
Algorithms for Context-Aided Variable Elimination

Inigo Incer
Albert Benveniste
Richard M. Murray
Alberto L. Sangiovanni-Vincentelli
Sanjit A. Seshia

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-15

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-15.html

January 28, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Algorithms for Context-Aided Variable
Elimination

Inigo Incer1,3, Albert Benveniste2, Richard M. Murray3, Alberto
Sangiovanni-Vincentelli1, and Sanjit A. Seshia1

1 University of California, Berkeley, USA
2 INRIA/IRISA, Rennes, France

3 California Institute of Technology, USA

Deriving system-level specifications from component specifications usually
involves the elimination of variables that are not part of the interface of the
top-level system. This paper presents algorithms for eliminating variables from
formulas by computing refinements or abstractions of these formulas in a con-
text. We discuss a connection between this problem and optimization and give
efficient algorithms to compute refinements and abstractions of linear inequality
constraints.

1 Introduction

In the setting of formal system design using assume-guarantee specifications
[2,4,6], we come across the need to eliminate variables from a formula by com-
puting refinements or abstractions in a context. Let ϕ be a formula containing
some variables that must be eliminated. These will be called irrelevant vari-
ables, and the set of such variables will be denoted Y . In order to carry out the
elimination, suppose we can use information from a set of formulas Γ called the
context. We will consider the problems of synthesizing missing formulas in the
expressions

Γ ∧ ? |= ϕ and Γ ∧ ϕ |= ?

such that the result lacks forbidden variables. We will call the first problem
antecedent synthesis, and the second consequent synthesis. If ψ is a solution to
the antecedent synthesis problem, we will say that ψ is a refinement (or an
antecedent) of ϕ in the context Γ . If ψ is a solution to the consequent synthesis
problem, we will say that ψ is an abstraction (or a consequent) of ϕ in the context
Γ . Before we formalize the problem, we consider two examples.

Figure 1 shows two components connected in series, M1 and M2. The first has
input i and output o, and the second has input o and output o′. Each component
comes with its assumptions and guarantees. The nature of M1 and M2 is left
abstract; they could be routines executing in order, or they could be physical
systems that interact through their input and output ports. Our problem is
to obtain a specification for the entire system using the specifications of the
subsystems in such a way that only the top-level input and output variables

2 Incer et al.

𝑴𝑴𝟏𝟏

Assumptions 𝒊𝒊 ≤ 𝟐𝟐
Guarantees 𝒐𝒐 ≤ 𝟐𝟐𝒊𝒊 + 𝟏𝟏

𝑴𝑴𝟐𝟐

Assumptions 𝒐𝒐 ≤ 𝟏𝟏
Guarantees 𝒐𝒐′ ≤ 𝟑𝟑𝒐𝒐 − 𝟐𝟐

𝒊𝒊 𝒐𝒐 𝒐𝒐𝒐

Fig. 1: Two components connected in series. We wish to compute the specification
of the top-level system composed of these two elements.

i and o′ appear in the final answer. In other words, the top-level specification
should not mention the internal variable o.

We would like to operate the system in such a way that the assumptions
of the two components hold. This would mean that we can rely on the two
subsystems to deliver their guarantees. Thus, the top-level system should assume
(i ≤ 2) ∧ (o ≤ 1). This cannot be the top-level specification because the second
formula involves the irrelevant variable o. We would like to find a term only
depending on i that somehow ensures that the assumptions o ≤ 1 of M2 are
satisfied. For this, we make use of the knowledge that M1 guarantees o ≤ 2i+ 1
when i ≤ 2. We want to transform the constraint o ≤ 1 into a constraint ψ on the
input i with the property that, given the guarantees of M1, ψ implies o ≤ 1. That
is, this new constraint should satisfy ψ ∧ (o ≤ 2i + 1) → (o ≤ 1), which means
that ψ should be a refinement (an antecedent) of o ≤ 1 in the context of the
guarantees of M1. We observe that ψ : i ≤ 0 satisfies this requirement. Thus, we
transform the term o ≤ 1 into the term i ≤ 0. The top-level assumptions become
i ≤ 0. We can verify that these top-level assumptions ensure that subsystems
M1 and M2 have their assumptions met.

Similarly, the guarantees for the system are (o ≤ 2i + 1) ∧ (o′ ≤ 3o − 2).
Again, the variable o is not welcome in the final answer, giving us two options:
we could eliminate both terms and have no guarantees—which is right, but not
useful—or we could relax (compute the consequent of) one of the terms in the
context of the other term. We find out, for example, that (o ≤ 2i + 1) ∧ (o′ ≤
3o− 2) → (o′ ≤ 6i+ 1). The constraint o′ ≤ 6i+ 1 is an acceptable promise for
the system specification.

By computing antecedents and consequents, we concluded that the top-level
system guarantees o′ ≤ 6i+ 1 as long as the input satisfies i ≤ 0.

This example shows that the computation of antecedents and consequents
plays a key role in the identification of pre/post conditions. One may be tempted
to link antecedents to assumptions and consequents to guarantees. This is not
always so. Figure 2 show a situation in which we again have two components
connected in series, M1 and M2, with inputs and outputs as before. Now we are
given the top level assumptions and guarantees, and we also know the assump-

Algorithms for Context-Aided Variable Elimination 3

𝑴𝑴𝟏𝟏

Assumptions 𝒊𝒊 ≤ 𝟐𝟐
Guarantees 𝒐𝒐 ≤ 𝟐𝟐𝒊𝒊 + 𝟏𝟏

𝑴𝑴𝟐𝟐

Assumptions ?
Guarantees ?

𝒊𝒊 𝒐𝒐 𝒐𝒐𝒐

Assumptions 𝒊𝒊 ≤ 𝟏𝟏
Promises 𝒐𝒐′ ≤ 𝟒𝟒𝒊𝒊 − 𝟏𝟏

Fig. 2: Two components connected in series. We are given the specification of the
top-level system and the specification of M1. The problem is to find the pre/post
conditions of M2 in order to obtain the given system-level specifications.

tions and guarantees of M1. The problem is to find the pre/post conditions of
M2 using this data.

To start with, we know that the top level assumes that i ≤ 1. Under these
assumptions, M1 guarantees o ≤ 2i + 1. The assumptions of M2 should be
met when the top-level system is operating within its assumptions. Thus, the
assumptions of M2 should be implied by the data (i ≤ 1) ∧ (o ≤ 2i + 1). Since
the assumptions of M2 should only depend on o, we obtain the expression o ≤ 3.

Now we look for the guarantees of M2, which we call ψ. The guarantees of
M1 and M2 together must imply the top-level guarantees. Thus, we have the
expression ψ ∧ (o ≤ 2i+ 1) → (o′ ≤ 4i− 1). In other words, ψ is an antecedent
of o ≤ 2i+ 1 in the context o′ ≤ 4i− 1. We require ψ to only refer to variables
o and o′ and observe that o′ ≤ 2o− 3 is an acceptable promise.

We conclude that M2 should assume o ≤ 3 and promise o′ ≤ 2o− 3.

The examples just described motivate us to study automated mechanisms for
the computation of antecedents and consequents of formulas in a given context
with the objective of removing dependencies on irrelevant variables. We first
consider this problem in the setting where the model of the theory is a com-
plete partial order. We treat antecedents and consequents in a unified manner
and formulate both notions as optimization problems. We then specialize our
considerations to formulas expressed as linear constraints in a context of lin-
ear inequalities and provide efficient algorithms to address this problem. Our
previous discussion shows that this problem is of relevance to formal system
design.

2 Computing antecedents and consequents in partial
orders

In this section, we consider the computation of antecedents and consequents of
atomic formulas from a first-order theory in a structure endowed with a partial
order. We establish a link between this problem and optimization. Our attention
will be on atomic formulas of the form f(x, g(y)) ≤ K, where y is an array of

4 Incer et al.

irrelevant variables and f is monotonic in the second argument. In other words,
we assume that the irrelevant variables can be separated from the rest of the
variables in the formula. We use a context Γ to bound g(y) using an expres-
sion that does not depend on y. This allows us to eliminate irrelevant variables
from the original formula. We show that this framework supports formula re-
finement/abstraction for propositional logic and linear inequalities.

Our description of formal languages borrows notation from [1]. Let (F ,R)
be the signature of the first order language L and let V be a set of variables.
That is, let F and R be sets of function and relation symbols of various arities.
Let M = (DM,FM,RM) be a structure in which we interpret L. Here DM
is a set called the domain. For each function symbol f ∈ F of arity n, there
is fM ∈ FM such that fM : Dn

M → DM; and for each m-ary relation symbol
R ∈ R, we have RM ∈ RM such that RM ⊆ Dm

M.
We will assume that DM is a bounded, complete partial order and that R

contains a binary relation, denoted ≤, whose interpretation ≤M in M is the
partial order relation of DM.

Let X = {xi}mi=1 ⊆ V and Y = {yi}ni=1 ⊆ V be disjoint sets of variables,
where the elements of Y will be called irrelevant variables. Suppose K ∈ F is
a 0-ary (a constant) function symbol, f is an (m+ 1)-ary term generated by F
and X ∪ Y , and g is an n-ary term generated by F and Y . Moreover, suppose
that the function fM is monotonic in its last argument. This is the problem we
want to solve:

Given an atomic formula ϕ of the form

ϕ : f(x1, . . . , xm, g(y1, . . . , yn)) ≤ K, (1)

a set of formulas Γ , and a structure M, synthesize an antecedent or con-
sequent of the atomic formula ϕ in the context Γ when the formulas are
interpreted in M. The resulting formulas cannot contain irrelevant variables.

We assume that the context Γ contains, in addition to irrelevant variables
and X variables, a set of variables Z = {zi}oi=1 disjoint from X and Y . From
now on, we will keep the following notation: m denotes the number of variables
that do not need to be eliminated from ϕ, n the number of irrelevant variables
in ϕ, o the number of Z variables in Γ , and N the number of formulas in Γ .

We define functions gM+ , gM− : Dm+o
M → DM as follows:

gM+ (a1, . . . , am, c1, . . . , co) =

{
maximize

b1,...,bn∈DM
gM(b1, . . . , bn)

subject to M, [x := a, y := b, z := c] |= Γ
(2)

and

gM− (a1, . . . , am, c1, . . . , co) =

{
minimize

b1,...,bn∈DM
gM(b1, . . . , bn)

subject to M, [x := a, y := b, z := c] |= Γ,
(3)

Algorithms for Context-Aided Variable Elimination 5

where the notation M, [x := a, y := b, z := c] means that the formula is satisfied
in the structure M after substituting the variables xi by ai, yi by bi, and zi by
ci. gM+ and gM− are well defined because DM is complete and bounded.

We assume that the term algebra generated by F and X∪Z contains (m+o)-
ary terms g+ and g− whose interpretations in M are gM+ and gM− , respectively.
We have the following result:

Theorem 1. Let ϕ′ and ϕ′′ be

ϕ′ : f(x1, . . . , xm, g+(x1, . . . , xm, z1, . . . , zo)) ≤ K (4)

and
ϕ′′ : f(x1, . . . , xm, g−(x1, . . . , xm, z1, . . . , zo)) ≤ K. (5)

These formulas satisfy M |= (Γ ∧ ϕ′) ⇒ ϕ and M |= (Γ ∧ ϕ) ⇒ ϕ′′.

Proof. Let ai, bj , ck ∈ DM for i ≤ m, j ≤ n, and k ≤ o. First we will show that

M |= Γ ⇒ (g(y1, . . . yn) ≤ g+(x1, . . . , xm, z1, . . . zo)). (6)

If M, [x := a, y := b, z := c] ̸|= Γ , the result holds vacuously. If M, [x := a, y :=
b, z := c] |= Γ , then from (2) we have

gM(b1, . . . , bn) ≤M gM+ (a1, . . . , am, c1, . . . , co),

showing that (6) holds.

Suppose M, [x := a, y := b, z := c] |= (Γ ∧ ϕ′). We have from (6)

M, [x := a, y := b, z := c] |= (g(y1, . . . yn) ≤ g+(x1, . . . , xm, z1, . . . zo)).

It follows that

M, [x := a, y := b, z := c] |= ϕ′ ∧ (g(y1, . . . yn) ≤ g+(x1, . . . , xm, z1, . . . zo)),

which means that

(fM(a1, . . . , am, g
M
+ (a1, . . . , am, c1, . . . , co)) ≤M KM)∧

(gM(b1, . . . bn) ≤M gM+ (a1, . . . , am, c1, . . . co)).

Since fM is monotonic in the last argument, we obtain

fM(a1, . . . , am, g
M(b1, . . . bn)) ≤M KM.

Thus, M, [x := a, y := b, z := c] |= ϕ, proving the first part of the theorem.
We will prove that

M |= Γ ⇒ (g−(x1, . . . , xm, z1, . . . zo) ≤ g(y1, . . . yn)). (7)

Suppose M, [x := a, y := b, z := c] |= Γ , then from (3) we have

gM− (a1, . . . , am, c1, . . . , co) ≤M gM(b1, . . . , bn),

6 Incer et al.

showing that (7) holds.

Suppose M, [x := a, y := b, z := c] |= (Γ ∧ ϕ). We have from (7)

M, [x := a, y := b, z := c] |= (g−(x1, . . . , xm, z1, . . . zo) ≤ g(y1, . . . yn)).

It follows that

M, [x := a, y := b, z := c] |= ϕ ∧ (g−(x1, . . . , xm, z1, . . . zo) ≤ g(y1, . . . yn)),

which means that

(fM(a1, . . . , am, g
M(b1, . . . bn)) ≤M KM)∧

(gM− (a1, . . . , am, c1, . . . co) ≤M gM(b1, . . . bn)).

Since fM is monotonic in the last argument, we conclude that

fM(a1, . . . , am, g
M
− (a1, . . . , am, c1, . . . , co)) ≤M KM.

Thus, M, [x := a, y := b, z := c] |= ϕ′′, proving the second part.

Theorem 1 gives us antecedents and consequents of atomic formulas ϕ of the
form (1) such that the result lacks irrelevant variables.

Example 1. Suppose (F ,R) is the signature of a propositional language and R
only contains a binary relation ≤. We will interpret this language in the model
M with domain {0, 1}, where we will assume that 0 ≤M 1. Suppose we want to
compute antecedents and consequents of the formula

ϕ : (p ∧ q) ∨ r,

in the context Γ : s⇒ q, where q is an irrelevant variable. We can apply Theorem
1 as follows: We observe that ⇒ and ≤ have the same semantics in M. Thus,
we can write ϕ as ϕ : (¬p ∨ ¬q) ≤ r. Let g(q) = ¬q and f(p, x) = ¬p ∨ x. Then
fM is monotonic in its last argument. To apply Theorem 1, we compute gM+ :

gM+ (a, c) =

{
maximize
b∈{0,1}

¬q

subject to M, [p := a, q := b, s := c] |= s ≤ q
= ¬c.

Thus, g+(p, s) = ¬s. By Theorem 1, we conclude that f(p, g+(p, s)) ≤ r is an
antecedent of ϕ in the given context, i.e., we compute

¬p ∨ ¬s ≤ r,

which is equivalent to (p ∧ s) ∨ r.

Algorithms for Context-Aided Variable Elimination 7

3 Linear inequality constraints

Now we apply the results of Section 2 to the situation when formulas are ex-
pressed as linear inequalities. In this section, we interpret formulas in only one
structure, allowing us to relax the distinction between formulas and their inter-
pretations. Consider the formula ϕ given by

ϕ :
m∑
i=1

pixi +
n∑

i=1

qiyi ≤ r, (8)

where r and the pi and qi are constant symbols. X = {xi}mi=1 and Y = {yi}ni=1

are sets of variables. Y is the set of irrelevant variables. We also have a context
Γ , which is a set of linear inequalities of the form

Γ =

m∑
j=1

αijxi +
n∑

j=1

βijyi +
o∑

j=1

γijzi ≤ Ki

N

i=1

, (9)

where the Kj , α
j
i , β

j
i , and γji are constant symbols, and Z = {zi}oi=1 is a set of

variables disjoint from X and Y .
We interpret these formulas in the extended real line R = R ∪ {−∞,∞},

which is a complete, bounded partial order. In this setting, the term f is given
by f(x1, . . . , xn, w) =

∑n
i=1 αixi+w, the interpretation of which is clearly mono-

tonic in the last argument. Therefore, we can eliminate irrelevant variables from
ϕ by using Theorem 1.

After interpreting the formulas, the constant symbols become real numbers.
Let A = (αij) ∈ RN×m, B = (βij) ∈ RN×n, C = (γij) ∈ RN×o, K ∈ RN ,
p ∈ Rm, and q ∈ Rn. We also let x = (xi), y = (yi), z = (zi) be m-, n-, and
o-dimensional vectors of variables, respectively.

Our problem is to compute antecedents/consequents of

ϕ : p⊺x+ q⊺y ≤ r

in the context
Γ : Ax+By + Cz ≤ K

such that the result lacks irrelevant variables.

Let b(x, z) = K −Ax−Cz. We obtain the following corollary from Theorem
1.

Corollary 1. Let ϕ and Γ be as above. Let

g+(x, z) =

{
maximize

y∈Rn
q⊺y

subject to By ≤ b(x, z)
(10)

8 Incer et al.

and

g−(x, z) =

{
minimize

y∈Rn
q⊺y

subject to By ≤ b(x, z).
(11)

Then the formula p⊺x+ g+(x, z) ≤ r is an antecedent of ϕ in the context Γ and
p⊺x+ g−(x, z) ≤ r is a consequent from ϕ in the context Γ .

Example 2. Suppose we wish to eliminate variables y1 and y2 from 2x + y1 −
2y2 ≤ 5 through antecedent computation, using the context {x− 2y1 + y2 + z ≤
1, 3y1 − 4y2 ≤ 6}. We compute

g+(x, z) =

maximize
y1,y2∈R

y1 − 2y2

subject to x− 2y1 + y2 + z ≤ 1
3y1 − 4y2 ≤ 6

= 4− 2

5
(x+ z).

The antecedent formula is 2x+ 4− 2
5 (x+ z) ≤ 5, which becomes 8x− 2z ≤ 5.

Example 3. Suppose we wish to eliminate variables y1 and y2 from x + 5y1 −
2y2 ≤ 5 by the computation of a consequent, using the context {x− 2y1 + y2 +
z ≤ 1, 3y1 − 4y2 ≤ 6}. We compute

g−(x, z) =

minimize
y1,y2∈R

5y1 − 2y2

subject to x− 2y1 + y2 + z ≤ 1
3y1 − 4y2 ≤ 6

= −4 +
14

5
(x+ z).

The consequent is x− 4 + 14
5 (x+ z) ≤ 5, or 19x+ 14z ≤ 45.

3.1 Solving the symbolic optimization problems

The next issue we face is the computation of (10) and (11). Both are lin-
ear programs, but their solutions are symbolic due to the presence of b(x, z).
We observe that if we have a context Γ ′ such that Γ = Γ ′ ∧ Γ ′′, and if ϕ′
is an antecedent/consequent of ϕ in the context Γ ′ then ϕ′ is also an an-
tecedent/consequent in the context Γ . First, we will discuss conditions required
for solving linear programs with symbolic constraints when the context has as
many constraints as optimization variables (i.e., when N = n). Then we will dis-
cuss approaches for selecting from Γ a set of formulas that meets these require-
ments. We consider two selection criteria: a method based on positive solutions
to linear equations and a method based on linear programming.

Optimization in a subset of the context. A linear program achieves its
optimal value on the boundary of its constraints. If the context Γ contains N
constraints and is a bounded polyhedron, then the optimal value of the linear
program will occur at one of the

(
N
n

)
possible vertices. We will look for ways

Algorithms for Context-Aided Variable Elimination 9

to choose n constraints from Γ such that the optimization problems achieve
optimal values at the vertex determined by those n constraints. First, we focus
on solving symbolic LPs when the context contains n constraints. The following
definition will be useful:

Definition 1. Let M ∈ Rn×n and ν ∈ Rn. We say that (M,ν) is a refining pair
if M is invertible and (M⊺)−1ν has nonnegative entries. We say that the pair
(M,ν) is an abstractive pair if M is invertible and −(M⊺)−1ν has nonnegative
entries.

As the next result shows, these conditions are sufficient to solve the problems
(10) and (11) when there are as many context formulas as irrelevant variables
(i.e., when N = n). Suppose J ⊆ {1, . . . , N} has cardinality n. We let BJ =
(βJi,j)

n
i,j=1 and bJ = (bJi)

n
i=1 be the J-indexed rows of B and b, respectively.

Lemma 1. Suppose (BJ , q) is a refining pair. Thenmaximize
y∈Rn

q⊺y

subject to BJy ≤ bJ(x, z)
= q⊺B−1

J b(x, z).

Suppose (BJ , q) is an abstractive pair. Thenminimize
y∈Rn

q⊺y

subject to BJy ≤ bJ(x, z)
= q⊺B−1

J bJ(x, z).

Proof. Let (BJ , q) be a refining pair. We consider the first problem and its
Lagrange dual (see [3], Section 5.2.1):

primal

{
minimize

y
− q⊺y

subject to BJy ≤ bJ(x, z)
dual

maximize

λ
− b⊺Jλ

subject to B⊺
Jλ− q = 0

λ ≥ 0

The dual problem only admits the solution λ⋆ = (B⊺
J)

−1q if λ⋆ ≥ 0, which is the
case, as (BJ , q) is a refining pair. Thus, the optimal value of the dual problem
is v⋆ = −q⊺(B−1

J bJ). As strong duality holds for any linear program (see [3],
Section 5.2.4), v⋆ is also the optimal value of the primal problem. The statement
of the theorem follows.

Now suppose (BJ , q) is an abstractive pair. We consider the second problem
and its dual:

primal

{
minimize

y
q⊺y

subject to BJy ≤ bJ(x, z)
dual

maximize

λ
− b⊺Jλ

subject to B⊺
Jλ+ q = 0

λ ≥ 0

The dual only admits the solution λ⋆ = −(B⊺
J)

−1q if λ⋆ ≥ 0, which is the case
because (BJ , q) is an abstractive pair. The optimal value of the dual problem is
v⋆ = q⊺(B−1

J b). Due to strong duality, v⋆ is also the optimal value of the primal
problem.

10 Incer et al.

As a consequence of Corollary 1 and Lemma 1, we obtain the following

Corollary 2. With all definitions as above, if (BJ , q) is a refining pair, then
p⊺x + q⊺B−1

J bJ(x, z) ≤ r is an antecedent of p⊺x + q⊺y ≤ r in the context
By ≤ b(x, z). If (BJ , q) is an abstractive pair, then p⊺x + q⊺B−1

J bJ(x, z) ≤ r is
a consequent of p⊺x+ q⊺y ≤ r in the context By ≤ b(x, z).

Corollary 2 gives explicit formulas for computing antecedents/consequents of
a formula in a context. This result is missing methods for computing J , the set
of the indices of formulas in Γ , in such a way that it yields refining or abstractive
pairs (BJ , q), as needed. We consider two methods to identify J .

Computing J by seeking positive solutions to linear equations. Our first
method is based on identifying constraints yielding linear systems of equations
whose solutions are guaranteed to be nonnegative. We will use the following
result.

Theorem 2 (Kaykobad [5]). Let M = (µij) ∈ Rn×n and ν ∈ Rn. Suppose
the entries of M are nonnegative, its diagonal entries are positive, the entries
of ν are positive, and νi >

∑
j ̸=i µij

νj

µjj
for all i ≤ n. Then M is invertible and

M−1ν has positive entries.

A pair (M,ν) satisfying the conditions of Theorem 2 we will call a Kaykobad
pair. We have the following result.

Lemma 2. Let Q be an n×n diagonal matrix whose i-th entry is sign(qi). Let
B̄J = BJQ and q̄ = Qq. If (B̄⊺

J , q̄) is a Kaykobad pair, then (BJ , q) is a refining
pair. If (−B̄⊺

J , q̄) is a Kaykobad pair, then (BJ , q) is an abstractive pair.

Proof. Suppose (B̄⊺
J , q̄) is a Kaykobad pair. Then B̄⊺

J is invertible. We have
BJ(B̄JQ)−1 = BJQ(B̄J)

−1 = I and (B̄JQ)−1BJ = Q(B̄J)
−1(BJQ)Q = I, so

BJ is invertible. Moreover, we have

0 < (B̄⊺
J)

−1q̄ = (QB⊺
J)

−1(Qq) = (B⊺
J)

−1q,

which means that (BJ , q) is a refining pair.
If (−B̄⊺

J , q̄) is a Kaykobad pair, then B̄⊺
J is invertible, which means that so is

BJ . Moreover,

0 < −(B̄⊺
J)

−1q̄ = −(QB⊺
J)

−1(Qq) = −(B⊺
J)

−1q.

Thus, (BJ , q) is an abstractive pair.

Corollary 2 and Lemma 2 yield a method for computing antecedents and con-
sequents of formulas lacking irrelevant variables. To use it, we must construct
J such that (BJ , q) meets the corollary’s conditions. We construct J by choos-
ing n formulas from the context Γ ; these formulas must meet the conditions of
a Kaykobad pair. One advantage of the Kaykobad condition is that it allows

Algorithms for Context-Aided Variable Elimination 11

Algorithm 1 Antecedents and consequents for linear inequality constraints by
identifying systems of equations with positive solutions

Input: Term to transform p⊺x+ q⊺y ≤ r, context Γ ,
transform instruction s (true for antecedents and false for consequents)

Output: Transformed term t′ lacking any y variables
1: MatrixRowTerms ← ∅ ▷ Rows of the context matrix A
2: PartialSums ← zeros(length(y))
3: TCoeff ← −1
4: if s then
5: TCoeff ← 1
6: for i = 1 to i = length(y) do ▷ One iteration per row of context matrix
7: IthRowFound ← false ▷ Indicate whether we could add the i-th row
8: for γ ∈ Γ \MatrixRowTerms do

▷ 1. Verifying Kaykobad pair: sign of nonzero matrix terms
9: TermIsInvalid ← false

10: for j = 1 to j = length(y) do
11: if coeff(γ, yj) ̸= 0 and sign(coeff(γ, yj)) ̸= sign(qj) · TCoeff then
12: TermIsInvalid ← true
13: break

▷ 2. Verifying Kaykobad pair: matrix diagonal terms
14: if coeff(γ, yi) = 0 or TermIsInvalid then
15: next

▷ 3. Verifying Kaykobad pair: relationship between matrix and vector entries
16: Residuals ← zeros(length(y))
17: for j = 1 to j = length(y) do
18: if j ̸= i then
19: Residuals[j]← sign(qj) · TCoeff · coeff(γ, yj) · qi

coeff(γ,yi)

20: if |qj | · TCoeff ≤ PartialSums[j] + Residuals[j] then
21: TermIsInvalid ← true
22: break
23: if not TermIsInvalid then

▷ Resulting matrix is meeting Kaykobad pair conditions at i-th row
24: IthRowFound ← true
25: for j = 1 to j = length(y) do
26: PartialSums[j]← PartialSums[j] + Residuals[j]
27: MatrixRowTerms.append(γ)
28: break
29: if not IthRowFound then
30: return Error: Cannot transform term
31: B ←MatrixFromTerms(MatrixRowTerms, y)
32: b← VectorFromTerms(MatrixRowTerms, y)
33: return p⊺x+ q⊺B−1b ≤ r

12 Incer et al.

us to incrementally identify suitable constraints to add to the context Γ ′, i.e.,
we don’t have to select n constraints before we run the verification. That is,
when we have identified k < n constraints, we can easily verify whether a candi-
date (k + 1)-th formula would be acceptable for constructing a Kaykobad pair.
Algorithm 1 computes antecedents and consequents for linear inequality con-
straints based on Corollary 2. Lines 6–30 search the context Γ for n constraints
meeting the Kaykobad conditions. The rest of the algorithm computes the an-
tecedents/consequents. If there are n variables to be eliminated, and N = |Γ |
constraints in the context Γ , the algorithm has complexity O(n2N +N3). The
function coeff(γ, yj) extracts the coefficient of the variable yj from the term γ.
The call MatrixFromTerms(MatrixRowTerms, y) extracts all coefficients of
the y variables contained in MatrixRowTerms and makes these coefficients the
rows of the resulting matrix. The call VectorFromTerms(MatrixRowTerms, y)
returns a vector of all expressions contained in MatrixRowTerms with their y
variables removed. These are the elements of b(x, z). Finally, diag(v) returns a
diagonal matrix whose entries are the vector v.

Computing J via linear programming. Now we will build J by numerically
solving (10) and (11) for fixed values of x and z.

Lemma 3. Let a ∈ Rm and c ∈ Ro.

– Suppose g+(a, c) is finite and the optimum of the LP (10) (with x = a and
z = c) is attained at y⋆. Let J =

{
i
∣∣∣ bi(a, c)−∑n

j=1 βijy
⋆
j = 0

}
and assume

that |J | = n, where n is the number of optimization variables y in g+. If BJ

is invertible, then (BJ , q) is a refining pair.
– Similarly, suppose g−(a, c) is finite and the optimum of the LP (11) (with
x = a and z = c) is attained at y⋆. Let J =

{
i
∣∣∣ bi(a, c)−∑n

j=1 βijy
⋆
j = 0

}
and assume that |J | = n. If BJ is invertible, then (BJ , q) is an abstractive
pair.

Proof. We prove the first part. Consider the following problems:

(P)

{
minimize

y
− q⊺y

subject to By ≤ b(a, c)
(D)

maximize

λ
− b(a, c)⊺λ

subject to B⊺λ− q = 0
λ ≥ 0

Since g+(a, c) is finite, the primal is feasible. By strong duality, so is the dual. Let
λ⋆ be the value of λ where the dual attains its optimum. Then λ⋆ ≥ 0 and 0 =
B⊺λ⋆− q = B⊺

Jλ
⋆
J +B

⊺
Ĵ
λ⋆
Ĵ
− q, where Ĵ = {1, . . . , N}\J . Due to complementary

slackness, we know that λ⋆
Ĵ

= 0. Thus, 0 = B⊺
Jλ

⋆
J − q. By assumption, BJ

is invertible. Then (BJ , q) is a refining pair. The proof of the second part is
similar.

Lemma 2 allows us to obtain the solution to a linear programming problem
with symbolic constraints By ≤ b(x, z) in a reduced context BJy ≤ bJ(x, z),

Algorithms for Context-Aided Variable Elimination 13

Algorithm 2 Antecedents and consequents for linear inequality constraints
through linear programming

Input: Term to transform p⊺x+ q⊺y ≤ r, context Γ , a ∈ Rm, c ∈ Ro,
transform instruction s (true for antecedents and false for consequents)

Output: Transformed term t′ lacking any y variables
1: B ←MatrixFromTerms(Γ, y)
2: b← VectorFromTerms(Γ, y)
3: be ← Evaluate(b, a, c)
4: if s then
5: (success, y⋆)← LinearProgramming(−q,B, be)
6: else
7: (success, y⋆)← LinearProgramming(q,B, be)

8: if not success then
9: return Error: LP obtained after evaluation at (a, c) is unfeasible

10: S ← be −By⋆

11: J ← ∅
12: for j = 1 to j = length(b) do
13: if Sj = 0 then
14: J ← J ∪ {j}
15: (success, B̂J)←MatrixInv(BJ)
16: if not success then
17: return Error: cannot invert BJ

18: return p⊺x+ q⊺B̂JbJ ≤ r

where we identify J by solving a numerical LP. Lemma 2 and Corollary 2 yield
a method for computing antecedents and consequents. This method is reflected in
Algorithm 2. As before, MatrixFromTerms(Γ, y) and VectorFromTerms(Γ,
y) extract from the context Γ the matrix B and symbolic vector b(x, z) of the
constraints By ≤ b(x, z). Evaluate(b, a, c) returns the vector b(a, c) ∈ RN .
LinearProgramming(q,B, be) solves the LP min.

y
q⊺y subject to By ≤ be and

returns a success variable and the value y⋆ where the minimum is attained. The
success variable is true when the LP is feasible and has a finite solution. Ma-
trixInv computes matrix inverses. Its success variable is false when the matrix
is not invertible.

4 Conclusions

We considered the problem of eliminating variables from a formula by computing
refinements and abstractions in a context. First we treated the problem in the
setting of a partial order. Then the results were applied to linear inequality
constraints. Progress in two areas would extend the reach of the techniques
obtained for linear inequalities.

– Methods to efficiently select a set of linear equations such that their solution
is nonnegative.

14 Incer et al.

– Solving linear programming problems with symbolic constraints.

The main theorem we presented can be directly extended to handle nonlinear
constraints and modal logic.

Acknowledgements

This work was supported by the DARPA LOGiCS project under contract FA8750-
20-C-0156 and by NSF and ASEE through an eFellows postdoctoral fellowship.
Its contents are solely the responsibility of the authors and do not necessarily
represent the views of the sponsors.

References

1. Barbenchon, P., Pinchinat, S., and Schwarzentruber, F. Logique : Fonde-
ments et Applications. Dunod, 2022.

2. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.-
B., Reinkemeier, P., Sangiovanni-Vincentelli, A., Damm, W., Henzinger,
T. A., and Larsen, K. G. Contracts for system design. Foundations and Trends®

in Electronic Design Automation 12, 2-3 (2018), 124–400.
3. Boyd, S., Boyd, S. P., and Vandenberghe, L. Convex Optimization. Cambridge

university press, 2004.
4. Incer, I. The Algebra of Contracts. PhD thesis, EECS Department, University of

California, Berkeley, May 2022.
5. Kaykobad, M. Positive solutions of positive linear systems. Linear Algebra and

its Applications 64 (1985), 133–140.
6. Sangiovanni-Vincentelli, A. L., Damm, W., and Passerone, R. Taming Dr.

Frankenstein: Contract-based design for cyber-physical systems. Eur. J. Control
18, 3 (2012), 217–238.

	Algorithms for Context-Aided Variable Elimination

