Berkeley. The text was previously published 2020 IEEE interna-
tional conference on communications, control, and computing technologies for smart grids
(SmartGridComm); see [87] for the full citation. The text has been reformatted for inclu-
sion in this dissertation.

Abstract
With the increasing interest in converter-fed islanded microgrids, particularly for resilience,
it is becoming more critical to understand the dynamical behavior of these systems. This
paper takes a holistic view of grid-forming converters and considers control approaches for
both modeling and regulating the DC-link voltage when the DC-source is a battery energy
storage system. We are specifically interested in understanding the performance of these
controllers, subject to large load changes, for decreasing values of the DC-side capacitance.
We consider a fourth, second, and zero-order model of the battery; and establish that the
zero-order model captures the dynamics of interest for the timescales of the examined
disturbances. Additionally, we adapt a grid search for optimizing the controller parameters
of the DC/DC controller and show how the inclusion of AC-side measurements into the
DC/DC controller can improve its dynamic performance by predicting the evolution of the
DC-side dynamics. This improvement in performance allows for a reduction in transient
voltage deviations across the DC-link capacitor and, consequently, potentially reducing the
risk of premature failure.
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2.1 Introduction

As synchronously connected power systems shift towards systems with high penetration of
converter interfaced generation (CIG), it becomes more critical to understand the dynamical
and transient behavior of these systems. These converter-dominated power systems are
already prevalent in the form of microgrids [54], motivated by increased resilience to
natural disasters [16]. Recent work has explored the small-signal stability of the DC/AC
converter and its interaction with the grid. A common approach when analyzing voltage
source converter (VSC) behavior is to model the DC-side of the converter as an ideal
voltage source [25, 68]. On the other hand, when studying the dynamics of the DC-side,
the grid is often simplified as a resistive load [12, 11]. From a small-signal perspective, an
independent analysis of each subsystem may be adequate due to the minimal interaction of
their control loops. However, this approach gives little insight into the dynamical behavior
of these coupled systems during grid-scale transient events, particularly faults or large load
steps and when the operating conditions differ substantially from the steady-state operating
point used in the linearization.

This paper examines the DC-side dynamics of a battery energy storage system (BESS),
subject to AC-side disturbances, under different DC-side control strategies. The objective
of these controllers is to tightly regulate the voltage across a DC-link capacitor. DC-link
capacitors act as energy buffers and supports a constant voltage on the DC-side of a VSC. A
tight regulation of this voltage is critical to the operation of the VSC, as momentary drops
may restrict the VSC’s power production capabilities [11]. Therefore, large electrolytic
capacitors are used in order to have a substantial buffer to minimize the DC voltage devia-
tions during disturbances. These capacitors being typically bulky, expensive and unreliable
are one of the most common modes of failure in power electronic systems [103]- with
system transients and overloading identified as two of the primary causes of failure [110].

One proposed improvement in converter design is to replace these electrolytic capacitors
with small film capacitors that are more robust and reliable [60]. As the DC-link capaci-
tance is reduced, voltage fluctuations during transients increase as there is a momentary
mismatch between the power injected into the grid and the power supplied from the DC
source e.g., a battery. In order to deploy these small film capacitors, the DC-side control
must rapidly correct power mismatch to ensure adequate AC-side operation and minimize
transient over-voltages on the capacitor.

In this work, we examine different control approaches for minimizing the required DC-
link capacitance of a BESS. Specifically, we consider the case of a grid-forming inverter
supporting an islanded microgrid with a BESS as its DC source. Grid-forming inverters
differ from grid-following inverters–the dominant mode of operation today, in that the
former behave as a controllable voltage source behind a coupling reactance [32]. Conse-
quently, they do not directly control their power injection into the grid but rather control
the frequency and amplitude of their output voltage [68]. Their power injections, therefore,
inherently increase or decrease to balance any changes in load. When choosing a DC-link
capacitor for a grid-forming inverter, adequate care must be taken that it is appropriately
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sized to ensure satisfactory behavior under the largest expected load change and/or fault
conditions. This work considers the existing measurements used in the control loop of
grid-forming converters as inputs into the DC/DC controller to predict the evolution of
DC-link capacitance dynamics and, consequently, improve the regulation of the DC bus
voltage.

For modeling our DC source, we consider a Li-ion battery as the BESS. In comparison
to previous work, which modeled the battery as an ideal voltage behind a resistor [12,
11], we employ a model of the battery which captures the dynamics of the electrochemical
processes as we increase/decrease the current drawn from the battery. As we reduce the
DC-link capacitance, and the dynamics on the DC-side become faster, it may become more
important to model the underlying battery dynamics to accurately capture the dynamical
response of the DC source [35].

The contributions of this paper are as follows:

1. we develop a full-order dynamical model for a battery-driven voltage source converter,

2. we examine the impact of battery chemistry dynamics on overall DC-side dynamical
response and establish that a zero-order model captures the dynamics of interest for
the disturbances considered,

3. we improve upon the DC-side controller in [11] by the inclusion of AC-side measured
quantities to predict evolution of DC-side dynamics to compensate for the DC/DC
controller dead-time and DC/DC inductor dynamics,

4. we show that, for particular parameterizations of inner-control loops, the behavior of
the VSC can help reduce the risk of saturation of the VSC modulation index.

2.2 Methodology

In this section we outline a methodology for choosing the control gains of the DC/DC
converter in order to understand and improve the dynamical behavior of the DC-side of the
CIG. To this end, we use a linearized model of our system, presented in Section 2.2, and
identify a set of gains that result in stable operating points. Subsequently, in Section 2.2,
we determine the gains from this set which optimize the dynamical performance of the
DC/DC controller under large disturbances. To account for the discrete nature of the DC/DC
controller we utilize a Pade approximation of the associated dead-time delay. The average
output performance for a step input of a 2nd and 3rd-order approximation is used to model
the dead-time of the DC/DC controller.

Small-signal tuning

We express the non-linear differential equations (2.6)-(2.14) as

ẋ = f(x,u,w), (2.1)
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where x,u,w correspond to the states, inputs, and external disturbances (loads), respec-
tively. For the purpose of analysis, we linearize this system around an equilibrium point
(xeq,ueq,weq) to obtain a resultant linear system

∆ẋ = A∆x + B∆u + G∆w, (2.2)

The task of small-signal tuning involves finding a set of DC-side control gains

KDC = [KvDC
p , K

vDC
i , K

iDC
p , K

iDC
i , Kpred] (2.3)

which satisfy some pre-specified design requirements, e.g.,

ℜ[λi(A(KDC))] ≤ λcrit ∀i, (2.4a)
ζi ≥ ζcrit ∀i, (2.4b)

KDC
min ≤ KDC ≤ KDC

max, (2.4c)

where λ and ζ correspond to the eigenvalues and the damping ratio of the linearized model
respectively, λcrit and ζcrit are design requirements, and KDC

max and KDC
min represent some

pre-specified limits on the control gains. We denote this set of all permissible gains by the
set Γ. The limits on the gains were chosen based on empirical observations of the stable
region for the specific use case, the considered objective, and encompass the gains from
[12]. Larger values for these gains can result in improved speed of response from the
controller. However, if these gains are too high the system becomes internally unstable
and/or results in large oscillatory behavior.

Large-signal tuning

On identifying a set of suitable small-signal gains Γ, an exhaustive search over this set is
performed to optimize the dynamical performance of the full non-linear system when it
is subject to large disturbances, e.g., large load step changes. In particular, we seek to
identify the set of gains that minimize the DC voltage deviation from its set point. This can
be expressed mathematically as minimizing the ℓ2-norm

min
KDC ∈Γ

||v∗
DC

− vDC(t)||22
subject to (2.6) − (2.14),

pl(t0) = pl,

pl(t) = pl + ∆pl,

(2.5)

where pl is the nominal active power load and ∆pl represents a disturbance in the
form of a step-change increase in the load. We first optimize the DC/DC control gains
with Kpred = 0 and then benchmark the improved dynamical performance for cases where
Kpred ̸= 0. Section 2.4 discusses the design requirements and disturbance used in (2.4)
and (2.5) respectively.
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2.3 System Modeling and Control Implementation

Grid Forming VSC Control Scheme

Figure 2.1: Grid-forming VSC control scheme.

The modeling and simulation of the AC-side, including the VSC, is implemented in
a synchronous reference frame (SRF), with the mathematical model defined in per unit.
The (dq)-frame quantities are represented in bold, lower-case complex space vectors of
the form: x = xd + jxq. The proposed control model depicted in Fig. 2.1 is based on a
state-of-the-art VSC control scheme described in [23, 66, 74]. The power calculation unit
computes the active and reactive quantities given by pc + jqc = eg īg where (̄.) denotes
the complex conjugate. This is followed by an outer control loop that consists of active
and reactive power controllers providing the output voltage magnitude vc and frequency
ωc references by adjusting the predefined set points (x⋆) according to a measured power
imbalance:

ωc = ω⋆
c + Rp

c (p⋆
c − p̃c), vc = v⋆

c + Rq
c (q⋆

c − q̃c), (2.6)

where Rp
c , Rq

c denote the active and reactive power droop gains and p̃c, q̃c represent the
low-pass filtered active and reactive power measurements of the form:

˙̃pc = ωz (pc − p̃c), ˙̃qc = ωz (qc − q̃c), (2.7)

where ωz is the filtering frequency. The outer-loop voltage set point may be passed through
a virtual impedance block (rv, lv), resulting in a cross-coupling between the d- and q-
components via a terminal current measurement ig as

v̄ = vc − (rv + jωc lv) ig. (2.8)
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This new voltage vector set point and the frequency set point are then fed to the inner
control loop consisting of cascaded voltage and current controllers operating in a SRF

īs = Kv
p (v̄ − eg) + Kv

i ξ + jωc cf eg + Ki
f ig, (2.9a)

v̄m = Ki
p (īs − is) + Ki

i γ + jωc lf is + Kv
f eg, (2.9b)

where ξ̇ = v̄−eg and γ̇ = īs−is denote the respective integrator states; īs and v̄m represent
the internally computed current and voltage references, eg is the voltage measurement
across the filter capacitance, is is the switching current, Kp, Ki, and Kf are the proportional,
integral, and feed-forward gains respectively, and superscripts v and i denote the voltage
and current SRF controllers. The output voltage reference v̄m combined with the DC-side
voltage vDC generates the pulse-width modulation (PWM) signal m.

The electrical interface to the microgrid includes an RLC filter (rf , lf , cf ) and an equiv-
alent impedance (rg, lg) modeled in SRF and defined by the angular converter frequency

i̇s = ωb

lf
(vm − eg) −

(
rf

lf
ωb + jωb ωc

)
is, (2.10a)

i̇g = ωb

lg
(eg − vl) −

(
rg

lg
ωb + jωb ωc

)
ig, (2.10b)

ėg = ωb

cf

(is − ig) − jωc ωb eg, (2.10c)

with vm representing the modulation voltage and vl denoting the nodal voltage at the load
bus. The system base frequency is represented by ωb and equals the nominal frequency. The
complete state-space representation of a single grid-forming inverter, therefore, comprises
13 states of the form

x̂vsc =
[
edq

g , idq
g , idq

s , ξdq, γdq, θc, p̃c, q̃c

]⊤
. (2.11)

The control input vector uvsc = [p⋆
c , q⋆

c , v⋆
c , ω⋆

c ]⊤ provides operator set points. More
details on the overall converter control structure and employed parametrization can be
found in [74, 66, 68].

DC-side model

The model of the DC-side consists of a BESS, an idealized DC/DC buck/boost converter
with an appropriately sized inductor, and a DC-link capacitor. This interconnected system
is then interfaced to the VSC as shown in Fig. 2.2.

DC/DC Controller

For the DC/DC controller in Fig. 2.2, we investigate the improved dynamical performance
with the inclusion of the measured AC-side quantities into the control logic. A dual-loop PI
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Figure 2.2: DC-side model.

DC/DC controller is shown in Fig. 2.3 and modeled as

η̇ = v⋆
DC

− vDC (2.12a)

iref = K
vDC
p (v⋆

DC
− vDC) + K

vDC
i η, (2.12b)

ζ̇ = iref + iout − iin, (2.12c)

d = K
iDC
p (iref + iout − iin) + K

iDC
i ζ + Kpred ∆iout. (2.12d)

The outer-loop (2.12a)-(2.12b), maintains a constant DC bus voltage while the inner
loop (2.12c)-(2.12d), is for current tracking. The inclusion of a feed-forward term, iout, in
the internal PI control loop is for improving the controller performance by the addition of
information about the disturbance. This disturbance was primarily a set-point change of the
VSC in previous works [12]. For the case of a grid-forming VSC, however, this disturbance
includes unexpected load changes where the additional required power will be inherently
drawn from the DC-link capacitor.

The addition of the term Kpred ∆iout in (2.12d) is motivated by [37], where the authors
sought to minimize the required DC-link capacitance for a converter-interfaced three-phase
load. In [37] the authors note that the inclusion of a feed-forward term alone is inadequate
to instantaneously balance the current flow across the capacitor due to inherent system
response time delays, mainly due to inductor dynamics. To offset these delays, we use a
one-step predictor based on the forward Euler method to predict the evolution of system
dynamics. The feed-forward predicted current, ∆iout value is approximated by (2.13)

∆iout ≈ ∆P

∆vDC

≈ Ts(vd
m i̇d

s + vq
m i̇q

s)
vDC

, (2.13)

where Ts is the switching period of the DC/DC converter, and i̇d
s and i̇q

s are calculated using
(2.10a). We benchmark the improvement in dynamical performance for a non-zero Kpred

against the controller in [11]. The advantage of a one-step predictor over derivative control
in a PID controller is that we can predict the evolution of the DC-side dynamics before they
begin to manifest and minimize noise amplification in estimating the rate of change of the
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current. The duty-cycle d of the DC/DC converter in this work has a maximum value of 0.9
to mimic the behavior of a practical converter [113].

Figure 2.3: Structure of the DC-side controller

Battery Model

As previously outlined, prior work on this topic modeled the electrochemical battery as
an ideal voltage source behind a resistor [12, 11]. In the presence of a large DC-link
capacitance, and consequently a large energy buffer, this is a reasonable modeling assump-
tion. However, as we reduce the DC-link capacitance, the dynamics of the electrochemical
storage may become more important to model. A common method for parameterizing an
equivalent circuit model for batteries is electrochemical impedance spectroscopy [35, 97].
This method measures the voltage response to harmonic current input across a frequency
range of interest (3 kHz to 30 kHz [82]) and an equivalent circuit is adapted to this data.
These experimental data show that at high frequencies (≥ 250 − 400 Hz) the battery ex-
hibits inductive behavior while lower frequencies (≤ 250 − 400 Hz) have a more capacitive
response [101, 35, 82]. A generalized battery is shown in Fig. 2.4 where the high frequency
behavior is modeled by a series of 2 RL parallel branches and the low frequency behavior
is modeled by a series of 2 RC parallel branches.

+_ +
_

+
_

+

_

Figure 2.4: A generalized 4th-order battery model.

Within this work we combine the two-time constant RC battery model from [40] with
the two-time constant RL model from [82] as shown in Fig. 2.2. Both of these batteries’
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chemistries are based on Lithium-ion and offer reasonable initial parameterization of a
dynamic BESS model.

DC-side Electrical Model

In practice, the DC/DC converter is a buck/boost converter capable of both charging and
discharging the battery. Here, we focus on the case when the converter is operating in the
boost mode, i.e., supplying power to the grid. A similar analysis holds for the buck mode
of operation. The per-unit averaged equations governing the electrical behavior on the
DC-side with the converter operating in continuous mode, similar to [102], are then given
by

i̇l1 = ωb

lb1
(rb1(ib − il1)), i̇l2 = ωb

lb2
(rb2(ib − il2)), (2.14a)

v̇cb1 = ωb

cb1

(
ib − vcb1

rb3

)
, v̇cb2 = ωb

cb2

(
ib − vcb2

rb4

)
, (2.14b)

vb = voc − ib rb0 − rb1(ib − il1) − rb2(ib − il2)
− vcb1 − vcb2

(2.14c)

i̇b = ωb

lDC

(vb − (1 − d) vDC), (2.14d)

v̇DC = ωb

cDC

(iin − iout), (2.14e)

vDCiin = vb ib, (2.14f)

where ωb is the AC base frequency, d is the duty-cycle of the DC/DC converter, further
discussed in Section 2.3, and iout is the current flowing into the AC grid and given by

iout = pinv

vDC

= vd
m id

s + vq
m iq

s

vDC

. (2.15)

The full state-space model of the DC-side with a 4th-order dynamic BESS model, denoted
by x̂4th

DC
, is given by

x̂4th

DC
= [il1, il2, vcb1 , vcb2 , ib, vDC , η, ζ]⊤ , (2.16)

with the control input uDC = v⋆
DC

. The 2nd-order model of the DC-side neglects the inductor
dynamics of the battery (i.e., retains only the 2 RC branches in Fig. 2.4), while the 0th-order
model further neglects the dynamics of the capacitor and simply represents the battery as
a voltage source behind a resistor, as in [12].

In the per unit case, the DC-side base power is the same the AC-side. The DC-side base
voltage, however, is two times the AC-side peak line-to-neutral base voltage. This is done
to obtain an AC-side voltage of 1.0 p.u. from the a DC-side voltage of 1.0 p.u. at unity
modulation ratio [111]. The saturation of the PWM modulation index is implemented
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similar to [75] as

vm = min{||v̄m||2, vDC}
||v̄m||2

v̄m, (2.17)

where v̄m is given by (2.9b) and ||v̄m||2 is

||v̄m||2 =
√

v̄d
m

2 + v̄q
m

2
. (2.18)

2.4 Results

The simulations are performed using the Julia programming language. The Modeling-
Toolkit.jl package is used to construct the non-linear system and perform the Jacobian
evaluations. The power rating of the VSC is 200 kVA and the parameters are taken from
[23] while parameters for the DC-side are presented in Appendix 2.6. The controller design
parameters used for both the small-signal and large-signal tuning are shown in Table 2.1.
The small-signal parameter search is carried out by a grid search with step size 0.5. All the
analysis presented here, including a description of all variables, is available on Github1.

Table 2.1: Controller tuning parameters

Specification λcrit ζcrit KDC
max KDC

min ∆pl

Value −3 0.35 10 0 0.5 p.u.

Comparing BESS Models

In Fig. 2.5, we compare the DC-side voltage of the three BESS models, i.e., 4th, 2nd, and
0th-orders for non-optimized controller gains under a load step change of ∆pl = 0.5 p.u. We
observe that all models are in agreement regarding the dynamical response (also true for
different controller gains). Further, we note that the results here only apply to a Lithium-
ion based BESS for the parameters from [40, 82]. For the case of compressed air storage
with associated mechanical dynamics and redox flow batteries, with different underlying
chemistry; a higher order model representation may be necessary.

Impact of one-step predictor

In order to examine the improvement in controller performance by inclusion of the AC-side
measurements, we examine the response of the system to a load step change of ∆pl = 0.5
p.u. for varying values of Kpred. A non-zero value of Kpred introduces a predictive term into

1https://github.com/Energy-MAC/DCSideBatteryModeling
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Figure 2.5: BESS response comparison for non-optimized gains for 0.5 p.u. active power
load step.
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Figure 2.6: Optimized controller performance with one-step predictor for a 0.5 p.u. active
power load step.

the DC/DC controller to achieve better regulation of the DC voltage. Fig. 2.6 shows the
DC voltage for three different values of Kpred. Note that for increasing values of Kpred we
achieve a better DC voltage regulation, albeit with diminishing returns. We achieve up to a
∼ 10% reduction in the maximum DC voltage error after including the AC measurements.
This reduction, achieved using existing measurements readily available in the VSC control
loop, offers a means to reduce the severity of transients across the DC-link capacitor and
reduce overloading in the event of over-voltage, two of the dominant reasons for premature
failure [110].

Fig. 2.7 further explores the performance of the optimized controller for varying DC-
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Figure 2.7: Comparing maximum vDC deviation for varying DC-link capacitor sizing.

link capacitor sizing. We see that the inclusion of AC-side measurements does offer some
improvement, however, due to the saturation behavior of the DC/DC boost converter, this
improvement is upper-bounded. Therefore, while inclusion of the AC-side measurement
improves the dynamical performance and reduces transient behavior across the capacitor,
it only offers a modest reduction in DC-link capacitor sizing for a pre-specified ℓ2 norm
performance requirement.

In order to understand the limiting factor in the response of the BESS to regulate the
DC voltage, we examine the battery current, ib, shown in Fig. 2.8. We can see that the
dead-time of the DC/DC controller only accounts for a small proportion of the delay in the
response. Although a non-zero value of Kpred improves the response of the system, we see
that the majority of the delay is due to the dynamics of the DC/DC inductor, in this case 3
mH. While this is a physical design limitation and there exist approaches to minimize the
required inductance to improve dynamic response, e.g., increasing the switching frequency
[40] or operating in discontinuous conduction mode [12], these design questions are
beyond the scope of this work.

Examining VSC behavior

One additional benefit of including the AC-side measurements, and consequently, better
regulation of the DC voltage, is the opportunity to reduce the DC-link capacitor size without
saturating the PWM converter.

For the simulations considered in this paper with grid-forming inverter control gains
from [23], the saturation of the PWM converter was avoided in all the examined cases.
Fig. 2.9 shows both the DC voltage, VDC, and magnitude of the modulated AC-side voltage,
||vm||, for the case of Kpred = 2. The inner control loops of the grid-forming VSC respond
on a faster timescale and significantly reduce the risk of saturating the modulation index
of the VSC. The outer control loops of the VSC then re-adjust the set points to restore the
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Figure 2.9: DC voltage and AC modulated voltage for Kpred = 2.

voltage to an acceptable operating level. While saturation was not an issue in this set up, it
may be an issue for different parameterizations and/or disturbances.

2.5 Conclusion

This work focused on modeling and control of a BESS DC-source grid forming VSC. On the
modeling side the DC/DC inductor was observed to be the dominant component dictating
the dynamical behavior. A 4th, 2nd, and 0th-order model of a BESS was examined and it was
found that all three models were in agreement for the considered disturbances. For the
DC/DC controller, it was found that the inclusion of readily available AC-side measurements
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into the DC/DC converter control loop could reduce DC voltage deviations by up to ∼ 10%
during large step changes, thereby potentially reducing the risk of premature failure of
the DC-link capacitor. Future work will focus on the behavior of these controllers under
asymmetrical gird faults, additional DC-source technologies as well as further consideration
of how fast inner-control loops of the VSC which may help alleviate the potential for
saturation of the VSC modulation index.

2.6 Appendix

Table 2.2 lists the parameter values used for the DC-side model for simulations [40, 82]

Table 2.2: DC-side parameters

f s
DC/DC cDC lDC rb0 rb1 rb2

3.2 kHz 2 mF 3 mH 1.5 mΩ 95 mΩ 0.4 mΩ

rb3 rb4 lb1 lb2 cb1 cb2

2.2 mΩ 0.55 mΩ 35 nH 15 nH 0.55 F 22.7 kF
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Chapter 3

Malicious Control of an Active Load in a
Mixed-Source Microgrid

This chapter was co-authored with Daniel Arnold, a research scientist at LBNL, Uros
Markovic, then a Postdoc at ETH Zurich, and Prof. Duncan Callaway, Associate Professor
of Energy and Resources at the University of California, Berkeley. The text was previously
published at 2021 IEEE Madrid PowerTech; see [85] for the full citation. The text has been
reformatted for inclusion in this dissertation.

Abstract
Power-electronic connected resources are slowly shifting power system dynamics from
being dominated by the physics of synchronous machines to being determined by human-
designed control loops within power electronic converters. This transition offers new
flexibility in control design which, consequently, also increases the cyber-physical attack
surface. Within this work we consider the use of eigenstructure assignment, i.e. both
eigenvalue and eigenvector design, for the purpose of designing a destabilizing linear state-
feedback controller for an active load. To this end, we show that at high levels of converter
penetration there may exist an electromagnetic mode, in addition to the electromechanical
mode reported in prior literature, that an adversary might seek to destabilize. In addition,
we consider two levels of controllability that an adversary may have for an active load and
show that, dependent on the mode the adversary is seeking to destabilize, the resulting
manifestation of the attack on the grid may be different.

3.1 Introduction

Historically, the dynamics of power systems have been dominated by the inherent physical
characteristics of synchronous machines. The behavior of an islanded microgrid can, how-
ever, be substantially different due to high penetration of converter-based resources, whose
dynamics are almost entirely attributable to human-designed digital control loops. This
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increased prevalence of human-designed control loops increases the cyber-physical attack
surface. In this paper, we examine the vulnerability of an isolated mixed-source microgrid
to a cyber-physical attack through malicious control of an active load.

There is a small body of work investigating the potential to destabilize power sys-
tem dynamics through malicious control of connected physical devices. DeMarco and
colleagues, [28] and [27], explored attacks purposefully introduced by malicious control
of synchronous machines. In particular, they consider a simplified linearized model of
an interconnected power system and design a linear state-feedback controller to cause a
pair of complex conjugate eigenvalues to cross over into the right-half plane. In both pa-
pers the authors divide machines into a control group, under the control of an adversary,
and a target group, which the adversary seeks to destabilize. In [28] the authors desig-
nate a sacrificial machine within the control group and permit it to have unconstrained
participation in the resulting unstable system mode. The authors argue that, in the case
considered, the machines in the target group would disconnect to protect themselves before
the sacrificial machine damages itself. This requirement of a sacrificial machine is relaxed
in the authors’ subsequent paper [27], where an optimization approach is adopted to max-
imize the participation of the target group, relative to the control group, in the unstable
mode. This approach was recently extended to examine cyber-physical attacks though
aggregations of customer loads with emulated inertia control [14].

In addition to [28, 27], several recent papers have explored whether dynamic loads
can deliberately destabilize power system dynamics. More specifically, the authors in
[2] explore how an adversary could manipulate aggregate electric vehicle active power
charging to destabilize the bulk power system. They adopt a partial eigenvalue placement
and seek to minimize a state feedback matrix, K, such that the resulting closed-loop system
is unstable. The work in [3] explores a similar question with generic controllable loads, e.g.
demand response, at pre-defined vulnerable buses in the system. The attack considered in
[108, 38, 39] studies discrete switching loads and how they can be controlled in order to
cause resonance in inter-area oscillations.

This prior literature focuses on destabilizing inter-area modes in bulk power systems
dominated by synchronous machines. However, we are unaware of any work focusing on
systems with either high penetration of power electronic converters or the unique charac-
teristics of microgrids. We focus on isolated microgrids for three key reasons: 1) the size
of an individual load relative to generation capacity may make it easier for adversaries to
gain sufficient control to initiate a cyber-physical attack; 2) these microgrids are among the
first systems to experience significant levels of converter-based generation, whose human-
designed control loops may offer additional flexibility in system destabilization; and 3)
focusing on a small test system permits the use of full-order models, including network
dynamics, while maintaining computational tractability.

We explore an approach that uses eigenstructure assignment to design a destabilizing
state feedback controller for an active load. Eigenstructure assignment permits the use of
feedback control in order to alter the eigenvalues and/or eigenvectors of a system. This
approach has already been used in power systems for excitation control [47], control design
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for doubly-fed induction generators [57] and predatory generation control [27].
We will examine its application in destabilizing an isolated mixed-source microgrid in

as stealthy a manner as possible. Within this work we define a stealth attack as an attack
where the destabilizing device is not easily identified and defeated before achieving its
objective, e.g. forcing generation to trip offline to protect itself and/or damaging sensitive
loads. This work is intended to better characterize the set of adversarial attacks, as well
as their associated physical manifestation on the grid. Understanding these attacks will
allow us to harden microgrids against them and develop adaptive defensive mechanisms
to nullify their impact.

The primary contributions of this paper are twofold. Firstly, we identify an electromag-
netic mode that is vulnerable to destabilization at high converter penetration. Secondly,
we demonstrate the increased threat of a cyber-physical attack from an adversary gaining
full access to converter control loops rather than simply adjusting active power demand.

3.2 Methodology

We follow the approach from [27] to design a destabilizing state-feedback controller. In
this work the control group is the active load and the target group contains the synchronous
generator and the grid-following converter. We begin by describing the system in Fig. 3.1
with a set of nonlinear differential equations

ẋ = f(x,u), (3.1)

where x and u correspond to the states and inputs respectively. For the purpose of analysis,
we linearize this system around an equilibrium point (xeq,ueq) to obtain a linear system:

∆ẋ = A∆x + B∆u, (3.2)

with x ∈ Rn, A ∈ Rn×n, B ∈ Rn×m and u ∈ Rm. In order to design a destabilizing feedback
controller, we first identify a suitable mode of the linearized matrix A to destabilize. We
perform an eigenvalue decomposition and choose a mode that is already close to the right-
half plane and in which the target group has high participation. Let us denote by V and
W the right and left eigenvector matrices of matrix A respectively, such that Λ = W AV ,
where Λ is a diagonal matrix whose diagonal entries are the eigenvalues of A. Then,
according to [90], the participation of state i in mode j can be defined as

pij = wijvji

wT
j vj

, (3.3)

where wij and vji are the elements of W and V respectively. Once we have identified a
candidate mode to destabilize, we seek to design a feedback controller that achieves a de-
sired closed-loop unstable eigenvalue λ̂. In addition to meeting the eigenvalue specification
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criteria, we seek to design the corresponding eigenvector v̂ in order to minimize the partic-
ipation of the states of the control group in the unstable mode. Recalling the definition of
participation of state i in mode j in (3.3), the ideal case for an adversary is an eigenvector
v̂, with zero entries for the indices of the control group states and non-zero elements for
the indices of the target group states. This would result in the control group having zero
participation in the unstable mode and the target group having non-zero participation. In
general, however, such an eigenvector will not exist [6]. Instead, we seek to design an
eigenvector v̂ that maximizes the participation of the target group (relative to the control
group) in the unstable mode.

Once we have identified a candidate mode to be destabilized with a desired eigenvalue
λ̂, we begin by constructing the corresponding Hautus matrix Sλ̂ given by

Sλ̂ = [(λ̂I − A) B] (3.4)

where I is the identity matrix. We then determine the matrix Kλ̂ of the form

Kλ̂ =
[
Nλ̂

Mλ̂

]
, (3.5)

whose columns form a basis for nullspace of Sλ̂. Note that the rows of Kλ̂ ∈ R(n+m)×m are
partitioned in a similar manner to the columns of Sλ̂, i.e. Nλ̂ ∈ Rn×m and Mλ̂ ∈ Rm×m.
The dimension, m, of the input vector, u, will determine the dimension of the nullspace
and consequently the degree of flexibility in designing the eigenvector v̂, expressed as

v̂ = Nλ̂k (3.6)

for some k ∈ Rm×1. The ith entry of v̂, therefore, is given by

v̂i =
m∑

j=1
[Nλ̂]i,jkj. (3.7)

Here, we let Nλ̂T and Nλ̂C denote the rows of Nλ̂ whose indices correspond to the states
of the target and control group, respectively. We then seek to determine the optimal design
vector k⋆ for maximizing the ratio of ℓ2-norm of the eigenvector entries corresponding to
the target states and the ℓ2-norm of the eigenvector entries corresponding to the control
group. Similar to [27], we mathematically express this optimization problem as

max
k

k′[Nλ̂T ]′Nλ̂Tk

k′[Nλ̂C ]′Nλ̂Ck

s.t. k′k = 1,

(3.8)

where [.]′ denotes the transpose operator. Defining the matrices G and H as

G = [Nλ̂T ]′Nλ̂T H = [Nλ̂C ]′Nλ̂C , (3.9)
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we rewrite this optimization as

max
k

k′Gk

k′Hk
s.t. k′k = 1.

(3.10)

Note that we assume that the matrix H is positive definite. Otherwise, we could choose
the optimal design vector k⋆ such that the control group would have zero participation in
the unstable mode, i.e. Nλ̂Ck

⋆ = 0, which would be the best case for the adversary. As
noted earlier, generally this will not be possible [6].

Having H as positive definite, we can safely assume that it has a well-defined square
root. We now introduce a linear transformation given by

k = H−1/2ν, (3.11)

and substitute this into (3.10), which yields

max
ν

ν ′(H−1/2)TGH−1/2ν

ν ′ν
. (3.12)

Note that (3.12) takes the form of the Rayleigh quotient and is therefore easily solvable.
The optimal design vector k⋆ is constructed using the eigenvector νmax corresponding to
the largest eigenvalue of (3.12), and is given by

k⋆ = H−1/2νmax. (3.13)

We then construct the feedback matrix F follows. Let us define

ŵ = Mλ̂k
⋆ , v̂ = Nλ̂k

⋆, (3.14)

and construct the real matrices W and V of the form

W = [Re{ŵ} Im{ŵ}0 . . . 0], (3.15a)
V = [Re{v̂} Im{v̂} Re{v3} Im{v3} . . . vn−1 vn], (3.15b)

where [v3, ....vn−1,vn] are the remaining original eigenvectors from the state-space matrix
A given in (3.2). The feedback matrix F is then given by

F = WV −1. (3.16)

Provided that the columns in (3.15b) are linearly independent, the matrix F given by
(3.16) exists and is unique (see Theorem 1 in the Appendix).
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3.3 Microgrid Model

The microgrid considered in this work is shown in Fig. 3.1. It comprises a synchronous
generator (SG), a Gfl inverter, an active load (AL) and a passive load (PL) characterized
by its resistance and inductance, rL and lL respectively. The synchronous machine model
adopted from [96, 68], encompassing a two-pole machine with a governor, an automatic
voltage regulator (AVR) and power system stabilizer (PSS), yields a 13th-order model
including transformer dynamics. The grid-following inverter is represented using a 15th-
order model (see [66, 24]) while the active load comprises 12 states with the inclusion of
filter dynamics [13]. Finally, similar to [77], we model the current dynamics of both the line
and the constant impedance load, and include a large virtual shunt resistor, Rv >> 1 p.u.,
to ensure that nodal voltages are well defined. Therefore, the dimension of the entire
model is x ∈ R46. Full details about specific models and parameters are available online1.

Figure 3.1: Microgrid Test Case.

A uniform (dq) SRF is used to model the test case, with quantities defined in per unit.
The (dq)-frame quantities are represented in bold lower-case complex space vectors of the
form: xdq = xd + jxq. For generation sources, positive current is defined as flowing from
the source into the grid as shown in Fig. 3.1, while for loads we denote positive current as
current flowing from the grid to the load.

The active load considered in this work, shown in Fig. 3.2, is adopted from [13]. It
consists of three different PI control loops: PLL, a DC voltage controller and a current
controller.

We use a Type-2 PLL, described in (3.17), for estimating the grid frequency and aligning
the d−axis of the internal SRF with the measured grid voltage.

ωpll = ωn + Kpll
p eq

g + Kpll
i ϵ, (3.17a)

1https://github.com/Energy-MAC
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Figure 3.2: Active Load

ϵ̇ = eq
g, (3.17b)

θ̇pll = ωpllωb. (3.17c)

The outer-loop voltage controller, given by (3.18a)-(3.18b), maintains a constant DC bus
voltage, whereas the inner loop controller, (3.18c)-(3.18d), tracks current reference:

η̇ = v⋆
DC

− vDC , (3.18a)

i⋆
dq = Kv

p (v⋆
DC

− vDC) + Kv
i η, (3.18b)

˙ζdq = i⋆
dq − idq, (3.18c)

v⋆
dq = Ki

p (i⋆
dq − idq) + Ki

i ζ + jωpll lf idq. (3.18d)

We will consider two cases of malicious state feedback for the active load. The first
case is setpoint control, where the adversary only has the ability to change the DC voltage
setpoint. In this case, we have that the input u ∈ R, chosen based on the fact that it
requires the least customization of the power electronics. The second case is full control,
where the adversary has full access to the inner control loops and can inject control inputs
into all proportional and integral control loops independently and, therefore, u ∈ R5. This
case assumes the adversary either possess a power electronic converter that is heavily
customizable or has introduced their own additional device into the network. These two
cases are shown in Fig. 3.3 in blue and red respectively.

The dimension, m, of the input vector, u, will determine the flexibility in designing
the eigenvector(s), discussed in Section 3.2, corresponding to the desired unstable eigen-
value(s).
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Figure 3.3: State feedback controllers considered

3.4 Results

For our analysis we consider the microgrid in Fig. 3.1 with a nominal loading of 1 p.u.
The synchronous machine and grid-following converter have installed system capacity of
0.4 p.u. and 1.6 p.u., respectively, and both have an active power setpoint of 0.5 p.u. with
respect to their internal base power. Initially, we consider the case where the adversary
has control over an AL with nominal active power demand of 0.05 p.u.. We assume the
adversary has access to both a model of the system as well as state measurements, or
sufficient observability to reconstruct the state, for controller design.

Eigenstructure Analysis

Fig. 3.4 shows the eigenvalues closest to the right-half plane for the base case in green,
i.e. the case with no cyber-physical attack. For both cases, i.e. setpoint control and full
control introduced in Section 3.3, we seek to design a feedback controller to move a pair of
complex eigenvalues close to the right-half plane (RHP) across the stability boundary and,
consequently, destabilize the system. We consider two separate attacks. The first attack,
shown in blue in Fig. 3.4, mirrors a pair of stable complex eigenvalues at λ = −0.29±1.279j
about the imaginary axis, i.e. λ̂ = 0.29 ± 1.279j. The second attack, shown in orange,
mirrors a pair of poorly damped eigenvalues at λ = −0.45 ± 16.16j about the imaginary
axis, i.e. λ̂ = 0.45 ± 16.16j. Within this work, the placement of the unstable eigenvalue is
arbitrarily chosen and both eigenvalues could be pushed further into the RHP, although this
would require larger gains in the feedback matrix F . Both levels of control, i.e. setpoint
control and full control, only differ in their eigenvectors. Their eigenvalues are the same
for each attack. In addition, for both attacks considered, the remaining n − 2 eigenvalues
of the linearized model remain unaffected by the feedback matrix F .

The participation of states in the unstable mode for each of the attacks are shown in
Fig. 3.5. We see that the first attack is predominantly an electromechanical instability with
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Figure 3.4: Truncated eigenvalue spectrum with and without malicious feedback controller

high participation from both the mechanical power, pm, and angular frequency, ωs, of the
synchronous machine. The converter also has some, albeit significantly less, participation
in the instability through the angle of its active power controller, θc, and the angle of the
phase-lock loop, θpll. This electromechanical instability closely resembles the behavior in
previous work [28, 27, 14] with the only minor difference being the participation of the
converter.

The second attack considered, however, is novel. We see that this mode is primarily an
electromagnetic instability with high participation of the grid-following converter filtered
active power, p̃c, the angle of its active power controller, θc, the angle of the phase-lock
loop, θpll, and the integrator state of the phase locked-loop, ϵpll. These converter states
interact with the flux linkage dynamics of the synchronous machine in this case.

The participation factors in the unstable mode shown in Fig. 3.5 correspond to the case
of setpoint control. Due to the dimension of the input for setpoint control, i.e. m = 1,
there is no flexibility in designing the eigenvector and it is simply given by v̂ = Nλ̂. The
question was then whether the additional flexibility in eigenvector assignment offered by
the full control case would result in meaningful differences in the resulting eigenvectors.
In this case, the state participation was very similar for both attacks considered, with full
control marginally lowering the participation of the active load. The time domain behavior,
however, was significantly different as will be shown in Section 3.4 and Section 3.4 for
attack 1 and attack 2 respectively.
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Figure 3.5: State participation in the unstable mode for both attacks considered

Time-domain simulations

Attack 1 - Electromechanical Instability

We examine the time-domain response of the system to better understand any differences
between the resulting destabilizing state-feedback controllers. In each case the system is
initially operating around a stable equilibrium and, at t = 0s, an adversary activates a desta-
bilizing feedback controller. Fig. 3.6 and 3.7 show the active power and reactive power
demand of the active load respectively. We see that the active power demand in Fig. 3.6 for
setpoint control and full control are very similar with setpoint control exhibiting slightly
larger oscillatory behavior. The reactive power in Fig. 3.7, however, is very different. We see
that for setpoint control the reactive power demand is constant. This is due to the inability
of setpoint control to affect the reactive power demand. For full control, however, the addi-
tional flexibility in state-feedback has allowed the resulting destabilizing controller to also
change the reactive power demand of the AL and it also exhibits an oscillatory behavior.

Fig 3.8 shows the time series of the synchronous machine mechanical power, pm. We
see that both destabilizing controllers result in similar oscillatory behavior with the case of
full control producing slightly larger oscillations.

This increase in oscillation amplitude may be attributable to the oscillatory reactive
power of the AL exploiting the voltage dependency of the passive load, i.e. the AL is inject-
ing/consuming reactive power in order to increase/decrease the active power consumption
of the constant impedance load. We see the active and reactive power oscillatory time series
in Fig. 3.6 and 3.7 respectively are 180o out of phase with each other. Therefore, the active
load appears capacitive, and consequently raising the nodal voltage, when maximizing its
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Figure 3.6: Time series of AL active power for both setpoint control and full control for
attack 1.

active power consumption. This behavior is not present for the case of setpoint control.

Attack 2 - Electromagnetic Instability

Fig. 3.9 shows the time series behavior of the angle of grid-following converter active
power controller, θc. For this particular attack, we see a larger difference between the case
of setpoint control and full control. The amplitude of the oscillation for the full control
grows at a much faster rate while the oscillations for the case of setpoint control appear
only marginally unstable.

While the difference in behavior in active power behavior in Fig. 3.10 is more pro-
nounced than in Fig. 3.6, Fig. 3.11 again shows the main difference between setpoint
control and full control; the ability to control the reactive power demand independent
of the active power demand. We also observe a large initial transient behavior from the
AL load in both Fig. 3.6 and Fig. 3.11 when the malicious feedback controller is initially
activated.
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Figure 3.7: Time series of AL reactive power for both setpoint control and full control for
attack 1.

Figure 3.8: Time series of synchronous machine mechanical power, pm, for attack 1.
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Figure 3.9: Time series behavior of the angle of Gf converter active power controller for
attack 2.

Figure 3.10: Time series of AL active power for both setpoint control and full control for
attack 2.
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Figure 3.11: Time series of AL reactive power for both setpoint control and full control for
attack 2.
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3.5 Conclusions

Within this work, we sought to examine the vulnerability of mixed-source microgrids,
with high converter penetration, to cyber-physical attacks through manipulation of an
active load. For the specific controller design considered, the analysis represented a worst-
case scenario for the operator. We assumed the adversary had access to both a model of
the system as well as state measurements, or sufficient observability to reconstruct the
state, for state-feedback. For the two levels of AL access assumed, setpoint control vs full
control, we observed similar behavior for attack 1, the electromechanical instability, but
more pronounced differences for attack 2, the electromagnetic instability.

Future work will consider more advanced adversarial de-stabilizing controllers to con-
tinue to build-up a library of attacks to better inform defensive mechanisms. Additionally
we will consider how the mode of converter operation, i.e. grid following/forming, affects
the cyber-physical security resiliency of a mixed-source microgrid as well as how these
systems can be hardened, e.g. online adaptive parameterization of controllers.

3.6 Appendix

Theorem 1 Let {λi, ..λn} be a self conjugate set of complex numbers. There exists a feedback
matrix F such that (A + BF )vi = λivi if and only if the following conditions are satisfied for
all i ∈ n

1. the set of vectors vi form a linearly independent basis in Cn

2. vi = v∗
j whenever λi = λ∗

j

3. vi ∈ span{Nλi
}

If F exists, and B has full column rank, then F is unique[73].
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Converter-Interfaced Generation for
Cyber-Physical Security

This chapter was co-authored with Daniel Arnold, a research scientist at LBNL, and Prof.
Duncan Callaway, Associate Professor of Energy and Resources at the University of Cal-
ifornia, Berkeley. The text was previously published at the 2022 Hawaii International
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reformatted for inclusion in this dissertation.

Abstract
The integration of converter-interfaced generation into our power systems is changing how
we control and operate these networks. While these fast-acting resources are more con-
trollable than conventional synchronous machines, this additional controllability presents
some challenges. One of these challenges is the increased cyber-physical attack surface
arising from interactions among the numerous digital control loops of these devices. In this
work, we present a supervisory adaptive controller that temporarily increases the outer-loop
controller bandwidth of these devices in the event of sustained oscillatory behavior. We
design this controller to inherently remain inactive during normal operation and only be-
come active during sustained abnormal operating conditions. We show how this proposed
controller can mitigate a cyber-physical attack, even when the attacker has full knowledge
of the network model and access to real-time state information for state-feedback control.

4.1 Introduction

As our power systems shift from centralized synchronous machine-based systems to more
geographically dispersed CIG networks, the stability properties and dynamical response of
these systems are also changing. These fast-acting power electronic connected resources,
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and their multiple layered digital control loops, have a significantly larger control band-
width relative to conventional synchronous machines [42]. This increase in controlla-
bility allows us greater flexibility in shaping the dynamical response of these resources.
However, it also brings new challenges and vulnerabilities, for example, in cyber-physical
security [89].

Traditionally, cyber-physical security for power systems has been primarily focused on
protecting individual devices against attacks by securing communication channels, ensuring
data integrity, and restricting access, both physical and remote, to these devices. While
these approaches are critical, they are not exhaustive. These devices are connected through
a dynamical network which can result in unexpected controller coupling, particularly with
CIG [21]. This unexpected dynamic controller coupling can be coincidental or can result
from malicious control of a device by an adversary.

Malicious control of dynamical devices in power systems is a research area which has
received some attention over the years. Some of the early work in this space studied the
potential for a malicious actor to control a subset of synchronous generators to destabilize
other generators on the system [26, 27]. This work was motivated by considering the
potential competitive advantage of such an approach in a market environment. More recent
work examined how an aggregation of loads providing emulated inertia as a system service
might be maliciously controlled to cause unstable oscillatory modes in the system [14].
Similarly, the introduction of electric vehicles, and manipulation of their charging behavior,
has also been considered as a destabilizing resource in [2]. Other works have considered
discrete switching loads and how they may be maliciously controlled [38, 108, 39]. In each
of these cases, the resource under the control of the adversary was being controlled to cause
an electromechanical instability, i.e., the adversary was causing synchronous machines to
oscillate against each other.

The continual integration of CIG into our networks requires a revisiting of these types of
malicious attacks. These resources are introducing new dynamical modes into the system
that are currently significantly less well understood [21] and invalidating classical timescale
separation assumptions we have used to understand these systems [68]. These new modes
have been observed as abnormal sustained oscillations in weak grid conditions [21] and
have been shown to be vulnerable to attack at high CIG penetration, assuming sufficient
knowledge of the system [85].

In this work, we consider an isolated microgrid where an adversary controls an active
load, i.e., a load connected to the grid through power electronics. These loads introduce
additional dynamics into the system that can destabilize an otherwise stable network [13].
We adapt the attack vector from [85] and target the CIG by destabilizing an electromag-
netic mode in which the CIG participates. We propose a local supervisory controller that
observes the states of the CIG and adaptively changes the control logic of the converter
to desensitize it against the malicious attack while continuing to deliver its normal grid
services. Specifically, we adaptively increase the filter frequency of the low-pass filter in the
CIG outer-loop control block. This rate of increase is sampled from a pre-defined normal
distribution and, consequently, helps mitigate the adversarial attack by invalidating any
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deterministic state-space model used to design the destabilizing controller. The proposed
controller is designed to inherently remain inactive during normal operation and only alter
the converters control logic in the event of sustained abnormal oscillatory behavior. Sim-
ilar approaches have already been shown to mitigate oscillatory behavior due to poorly
designed distributed energy resources (DER) volt-var droop curves [8]. In this work we
focus on a much more severe attack where we assume the adversary has access to both
a system model and real-time state information to carry out their attack. We show how
our proposed controller can introduce a minimal amount of stochastic behavior to invali-
date the state-space model used by the attacker, and ultimately, mitigate the impact of the
attack.

4.2 Methodology

Prior to introducing the proposed defensive controller in Section 4.2, we first begin with a
brief overview of the attack model. Understanding the attack methodology of the adversary,
and how they develop a destabilizing controller, is necessary to motivate the formulation
of the proposed defensive controller.

Attack model

Our model of the adversary follows the approach of [85] and is summarized here. We
assume that the adversary has access to both 1) a detailed model of the system and 2)
real-time state information to build a state-feedback controller. During the attack, this real-
time state information can come directly from measurements or can be estimated using a
state-observer, assuming sufficient observability of the system, i.e., the adversary has access
to high-rate current and voltage data.

Under these assumptions, the goal of the adversary is to design a destabilizing state-
feedback controller such that an eigenvalue of the linearized state-space model is in the
right-half plane, i.e., the system is unstable. That is, given a linearized model of the system
in (4.1)

∆ẋ = A∆x + B∆u, (4.1)

the adversary seeks to design a controller of the form u = −F∆x such that the closed loop
system in (4.2) has at least one eigenvalue whose real part is positive.

∆ẋ = (A − BF )∆x (4.2)

Additionally, we assume the adversary minimizes its own participation in this unstable
mode. Simply put, the adversary seeks to excite the system to cause other devices on the
grid to oscillate against each other. The measure of participation of a state i in a system
mode j is given by (4.3)
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pij = wijvij

wT
j vj

, (4.3)

where wij and vij are the ith elements in the left and right eigenvector respectively associ-
ated with the jth eigenvalue. This adversarial destabilizing controller design is mathemati-
cally expressed in (4.4) and admits a closed form solution [85]:

min
F

∑
pij ∀i ∈ Γ (4.4a)

s.t. ∃ ℜ(λj) > 0 (4.4b)
(A − BF )vj = λjvj (4.4c)

where vj is the eigenvector associated with λj and Γ denotes the set of states indices for
the active load under control of the adversary. This closed form solution is summarized in
Appendix A for the reader. In [85], the authors identified both an electromechanical and
electromagnetic mode that the adversary could seek to destabilize. In this work, we focus
on the attack that destabilizes the electromagnetic mode, as this is the most damaging
attack for CIG.

The proposed attack model assumes a significant level of system knowledge to carry-
out. An alternative attack model is a data-driven approach that estimates vulnerable system
modes based on measurement data during disturbances [38, 39], e.g., measurement data
during faults. The adversary then designs a local controller to try to destabilize these
estimated modes. In both cases, model-based or measurement-based, the adversary seeks to
design a destabilizing controller based on their understanding of the system. Our proposed
approach is motivated by invalidating their understanding of the system during sustained
abnormal oscillatory behavior. Therefore, the proposed controller is not tailored to mitigate
the specific attack vector considered here, but rather any attack vector that relies on a fixed
understanding of the system. Due to the stochastic nature of our controller, designed
to remain inactive during inherent system transients, the proposed approach will remain
effective in mitigating the severity of the attack for both model and measurement-based
attacks.

Defensive controller

One commonality across all prior work that has considered destabilizing adversarial attacks
is the requirement of a deterministic state-space model to build a state-feedback controller
[85, 27, 14, 2]. This state-space model allows the adversary to identify vulnerable system
modes to destabilize with state-feedback control. As a last line of defense against these types
of attacks, we propose a non-linear supervisory controller that introduces a small amount of
stochastic behavior into the system to invalidate the state-space model the adversary used
in its controller design. This controller, in (4.5), is designed to inherently remain inactive
during normal operation and only become activated during sustained abnormal oscillatory
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behavior. Therefore, the CIG will respond as expected to normal grid disturbances, e.g.,
faults, line trips and frequency events.

The proposed controller uses an observer, shown in Fig. 4.1, to estimate the energy of
the observed oscillation, similar to [8]. It monitors the integrator state of the PLL, ε, and
uses a high-pass filter in (4.5a) to remove any DC offset, or low-frequency behavior, in
the signal. We choose the integrator state of the PLL based on analysis in [85] and due
to the PLL being identified as being a major cause of instability in real-world observed
oscillations [21]. Once the low frequency behavior has been removed, we multiply the
resultant signal, εh, by a normalization constant, c, then square it and pass it through a low-
pass filter in (4.5b) to obtain a stable control signal. This low-pass filter also desensitizes
the proposed controller to naturally occurring system transients, e.g., faults and line trips.
By first removing the low-frequency content and then squaring the signal, we are estimating
the energy of the oscillation in the PLL integrator state, ε. We then use this measure of
energy to increase the outer-control loop filter frequency, ωz, in (4.5c) where α ∼ N (µ, σ2).

Figure 4.1: Estimating energy of oscillation.

ε̇h = τhε̇ − εh

τh

(4.5a)

ε̇l = (cεh)2 − εl

τl

(4.5b)

ω̇z = ω⋆
z − ωz + αεl (4.5c)

This proposed controller runs continuously on the CIG. It is not threshold activated but
instead uses the high- and low-pass filters to reject normally occurring disturbances on the
external grid.

As previously discussed, this filter frequency, ωz, determines the bandwidth of the outer-
control loops of the CIG. By temporarily increasing the controller bandwidth of the outer-
loop, we are breaking any controller coupling that the adversary is seeking to exploit. The
structure of (4.5c) also ensures that when the oscillation is mitigated, the filter frequency
returns to its normal operating point, ω⋆

z . The stochastic nature of α, not remotely accessible
via communication and updated at a low frequency, e.g., seconds or minutes, ensures that
the adversary never has access to a deterministic state-space model to build a state-feedback
controller.

Fig. 4.2 shows how increasing the outer-loop bandwidth can temporarily move a pair
of system eigenvalues, and consequently, mitigate any attack that specifically targets these
eigenvalues based on a model or measurement data. The specific eigenvalues highlighted
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in Fig. 4.2 have high state-participation from both the PLL and outer-loop controls and can
move towards the right-half plane during weak grid conditions and/or because of inter-IBR
controller coupling.
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Figure 4.2: Changing eigenspectrum during attack

The proposed adaptive control loop, shown in Fig. 4.3, should be parameterized to
ensure sufficient timescale separation between the proposed controller and existing control
loops of the CIG. This will help ensure that the controller does not increase the oscillations
during the attacks considered here.
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Figure 4.3: Grid-following control structure with proposed control loop

4.3 Power System Models

We consider a CIG plant, in Fig. 4.4, with its active power controller operating in grid-
following mode and its reactive power controller in droop mode. Grid-following mode is
commonly associated with real-world recorded oscillatory behavior when operating under
weak grid conditions, primarily due to the PLL [21].

All control loops in Fig. 4.4 operate in the dq frame, which is achieved by a linear
transformation, Tdq in (4.6), from the 3-phase instantaneous voltage and current values,
where θc is an internal state of the converter, discussed in Section 4.3.

Tdq =
√

2
3

cos(θc) cos(θc − 2π/3) cos(θc + 2π/3)

sin(θc) sin(θc − 2π/3) sin(θc + 2π/3)

 (4.6)

In this work, our analysis will be carried out in the dq reference frame. We denote
complex vectors using bold lowercase symbols as in (4.7).

x = xdq = xd + jxq (4.7)

Electrical Interface and Power Calculation

The CIG is interfaced to the grid in Fig. 4.4 through an RLC filter (rf , lf , cf) for harmonic
filtering, and a transformer, with resistance and inductance rt and lt respectively. The
differential equations describing its electrical variables are given by (4.8):
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Figure 4.4: Grid-following control structure

i̇f = ωb

lf
(vm − eg) −

(
rf

lf
ωb + jωbωc

)
if (4.8a)

i̇g = ωb

lt
(eg − vp) −

(
rt

lt
ωb + jωbωc

)
ig (4.8b)

ėg = ωb

cf

(if − ig) − jωcωbeg (4.8c)

where if is the current through the filter inductance, ig is the current injected into the grid,
eg is the voltage across the filter capacitance, vm is the modulated voltage at the terminals
of the CIG, vp is the voltage at the point-of-connection to the grid, ωc is the frequency of the
internal SRF in per-unit (p.u.) and ωb is the base system frequency. The converter active
and reactive power is then calculated from (4.9):

pc = ℜ(egi⋆
g) qc = ℑ(egi⋆

g) (4.9)

where i⋆
g denotes the complex conjugate of the current vector, and ℜ(.) and ℑ(.) are the

real and imaginary part respectively. These active and reactive power measurements, along
with the estimated system frequency from the PLL, are then passed into the outer-loop
control block.

Phase-lock loop

The purpose of the PLL is to track the frequency and phase of the externally measured grid
voltage. It does so by aligning the d−axis of the internal SRF with the externally measured



CHAPTER 4. OUTER-LOOP ADAPTIVE CONTROL OF CONVERTER-INTERFACED
GENERATION FOR CYBER-PHYSICAL SECURITY 43

voltage vector, resulting in its q− vector component of the internal SRF being equal to zero.
Its dynamics are given by (4.10):

êg = ege−jθpll (4.10a)

θ̇pll = ωpllωb (4.10b)
ε̇ = êq

g (4.10c)

ωpll = ω0 + Kpll
p êq

g + Kpll
i ε (4.10d)

where ε is the integrator state of the PLL, ωpll is the estimated frequency, and Kpll
p and

Kpll
i are the proportional and integral gains respectively of the PI control loop in (4.10d).

One difficulty with parameterizing the control gains of a PLL is the requirement that it
produces an accurate and stable estimation of the grid-frequency across all grid operating
conditions, i.e., a weak and strong grid, while also not being overly sensitive to natural
grid-disturbances, e.g., faults. This is one of the reasons why the PLL is often identified as
one of the contributors to undesirable oscillatory behavior [21].

Outer-loop control

Once the PLL estimates the grid frequency, ωpll in (4.10d), this estimation is passed to the
outer-control loop. This control loop is responsible for determining control set-points to
achieve a desired active and reactive power injection. It is typically one of the slower control
loops of the CIG and can also contribute to undesirable oscillatory behavior [21]. Within the
outer-control loop, the CIG first low-pass filters the measured active and reactive power in
(4.11a) and (4.12a) respectively. The filter frequency, ωz, determines the bandwidth of the
outer-loops. In this work, we will consider ωz as a state within our supervisory controller
and adjust it to change the outer-loop control bandwidth of the CIG during sustained
abnormal behavior. The specific control structure to achieve this will be introduced in
Section 4.2.

˙̃pc = ωz(pc − p̃c) (4.11a)
ωc = ωpll + Rp(p⋆

c − p̃c) (4.11b)

θ̇c = ωcωb (4.11c)

The output of these low-pass filters, p̃ and q̃, are then used to determine the control
set-points ωc and vc in (4.11b) and (4.12b) respectively, where Rp and Rq are the active
and reactive power droop gains respectively.

˙̃qc = ωz(qc − q̃c) (4.12a)
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vc = v⋆
c + Rq(q⋆

c − q̃c) (4.12b)

The angular frequency, ωc, also determines the angle θc, in (4.11c), for the linear
transformation, Tdq in (4.6).

Virtual Impedance

These outer-loop control set-points are then passed to the virtual impedance control block
in Fig. 4.4, with a virtual resistance and inductance, rv and lv respectively. This additional
degree of freedom is used for active stabilization and disturbance rejection [107].

v̄d
c = vc − rvid

g + ωclviq
g (4.13a)

v̄q
c = −rviq

g − ωclvid
g (4.13b)

Additionally, the use of a virtual impedance can increase the apparent X/R ratio of the
network and improve the small-signal stability of the system by strengthening the p/f and
q/v coupling of the system.

Inner control loop

Finally, a dual-loop PI controller is used in the inner-loop for reference tracking. The output
of the virtual impedance control block, v̄c is first passed to a PI voltage controller in (4.14)

īf = Kv
p (v̄c − eg) + Kv

i ξ + jωccfeg + Kv
f ig (4.14a)

ξ̇ = v̄c − eg (4.14b)

whose output, īs, is then passed into another PI control loop, in (4.15), to determine the
output voltage reference used for the averaged modulated signal.

v̄m = Ki
p(̄if − if ) + Ki

iγ + jωccf if + Ki
feg (4.15a)

γ̇ = īf − if (4.15b)

In both (4.14) and (4.15), the controller gains Kv
p /Ki

p and Kv
i /Ki

i are the proportional
and integral gains of the PI loop respectively and Kv

f /Ki
f is a binary feed-forward term.

4.4 Results

To demonstrate the effectiveness of the proposed controller we consider the 3-bus microgrid
in Fig. 4.5. This system has a SG, a Gfl converter, an AL and a constant impedance load.
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The adversary has control over the active load and designs a state-feedback controller for
modulating active and reactive power demand to cause the system to become unstable. The
parameters of the synchronous-machine and grid-following converter are from [67] and
the details of the AL and the destabilizing adversarial controller can be found in [85]. The
steady-state active and reactive power operating conditions are summarized in Table 4.1.

Table 4.1: Steady-state operating conditions.

P [p.u.] Q [p.u.]
SG 0.32 0.14
Gf 0.70 0.12
AL 0.05 0.0
rl load 0.97 0.11

Figure 4.5: Three-bus mixed source microgrid

The proposed defensive controller from Section 4.2, with experimental parameters in
Table 4.2, is deployed on the grid-following converter and monitors the integrator state of
the PLL.

Table 4.2: Supervisory Controller Parameters.

τh τl c µ σ
0.795 0.159 1 × 104 15 2

Fig. 4.6 shows the active power injection from the grid-following converter in the case
of no attack and during an attack with and without the proposed supervisory controller.
Without the proposed controller, we see that the CIG is exhibiting unstable oscillatory
behavior. With the proposed supervisory controller, however, we see that the unstable
behavior is mitigated within seconds following its onset.
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Figure 4.6: Grid-following converter active power

Contrasting the active and reactive power demand from the adversary controlled active
load in Fig. 4.7 to the oscillatory active power injection from the grid-following converter
in Fig. 4.6, we see that the adversary has exerted minimal observable control effort to desta-
bilize the system. The amplitude of its load modulation is under 2% of the total microgrid
load. This level of load modulation is consistent with prior work on adversarial load con-
trol for destabilizing electromechanical modes on the transmission grid [14]. Additionally,
this load oscillatory amplitude is significantly smaller than the amplitude of the oscillatory
behavior in the active power behavior of the CIG in Fig. 4.6. This additional oscillatory
active power from the CIG is being absorbed primarily by the constant impedance, due to
oscillations in the nodal voltages, and the synchronous machine.

To understand the behavior of the supervisory defensive controller we examine the
behavior of both the observer, for estimating the energy of the oscillation, and the filter
frequency ωz. Fig. 4.8 plots the time-series of εl, the output of a low-pass filter from (4.5b).
Initially, we see relatively large values for εl as the amplitude of the oscillations grow in
Fig. 4.6. With the inclusion of the proposed controller, we see these oscillations decay until
they settle around constant oscillatory amplitude.

This filtered signal, εl, in Fig. 4.8 is a stable control signal that is then used to adaptively
increase the outer-loop filter frequency, as shown in Fig. 4.9.

The filter-frequency, ωz, is only marginally increased in this case to mitigate the attack.
This helps limit the randomness introduced by the defensive controller and ensures that,
even during a sustained adversarial load attack, the CIG exhibits largely deterministic be-
havior. Additionally, we see that once the oscillatory amplitude in Fig. 4.6 decays, ωz tends
back towards its set-point, ω⋆

z , in Fig. 4.9. Once the adversarial controller is deactivated, ei-
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Figure 4.7: Adversary load power

ther by the adversary themselves or a higher-level intrusion detection scheme, the proposed
controller ensures that ωz returns to its normal operating value, ω⋆

z .
In this work, we demonstrated our proposed controller on a simple 3-bus microgrid.

Recent analysis has shown how electrically close CIG can adversely interact with each
other in larger systems [34]. This presents an alternative attack vector for adversaries to
destabilize local CIG. Future work will examine how the proposed controller performs
under such an attack.
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4.5 Conclusions

In this work we presented a local supervisory controller designed to be the last line of
defense against a destabilizing cyber-physical attack against CIG within a micro-grid. This
defensive controller was designed to stochastically increase the outer-loop bandwidth of
the CIG to invalidate any deterministic state-space model that an adversary may have
used to design their attack. A key design feature of the proposed controller is that is does
not impede normal operation of the CIG and is only activated in the event of sustained
oscillatory behavior.

With the continual proliferation of microgrids, coupled with the control complexity of
the CIG, the attack surface of these systems is increasing [89]. Hardening these systems
against adversarial attacks, both direct and indirect, will require a cross-disciplinary ap-
proach with multiple fail-safe systems. This work was a first step at designing a last line of
defense that would allow the CIG to remain online and delivering its required grid services
while protecting itself against a targeted attack. The hope is that this last line of defense
would mitigate any adverse physical impacts of the attack, e.g., damaging equipment, as
well as allow operators and/or other defensive layers additional time to respond.

Further work is required to further analyze, and test, the proposed controller and its
stability properties to guarantee its satisfactory performance. Additionally, we will consider
the effectiveness of the proposed controller under different attack models, including attacks
that attempt to be robust with respect to uncertainties in the system model. These more
sophisticated attacks may require adjusts to the proposed controller, e.g., saturating the
value of the filter frequency, ωz, to ensure that the proposed controller does not increase the
bandwidth of the outer-loop such that it adversely interacts with the inner-control loop.

4.6 Appendix A

We assume the adversary has a linear state-space model of the form

∆ẋ = A∆x + B∆u, (4.16)

with x ∈ Rn, A ∈ Rn×n, B ∈ Rn×m and u ∈ Rm. To design a destabilizing feedback con-
troller, we first identify a suitable mode of the linearized matrix A to destabilize. Following
this, we seek to design a feedback controller that achieves a desired closed-loop unstable
eigenvalue λ̂. In addition to meeting the eigenvalue specification criteria, we seek to design
the corresponding eigenvector v̂ to minimize the participation of the states of the control
group in the unstable mode. To achieve this, we seek to design an eigenvector v̂ that maxi-
mizes the participation of the target group (relative to the control group) in the unstable
mode. We then begin by constructing the corresponding Hautus matrix Sλ̂ given by (4.17)

Sλ̂ = [(λ̂I − A) B] (4.17)
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where I is the identity matrix. We then determine the matrix Kλ̂ of the form

Kλ̂ =
[

Nλ̂

Mλ̂

]
, (4.18)

whose columns form a basis for nullspace of Sλ̂. Note that the rows of Kλ̂ ∈ R(n+m)×m are
partitioned in a similar manner to the columns of Sλ̂, i.e. Nλ̂ ∈ Rn×m and Mλ̂ ∈ Rm×m. The
dimension, m, of the input vector, u, will determine the dimension of the nullspace and
consequently the degree of flexibility in designing the eigenvector v̂, expressed as

v̂ = Nλ̂k (4.19)

for some k ∈ Rm×1. The ith entry of v̂, therefore, is given by

v̂i =
m∑

j=1
[Nλ̂]i,jkj. (4.20)

Here, we let Nλ̂T and Nλ̂C denote the rows of Nλ̂ whose indices correspond to the states
of the target and control group, respectively. The target group represents the states of the
devices we wish to destabilize while the control group is the set of states under the control
of the adversary. We then seek to determine the optimal design vector k⋆ for maximizing
the ratio of ℓ2-norm of the eigenvector entries corresponding to the target states and the
ℓ2-norm of the eigenvector entries corresponding to the control group. Similar to [27], we
mathematically express this optimization problem as

max
k

k′[Nλ̂T ]′Nλ̂T k

k′[Nλ̂C ]′Nλ̂Ck

s.t. k′k = 1,

(4.21)

where [.]′ denotes the transpose operator. Defining the matrices G and H as

G = [Nλ̂T ]′Nλ̂T H = [Nλ̂C ]′Nλ̂C , (4.22)

we rewrite this optimization as

max
k

k′Gk

k′Hk
s.t. k′k = 1.

(4.23)

Note that we assume that the matrix H is positive definite. Otherwise, we could choose the
optimal design vector k⋆ such that the control group would have zero participation in the
unstable mode, i.e. Nλ̂Ck⋆ = 0, which would be the best case for the adversary.

Having H as positive definite, we can safely assume that it has a well-defined square
root. We now introduce a linear transformation given by

k = H−1/2ν, (4.24)
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and substitute this into (4.23), which yields

max
ν

ν ′(H−1/2)T GH−1/2ν

ν ′ν
. (4.25)

Note that (4.25) takes the form of the Rayleigh quotient and is therefore easily solvable.
The optimal design vector k⋆ is constructed using the eigenvector νmax corresponding to
the largest eigenvalue of (4.25), and is given by

k⋆ = H−1/2νmax. (4.26)

We then construct the destabilizing feedback matrix F as follows. Let us define the vectors
ŵ and ŵ in (4.27).

ŵ = Mλ̂k⋆ , v̂ = Nλ̂k⋆, (4.27)

and construct the real matrices W and V of the form

W = [Re{ŵ} Im{ŵ} 0 . . . 0], (4.28a)
V = [Re{v̂} Im{v̂} Re{v3} Im{v3} . . . vn−1 vn], (4.28b)

where [v3, ....vn−1, vn] are the remaining original eigenvectors from the state-space matrix
A given in (4.16). The feedback matrix F is then given by

F = WV −1. (4.29)

Provided that the columns in (4.28b) are linearly independent, the matrix F given by
(4.29) exists and is unique [73].
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Chapter 5

An Online Adaptive Damping Controller
for Converter-Interfaced Generation

This chapter was co-authored with Daniel Arnold, a research scientist at LBNL, and Prof.
Duncan Callaway, Associate Professor of Energy and Resources at the University of Califor-
nia, Berkeley. The text has been reformatted for inclusion in this dissertation.

Abstract
The increasing integration of converter-interfaced generation within large-scale synchronous
power systems is presenting both new challenges and opportunities in how we operate these
dynamical networks. One of these challenges is designing and parameterizing the digital
control loops that dictate the dynamical behavior of these fast-acting resources. Improperly
tuned gains, or unexpected controller couplings through the network, can lead to poorly
damped oscillations during disturbance conditions and/or decrease the system stability
margin. Within this work, we present an approach for adaptively tuning a damping con-
troller to improve the dynamic response of converter-interfaced generation, based only on
local measurements. We show that, with low-amplitude probing, we can identify a subset
set of observable system modes. We then propose a linear single input single output (SISO)
state-feedback controller to improve the damping ratio and stability margin of the system.
We show the effectiveness of the proposed controller through both eigenvalue analysis
and time-domain simulations. We first demonstrate the proposed approach on a simple
3-bus system followed by a larger test case, the IEEE 14 bus system, with multiple devices
simultaneously probing the network.

5.1 Introduction

The increasing integration of CIG into synchronous power systems is changing the dynam-
ical behavior of these systems. In contrast to synchronous machines, whose dynamical
response is dominated by their inherent electromechanical physics, the dynamical response
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of CIG is almost entirely dependent on fast-acting digital control loops. While these highly
configurable resources provide new opportunities for control, they are also introducing
new stability challenges that must be addressed [42], including the appearance of new
oscillatory modes [34].

Understanding, and mitigating, oscillatory behavior in interconnected power systems
is a well-studied and continually evolving area of research [55, 88]. Historically, these
oscillatory modes were due to electromechanical interactions in the low frequency range
(0.2 - 3 Hz) arising from the coupling of synchronous machines through the network
[88]. Recently, however, new oscillatory modes have been observed on the grid as the
penetration of CIG increases. Though these modes are poorly understood, they have
been attributed to series capacitor sub-synchronous oscillations (SSO), weak grid SSO
and inter-CIG interactions [21, 34], and they exhibit a much wider frequency range (≈
4 - 30 Hz in [21]) compared to electromechanical modes. One of the primary barriers
to understanding these modes, and consequently mitigating their effects, is the lack of
availability of sufficiently detailed industrial models of CIG[21].

PSSs are control blocks on synchronous machines that are used to damp electromechan-
ical oscillatory modes and increase power transfer. PSSs modulate generator excitation to
produce components of electrical torque in phase with rotor speed deviations, thereby im-
proving the damping of the system. In systems dominated by synchronous machines, a PSS
can be tuned using a combination of root locus and time domain simulations [7]. Recent
efforts have explored the use of PSS-like controls to dampen CIG-induced oscillations. The
authors in [70, 95] propose a centralized controller to coordinate distributed devices to im-
prove the damping of observed modes. In [76], the authors propose a coordinated scheme
to control both onshore CIG and offshore wind turbines that can be implemented in a lo-
cally decentralized architecture. Additionally, the authors in [30] utilize a pole-placement
approach to tune the parameters of a damping controller using an assumed model of the
rest of the system.

The challenge with these existing approaches is that they either require communication
and co-ordination[70, 95], assume a fixed model and operating point of the external
system[30] and/or are not scalable to large systems. As discussed in [21], there is little
understanding of the cause of these modes, nor does there seem to be a consistent pattern
across the system conditions under which they manifest. To overcome some of these
limitations, the authors in [92] implement a purely data-driven local adaptive controller.
They develop an online algorithm that monitors, detects, and mitigates subsynchronous
oscillations using a shunt voltage source converter. While this approach is successful in
damping oscillatory behavior across different frequencies in varying system conditions,
it requires an additional shunt voltage source-converter and is reactionary, rather than
preventative.

Within this work we propose an online adaptive damping controller for CIG to improve
system damping. Our proposed controller only uses local (i.e., obtained at the point of com-
mon coupling between the controllable CIG and the grid) measurements and adaptively
adjusts a linear state-feedback controller to increase the damping of locally observable
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modes and system stability margins. The adjustment mechanism is facilitated by low-
amplitude probing in the reactive power injection of controllable CIG. One of the primary
causes of CIG-induced oscillatory behavior is weak system strength [21, 34], and its time
varying nature makes it difficult to identify a fixed set of control gains to maintain system
stability under a wide range of operating conditions. The adaptive parameter tuning ap-
proach detailed in this work overcomes this drawback by continually updating gains in a
PSS-like damping controller as the system strength varies and/or unexpected controller
coupling occurs. This approach is purely data-driven and does not require models of the
system and/or nearby devices typically used in tuning PSS controls [7]. In so doing, the
approach stands to substantially increase the robustness to disturbances in grids with high
portions of CIG-based generation. The key contributions of this research are:

• The development of a method for determining a reduced-order model that captures
the dominant modes of interaction between the external grid and the controllable
CIG.

• The creation of an algorithm for online tuning of a PSS-like controller to improve the
damping and stability margin of estimated modes.

Notation: Throughout the paper vectors are represented as bold lower-case symbols,
matrices as bold uppercase symbols and learned/estimated quantities are denoted by the
hat symbol, e.g., x̂.

5.2 CIG Model

We adopt a grid-following inverter, depicted in Fig. 5.1, as the CIG model used in this anal-
ysis. This mode of operation is most associated with real-world oscillatory behavior[21]
primarily due to the poor performance of the PLL when operating under weak grid condi-
tions. The approached presented, however, is also applicable to other control schemes, e.g.,
virtual synchronous machines and droop controlled grid forming devices.

The controllers in Fig. 5.1 operate in the dq frame, which is achieved by a linear trans-
formation, Tdq in (5.1), from the 3-phase instantaneous voltage and current values.

Tdq = 2
3

cos(θpll) cos(θpll − 2π

3 ) cos(θpll + 2π

3 )

sin(θpll) sin(θpll − 2π

3 ) sin(θpll + 2π

3 )

 (5.1)

where the angle, θpll, is a state of the PLL. The PLL determines this angle by aligning the
d−axis of its internal synchronous rotating reference frame (SRF) with the locally measured
grid voltage, i.e., when the q−axis voltage in the internal SRF equals zero. This is defined
in (5.2)

v̇q
pll = ωp(vq

g − vq
pll) (5.2a)
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Rest of 
system

Figure 5.1: Control structure of a grid-following converter

ε̇pll = vq
pll (5.2b)

θ̇pll = ωn + kp
pllv

q
pll + ki

pllεpll = ωpll (5.2c)

where vq
pll is a low-pass filtered estimation of the q−axis component of the voltage in the

internal SRF of the CIG, ε is the integrator states of the PLL, ωn is the nominal frequency, ωp

is a low-pass filter frequency, and kp
pll and ki

pll are the proportional and integral gain of the
PLL respectively. The power calculation block then calculates the active and reactive power,
p and q. These are then passed to the outer-control block where they are both low-pass
filtered, in (5.3),

˙̃p = ωz(p − p̃) (5.3a)
˙̃q = ωz(q − q̃) (5.3b)

with a low-pass filter frequency, ωz. These low-pass filtered measurements, p̃ and q̃, are
then used for calculating the current reference set-points, idq⋆

f , in (5.4),

σ̇p = p⋆ − p̃ (5.4a)
σ̇q = q⋆ − q̃ (5.4b)

id⋆
f = kp

P Q(p⋆ − p̃) + ki
P Qσp (5.4c)

iq⋆
f = kp

P Q(q⋆ − q̃) + ki
P Qσq (5.4d)

where σp and σq are the integrator states for the active-power and reactive-power outer-
loop respectively, p⋆ and q⋆ are the active power and reactive power set-points of the CIG
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respectively, and kp
P Q and ki

P Q are the proportional and integral gains of the PI control
loops respectively. Finally, these current set-points are passed to the inner-control loop that
implements a PI structure, in (5.5), for tracking, where γdq are the integrator states, kp

c and
ki

c are the proportional and integrator states respectively and kf
c is a feed-forward term.

γ̇dq = idq
f − idq⋆

f (5.5a)

v̄m = ki
cγ

dq + kp
c (idq

f − idq⋆
f ) − jωpllLf idq

f + kf
c vdq

g . (5.5b)

These cascaded control loops are intended to be tuned, and verified, against a model
of the system[48] to ensure satisfactory performance. Once in operation, however, they
can exhibit undesirable behavior as they unexpectedly interact with other CIG control
loops and/or operating conditions vary[34]. This motivates the design of a damping
controller than can be adaptively parameterized as a function of the external grid operating
conditions.

5.3 Subspace Identification

The dynamical behavior of an interconnected power system is described by a set of nonlinear
differential equations of the form (5.6)

ẋ = f(x,u), (5.6)

where x and u correspond to the states and inputs respectively. To examine the small-signal
stability of these systems, we linearize this system around an equilibrium point (xeq,ueq)
to obtain a linear system of the form in (5.7):

∆ẋ = A∆x + B∆u, (5.7)

where ∆x = x − xeq, ∆u = u − ueq, ∆x ∈ Rn, A ∈ Rn×n, B ∈ Rn×m and ∆u ∈ Rm. The
eigenvalues of the matrix A in (5.7) can then be computed to understand the stability
margin and damping of the modes of the system. This analysis is common for both con-
troller tuning and understanding how different generator compositions, e.g., synchronous
machines or CIG, affect the dynamics of the system.

The challenge with performing controller tuning using (5.7) is that it requires a full-
order model of the system. To overcome this, prior work used system measurement data
to build low-order models of the entire system[41, 50, 51]. These approaches assume
access to real-time measurements across the network. In this work, we instead build a
reduced-order model that captures the dynamical coupling between the individual CIG
of interest and the rest of the system. To estimate this reduced-order model we inject a
probing signal into the system and record the response of the local converter control states.
Using this input-output data we can then estimate a subset of observable system modes. In
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Section 5.4 we discuss how we average across experiments to reject external disturbances
and focus on estimating observable modes that the CIG participates in. The participation
of a particular state in each mode is estimated from the eigenvectors of the system. Given a
linearized model of the form in (5.7), we denote by V and W the right and left eigenvector
matrices of matrix A respectively, such that Λ = W A V , where Λ is a diagonal matrix
whose diagonal entries are the eigenvalues of A. Then the participation of state i in mode
j can be defined as in (5.8)

pij = wijvji

wT
j vj

, (5.8)

where wij and vji are the elements of W and V respectively[90].
To estimate the observable modes in which the converter states participate we use

subspace identification (SID) methods [65]. SID methods have been empirically shown
to accurately estimate the system modes in the context of power system, including for the
case of low-amplitude probing[29, 112]. A brief overview of the SID methods is presented
below. For a thorough treatment, and implementation details, the reader is referred to
Section 10.6 of [65].

Given a set of measurements, S, of inputs, U := [u(t) u(t − 1) ... u(0)], and observable
outputs, Y := [y(t) y(t−1) ... y(0)], we seek to estimate a discrete-time n̂th-order state space
model of the form in (5.9)

x̂(t + 1) = Âx̂(t) + B̂u(t) + w(t) (5.9a)

ŷ(t) = Ĉx̂(t) + v(t) (5.9b)

where x̂ ∈ Rn̂ is the state vector of the ROM, u ∈ Rk is the user-defined probe input, ŷ ∈ Rl

is estimation of the observable output, y, w are Gaussian processes with zero mean and v
are measurement noise.

We use this input-output data to construct the weighted extended observability matrix
Ĝ[65]. The order, n̂, of the reduced-order model is then determined by looking at these
singular values of Ĝ, calculated by singular value decomposition. There exist numerous
ways for determining the optimal order, n̂⋆, from the singular values of Ĝ. Within this
work we use the singular value criterion (SVC) which has shown to result in consistent
order estimation across various probing conditions[10]. The SVC minimization is shown
in (5.10)

min
n

SV C(n) = σ2
n+1 + 2nl

log(T )
T

(5.10)

where σi denotes the ith largest singular value of Ĝ, l is the dimensionality of y, and T
denotes the number of sample data points. Once we have identified the dimensionality,
n̂, of the reduced order model, we can estimate the matrices A, B and C through simple
least-square solutions as presented in [65]. Once a discrete-time state-space model has
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been estimated, it can then be converted to a continuous-time model for controller design
using a first- or zero-order hold method, depending on the probing control signal applied.

5.4 Method

Estimating a ROM

To build a ROM of the converter, and its dynamic coupling with the grid, we perturb the
system using a low-amplitude probing signal to generate the input-output data. In this work,
we introduce this probe into the system by modulating the reactive power set-point of the
converter. 1 This is analogous to adjusting the voltage set-point of the AVR in a synchronous
machine or the outer-control loop in a grid-forming converter. We choose the reactive
power channel for our modulation signal for two reasons. First, by choosing to modulate
the reactive power rather than the active power, we do not require coordinated control with
the DC side, which simplifies the controller. Secondly, given that weak grid conditions have
been identified as one of the primary causes of highly oscillatory behavior[21], adding a
control signal into the reactive power controller can help stabilize the externally measured
voltage during disturbances. The measured outputs we record for estimating the ROM are
the local internal controller states of the converter. These inputs and outputs are shown in
Fig. 5.2, where the superscript m denotes specific measurements/quantities.

System
Observable 
 Converter 
    States 

Low-amplitude
probing signal

Figure 5.2: Probing the system with observable states

The probing signal we use is generated by taking the sign of a chirp signal in (5.11)
with a frequency band Ω : ω1 ≤ ω ≤ ω2 over a certain time period 0 ≤ t ≤ M , and
scaling it by the probe amplitude, Γ. This frequency band, Ω :, can be determined based
on offline analysis and/or based on real-world observed oscillatory behavior [21]. We
then sample the output at a rate of 500 Hz. This sampling frequency is below the internal
sampling frequency of the converter and does not require the use of an anti-aliasing filter,
assuming oscillations of interest are less than 100 Hz (this was the case for the real-world
observedCIG oscillations [21]).

1In this case the input, u, is a scalar and will be denoted by a non-bold lowercase letter moving forward.
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u(t) = Γ.sgn

sin
(

ω1t + (ω2 − ω1)t2

2M

) (5.11)
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Figure 5.3: Low-amplitude system probe with ω1 = 2 and ω2 = 6

This deterministic probing signal has numerous advantages over both random white
noise and sinusoidal signals for system identification[65]. One of these advantages, rel-
ative to random white noise, is the ability to perform repeated perturbing experiments
and average the output over these experiments. This averaging attenuates the impact of
measurement error and external disturbances, e.g., natural load variations and/or nearby
controllers simultaneously perturbing the system. This helps ensure that the set of esti-
mated modes are modes that the CIG participates in.

To average across multiple experiments, we must first remove signal offsets. We do this
by assuming that, during each probing experiment, the system was in equilibrium about
some operating point, ȳm, for a corresponding input ū, calculated by (5.12), where the
superscript m denotes individual measurements. We then remove this offset in (5.13).

ū = 1
N

N∑
t=1

um(t) (5.12a)

ȳm
i = 1

N

N∑
t=1

ym
i (t) ∀ym

i ∈ ym (5.12b)

u(t) = um(t) − ū y(t) = ym(t) − ȳm (5.13)

Once we have removed these offsets, we can then average across K experiments, each
of length M , by (5.14).

ȳi(t) = 1
K

K−1∑
k=0

yi(t + kM) 1 ≤ t ≤ M ∀yi ∈ y (5.14)
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Once we have collected our set of experiment input data U := [u(t), u(t − 1) ... u(0)],
and observable outputs, Y := [ȳ(t), ȳ(t−1) ... ȳ(0)], we estimate a ROM using the approach
described in Section 5.3. This estimation is performed using the Julia toolbox ControlSys-
temIdentification.jl [15].

Controller Design

Given a reduced-order model of the form in (5.9), we then want to design a damping
controller to improve the damping of the model. We do this by placing a PSS in feedback
with the reduced-order model, as shown in Fig. 5.4, and optimizing over its parameters.
This controller, mathematically expressed in (5.15), is comprised of a stabilizing gain, k,
followed by a wash-out filter to remove low-frequency behavior and any DC-offsets. Finally,
a pair of lead-lag compensators are used to tune the phase response. The use of a double
lead-lag compensators allows for phase compensation of more than 90 degrees. Commonly,
the input to a PSS is a scalar quantity, e.g., the deviation in rotor speed [17]. In this work,
however, we will give the PSS access to two controller states of the converter, namely q̃,
the filtered reactive power and ε, the integrator state of the PLL. These states were chosen
based on the discussion presented in [21] and offline participation factor analysis of theCIG
against an infinite bus. The vector k ∈ R8 will then have two non-zero entries kq̃ and kε,
i.e., k = [0....kq̃ ... 0 ... kε]T .

PSS

Figure 5.4: Placing a PSS in feedback with the ROM

v̇1 = −(kT ŷ + v1)/Tw (5.15a)

v̇2 = ((1 − T1

T2
)(kT ŷ + v1) − v2)/T2 (5.15b)

v̇3 = ((1 − T3

T4
)(v2 + (T1

T2
(kT ŷ + v1))) − v3)/T4 (5.15c)

u = v3 + T3

T4
(v2 + T1

T2
(kT ŷ + v1)) (5.15d)
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Putting a PSS in feedback with our estimated ROM gives us a closed-loop system of the
form in (5.16)

xcl = Aclxcl (5.16)

where

xcl =
[ ˙̂x
ẋpss

]
Acl =

[
Â + B̂DpssĈ B̂Cpss

BpssĈ Apss

]
(5.17)

The matrices Apss, Bpss, Cpss, and Dpss come from expressing (5.15) in a state-space
formulation. The goals of the state-feedback damping controller are: 1) to improve the
damping of the modes of the closed-loop system in Fig. 5.4, whose damping coefficient is
less than a specified critical threshold, ζc (see Fig. 5.5), and 2) to improve the stability of
the reduced-order model by shifting the real parts of its eigenvalues further into the left-half
plane. Given a pair of complex eigenvalues λi = σi ± jωi, their damping co-efficient, ζi, is
given by (5.18).

ζi = −σi√
σ2

i + ω2
i

(5.18)

Figure 5.5: Critical damping co-efficient

This optimization of the parameters of the PSS in (5.15) is mathematically represented
in (5.19) where k = [0....kq̃ ... 0 ... kε]T , λi are the eigenvalues of the closed-loop system in
(5.16), η is a normalization constant and β is a weighting factor to re-scale the damping
coefficient.

min
kq̃ ,kε,Tw,

T1,T2

β
∑

ζj≤ζc

αj[ζc − ζj]2 +
n∑

j=1
αj Re(λj) (5.19a)
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s.t. Aclvi = λivi ∀i (5.19b)
Re(λi) < 0 ∀i (5.19c)

kmin
q̃ ≤ kq̃ ≤ kmax

q̃ (5.19d)

kmin
ε ≤ kε ≤ kmax

ε (5.19e)

T min
1 ≤ Tw ≤ T max

w (5.19f)

T min
1,2 ≤ T1 ≤ T max

1,2 (5.19g)

T min
1,2 ≤ T2 ≤ T max

1,2 (5.19h)

T3 = T1 (5.19i)
T4 = T2 (5.19j)

αj =
{ i|xi∈x̃}∑

pij (5.19k)

We solve the non-convex optimization problem in (5.19) using particle swarm opti-
mization using the particle swarm optimization (PSO) hyper-parameters from [99] and
parameter limits listed in Appendix 5.7. We weight each term in the objective in (5.19a)
as a function of the total participation of the states of the reduced-order model in mode
j, given by (5.19k). This weighting encourages the optimization formulation to focus on
improving the damping and stability for the modes of the reduced order model rather than
a trivial solution where the modes associated with the PSS have large negative real parts
but have minimal effect on the modes of the reduced-order model.2 After solving (5.19),
the resultant PSS can be placed into operation and, as a final check, its performance can
be validated by repeating the probing and confirming an improved dynamical response.

The output of PSS is a change in the reactive power set-point of theCIG plant that gets
incorporated into the control loops by (5.20). This allows the proposed controller to operate
independently of the DC-side controller and Periodic re-tuning of the PSS can be achieved
by disabling the PSS and repeating the tuning presented in this paper. Alternatively, closed-
loop identification offers a means for potentially re-tuning the controller without disabling
the PSS [36]. Future work will examine this open question.

iq⋆
f = kp

P Q(q⋆ + ∆q⋆ − q̃) + ki
P Qσq (5.20)

5.5 Results

We first present a detailed demonstration of the proposed approach on a three-bus system.
This model contains a grid-following converter, from Section 5.2, a load and a synchronous
machine. The generator is a Marconato model with a Type II AVR and a Type I turbine

2The constraint in (5.19c) can be modified to Re(λi) < ϵ where ϵ < 0 is small. In this particular
application, both formulations produced similar results.
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governor [71]. We also model network dynamics, whose exclusion has been shown to have
a significant effect on controller coupling dynamics [69],

Following this, we then demonstrate the approach on the IEEE 14 bus system with
multiple CIG units simultaneously perturbing the system to build their own respective ROM.
We also include random load perturbations. We show how, even in the presence of unknown
and/or stochastic disturbances, our proposed approach improves the overall stability of the
system. All simulations are carried out using PowerSimulationsDynamics.jl [58].

3 bus system

We excite the system, with ω1=10 and ω1=15, using the excitation signal in Fig 5.3 to
obtain our input-output data. Fig. 5.6 shows the probe and a subset of the recorded states,
p̃ and q̃, during the first 5 seconds of the experiment. Using all the recorded experiment
data we build the extended observability matrix. The optimal model order, n⋆ is then
determined by solving the optimization from (5.10). The value of this optimization, for
varying model-orders, is shown in Fig. 5.7.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−0.01

−0.005

0.0

0.005

0.01
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.u

.]

∆p̃

∆q̃
u

Figure 5.6: Probe input and subset of recorded controller states for the 3-bus case

In this case, the estimated optimal model order obtained from using the SVC method
from [10] is 2. To understand this ROM, we compare the estimated modes of the ROM
with those of the full-order model in Fig. 5.8. The color of each of the markers in Fig. 5.8
represent the summation of the participation of the converter states in that mode. For
a 2nd-order model, we see that the subspace identification method is able to accurately
estimate the highly oscillatory mode in which the grid-following converter participates.
There are modes in Fig. 5.8 very close to real axis that are not estimated by our ROM. These
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Figure 5.7: Determining the optimal order of the ROM for the CIG in the 3-bus case

Table 5.1: PSS Parameters for the 3 bus system

kq̃[p.u.] kε[p.u.] Tw [s] T1 [s] T2 [s]
-0.5 -0.487 1.0 0.026 0.01

modes map to the integrator states of the inner-loop in (5.5a). Analysis shows that there
was minimal excitation of these states by the probe employed because of good reference
tracking by the PI control loop. Therefore, they were not identified as the dominant system
modes by the subspace algorithm. In the event of oscillatory interactions among inner-loop
controllers [106], this is expected to change as these modes become sufficiently excited to
be included in the ROM.

After we have estimated a ROM, we then optimize the parameters of the PSS using
(5.19). The resultant values are shown in Table 5.1.

To understand the performance of the proposed controller, we first look at the eigen-
spectrum of the linearized state-space model with and without the parameterized controller
in Fig 5.9. We see that the proposed approach successfully improves the damping of the
system by moving the pair of poorly-damped eigenvalues further into the left-half plane,
and the damping of these modes improves from 0.06 to 0.2. Additionally, the tuned con-
troller did not noticeably move any of the other system modes, shown in gray. Overall, the
stability margin of the estimated modes are significantly improved by the inclusion of the
proposed controller.

Next, we consider the time-domain response of the converter to a step-change in the
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Figure 5.8: Zoomed-in eigenvalue spectrum of full- and reduced-order model for the 3-bus
case

system load. Fig 5.10 show the active and reactive power injection from the converter
respectively. For the case of active power, we see an initial spike response followed by a
significantly smoother and better damped response as the stabilizing signal of the PSS takes
effect. Similarly, the reactive power exhibits a much better damped response. After the
initial spike, the reactive power is significantly more damped, and the amplitude of the first
swing is reduced.

14 bus system

Next, we test the proposed controller on a modified version of the IEEE 14 bus system,
shown in Fig. 5.11. We replaced the machines at bus 3 and bus 6 with grid-following CIG
and re-distributed the generation across all generation sources on the network. On bus 6
we replaced one machine with two grid-following CIG to demonstrate the effectiveness of
the approach even when two CIG units at the same bus have their probing periods partially
overlap. Each CIG perturbs the network with the parameters in Table 5.5 and repeats its
probing sequence 3 times. We then average over these experiments using (5.12) and (5.14)
and each CIG independently builds a ROM with their own experiment input-output data.
Using these estimated ROMs, each CIG then optimizes the parameters of its own damping
controller using (5.19). The estimated model order and optimized PSS parameters for each
CIG is shown in Table 5.2. In each case the estimated eigenvalues, and optimized PSS
parameters, were similar. No information is shared among the converters or with any other
devices on the system.
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Figure 5.9: Effect of tuned controller on eigenvalues for the 3-bus system

Table 5.2: PSS Parameters for the 14 bus system

n̂ kq̃[p.u.] kε[p.u.] Tw [s] T1 [s] T2 [s]
Gfl-3 2 -0.5 0.5 1.0 0.0247 0.01
Gfl-6a 2 -0.5 0.5 0.2 0.0249 0.01
Gfl-6b 2 -0.5 0.5 1.0 0.023 0.01

Fig. 5.12 shows the time-domain response of the three CIG units load step change at
bus 13. For each CIG, we see a significant improvement in the dynamical response with a
much shorter settling time. This shows that, for this case, there was no adverse interactions
from each CIG independently parameterizing its own local damping controller.

In the case of the reactive power, in Fig. 5.13, we see a greater improvement in the
dynamical response. In each case, the overshoot is reduced, and the settling time is greatly
improved.
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Figure 5.10: CIG active and reactive power for the 3-bus case following a load step change
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Figure 5.12: CIG active power response subject to disturbance for the 14-bus case
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5.6 Conclusions

In this work, we presented a methodology for parameterizing a damping controller for
grid-following CIG to improve the damping and stability margin of the system, particularly
during weak grid conditions. We first demonstrated that, even for the case of simultaneous
perturbations and/or ambient perturbation, each CIG was able to estimate a reduced-order
dynamical model that captures its dominant dynamical interactions with the external grid.
Following this, we developed an optimization formulation that incorporated participation
factors to encourage the optimization algorithm to focus on moving the modes of the
ROM, and consequently, improving the dynamical response when the controller was made
operational in the physical system.

While the idea of a damping controller for CIG is itself not novel, the proposed ap-
proach of adaptively parameterizing such a controller using only locally observed states
is. The proposed methodology requires no communication and can be carried out with
low-amplitude probing. While this paper did consider the performance of the controller
across various use cases, there is a significant amount of work to further understand these
types of approaches.

Specifically, future work will include determining robust upper- and lower-limits for
the parameters in (5.19) as well as a robust control approach where the uncertainty in
the estimated reduced order model is explicitly considered. Additionally, the concept of
closed-loop identifiability [36] will be considered as a means for re-parameterizing the
damping controller for the case where the system may otherwise be unstable for open-loop
probing as used in this paper. This is necessary as, after the PSS is parameterized, the
system conditions may change such that the CIG would not be stable without the optimized
PSS. Closed-loop identifiability allows us to re-probe the system without having to disable
the PSS.

5.7 Appendix

Weighted Extended Observability Matrix

We define the vectors yr(t) and ur(t)

yr(t) =


y(t)

y(t + 1)
...

y(t + r − 1)

 ur(t) =


u(t)

u(t + 1)
...

u(t + r − 1)

 (5.21)

where r is the prediction horizon, specified by the user. A larger value of r generally
leads to better estimation performance[64].

Assuming we have input-output measurements for t = 1, ..., N + r − 1 we then define
the matrices Y and U , using the notation from (5.21), in (5.22).
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Y = [yr(1) yr(2) . . . yr(N)] (5.22a)
U = [ur(1) ur(2) . . . ur(N)] (5.22b)

We define the matrix Π⊥
UT in (5.23). This matrix performs a projection onto the

nullspace of U .

Π⊥
UT = I − UT (UUT )−1U (5.23)

Next we define the vector φs as (5.24)

φs(t) =
[
y(t − 1) . . . y(t − s1)u(t − 1) . . . u(t − s2)

]T
(5.24)

and the matrix Φ

Φ = [φs(1) φs(2) . . . φs(N)] (5.25)

The weighted extended observabiltiy matrix is then given by

Ĝ = 1
N

W1Y Π⊥
UT ΦT W2 (5.26)

with weighting matrices W1 and W2. In this work we use the MOESP weighting matri-
ces[100].

φs(t) =



y(t − 1)
...

y(t − s1)
u(t − 1)

...
u(t − s2)


(5.27)

Experiment Parameters

Table 5.3: PSO Hyperparameters

Swarm size ω c1 c2
500 0.7298 1.49618 1.49618
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Table 5.4: PSS Paramerter Values

kmin
q̃/ε kmax

q̃/ε T min
w T max

w T min
1,2 T max

1,2
-0.5 0.5 0.5 1.0 0.01 0.5

Table 5.5: IEEE 14 Bus Probe Parameters

Γ [p.u.] ω1 ω2 M [s]
Gfl-3 0.005 11.0 14.6 20
Gfl-3 0.005 10.6 13.9 20
Gfl-3 0.005 13.6 16.2 20
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Chapter 6

Continuous-Time Echo State Networks
for Predicting Power System Dynamics
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text was previously published in Electric Power Systems Research Journal (2022); see [86]
for the full citation. The text has been reformatted for inclusion in this dissertation.

Abstract
With the growing penetration of converter-interfaced generation in power systems, the dy-
namical behavior of these systems is rapidly evolving. One of the challenges with converter-
interfaced generation is the increased number of equations, as well as the required numer-
ical timestep, involved in simulating these systems. Within this work, we explore the use
of continuous-time echo state networks as a means to cheaply, and accurately, predict the
dynamic response of power systems subject to a disturbance for varying system parameters.
We show an application for predicting frequency dynamics following a loss of generation
for varying penetrations of grid-following and grid-forming converters. We demonstrate
that, after training on 20 solutions of the full-order system, we achieve a median nadir
prediction error of 0.17 mHz with 95% of all nadir prediction errors within ±4 mHz. We
conclude with some discussion on how this approach can be used for parameter sensitivity
analysis and within optimization algorithms to rapidly predict the dynamical behavior of
the system.
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6.1 Introduction

The increasing integration of CIG into large-scale synchronous power systems is forcing
a re-examination of simulation practices to assess stability and reliability. Historically,
large-scale power systems analysis was primarily focused on eletromechanical phenomena,
arising from synchronous machines and their associated controls. However, the introduc-
tion of CIG, whose control loops act on the timescale of microseconds to milliseconds,
is altering the dynamical behavior of power systems and is forcing examination of both
electromagnetic and eletromechanical phenomena. These changes are leading to questions
about the validity of several simplifications that have enabled computationally tractable
large-scale system time domain simulations [42].

One of these key simplifications has been representing high-frequency dynamics, e.g.,
network dynamics, by either steady-state models or simplified dynamic models [42]. With
increasing penetration of CIG, however, these simplifications have been shown to lead to
incorrect conclusions about the small-signal stability of an operating point [69, 44] and/or
lead to incorrect time-domain behavior following a disturbance [20]. This has led to some
system operators recently introducing more stringent requirements for models of CIG to
enable detailed electromagnetic studies [31].

These electromagnetic studies can be very computationally intensive, and potentially
prohibitively time-consuming. The inclusion of both the dynamics of slow-acting syn-
chronous machine and fast-acting CIG results in a stiff system. These systems require
implicit differential equations solvers and, typically, very small simulation timesteps during
a disturbance to accurately solve. This challenge in numerically solving the system is com-
pounded by the increase in the number of equations to solve as large capacity synchronous
generators are replaced by tens, or hundreds, of smaller capacity CIG plants. Therefore,
not only are these systems computationally more expensive to simulate for a fixed number
of differential equations, but the number of equations is also significantly larger, assuming
all dynamics are modeled.

This paper explores the application of SciML to accelerate power systems simulations.
SciML is a growing area of research that attempts to blend principles of scientific computing
and machine learning [9]. One research area of SciML is computational acceleration using
surrogates. A surrogate is an accurate approximation of the corresponding physics-based
model trained using a data-driven approach. The training data come from recording the
output of a full-order physics-based simulation across a subset of operating conditions.
Once a surrogate has been trained to fit the training data, it can then be used in place of
the full-order physics-based model. This reduces computational burden and can facilitate
further analysis, e.g., sensitivity analysis or optimization.

The application of SciML techniques to model the dynamical behavior of power sys-
tems has been gaining interest in recent years, particularly the application of physics in-
formed neural networks (PINNs) [72, 94]. In this paper, we will explore the application of
continuous time echo-state networks (CTESNs) [4] for learning a surrogate to predict the
time-domain solution of a power system for varying system parameters.
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We begin with a discussion of the challenges that stiff systems present for some popular
SciML surrogates, e.g., PINNs and long short-term memory (LSTM) networks. We then
present a detailed introduction to CTESNs and how they bypass these stiffness-related
challenges. Following this, we demonstrate an application for accelerating power system
dynamic simulations through the use case of predicting frequency dynamics for varying
compositions of CIG. We show that, after training on 20 solutions of the full-order system,
we achieve a median nadir prediction error of 0.17 mHz with 95% of all nadir prediction
errors within ±4 mHz across the parameter space. Finally, we conclude with a discussion on
the potential of CTESNs for power systems analysis and propose future research directions.

The main contributions of this paper are:

• An exploration of CTESNs as a new approach to accelerating parameter-sensitivity
time domain simulations for power systems.

• An empirical examination of how the accuracy of CTESNs depends on the number of
true solutions used during the training phase.

• An applied example where we use CTESNs to predict frequency dynamics following a
large loss of generation with varying relative compositions of CIG (i.e., grid-forming
vs grid-following).

6.2 Surrogates for Power System Simulation

The general process for training a surrogate is shown in Fig. 6.1. The parameter space of
interest is sparsely sampled and the solution of the full-order model is obtained for each
of these samples. These solutions form the training data from which the surrogate learns
the parameter sensitivity of the solution. Once a surrogate has been trained, it can then
be used to probe the parameter space at a much finer granularity with significantly less
computational overhead, while maintaining a sufficient level of accuracy.

One surrogate model that has gained significant interest in recent years is a PINN [83].
A PINN is a continuous time function that predicts the solution of a physical system. Its
loss function typically has two terms. The first of these terms penalizes the neural network
for predicting values that do not match measured, or simulated, data. The second term in
the loss function typically encodes known, or approximate, physical equations governing
the behavior of the underlying physical system. An example of this in the context of power
systems is penalizing the neural network for predicting voltage magnitudes and angles that
do not satisfy the algebraic network power flow equations. PINNs have shown promise in
predicting the solution of synchronous machines [94].

Another data-driven approach to learning the solution to a system of equations are
LSTM networks. These neural networks are a type of recurrent neural network (RNN)
where connections between nodes form a directed graph along a temporal sequence. This
allows RNNs to learn to exhibit temporal dynamic behavior, and consequently, are suitable
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Figure 6.1: Surrogate for computational acceleration.

for learning the solution to a dynamical system. Like PINNs, LSTM networks have been
successfully shown to be able to learn the solution of a synchronous machine [62, 94].

Both PINNs and LSTM networks have, however, been shown to be very difficult to fit
to stiff systems [4, 105]. With the continual addition of CIG to our power systems, fast
power system dynamics can no longer universally be well approximated by their steady-
state algebraic equations [42]. Stiff systems are difficult for gradient-based surrogate
training techniques for the same reason they are very difficult for explicit numerical solvers;
they require a very small numerical step. For gradient-based optimization techniques, this
numerical step is the learning rate of the optimizer.

CTESNs

Echo state networks (ESNs), like LSTM networks, are a type of RNN. However, they differ
in that the weights of both the input matrix, Win, and the weights of the reservoir, A, in
(6.1) are randomly assigned and fixed throughout the training. Therefore, the training of
an echo-state network (ESN) simplifies to learning the weights of the output layer, Wout,
in (6.2).

rn+1 = f(Arn + Winxn) (6.1)
x̂n = g(Woutrn) (6.2)

Typically the function g(·) is the identify function. The process for learning the weights of
the readout layer then reduces to a least-squares problem, thereby, significantly simplifying
the training of these networks. Consequently, ESNs avoid the challenges of gradient-based
optimization for learning stiff systems. ESNs typically have a large recurrent layer, as shown
in Fig 6.2, that results in a high-dimensional state space of rich dynamics. It is this wide
spectrum of heterogeneous dynamics that allow ESNs to achieve excellent performance
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in predicting time series behavior. ESNs have been used to predict chaotic systems [61],
energy consumption and wind power generation [46].
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Figure 6.2: General structure of ESNs

Typically, ESNs are trained against fixed timestep interval data. This, however, can
present challenges for learning stiff systems where a high number of samples may be
required during disturbances to appropriately sample the fast dynamics. To overcome this
issue, the authors in [4] proposed the use of CTESNs. These networks sample the true
solution at the same non-uniform time intervals as was required to accurately solve the
system using an adaptive implicit ODE solver.

To train a CTESN, we first begin with a sample solution of the true physical non-linear
system that we term a nominal solution. We denote this nominal solution with parameters
p⋆, and pre-defined disturbance w⋆, as x(p⋆, w⋆, t). We then use this nominal solution to
drive the dynamics of the high dimensional reservoir

ṙ(t) = f(Ar(t) + Winx(p⋆, w⋆, t)) (6.3)

where A is a fixed sparse random matrix ∈ RN×N , Win is a fixed dense random matrix
∈ RN×M , x(p⋆, w⋆, t) ∈ RM and f(·) is a non-linear function, e.g., tanh(·). Because the
reservoir in (6.3) is a non-stiff system, it is computationally cheap to simulate.

Once we have simulated the reservoir, we then want to learn a parameter-dependent
mapping from this solution, r(t), to a predicted solution of the true system, x̂(p, w⋆, t).
Typically, this is a linear-projection estimated by least squares. In our work however, we
adopt a non-linear projection, the radial basis function (RBF), from [79]. radial basis
functions (RBFs) are a method of interpolating unstructured data in high-dimensional
spaces. The interpolant takes the form of a weighted sum of radial basis functions ϕ||.||,
e.g., Gaussian, linear or cubic, and frequently has some low order polynomials. Given n
pairs of training data, (x,y), over which we fit an RBF, we estimate ŷ at a test datapoint,
x⋆, by (6.4)
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ŷ = RBF(x⋆) =
n∑

i=1
λiϕ(||x⋆ − xi||) +

m∑
j=1

γjpj(x⋆) (6.4)

where the weights λ and γ are learned during training. We use two RBF functions
in this work. The first of these, rbfβ in (6.5a), takes as input the parameters we want to
vary within our simulation, p, and outputs a vector of weights, β(p). These weights then
parameterize a second RBF, rbfx in (6.5b), that maps from the pre-simulated reservoir,
r(t), to the physical time series we want to predict, x̂(t).

β(p) = RBFβ(p) (6.5a)

x̂(p, w⋆, t) = RBFx(β(p), r(t)) (6.5b)

We train this model by first sampling the boundary points of our multi-dimensional
parameter space of interest. We then sample the remaining training points using Latin
hypercube sampling, a low-discrepancy sequence, to generate a set of sample parameter
vectors, P = [p1 p2 . . .pn]. Then, ∀pi ∈ P , we simulate the full order model of the power
system and calculate the parameter dependent rbfx weights, β(p), that map the reservoir
states, r(t), to states of the physical system, x(t). Once we have a set of training weights,
β(p) ∀pi ∈ P , we fit the radial basis function interpolation in (6.5a) to estimate these
weights for parameters outside our training set. All RBF functions are fit using the Julia
package Surrogates.jl1.

After a CTESN has been trained, predicting system behavior for different parameters
consists of a simple evaluation of (6.5a) to determine the parameter dependent weights,
β(p), followed by a matrix multiplication of these weights by the precomputed interpolation
matrix of rbfx. The dominate operation in this workflow is a simple matrix multiplication
that scales O(N). This is significantly cheaper that the cost of a general implicit ODE solver
that generally scales up to O(N3).

6.3 Methodology

The use case we consider within this work is predicting the frequency of the system fol-
lowing a large loss of generation for varying penetrations of both grid-following and grid-
forming converters. The inclusion of these devices, and their relative penetrations, impacts
key metrics of interest following large disturbances, e.g., the frequency nadir and rate of
change of frequency (RoCoF).

Power System Models

The main power system considered for analysis is a modified version of the IEEE 14 bus
system, shown in Fig 6.3. Generation capacity and active power set-points are adjusted to

1https://github.com/Surrogates.jl
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distribute active power generation more evenly among the units. An additional thermal
unit is added to bus two that provides 4% of the systems total active power generation.
The disturbance considered for all experiments is a trip of this generating unit.
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Figure 6.3: Modified IEEE 14 bus model.

To understand the impact of increasing penetration of CIG, we add both a grid-forming
and grid-following converter to bus 2, 3, 6 and 8, as shown in Fig 6.3. All generation
resources have an active power set-point of 0.8 p.u. with respect to their own capacity. For
each simulation we change the penetration of CIG by changing the installed capacity for
every generation resource on the network. Therefore, in addition to changing the active
power injection from synchronous units, we also change the total system inertia for each
simulation.

All synchronous machines are thermal units with a Type I turbine governor, with an
active power droop of 5%, and a Type II AVR [71]. The grid-forming converters, from [69],
are operating in droop mode, with an active droop of 5%. The grid-following inverters,
taken from [53], are injecting fixed P and Q into the network and we model both network
current dynamics and voltage dynamics for nodes with non-zero capacitance. This results
in a system with x ∈ R243 with an associated stiffness ratio of the system on the order of
106.

Additionally, to demonstrate the scalability of the proposed approach, we will also ex-
amine how both the CTESN relative computation time and accuracy scale for increasing
system size in Section 6.4. These systems are constructed by connecting copies of the
IEEE-9 bus system. All simulations are carried out using the Julia package PowerSimula-
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tionDynamics.jl [58, 59] using Differentialequations. jl [80] and all code for the
experiments described here can be found at [33].

Training the CTESN

To generate training data, we simulate the network subject to a loss of generation at t = 10s.
We vary the system operating conditions by changing 1) the % of generation that are CIG
∈ [10, 80] and 2) the % of the CIG that are operating in grid-forming mode ∈ [10, 40].
The system is solved using the adaptive-stepping implicit IDA solver in Sundials [45]. The
timesteps at which IDA solves the system determines the non-uniform sampling interval
for training a CTESN. The input matrix, Win, is a random matrix whose entries are drawn
from x ∼ N (0, 1). The reservoir matrix, A, is a Erdős–Renyi random graph with the total
number of connections equaling the dimensional of the matrix. For rbfx we use a linear
RBF function while for rbfβ we use a cubic RBF function.

For this application, we train a CTESN to predict all line currents, nodal voltages for
nodes with non-zero capacitance and the frequency of all synchronous machines on the
network. To ensure that the reservoir is sufficiently excited by the solution of the true
system, we normalize all state variables of the nominal solution, by subtracting their re-
spective mean and dividing by the standard deviation, prior to feeding it as an input into
the differential equations describing the evolution of the reservoir.

Within this work, we sample the parameter space and simulate the full-order physical
system for the primary purpose of generate training data. In practice, depending on the
application, the user/operator may follow such an approach. Alternatively, a CTESN can
viewed as a valuable secondary use of the enormous amount of data that operators are
generating daily through contingency analysis. In such cases, a CTESN can be trained
in parallel until it is deemed to have met some accuracy requirements, from which time
onward it can accelerate the exploration of contingencies.

6.4 Results

Accuracy of the Surrogate

We first begin by examining the accuracy of a CTESN. We sample from the parameter
space using a Sobol sequence to generate a test size of 200. Fig. 6.4 shows a histogram of
the errors between the true frequency nadir from the full-order system and the predicted
frequency nadir from the CTESN for each individual test for different training sizes. In this
context, training size refers to the number of time-domain solutions of the full-order we
use for training the CTESN.

For the case of a training size of 20, 95% of all the errors are ≤ ± 4 mHz. This empirical
level of accuracy in Fig. 6.4 supports the idea that these surrogate approaches can be used
to understand parameter sensitivities and/or within optimization algorithms to ensure
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Figure 6.4: Empirical probability distribution of worse-case CTESN frequency nadir predic-
tion error for varying training size.

satisfactory system frequency bounds. Furthermore, as previously noted, these training
samples were randomly generated using Latin hypercube sampling. With more intelligent
sampling of the parameters space there exists the possibility for equivalent, or improved,
accuracy with reduced training samples.
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Figure 6.5: Empirical probability distribution of worse-case CTESN RoCoF prediction error
for varying training size.
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Another metric receiving increasing interest is the maximum RoCoF following a loss of
generation. Fig. 6.5 shows a histogram of the errors between the largest negative RoCoF
from the full-order system and the predicted largest negative RoCoF from the CTESN for
each individual test. For both cases, the RoCoF was not a state variable but was estimated
by calculating the maximum change in frequency over a time period of 0.1 s. Given this,
the error distribution is less sensitive to training size, as expected.
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Figure 6.6: CTESN predicted frequency (solid lines) vs true solution (dashed black lines)
and prediction error.

Fig. 6.6 compares three frequency traces from the synchronous machine at Bus 1 for
three different generation composition mixes. In the first subplot, the CTESN predicted fre-
quency traces are overlaid with the true solution, the dashed black line, and the prediction
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error for each case is shown in the second subplot. Across all cases, the CTESN accurately
predicts the dynamical behavior of the system, with a maximum prediction error of ≈ 10
mHz. This plot shows the capability of the CTESN to predict metrics such as the nadir and
RoCoF, while also providing an estimation of the settling time and how damped the system
response is.

Power System Dynamic Behavior

Once a CTESN is trained we can use it to rapidly predict the time series response for any
parameter set within the upper- and lower-bounds specified during training. Fig. 6.7 shows
the predicted frequency nadir by conducting a parameter sweep across the parameter range
with a parameter granularity of 0.5%. This type of analysis can help system operators
understand the required relative composition of grid-forming CIG to satisfy frequency
containment requirements following the largest loss of generation. As expected, we see
that for a fixed % of CIG, increasing the % of these resources that are grid-forming leads to
a better frequency nadir.
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Figure 6.7: CTESN predicted frequency nadir.

Similarly, we can look at both the maximum RoCoF and frequency settling time, shown
in Fig. 6.8 and Fig. 6.9 respectively, across the parameter range. We define the settling time
as the time when the mean frequency across all machines enters, and stays within, a band
of ±20mHz Hz of its final settling frequency. We see in Fig. 6.9 that the % of CIG that is
grid-forming has a significant impact on the frequency settling time.

To further examine how the response of the system changes we consider three distinct
operating conditions, and their associated frequency dynamics, in Fig 6.6. We see that as we
vary the % of CIG, the shape of the response can move from a 2nd-order response to more
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Figure 6.8: CTESN predicted largest RoCoF.
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Figure 6.9: CTESN predicted frequency settling time.

of a 1st-order response, in agreement with recent work [52]. Understanding the shifting
behavior of the system with increased deployment of CIG will be critical for understanding
and optimizing the deployment of these resources in large-scale networks.
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Scalability and Computation Time

To benchmark the relative computation times, we consider systems of increasing sizes, all
constructed using the WSCC 9-bus system as a modular building block and compare the
computation time for both the CTESN and the full-order physical model. For each system
size in Table 6.2, a CTESN was trained using 20 time-domain solutions of the full-order
power system model with different CIG compositions. All computational benchmarking
was carried out on a rack server with an Intel Xeon Processor E5-2623 v3.

Table 6.1 shows the total training time for each system. This time excludes the data
generation, i.e., simulating the full-order physical model, as this is dependent on the specific
simulation environment used, (e.g. PSCAD, etc). For a given training size, the primary
factors influencing the training time are the number of time-steps required by the adaptive
ODE solver to solve the system as well the number of variables that we want to predict. For
larger systems, parallelization of components of the training process could reduce training
times.

Table 6.1: CTESN Training Times

18 Bus 36 Bus 72 Bus 144 Bus

Train Time 2 52 s 186 s 201 s 626 s

The mean execution times, which included initializing and solving/predicting the time-
domain solution across 20 simulations of each system, are shown in Table 6.2.

Table 6.2: Mean model execution times

System Size CTESN Full-order Model Improvement (× times)

18 Bus 0.312 s 0.849 s 2.71

36 Bus 0.797 s 4.37 s 5.47

72 Bus 1.492 s 29.19 s 19.56

144 Bus 2.9 s 109.83 s 37.83

We see that, as expected, for increasing system size the computation acceleration
achieved by the CTESN continues to improve. In each case the CTESN predicted the
frequency of all synchronous machines, as well as nodal voltage with non-zero capacitance
and line currents. Fig 6.10 shows a box plot of the CTESN prediction RMSE across 50 runs
of the 144 Bus system, each for varying CIG penetration levels. For each prediction of the
144 Bus system, the CTESN is predicting a total of 467 state variables. Fig 6.10 shows that,
even as we increase system size, the CTESN can predict all variables of interest with low
error.
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Figure 6.10: Box plot of prediction RMSE trained on 25 solutions for the 144 bus test case
system.

6.5 Conclusions

This work examines the application of CTESNs for accelerating parameter sensitivity anal-
ysis for power system time domain simulations. The results suggest that there may be
suitable candidate use cases for CTESNs, depending on the accuracy requirements in ques-
tion. One avenue that the current implementation of CTESNs may open is rapid predictions
of system dynamics subject to a pre-defined set of disturbances. This can allow for inclu-
sion of frequency and/or voltage constraints within market optimization algorithms e.g.,
procuring reactive power support and/or frequency containment reserves. Furthermore,
CTESNs can be used for planning purposes, e.g., understanding shifting system dynamics,
and controller gain tuning. The ability to sparsely sample parameter spaces and build
accurate approximate models can lead to more targeted exploration using the full-order
model.

The use of CTESNs for developing surrogates for stiff-systems is a nascent area of re-
search [4] and there is a significant amount of further work required to characterize the
suitability of this approach for power system analysis. While the use case presented here
was focused on learning the solution at the transmission grid level, there is no reason why
CTESNs cannot be used for many other applications in power systems, e.g., for learning the
solution of distribution systems and/or networked microgrids. Additionally, there is recent
work that attempts to develop reusable component level surrogates based on CTESNs [5].
For power system applications, this could open further acceleration techniques beyond
those presented within this paper. Most notably, this could include using surrogates as
modular building blocks that can be mixed with physics-based models to understand the
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response of the system to discontinuities not seen during the training phase, e.g., network
topology changes and/or tripping of different resources.

Future works includes more intelligent sampling of the parameter space to minimize
training requirements as well as exploring the idea of surrogates as modular building blocks
for dynamical simulations. Additionally, some way of characterizing the accuracy of the
surrogate, without the explicit use of a test set, would give users a greater confidence in
integrating these surrogates into their workflow.
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Chapter 7

Conclusion

This dissertation sought to develop new approaches for addressing the increased control
and simulation complexity of systems with high penetration of IBRs. We showed how
the stability and dynamical response of IBRs can be improved by the development of
supplementary control loops that would not impede the current normal operation of these
devices. Chapter 2 showed how, for the case of a cascaded PI inner-loop controller, we can
neglect the DC-side dynamics without any loss in accuracy in capturing the interaction of
the IBR with the grid. We also demonstrated that there is potential for a modest reduction
in the required DC-side capacitor with the inclusion of a feedforwad predictive term.

In Chapter 3 and 4 we demonstrated how these multi-layered digital control loops
that determine the dynamics of IBRs can increase the cyber-physical attack surface of these
complex systems. We proposed an online adaptive controller that would introduce a min-
imal amount of stochastic behavior into the inverter control logic to break any adverse
controller coupling, intentional or unintentional, through the network. Finally, on the topic
of control, we demonstrated how we can use subspace identification to help periodically
parameterize a power oscillation damping controller for IBRs in Chapter 5. The proposed
method used repeated short duration low amplitude probing to excite the modes of in-
teraction between the local grid and the IBR. This data is then used in controller design
before, finally, the parameterized controllers are tested against the real system. This type
of controller is not intended to replace rigorous offline engineering control development
but rather improve the performance of these controllers should they experience unforeseen
operating conditions.

Power system stability and control is a very exciting and active research right now with
entirely new control strategies being proposed based on nonlinear phenomena such as
coupled oscillators [49, 43, 91] and higher-order multi-input multi-output based grid-
forming converters [18]. Additionally, understanding the system needs and where these
advanced control functionalities are needed is a critical and open-area of research [78,
109].

In Chapter 6 we turned out attention to the issue of time-domain simulations. We
showed how some emerging tools from the field of SciML can help provide a way to re-use
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existing simulation data as well as identify regions of the parameter space that would be
good candidates for further exploration. We find that the use of CTESNs can achieve 37×
acceleration of time-domain simulations for the test cases considered, with the relative
acceleration increasing for large system sizes. This approach can be readily integrated into
system operators workflows and help identify contingencies or operating conditions that
need further investigation.

Future work will continue to focus on the use of SciML for accelerating power system
time-domain simulations. Specifically, we are interested in developing ROMs that can cap-
ture the aggregate behavior of active distribution networks and/or parts of the transmission
grid. We are working towards extensions of the work in Chapter 6 to develop composable
dynamics models, similar to the work in other domains [5], that can open up more op-
portunities for computational acceleration for large-scale systems. We believe this work is
critical as we see increasing controllability at the edge of the grid.

The field of SciML is a rapidly growing area of research with tools for learning differ-
ential equations describing the aggregate behavior of a set of heterogeneous dynamical
devices [19, 81], solving partial differential equations [63], system identification [93] and
other applications in power systems [104]. Continual research and development in this
area is critical to continue to equip system operators with the tools they need to operate
our power systems.
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ity of Complex Droop Control in Converter-Based Power Systems”. In: IEEE Control
Systems Letters (2023) (cit. on p. 89).

[44] Rodrigo Henriquez-Auba, Jose D. Lara, Ciaran Roberts, and Duncan S. Callaway.
“Grid Forming Inverter Small Signal Stability: Examining Role of Line and Voltage
Dynamics”. In: IECON 2020 The 46th Annual Conference of the IEEE Industrial
Electronics Society. 2020, pp. 4063–4068. D O I: 10 . 1109 / IECON43393 . 2020 .
9255030 (cit. on p. 75).

[45] Alan C Hindmarsh et al. “SUNDIALS: Suite of nonlinear and differential/algebraic
equation solvers”. In: ACM Transactions on Mathematical Software (TOMS) 31.3
(2005), pp. 363–396 (cit. on p. 81).

https://doi.org/10.1109/TPWRS.2021.3124667
https://doi.org/10.1109/TSG.2017.2666046
https://doi.org/10.1109/TPWRS.2020.3041774
https://doi.org/10.1109/IECON43393.2020.9255030
https://doi.org/10.1109/IECON43393.2020.9255030


BIBLIOGRAPHY 95

[46] Huanling Hu, Lin Wang, and Sheng-Xiang Lv. “Forecasting energy consumption
and wind power generation using deep echo state network”. In: Renewable Energy
154 (2020), pp. 598–613 (cit. on p. 78).

[47] P-H Huang and Y-Y Hsu. “Eigenstructure assignment in a longitudinal power system
via excitation control”. In: IEEE transactions on Power Systems 5.1 (1990), pp. 96–
102 (cit. on p. 21).

[48] “IEEE Standard for Interconnection and Interoperability of Inverter-Based Resources
(IBRs) Interconnecting with Associated Transmission Electric Power Systems”. In:
IEEE Std 2800-2022 (2022), pp. 1–180. D O I: 10.1109/IEEESTD.2022.9762253
(cit. on pp. 3, 56).

[49] Brian B Johnson, Sairaj V Dhople, Abdullah O Hamadeh, and Philip T Krein. “Syn-
chronization of parallel single-phase inverters with virtual oscillator control”. In:
IEEE Transactions on Power Electronics 29.11 (2013), pp. 6124–6138 (cit. on p. 89).

[50] I Kamwa, G Trudel, and L Gerin-Lajoie. “Low-order black-box models for control
system design in large power systems”. In: Proceedings of Power Industry Computer
Applications Conference. IEEE. 1995, pp. 190–198 (cit. on p. 56).

[51] Innocent Kamwa and Luc Gerin-Lajoie. “State-space system identification-toward
MIMO models for modal analysis and optimization of bulk power systems”. In:
IEEE Transactions on Power Systems 15.1 (2000), pp. 326–335 (cit. on p. 56).

[52] Rick Wallace Kenyon, Amirhossein Sajadi, and Bri-Mathias Hodge. “Frequency
Dynamics with Grid Forming Inverters: A New Stability Paradigm”. In: arXiv
preprint arXiv:2102.12332 (2021) (cit. on p. 85).

[53] Rick Wallace Kenyon, Amirhossein Sajadi, Andy Hoke, and Bri-Mathias Hodge.
“Open-Source PSCAD Grid-Following and Grid-Forming Inverters and A Benchmark
for Zero-Inertia Power System Simulations”. In: 2021 IEEE Kansas Power and Energy
Conference (KPEC). IEEE. 2021, pp. 1–6 (cit. on p. 80).

[54] Md Tanvir Arafat Khan, Aranya Chakrabortty, Iqbal Husain, and Rafael Cisneros.
“Coordinated control of energy storage in networked microgrids under unpredicted
load demands”. In: 2019 American Control Conference (ACC). IEEE. 2019,
pp. 1573–1578 (cit. on p. 7).

[55] Meir Klein, Graham J Rogers, and Prabha Kundur. “A fundamental study of inter-
area oscillations in power systems”. In: IEEE Transactions on power systems 6.3
(1991), pp. 914–921 (cit. on p. 53).
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