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Abstract

State-of-the-art foundation language models have many strengths that are under-valued. Si-

multaneously, multilingual NLP lacks a clear goal. In this paper, we propose language-agnostic

understanding as the goal of multilingual NLP and demonstrate that leveraging foundation lan-

guage model strengths directly improves on this goal. We reformulate inputs during supervised

finetuning to better leverage foundation language model strengths. We obtain significant improve-

ments on challenging translation tasks compared to a baseline mT5 setup. On a Classical Tibetan

to English translation task, these reformulations improve performance up to 2.8 BLEU. On the

Flores200 translation benchmark, these reformulations improve performance up to 3.1 chrF++.

Our research reveals insights into how models learn from different inputs, enabling more effective

training to scalably improve state-of-the-art performance. We hope our research inspires further

work that leverages foundation language model strengths and further work on language-agnostic

understanding. Our experiments are released here.
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1 Introduction

Pretraining large language models on language understanding tasks enables them to be quickly

adapted to downstream use, either through prompting or finetuning [2, 38]. The strengths of
foundation languagemodels that underlie prompting have not been applied to finetuning.
Simultaneously, multilingual NLP lacks a clear goal beyond simple language translation and

multilingual language understanding tasks. This falls far short of our goals of multilingual
understanding, transferable understanding, and language adaptability. Specifically, a

model with full multilingual capabilities should (1) understand inputs and produce outputs in

various languages, (2) use knowledge acquired in different languages, and (3) adapt quickly to novel

languages. We propose the goal of multilingual NLP to be these three components, collectively

termed language-agnostic understanding (Figure 2).

In this paper, we finetune the multilingual foundation language model mT5 [41]. mT5 is

proficient at multilingual understanding but poor at transferable understanding. We measure

mT5’s performance on transferable understanding using two translation tasks: a Classical Tibetan

to English task, and the Flores200 benchmark [37].
1
We leverage mT5’s strengths as a foundation

language model to reformulate inputs at training time (Figure 1). For the Classical Tibetan

to English task, we see qualitative improvements in the training curves. For both tasks, we

improve translation performance significantly. Finally, these input reformulations directly increase

transferable understanding capabilities, reflected in the performance on these translation tasks.

In summary:

• We introduce the idea of language-agnostic understanding and pose the problem of achieving

better transferable understanding with current state-of-the-art multilingual understanding

models. To clarify, this is a separate theoretical contribution from our proposed techniques.

• We apply input reformulations that leverage foundation language model strengths during

supervised finetuning. These techniques are simple, effective at improving translation

performance, and explicitly increase transferable understanding capabilities.

• Our proposed techniques improve Classical Tibetan to English translation performance by

up to 10.3% / 2.8 BLEU and Flores200 performance by up to 17.3% / 3.6 chrF++.
2

1
Justification for dataset and task choice can be found in section 4.1.

2
We use different but appropriate metrics for the Classical Tibetan to English and Flores200 translation tasks. More

details on why these translation tasks use different metrics can be found in sections 4.1 and 5.1.
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Baseline
German: Das ist gut.

Spanish:

Completing an input
German: Das ist gut.

Spanish: Está

English scaffold in context
German: Das ist gut.

English: That is good.
Spanish:

Packed in context
German to English: Das ist gut.

Spanish to Chinese: Está bien.

That is good. 那很好。

Está bien.
mT5

Está bien.

Está bien.

Figure 1: Task reformulations which leverage model strengths. Green (top): the baseline input, a
direct translation pair. Red (second from top): leading themodel to treat the translation

task as a completion task by appending a prefix of the target output to the input.

Yellow (second from bottom): utilizing the model’s strong English understanding

capability to improve transferable understanding between two other input languages.

Blue (bottom): packing parallel sentences in multiple languages into a single input to

improve transferable understanding.
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2 Background

2.1 Foundation language models are the future of NLP

Foundation language models are powerful task-agnostic models that have become increasingly

prevalent in recent years, especially beginning in 2018with BERT [7, 20, 23, 24]. BERTwas pretrained

on a language understanding task, enabling strong performance on downstream classification

tasks through supervised finetuning. Then, the field of NLP shifted away from classification

tasks with BERT towards more general language generation models [27, 28, 30]. Since then, many

other foundation language models have been developed and released [2, 3, 4, 14, 34, 38, 39, 41, 42].

Foundation language models are state-of-the-art on nearly all downstream language tasks and are

easily scalable in compute, size, and data. Foundation language models are the present and future

of NLP.

Unfortunately, while some of these models were trained on non-English data, they do not
focus on multilingual performance [2, 3, 14, 29, 38, 39, 42]. Multilingual NLP enables insights

into the efficiency and generality of the knowledge representations in a model.

Foundation language models are either prompted or finetuned for downstream use. Prompting is

enabled by the fact that these models are strong at completing inputs and at leveraging their input

contexts. These strengths come from pretraining on language understanding tasks that require

the model to correctly generate the next token by leveraging their input context. Unfortunately,
foundation language model strengths at completing inputs and leveraging input contexts
have not been applied to finetuning.

2.2 Data efficient methods for translation and where they fall short

Our work can be viewed as a data efficiency technique for translation. Past works in translation

have explored data augmentation [8, 33], sample re-weighting [12, 31, 35], or curriculum learning

[15, 25, 37, 43, 44]. These approaches vary in effectiveness, are not generalizable, and introduce

complexity into the training process. On the other hand, our proposed technique is simple
and can be directly applied to any sequence-to-sequence task.
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Language
agnostic

understanding

(1) Anne Frank was born in 1929.

(2) Ana Frank nació en 1929.

Ana Frank nació en 1929.

(1) Anne Frank met her mom in 1929.

(2) .9291 ni nrob saw knarF ennA

Multilingual understanding
(1) Anne Frank was born in 1929.

When was Anne Frank born?

(2) Ana Frank nació en 1929.
¿Cuándo nació Ana Frank?

Transferable understanding
Anne Frank was born in 1929.

¿Cuándo nació Ana Frank?

Language adaptability
(1) When Anne Frank meet her mom? 

(2) ?nrob knarF ennA saw nehW

Figure 2: The constituents of language-agnostic understanding. Top (Green): The model re-

ceives inputs in both English and Spanish and competently responds in both languages,

separately. Middle (Red): The model learns a novel fact in English, is asked a related

question in Spanish, and correctly outputs the response in Spanish. Bottom (Yellow):
The first input is different from the typical natural language distribution, and the second

input is in English but backwards. The model competently receives inputs in both cases

and produces a corresponding output.

3 Language-agnostic understanding

3.1 Multilingual approaches

Following the success of BERT [7], many works applied BERT’s pretraining approach to multilin-

gual corpora. The most popular approach is to perform monolingual pretraining over the new

multilingual corpus [3, 5, 10, 32, 36, 39, 41]. Other approaches shift the focus frommultilingual under-

standing to translation [18],multilingual tokenization [17, 40], or curating translation datasets [9, 37].

Critically, recent works in the field of multilingual NLP are decentralized, lacking a clear
goal beyond simple language translation and multilingual language understanding tasks.
We hope to clarify and solidify the goal with our proposal of language-agnostic understanding.

Few approaches have deviated from this multilingual pretraining approach. In early 2019,

Lample and Conneau proposed translation language modeling (TLM). TLM stacks a translation

pair together for the pretraining task input [16], directly increasing transferable understanding. In

late 2020, Ouyang et al extend TLM to incorporate cross-attention masking and back-translation

[21]. We believe that TLM should be revisited for better multilingual pretraining (see
section 6).
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3.2 Multilingual models and where they fall short

The best multilingual language understanding model is mT5 [41] and the best translation model

is NLLB [37]. Unfortunately, mT5 and NLLB lack multiple components of language-agnostic

understanding. Neither model is capable of language acquisition since it takes enormous amounts

of data to pretrain and finetune them, especially compared to humans. NLLB was only trained to

perform translation, so it can’t actually respond to inputs. Thus, NLLB is unfit for multilingual
understanding. For example, when NLLB is asked a question in English and asked to produce an

output in English, NLLB simply outputs the original input because that’s what it has been trained

to do. In contrast, mT5 can be finetuned for multilingual question answering. Then, when mT5 is

asked a question in English, it will output an attempt at an answer in English.

Translation, as in the case of NLLB [37], is insufficient for the goal of language-agnostic un-

derstanding. While translation can be used as a middle-man for a powerful monolingual model,

this simply masks the fundamental problem at stake. A model incapable of multilingual under-

standing will have even larger problems perceiving and acting in different modalities. In the

case of multimodality, it’s unclear that an analogous "translation" model can even exist. Models
trained end-to-end to have multilingual understanding will surpass two separate models
of translation and monolingual language understanding.
mT5 has been pretrained on a language understanding objective, so it’s proficient at multilin-

gual understanding. Unfortunately, mT5 lacks transferable understanding. For example, mT5 is

evaluated on the XNLI task [6] where it is trained on a task in English and tested on the same

task in different languages. If mT5 had perfect transferable understanding, the test set scores in

different languages should match the test set scores in English, regardless of mT5’s monolingual

performance in each language. mT5 struggles to match English performance and the performance

is correlated with the amount of pretrain data in the particular language [41]. Thus, mT5’s
performance can be explained by learning about the task during finetuning and then
leveraging strong monolingual capabilities, and not by transferable understanding.

3.3 Remarks on multilingual benchmarks

Current multilingual benchmarks are designed to measure multilingual performance on a down-

stream task. Specifically, XNLI is a task for multilingual natural language inference [6]. The XNLI

authors developed the translate-train paradigm where the original English data are translated

into different languages and subsequently used for training and testing. The authors of mT5 were
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specifically interested in crosslingual transfer so they developed the zero-shot transfer paradigm

where a model is trained only in English and tested on other languages [41].

This zero-shot transfer paradigm does measure crosslingual transfer. However, the task that

the paradigm is applied to enables several confounding factors when measuring the fundamental

property of interest, transferable understanding. Specifically, the zero-shot transfer paradigm

applied to the natural language inference task conflates pattern matching on the input task and

strong monolingual performance with actual transferable understanding. Strong performance

on the zero-shot transfer paradigm by pattern matching and monolingual capabilities masks the

actual underlying transferable understanding capabilities of the model.

Thus, we reduce the problem of measuring transferable understanding to reducing the effect of

monolingual capabilities. In the best case, the prior given to the model on the task by monolingual

capabilities in different languages is zero. An example of a task is to have the model train on

made-up facts in English, and recall those facts in different languages, retaining the zero-shot

transfer paradigm. This way, the model has zero monolingual priors on the task in different

languages. An example can be seen in the example of transferable understanding in 2.

An alternative paradigm for measuring cross-lingual task transfer is to perform the zero-shot

transfer paradigm and aggregate across different source languages. For example in XNLI, train

separate models on Arabic, English, Bulgarian, etc and perform zero-shot transfer evaluation. This

enables insight into how monolingual performance during training affects how much of the task

is actually transferred to other languages.

4 Building intuition using the Classical Tibetan to English
translation task

We evaluate mT5’s transferable understanding using two challenging translation tasks based

on a Classical Tibetan to English dataset and the Flores200 benchmark. We use translation

tasks to measure transferable understanding because transferable understanding at least requires

translation capabilities. A model with strong translation capabilities must have generalized internal

representations that language can be mapped in and out of. We first perform experiments on the

Classical Tibetan to English task because it’s easier, then transfer our learning and findings to the

harder Flores200 task.
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4.1 Dataset

The Classical Tibetan to English dataset is challenging because mT5 was not pretrained on

Tibetan or on classical languages. mT5’s tokenizer was also not trained on Classical Tibetan

input, so the inputs on this dataset are much less dense than mT5 typically prefers them to be

(see 5.5). This choice of dataset enables salient differences to be shown when using better input

reformulations, while still being tractable for the model to learn as we perform ablations on specific

input reformulations. An alternative is to use datasets similar to the WMT German to English

dataset [1], but mT5 already has strong performance on this task because it was pretrained on

large amounts of monolingual German and English data. Another alternative is to directly use the

Flores200 dataset, but there are many other confounding factors that prevent isolation of effects of

our input reformulations. This dataset contains no personally identifiable information or offensive

content and is available by request here. The Classical Tibetan to English dataset consists of 450k

train, 5k validation, and 5k test translation pairs.

mT5’s tokenizer was not trained on Tibetan. One approach is to train a new tokenizer on the

new corpus, but this would require mT5 to be re-pretrained. As a result, we use mT5’s current

tokenizer and use the byte-level fallback capabilities of the underlying SentencePiece tokenizer to

encode unknown tokens [41]. mT5’s tokenizer yields inputs of mean 72 / median 51 on the Classical

Tibetan to English task. Given the dataset sentence characteristics, we use a max sequence length

of 256 for the Tibetan to English task.

We perform evaluation on the Tibetan to English task using the BLEU metric [22], suitable for

use because the outputs are in English. Additionally, we perform qualitative evaluation of training

curves. An alternative is to use chrF++ metric, but this character n-gram based score inflates

English output scores. Furthermore, translation into English is typically measured in BLEU.

4.2 Input reformulations

As a foundation model, mT5 is strong at completing a given input. To leverage this strength, we

append a uniformly randomly length prefix of the target to the input. This leads the model to
treat the task as a completion task rather than a direct input-output task. Intuitively, we
improve the model’s single step probabilities of outputting the correct next token. An example

can be found in 3. We apply this input reformulation to the Classical Tibetan to English task.
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Table 1: Summary of results on the Classical Tibetan to English translation task. Values shown are

test set BLEU scores.

Model Baseline Reformulated Diff

mT5 600M 23.5 24.6 +1.1
mT5 1B 27.2 28.3 +1.1
mT5 3B 27.3 30.1 +2.8

4.3 Experiment setup

We use the stochastic gradient descent optimization algorithm AdamW [19] with the gradient

exponential moving average (EMA) parameter 𝛽1 = 0.9, the hessian approximation EMA parameter

𝛽2 = 0.999, and weight decay value of 0. Since we use AdamW which requires a minimum of

several thousand updates to converge, we use a total of 10,000 updates, plenty of time for all of

our training runs to fully converge. We use no warmup and a constant learning rate. On the

Classical Tibetan to English task, we ablate over learning rates in {1e-3, 2e-3, 3e-3} for 600M and

1B parameter models (the default finetuning learning rate for mT5 [41]) and {3e-4, 5e-4, 1e-3} for

3B parameter models, where we found lower learning rates to be empirically better.

We use a per step batch size of 512 examples / 35,000 tokens, very small compared to the

finetuning setups of mT5 (per step batch size of 2
17 ≈ 131, 000) [41]. This covers about 11 epochs

on the Tibetan to English translation task.

We explore several different experimental setups to find the optimal strategy of incorporating

our input reformulation. The best setup was presenting the reformulated dataset for the first 2000

steps with the remaining 8000 steps remaining unchanged. All ablations are performed on mT5

600M.

We perform evaluation on the models and save checkpoints every 200 steps, for a total of 50

evaluations, and we use the highest scoring checkpoint for all results.

Models were trained on GPU nodes of either 8 NVIDIA A5000 24GB GPUs or 8 NVIDIA A6000

48GB GPUs. The typical train time varied from 3 hours for the smallest models to 36 hours for the

largest. We leverage the Deepspeed library https://www.deepspeed.ai/ for multi-GPU training

and for training in the half precision bf16.
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Input
ཟངས་མདོག་དཔལ་�ི་རི་བོར་�ེ་བར་ཤོག །

mT5

Target output
May we be born on the

Copper-Coloured Mountain of
Glory.

Input with target prefix
ཟངས་མདོག་དཔལ་�ི་རི་བོར་�ེ་བར་ཤོག །May we be

born on

mT5

Target output
May we be born on the

Copper-Coloured Mountain of
Glory.

Baseline formulation
"Completing an input"

reformulation

Classical Tibetan to English input reformulations

Figure 3: Examples of input reformulations applied to the Classical Tibetan to English translation

task. The changes to the original input are highlighted in red.

0 2000 4000 6000 8000 10000
Steps

0

5

10

15

20

25

30

Va
lid

at
io

n 
se

t B
LE

U 
sc

or
e

mT5 600M
mT5 600M baseline
mT5 600M completing an input

0 2000 4000 6000 8000 10000
Steps

mT5 1B

mT5 1B baseline
mT5 1B completing an input

0 2000 4000 6000 8000 10000
Steps

mT5 3B

mT5 3B baseline
mT5 3B completing an input

Classical Tibetan to English performance for mT5 experimental configurations

Figure 4: Classical Tibetan to English translation task reformulation experiment results. These

results compare the mT5 baseline (blue) and the mT5 "completing an input" input
reformulation (orange) experimental configurations. Each line represents perfor-

mance on the range of learning rates specified in section 4.3, where the solid line is

the mean and the shaded area around each line is the standard deviation. Left: 600M.

Center: 1B. Right: 3B.
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4.4 Results and analysis

For the Classical Tibetan to English task, we seek to answer two questions: (1) can input refor-

mulations improve evaluation set performance and (2) how do input reformulations affect the

behavior of model training?

A summary of the ablations performed can be found in 2. From the results, we learn: easier

tasks stabilize model training, especially in the beginning of training (1, 2, 3); simple setups have

less variance than complex setups (4, 5, 6); input reformulations should have enough noise for the

model to successfully denoise (3, 6); input reformulations are target-substring independent (7, 8, 9);

input reformulations cannot deviate too far from the actual task and input reformulations should be

only in natural language (10, 11, 12, 13). We choose setup (3) to represent our input reformulations

because it was the most stable of the input reformulations while performing significantly better

than the baseline.

Clearly, changing the input reformulation from the baseline to "completing an input" can im-

prove evaluation set performance (see Figure 4 and Table 1). Furthermore, the input reformulation

consistently outperforms the baseline. The baseline training curves have high variance over

learning rates and are unstable throughout training. Adding our simple reformulation signifi-
cantly reduces the variance of the training curves, smooths out training, and improves
performance. Furthermore, the input reformulation experiment training curves could
be extrapolated to improve performance even further, while the baseline has already
begun converging.

5 Putting it all together on the challenging Flores200 translation
task

5.1 Dataset

The Flores200 dataset consists of around 3,000 parallel sentences in 204 different languages [11, 13,

37] and is available via the Creative Commons Attribution Share Alike 4.0 license. This dataset is

challenging because of the sheer number of languages, and because mT5 was not pretrained on

over half of the languages present in the dataset. The Flores200 dataset is purported for evaluation

with a separate non-parallel train set NLLB, but the parallel nature of the Flores200 dataset enables

better training techniques leveraging mT5’s strengths. To formulate a translation task, we take

translation pairs from the Flores200 dev set as our training set and translation pairs from the

14



Table 2: Classical Tibetan to English task ablations. All ablations setups use mT5 600M. The

reformulation process is to select a substring of the target English output and append

it to the Tibetan input. The length of the substring is selected in two different ways:

uniformly randomly and linearly scaling. In the linearly scaling condition, earlier steps

use proportionally more of the target output. The value shown in the "BLEU" score column

is the maximum test set BLEU score over the learning rates.

No. Setup Substring Stable? BLEU

(1) 50% baseline, 50% reformulated Prefix Yes 23.9

(2) 100% reformulated Prefix Yes 21.1

(3) First 2000 steps reformulated Prefix Yes 24.6
(4) Staged linearly scaling Prefix No 24.7

(5) Linearly scaling Prefix No 17.4

(6) (3) with linearly scaling Prefix No 24.9

(7) (3) Prefix and suffix Yes 24.5

(8) (3) with 4000 steps Prefix and suffix Yes 24.0

(9) (3) with 1200 steps Prefix and suffix Yes 24.8

(10) (3) with masked target reformulation with p=0.1 Prefix No 24.9

(11) (3) + last 2000 steps mask the input with p=0.1 Prefix No 23.6

(12) (3) + last 5000 steps mask the input with p=0.25 Prefix Yes 23.0

(13) (3) + last 5000 steps span-mask input with p=0.25 Prefix Yes 23.4

15



devtest set as our validation and test sets. Our reformulated Flores200 dataset for training consists

of 20M train, 5k validation, and 10k test translation pairs.

Following the tokenization setup for the Classical Tibetan to English task, mT5’s tokenizer yields

inputs of mean 52 / median 46 on the Flores200 task. Given the dataset sentence characteristics,

we use a max sequence length of 256 for both the Flores200 task. This is lower than the maximum

sequence length of 512 used to develop NLLB [37], but it makes no mechanical difference since

none of the inputs are truncated.

We perform evaluation on the Flores200 task using the chrF++ metric [26], in line with evaluation

of the NLLB team [37]. BLEU poorly represents relative scores across the 204 typologically diverse

languages in the Flores200 dataset, so chrF++ is more suitable.

5.2 Input reformulations

We apply our learnings from the Classical Tibetan to English translation task to the Flores200 task.

Any input reformulations on the Flores200 task should only be in natural language and be just

"noisy" enough for the model to denoise on. The "noise" that we leverage is presenting the same

content but in different languages. To better leverage a model’s input context, we either "scaffold"

an input context with the parallel English translation or "pack" multiple parallel translation pairs

into a single input context 5. For both reformulations, the model is able to directly attend between

pairs of parallel inputs, directly increasing transferable understanding. For the English scaffold

input, the model is able to heavily exploit its knowledge of English to perform better. For the

packed input, the model is able to increase transferable understanding between languages to

perform better. We apply both of these reformulations to the Flores200 translation task.

5.3 Experiment setup

We apply the same setup as the Classical Tibetan to English translation task setup unless noted

otherwise. On the Flores200 task, we ablate over the learning rates {1e-4, 2e-4, 3e-4}, where we

again found lower learning rates to be empirically better. We use a per step batch size of 2048

examples / 105,000 tokens for the Flores200 task, very small compared to the training setup of

NLLB (per step batch size of 1 million tokens) [37]. This covers about 0.5 epochs on the Flores200

train set. We use a larger data budget and a larger per step batch size for Flores200 compared to

the Classical Tibetan to English task because Flores200 is a harder task.

For the Flores200 task, we use a ratio of 20% baseline and 80% reformulated dataset. In all of the

scenarios, we hold the data and compute budgets constant to ensure the validity and veracity of
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Table 3: Summary of results on the Flores200 translation task. Values shown are test set chrF++

scores.

Model Baseline Reformulated Diff

mT5 600M 18.4 21.5 +3.1
mT5 1B 20.8 24.4 +3.6
mT5 3B 23.7 25.7 +2.0

our results. Specifically, the Flores200 reformulations use up to twice the number of examples per

input so we reduce the per-step batch size by a factor of two.

5.4 Results and analysis

For the Flores200 task, we seek to answer two further questions: (1) how general can input

reformulations be, and (2) how much can input reformulations enable the model to leverage other

strengths?

We observe similar effects compared to the input reformulations on the Classical Tibetan to

English task (see Figure 6 and Table 3). For the "packed in context" reformulation, the model learns

faster and better. For the "English scaffold in context" reformulation, the model learns slightly

slower initially but learns much more over the course of training. Critically, the English scaffold

in context reformulation enables the model to not only leverage its input context better, but also

exploit its strong knowledge of English. These input reformulations are different and more general

than those in the Classical Tibetan to English translation task, but have similar positive effects.

Input reformulations that leveragemodel strengths are effective at improvingmodel performance.

Beyond just improving absolute scores on the translation task metrics, the input reformulations

can also help to better condition the model for finetuning on challenging downstream tasks.

Packing multiple translation examples in a single input context or scaffolding an input context

with a parallel English sentence enables the model to directly attend to the same input sentence

in different languages. This direct attention from the input context helps the model align the

same content from different languages and directly increases transferable understanding. Packing

multiple parallel examples into a single input context enables the model to better denoise on the

difference between languages.

Interestingly, the English scaffold condition performs the best but has the highest variance over

the learning rates. The need for lower learning rates typically indicates poor conditioning, so the
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Output
El lunes, los científicos de la facultad de medicina de la Universidad de Stanford anunciaron
el invento de una nueva herramienta de diagnóstico que puede catalogar las células según su

tipo: un pequeñísimo chip que se puede imprimir y fabricar con impresoras de inyección de uso
corriente, por un posible costo de, aproximadamente, un centavo de dólar por cada uno.

Input with parallel English sentence to scaffold

German: Am Montag haben die Wisenschaftler der Stanford University School of Medicine die
Erfindung eines neuen Diagnosetools bekanntgegeben, mit dem Zellen nach ihrem Typ sortiert

werden können: ein winziger, ausdruckbarer Chip, der für jeweils etwa einen US-Cent mit
Standard-Tintenstrahldruckern hergestellt werden kann.

English: On Monday, scientists from the Stanford University School of Medicine announced the
invention of a new diagnostic tool that can sort cells by type: a tiny printable chip that can

be manufactured using standard inkjet printers for possibly about one U.S. cent each.

Spanish:

Input

German: Am Montag haben die Wisenschaftler der Stanford University School of Medicine die
Erfindung eines neuen Diagnosetools bekanntgegeben, mit dem Zellen nach ihrem Typ sortiert
werden können: ein winziger, ausdruckbarer Chip, der für jeweils etwa einen US-Cent mit

Standard-Tintenstrahldruckern hergestellt werden kann.

Spanish:

Output
El lunes, los científicos de la facultad de medicina de la Universidad de Stanford anunciaron
el invento de una nueva herramienta de diagnóstico que puede catalogar las células según su

tipo: un pequeñísimo chip que se puede imprimir y fabricar con impresoras de inyección de uso
corriente, por un posible costo de, aproximadamente, un centavo de dólar por cada uno.

Output with two parallel sentences in different languages

On Monday, scientists from the Stanford University School of Medicine announced the invention
of a new diagnostic tool that can sort cells by type: a tiny printable chip that can be

manufactured using standard inkjet printers for possibly about one U.S. cent each.

周一，斯坦福大学医学院的科学家宣布，他们发明了一种可以将细胞按类型分类的新型诊断工具：一种可打印的微型芯片。这种
芯片可以使用标准喷墨打印机制造，每片价格可能在一美分左右。

Input with two parallel sentences in different languages

German to English: Am Montag haben die Wisenschaftler der Stanford University School of
Medicine die Erfindung eines neuen Diagnosetools bekanntgegeben, mit dem Zellen nach ihrem

Typ sortiert werden können: ein winziger, ausdruckbarer Chip, der für jeweils etwa einen US-
Cent mit Standard-Tintenstrahldruckern hergestellt werden kann.

Spanish to Chinese: El lunes, los científicos de la facultad de medicina de la Universidad de
Stanford anunciaron el invento de una nueva herramienta de diagnóstico que puede catalogar

las células según su tipo: un pequeñísimo chip que se puede imprimir y fabricar con

impresoras de inyección de uso corriente, por un posible costo de, aproximadamente, un
centavo de dólar por cada uno.

English scaffold in context reformulation

Baseline formulation

Packed in context reformulation

Flores200 translation task input reformulations

Figure 5: Examples of input reformulations applied to the Flores200 translation task. The changes

to the original input are highlighted in red.
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Figure 6: Flores200 translation task reformulation experiment results. These results compare

the mT5 baseline (blue), mT5 "packed in context" (green), and the mT5 "English
scaffold" input reformulation (orange) experimental configurations. Each line

represents performance on the range of learning rates specified in section 5.3, where

the solid line is the mean and the shaded area around each line is the standard deviation.

Left: 600M. Center: 1B. Right: 3B.

input task is more ill-conditioned than the baseline. One possible explanation is that mT5 begins

to actually learn the languages in Flores200 that were not present in its training set.

5.5 Comparison of mT5 and NLLB performance

Since we use translation tasks as a proxy for transferable understanding in mT5, we compare the

performance of mT5 with the performance of NLLB, the best translation model today [37]. Our

goal is not to achieve better translation results than NLLB; rather, we aim to show improvements

on mT5’s performance at transferable understanding. Furthermore, the data and compute budget

of our finetuning setup is much smaller than that of NLLB.

We first compare the input lengths using mT5’s tokenizer and NLLB’s tokenizer which has been

trained on all languages in Flores200. On the Tibetan inputs of the Tibetan to English dataset,

mT5’s encoded input lengths are mean 72 / median 51 tokens and NLLB’s encoded input lengths

are mean 26 / median 19 tokens. This large gap highlights that mT5’s tokenizer was not trained

on the Tibetan language. In addition, the Classical Tibetan dataset contains many novel entity

names that require many additional tokens under the byte-level fallback scheme. On the Flores200

dataset, mT5’s encoded input lengths are mean 52 / median 46 tokens and NLLB’s encoded input

lengths are mean 41 / median 39. The gap between the token lengths for the two tokenizers is

much closer because mT5’s tokenizer was trained on about half of the languages in the Flores200

dataset and many of the languages present in Flores200 are represented using a Latin or Arabic

script.
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Differences in tokenization can have large effects on downstream performance. Specifically,

mT5’s tokenizer yields word or character pieces that are much smaller than that of NLLB’s tokenizer.

This presents a significant challenge to models today that have no explicit notion of summarization

over the sequence length dimension. Specifically, the current attention mechanism cannot group

multiple tokens together to attend to them as a unit or have that unit attend to something else.

For example, the word "packed" may be broken up into several characters. When translating the

word "packed", we certainly want a more holistic view of the word, perhaps grouped as "pack" and

"-ed". This reduces the modeling capacity and performance of mT5 on these translation tasks.

Second, NLLB has actually been trained on translation while mT5 has only been trained on the

monolingual pretraining task on a multilingual corpus. NLLB also has been trained on Tibetan to

English translation. As a result, NLLB has much stronger translation and Tibetan priors than mT5.

Third, the NLLB translation model was trained on the full NLLB translation dataset while our

setup trains on the Flores200 set. Our Flores200 training set reformulations actually only come

from 1000 sentences. This reduces the information that mT5 can learn during our finetuning.

Furthermore, while a specific translation pair is seen rarely throughout training, the input sentences

themselves are commonplace. Specifically, the model runs through each input sentence once per

training step.

All of these factors combine to put our mT5 training setup at a severe disadvantage compared

to NLLB. To reiterate, we do not intend to achieve better or even comparable results to NLLB.

Because NLLB is a translation-only model, our input reformulations cannot be applied to it. For

example using the "English scaffold in context" input reformulation, the inputs to the model are

two parallel sentences in two different languages. NLLB would receive these inputs and output a

repeat of the same sentence in the first language specified. In contrast, mT5 can be finetuned to

dynamically receive inputs and produce outputs in different languages.

For NLLB on the Tibetan to English task, we ablate over learning rates in {3e-4, 5e-4, 1e-3}.

For the NLLB Tibetan to English baseline, we use a linear warmup of 1000 steps, 10% of the

total number of updates, with constant learning rate afterwards. The NLLB column is the task

performance of a corresponding size NLLB model. We evaluate Flores200 scores using the xx-yy

condition [37].

Clearly, NLLB outperforms mT5 on both the Classical Tibetan to English and Flores200 tasks

(4, 7). Only the mT5 3B reformulated inputs condition reaches the smallest NLLB 600M model

performance. Despite NLLB’s strong translation and Tibetan prior, NLLB still struggles on the

Classical Tibetan to English translation task. This is most likely due to the the fact that NLLB
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Table 4: Comparison of results to NLLB

Task Metric Model NLLB Baseline Reformulated

Classical Tibetan to English BLEU mT5 600M 29.3 23.5 24.6

mT5 1B 32.3 27.2 28.3

mT5 3B 34.4 27.3 30.1

Flores200 chrF++ mT5 600M 39.5 18.4 21.5

mT5 1B 41.5 20.8 24.4

mT5 3B 42.7 23.7 25.7
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Figure 7: Results comparing the NLLB baseline, mT5 baseline, and mT5 completing an input

experimental configurations. Each line represents performance on the range of learning

rates specified above and in section 4.3, where the solid line is the mean and the shaded

area around each line is the standard deviation. Left: 600M. Center: 1B. Right: 3B.
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was only trained on modern languages and the language distribution of Classical Tibetan is very

distinct from that of modern Tibetan.
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6 Conclusion

We identify two shortcomings of current research in the NLP space. First, foundation language

models have many strengths that are undervalued. Specifically, the strengths of foundation

language models that underlie prompting have not been applied to finetuning. Second, multilingual

NLP lacks a clear goal. We introduce the concept of language-agnostic understanding and its three

constituents: multilingual understanding, transferable understanding, and language adaptability.

We perform supervised finetuning on mT5, a state-of-the-art multilingual foundation language

model that has good multilingual understanding capabilities but poor transferable understanding

capabilities. We leverage the strengths of mT5 as a foundation language model to reformulate

inputs at training time. These input reformulations are simple and effective, only requiring

changes to data processing. Critically, these input reformulations directly increase the transferable

understanding capabilities of mT5.

Furthermore, we show that transferable understanding can be improved under a very small data

and compute budget around 20M examples over 10k finetuning steps. As alluded to earlier, we

believe that this same input reformulation paradigm should be additionally applied to multilingual

pretraining, for example by revisiting translation language modeling (TLM) [16]. The translation

language modeling task can be directly added into the baseline multilingual pretraining data

mix. The input reformulation can be exactly the packed in context reformulation applied to the

Flores200 dataset, where the number of parallel translation examples per input can be scaled

further from 2 up to 8 in a single input context.

Our proposed technique has only been applied to two challenging translation tasks where

the input and output are both information rich and sequential in nature. Mechanically, there is

no reason why this technique cannot be applied to other tasks such as sequence classification.

Intuitively, doing so would enable the model to attend to multiple inputs in its input context in

order to better denoise the inputs. This allows the model to learn more effectively. The specific

techniques explored here are applicable to other tasks. Fundamentally, the idea is to leverage

strengths of foundation models better during finetuning. This allows for more creative input

reformulations to better exploit the specific task at hand.

We hope that the proposed direction of language-agnostic understanding for multilingual NLP is

comprehensive and intuitive, and that further works expand on it. We hope that the simplicity and

efficacy of our technique inspires further research and techniques that better leverage foundation

models strengths.
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