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Abstract

Implementation of an Open-Source Generator for LPDDR4X Memory Controller

by

Reza Sajadiany

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Borivoje Nikolic, Chair

As the software requirements for hardware implementations become more complex, the need
for agile development of a full system becomes more apparent. The design of complex
hardware systems requires engineering e↵orts at di↵erent levels of abstraction layers. This
design process becomes more e�cient when the units that make up a system are separated
by defined interfaces and communicate over a fixed protocol. A full system in the context
of a system-on-chip must adhere to protocols defined at the architectural level. Once such
protocol is defined for memory devices. Today’s workloads are often data-driven and need
to access larger working sets of memory; however, the on-die memory system is limited by
area and the power envelope of the target design. An o↵-chip volatile memory provides
high-density memory implemented in less complex transistor nodes and provides the benefit
of a large backing memory for the whole system.

In addition, the most significant delays in modern systems are due to cache misses and cache
refills from the DRAM. A typical delay estimate for such events is believed to be on the
order of hundreds of cycles of the CPU clock. A memory controller is a crucial unit in
the system that contributes to cache refill delays and the e�ciency and bandwidth of the
memory hierarchy.

LPDDR4X represents a generation of memory devices defined by the JEDEC organization
that implement the defined set of functionalities specified by the JEDEC standard for mem-
ory devices. This common standard unifies the protocol the memory controller designer
needs to implement for a compatible DRAM device to function properly. In this thesis, I
will describe my contribution to the implementation of a compatible memory controller de-
sign. This thesis focuses on an overview of the LPDDR4X and DRAM, design specifications
and requirements, the architecture, and the micro-architecture of our LPDDR4X implemen-
tation. This implementation is included in UC Berkeley’s Chipyard SoC generator and has
been done in the Chisel hardware description language.
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Chapter 1

Overview of LPDDR4X

1.1 DRAM and LPDDR4X

DRAM, or dynamic random access memory, is a type of volatile memory that is widely used
in digital electronic systems. Volatile memory is a type of memory that loses its stored
data when the power is turned o↵. DRAM operates by storing each data bit in a separate
capacitor within a memory cell. The charge stored in each capacitor represents the binary
value of the bit.

To maintain the data stored in the memory cells, a periodic refresh operation must be
performed, hence the name “dynamic” memory. The refresh operation essentially rewrites
the data in the memory cells to prevent the loss of data as the charge in the capacitor of a
memory cell leaks out of the cell.

In DRAM, data is accessed randomly, as any memory location can be accessed directly
without having to access the memory in a specific order, hence the term “random access”
memory. This random access capability of DRAM provides faster access to data compared
to other types of memory, such as magnetic disk drives.

DRAM technology is based on a capacitor-transistor (C-T) cell, which consists of an
access transistor and a trench capacitor [10]. The transistor allows current to go through
and control the flow of charge to and from the capacitor. During a read operation, the charge
stored in the capacitor is sensed and converted into a digital voltage signal, which represents
the binary value of the data. During a write operation, the voltage signal is converted into a
charge and stored in the capacitor. DDR stands for double data rate and is an indication of
the device sampling data and sending data twice per clock cycle. This is done by sampling
the data on crossing points of a di↵erential clock pair. Figure 1.2 depicts the signals for
double data sampling. A memory device is organized to maximize memory bandwidth and
minimize the latency of operations. The organization of a DRAM module allows the designer
of the memory controller to take advantage of parallel channels and structures to increase
the data bandwidth.

The device specification of each generation such as LPDDR4 (Low-power Double Data
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Standard Release Year Capacity I/O Clock Rate MiB/s/DIMM
DDR1 2000 256 MB 133 2128
DDR2 2004 1 GB 266 4264
DDR3 2010 4 GB 533 8528
DDR4 2016 8 GB 1333 21300

Table 1.1: DDR standards [9].

Rate) is defined by the JEDEC organization [8]. Table 1.1 shows multiple generations of
the DDR standards up to DDR4 and the corresponding clock rate and transfer bandwidth
[9]. Amdahl’s law suggests that the capacity of DRAM devices needs to grow linearly
with the processor speeds; however, the performance and capacity of DRAM devices are
growing at a much slower rate [9]. Functional description, detailed device operations, bus
operations, cycle-accurate timings, and nominal conditions of operations are described in the
specification for each generation.

1.2 DRAM Organization

Figure 1.1: DRAM device organization.

DRAM devices are optimized to increase the bandwidth of the memory channels. The
metric for such optimization is the activity of the DQ lanes between the DRAM and the
controller. DQ is a bi-directional bus between the device and the memory controller. The
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organization and internals of the DRAM device dictate the complexity and responsibilities of
a DRAM controller. As depicted in Figure 1.1, a typical LPDDR4X device is organized into
two physically separated ranks. Each rank of the device can be configured and connected to
a separate channel. These two ranks can be active simultaneously and operate independently
of each other. Each rank is organized into 8 banks of memory. The states of these banks
impact the overall state of the memory device. Each bank is a two-dimensional memory
array with column and row addresses. The memory array is structured as capacitor-based
bit-cells with an access transistor for accessing the data stored in the capacitor. A row can
store a large set of bytes and can extend to multiple system cache lines. A subset of the
row is selected by multiplexers based on the column address. To perform a read transaction:
the corresponding bank within the rank must be selected based on the address; the row
for which the address maps to is selected, and the columns corresponding to the requested
address are selected. Each operation must perform a sequence of specified commands to be
issued to a bank for the purpose of reliably reading the data from the memory. The example
read operation above would require activation of the row or row access (RAS), followed by
a column access command (CAS), and finally by a pre-charge command (PRE). The timing
and latencies between each step are specified by the JEDEC specification and the memory
controller is responsible for obeying them. Overall, the memory controller is responsible
for issuing the right sequence of commands at the right time to the device. Internally the
memory controller must keep track of the state of the device at each cycle, allow the legal
commands to be issued at any point, and force the right ordering of the commands. The
timing requirements introduce the opportunity to optimize the memory controller to take
full advantage of the possible bandwidth by allowing the architect to re-order requests, delay
a pre-charge, or delay a refresh.

1.3 DRAM Interface

The JEDEC specification determines the standard signals to be driven by the DDR con-
troller and the DRAM device. An example of a signal waveform is shown in Figure 1.2. A
description of each signal is shown based on the JEDEC specification in Table 1.2. Each
LPDDR4X DRAM device is divided into two ranks which are connected in parallel to a
dedicated channel. Signals such as CK t and CK c are shared among the two channels; how-
ever, the DQ bus, the CA bus, and the corresponding di↵erential DQS clocks are separate
between the two channels.
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Figure 1.2: Waveform of device signals.

Figure 1.3: Signal interface for x16.
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Symbol Type Description
CK t — CK c Input Clock: CK t and CK c are di↵erential clock inputs

CKE Input Clock Enable: Active high signal
CS Input Chip Select

CA[5:0] Input Command and Address Inputs
ODT Input On-Die-Termination control

DQ[15:0] I/O Bi-directional data input and output
DQS t — DQS c I/O Data Strobe, Bi-directional di↵erential clock signal

DMI I/O Data Mask Inversion
ZQ Reference Calibration Reference

RESET n Input Active low reset signal

Table 1.2: Signal Description for x16.

1.4 Prior Work

Research on memory controllers in universities and among academics has a very short back-
ground. To our knowledge, many other research institutions either do not work in this area,
or purchase vendor IP to integrate in their design. In the open-source community, Lite-
DRAM by EnjoyDigital [7] is an implementation of a DDR4 controller that can be mapped
to FPGA systems. However, for the purposes of enabling more research work to be done in
this area, an open-source controller is required.

1.5 Project Goals

The target for this project was to design an open-source LPDDR4X controller to be used
as an IP in chip designs, and to be used to study a complete SoC. Interesting work such as
studying DRAM targetted attacks, system-level analysis, and reordering of transactions will
be possible using such IPs. The project will result in a generator in Chipyard [1]. Chipyard
will provide an SoC designer with simple-to-use configuration-based knobs to include IPs
such as an LPDDR4X controller in a design.
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Chapter 2

Memory Controller Architecture

2.1 Memory Hierarchy Organization

An SoC design is organized as nodes of processing elements such as CPUs or accelerators,
on-die memory systems such as L2 caches or Last Level Cache (LLC), and memory and
IO controllers. A DRAM controller in such systems provides backing memory to the whole
system and allows for larger programs and data to be processed on the die by caching the
working subset of memory. Figure 2.2 shows a modern memory hierarchy and system. CPU
clusters are shown to have private level one and two caches; a system-level cache provides a

Figure 2.1: A modern SoC with 8 cores and last-level cache.
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larger pool of memory and is backed by DRAM. This project pieces together the memory
controller and the physical layer to be used for the future implementation of such systems. In
Figure 2.1 and 2.2, a modern SoC is depicted with eight processing elements, a shared LLC,
and a memory controller. The purple diamonds are routers as part of the SoC interconnects.
One such node is connected to the memory controller.

As SoC architects, we should be able to perform early-stage modeling of systems by taking
advantage of software modeling. A DRAM controller software model gives early estimates
of system-level performance and bottlenecks. Rapid cycles of RTL software modeling is the
approach taken to design complex systems. This implementation of the LPDDR4 memory
controller allows for such models to be deployed and connected to the LPDDR4 model as
well for more realistic performance analysis.

2.2 TileLink Front-end

TileLink is a logical transmission protocol to communicate messages, data, and cache co-
herency packets to other agents in the system [11]. During the design elaboration, TileLink
agents of the system perform an agreement to ensure that the system is connected logically,
and is free of problems such as deadlocks. For that, Chipyard [1], an SoC generator, uses
diplomacy to conduct the diplomatic agreement between all the agents in the system. This
agreement happens at compilation time such that the system is guaranteed to have no cy-
cles. The Diplomacy directed acyclic graph or DAG generates an SoC configuration to be

Figure 2.2: Logical view of the memory hierarchy.
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Figure 2.3: Bus hierarchy with LPDDR4X controller.

elaborated. TileLink di↵erentiates the nodes in the system based on which node is a source
and which node is a sink node. A manager node (sink node) is a node that takes in requests
and provides responses. TileLink protocol requires the implementation of channels A and
D for a manager agent. On the other hand, a client node is a node that issues requests to
other agents in the system. A CPU core in the system has a client node attached to its
interface to the network. On the other hand, the memory controller has a manager node
to receive requests and respond to them. To implement an interface for an SoC, the DDR
controller instantiates a manager node and connects it to the memory bus of the system. In
the context of the memory controller, the manager node receives only put and get requests
over channel A. A put request is a data transfer from a client node to the manager node such
as a write-back to a lower-level cache. Similarly, a get request is a request for data from an
address. The manager node is able to respond to the requests over channel D. In addition to
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Figure 2.4: Register node.

the manager node, the DDR controller requires a register node for the configuration of the
internal registers. Figure 2.3 shows the bus hierarchy in Chipyard and the connection of the
LPDDR4X controller to the memory bus and periphery bus. Figure 2.4 shows the register
node is connected to the periphery bus or the PBUS of the system. The register node is
needed for providing the controller with a register space that software can write to. The
registers are used to control the timing parameters described in the next chapter, control
and status registers, and mode registers of the DRAM device. Each manager node can use
the A and D channels of TileLink. Requests are delivered to the manager node via the A
channel, and responses are delivered to the network via the D channel. Figure 2.5 shows a
block diagram of the manager node in more detail. The logic within the manager node needs
to provide two decoupled (ready-valid) interfaces to each side of the module.

A code snippet that instantiates the manager node with the parameters provided to the
DDDR configuration case class is shown below. Some of the important parameters are the
base address, region type, and beat byte. The beat bytes variable indicates the data width
for each cycle of the transfer. Region Type of uncached indicates that the data has not been
yet cached and the agent that requested this data needs to cache it.

val device = new SimpleDevice("ddr-front", Seq("ddr,ddr0"))
val beatBytes = tlParams.BEATSIZE / 8
val node = TLManagerNode(Seq(TLSlavePortParameters.v1(

Seq(TLSlaveParameters.v1(
address = Seq(AddressSet(tlParams.ADDRESS, tlParams.SIZE)),
resources = device.reg,
regionType = RegionType.UNCACHED,
executable = true,
supportsGet = TransferSizes(1, beatBytes),
supportsPutFull = TransferSizes(1, beatBytes),
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Figure 2.5: TileLink interface.

supportsPutPartial = TransferSizes(1, beatBytes),
fifoId = Some(0))),

beatBytes = beatBytes)))

The TileLink module captures the requests arriving through the A channel. These re-
quests are then determined to be either a write or read request based on the packet header
and opcode bits. Every write request is responded to with an acknowledgment on the D
channel immediately. The acknowledgment of the put requests establishes that the put re-
quest has been registered by this agent. The read requests are responded to after the data
is read from the device and is ready to be sent to the requesting agent in the system. The
logic in the TileLink module needs to translate the TileLink standard packets to an internal
protocol bundle as shown below.

class FrontToDP extends Bundle {
val isWrite = Output(Bool())
val data = Output(UInt((geom.TOTALBITS).W))
val address = Output(UInt((geom.FULLADDRBITS).W))
val byteEnable = Output(UInt((geom.TLBYTEEN).W))
val requesterID = Output(UInt((tlParams.RIDW).W))
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val bankNo = Output(UInt(3.W))
}

Once the responses to the read commands are ready, the memory controller datapath trans-
fers the data to the TileLink module using the bundle shown below.

class DataPacket extends Bundle {
val hw = Output(Vec(geom.TOTALBITS/dfi.DWIDTH, UInt(dfi.DWIDTH.W)))
val requesterID = Output(UInt((tlParams.MASTERIDSIZE).W))

}

The hw field in the DataPacket corresponds to half-word data fields. A total of 256 bits of
data is retrieved from the memory and is concatenated together as half-word data fields in
this packet. The memory controller front-end logic guarantees an in-order response to the
read requests. This needs to be handled by the datapath since the memory controller core
might issue the requests to separate banks out-of-order. Every read transaction that is ready
to be sent out to the SoC must go through the TileLink module logic. The internal packets
are then translated to TileLink AccessAckData responses.

2.3 Asynchronous Crossing

The memory controller must adhere to a specific speed bin determined by the JEDEC spec-
ification. This frequency determines the frequency of the memory controller and the PHY.
In this project, we targeted a frequency ratio of 1:4 between the memory controller and the
PHY. This frequency ratio gives rise to 1:4 mapping commands from the memory controller
to the clock phases of the PHY. In addition, the SoC might be running at a much higher
frequency than the memory controller. To perform a clock domain crossing we have placed
an asynchronous FIFO in between the TileLink module and the datapath of our design.
The block diagram in Figure 2.6 shows the crossing point between the SoC domain and the
controller domain.

To determine the queue size for the asynchronous FIFO, a sampling frequency on the
consumer side, and a producing frequency is needed. Given a frequency ratio of 2 to 1 from
SoC to MC and assuming the worst-case scenario of en-queuing transactions with MC not
ready:

SoC frequency = 800 MHz
MC frequency = 200 MHz
Burst Length = b requests
Maximum enqueue frequency = 1 request

cycle ⇤ 800cycles
1s = 800 requests

s

Total time to write b requests = b
800s

Maximum dequeue rate = 1 request
cycle ⇤ 200 cycles

s = 200 requests
s

Maximum number of dequeues during the burst = b
800s ⇤ 200

requests
s = b

4requests
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Number of transactions to be stored in the queue = b� b
4 = 3b

4

With the burst length of b and 800 MHz frequency to a 200 MHz frequency, we would
need to have a bu↵er depth of b

4 . In addition, a designer needs to perform workloads and
simulate the design at the system level to understand the depth necessary such that the
FIFO would not become the bottleneck of the system.

Figure 2.6: Asynchronous crossing.
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Figure 2.7: Breakdown of physical address.

2.4 Controller Datapath

The memory controller datapath takes in read and writes packets that are passed by the
TileLink module. These packets have an internal format and are processed in the controller
datapath. 1

The memory controller datapath contains ID assignment logic and dispatching logic to
bank machines. In addition, the datapath has ports to insert data into the internal read
and write queues. The datapath covers the read and writes queues units; the datapath
is connected to two di↵erent points of the design, the front-end TileLink module, and the
DFI module. DFI is a protocol specification to bridge between the controller and the PHY
[4]. The datapath is also responsible for changing the addressing scheme to DRAM-specific
addressing. TileLink addresses must then be sliced into the bank address, row address, and
column address which are all defined by the DDR device capacity and organization. The
bank address must be from 0 to 7 and requires 3 bits of the address. In order to interleave
the requests among di↵erent banks, we dedicated 3 bits of the address between the column
and row addresses. Row address spans a larger number of bits of the address and is also
dependent on the target DDR device and capacity. Column address takes up the lower bits
of the address to slice into the rows and select a subset of bits from the row bu↵er. A
breakdown of the physical addresses is shown in Figure 2.7.

Assignment of an ID to each transaction as they enter the controller is required for further
referencing the transaction. As an example, a PUT transaction is entered into the datapath
and is given a transaction ID. Furthermore, it enters the write queue where the data and
transaction IDs are stored in an SRAM. Once the core logic processes the transaction and
timing parameters are checked, the request can cross the controller and PHY interface. At
this stage, the write data needs to be sent out to the PHY as well as the control signals. The
transaction is identified using the previously assigned ID and is retrieved from the SRAM to
be sent to PHY. A similar procedure applies to a read transaction that enters the controller.
Once a read transaction enters the datapath, an ID is assigned to the transactions. A bundle
with the necessary metadata is then stored in the read queue for further processing of the
read transaction. Once the read transaction is processed and the data is retrieved from
the device, the read queue is referenced, and both the data and transaction metadata are

1
The architecture planning and design of this unit in the design were done by Ken and me. The

implementation of the sub-modules was a shared e↵ort by Ken Ho and me.
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stored in the read SRAMs. The ID can also be used to identify the relative age of a pending
transaction in the queues as the ID generation is an incremental counter.

The bank machines internal queues and the main transaction queue control the ready
signal outputted from the datapath. The ready signal is then translated and connected to
the asynchronous FIFO which in turn exposes another ready signal to the TileLink module.
Once the ready signal is low, the senders in the SoC would need to re-try sending their
packets. The TileLink module in the design takes the responsibility of receiving TileLink
messages over channel A and sending them back over Channel D as mentioned in section
2.2.

Transaction Queue

A main transaction queue is used to store the requests as they enter the datapath. The
queue is also used to provide a ready signal to the asynchronous FIFO and the TileLink
module. The metadata and the transaction itself are stored in the queue. The transaction
fields and metadata are write enable (we), address (addr), ID (cmdID), mask (byteEnable),
bank (bankNo), and requester ID shown below:

class BankInPacket (val geom : GeomParams) extends Bundle {
val we = Output(Bool()) // write enable
val addr = Output(UInt((geom.FULLADDRBITS).W))
val cmdID = Output(UInt((geom.IDBITS).W))
val byteEnable = Output(UInt((geom.TLBYTEEN).W))
val bankNo = Output(UInt(3.W))
val requesterID = Output(UInt(tlParams.MASTERIDSIZE.W))

}

Read Queue

The read queue module contains the read queue with the corresponding SRAMs and a read
in-order queue for enforcing the ordering of read responses.

The purpose of having a read-in-order queue is to guarantee the same ordering of read
responses to the system as the memory controller received. A usual optimization is to
avoid such guarantees; however, having this scheme allows us to keep track of transaction
processing times, and quality of service at a system or NoC level.

The read transactions enter the read-in-order queue as they enter the read queue module.
Similarly, the data that was previously requested by the controller to the DRAM device can
be inserted into the read SRAMS at any cycle that the data is received by the controller.
Once the SRAM row is filled with the requested data, the row is set to be filled using a
per-row bit vector. On every cycle, if there exists a pending read transaction in the read-in-
order queue and the data corresponding to that transaction is available in the read SRAMs,
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the transaction at the top of the queue is dequeued. The dequeued read transaction is the
oldest pending transaction with ready data available in the read SRAMS.

The read queue contains eight SRAM banks in parallel providing a total of 256 bits wide
data. The depth of the SRAMs is parameterized by the designer; however, the depth of
the SRAMs determines whether or not the controller can issue a read command. A one-
bit valid signal per row is used to indicate if the row is empty or allocated. An allocate
request is issued to the module by the datapath once the read transaction is entered into the
datapath. The read transaction allocates a row in the SRAM and enqueues the transaction
into the read in-order queue. Once the data is received by the DFI module, the 256-bit wide
data is entered into the previously allocated SRAM row. The address of the SRAM row
is determined using a Content Addressable Memory table (CAM table). The data is then
stored in the allocated SRAM row using the address found from the CAM. Transaction IDs
are used to compare and find the addresses from the CAM table. A block diagram of the
read queue is depicted in Figure 2.8.

The designer of the SoC should configure the depth of the queues appropriately and
pay attention to the maximum allowable pending transaction. It is very important to note
that a read transaction that is serviced and responded to by the DRAM device enters the
controller and is captured by the logic in the read queue and the SRAMs. As a result, if
a read transaction that is at the head of the read-in-order queue enters the pipeline, it will
not be sent to the SoC immediately as a read and write to an SRAMs row must not occur
on the same cycle.

In the case of lower-depth queues, a designer may choose to avoid SRAMs and map the
memory logic to register-based memory banks.
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Figure 2.8: Read queue.

Write Queue

Similar to the read queue, a module is dedicated to keeping the write transactions within the
datapath until the write transaction is processed and ready to be issued to the PHY interface.
The write queue contains eight SRAMs to store a total of 256 bits of data internally. Every
write transaction enters the write queue; the data corresponding to the write with the ID of
the transaction is stored in an empty row of the write SRAMs. The address of the SRAM
row is stored in a CAM table that is accessed in the future using the transaction ID. A
high-level block diagram of the write queue is shown in Figure 2.9.

2.5 Bank Machines

The controller core contains eight Bank Machine modules each of which keeps track of the
state of a bank in one rank of the DRAM device. A diagram of the FSM that each bank
machine implements is shown in Figure 2.10. 2

A bank machine implements the JEDEC state machine for each bank with the additional
functionality of ensuring the timing parameters are met. A memory transaction is split into

2
The architecture planning of this unit was a shared e↵ort by Ken Ho and me. Implementation of this

unit referenced LiteDRAM implementation [7]. Verification of the unit was done by Ken Ho.
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Figure 2.9: Write queue.

at least two commands each of which has its own timing parameters. Table 2.1 shows a
summary of the commands that the memory controller needs to issue. A read transaction to
an address that was not read by the controller recently must issue a row activate command
to the device first. The row activate command (RAS) is issued to the device so that the
word line corresponding to the address is activated and the content of the row is sensed and
registered into the row bu↵er. A read or a write command is considered a column access
command (CAS). This command requires us to wait for TRCD parameter, which is some
number of cycles specified by JEDEC specification. Another important timing parameter
is TCCD which denotes the delay between two consecutive column access commands. For
the read transaction to be safely issued to the device, all the relevant parameters must be
checked beforehand. A legal command then can be issued to the device.

A timing controller in the design refers to a counter that is restarted with the same
value for each timing parameter. The timing parameters can be set using the TileLink
register node. A core can be used to write data into a specific register that is mapped to a
timing parameter. In an ASIC design, this gives the designer flexibility to modify a timing
parameter at the time of the chip bring-up. In Figure 2.10, a simplified version of the JEDEC
state machine is shown. The bank machines have internal counter controllers for each timing
parameter in addition to implementing this FSM.

The ordering of each command is specified by this FSM. However, there are additional
queues in the bank machines in order to compare multiple transaction addresses to keep a
row active in case of a hit. This optimization can be further used to re-order transactions in
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Command Description
Activate Row access, Activates a row
Read Column access, reads a subset of the row
Write Column access, writes to a subset of the row

Precharge Precharges the row to an idle state
Auto-precharge Automatic precharge after a read or write

Refresh Refreshes the bank to preserve the data
Refresh all Refreshes all the banks

Precharge all Precharges all the banks, all go to idle state

Table 2.1: LPDDR4X standard commands.

the queues such that we can perform multiple CAS commands on the same activated row.
This reduces the overhead of RAS commands.

2.6 Refresh Controller

A refresh is needed to maintain the logical value of a bit-cell. This operation is mandatory
and due to the leakage of charge from the trench capacitors of the memory cells. A separate
controller module is responsible for refreshing the DRAM device. A compatible LPDDR4X
memory device can refresh banks individually, or all the banks at the same time. In our
design, we have a refresh controller that refreshes all the banks by first issuing a precharge-
all command. The precharge-all command must be issued before a refresh since a bank
must be in an idle state before a refresh operation. The refresh controller has a counter
internally to maintain a timely refresh to the device. TREFI is specified as the average
refresh interval with a value of 3.904 microseconds. A counter that counts the number of
cycles up to TREFI sends a refresh request to the multiplexer module. Once the request
is approved by the multiplexer, the refresh controller takes over the command bus and can
start issuing commands. The acknowledgment from the multiplexer is necessary since the
multiplexer module ensures that bank machines transition to the idle state. Figure 2.11 show
an example of the refresh procedure and commands to be sent by the refresh controller.
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Figure 2.10: Per bank state machine.

The first phase for a refresh sequence is to issue a DFI standard command for pre-charge
all as below:

cmd(0).dfiCs := true.B
// Precharge-1 Low (default)
// Precharge-2 Hi
cmd(2).dfiAddress := "b11_0000".U
cmd(2).dfiCs := true.B
// Precharge-2 Low
cmd(3).dfiAddress := "b00_0000".U
cmd(3).dfiCs := false.B

The commands are sent over in one cycle of the memory controller; however, each command
will be translated into four cycles of DFI clock domain. Each command can be split into
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Figure 2.11: Refresh-all sequence.

four phases of the controller cycle and sent out as a vector of size four. The dfiAddress field
in the code snippet above maps to the CA bus which is the command and control bus of the
channel.

2.7 Controller Bring-up

At the time of bring-up, the DDR module in the chip must be configured with the timing
parameters and mode register values.

The sample code below shows the timing parameters that need to be configured at the
time of bring-up. The configuration is done using the TileLink register node and is done by
a core in the system issuing writes to the corresponding address.

val tphycwl = RegInit(8.U(timeBits.w.W))
val tphycl = RegInit(14.U(timeBits.w.W))
val twr = RegInit(4.U(timeBits.w.W))
node.regmap(

0x00 -> Seq(RegField(timeBits.w, tphycwl)),
0x01 -> Seq(RegField(timeBits.w, tphycl)),
0x02 -> Seq(RegField(timeBits.w, twr)),
...)

A bare-metal software can be written to write the timing registers and the device mode
registers.
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2.8 Scheduling Logic

The scheduling logic determines which request from each bank can be issued to the device
at any cycle. The Bank Machines provide a command that meets the per bank timings to
the CommandChooser module, where a round-robin arbiter provides an index to pick the next
command to be sent. CommandChooser module can be optimized to use more sophisticated
arbiters to optimize for DQ bandwidth. In addition, a fairer history-based arbiter can be
deployed in place of the round-robin arbiter. 3

Open-page Policy

In an open-page policy mode, the Bank Machines can keep a row open after an activate and a
CAS command. Further CAS commands can be issued after a CAS to CAS latency. Open-
page policy avoids an activation for the second CAS command. Our design incorporates
this idea into the Bank Machine as a configurable parameter. If configured to perform an
auto-precharge command, a CAS command automatically performs a precharge and puts the
bank in an idle state. However, if not set to use auto-precharge, the look-ahead command
bu↵er in the Bank Machine allows us to check for a row hit. A row hit follows by keeping
the row open and issuance of the second CAS command right after.

A concerning side e↵ect of the open-page policy is the potential starvation of other
requests to the same bank in case a row is being accessed regularly. This could be due to an
application performing reads and updates to a specific variable or a malicious code accessing
one particular variable in a loop to exploit the open-page policy.

2.9 Controller Configuration

Three main case classes are used to configure the LPDDR4 controller based on the design
of the SoC and memory system.

The Geometry class corresponds to the DRAM device configuration, time counter width,
depth of the queues in the design, row slice from the address, column slice, and bank slice.
This case class can be instantiated in the configuration class of the chip.

DFI parameters case class corresponds to the DFI-specific parameters used in the de-
sign. DFI width, the number of phases per controller clock, and PHY slice widths are all
determined in this case class. Similar to the Geometry class, the DFI parameters should be
instantiated and modified per design-specific constraints.

A TileLink parameter case class is also needed to configure the TileLink nodes needed in
the design. This case class requires the designer to provide two base addresses. One address
for the base of the DRAM. This address should be the base of the memory for the SoC and
must be a cachable address range. The other base address is used for the register node and

3
The architecture planning for this unit was done by Ken Ho and me. The implementation of the

scheduling logic was done by Ken Ho.
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configuration of the timing parameters. The configuration base address can be associated
with a control address and should be uncachable.

The DDR generator has a CanHaveMasterTLDDRPort trait. This trait is used as one of
the traits that DigitalChip inherits. Once added to the DigitalChip of Chipyard, the trait
instantiates the TileLink module and connects the internal TileLink node for memory to the
memory bus of the system. It also connects the internal register node in the TileLink module
to the periphery bus of the system. The trait instantiates the DDR top module and connects
the interfaces of the top module to the TileLink module. The connection must happen in
this way due to TileLink requirements for elaboration and TileLink lazy module system.

class DigitalTop(implicit p: Parameters) extends ChipyardSystem
with ddr.CanHaveMasterTLDDRPort

class WithDDR(val geom: GeomParams, val dfi: DFIParams, val tl: TileLinkParams)
extends Config((site, here, up) => {

case DDRKey => Some(DDRParams(geom = geom, dfi = dfi, tl = tl))
})

A chip configuration with the LPDDR4 memory controller would add WithDDR with the
intended parameters to instantiate the controller.



23

Chapter 3

Micro-architecture

We have designed and written the RTL in Chisel [3] domain-specific language or DSL. Chisel
is a DSL embedded in Scala programming languages. It allows for easy integration to
Chipyard for di↵erent purposes such as FireSim [5] simulations, VLSI integration, and FPGA
targets.

3.1 Chisel API

The APIs are implementation of common hardware constructs provided to us by Chipyard
[1] and Chisel [2] and the team of Chipyard developers.

We have used Chisel constructs in our design to implement common hardware blocks. A
queue is an example of such constructs that are provided by Chisel.

val reqQueue = Module(new Queue(new MainQueue(geom, tlParams),
geom.QUEUEDEPTH, pipe=false))

The code above instantiates a simple queue that stores the requests entering the memory
controller data path. The reqQueue elements then can be accessed using the I/O ports of
the Queue module. The Queue module provides a ready-valid interface on both enqueue and
dequeue sides. When there is a new request, the request bundle can be stored using the API
as shown below:

when (io.frontReq.fire) {
reqQueue.io.enq.valid := true.B
reqQueue.io.enq.bits.we := io.frontReq.bits.isWrite
reqQueue.io.enq.bits.addr := io.frontReq.bits.address
reqQueue.io.enq.bits.cmdID := id
reqQueue.io.enq.bits.bankNo := io.frontReq.bits.bankNo
reqQueue.io.enq.bits.byteEnable := io.frontReq.bits.byteEnable
reqQueue.io.enq.bits.requesterID := io.frontReq.bits.requesterID

}
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The when construct corresponds to a combinational logic always block in Verilog. The
code above uses methods defined in the IO class such as fire. Fire is the event that both
ready and valid are high for an interface. This style of coding makes it easier and faster to
write the RTL.

Using standard Scala functional programming features such as .filter(), .foreach(),
and .tabulate() helped us write the RTL more concisely while maintaining code readability.

Packets in Chisel can be constructed by creating a class that extends the Bundle class
of Chisel. A bundle is a group of directional wires that have the same context. In our case,
we standardized all of our bundle classes to contain output wires. In case a bundle is used
as an input to a module, a Bundle can be used to flip all the directions for that bundle. An
example bundle usage in our RTL is the input to the Bank Machines described in Chapter
2. The bank input packet includes a field for write or read, address, id, and mask. If the
transaction is a write transaction, the write enable field or we is true and the byte enable is
used to mask the write data.

class BankInPacket (val geom : GeomParams) extends Bundle {
val we = Output(Bool())
val addr = Output(UInt((geom.FULLADDRBITS).W))
val cmdID = Output(UInt((geom.IDBITS).W))
val byteEnable = Output(UInt((geom.TLBYTEEN).W))

}

Using this bundle as an input port to the Bank Machine module is done through a Decoupled
interface which adds ready and valid signals to the bundle.

class BankMachine (val geom : GeomParams, val bankNo : Int) extends Module {
val io = IO(new Bundle {

val in = Flipped(Decoupled(new BankInPacket(geom)))
...

The in field of the IO port in a Bank Machine is a decoupled, flipped bundle of BankInPacket.
The Decoupled makes the IO port a decoupled interface with ready and valid signals. The
ready signal is set by the consumer of this packet which is the Bank Machine module, and
the valid signal is asserted by the producer of the signal which is the data path module.
A io.in.fire event corresponds to the transfer of the packet from the producer to the
consumer.

3.2 Datapath Micro-architecture

The datapath in our design refers to the module that takes in requests from the TileLink
module and keeps track of the transactions and the data. As an example, a write request
must be kept in the data path until the write transaction is ready to be issued to DFI.
At that point, the data can be taken out of the memory controller and sent to the DFI.
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The data path has two main modules within it, a read queue module, and a write queue
module. The read, and write queues keep the data in 8 banks of SRAMs. The data path
interfaces to the top module of the memory controller. The top module connects the ports
from the data path to the DFI read and write interface. The top module connects the
data path to its input ports which are connected to the TileLink front module. Figure
3.1 shows the micro-architecture diagram of the data path. The data path has an internal
counter for ID assignment to transactions. This counter is by default a 10-bit counter but
can be configured to a wider counter to avoid ID collisions. Each TileLink request that is
captured by the TileLink module first is synchronized to the controller clock frequency and
then enters the data path module where it is assigned an ID. If the transaction is a write
transaction, then the data path must store the data with the corresponding ID in the write
queue SRAMs. The depth of the write queue SRAMs indicates the maximum write requests
that can be in flight at any point. However, the request queue which stores both read and
write transactions provided a ready signal to the SoC. The designer of the SoC must size
the request queue to be equal to or greater than the write or read queues.

A capturing logic is implemented in the data path to capture a read response from the
DFI. Once a read response arrives, the DFI packet asserts a read data valid signal. The data
is delivered to DFI on PHY clock frequency which is four times faster than the controller
clock. DFI delivers the data to the memory controller per cycle using four phase scheme.
On each cycle, data is split into four phases of 32 bits that are delivered over 2 cycles which
make up the 256-bit total data width of the controller. The read data capturing waveform
is shown in Figure 3.2.

A similar logic is in place to stream the write data from a 256-bit wide register to the
DFI over two cycles. Figure 3.3 shows the transmission of the write data to DFI.
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Figure 3.1: Datapath internal logic.

3.3 TileLink Lazy Module

TileLink elaboration depends on a lazy system to connect the nodes together and avoid a
deadlock in the bus system. A TileLink node would be instantiated in the system at the time
of elaboration. In case there are mismatches between the bus width, the TileLink diplomacy
monitors’ assertions would stop the compilation process. The deadlock-free requirements are
also checked at the compile time. Our design relies on API provided by Diplomacy to create
a manager node as well as a register node in the TileLink lazy module.

The manager node connects to the Memory Bus of the system and accepts packets on
channel A of TileLink. We have designed our manager node to be compatible with the TL-
UL protocol. TL-UL is a TileLink Uncached Lightweight protocol that requires channel A
and D implementations. Data in the DRAM is not cached and as a result, the TileLink node
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Figure 3.2: Capturing of DFI read response.

Figure 3.3: Transmission of DFI write data.

for the memory controller does not need to implement channels B and C. The controller
manager node for the controller can only accept packets that are one beat only. In large
SoC with wider bus widths, TileLink adopts a multi-beat packet protocol. In such systems,
a Fragmenter module is instantiated automatically to translate the multi-beat packets to
one packet and vice versa. The Fragmenter takes in as input a multi-beat packet and once
the packet is fully transmitted, sends the constructed one-beat packet to the controller. It
can also perform the same logic in the opposite direction where the controller can produce a
one-beat packet and send it to the Fragmenter, which internally breaks up the packet into
a multi-beat packet.
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3.4 Synthesis Result

We synthesized the design as part of our initial assessment phase of the tape-out process
using Hammer, a physical design flow tool [6]. The reports are based on Intel 16 technology
which is a 22 nm FinFET process node. The synthesis report indicates a relatively small
area footprint. The synthesis report in table 3.1 shows the instance types used from the
technology library.

In table 3.2, the subsequent area report shows a breakdown of our memory controller by
modules. Note that all area units are in micro-meter squared.

Type Instances Area % Area
Sequential 6973 9529 64.9
Inverter 897 183 1.2
Bu↵er 39 35.109 0.2

Clock Gate 420 657 4.5
logic 10022 4284 29.2
total 18351 14690 100.0

Table 3.1: Synthesis report.

Instance Module Cell Count Total Area
top MemoryControllerTop 18351 18961.802
core MemoryControllerCore 8759 8371.554

datapath MemoryControllerDataPath 9128 10099.057

Table 3.2: Area breakdown by module.
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Chapter 4

Software Model

To perform design space exploration, a software model written C++ language is provided
with the generator. The generator can be then exercised with this software model without
performing costlier and longer RTL simulations. In addition, a software model can be used to
find bottlenecks in the system and optimize the RTL based on the findings. Parameterization
of the RTL modules in a software model is much more intuitive which allows for fast iterations
on multiple parameters for a specific design without elaborating the SoC and controller RTL.

4.1 Cycle Information

It is important to model the controller with clock and cycle information so that a possible
bottleneck in the system can be found. In the software model, we added a Clock class to
model the system using an object of the Clock. A Clock object provides the API necessary
to set the clock to a certain cycle, and tick the clock. The Clock API is shown below.

class Clock {
private:

std::string clock_name;
uint64_t cycle;

public:
Clock(std::string name);
void set_to_cycle(uint64_t cc);
uint64_t get_cycle();
void tick();

};

Using clock objects allows us to output the progress of transactions with the cycle informa-
tion.
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4.2 Issuers

A TransactionIssuer is used to model software running on the system. Since the software
model does not exactly need to adhere to the specific hardware protocols, we can avoid
detailed signals within a TileLink packet and summarize a transaction as below:

enum TXType {
read,
write

};

typedef struct Transaction {
uint64_t id;
uint64_t address;
uint32_t sourceId;
uint8_t bank;
TXType opcode;
std::vector<uint64_t> data;
uint64_t mask;

} Transaction;

A TransactionIssuer is a c++ class that can read transactions from a provided transaction
stream in a text format. The object can also generate random transactions and issue them
to the controller. The TransactionIssuer interface is as shown below:

class TransactionIssuer {
private:

std::string name;
uint16_t sourceId;
std::map<uint64_t, Transaction*> awaiting;
std::map<uint64_t, Transaction*> processed;

public:
TransactionIssuer(std::string this_name, uint16_t sid);
std::string get_name();
uint16_t get_source_id();
std::map<uint64_t, Transaction*> get_awaiting_tx();
Transaction* get_random_tx(uint64_t cycle);
void read_tx_from_file(std::string f);

The awaiting and processed fields can be used to monitor the progress of the controller on
issuing the transactions and the responses from the DRAM software model.
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4.3 Dram Memory Model

A simple memory model would su�ce for this software model as the purpose of this model
is to realize the functionality and performance of the memory controller. Therefore, a zero-
latency model for memory transactions can be used. A simple mapping of addresses to
256-bit values with an additional map to keep track of the state of each row is used for
modeling a bank in the DRAM device. The Bank class is defined with core functionalities
and zero latencies for all the commands:

class Bank {
private:

State state;
uint64_t active_row;
uint8_t bank;
std::map<uint64_t, DramData*> mem;

public:
Bank(uint8_t i) {

bank = i;
state = IDLE;

}
void activate(uint64_t addr);
void precharge();
void refresh();
DramData* read_cas(uint64_t addr, bool auto_pre);
void write_cas(uint64_t addr, DramData *data, bool auto_pre);

};

A full DRAM model uses the Bank class and instantiates eight banks. It then exposes the
same methods and dispatches the calls to the corresponding bank based on the address. As
an example, the activate method in the DramModel extracts the bank bits from the address
and then dispatchers the activate call to the corresponding bank.

class DramModel {
private:

uint64_t capacity;
Bank *banks[8];
uint8_t get_bank_from_addr(uint64_t addr) {

return (uint8_t)(addr & (7 << 9));
}
uint64_t no_bank_bits(uint64_t addr);

public:
DramModel(uint64_t cap);
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void activate(uint64_t addr) {
uint8_t bn = get_bank_from_addr(addr);
banks[bn]->activate(no_bank_bits(addr));

}
void precharge_all_banks();
void precharge(uint64_t addr);
void refresh_all_banks();
DramData* read_cas(uint64_t addr, bool auto_pre);
void write_cas(uint64_t addr, DramData *data, bool auto_pre);

};

The above API can perform the main commands of the DRAM. We avoided the implemen-
tation of complete JEDEC accurate commands since this model is not used for verification
purposes of the controller.

4.4 Core Model

The Core model consists of the wrapper class around the eight Bank Machine classes with a
command chooser and the multiplexer. A cycle per cycle function calls to the fsm function of
each Bank Machine object would trigger them to process a command and return a possible
command if the timing parameters are met. The timing parameters are implemented as
variables that are modified by the fsm function. On each cycle, if there exists a command
that meets the timings and can be issued, the fsm method of the Bank Machine returns the
corresponding Bank Output structure. The structures implemented in the software model
have the same fields as the bundles in our RTL.

A command selection logic uses a round-robin implementation in software and picks
between one of the possible eight outputs from the fsm method of each Bank Machine. The
output of the Core object then is multiplexed with the other controllers such as the refresh
controller and then sent out to the DRAM memory model.
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Chapter 5

Conclusion

5.1 Summary

During the course of this program, I worked on the implementation, architectural design,
and verification of an LPDDR4X memory controller.

Our goal was to create a generator that can be integrated into Chipyard and used in
future chip designs and research.

During our development phase, we tested the functionality of units and verified our logic.
In addition, we have a simulation-based test harness where we exercise the end-to-end system
as a whole.

5.2 Future Work

Optimizations of the architecture and micro-architecture of the controller, formal verification,
and a more robust test harness are some of the future work for this project. I will keep
contributing to the project whenever possible and will mainly focus on a complete software
model for this design.

The implementation will be taped-out in the near future and will be brought up as a
design under a test environment for the purpose of post-silicon validation. We completed our
mission of a complete generator for LPDDR4X. However, there will be extended research on
optimizing the controller architecture, PHY design, and PCB design mainly by Ken Ho and
other graduate students.
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