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Abstract

Fine-tuned language models (LMs) provide the backbone for popular services such as ChatGPT,
GitHub Copilot, and Cohere AI. The competitive edge of these systems often arises from their
proprietary �netuning data (e.g., user-submitted prompts), and thus companies invest substantial
resources into collecting and protecting this data. In this work, we study model “imitation” as a
method to close the gap between open-source LMs and their closed-source counterparts. In the
�rst part, we propose a framework for cheaply imitating proprietary language models in speci�c
domains. In particular, we create a prompting pipeline that �rst asks what tasks a particular LM
can solve and then asks for input-output examples for those tasks. We then �ne-tune open-source
LMs on these supervised input-output examples to create imitation models. We show that human
evaluators rate the outputs of these imitation models more highly as these models get larger and
use bigger querying budgets. In the second part, we apply this general framework to ChatGPT
and release Koala, our strongest imitation model. Initial evaluations show that this model results
in impressive qualitative performance compared to ChatGPT in speci�c domains.
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Abstract

Fine-tuned language models (LMs) provide the
backbone for popular services such as ChatGPT,
GitHub Copilot, and Cohere AI. The competi-
tive edge of these systems often arises from their
proprietary finetuning data (e.g., user-submitted
prompts), and thus companies invest substantial
resources into collecting and protecting this data.
In this work, we demonstrate a framework for
imitating proprietary language models in specific
domains. In particular, we create a prompting
pipeline that first asks what tasks a particular LM
can solve and then asks for input-output examples
for those tasks. We then finetune open-source
LMs on these supervised input-output examples
to create imitation models. As a case study, we
use this pipeline to imitate Instruct-GPT (text-
davinci-002), where by using $500 of API queries
we reach ⇠93% of its performance according to
human evaluation on a specific distribution of
broad-coverage tasks. Overall, we demonstrate
that proprietary models like Instruct-GPT can be
used to train imitation models that are of generally
high qualitative performance in specific domain
distributions for a relatively cheap cost.

1. Introduction
Large language models (LMs) can solve numerous down-
stream tasks when prompted with natural language instruc-
tions (Brown et al., 2020). Recently, instruction-tuned LM
variants such as Instruct-GPT (Ouyang et al., 2022), Chat-
GPT (OpenAI, 2022), and Codex (Chen et al., 2021) have
dramatically improved LM capabilities by fine-tuning mod-
els on domain-specific datasets. These models are lucrative
assets—some are served behind paid APIs with millions of
users (Metz & Weise, 2023)—and are built using proprietary
datasets and algorithms. Consequently, many companies
keep their model weights private to protect intellectual prop-
erty and maintain their competitive edge.

1UC Berkeley. Correspondence to: Arnav Gudibande <ar-
navg@berkeley.edu>.

Figure 1. We finetune a 6B parameter LM to imitate the outputs of
Instruct-GPT using varying amounts of API queries on a specific
distribution of task instructions. As our budget increases, human
evaluators rate the outputs of our imitation LMs to be higher qual-
ity, following a log-linear relationship. We spend $500 to achieve
⇠93% of Instruct-GPT’s performance—we estimate that $2500
worth of queries would be needed to fully match its performance
on this particular evaluation distribution.

In this work, we propose a framework where proprietary
LMs can be imitated in specific domains by simply inter-
acting with their APIs. We consider a setting where one
collects outputs from the API and uses them to fine-tune
their own imitation LM. We show that model imitation can
successful because proprietary LMs are capable of generat-
ing high quality input and output examples. Therefore, one
can create a large dataset to imitate the overall performance
of these proprietary systems in particular domains.

As a case study, we imitate Instruct-GPT (text-davinci-002),
a widely-used instruction-tuned LM that is finetuned on
proprietary data to solve zero-shot tasks. We query the target
LM using a pipeline where we first prompt it to output a list
of broad-coverage task instructions. We then feed each one
of these task descriptions to the LM and ask it to synthesize
associated input-output examples. We collect datasets using
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this pipeline that range from 10K examples (⇠$20 USD) to
250K examples (⇠$500 USD) 1.

Using these datasets, we finetune open-source LMs across a
range of sizes (125M–6B). We evaluate them using human
preference ratings on broad-coverage instructions, as well as
automated zero-shot evaluations on public test sets (Super-
NI, Wang et al. 2022b). Our imitation models quickly
approach the quality of Instruct-GPT in this domain. For
example, human evaluators rate our system trained with
$500 worth of queries an average of 3.7 out of 5, or ⇠93%
as good as Instruct-GPT which had an average rating of
4. Moreover, using larger query budgets can likely further
close this gap—in Figure 1, we fit log-linear trends that
estimate only ⇠$2500 worth of queries would be needed to
fully match Instruct-GPT’s performance on this particular
domain distribution and evaluation setting.

We stop short of claiming that this method can lead to broad
imitation of proprietary language models across all domains,
since the querying costs and amount of data needed would
likely be unwieldy. However, our work shows that propri-
etary language models like Instruct-GPT can be used to
train imitation models that are of generally high qualitative
performance in a specific domain distribution for a relatively
cheap cost.

2. Background and Setup
Instruction-tuned Language Models Many recent ef-
forts have improved the zero-shot abilities of LMs via “in-
struction” or “meta” finetuning (Ouyang et al., 2022; Min
et al., 2022; Zhong et al., 2021; Wei et al., 2022, inter alia).
Such instruction-tuned LMs have become extremely popular
and lucrative, e.g., InstructGPT has millions of users (Metz
& Weise, 2023), and there is thus competition among compa-
nies to continually improve these models. To do so, organi-
zations invest substantial resources into building proprietary
instruction-finetuning datasets (Ouyang et al., 2022) which
have become a key component that differentiates the LMs
and API services of various companies.

Stealing NLP Models Proprietary LMs are served behind
black-box APIs that allow users to generate outputs for ar-
bitrary inputs. API users may otherwise be unaware of the
model’s next-token probabilities, its architecture, hyperpa-
rameters, or training data. In our paper, we consider an
adversary whose goal is to use this API access to train an
imitation model (Orekondy et al., 2019; Wallace et al., 2020)
that achieves comparable performance to the proprietary LM
on held-out data. The adversary can then use this model for
financial gain, e.g., to launch their own competitor service
or to avoid paying for future API queries.

1Based on OpenAI API Pricing from December 2022

Prior work has shown that model stealing2 is possible for
various domains (Lowd & Meek, 2005; Tramèr et al., 2016;
Orekondy et al., 2019), including language classifiers (Kr-
ishna et al., 2020; Pal et al., 2019) and machine translation
systems (Wallace et al., 2020). Nevertheless, past work
imitates models that solve one task and are not built using
large LMs. We instead focus on imitating models that are
massively multi-task in nature and are fine-tuned from large
LM checkpoints. In the subsequent section, we discuss the
challenges and opportunities that arise from our setting.

3. Model Imitation Method
Perhaps the key challenge for imitating proprietary models
is to decide what inputs to use when querying its API for
training data. Past work assumes that the adversary has
access to a pool of inputs (e.g., Wikipedia sentences) and
must decide which ones to query (Orekondy et al., 2019;
Wallace et al., 2020). In our case, we do not have access to
inputs to query. Our inputs are natural language instructions
for arbitrary tasks, e.g., “Write a poem about your favorite
season”, which are not readily available.3

Our key technical contribution is to show that state-of-the-
art large LMs can synthesize high-quality inputs and outputs.
This dramatically simplifies model stealing as we can simply
prompt models to generate synthetic data to use for training,
rather than carefully choosing inputs to query. In fact, be-
cause large LMs are increasingly adept at memorizing their
training data (Carlini et al., 2021a; Kandpal et al., 2022),
we may even expect that these synthetic datasets resemble a
company’s internal proprietary dataset.

In our work, we focus on instruction-tuned LMs (although
our methods are general), where the “inputs” consist of both
task instructions and optional input text, and the “outputs”
are the corresponding model predictions. To generate data
for our imitation LMs, we create a two-stage pipeline (Fig-
ure 2). The first stage asks the target LM to generate a list
of tasks that it can solve. The second stage then generates
input and output examples for each of those tasks. We then
create our imitation models by fine-tuning open-source LMs
on these task instructions + input-output examples.

3.1. Collecting Task Instructions

In the first stage of our pipeline, we collect a large list of
task instructions (i.e., textual definitions and descriptions of

2Tramèr et al. (2016) popularized the term “model stealing”
to describe these types of attacks. We instead tend towards the
term “model imitation” to clearly indicate that we are not directly
extracting the target model or reverse engineering its weights.

3Note that our goal is to describe a method to imitate arbitrary
proprietary LMs. However, our experiments focus on imitating
instruction-tuned models, where there are open-source datasets.
For scientific purposes, we do not assume any access to this data.
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● Write a poem about your favorite season
● Create a menu for a 5-star restaurant

LM API CompletionsSeed Tasks

Input-Output Tasks

● Write a poem about your favorite season
● Create a menu for a 5-star restaurant
● Invent a new holiday
● Turn this sentence into active voice
● Come up with ideas for a new app

Task Pool

Task Pool

Invent a new holiday

The holiday is called Friendship Day and it’s 
celebrated on the first Sunday of every August…

Turn this sentence into active voice

Input: The lamp was knocked over by a gust of wind
Output: A gust of wind knocked over the lamp

Finetuning 
Data

Task 
Generation

LM API Completions

Input-Output 
Generation

Output-only Tasks

Figure 2. Our data collection pipeline is made up of two parts, generating task instructions (top) and then generating input-output instances
(bottom) for each task instruction. To generate task instructions, we prompt the target LM with a list of seed tasks (marked in red), then
we store the generated task instructions (marked in green) in a task pool. Once we have collected a task pool, we prompt the target LM to
generate either a single output or both an input and output for every task instruction (marked in blue).

tasks) from the target LM. Task instructions may require gen-
erating open-ended text such as “Write a poem about your
favorite season” or “Design a new type of clothing”. We
refer to these open-ended tasks as output-only. Instructions
also may include references to an unspecified text input, e.g.,
“Group this list of names into male and female” or “This
sentence is unclear, rewrite it using di↵erent words”. We
refer to this style of tasks as input-output tasks.

Bootstrapped Instruction Generation The main challenge
in synthesizing task instructions is to ensure that they are
large in quantity while maintaining diversity. To accomplish
this, we first manually write a set of ten task instructions that
are representative of a particular task category (shown in
Table 3 in Appendix B). We craft these instructions to span
different categories and to sometimes refer to unspecified
inputs. Given this seed set of instructions, we then generate
thousands of novel instructions from the target LM.

To do so, we prompt the LM with a bulleted list of three
task instructions and generate from the model with top-p
sampling (p = 0.8) until it generates an end-of-text char-
acter. We then sample a fresh set of three task instructions
and repeat this process. To sample the three instructions,
we choose from a pool of instructions that is grown in a
bootstrapped fashion. We initialize the pool with the ten
seed instructions for a particular category and then add each
subsequent model generation to the pool. Consequently, the
pool transitions from containing only manual instructions
to eventually consisting of predominately model-generated
instructions. Moreover, we further encourage diversity in
the pool of examples by not adding any instruction to the

pool if it has greater than 20% BLEU-score similarity with
any existing example in the pool. We repeat this overall pro-
cess for each category of task. See Appendix B for further
details on our post-processing, prompts, and seed tasks.

3.2. Generating Input-Output Examples

Now that we have generated a large set of instructions, we
next turn to generating corresponding inputs and outputs.
As mentioned, task instructions can refer to output-only or
input-output tasks. We know which type an instruction falls
in based on the task category it came from (e.g., classifica-
tion tasks are input-output).

For output-only tasks, we query the target LM to generate
an output, e.g., for the task “Design a new type of clothing”
the output may be “I’m thinking a dress that is made to
look like a two piece, but is actually one piece...”. We
provide the target LM with the instruction and generate with
top-p sampling (p = 0.9).

For input-output tasks, we need the LM to synthesize an
input to process and a corresponding output. These instruc-
tions can have many formats. In contrast to other work
on instruction-tuning that uses fixed input and output tem-
plates (Wang et al., 2022b), we do not make any assumptions
on the templates and instead allow the target LM to generate
any format it desires. We append phrases such as “generate
an output for the following input” to the instructions to en-
courage the LM to generate both an input and an output. The
exact phrase that we append depends on the task category;
Appendix B.1 details all phrases used. We then generate
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Create a character and come up with their back story, family history, and personality traits.

Name: Wren
Back story: Wren was abandoned by her parents as a baby and raised in the forest by a family of 
birds. She has never known any other life than the one she has in the forest and is completely 
content with that. She is a very independent and self-sufficient and is also very compassionate 
and caring towards all of the…
Personality traits: independent, self-sufficient, compassionate, caring

Write a list of random acts of kindness you can do for others.

● Buy a stranger a cup of coffee
● Pay for the person behind you in line
● Leave a nice note for someone
● Do someone's grocery shopping for them
● Mow a neighbor's lawn

Find all the dogs in this list that are over 2 years old.

Input:
● Chihuahua, 3 years old
● Pomeranian, 1 year old
● Labrador Retriever, 2 years old
● Golden Retriever, 4 years old

Output:
● Chihuahua, 3 years old
● Golden Retriever, 4 years old

Text Generation

Brainstorming

Text Extraction

Category Instruct-GPT Generation

Figure 3. Examples of task instructions and outputs that are generated by Instruct-GPT and used in our imitation LM dataset. Overall,
we find that instruction-tuned LMs are capable of generating high-quality and diverse prompt instructions that span multiple categories
such as open-ended text generation, brainstorming, and extraction. Moreover, for categories such as text extraction, we find that LMs are
surprisingly capable of producing high-quality synthetic inputs and corresponding outputs.

with this full prompt using top-p sampling (p = 0.9).

3.3. Imitation Model Training

After collecting the model outputs, we concatenate them to
the original task instructions. We then finetune open-source
LMs on this data using standard autoregressive training ob-
jectives. Our models do not make any explicit disambigua-
tion between the instructions and the inputs or outputs.

4. Imitating Instruct-GPT
As a case study, we apply our model imitation pipeline to
Instruct-GPT (Ouyang et al., 2022), a popular instruction-
tuned LM available through the OpenAI API. We target
text-davinci-002 as it was the best model available when we
conducted our experiments. This model is finetuned using
proprietary data consisting of annotated task instructions
and outputs (Ouyang et al., 2022). We emphasize that our
method is not specific to OpenAI’s API and our aim is not
to exploit OpenAI or its products.

4.1. Imitation Dataset

Ouyang et al. (2022) discuss the broad capabilities of
Instruct-GPT across various task categories. We aim to
imitate the model across a specific range of categories,

Quality Review Question Yes %

Is the task instruction valid? 97%

For input-output tasks, is the input
appropriate for the instruction? 71%

Given a valid instruction and input,
is the output appropriate? 80%

For output-only tasks, is the output
appropriate for the instruction? 93%

All fields are valid 83%

Table 1. We conduct a manual quality review of 100 random in-
structions, and the corresponding output-only or input-output in-
stances. The dataset is of high-quality, e.g., nearly all of the
synthetic task instructions are valid and 93% of the outputs for
output-only tasks are of good quality.

which we group as: output-only—text generation, brain-
storming, chat, and open-ended QA—and input-output—
text rewriting, extraction, classification, and closed-ended
QA. Instruct-GPT is trained to capture a specific distribu-
tion over these task categories (see Table 2). We aim to
imitate the model across this same distribution, but we note
that adversaries can generate task instructions according to
arbitrary distributions based on their intended use case. We
provide more details on each task category in Appendix A.
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We collect datasets consisting of 200, 1000, 2000, and 5000
unique task instructions. We then query the API to collect
50 unique outputs (and possibly synthetic inputs) for each
instruction. This yields final training sets of 10K, 50K,
100K, and 250K instruction and example pairs. The total
cost of collecting this data is approximately $20, $100, $200,
and $500 respectively.4

Dataset Quality We find that our imitation data is surpris-
ingly high quality given its automatic construction. First,
there is high diversity in the instructions. We find that
at the example level, the average BLEU score similarity
among instances is 18%. This is considerably lower than
similar manually-written datasets from the literature, e.g.,
this value is 61% for a comparably sized subset of Super-
NaturalInstructions (Wang et al., 2022b).

We also conducted a manual review of a random subset
of 100 examples from our 100K dataset. For each exam-
ple, we evaluated (1) whether the instruction was valid and
grammatical, (2) if there were generated inputs, were they
appropriate for the instruction, and (3) whether the outputs
were correct and appropriate. We show the results in Table 1.
The data is surprisingly high-quality: nearly all of the task
instructions are valid and a vast majority of the synthetic
instances contain valid input-output pairs.

4.2. Training and Evaluating Imitation Models

We consider open-source decoder-only LMs that range from
125M–6B parameters:

• GPT-2 Small: We use the 125M GPT-2 model trained by
OpenAI on WebText (Radford et al., 2019).

• GPT-2 XL: We use the 1.5B GPT-2 model.

• GPT-J: We use GPT-J, a 6B parameter LM trained by
EleutherAI on The Pile (Black et al., 2022).

We fine-tune these models on the various synthetic datasets
(10K, 50K, 100K, and 250K) examples. This allows us to
study the impact of both dataset scaling and model scaling
on imitation model results. We fine-tune autoregressively
for one epoch using the AdamW optimizer with learning
rate 1e-5 and batch size 16. All models are trained using
distributed JAX on TPUs hosted by Google Cloud.

Evaluation Setup We employ two evaluations: human
evaluation on a set of held-out instructions and automatic
evaluation on Super-NaturalInstructions (Wang et al., 2022b,

4Based on the OpenAI API costs from December 2022. We
calculate these costs based on the average token length of our
instructions and model generations. These numbers may deviate
slightly depending on the exact queries made.

Super-NI). For all experiments, we compare our imitation
LMs against Instruct-GPT and a pre-trained GPT-J baseline.

For human evaluation, we ask raters on Amazon Mechanical
Turk to score the outputs of a model from 1–5 (in terms of
quality and correctness, 5 is higher) on a set of held-out
instructions. In our UI, we present each rater with a task
instruction, optional input, and the corresponding model
output (see Figure 5 in Appendix B.2). We conduct our eval-
uation on 500 held-out instructions. For those instructions
that are input-output tasks, we use human-written inputs
to ensure that they are valid. This is also collected using
Mechanical Turk, see Figure 6 in Appendix B.2.

We also consider automatic evaluation using Super-
NaturalInstructions (Super-NI). We use SuperNI in the zero-
shot setting, where models are prompted with a task defini-
tion without any demonstration outputs. Following Wang
et al. (2022b), we measure the Rouge-L score for each
model’s output with the demonstration output. We caveat
that although SuperNI is a large benchmark for evaluating
zero-shot performance, it comes from a different distribution
than the data that we query to the API. In fact, the Instruct-
GPT paper notes that as they collect and fine-tune on larger
internal datasets, their model actually gets worse on public
benchmarks (Ouyang et al., 2022). Therefore, we do not
expect our models that imitate Instruct-GPT to perform par-
ticularly well on SuperNI. Nevertheless, we used SuperNI
as an automated signal during our preliminary experiments
and we report results on it for completeness.

4.3. Key Results

Human Evaluations Our imitation models substantially
close the gap to Instruct-GPT. First, we plot the average
human rating for our fine-tuned GPT-J models in Figure 1.
As the querying budget increases, human evaluators tend to
rate the outputs of our imitation models higher, following a
log-linear relationship. We fit scaling laws (line of best fit
assuming log-linear trend) to this data, which suggests that
approximately $2500 worth of queries would be needed to
match the performance of Instruct-GPT on our evaluation
dataset. Given that we had a limited budget remaining, we
leave collecting this larger dataset to future work.

In Table 2, we report the average human ratings broken
down by task category. Our imitation GPT-J trained on
250K samples most closely matches the quality of Instruct-
GPT on tasks such as text generation, brainstorming, chat,
and question-answering. Overall, with just $500 of queries,
our imitation model approaches approximately ⇠93% of
the average quality of Instruct-GPT across all tasks.

Automated Evaluations We next evaluate our imitation
models on SuperNI and report the average Rouge-L score
in Table 9 in Appendix C. The 10K and 50K models demon-
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Imitation Dataset Size
Category Frequency GPT-J 10K 50K 100K 250K Instruct-GPT
Generation 46.0 2.9 3.6 3.6 3.6 3.8 4.0
Open QA 12.8 3.0 3.7 3.5 3.7 3.8 4.3
Brainstorming 11.6 3.2 4.1 4.0 4.2 4.1 4.3
Chat 8.8 2.7 3.6 3.5 3.7 3.8 4.1
Rewrite 7.0 2.1 2.3 2.9 2.8 3.1 3.8
Summarization 4.4 2.3 2.6 2.9 3.3 3.3 3.9
Classification 3.9 1.8 1.5 2.5 2.4 2.2 3.8
Closed QA 3.0 2.6 4.1 4.0 4.3 4.5 4.3
Extract 2.3 1.8 1.8 2.2 2.6 2.3 3.8

Weighted Avg 100 2.8 3.4 3.5 3.6 3.7 4.0

Table 2. We finetune GPT-J on increasing amounts of imitation data and compare our imitation models to a non-finetuned GPT-J and
Instruct-GPT using human evaluations from 1–5. With $500 of queries (250K data points), our imitation models significantly close the
gap to Instruct-GPT across many categories, even sometimes slightly outperforming it. Our log-linear scaling trends predict that with a
higher querying budget or larger pre-trained models, we can fully close the gap to Instruct-GPT on this evaluation setting.

strate significant improvements in the average Rouge-L
score over the pre-trained GPT-J model. However, we note
that further finetuning the model on the 100K and 250K
datasets actually decreases performance on SuperNI. This
aligns with findings from Ouyang et al. (2022), who men-
tion that their instruction-tuned models get worse according
to public benchmarks when they are further fine-tuned on
domain-specific task instructions. Overall, SuperNI pro-
vides another signal that we drastically improve over the
initial GPT-J model using our imitation data, but we con-
sider the human evaluation results to be of higher relevance
and importance.

Scaling Model Size Helps Increase Performance Imi-
tating proprietary LMs hinges on the availability of open-
source pre-trained LMs that are somewhat comparable in
capabilities to the target model. In our case, we imitate text-
davinci-002, which is based on the 175B parameter GPT-3
pre-trained model. Part of the gap from our imitation model
to Instruct-GPT can therefore be attributed to us using the
relatively small 6B parameter GPT-J LM.

To explore this further, we study the effect of model scaling
using our 50K dataset. We fine-tune GPT-2 small, GPT-2
XL, and GPT-J on the data and plot their average human
ratings in Figure 4. With a fixed query budget, scaling the
size of the models improves average human ratings. The
scaling trend shows a moderate correlation, and we could
thus likely further close the gap to Instruct-GPT by using
larger and more powerful open-source models, although it
is unclear as to exactly how much. We leave this experiment
to future work due to computational constraints.

5. Discussion and Related Work
Model Distillation Methodologically, model imitation is
related to model distillation (Hinton et al., 2014), where one

Figure 4. Model scaling. We finetune GPT2 small, GPT2-XL, and
GPT-J models on our 50K imitation dataset and ask humans to rate
the output quality. Scaling the size of the base LM increases the
quality of the imitation model. We also fit scaling laws that show
moderate correlations and suggest that we can further close the
gap to Instruct-GPT by using larger open-source models.

trains a student model to imitate a teacher. There are several
major differences between imitation and distillation. For
distillation, the model architecture, training data, hyperpa-
rameters, etc., are known. In model imitation, one tries to
imitate the teacher without this knowledge. Moreover, for
distillation it is common to use training objectives that aim
to match the output probability distribution of the teacher;
in imitation this distribution may be unavailable.

LM Reverse Engineering and Re-implementation As
companies deploy proprietary LMs such as ChatGPT and
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Codex, numerous open-source and commercial efforts of-
ten quickly look to reproduce their capabilities. While not
directly “stealing”, these works instead look to probe the
capabilities of the model and attempt to independently reim-
plement it. For example, organizations have announced
efforts to reproduce Instruct-GPT (CarperAI, 2022), while
other efforts have exposed specific model details such as
the sampling parameters (Tay et al., 2020) or ChatGPT’s
hidden prompt (e.g., prompt injection attacks). Similarly,
Thakkar (2023) expose the exact set of API calls and internal
bookkeeping performed by GitHub CoPilot.

Data Memorization and Synthesis The key factor that
enables model imitation is the ability of large LMs to gen-
erate high-quality synthetic data that is on par with human-
annotated data. Indeed, past work argues that state-of-the-
art generative models produce samples that are increas-
ingly close to the true data distribution, and sometimes
they even produce verbatim regenerations (Carlini et al.,
2021b; Somepalli et al., 2022; Ho et al., 2020). Alarmingly,
as models get larger they tend to regenerate verbatim data
more often (Carlini et al., 2022; Jagielski et al., 2023) which
suggests that broad model imitation may become easier in
the future. At the same time, companies may look to con-
tinually improve their LMs (e.g., OpenAI improves their
API). Fortunately, this creates a sort of cat-and-mouse game
where adversaries will need to constantly recollect more
imitation data in specific or new domains if they want to
close the gap to their competitors.

Defending Against Model Stealing Many past works ex-
plore defenses against model stealing. One approach is to
detect their occurrence, e.g., Juuti et al. (2019) detect adver-
saries who make out-of-distribution queries. It may be pos-
sible to detect model stealing for large LMs in a similar fash-
ion because of its unique query distribution—one first gener-
ates instructions and then generates outputs for each instruc-
tion. Another line of work explores membership–inference-
based defenses but amplifies their strength using water-
marks (Zhang et al., 2018; Szyller et al., 2019; Krishna
et al., 2020; Hisamoto et al., 2020). These are responses—
sometimes incorrect or adversarial—that are designed to
use as optimal probes to test if a model is a stolen copy of
one’s own. Finally, Orekondy et al. (2020) and Wallace et al.
(2020) propose “prediction poisoning” defenses that shift
the API’s output distribution to hinder the learning of the
imitation model.

6. Conclusion and Future Work
In this work, we proposed a framework for generating train-
ing data from proprietary LMs in order to imitate their per-
formance on specific domains. We find that there is a strong
correlation between the amount of data that we train on

and the relative qualitative performance of the models on
specific domains according to human evaluators.

We show that for specific domain distributions, this tech-
nique is relatively cheap and can yield qualitatively good
results. In theory, it is possible to extend this method to fully
imitate proprietary language models across all domains, but
in order to do so, one would perhaps require unwieldy or
costly amounts of domain specific data. We leave more
thorough investigations of the limitations and failure modes
of broad model imitation to future work.

Addressing Potential Ethical Concerns
Our goal is to make NLP models more secure against ad-
versaries. To do so, we look to preempt possible harms and
encourage more responsible model deployments. Neverthe-
less, releasing our paper does pose hypothetical real-world
dangers. We take numerous steps to mitigate these harms.

First, we do not cause any damage to real-world users or
companies. Our models do not compete with any company
in any form and we will not make our imitation models
available in any form to the public. We will also delete the
models and datasets that we collected.

Second, although malicious actors could use our paper as
inspiration for real attacks, there are still practical obstacles
to them receiving financial benefit from them. For instance,
if adversaries steal an API and try to launch an associated
competitor service, they may face legal action depending on
the terms of service for that API.

Finally, we note that two concurrent papers have already
been posted online and use nearly identical methodology to
our work, although with a different paper framing (Wang
et al., 2022a; Honovich et al., 2022). Taken together, we
believe that publishing our paper and publicly disclosing
these vulnerabilities is thus both ethical and responsible.
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A. Task Categories
We focus on imitating the task categories from Ouyang et al.
(2022). We include details on each category:

• Text generation tasks may construct some hypotheti-
cal scenario and ask for an opinion or what one would
do in the scenario. They are generally open-ended
based on the context of the prompt.

• Brainstorming tasks typically ask for opinions or
ideas on how to do something.

• Chat tasks will construct some scenario, and the re-
sponse will be formatted as a chat dialogue between
one or more people.

• For question answering, there are two main types,
those that can have any answer (openQA), and those
that have an answer from a fixed set of answer choices
or context (closedQA)

• Summarization tasks will ask provide instructions on
how to summarize a particular text input.

• Rewriting and extraction tasks will provide instruc-
tions on how to rewrite or extract artifacts from text
respectively.

• Classification tasks provide instructions on how to
classify an input, usually providing the label set.

For concrete examples of these task instructions, refer to the
seed tasks in Table 3.

B. Seed Task List
In Table 3, we present the handwritten tasks that were used
to seed our task instruction generation pipeline. These
task instructions were chosen since they are illustrative of
Instruct-GPTs capabilities on various broad-coverage cate-
gories. For each task category, we write 10 task instructions
in a list format and then ask Instruct-GPT to continue filling
out the list while focusing on being creative and descrip-
tive. Each time the model is queried, 3 of the seed tasks
are randomly chosen to elicit a new task instruction in a
particular category. Once the task pool exceeds 20 in each
category, we sample 3 instructions from the pool of seed
and previously-generated instruction to elicit a new task.
In Table 4, we detail the prompt template that is used to
generate new tasks.

For generating task instructions, we query text-davinci-002
with temperature=0.8 and max tokens=512. All of the gen-
erations that match the list format specified in Table 4 are
then compared for similarity to existing task instructions in
the pool. The instructions which have a maximum BLEU
score similarity of under 20% to any previously generated
instruction are accepted into the pool.

B.1. Prompt Templates

We use two-main prompting templates to synthesize either
output-only or input-only instances from Instruct-GPT. For
output-only tasks such as brainstorming, generation and
openQA, we use the template in Table 5. This is the equiv-
alent of simply pasting the generated task instruction back
into the model. For categories such as extraction, rewrit-
ing, summarization, classification and closedQA, we use the
template in Table 6, which asks the model to generate both
an input and output pair. For more structured categories like
chat, we make a small modification and use the template in
Table 7, which asks the model to format the output in the
style of a chat dialogue. Additionally, for closedQA, which
requires a set of answer choices to pick from, we use the
prompting template in Table 8. We note that these templates
are generally straightforward and easy to modify to collect
synthetic data from different categories.

For generating instance examples, we query text-davinci-
002 with temperature=0.7 and max tokens=1024. If the
length of the output is sufficiently large (over 10 tokens),
we store the generation in the dataset.

B.2. Amazon Mechanical Turk Interface

For benchmarking our imitation models against Instruct-
GPT, we use Amazon Mechanical Turk with the UI in Fig-
ure 5. It shows human evaluators a random task instruction
and output response from one of our models. Evaluators
then rate the quality of the output from 1–5 using various
criteria. For our human evaluations, we rate outputs on
each of the 500 instructions in the evaluation set. We report
overall ratings as well as a per-category breakdown.

To evaluate input-output tasks, we also ask human anno-
tators to create inputs to use. We present the UI for this
collection task in Figure 6. We provide instructions and
samples in the sidebar. We collect approximately 85 inputs
for input-output task instructions in the evaluation set.

For our ratings evaluations, we collect 3 unique ratings for
every example in the evaluation set. For all evaluations,
roughly 100 unique human evaluators were used. We pay
these evaluators roughly $15/hour based on the average time
it takes to complete a task. In total, we spend roughly $5000
on our ratings experiments and $500 on collecting inputs,
inclusive of service fees.

C. SuperNI Results
Table 9 shows the results on SuperNI.
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Task Seed List
Brainstorming

- Think of new ways to make nuclear energy more financially reasonable
- Brainstorm different ideas to solve traffic congestion in Los Angeles
- There is a school fundraiser coming up, do you have any ideas?
- Help a student get better at his studies
- List the pros and cons of implementing a carbon tax
- How can I improve my productivity?
- Come up with methods for making your community more sustainable
- Generate ideas for reducing your carbon footprint
- What are some fun and unique ways to exercise?
- Ideas for a fun weekend activity

Chat

- Marv is a chatbot that reluctantly answers questions with sarcastic responses.
- This is a conversation with an enlightened Buddha. Every response is full of wisdom and love.
- The following is a conversation with an AI assistant. The assistant is helpful, creative, clever, and very
friendly.
- Bob is a 1st year PhD student at UC Berkeley and Lacy is his advisor.
- This is a conversation with Steven. Steven likes to watch Netflix and hasn’t left his home in 2 weeks.
- The following is a conversation between you and your friend group. Plan a hiking trip for the weekend.
- A new mother and father are talking about baby names.
- Ask a friend or family member for recommendations on something you’re interested in (e.g., books, movies,
music, etc.).
- You’re standing in line at a coffee shop. Make small talk with the barista.
- John and Mike are coworkers who are complaining to each other about their job.

Classification

- Given a short description of a made-up animal, classify it as either a bird or a mammal.
- Take a text document and determine if it is about cats or dogs.
- For each piece of text, classify it as positive, negative, or neutral.
- Given a list of movie reviews, label each review as positive or negative.
- Classify the following texts as either fiction or non-fiction.
- Classify the following news headlines as being about domestic or international news.
- Given a list of Amazon reviews, classify each review as positive or negative.
- Determine if a given text document is about the topic of ’politics’
- Determine whether a given text document is about the topic of baseball or the topic of basketball.
- Given a piece of text, classify it as belonging to one of three genres: mystery, romance, or comedy.

ClosedQA

- What happens when you drop a heavy stone from a tree?
- Choose the ingredients that are needed to make a meatball marinara.
- Which number is closest to pi?
- Which item would you take on a tropical trip?
- What is the best way to study for a test?
- What are the medical symptoms of the flu?
- How many different kinds of animals are there in the world?
- What is the capital of Australia?
- How would you make a simple meatball marinara dish?
- What are the lyrics to the chorus of the song ’Satisfied’

Extract

- Given the following list of movie titles, write down any names of cities in the titles.
- Given this table, find all the rows where the value in the second column is greater than the value in the first
column.
- Find all the words that are longer than 5 letters in this text.
- Find all the instances of the author using first-person point of view in this blog post.
- Extract all the course titles from the following course list.
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- Given this list of words, find all the palindromes.
- Given this list of numbers, find all the prime numbers.
- Find the average of all the numbers in this list.
- Find all the phone numbers in this document.
- Find the line of best fit for this data.

Generation

- Create a made-up creature and describe its habitat, diet, and appearance
- Write a short story from the perspective of an inanimate object
- Have a conversation between two people, with each piece of dialogue being one word longer than the last
- Write a children’s story that only uses words that start with the letter ’t’
- Create a character and write their life story from birth to death
- Invent a new holiday and describe how it is celebrated
- Create a map of an island that you make up
- Write a poem about your favorite season
- Create a menu for a 5-star restaurant
- You’re a alien on a new planet. What do you do?

OpenQA

- Who built the leaning tower of Pisa?
- Where did the word ”kindergarten” originate from?
- Who wrote the novel ’Pride and Prejudice’?
- What are the Ten Commandments?
- What is the definition of the word “pejorative”?
- How many calories are in a banana?
- What is the square root of pi?
- How do you do a breadth first search?
- How do you take a derivative of a function?
- What is the 6th element on the periodic table of elements?

Rewrite

- Edit this paragraph for spelling mistakes and clarity.
- Remove all punctuation from this text.
- Remove all the duplicates from this list.
- Rewrite this email to make it sound more professional.
- Translate this document from French to English.
- Make this product description more persuasive.
- Rewrite this short story to be more suspenseful.
- Take this research paper and make it more accessible to a lay audience.
- Edit the rhyme scheme of this poem to be more consistent.
- Rewrite this job ad to attract more qualified candidates.

Summarization

- Given a text passage, identify the main ideas and produce a summary of the text.
- Summarize this text for a second-grade student.
- Summarize the following conversation between a customer and customer assistant. Make sure to state any
complaints of the customer.
- Determine the main idea of the text.
- Create a one-sentence summary of the plot of this book.
- Tell me the main points from that book you just read.
- Give me a overview of what this research paper is about.
- Summarize the gist of this article for me.
- Give me the cliff notes for the following book.
- Provide a brief overview of what happened in this novel.

Table 3: The handwritten task instructions that were used to seed the task in-
struction generation pipeline. These task instructions were chosen since they are
illustrative of Instruct-GPT’s capabilities on various broad-coverage categories.
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List examples of {category} tasks that you can do. Focus on being as creative and
descriptive as possible.

Answer in the following format ‘- <>’. Replace <> with your answer.

- {instruction for seed or sampled task 1}
- {instruction for seed or sampled task 2}
- {instruction for seed or sampled task 3}
-

Table 4. Prompting template used for generating new instructions in any of the categories.

{task instruction from the output-only category}.

Table 5. Prompting template used to generate output-only examples for the categories of brainstorming, generation, and open-ended
question answering (openQA).

This is a task instruction: {task instruction from an input-output category}.

Read the task instruction and write an output for the following input:

Table 6. Prompting template used to generate input and output pairs for text extraction, rewriting, summarization and classification.

This is a task instruction: {task instruction from the chat category}.

Give me an example for this task instruction that is formatted like a chat
conversation between people. Focus on making the format as varied as possible.

Table 7. Prompting template used to generate formatted dialogue for the chat category.

This is a question: {task instruction from closedQA category}.

Read the question and pick the best answer among the following options:

Table 8. Prompting template used to generate answer choices for closed-ended question and answering tasks (closedQA).

Figure 5. Our Amazon Mechanical Turk interface for measuring the quality and correctness of model outputs for instruction following
tasks. Evaluators are presented with the category, instruction, and output for a random model and are told to rate the output from 1–5
using various criteria.
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Figure 6. Our Amazon Mechanical Turk interface for collecting inputs for input-output tasks in the holdout evaluation set. We provide
some samples and ask annotators to write an input and output pair for each task instruction in the holdout set. We save the corresponding
human-written inputs to be used during evaluation.

Imitation Models
Category GPT-J 10K 50K 100K 250K Instruct-GPT
Textual Entailment 2 15 24 13 6 41
Cause Effect Classification 4 18 28 14 10 38
Coreference Resolution 2 15 19 13 11 31
Dialogue Act Recognition 2 9 15 10 6 63
Answerability Classification 1 12 18 12 6 52
Word Analogy 1 6 8 5 4 27
Overlap Extraction 3 20 17 16 15 27
Keyword Tagging 1 13 14 10 8 20
Question Rewriting 6 34 29 29 32 48
Title Generation 2 13 14 13 12 32
Data To Text 7 26 24 22 21 28
Grammar Error Correction 10 75 61 53 54 52

Average 3 16 20 15 12 38

Table 9. Automated evaluations. We evaluate our imitation models on zero-shot SuperNI (Wang et al., 2022b) and report the average
Rouge-L score between the model and reference outputs for each category. Our imitation models can close approximately half of the gap
from the pre-trained GPT-J model to Instruct-GPT. We note that SuperNI comes from a different distribution than the data that we query
to the API. In fact, the Instruct-GPT paper notes that as they collect and fine-tune on larger internal datasets, their model actually gets
worse on public benchmarks. Therefore, we do not expect our models to perform particularly well on this evaluation.



Koala: A Dialogue Model for Academic Research

In this post, we introduce Koala, a chatbot trained by fine-tuning Meta’s LLaMA on dialogue data
gathered from the web. We describe the dataset curation and training process of our model, and
also present the results of a user study that compares our model to ChatGPT and Stanford’s
Alpaca. Our results show that Koala can effectively respond to a variety of user queries,
generating responses that are often preferred over Alpaca, and at least tied with ChatGPT in
over half of the cases.

We hope that these results contribute further to the discourse around the relative performance
of large closed-source models to smaller public models. In particular, it suggests that models
that are small enough to be run locally can capture much of the performance of their larger
cousins if trained on carefully sourced data. This might imply, for example, that the community
should put more effort into curating high-quality datasets, as this might do more to enable safer,
more factual, and more capable models than simply increasing the size of existing systems. We
emphasize that Koala is a research prototype, and while we hope that its release will provide a
valuable community resource, it still has major shortcomings in terms of content, safety, and
reliability, and should not be used outside of research.

Online interactive demo Training and serving framework on GitHub

System Overview

Large language models (LLMs) have enabled increasingly powerful virtual assistants and chat
bots, with systems such as ChatGPT, Bard, Bing Chat, and Claude able to respond to a breadth
of user queries, provide sample code, and even write poetry. Many of the most capable LLMs
require huge computational resources to train, and oftentimes use large and proprietary
datasets. This suggests that in the future, highly capable LLMs will be largely controlled by a
small number of organizations, and both users and researchers will pay to interact with these
models without direct access to modify and improve them on their own. On the other hand,
recent months have also seen the release of increasingly capable freely available or (partially)

https://ai.facebook.com/blog/large-language-model-llama-meta-ai/
https://openai.com/blog/chatgpt
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://koala.lmsys.org
https://github.com/young-geng/EasyLM
https://openai.com/blog/chatgpt
https://bard.google.com/
https://www.bing.com/new
https://www.anthropic.com/index/introducing-claude


open-source models, such as LLaMA. These systems typically fall short of the most capable
closed models, but their capabilities have been rapidly improving. This presents the community
with an important question: will the future see increasingly more consolidation around a handful
of closed-source models, or the growth of open models with smaller architectures that approach
the performance of their larger but closed-source cousins?

While the open models are unlikely to match the scale of closed-source models, perhaps the
use of carefully selected training data can enable them to approach their performance. In fact,
efforts such as Stanford’s Alpaca, which fine-tunes LLaMA on data from OpenAI's GPT model,
suggest that the right data can improve smaller open source models significantly.

We introduce a new model, Koala, which provides an additional piece of evidence toward this
discussion. Koala is fine-tuned on freely available interaction data scraped from the web, but
with a specific focus on data that includes interaction with highly capable closed-source models
such as ChatGPT. We fine-tune a LLaMA base model on dialogue data scraped from the web
and public datasets, which includes high-quality responses to user queries from other large
language models, as well as question answering datasets and human feedback datasets. The
resulting model, Koala-13B, shows competitive performance to existing models as suggested by
our human evaluation on real-world user prompts.

Our results suggest that learning from high-quality datasets can mitigate some of the
shortcomings of smaller models, maybe even matching the capabilities of large closed-source
models in the future. This might imply, for example, that the community should put more effort
into curating high-quality datasets, as this might do more to enable safer, more factual, and
more capable models than simply increasing the size of existing systems.

By encouraging researchers to engage with our system demo, we hope to uncover any
unexpected features or deficiencies that will help us evaluate the models in the future. We ask
researchers to report any alarming actions they observe in our web demo to help us
comprehend and address any issues. As with any release, there are risks, and we will detail our
reasoning for this public release later in this blog post. We emphasize that Koala is a research
prototype, and while we hope that its release will provide a valuable community resource, it still
has major shortcomings in terms of content, safety, and reliability, and should not be used
outside of research. Below we provide an overview of the differences between Koala and
notable existing models.

https://ai.facebook.com/blog/large-language-model-llama-meta-ai/
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://koala.lmsys.org/


Datasets and Training
A primary obstacle in building dialogue models is curating training data. Prominent chat models,
including ChatGPT, Bard, and Bing Chat, use proprietary datasets built using significant
amounts of human annotation. To construct Koala, we curated our training set by gathering
dialogue data from the web and public datasets. Part of this data includes dialogues with large
language models (e.g., ChatGPT) which users have posted online.

Rather than maximizing quantity by scraping as much web data as possible, we focus on
collecting a small high-quality dataset. We use public datasets for question answering, human
feedback (responses rated both positively and negatively), and dialogues with existing language
models. We provide the specific details of the dataset composition below.

ChatGPT Distillation Data
Public User-Shared Dialogues with ChatGPT (ShareGPT) Around 60K dialogues shared by
users on ShareGPT were collected using public APIs. To maintain data quality, we deduplicated
on the user-query level and removed any non-English conversations. This leaves approximately
30K examples.

Human ChatGPT Comparison Corpus (HC3)We use both the human and ChatGPT
responses from the HC3 english dataset, which contains around 60K human answers and 27K
ChatGPT answers for around 24K questions, resulting in a total number of around 87K
question-answer examples.

Open Source Data
Open Instruction Generalist (OIG)
We use a manually-selected subset of components from the Open Instruction Generalist dataset
curated by LAION. Specifically, we use the grade-school-math-instructions, the poetry-to-songs,
and the plot-screenplay-books-dialogue datasets. This results in a total of around 30k examples.

Stanford Alpaca
We include the dataset used to train the Stanford Alpaca model. The dataset contains around
52K examples, which is generated by OpenAI’s text-davinci-003 following the self-instruct
process. It is worth noting that HC3, OIG, and Alpaca datasets are single-turn question
answering while ShareGPT dataset is dialogue conversations.

Anthropic HH
The Anthropic HH dataset contains human ratings of harmfulness and helpfulness of model
outputs. The dataset contains ~160K human-rated examples, where each example in this
dataset consists of a pair of responses from a chatbot, one of which is preferred by humans.
This dataset provides both capabilities and additional safety protections for our model.

https://openai.com/blog/chatgpt
https://bard.google.com/
https://www.bing.com/new
https://sharegpt.com/
https://arxiv.org/abs/2301.07597
https://laion.ai/blog/oig-dataset/
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://huggingface.co/datasets/Anthropic/hh-rlhf


OpenAI WebGPT
The OpenAI WebGPT dataset includes a total of around 20K comparisons where each example
comprises a question, a pair of model answers, and metadata. The answers are rated by
humans with a preference score.

OpenAI Summarization
The OpenAI summarization dataset contains ~93K examples, each example consists of
feedback from humans regarding the summarizations generated by a model. Human evaluators
chose the superior summary from two options.

When using the open-source datasets, some of the datasets have two responses,
corresponding to responses rated as good or bad (Anthropic HH, WebGPT, OpenAI
Summarization). We build on prior research by Keskar et al, Liu et al, and Korbak et al, who
demonstrate the effectiveness of conditioning language models on human preference markers
(such as “a helpful answer” and “an unhelpful answer”) for improved performance. We condition
the model on either a positive or negative marker depending on the preference label. We use
positive markers for the datasets without human feedback. For evaluation, we prompt models
with positive markers.

The Koala model is implemented with JAX/Flax in EasyLM, our open source framework that
makes it easy to pre-train, fine-tune, serve, and evaluate various large language models. We
train our Koala model on a single Nvidia DGX server with 8 A100 GPUs. It takes 6 hours to
complete the training for 2 epochs. On public cloud computing platforms, such a training run
typically costs less than $100 with preemptible instances.

Preliminary Evaluation

https://huggingface.co/datasets/openai/webgpt_comparisons
https://huggingface.co/datasets/openai/summarize_from_feedback
https://arxiv.org/abs/1909.05858
https://arxiv.org/abs/2302.02676
https://arxiv.org/abs/2302.08582


In our experiments, we evaluated two models: Koala-Distill, which solely employs distillation
data, and Koala-All, which employs all of the data, including both distillation and open-source
data. Our aim is to compare the performance of these models and evaluate the influence of
distillation and open-source datasets on final performance. We ran a human evaluation to
compare Koala-All with Koala-Distill, Alpaca, and ChatGPT. We present our results in the figure
above. We evaluate on two different sets, one consisting of 180 test queries used by Stanford’s
Alpaca (“Alpaca Test Set”), and our own test set (“Koala Test Set”).

The Alpaca test set consists of user prompts sampled from the self-instruct dataset, and
represents in-distribution data for the Alpaca model. To provide a second more realistic
evaluation protocol, we also introduce our own (Koala) test set, which consists of 180 real user
queries that were posted online. These user queries span various topics, are generally
conversational in style, and are likely more representative of the real-world use cases of
chat-based systems. To mitigate possible test-set leakage, we filtered out queries that have a
BLEU score greater than 20% with any example from our training set. Additionally, we removed
non-English and coding-related prompts, since responses to these queries cannot be reliably
reviewed by our pool of raters (crowd workers). We release our test-set for academic use and
future benchmarking.

With these two evaluation sets, we conducted a blind pairwise comparison by asking
approximately 100 evaluators on Amazon Mechanical Turk platform to compare the quality of
model outputs on these held-out sets of prompts. In the ratings interface, we present each rater
with an input prompt and the output of two models. They are then asked to judge which output is
better (or that they are equally good) using criteria related to response quality and correctness.

On the Alpaca test set, Koala-All exhibited comparable performance to Alpaca. However, on our
proposed test set, which consists of real user queries, Koala-All was rated as better than Alpaca

https://crfm.stanford.edu/2023/03/13/alpaca.html
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://arxiv.org/abs/2212.10560
https://github.com/arnav-gudibande/koala-test-set


in nearly half the cases, and either exceeded or tied Alpaca in 70% of the cases. Of course, the
more conversational prompts in the Koala test set more closely resemble the Koala training set,
so this is perhaps not surprising, but insofar as such prompts more closely resemble likely
downstream use cases for such models, this suggests that Koala would be expected to perform
better in assistant-like applications. This suggests that data of LLM interactions sourced from
examples posted by users on the web is an effective strategy for endowing such models with
effective instruction execution capabilities.

Perhaps more surprisingly, we found that training on open-source data in addition to the
distillation data (Koala-All) performs slightly worse than training on just ChatGPT distillation data
(Koala-Distill), as shown by the comparison to Koala-Distill on both datasets. Though the
difference might not be significant, this result suggests that the ChatGPT dialogues are of such
high quality that incorporating even twice as much open-source data did not lead to a significant
improvement. Our initial hypothesis was that Koala-All should perform at least somewhat better,
hence we used it as our primary model in all evaluations, but a potential takeaway from these
experiments is that effective instruction and assistant models could be finetuned from LLM
backbones such as LLaMA entirely using data from larger and more powerful models, so long
as the prompts for these responses are representative of the kinds of prompts that users will
provide at test-time. This also further supports the notion that the key to building strong dialogue
models may lie more in curating high-quality dialogue data that is diverse in user queries, rather
than simply reformatting existing datasets as questions and answers.

Limitations and Safety
Like other language models, Koala has limitations and can be harmful when misused. We
observe that Koala can hallucinate and generate non-factual responses with a highly confident
tone, which is likely a result of the dialogue fine-tuning. Perhaps an unfortunate implication of
this is that smaller models inherit the confident style of larger language models before they
inherit the same level of factuality—if true, this is a limitation that is important to study in future
work. When misused, the hallucinated responses from Koala can potentially facilitate the spread
of misinformation, spam, and other content.



Koalas can hallucinate inaccurate information in a confident and convincing tone.

Koalas can hallucinate inaccurate information in a confident and convincing tone. Beyond
hallucinations, Koala shares deficiencies from other chatbot language models. Some of which
include:

● Biases and Stereotypes: Our model will inherit biases from the dialogue data it was
trained on, possibly perpetuating harmful stereotypes, discrimination, and other harms.

● Lack of Common Sense: While large language models can generate text that appears to
be coherent and grammatically correct, they often lack common sense knowledge that
humans take for granted. This can lead to nonsensical or inappropriate responses.

● Limited Understanding: Large language models can struggle to understand the context
and nuances of a dialogue. They can also have difficulty identifying sarcasm or irony,
which can lead to misunderstandings.

To address the safety implications of Koala, we included adversarial prompts in the dataset from
ShareGPT and Anthropic HH to make the model more robust and harmless. To further mitigate
potential misuse, we deploy OpenAI's content moderation filter in our online demo to flag and
remove unsafe content. We will be cautious about the safety of Koala, and we are committed to
perform further safety evaluations of it while also monitoring our interactive demo. Overall, we
decided to release Koala because we think its benefits outweigh its risks.

Release
We are releasing the following artifacts

● An online interactive demo of Koala
● EasyLM: our open source framework we used to train Koala
● The code for preprocessing our training data
● Our test set of queries

https://koala.lmsys.org
https://github.com/young-geng/EasyLM
https://github.com/young-geng/koala_data_pipeline
https://github.com/arnav-gudibande/koala-test-set


● Weights: we hope to release the weights soon, but we are still investigating some
permissions and licensing questions to do this responsibly.

License
The online demo is a research preview intended for academic research only, subject to the
model License of LLaMA, Terms of Use of the data generated by OpenAI, and Privacy Practices
of ShareGPT. Any other usage of the online demo, including but not limited to commercial
usage, is strictly prohibited. Please contact us If you find any potential violations. Our training
and inference code is released under the Apache License 2.0.

Future Work
We hope that the Koala model will serve as a useful platform for future academic research

on large language models: the model is capable enough to exhibit many of the
capabilities that we associate with modern LLMs, while being small enough to be
finetuned or utilized with more limited compute. Potentially promising directions might
include:

● Safety and alignment: Koala allows further study of language model safety and better
alignment with human intentions.

● Model bias: Koala enables us to better understand the biases of large language models,
the presence of spurious correlations and quality issues in dialogue datasets, and
methods to mitigate such biases.

● Understanding large language models: because Koala inference can be performed on
relatively inexpensive commodity GPUs, it enables us to better inspect and understand
the internals of dialogue language models, making (previously black-box) language
models more interpretable.

The Team
The Koala model is a joint effort across multiple research groups in the Berkeley Artificial
Intelligence Research Lab (BAIR) of UC Berkeley.
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Pieter Abbeel, Sergey Levine, Dawn Song

https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md
https://openai.com/policies/terms-of-use
https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb
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