
Embeddings for Optimization Modulo Theories

Learned by Graph Neural Network Guided Solvers are

Robust to Logical Space Perturbations

Chirag Sharma

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-143

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-143.html

May 12, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Chirag Sharma

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,

University of California at Berkeley, in partial satisfaction of the requirements for

the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee

Joseph E. Gonzalez

Research Advisor

(Date)

★ ★ ★ ★ ★ ★ ★

Sanjit A. Seshia

Second Reader

(Date)

 5/11/2023

5/12/2023

Embeddings for Optimization Modulo Theories Learned by Graph Neural
Network Guided Solvers are Robust to Logical Space Perturbations

by

Chirag Sharma

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Joseph E. Gonzalez, Chair
Professor Sanjit A. Seshia

Spring 2023

Embeddings for Optimization Modulo Theories Learned by Graph Neural
Network Guided Solvers are Robust to Logical Space Perturbations

Copyright 2023
by

Chirag Sharma

1

Abstract

Embeddings for Optimization Modulo Theories Learned by Graph Neural
Network Guided Solvers are Robust to Logical Space Perturbations

by

Chirag Sharma

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Joseph E. Gonzalez, Chair

Optimization Modulo Theories (OMT) is a highly expressive class of combinatorial optimiza-
tion problems that can be used to formulate many computationally hard real-world problems
in areas such as scheduling, transportation, resource allocation, and supply chain manage-
ment. Solving OMT problems in practice requires careful manual design of general heuristics
but for specialized applications, this can be replaced with an automated machine learning
framework that learns to predict OMT problem solutions from task-specific datasets. We
encode OMT problems as graphs and train Graph Convolution Networks on the task of di-
rectly predicting optimal assignments to integer variables via a classification objective. We
introduce a logical space perturbation technique for sampling slightly modified versions of a
given OMT problem and show that the embeddings of OMT problems that are learned via
our training approach capture sufficient latent structural information about the problems to
be robust to these perturbations. We demonstrate this claim by generating training data cur-
riculums for the problem classes of DAG Multiresource Task Scheduling and the Multi-Agent
Traveling Saleseman Problem and running experiments to compare the variable prediction
accuracy of the direct training approach, training on an augmented dataset that includes a
large number of perturbation examples, and finetuning a pretrained model that has learned
to identify structural differences between a problem and perturbations of it. In all exper-
iments, the direct training approach performs just as well as the data augmentation and
pretraining approaches.

i

Contents

Contents i

List of Figures ii

List of Tables iii

1 Introduction 1

2 Background and Related Work 4
2.1 Optimization Modulo Theories (OMT) . 4
2.2 Mixed Integer Linear Programming (MILP) 6
2.3 Graph Learning for Combinatorial Optimization 7
2.4 Data Augmentation and Pretraining for Graph Learning 7

3 Approach 9
3.1 Data Augmentation Method . 10
3.2 Formulation of Pretraining Objective . 10
3.3 Graph Representations for OMT . 11
3.4 DMTS Formulation . 13
3.5 MATSP Formulation . 13
3.6 Dataset Generation . 15
3.7 Downstream Performance Evaluation . 15

4 Experiments and Results 17
4.1 Impact of Training Data Augmentation on Evaluation Accuracy 17
4.2 Finetuning Pretrained Models on Variable Assignment Prediction 18

5 Conclusion and Future Work 20

Bibliography 22

ii

List of Figures

3.1 Graph encoding used to represent OMT problems as defined in Section 2.1. Vari-
ables and constraints are represented as nodes in a weighted undirected graph,
with final constraints being hierarchically represented as trees of inner level con-
straints (atoms, conjunctions, and clauses). 12

iii

List of Tables

4.1 Comparison of downstream optimal variable prediction accuracy on DMTS cur-
riculums between models trained on original datasets and models trained on per-
turbation augmented datasets. N is the number of tasks in the scheduling instance. 18

4.2 Comparison of downstream optimal variable prediction accuracy on MATSP cur-
riculums between models trained on original datasets and models trained on per-
turbation augmented datasets. N is the number of waypoints in each cluster. . . 18

4.3 Comparison of downstream optimal variable prediction accuracy on DMTS cur-
riculums between pretrained + finetuned models and models trained from scratch.
The pretraining and finetuning is done on the same curriculum (pretraining on
the augmented curriculum). N is the number of tasks in the scheduling instance. 19

4.4 Comparison of downstream optimal variable prediction accuracy on MATSP cur-
riculums between pretrained + finetuned models and models trained from scratch.
The pretraining and finetuning is done on the same curriculum (pretraining on
the augmented curriculum). M is the number of waypoints in each of the 2
clusters, i.e., |W | = 2M . 19

iv

List of Algorithms

1 Random backbone-level problem perturbation ρ 11

v

Acknowledgments

I would like to thank some of the many people who have supported me and helped me
grow over the past 5 years at Berkeley. Thank you to my advisor Professor Joey Gonzalez
for giving me the opportunity to continue this research project that I picked up as an
undergraduate through the past year as a masters student. Thank you to Justin Wong for
being an amazing research mentor, friend, and collaborator over the past 2 years. Thank
you to my fellow 5th year masters student and research collaborator Mohamed Elgharbawy.
Thank you to Professor Sanjit Seshia for feedback and suggestions on this thesis. Finally,
thank you to all of the phenomenal Berkeley professors who inspired me, my college friends
who made the past few years the most fun and memorable experience of my life, my family
for supporting me and getting me to where I am today, and the city of Berkeley for being a
newfound home.

1

Chapter 1

Introduction

Combinatorial optimization (CO) problems are regularly formulated in industry to repre-
sent and solve problems in areas including but not limited to scheduling, transportation,
resource allocation, and supply chain management. However, many CO problems are NP-
hard and as a result, finding exact solutions to them is highly computationally inefficient in
the worst case. Moreover, for many CO problems, such as the Traveling Salesman Problem
(TSP), Graph Coloring (GC), and Set Covering (SC), it is computationally inefficient in the
worst case even to find approximate solutions with a guaranteed approximation ratio [22]
[24]. Nevertheless, these problems can often be solved exactly and efficiently in practice,
using heuristics obtained by exploiting special structures in typical instances of the problem.
For example, Li et al. [20] introduce a symmetry-breaking constraint for Multi-Agent Path
Finding that can exponentially reduce the search space and thereby speed up solve times
on certain instances of the problem. Thus, the task of designing CO solvers that identify
and use good heuristics based on the distribution of input problems is highly relevant and
necessary for efficiently computing exact solutions.

Mixed Integer Linear Programming (MILP) formulations of CO problems are widely used in
practice and heuristic-based general-purpose solvers such as Gurobi are carefully designed to
solve large problems at scale [14]. Integer programming (IP), which is a special case of MILP,
is well-known to be NP-hard. Optimization Modulo Theories (OMT) further generalize the
MILP formulation to allow for more complicated constraints involving first-order logic quan-
tifiers, such as conjunctions and disjunctions. State-of-the-art OMT solvers such as νZ [3]
and OptiMathSAT [30] have also been developed but in practice, OMT problems are approx-
imated using MILP solvers. The decision version of OMT, Satisfiability Modulo Theories
(SMT), is itself typically NP-hard, and in many cases even undecidable [2]. Thus, worst-case
theoretical analysis of solving OMT does not provide helpful characterization of practical
performance. Moreover, designing general purpose solvers such as the ones mentioned is a
hard task because it requires using manually designed heuristics and expert knowledge to
achieve fast solve times.

CHAPTER 1. INTRODUCTION 2

Practical solvers such as νZ and Gurobi are able to efficiently find solutions to many typi-
cal CO instances by using heuristics to decrease the size of the solution search space, such
as by identifying symmetries and invariances in the constraints. However, since they are
general-purpose solvers, these heuristics must be carefully and intentionally engineered to
work across a wide range of problems without sacrificing performance on any one type of
problem. While this approach has its benefits, in many situations it is preferable to have a
specialized solver that achieves highly efficient performance in one class of problems while
potentially sacrificing performance in all other classes of problems. For example, a deliv-
ery company that regularly needs to solve TSPs for optimal delivery routes in a certain
city does not need a general-purpose OMT solver but rather a solver that is highly effi-
cient on instances that they need to solve. In fact, even a general TSP solver is likely too
broad since instances run by the company likely share a certain substructure (for example,
the distances from the warehouse to different locations are always the same across instances).

The desire for specialized CO solvers that are catered to a specific problem distribution
motivates the use of machine learning (ML) to automate the identification and application
of the most useful heuristics for solving. A popular approach towards using ML in this
setting is to encode CO problems as graphs and perform graph learning via deep neural
networks (DNNs) to learn good graph embeddings and predict variable assignments [25], an
approach that we also use in this work. A relatively straightforward approach is to learn
graph embeddings end-to-end via the natural training objective of using them to predict
the optimal variable assignment and then backpropagating losses through the learned em-
beddings. However, the complex nature of the task suggests that embeddings learned in
this fashion may be brittle and may not generalize well to similar but unseen examples.
That is, there are no guarantees that a model trained on a dataset of OMT problems will
produce similar embeddings for a problem in the dataset and a minimally perturbed version
of it. For example, in image data, which is often semantically complex, evaluating models
on trained images which have been very slightly perturbed adversarially can cause highly
inaccurate predictions [6]. One approach towards learning more robust embeddings is to
train on datasets that include examples of augmentations and perturbations. This simple
solution often works well in practice [27]. An alternative approach, in line with the recent
popularity of pretraining methods, is to first learn embeddings through training on another
pretraining task with high data availability [35], and then finetune them on the downstream
task of variable assignment prediction. The pretraining approach has been shown to induce
more robust embeddings in many situations [15].

In this work, we show that the simple end-to-end training approach for optimal variable
assignment prediction in OMT problems is sufficient for learning good quality embeddings
that are robust to small input perturbations. That is, using data augmentation or pretrain-
ing and finetuning approaches as described does not improve the downstream accuracy of
the model compared to the naive end-to-end approach. To this end, we introduce a logical
space perturbation technique, wherein the logical structure of a solved instance is extracted

CHAPTER 1. INTRODUCTION 3

as a ‘Boolean backbone’, and then perturbed in a logically consistent way, to produce a
modified problem. We also introduce a pretraining task for learning graph embeddings for
OMT problems via a denoising approach involving classifying a perturbed problem as opti-
mal, suboptimal, or unsatisfiable, relative to the cost of the original problem. We show that
the embeddings learned via data augmentation or pretraining with the introduced perturba-
tion technique perform no better on downstream variable prediction than direct end-to-end
training on 2 tasks: the Multi-Agent Traveling Salesman Problem (MATSP) and DAG Mul-
tiresource Task Scheduling (DMTS). Our work builds on top of the Ashera ML-guided OMT
solver in Wong et al. [32].

4

Chapter 2

Background and Related Work

2.1 Optimization Modulo Theories (OMT)

Optimization Modulo Theories extend SMT by adding an optimization objective function
over the feasible region of the configuration space. An SMT problem is a formulation of
the problem of deciding the satisfiability of a first-order logic formula within a background
theory or combination of theories [2]. For the purposes of this work, we focus on formu-
las within the theory of Linear Integer Arithmetic (LIA) [4], which guarantees decidability.
Moreover, we only consider problems in which the variables are constrained to be integral
(or Boolean). These can easily be extended to real-valued or floating point variables by
specifying a tolerance δ.

We define atoms or atomic formulas in LIA to be linear inequalities of the form

atom(x⃗) := a⃗ · x⃗ ▷◁ b (2.1)

where ▷◁∈ {<,≤,=,≥, >}, b ∈ R, a⃗ ∈ Zn, and each xi ∈ Z or {0, 1}. Here, n denotes the
number of variables under consideration.

We subsequently build up constraints or clauses as formulas in disjunctive normal form
(DNF), i.e., each constraint is a disjunction of conjunctions of atoms. So each clause takes
the form

clausei =
∨
j

conjunctionj (2.2)

where each conjunctionj takes the form

conjunctionj =
∧
k

atomk (2.3)

CHAPTER 2. BACKGROUND AND RELATED WORK 5

Finally, the formula in LIA is a collection of clauses or constraints that must all be satisfied,
i.e.,

formula(x⃗) :=
∧
i

clausei (2.4)

Thus, an SMT problem is the problem of deciding whether the following statement is true:

∃x⃗ ∈ Rn s.t. formula(x⃗) = True (2.5)

and finding a feasible x⃗ if it exists. An OMT problem is then of the form:

min
x⃗∈Rn

C(x⃗)

s.t. formula(x⃗) = True
(2.6)

where C(x⃗) = c⃗ · x⃗ is a linear objective function with integral coefficients c⃗ ∈ Zn. Note that
a solution to the OMT problem does not exist if the formula is not satisfiable. Furthermore,
there are no convexity guarantees in OMT, so disjunctions can lead to disconnected local
optima. Hence, an OMT solver may need to keep track of disconnected feasible regions at
all times while searching for the globally optimum solution.

νZ OMT solver

The νZ solver for OMT iteratively uses the Z3 [7] SMT solver to find strictly better feasible
solutions with respect to the objective function and performs a local coordinate search to
improve the solution further. It uses carefully engineered MaxSAT and propositional SAT
solvers to efficiently solve OMT problems that have subproblems that can be reduced to one
of these 2 types of problems. For general OMT problems that do not fall into these domains,
the performance is typically poor.

Z3 solves SMT problems using a two-level procedure that first chooses a candidate variable
assignment, which induces a Boolean backbone for the problem, and then locally searches for
a feasible solution amongst the assignments that are consistent with the Boolean backbone.
A Boolean backbone B corresponding to an assignment A to x⃗ is simply a mapping from each
atom, conjunction, and clause to its truth value under A. If no solutions are found after
picking a specific backbone, Z3 picks another candidate assignment (and induced backbone)
and locally searches again while also factoring in any conflict information learned from pre-
vious searches.

This notion of a one-to-one relationship between a variable assignment and its induced
backbone motivates our approach of backbone-level perturbation of problems in this work.

CHAPTER 2. BACKGROUND AND RELATED WORK 6

2.2 Mixed Integer Linear Programming (MILP)

Mixed integer linear programs are an NP-hard class of optimization problems that are a
hybrid between linear programs and integer linear programs. They can be formulated as
follows:

min
x⃗

c⃗ · x⃗

s.t.Ax⃗ ≤ b⃗

x⃗ ≥ 0

(2.7)

where A ∈ Rm×n, b⃗ ∈ Rm, c⃗ ∈ Rn, and each xi ∈ R or Z. If x⃗ ∈ Rn, this reduces to a linear
program, and if x⃗ ∈ Zn, this reduces to an integer linear program. If all numbers involved
in the constraints are integers, then we can also include strict inequalities by converting
a⃗i · x⃗ < bi into the inequality a⃗i · x⃗ ≤ bi − 1.

Big-M Relaxation of OMT to MILP

Observe that if we restrict ourselves to OMT problems in LIA, as defined above, in which
all atoms involve integer coefficients, the MILP formulation is capable of representing every-
thing except the disjunctions. However, we can use a Big-M method to relax disjunctions
into a conjunction of inequalities that represent the same solution space in practice [13].

Suppose we have a disjunctive clause of the form

(a⃗1 · x⃗ ≤ b1) ∨ (a⃗2 · x⃗ ≤ b2) (2.8)

We can introduce a binary decision variable α ∈ {0, 1} to convert this into the (conjunction
of) 2 constraints

a⃗1 · x⃗ ≤ b1 + αM

a⃗2 · x⃗ ≤ b2 + (1− α)M
(2.9)

for some very large constant M . Ideally, M =∞, in which case α = 0 selects the first con-
straint since the second constraint becomes a⃗2 · x⃗ ≤ ∞, which is vacuously true. Similarly,
α = 1 selects the second constraint. In practice, since M must be finite, the Big-M refor-
mulation is not exactly equivalent to the original disjunctive constraint since it introduces
additional slack by expanding the feasible region, and hence is termed a relaxation.

It is straightforward to apply this Big-M relaxation to more complicated disjunctive clauses
by using multiple decision variables and replicating them across atoms in a conjunction.
Thus, the OMT problems that we are concerned with, which are in LIA and only involve
integer coefficients, can be fairly tightly relaxed to MILP problems. Since MILP solvers such
as Gurobi are significantly faster than OMT solvers like νZ in practice, good approximate
solutions to OMT problems can be quickly obtained this way.

CHAPTER 2. BACKGROUND AND RELATED WORK 7

MILP solvers

Solvers for MILP, such as Gurobi, typically use the branch and bound technique, which
makes multiple calls to an LP solver to solve a growing tree of LP relaxations of the original
MILP problem. Various heuristics are employed at each step to generate new LP relaxations
by selecting a variable to branch on and prune exsiting branches that are predetermined
to not lead to a globally optimum solution [17]. Branch and bound methods are known to
perform poorly on problems with multiple disjoint optima since symmetric branches cannot
be pruned before being fully explored. In practice, expert knowledge is required in these
situations to perform intelligent symmetry breaking. Ideally, a machine learner trained to
solve specific classes of MILP problems should learn good strategies for symmetry breaking
and therefore achieve faster solve times across the board.

2.3 Graph Learning for Combinatorial Optimization

As the use of deep neural networks for graph learning has picked up in recent years in fields
such as social networks, bioinformatics, economics, and computer vision [34], it has also
increasingly led to much progress in the field of machine learned CO solvers.

Graph Neural Networks (GNNs) are DNNs that process structured graph data as inputs
and make predictions at the node level, edge level, or at the aggregate graph level [33]. The
input graph may contain any number of features for each node and edge. GNNs learn node
embeddings via multiple rounds of message passing in which a node’s embedding is updated
based on a learned function of neighboring nodes’ embeddings and incident edge features [11].

Graph Convolution Networks (GCNs), inspired by Convolutional Neural Networks (CNNs),
have had more widespread success in learning to solve CO problems such as TSP [18], net-
work planning [38], and chip placement [23]. Jian-Ya Ding et al. [9] used GCNs to develop a
machine-learning accelerated integer program solver that outperforms state of the art generic
solvers. Similar to CNNs, GCNs apply a layer-wise learned function to propagate the input
at each layer, which enables the identification of patterns in connected subgraphs [19].

2.4 Data Augmentation and Pretraining for Graph

Learning

Data augmentation techniques for images are frequently used for training dataset prepro-
cessing in computer vision because of their ease of implementation and observed benefits.
Perturbations applied to images include simple transformations, such as rotation, flipping,
and cropping, as well as more advanced augmentations, such as masking and noise addition
[36]. However, applying perturbations to graph data is a much less trivial task because node

CHAPTER 2. BACKGROUND AND RELATED WORK 8

connectivity is highly irregular and non-Euclidean. Moreover, since graphical data is less
structured than images and natural language – in particular, both images and text can be
encoded as graphs – there is no universal method for augmenting or perturbing graphs for
learning. Thus, graph data augmentation is typically highly application specific and non-
standardized and is hence an important experimental design consideration [37].

In recent years, pretrained language models such as BERT [8] and GPT [5] have had a
massive impact in the domain of natural language processing (NLP) [26]. These huge mod-
els are initialized and pre-trained in an unsupervised fashion on large corpuses of largely
unstructured text data to learn good universal language representations. They are then
fine-tuned, i.e., trained again but initialized with previously obtained weights, on a smaller
task-specific annotated dataset. In the context of NLP, examples of downstream tasks of
interest include translation, sentiment classification, and summarization. Large pretrained
models have also become popular in the field of computer vision (CV).

Inspired by the success of pretraining in NLP and CV, there has been recent work on de-
veloping pretrained models for representation learning with graphical data. Hu et al. [16]
pretrained a Graph Isomorphism Network (GIN) encoder on a variety of node-level and
graph-level tasks and displayed high expressive power and improved performance on down-
stream tasks. Large pretrained GNN models like GROVER [29] and MPG [21] have also
had success in learning complex universal molecular graph representations. The pretraining
approach across fields has been shown to lead to better generalization performance, faster
convergence on downstream tasks with less labeled data, and more robust embeddings. How-
ever, graph-based pretraining so far has not yet achieved the same widespread level of success
that it has in other areas like NLP and CV. This is likely due to graphical data being less
structured than images and natural language, as discussed above. In particular, both data
augmentation and pretraining in graphs are markedly different from their counterparts in
other fields and current methods are highly specialized to individual learning tasks.

In our work, we are particularly interested in whether data augmentation and pretrain-
ing can lead to better generalization and embeddings. Specifically, by carefully designing
an input perturbation technique for augmentation and a pretraining objective for repre-
sentation learning, we can obtain models that should in principle be better-suited to the
final downstream task of predicting the solutions to CO problem instances. This then pro-
vides grounds for comparison with the naive end-to-end training approach. We discuss our
approach towards augmentation and pretraining in Chapter 3.

9

Chapter 3

Approach

We seek to define a data augmentation process via small perturbations that largely preserve
the structure of the original OMT problem while making some small change to its feasible
region. Non-convex optimization problems are inherently complex because of the possibil-
ity of large numbers of disconnected feasible regions with multiple possible optima. The
perturbation that we implement (seeSection 3.1) is performed at the logical level for some
clause in the input OMT problem’s constraints. Since clauses are disjunctions that involve
multiple generally disconnected regions in variable space, a model that learns to generalize
to these perturbations must learn some useful embeddings of OMT problems. The learning
process in this case can be either training on augmentations directly or through a pretraining
objective that involves distinguishing between perturbations (similar to contastive learning
[28]). We explore both possibilities in our experiments. We define useful embeddings to be
embeddings of graphs that capture sufficient structural information about the CO problems
that the graphs encode so that there is some notion of similarity between embeddings for
perturbations of the same problem.

Formally, let Π be the set of all OMT problems of the form described in Section 2.1 and Γ be
the set of all undirected graphs. Furthermore, let G : Π → Γ be an injective map encoding
each OMT problem as an undirected graph. We describe how to construct such a map in
Section 3.3. Then, a useful embedding map e : Γ → Rm for some fixed high dimensionality
m satisfies that for any valid similarity metric d(·, ·) defined on Π, there exists a similarity
metric s(·, ·) on Rm so that s(e(G(P)), e(G(P ′))) ∝ d(P, P ′).

Here, “valid” similarity metrics on Π are those that measure the logical similarity of problems
in some way but are unknown to us. Thus, we need some proxy metric to experimentally
evaluate the quality of learned embeddings. We decided to use downstream performance on
optimal variable assignment prediction as the evaluation metric. Specifically, we show that
training on an augmented dataset and pretraining as described in Section 3.2 both do not
significantly outperform training a model directly on the non-augmented dataset in terms of
accuracy. The evaluation pipeline is detailed in Section 3.7.

CHAPTER 3. APPROACH 10

3.1 Data Augmentation Method

We consider the setting where the input problems to our neural-guided OMT solver can be
modeled as coming from some data distribution D. We assume that we can sample from this
distribution, either via sampling uniformly from historical queries, or if the distribution is
known, via simulated problem generation. We can thus construct a training dataset Dtrain

of n OMT problems from a certain class, e.g. MATSP or DMTS, where we can run either
νZ or Gurobi (via the Big-M relaxation) on each problem Pi ∈ Dtrain to get the optimal
assignment Ai and cost Ci.

Our data augmentation method involves a random perturbation function ρ : Π→ Π, which
given an OMT problem Pi ∈ Dtrain outputs a perturbed version of it, P ′

i , where the pertur-
bation is a backbone-level logical perturbation done at a single randomly chosen disjunction
of Pi. Algorithm 1 details how ρ is implemented. We use B[k] to denote indexing into the
entry corresponding to key k in the backbone map B. For each training curriculum Dtrain, we
construct an augmented pretraining dataset Daug using ρ to obtain a random backbone-level

perturbation P
(j)
i ∼ ρ(Pi) from problems Pi ∈ Dtrain. Daug expands Dtrain by a factor of k

by including k sampled perturbations P
(1)
i , . . . , P

(k)
i ∼ ρ(Pi) for each Pi.

Observe that in Algorithm 1, the problems sampled from ρ always contain no disjunctions
since we simplify them by converting them into the set of constituent atoms that are marked
true in the backbone. Thus, these problems are smaller and simpler MILP problems that can
be solved directly by Gurobi; we can hence efficiently obtain assignment labels for perturbed
problems.

3.2 Formulation of Pretraining Objective

For the pretraining approach, we train on the same augmented data as in Daug. However,

each entry in our pretraining dataset Dpretrain, is now a perturbation pair (Pi, P
(j)
i). A per-

turbation pair is a problem and one of its sampled perturbations. Furthermore, for each

entry, we associate the classification label yji =

OPT C(P

(j)
i) = Ci

SUBOPT C(P
(j)
i) > Ci

UNSAT P
(j)
i has no feasible solution

.

By construction again, the perturbed problem cost cannot be better than the original prob-
lem’s cost. Note that we assumed here that the problem has a cost minimization objective.
For maximization, the inequality for SUBOPT is switched. Given the graph encoding for
each problem, G(Pi,Ai), as described in Section 3.3, our goal is to learn a function pθ that
estimates a probability distribution over the 3 classes above conditioned on a given pertur-
bation pair. We parametrize pθ via a neural network consisting of a standard GCN encoder
applied to each problem in the pair, followed by a linear layer and softmax activation applied

CHAPTER 3. APPROACH 11

Algorithm 1 Random backbone-level problem perturbation ρ

Input: OMT problem P ∈ Dtrain with optimal assignment A
Output: Randomly perturbed OMT problem P ′

P ′ ← P
B ← backbone(P ′,A)
D ← uniformly random clause in P ′

Remove entry corresponding to D from backbone map B
C ← uniformly random conjunction in D = C ∨ C ′ ∨ · · ·
D ← C ▷ Drop other conjunctions
for atom A in C = A ∧ A′ ∧ · · · do
B[A]← True

end for
for clause E in P ′ do ▷ Recompute backbone

for conjunction F in E do
B[F]←

∧
A∈F B[A]

end for
B[E]←

∨
F∈E B[F]

end for
for clause E = F1 ∨ F2 ∨ · · · in P ′ do ▷ Simplify disjunctions

S ← {Fi : B[Fi] = True}
Drop E from P ′ constraints
for Fi in S do

Add each atom Aj ∈ Fi as a constraint in P ′

end for
end for
return P ′

to the concatenation of the GCN embeddings to perform the classification. Since we are per-
forming graph-level classification, we use a global mean pooling layer before concatenation
to get graph-level embeddings instead of node-level embeddings for performing classification.
We learn the function by minimizing the standard cross-entropy loss via gradient descent:

L = − 1

nk

n∑
i=1

k∑
j=1

3∑
y=1

Iy[yji] · log pθ(y|(Pi, P
(j)
i)) (3.1)

where Iy[yji] = 1 if yji = y and 0 otherwise and y = 1, 2, 3 represents the 3 classes above.

3.3 Graph Representations for OMT

Gasse et al. [10] encodes MILP problems as bipartite graphs with edges connecting nodes
representing constraints to nodes representing the variables that participate in them. We ex-

CHAPTER 3. APPROACH 12

tend upon their method to encode OMT problems Pi with optimal assignment Ai as graphs
G(Pi,Ai). We encode each variable, atomic formula, conjunction, and clause as a node in
the graph, as well as the final formula. Then, for each atom a⃗ · x⃗ ▷◁ b, we add an edge
between the node for each xi and the node for the atom, with weight ai. We also add b as an
attribute for the atom node. Each conjunction node is connected to its constitutent atom
nodes with unit weight edges as a tree. Similarly, each clause is represented as a tree of
conjunction nodes rooted at the clause node and the final formula is represented as a tree of
clause nodes rooted at the formula node. Finally, we also have a special cost node, which is
connected to each xi node with an edge with weight ci. Additionally, for each variable node,
we add a variable ID as an attribute to ensure that the learned embeddings are invariant to
relabeling and to preserve all information for reconstructing the problem.

Note that the encoding above doesn’t depend on the assignment Ai. However, for our
pretraining datasets, we also add a backbone val attribute to each atom, conjunction, and
clause node in the graph. Recall that the Boolean backbone corresponding to an assignment
A for a problem P , backbone(P,A) is a mapping from each atom, conjunction, and clause
in P to its truth value under the assignment A. Since each backbone value is either 0 or 1
given an assignment, we set the attribute to 0.5 for all nodes during downstream evaluation,
when we don’t have access to the backbone for a given test problem.

Figure 3.1: Graph encoding used to represent OMT problems as defined in Section 2.1.
Variables and constraints are represented as nodes in a weighted undirected graph, with
final constraints being hierarchically represented as trees of inner level constraints (atoms,
conjunctions, and clauses).

CHAPTER 3. APPROACH 13

3.4 DMTS Formulation

The DAG multiresource task scheduling problem belongs to a larger family of scheduling
problems. It involves finding the optimal assignment of tasks to resources as well as assign-
ing start times to tasks. Assignments must satisfy possible constraints on both resources
and dependencies between tasks. The optimization objective is to maximize slack, i.e., the
difference between a task’s deadline and its expected completion time. It turns out to often
be non-trivial to even find feasible schedules for many instances of DMTS. This family of
problems appears in the workflow management platform Apache Airflow [1] and in DAG
schedulers such as those used for the dynamic deadline-driven execution model for self driv-
ing [12].

We consider a set of N tasks, T = {ti : 1 ≤ i ≤ n}, and a dependency matrix M where
Mij = 1 if ti must complete before tj otherwise 0. We also denote task deadlines and ex-
pected runtimes as di and ei, respectively. Furthermore, for each task ti, let ri = 1 if it
requires a GPU and 0 otherwise.

We seek to optimize with respect to two sets of variables, si and pi, which denote the
start times and placements of tasks. Specifically, let NG and NC be the number of GPUs
and CPUs, respectively. Then, pi = k denotes task i being placed on the kth GPUs if
1 ≤ k ≤ NG and on the (k−NG)th CPU if NG < k ≤ NG+NC . Our maximization objective
is the total slack

N∑
i=1

di − (si + ei) (3.2)

with the following constraints:

• Non-negativity constraints. For all i, si ≥ 0.

• Finish before deadline. For all i, si + ei ≤ di.

• Placement constraints. For all i, if ri = 1, 1 ≤ pi ≤ NG, else 1 ≤ pi ≤ NG +NC .

• Dependency constraints. For all i, j, if Mij = 1, si + ei ≤ sj.

• Exclusion. For all i, j, pi = pj =⇒ (si + ei ≤ sj ∨ sj + ej ≤ si).

Note that the last 3 categories of constraints require disjunctive expressions to be written in
first-order logic. Thus, DMTS is a good representative problem for OMT.

3.5 MATSP Formulation

The multi-agent traveling salesman problem is a generalization of the well-known NP-
complete traveling salesman problem. Variants of it are often used in practice in route

CHAPTER 3. APPROACH 14

planning applications, such as for package deliveries in warehouse operations. An MATSP
instance is specified by a set of W waypoints and V vehicles and the optimization task is to
find an ordering of waypoints to be visited by each vehicle such that all waypoints are visited
and the total time taken is minimized. Additional weight constraints are also imposed, as
described below.

For each vehicle v ∈ V , let uv be a Boolean variable indicating whether v is used and
γv be the vehicle weight. Each waypoint w ∈ W is visited exactly once, at time tw by a vehi-
cle xw, which arrives there from a previous waypoint pw. The time taken for v to go from w
to w′ is given by an array τv,w,w′ . For each vehicle, we also define an ordering vector ow,v = k
if w is the kth waypoint visited by v. For convenience, we additionally define a Boolean
array Mv,w,w′ , where each entry is 1 if vehicle v visits w′ after w. Finally, we have a starting
waypoint h (called the “harbor”), and a maximum total weight mmax. Note that some of
the variables are redundant but this choice allows for an easier encoding specification. Our
minimization objective is the total time

t =
∑

v∈V,w∈W,w′∈W\{h}

Mv,w,w′ · τv,w,w′ (3.3)

and the constraints are as follows:

• All used vehicles start and end at harbor. For all v,
∑

w∈W Mv,w,h = uv and∑
w′∈W Mv,h,w′ = uv.

• All waypoints visited. For all w′ ̸= h,
∑

v∈V,w∈W Mv,w,w′ = 1.

• Deterministic visit order. For all w,
∑

v∈V,w′∈W\{h}Mv,w,w′ = 1.

• No self loops. For all v, w, Mv,w,w = 0.

• Waypoints are transitionary. For all v, w, (
∑

w′′∈W Mv,w′′,w = 1) =⇒
(
∑

w′∈W Mv,w,w′ = 1).

• pw consistency. For all w, pw =
∑

v∈V,w′∈W w′ ·Mv,w′,w.

• xw consistency. For all w, xw =
∑

v∈V,w′∈W v ·Mv,w′,w.

• uv and M consistency. For all v, uv =
∨

w,w′∈W Mv,w,w′ .

• Weight constraint.
∑

v uv · γv < mmax.

• Ordering constraints. For all w ̸= h,
∨

w′∈W,v∈V (Mv,w′,w ∧ ow′,v = ow,v − 1) and for
all v, w ̸= h, (ow,v = 0) ∨ (

∨
w′∈W Mv,w,w′).

Note that many of the constraints involve disjunctions (implications can also be reformulated
using disjunctions). Thus, MATSP is also a good representative problem for OMT.

CHAPTER 3. APPROACH 15

3.6 Dataset Generation

We generate multiple training curriculums for DMTS and MATSP. For each curriculum, we
generate an augmented dataset Daug by sampling k = 20 perturbations for each Pi ∈ Dtrain

i.e., |Daug| = 20|Dtrain|. We also generate the associated pretraining dataset Dpretrain. Note
that we also have |Dpretrain| = |Daug|.

We in total generate 23,136 DMTS instances across multiple curriculums. For each cur-
riculum, we fix the number of tasks, N , across all instances. We generate curriculums for
N = 6 to 11. In each curriculum, we vary the number of CPUs available and introduce
a single randomly placed dependency between two tasks in each instance. For consistency,
we set all instances to have 2 GPUs and all tasks to have the same expected runtime of 15
seconds and release times of 2. Moreover, the symmetry introduced by this decision is known
to be hard for traditional MILP solvers to break. To ensure that all instances are feasible,
we scale up the deadline as the number of tasks increase.

For MATSP, we generate instances with 2 clusters of waypoints arranged in a polygon.
We generate curriculums with 2500 instances each, where the number of waypoints per clus-
ter, M , is fixed in each. Within each curriculum, we vary the distance between the cluster
center and the vehicle origin, as well as the radius of the polygon. For consistency, we always
set the number of vehicles to be 2 and the first waypoint to be the starting point for both
vehicles. We generate curriculums for M = 3 to 5.

3.7 Downstream Performance Evaluation

Our downstream task for evaluation is the main solver goal of finding an optimal solution to
an input OMT problem by predicting assignments to the variables being optimized over.

As described in Section 3.1, we construct training data curriculums {Dtrain}, consisting of
graph encodings G(Pi) for n problems in a certain class, and label each with a cost optimal
variable assignment Ai, which is not necessarily unique. As mentioned in Section 3.3, unlike
in Dpretrain, we do not annotate graph nodes in each Dtrain with optimal Boolean backbone
values; instead, we simply set them all to 0.5. In the case of pretrained models, this means
that the learner essentially treats them as uniformly random noise variables when finetuning
on Dtrain.

We seek to learn a vector-valued function fθ that estimates a probability distribution over
potential values for each variable. Since we are dealing only with bounded integer variables
for our tasks, we treat potential values as independent classes and train a model to classify
each variable. We use the same GCN architecture as in Section 3.2 but now with a multi-
class classification decoder head. Moreover, unlike the pretraining task, we are performing

CHAPTER 3. APPROACH 16

node-level classification on all of the variable nodes in the graph, so we do not use a pooling
layer in our architecture. We learn fθ by minimizing the following modified cross-entropy
loss via gradient descent:

L = − 1

nm|V |

n∑
i=1

m∑
j=1

∑
x∈V

Ix[(Ai)j] · log fθ(xj = x|Pi) (3.4)

where (Ai)j is the assignment to the jth variable out of m total variables in the optimal
assignment Ai and Ix[(Ai)j] = 1 if x = (Ai)j and 0 otherwise. Note that V is the set of
potential values for xj and fθ(xj = x|Pi) is the probability assigned to x in the marginal
distribution of fθ(x|Pi) on the jth coordinate.

For finetuning pretrained models, we slightly modify the architecture. We use a dual encoder
architecture consisting of 2 identical GCN encoders followed by a multi-class classification
decoder head that takes as input the concatenated outputs of the encoders. We initialize
one of the encoders randomly and the other with the weights from the pretrained model.
Furthermore, we freeze the weights of the pretrained encoder during finetuning. We find that
this approach leads to better stability than directly finetuning a single pretrained encoder.

17

Chapter 4

Experiments and Results

4.1 Impact of Training Data Augmentation on

Evaluation Accuracy

We train models for each generated curriculum on both Dtrain and Daug for optimal vari-
able prediction. We use a hidden dimension of 64 across all layers of our GCN models. In
principle, training on Daug should enable the model to learn from a wider data distribution
that contains all of the information in Dtrain as well as the information about the correlation
between perturbations as described in Algorithm 1 and the resulting change in the problem
solution. We only train on pi and si variables for DMTS and xw variables for MATSP since
the other variables are either dummy variables for constraint simplification or too noisy for
prediction.

We report the evaluation set accuracy results for DMTS in Table 4.1 and for MATSP in
Table 4.2. Here, accuracy is computed as the the mean across the evaluation set of the mean
accuracy per instance, i.e., the average number of variables in the instance for which the
model correctly assigns the maximum likelihood value.

We see that in both cases, i.e., DMTS and MATSP, the accuracy with augmentation is
not significantly different from the accuracy without augmentation. This indicates that Daug

does not contain any information beyond what is contained in Dtrain that is useful for the
task of variable assignment prediction. Beyond the evaluation task, this further suggests
that the OMT problem embeddings learned directly without any augmentation are already
maximally useful in that they have learned enough structural information to correctly handle
perturbations.

CHAPTER 4. EXPERIMENTS AND RESULTS 18

Curriculum Accuracy without Augmentation Accuracy with Augmentation
N = 6 62.02% 62.19%
N = 7 56.87% 57.07%
N = 8 60.25% 60.24%
N = 9 56.54% 56.66%
N = 10 59.31% 57.94%
N = 11 55.50% 55.62%

Table 4.1: Comparison of downstream optimal variable prediction accuracy on DMTS cur-
riculums between models trained on original datasets and models trained on perturbation
augmented datasets. N is the number of tasks in the scheduling instance.

Curriculum Accuracy without Augmentation Accuracy with Augmentation
M = 3 82.76% 82.68%
M = 4 90.11% 90.95%
M = 5 87.48% 86.56%

Table 4.2: Comparison of downstream optimal variable prediction accuracy on MATSP
curriculums between models trained on original datasets and models trained on perturbation
augmented datasets. N is the number of waypoints in each cluster.

4.2 Finetuning Pretrained Models on Variable

Assignment Prediction

To evaluate the quality of pretrained embeddings, we pretrain a GCN model on each Dpretrain

as per the learning objective in Section 3.2, and further finetune it on the correspondingDtrain

as per the finetuning objective in Section 3.7. We again use a hidden dimension of 64 across
all layers of our GCN.

Since our pretraining and finetuning are performed on the same data curriculum, i.e., all
of the graphs in both the training and pretraining datasets belong to the same structural
class, the finetuned model’s downstream performance is indicative of the representation of
the class that is captured by the pretrained model. Specifically, any observed difference
between the final accuracy obtained by a finetuned model and a model trained from scratch
on Dtrain can be wholly attributed to the quality of the pretrained model’s embeddings. Due
to the complex nature of the optimization problem and landscape, we can expect the initial
GCN weights to have an observable impact on the final convergence point.

We report the downstream test accuracy of the base models trained from scratch and the

CHAPTER 4. EXPERIMENTS AND RESULTS 19

finetuned models after pretraining in Table 4.3 and Table 4.4 below. We see that for both
DMTS and MATSP, the finetuned model has the exact same accuracy as the base model
on all curriculums (M = 3 for MATSP has slightly improved performance on finetuning but
not by much and is likely due to stochasticity). This suggests that the pretrained encoder
provides no useful information to the model while finetuning and its embeddings are treated
as noise while learning. All of the learning must then happen on the randomly initialized
encoder, which reduces it to the exact same setup as the base model.

Curriculum Base Model Accuracy Finetuned Model Accuracy
N = 6 62.02% 62.02%
N = 7 56.87% 56.87%
N = 8 60.25% 60.25%
N = 9 56.54% 56.54%
N = 10 59.31% 59.31%
N = 11 55.50% 55.50%

Table 4.3: Comparison of downstream optimal variable prediction accuracy on DMTS cur-
riculums between pretrained + finetuned models and models trained from scratch. The
pretraining and finetuning is done on the same curriculum (pretraining on the augmented
curriculum). N is the number of tasks in the scheduling instance.

Curriculum Base Model Accuracy Finetuned Model Accuracy
M = 3 82.76% 82.99%
M = 4 90.11% 90.11%
M = 5 87.48% 87.48%

Table 4.4: Comparison of downstream optimal variable prediction accuracy on MATSP
curriculums between pretrained + finetuned models and models trained from scratch. The
pretraining and finetuning is done on the same curriculum (pretraining on the augmented
curriculum). M is the number of waypoints in each of the 2 clusters, i.e., |W | = 2M .

20

Chapter 5

Conclusion and Future Work

The experiments and results described in Chapter 4 provide evidence for the claim that the
OMT problem embeddings learned by the GCN models while naively optimizing for the task
of predicting solutions to DMTS and MATSP problems are robust and expressive enough to
capture notions of logical space perturbations as per Algorithm 1. We see that both logical
space perturbation based augmentation and related pretraining are unsuccessful at beating
the performance of direct end-to-end training on problem to optimal variable assignment
prediction. Our work thus suggests that improving the performance of neural guided OMT
solvers requires a different approach than data augmentation, such as architectural modifi-
cations, alternative graph encodings, or modified optimization objectives.

Beyond the mentioned results, this work also makes novel contributions in the area of data
augmentation for encodings of CO problems. While our perturbation algorithm makes use
of the specific disjunctive structure of OMT problem constraints, the notion of extracting
a logical backbone for a problem, applying a simple edit-distance based perturbation to it,
and then propagating the resulting modified backbone back through the problem constraints,
can be extended to any type of CO problem. Note that this augmentation method is also
independent of the use of graph encodings. Furthermore, our experiments contribute bench-
marks for evaluating learning-based OMT solvers on directed multiresource task scheduling
and multi agent traveling salesman problems.

While our experiments do indeed provide evidence for our chosen data augmentation and
pretraining approaches not being capable of boosting the performance of a learned OMT
solver, they are fairly limited in scope and can be extended much more to see if the claim
holds true more generally. Various schemes can be employed to augment problem instances
with a wide variety of structurally similar problems. For example, instead of performing edit
distance 1 perturbations on the logical backbone of problems, random perturbations or noisy
constraint addition methods can be explored. We can also consider data augmentation in the
form of permuting the variable name ordering and relaxing certain variables to be real-valued
instead of integral. Moreover, our work used a specific pretraining approach, which may not

CHAPTER 5. CONCLUSION AND FUTURE WORK 21

necessarily be the best choice. Other ongoing work suggests that contrastive learning as an
auxiliary objective during training may improve downstream performance. Identifying the
best pretraining task for representation learning is a hard task in general and even more so
for our complicated setting. Similarly, our choice of downstream evaluation task may not be
the best proxy for evaluating representation learning. Although augmentation and pretrain-
ing do not lead to better downstream accuracy, it is possible that the learned embeddings
are more useful than in direct training for some other task, such as for example generalizing
to unseen curriculums. Finally, newer GNN architectures such as Graph Attention Networks
[31] may provide better performance and respond better pretraining compared to GCNs, in
the same way that attention-based networks have become synonymous with transfer learning
in NLP and CV.

22

Bibliography

[1] url: http://airflow.apache.org/.

[2] Clark Barrett et al. “Satisfiability Modulo Theories”. In: Handbook of Satisfiability.
Ed. by Armin Biere et al. Second. IOS Press, 2021. Chap. 33, pp. 1267–1329.

[3] Nikolaj BjØrner, Anh-Dung Phan, and Lars Fleckenstein. “VZ - An Optimizing SMT
Solver”. In: Proceedings of the 21st International Conference on Tools and Algorithms
for the Construction and Analysis of Systems - Volume 9035. Berlin, Heidelberg:
Springer-Verlag, 2015, pp. 194–199. isbn: 9783662466803. doi: 10 . 1007 / 978 - 3 -
662-46681-0_14. url: https://doi.org/10.1007/978-3-662-46681-0_14.

[4] Martin Bromberger, Thomas Sturm, and Christoph Weidenbach. Linear Integer Arith-
metic Revisited. 2020. arXiv: 1503.02948 [cs.LO].

[5] Tom B. Brown et al. Language Models are Few-Shot Learners. 2020. arXiv: 2005.14165
[cs.CL].

[6] Ashutosh Chaubey et al. Universal Adversarial Perturbations: A Survey. 2020. arXiv:
2005.08087 [cs.CV].

[7] Leonardo De Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In: Proceed-
ings of the Theory and Practice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. TACAS’08/ETAPS’08.
Budapest, Hungary: Springer-Verlag, 2008, pp. 337–340. isbn: 3540787992.

[8] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. 2019. arXiv: 1810.04805 [cs.CL].

[9] Jian-Ya Ding et al. Accelerating Primal Solution Findings for Mixed Integer Programs
Based on Solution Prediction. 2019. arXiv: 1906.09575 [cs.AI].

[10] Maxime Gasse et al. Exact Combinatorial Optimization with Graph Convolutional Neu-
ral Networks. 2019. arXiv: 1906.01629 [cs.LG].

[11] Justin Gilmer et al. Neural Message Passing for Quantum Chemistry. 2017. arXiv:
1704.01212 [cs.LG].

[12] Ionel Gog et al. “D3: A Dynamic Deadline-Driven Approach for Building Autonomous
Vehicles”. In: Proceedings of the Seventeenth European Conference on Computer Sys-
tems. Rennes, France: Association for Computing Machinery, 2022, pp. 453–471.

BIBLIOGRAPHY 23

[13] Ignacio E. Grossmann and Francisco Trespalacios. “Systematic modeling of discrete-
continuous optimization models through generalized disjunctive programming”. In:
Aiche Journal 59 (2013), pp. 3276–3295.

[14] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. 2023. url: https:
//www.gurobi.com.

[15] Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using Pre-Training Can Improve
Model Robustness and Uncertainty. 2019. arXiv: 1901.09960 [cs.LG].

[16] Weihua Hu et al. Strategies for Pre-training Graph Neural Networks. 2020. arXiv:
1905.12265 [cs.LG].

[17] Lingying Huang et al. Branch and Bound in Mixed Integer Linear Programming Prob-
lems: A Survey of Techniques and Trends. 2021. arXiv: 2111.06257 [cs.LG].

[18] Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. An Efficient Graph Convo-
lutional Network Technique for the Travelling Salesman Problem. 2019. arXiv: 1906.
01227 [cs.LG].

[19] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convo-
lutional Networks. 2017. arXiv: 1609.02907 [cs.LG].

[20] Jiaoyang Li et al. “Symmetry-Breaking Constraints for Grid-Based Multi-Agent Path
Finding”. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intel-
ligence and Thirty-First Innovative Applications of Artificial Intelligence Conference
and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence. Hon-
olulu, Hawaii, USA: AAAI Press, 2019. isbn: 978-1-57735-809-1. doi: 10.1609/aaai.
v33i01.33016087. url: https://doi.org/10.1609/aaai.v33i01.33016087.

[21] Pengyong Li et al. “An effective self-supervised framework for learning expressive
molecular global representations to drug discovery”. In: Briefings in Bioinformatics
22 (May 2021). doi: 10.1093/bib/bbab109.

[22] Carsten Lund and Mihalis Yannakakis. “On the Hardness of Approximating Mini-
mization Problems”. In: J. ACM 41.5 (Sept. 1994), pp. 960–981. issn: 0004-5411. doi:
10.1145/185675.306789. url: https://doi.org/10.1145/185675.306789.

[23] Azalia Mirhoseini et al. Chip Placement with Deep Reinforcement Learning. 2020.
arXiv: 2004.10746 [cs.LG].

[24] Christos H. Papadimitriou and Santosh Vempala. “On the Approximability of the Trav-
eling Salesman Problem (Extended Abstract)”. In: Proceedings of the Thirty-Second
Annual ACM Symposium on Theory of Computing. STOC ’00. Portland, Oregon,
USA: Association for Computing Machinery, 2000, pp. 126–133. isbn: 1581131844.
doi: 10.1145/335305.335320. url: https://doi.org/10.1145/335305.335320.

[25] Yun Peng, Byron Choi, and Jianliang Xu. Graph Learning for Combinatorial Opti-
mization: A Survey of State-of-the-Art. 2021. arXiv: 2008.12646 [cs.LG].

BIBLIOGRAPHY 24

[26] XiPeng Qiu et al. “Pre-trained models for natural language processing: A survey”. In:
Science China Technological Sciences 63.10 (Sept. 2020), pp. 1872–1897. doi: 10.1007/
s11431-020-1647-3. url: https://doi.org/10.1007%2Fs11431-020-1647-3.

[27] Sylvestre-Alvise Rebuffi et al. Data Augmentation Can Improve Robustness. 2021.
arXiv: 2111.05328 [cs.CV].

[28] Nils Rethmeier and Isabelle Augenstein. A Primer on Contrastive Pretraining in Lan-
guage Processing: Methods, Lessons Learned and Perspectives. 2021. arXiv: 2102 .

12982 [cs.CL].

[29] Yu Rong et al. Self-Supervised Graph Transformer on Large-Scale Molecular Data.
2020. arXiv: 2007.02835 [q-bio.BM].

[30] Roberto Sebastiani and Patrick Trentin. “OptiMathSAT: A Tool for Optimization
Modulo Theories”. In: July 2015, pp. 447–454. isbn: 978-3-319-21689-8. doi: 10.1007/
978-3-319-21690-4_27.

[31] Petar Veličković et al. Graph Attention Networks. 2018. arXiv: 1710.10903 [stat.ML].

[32] Justin Wong et al. Ashera; Neural Guided Optimization Modulo Theory. Tech. rep.
UCB/EECS-2023-103. EECS Department, University of California, Berkeley, May
2023. url: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-
103.html.

[33] Zonghan Wu et al. “A Comprehensive Survey on Graph Neural Networks”. In: IEEE
Transactions on Neural Networks and Learning Systems 32.1 (Jan. 2021), pp. 4–24.
doi: 10.1109/tnnls.2020.2978386. url: https://doi.org/10.1109%2Ftnnls.
2020.2978386.

[34] Feng Xia et al. “Graph Learning: A Survey”. In: IEEE Transactions on Artificial
Intelligence 2.2 (Apr. 2021), pp. 109–127. doi: 10.1109/tai.2021.3076021. url:
https://doi.org/10.1109%2Ftai.2021.3076021.

[35] Jun Xia et al. A Survey of Pretraining on Graphs: Taxonomy, Methods, and Applica-
tions. 2022. arXiv: 2202.07893 [cs.LG].

[36] Suorong Yang et al. Image Data Augmentation for Deep Learning: A Survey. 2022.
arXiv: 2204.08610 [cs.CV].

[37] Tong Zhao et al. Graph Data Augmentation for Graph Machine Learning: A Survey.
2023. arXiv: 2202.08871 [cs.LG].

[38] Hang Zhu et al. “Network Planning with Deep Reinforcement Learning”. In: Proceed-
ings of the 2021 ACM SIGCOMM 2021 Conference. SIGCOMM ’21. Virtual Event,
USA: Association for Computing Machinery, 2021, pp. 258–271. isbn: 9781450383837.
doi: 10.1145/3452296.3472902. url: https://doi.org/10.1145/3452296.
3472902.

	Thesis Signature Page.pdf
	Master's Thesis.pdf

