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Abstract

Contrastive Learning for Combinatorial Optimization

by

Mohamed Elgharbawy

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Joseph E. Gonzalez, Chair

This paper presents the use of contrastive learning to improve upon the performance of Opti-
mization Modulo Theories (OMT) solvers. OMT is a generalization of Satisfiability Modulo
Theories (SMT) that requires an objective function and has numerous real-world applica-
tions, such as chip placement, worst-case execution analysis, and the Traveling Salesman
Problem. OMT problems are challenging due to the requirement of finding both feasible
and optimal solutions, as well as the non-convexity of constraints, making it difficult to
identify the global optimal solution. The current approaches taken by OMT solvers are not
problem-specific and involve reducing the problem into Integer Linear Programs (ILPs), or
repeatedly making calls to SMT solvers. The presented contrastive learning approach lever-
ages symmetries and invariances within OMT problems through optimality and feasibility-
preserving transformations to better guide the search for optimal solutions. This paper
builds upon Ashera, a learning-based OMT solver, and implements contrastive learning to
improve downstream optimal variable assignment accuracies by over 6% on a Scheduling
problem benchmark and over 5% on a Multi-Agent Traveling Salesman problem benchmark.
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Chapter 1

Introduction

Optimization Modulo Theories (OMT) are a generalization of Satisfiability Modulo Theories
(SMT) [1] that require an objective function. OMT solvers have numerous real-world appli-
cations, such as chip placement [2], worst-case execution analysis [3], and the Multi-Agent
Traveling Salesman Problem [4]. By requiring that OMT solutions are both feasible and
optimal, finding such solutions become strictly more difficult than in SMT problems. In
OMT problems, the feasible region of solutions is often defined by a set of constraints and
bounds, which further complicates the search for optimal solutions. Furthermore, the non-
convexity of the constraints in OMT problems can result in multiple local optima, making
it challenging to identify the global optimal solution. Current approaches taken by OMT
solvers either involve reducing the problem into Integer Linear Programs (ILPs) to approx-
imate a solution, or repeatedly making calls to SMT solvers. These techniques are slow to
find an optimal solution when given constraints, taking exponential time, and are not meant
to be problem-specific. Despite these challenges, advancements in optimization algorithms
and techniques have enabled the efficient solving of some OMT problems [5], making it a
promising area for research and practical applications.

Current SMT solvers perform quite well in the industry on problems such as chip place-
ment and route scheduling, but when given an objective function, solvers such as OptiMath-
SAT [6] fail to reach the same industry-leading performance. As a result, ILP approaches
are used in the industry to approximate solutions. However, to achieve reasonable perfor-
mance, solvers are in practice tuned against benchmarks of related problems, making them
less versatile than other optimization techniques. Additionally, the accuracy of SMT solvers
heavily depends on the problem representation and formulation, which can be a challenging
task for complex optimization problems. Despite efforts to improve them, SMT solvers still
struggle with large-scale problems and tend to be computationally expensive.

General-purpose OMT solvers are efficient at finding solutions, but in practice most
applications require a solver that is specifically tuned for their specific problem setup. The
performance of an OMT solver can vary greatly depending on factors such as the size of
the problem, the complexity of the constraints, and the available computational resources.
Therefore, it is important to have a solver that is efficient and tailored to the specific problem
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at hand. For instance, a company in Berkeley that is trying to analyze the most cost-efficient
route of their package deliveries may want an OMT solver that is not only efficient at the
Traveling Salesman Problem (TSP), but also specifically tuned to be as efficient as possible
in the city of Berkeley. This has motivated the use of machine learning (ML) to learn useful
heuristics for solving such problems.

Our key insight is to further refine this learning by allowing the learned heuristic to
effectively be tuned at a per-instance level. Another key insight is that current approaches do
not analyze symmetries and invariances specific to each problem class. Exploiting symmetries
in SMT problems has been shown to be successful in areas such as constraint programming
and SAT solving [7]. This is due to the fact that symmetries allow a data point to become
representative of far more data points, which allows us to compare and detect patterns
in a lower-dimensional manifold. Hence, contrastive learning, an approach frequently used
with images to learn attributes that are common between data classes, can be used in the
context of OMT problems to leverage symmetries and invariances within problems to better
improve the performance of current OMT solver approaches. One of the key advantages of
contrastive learning is that it can help identify the underlying structures and patterns in
the data, which can be used to guide the search for optimal solutions in OMT problems.
By learning the common attributes and features shared between different classes of OMT
problems, contrastive learning can help build more generalized and adaptive OMT solvers
that can perform well across a wide range of problem instances.

Our work makes the following contributions:

• We build upon Ashera [8], a learning-based OMT solver

• We implement contrastive learning to improve downstream optimal variable assignment
accuracies by over 6% on a Scheduling problem benchmark, and over 5% on a Multi-
Agent Traveling Salesman problem benchmark

The rest of the paper is organized as follows: In chapter 2 we introduce necessary back-
ground and related work. In chapter 3 we elaborate on our approach and experimental
design. In chapter 4, we present our experiments and results. Lastly, we conclude and
present future work in chapter 5.
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Chapter 2

Background and Related Work

2.1 Optimization Modulo Theories

Optimization Modulo Theories (OMT) are a generalization of Satisfiability Modulo Theories
(SMT) that aim to satisfy constraints while optimizing an objective function. SMT, a
generalization of Boolean Satisfiability Problems (SAT), is a problem that decides if a set
of constraints are satisfiable. While SAT problems only use boolean logic, SMT problems
generalize to other data types, such as real numbers, integers, data structures, and more.
In this work, we focus on Linear Integer Arithmetic (LIA) [9] problems, as they guarantee
decidability.

We define a constraint to be an inequality of the form:

constraint(x⃗) = c⃗ · x⃗ ▷◁ b⃗ (2.1)

where x⃗ ∈ {0, 1}n, c⃗ ∈ Zn, ▷◁ ∈ {<,≤,=, ̸=,≥, >}, and b⃗ ∈ R. n denotes the number of
variables within the constraint.

Next, we define a conjunction as a logical and of constraints:

conjunction(c1, ..., cn) =
n∧

i=0

ci (2.2)

where ci is a constraint.

Following this, we define a clause in the disjunctive normal form (DNF), which is a logical
or of our conjunctions:

clause(c1, ..., cn) =
n∨

i=0

ci (2.3)
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where ci is a conjunction.

Next, we define a formula, which is a logical and of our clauses :

formula(c1, ..., cn) =
n∧

i=0

clause(c1, ..., cn) (2.4)

where ci is a clause.

Following this, we define our SMT problem:

∃ x⃗ s.t. formula(x1, ..., xn) = True (2.5)

Finally, we define our OMT problem as an SMT problem with an objective:

min
x⃗∈Rn

C(x⃗)

s.t. formula(x⃗) = True
(2.6)

where C(x⃗) is our objective function.

2.2 Graph Neural Networks for Combinatorial

Optimization

Graph Neural Networks (GNNs) are a class of neural networks that are able to process data in
the form of graphs. In these graphs, the nodes represent entities, while the edges represent the
relationships between them. GNNs learn a set of functions to propagate information between
nodes in a graph to update their representations. GNNs have numerous applications, such
as recommendation systems [10], drug discovery [11], and social network analysis [12].

Graph Convolutional Neural Networks (GCNs) [13] are a form of GNNs that can be
interpreted as a generalization of Convolutional Neural Networks (CNNs). GCNs use convo-
lutional operations to aggregate information from a node’s neighbors to update the node’s
representation. GCNs and variations upon its implementation have been shown to have
state-of-the-art performance on graph-related tasks and can be computationally efficient
[14].

The application of GNNs and GCNs has been a relatively recent breakthrough in the
approach of solving combinatorial optimization problems [15]. GNNs have an inductive
bias that allows them to encode combinatorial and relational input effectively, as they are
permutation-invariant and can handle input sparsity. In practice, GNNs and GCNs have
been shown to be effective at chip placement [16], where the objective is to optimize the
power, performance, and area of a chip by mapping the nodes of a netlist (which represents
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the desired chip) onto a bounded 2D space called a chip canvas. Such innovations show
promise in the field of using GNNs to tackle combinatorial optimization, but only begin to
explore its potential.

2.3 Label-Preserving Augmentations

There are label-preserving augmentations (LPAs) that can be applied to SAT and SMT
problems [17] that maintain both satisfiability and unsatisfiability, as well as optimality:

Positive/Negative Scalar Multiplier (PM/NM). Multiplying a constraint by a pos-
itive scalar multiplier does not change its satisfiability nor its optimal solution. Multiplying
a constraint by a negative scalar multiplier has the same property, provided the operator ▷◁
is negated (e.g. ▷◁ ∈ {<,≤,=, ̸=,≥, >} → ¬ ▷◁ ∈ {≥, >, ̸=,=, <,≤}, respectively).

Original PM
min 2x0 − 3x1 min 2x0 − 3x1

Subject to: Subject to:
c1 : (3x0 + 2x1 ≤ 1) ∨ (x0 − 3x1 > 2) c1 : (12x0 + 8x1 ≤ 4) ∨ (4x0 − 12x1 > 8)
c2 : (x0 − 3x1 ≤ 2) ∨ (5x0 − x1 > 4) c2 : (2x0 − 6x1 ≤ 4) ∨ (10x0 − 2x1 > 8)

Table 2.1: Positive Scalar Multiplier. c1 is multiplied by 4, and c2 is multiplied by 2.

Unit Propagation (UP). A unit clause contains only one literal. If a problem p con-
tains a unit literal ℓ, we can remove all clauses in p containing ℓ and delete ¬ℓ from all other
clauses.

Original UP
min x0 min x0

Subject to: Subject to:
c1 : x0 ≤ 0

c2 : (x0 > 0 ∧ x1 ≤ 0) ∨ (x0 ≤ 0 ∧ x1 ≤ 3) c2 : x1 ≤ 0

Table 2.2: Unit Propagation. c1 is pure, so we delete c1, as well as (x0 ≤ 0 ∧ x1 ≤ 3) and
x0 > 0 from c2.

Add Unit Literal (AU). This is the inverse of UP. Construct a new unit clause from
a new literal ℓ, add ¬ℓ to some disjunctions, and add ℓ to conjunctions.
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Original AU
min x0 min x0

Subject to: Subject to:
c1 : x0 ≤ 0 c1 : x0 ≤ 0

c2 : (x0 ≤ 0 ∧ x1 ≤ 3) c2 : (x0 ≤ 0 ∧ x1 ≤ 3 ∧ x1 ≤ 1) ∨ (x1 > 1)
c3 : x1 ≤ 1

Table 2.3: Add Unit Literal. We construct and add constraint ℓ = (x1 ≤ 1) inside the first
conjunction of c2, as well as a constraint c3, and add ¬ℓ = (x1 > 1) to the disjunction of c2.

Subsumed Clause Elimination (SC) If a clause is a subset of another clause, i.e.
c1 ⊂ c2, then removing c2 will not change the satisfiability nor optimality of the problem.

Original SC
min x0 min x0

Subject to: Subject to:
c1 : x0 ≤ 0 c1 : x0 ≤ 0

c2 : (x0 ≤ 0) ∨ (x0 ≤ 2 ∧ x1 ≤ 3)

Table 2.4: Subsumed Clause Elimination. c1 ⊂ c2, so we eliminate c2.

Clause Resolution (CR) Adding the resolvent of two clauses containing complemen-
tary ltierals (e.g. (x1 ∨ x2) ⊗ (¬x2 ∨ x3) = (x1 ∨ x3)) does not change satisfiability or
optimality.

Original CR
min x0 min x0

Subject to: Subject to:
c1 : x0 ≤ 0 c1 : x0 ≤ 0

c2 : (x0 > 0) ∨ (x1 ≤ 2 ∧ x2 ≤ 3) c2 : (x0 > 0) ∨ (x1 ≤ 2 ∧ x2 ≤ 3)
c3 : (x1 ≤ 2 ∧ x2 ≤ 3)

Table 2.5: Clause Resolution. Add c3 = c1 ⊗ c2.

2.4 Contrastive Learning

Contrastive learning [18] is a machine learning technique that aims to learn low-dimensional
representations of data by contrasting between samples of the same and different classes.
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Figure 2.1: SimCLR Framework [19]. Transformations t and t′ are applied to a data point
x, passed through a base encoder network f(·), then through a projection head g(·). The
output embeddings zi and zj are passed through a contrastive loss function to maximize
agreement.

It aims to reduce the Euclidean distance between similar samples in the low-dimension
representation space, while pushing dissimilar samples apart. This style of learning can both
be supervised and unsupervised.

SimCLR [19] is a famous self-supervised framework for unsupervised contrastive learning.
The framework creates positive image pairs through random transformations to the anchor
image, such as cropping, flipping, and changing colors. These transformations create a
diverse and large set of images for learning. SimCLR was able to improve upon previous state-
of-the-art linear classifiers, matching the performance of a supervised ResNet-50. Further
more, when fine-tuned on 1% of labels, SimCLR was able to outperform AlexNet with 100x
fewer labels.
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Chapter 3

Approach and Experimental Design

We seek to demonstrate that applying LPAs allows us to learn embeddings that better
generalize. We desire to demonstrate that utilizing representation learning using contrast
over transformations will lead to desirable embeddings for downstream tasks.

3.1 Graph Representation for OMT Problems

We translate an OMT problem into a graph using the methodology found in Gasse et al [20].
In each formula, we encode all of the variables, conjunctions, and clauses. Then, for each
constraint c⃗ · x⃗ ▷◁ b⃗, we add an edge between each variable node xi and the constraint, with
weight ai. b⃗ is encoded as an attribute for the constraint node. Conjunctions are encoded
as a tree over their corresponding constraints. Disjunctions are encoded as a tree over the
conjunction nodes. Finally, we have a cost node connected to all of the variable nodes with
weights ci.

Figure 3.1: Graph representation. The OMT problem is represented a graph with edges
connecting variable, constraint, and cost nodes.
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3.2 Multi-Agent Traveling Salesman Problem

The Multi-Agent Traveling Salesman problem (MATSP) is a generalization of the famous
Traveling Salesman Problem (TSP), where multiple salesmen need to visit a number of
waypoints exactly once and return to their initial position, all while minimizing the sum of
travel times ti when a waypoint is visited:

min
N∑
i=0

ti (3.1)

Due to space constraints, the following constraints are applied to our version of the
problem:

• Visited: All waypoints must be visited by at least one vehicle.

• Deterministic: After visiting a waypoint, a vehicle visits at most one more waypoint
immediately afterwards.

• Ordering: The starting waypoint s has an order os = 0. For all subsequent waypoints
w visited in order ow, the previously visited waypoint pw must have order opw = ow−1.
This prevents tours that do not include the starting waypoint s.

• Weight Constraint: The sum of the weights of the vehicles is less than a given value
M .

• Visit Time: For all waypoints w, the visit time tw if vehicle v visits it is at least
tpw + τv,p,w, where tpw is the time when the preceding waypoint was visited and the τ
is the travel time from pw to w by vehicle v.

• Exclusion: If a vehicle v is traveling from w to w′ from tw to tw′ , there cannot be a
waypoint w′′ that is visited by v while it is traveling.

3.3 Scheduling Problem

The Scheduling problem involves finding an optimal placement of tasks to resources, as
well as assigning start times to tasks. Additionally, there are constraints on resources and
dependencies between tasks that must be satisfied. The goal is to maximize slack, which
is the buffer time before a deadline that a task is expected to complete. Finding feasible
solutions is non-trivial, and finding an optimal one is even more difficult.

Consider a set of N tasks, T = {ti|i ∈ [1, N ]}, and a dependency matrix M , where
Mij = 1 if ti must complete before tj, and 0 otherwise. Additionally, we have a set of
deadlines and expected runtimes, d and e, respectively. We also have resources requirements
and placements. Let ri = 1 if ti requires a GPU, and 0 otherwise.
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We denote NG and NC as the number of GPUs and CPUs, respectively. We seek to opti-
mize with respect to si and pi, which denote the start time and placement of ti, respectively.
Let pi = k ∈ [1, NG] if pi is placed on the kth GPU of NG, and (k − NG)

th CPU if it is in
[NG, NG +NC ].

We seek to minimize the following cost objective:

min
N∑
i=0

di − (si + ei) (3.2)

We enforce the following constraints:

• Basic constraints: ∀i, si ≥ 0 and pi > 0.

• Finishing before the deadline: ∀i, si + ei ≤ di.

• Placement constraints: ∀i, if ri = 1, then 1 ≤ pi ≤ NG. Otherwise, when ri = 0,
1 ≤ pi ≤ NG +NC .

• Dependency respecting: ∀i, j, if Mij = 1, si + ei ≤ sj.

• Exclusion: ∀i, j, pi = pj ⇒ (si + ei ≤ sj ∨ sj + ej ≤ si).

3.4 Contrastive Learning

The goal of our contrastive learner is to exploit symmetries and invariances in OMT problems.
Intuitively, this should be useful for both MATSP and Scheduling problems. In MATSP,
cities being further apart by a constant factor, as well as cities in different orders should result
in the same optimal solution. In the context of Scheduling, the order of the tasks/GPUs
do not matter. Additionally, increasing the expected runtimes while proportionally delaying
the the deadline should result in the same optimal solution.

Loss Function

To perform contrastive learning, we will apply the LPAs as described in section 2.3. Ad-
ditionally, we will use the InfoNCE loss function [21]. Given a set X = {x1, ..., xN} of N
random samples containing one positive sample from p(xt+k|ct) and N − 1 negative samples
from the proposal distribution p(xt+k), we optimize:

LN = −EX

[
log

fk(xt+k, ct)∑
xj∈X fk(xj, ct)

]
(3.3)

InfoNCE loss is a version of cross-entropy loss with respect to classifying the positive
sample correctly, where fk∑

X fk
is the prediction of the model.
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Figure 3.2: Contrastive Learning Architecture

Architecture

During training, an OMT problem is sampled from within a batch. A transformation t is
sampled randomly from a pool of T transformations, and applied to the OMT problem to
generate a positive key. Both problems are fed through a GCN model, which outputs hidden
representations h⃗ and h⃗t of the variables within the problem. A global mean pool is then
applied to h⃗ and h⃗t, where they are then each fed through an MLP to output embeddings e⃗
and e⃗t. Finally, these embeddings are passed through our contrastive loss function, InfoNCE,
where the goal is to maximize their agreement.

The GCN consists of a convolutional layer, a ReLU activation function, and a second
convolutional layer. The variable hidden representations are extracted from the output of the
GCNs and are our h⃗ and h⃗t. A global mean pool is then applied to each variable individually,
and the results are concatenated and fed through an MLP. The MLP consists of a linear
layer, a ReLU activation function, followed by a second linear layer. The outputs of the
MLPs become our embeddings e⃗ and e⃗t.

LPA Selection

The model was trained on a small subset of the MATSP and Scheduling data. Of the five
different transformations mentioned in section 2.3 (positive/scalar multiplication is treated as
a singular transformation class),

(
5
2

)
= 10 combinations were tested, alongside only applying

one transformation at a time, for a total of 15 different tests per problem. Applying no
transformations was used as a baseline, and resulted in a final epoch validation loss of
9.78× 10−5 for MATSP, and 0.721 for Scheduling.

For MATSP, table 3.1 demonstrates that Unit Propagation alone, as well as combined
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(a) MATSP Validation Loss (Log Scale) (b) Scheduling Validation Loss

Figure 3.3: LPA Combination Tests on a Small Dataset

pm/nm au sc up cr
pm/nm 1.74× 10−4 3.13× 10−4 5.58× 10−4 1.83× 10−4 5.03× 10−4

au 3.13× 10−4 1.72× 10−4 1.25× 10−4 5.71× 10−5 1.02× 10−4

sc 5.58× 10−4 1.25× 10−4 2.01× 10−4 3.44× 10−4 2.07× 10−4

up 1.83× 10−4 5.71× 10−5 3.44× 10−4 9.61× 10−5 2.81× 10−4

cr 5.03× 10−4 1.02× 10−4 2.07× 10−4 2.81× 10−4 5.05× 10−4

Table 3.1: MATSP transformation combinations on a small dataset. Each cell represents
the validation loss on the final epoch of training. Green cells have a lower final validation
loss than the baseline of 9.78× 10−5.

pm/nm au sc up cr
pm/nm 0.741 0.721 0.731 0.727 0.728

au 0.721 0.713 0.717 0.704 0.719
sc 0.731 0.717 0.719 0.701 0.714
up 0.727 0.704 0.701 0.717 0.704
cr 0.728 0.719 0.714 0.704 0.718

Table 3.2: Scheduling transformation combinations on a small dataset. Each cell represents
the validation loss on the final epoch of training. Green cells have a lower final validation
loss than the baseline of 0.721.

with Add Unit Literal, were able to have a lower final epoch validation loss compared to the
baseline metric. For Scheduling, table 3.2 demonstrates that the majority of transformations
had a lower validation loss compared to the baseline metric. Positive/Scalar Multiplication
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seemed to perform equally or slightly worse across the board.
Hence, we will use Unit Propagation and Add Unit Literal for the experiments in chapter

4.

3.5 Learning Problem Formulation

Our downstream task for evaluating the performance of our model is to find an optimal
assignment of variable values for a given OMT problem. Additionally, we would like to
demonstrate that OMT problems and their transformations can be embedded into a lower-
dimensional space through contrastive learning, such that problems of the same class are
close to each other, while problems of different classes are further apart.

Given a graph encoding G, we would like to learn a function f that estimates a probability
distribution over all potential values of each variable. Since we are in the realm of LIA
problems, we treat integer variable values as independent classes, and train the model to
classify each variable. We use a GCN to accomplish the goal of optimal assignments, as well
as effective contrastive embeddings. Our GCN learns embeddings for each variable, and then
splits into two different heads: one head to produce a value for each variable, and one head
to output a pooled embedding over all of the variables, as detailed in section 3.4. We then
optimize the following loss function:

L = −
m∑
i=1

x∗
i log p(xi|G)︸ ︷︷ ︸

Cross-entropy loss

−EX

[
log

fk(xt+k, ct)∑
xj∈X fk(xj, ct)

]
︸ ︷︷ ︸

InfoNCE loss

(3.4)

The first term represents the cross-entropy loss of our variable value prediction, where
x∗
i is the optimal assignment of the i -th variable and log p(xi|G) is the probability of the

assignment being generated by the function f. The second term represents the InfoNCE
loss as detailed in section 3.4. Combined, the goal of this loss function is to improve upon
the first goal of predicting optimal assignments by optimizing over our contrastive variable
embeddings.
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Chapter 4

Experiments and Results

For each problem, we compare the training loss, validation loss, and downstream optimal
variable assignment prediction accuracy between the baseline model and the contrastive
model. We run experiments on subsets of our data based on the problem: the number of
waypoints per cluster for MATSP, and the number of tasks for Scheduling.

4.1 Multi-Agent Traveling Salesman Problem

We find that the training performance is roughly equal between both approaches as shown
in table 4.1, while the downstream optimal variable assignment accuracies improve upon
the baseline using the contrastive learning approach as shown in table 4.2. The downstream
optimal variable assignment accuracies improve by up to 5%, such as in the 4 and 5 waypoints
per cluster cases.

# Waypoints
Per Cluster

Baseline
Training

Loss

Baseline
Validation

Loss

Contrastive
Training

Loss

Contrastive
Validation

Loss

3 0.2334 0.2282 0.2283 0.2278
4 0.2199 0.2193 0.2259 0.2265
5 0.2344 0.2182 0.2378 0.2354
6 0.2697 0.2564 0.2068 0.2106
7 0.1939 0.1939 0.1946 0.1955

Table 4.1: Comparison of MATSP training performance based on the number of waypoints
per cluster.
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# Waypoints Per Cluster Baseline Accuracy Contrastive Accuracy

3 89.78% 91.24%
4 87.2% 92.42%
5 88.04% 93.36%
6 89.43% 92.38%
7 91.68% 94.14%

Table 4.2: Comparison of MATSP downstream optimal variable prediction accuracy based
on the number of waypoints per cluster.

4.2 Scheduling Problem

We find that the training performance is roughly equal between both approaches as shown
in table 4.3, while the downstream optimal variable assignment accuracies improve upon
the baseline in most cases using the contrastive learning approach, aside from the 12 tasks
experiment as shown in table 4.4. The downstream optimal variable assignment accuracies
improve by up to 6.25%, such as in the 5 tasks case. Improving the accuracy for 11 tasks is
significant to note, as state-of-the-art approaches do not trivially find optimal solutions for
this setup.

Number of
Tasks

Baseline
Training

Loss

Baseline
Validation

Loss

Contrastive
Training

Loss

Contrastive
Validation

Loss

5 0.5425 0.4079 0.5475 0.3892
6 0.5922 0.5091 0.5818 0.5073
7 0.597 0.5413 0.5937 0.5407
8 0.6768 0.6232 0.6783 0.6259
9 0.7052 0.6417 0.7101 0.649
10 0.7835 0.7096 0.7761 0.7138
11 0.789 0.7256 0.8113 0.7347
12 0.781 0.7826 0.7838 0.7882

Table 4.3: Comparison of Scheduling training performance based on the number of tasks.
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Number of Tasks Baseline Accuracy Contrastive Accuracy

5 68.75% 75%
6 68.42% 73.68%
7 63.64% 68.18%
8 64% 68%
9 60.71% 64.29%
10 61.29% 64.52%
11 58.82% 61.76%
12 62.16% 62.16%

Table 4.4: Comparison of Scheduling downstream optimal variable prediction accuracy based
on the number of tasks.
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Chapter 5

Conclusion and Future Work

Our work presents a contrastive learning-based approach for combinatorial optimization,
and in the context of downstream optimal variable assignment, demonstrates an over 6%
accuracy increase for a Scheduling problem benchmark, and an over 5% accuracy increase
for a Multi-Agent Traveling Salesman problem benchmark, when compared to a baseline
that does not utilize this approach. We demonstrate that contrastive learning is able to
learn variable embeddings on a per-problem basis, hence improving our model’s accuracy
to predict optimal variable assignments for OMT problems. We contribute benchmarks of
problem families including Scheduling and Multi-Agent Traveling Salesman for evaluating
learning-based OMT solvers.

Future work may include modifying the contrastive learning architecture to allow for
multiple transformations to be compared to each other, as opposed to only comparing the
embeddings of a problem and its respective transformation. Such an approach may reduce
the contrastive loss by allowing the model to learn more complex relationships between lower-
dimensional embeddings of equivalent OMT problem transformations, and hence allow better
embeddings for each variable to be learned. Additionally, future work may include exploring
more complex transformations that maintain satisfiability and optimality.

Furthermore, different neural network architectures, such as Graph Attention Networks
(GATs) [22], can be explored with the goal of producing better variable embeddings. In
GATs, each node learns to assign attention weights to its neighbors based on their represen-
tations, and then combines these representations by weighting them with attention scores.
This process is repeated over multiple layers, allowing the network to learn increasingly
complex patterns in the graph. GATs have been shown to achieve state-of-the-art perfor-
mance on various benchmarks, and may further improve the performance of the benchmarks
presented in this paper.
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