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Figure 1: Fitting subdivision surface to spatial-temporal sequences

ABSTRACT

In this paper we present a powerful differentiable surface fitting tech-
nique to derive a compact surface representation for a given dense
point cloud or mesh, with application in the domains of graphics and
CAD/CAM. We have chosen the Loop subdivision surface, which
in the limit yields the smooth surface underlying the point cloud,
and can handle complex surface topology better than other popular
compact representations, such as NURBS. The principal idea is to
fit the Loop subdivision surface not directly to the point cloud, but
to the IMLS (implicit moving least squares) surface defined over the
point cloud. As both Loop subdivision and IMLS have analytical ex-
pressions, we are able to formulate the problem as an unconstrained
minimization problem of a completely differentiable function that
can be solved with standard numerical solvers. Differentiability
enables us to integrate the subdivision surface into any deep learning
method for point clouds or meshes. We demonstrate the versatil-
ity and potential of this approach by using it in conjunction with
a differentiable renderer to robustly reconstruct compact surface
representations of spatial-temporal sequences of dense meshes.

1 INTRODUCTION

Three-dimensional geometric data has many representations depend-
ing on the context in which it is used. One such classification is
by the number of parameters or control variables needed to define
a 3D surface. One extreme case would be to use raw geometric
data obtained from 3D acquisition in the wild using 3D sensors or
photogrammetric techniques; this is usually represented as a large
and unstructured point cloud, where the sampled points (parameters)
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are noisy and the geometry is often incomplete. At the other end
of the spectrum, for simulation, CAD, shape optimization, anima-
tion, and other modeling and analysis applications, a compact and
precise representation is desired; examples are implicit algebraic
surfaces [3], bi-parametric surfaces using splines and NURBS [4,40]
or subdivision surfaces [11,37]. These compact surface representa-
tions use a relatively small number of control variables which are
adjusted to yield a desired surface. In between these two extremes
are a wide range of representations, from point-based surface defini-
tions such as Moving Least Squares (MLS) surfaces, signed distance
functions to standard polygonal meshes endowed with additional
properties such as texture, normal and displacement maps. Conver-
sion between these various representations is fundamental to any
geometric processing pipeline, and many have been developed over
the years [6].

Among all these representations, subdivision surfaces are par-
ticularly appealing to many high level applications such as surface
optimization and analysis, simulation, modeling, and animation [11]:
not only they are very compact, they do not require explicit NURBS
patch decomposition and alignment as NURBS do [44], which
makes them ideal to use for fitting more complex surface topol-
ogy. A subdivision surface is represented by a compact polygonal
mesh which gets subdivided by introducing new vertices, using,
for example, Loop subdivision formulation [47]; in the limit, this
subdivision process leads to a smooth shape. With the ubiquity of
colour and depth sensing, dense point clouds with very large number
of points have become very easy to acquire, but are difficult to use
for a number of reasons, including size, ambiguity of the underlying
surface, shape editing difficulties, etc. Fitting a compact representa-
tion, such as a subdivision surface, would address a number of these
problems.

Fitting subdivision surfaces to point clouds has major challenges.
For a start, they require an initial control mesh that is capable of
representing the desired surface topology in the limit. This is difficult
to derive and consequently it is usually guessed, unless a mesh
is extracted by other means. Existing fitting methods [9, 13, 33]
rely on an optimization function that uses iterative point-to-point



Figure 2: Comparison between the result of T-shirt data fitting. Brown
color is the target. Green (a) using the geometric IMLS fit. Red (b)
combining the geometric IMLS fit together with the image loss from
the differential renderer. Note the drift in (a) at the bottom of the
T-Shirt.

correspondences. This optimization function is non-differentiable,
is not robust to noise and outliers, and also tends to fail if the initial
guess of the control mesh is too far from the solution, especially
in the tangential direction (see Figure 2). The reason is that this
point-to-point fitting strategy is not only non-differentiable but also
rigid and does not easily allow for optimization along the tangent
space. Optimization along the tangent space is particularly important
especially when fitting to spatial-temporal data where we must fit a
fixed topology template to spatially and temporally changing point
clouds, which are extensively used in computer animation [34,41].

Some of these challenges conceptually stem simply from the fact
that the gap between these representations is too large: whereas
the subdivision surface represents a smooth continuous surface in a
very compact way, the point cloud is only a collection of points and
associated surface normals, with no other ordering or structure.

Our principal idea in this work is to help the fitting by bridging
this gap using an intermediate representation such as the implicit
moving least square (IMLS) [24] surface. Thus, instead of fitting
the subdivision surface directly to the point cloud, we fit it to the
IMLS surface defined over the point cloud. This bridging approach
has several significant advantages. The IMLS surface plays the
important role of an initial fairing operator over the point cloud.
It defines an elegant and robust analytical distance function that
replaces the traditional point to point distance used in previous
methods, and one that naturally allows for sliding in the tangent
space, making it ideal for both static and spatial-temporal surface
fitting.

Our major contribution in this work is a complete pipeline for
fitting a Loop subdivision surface to a dense point cloud or mesh
using the IMLS surface as an intermediate representation. As both
the Loop subdivision surface as well as the IMLS have analytical ex-
pressions, we are able to formulate the problem as an unconstrained
minimization problem of a completely differentiable function that
can be solved with standard numerical solvers. Furthermore, this
differentiable surface fitting provides us with unique capability to
integrate the compact subdivision surface representation of a point
cloud into any deep learning method. We demonstrate the versatility
and potential of this approach by using it in conjunction with a dif-
ferentiable renderer to robustly reconstruct compact representations
of spatial-temporal surface sequences.

2 RELATED WORK

The subdivision process defines a smooth curve or surface as the
limit of a sequence of mesh refinement steps starting from a control
mesh. This makes the final surface to be controlled by the small
number of control vertices in the starting mesh, thus resulting in a
very compact surface representation. Several subdivision schemes
have been developed over the years and widely used in different

applications [8,11,12,30,31]. In particular, Loop subdivision is
a subdivision scheme based on quartic box spline on triangular
meshes [31]. It is guaranteed that, in the limit, the subdivision
surface has C? continuity in regular vertices (degree 6) and C! conti-
nuity in irregular vertices. In 1998, Jos Stam developed an analytical
evaluation method of Loop subdivision [47], which was based on
conversion from Box splines to B-Nets [25]. This analytical and
differentiable evaluation makes this scheme ideal for differentiable
shape optimization and we will use it in our novel subdivision fitting
pipeline.

2.1 Fitting subdivision surface to target shape

It is a common task to fit a smooth surface representation to a target
shape in computer graphics. One typical solution for this task is to fit
a piecewise smooth surface to the target, such as a B-spline surface
or a subdivision surface. Considerable work has been done on fitting
B-splines to point clouds by squared distance minimization [55,57].
Since our focus in this work is on fitting subdivision surfaces, we
will limit our discussion of related work primarily to subdivision
surface fitting.

Hoppe et al. [16] and Lavoue et al. [27] fit subdivision surfaces
to CAD models by minimizing the squared distance energy. Litke
et al. [29] used quasi-interpolation to fit Catmull-Clark subdivision
surface to a given shape within a prescribed tolerance. Ma et al. [32]
described a method to fit a Loop subdivision surface to a dense
triangular mesh by linear least square fitting.

The geometric data captured in the wild is almost always in the
form of an unstructured point cloud, with noise, outliers, and missing
geometry. A large body of work has focused on fitting subdivision
surfaces to point clouds. data [9, 13,33,34]. Cheng et al. [9] fit
the subdivision surface by iteratively minimizing a quadratic ap-
proximant of the squared distance function of a target shape. Their
approach first samples points on the Loop subdivision surface based
on a method by Stam [47]. Then, they solve a linear system of the
control mesh variables to minimize the squared distance between the
sample points and target shape. Marinov et al. [33] introduced an al-
gorithm based on exact closest point search on Loop surfaces which
combines Newton iteration and non-linear minimization. In more
recent research, Esteller ez al. [13] used second-order approximation
of the squared distance function and the tangent space alignment
to achieve robust fitting of subdivision surface for shape analysis.
Similar to methods in [9] and [33], Esteller ez al. also sampled the
points on the subdivision surface to establish the error function —
error between the subdivision surface and the target shape. These
methods need to solve a sequence of constrained least-squares prob-
lems to minimize the error function. The method in [17] could be
optimized by gradient-descent method. However, instead of fitting
the limit surface, they could only fit a specific level of subdivision
surface to the target shape. In contrast to many of these methods, our
proposed solution frames the fitting problem as an optimization of a
completely differentiable function that can be solved using standard
differentiable optimization methods.

Some learning-based methods to fit a surface to a target shape
have also been previously proposed. Most of these approaches fit
parametric polynomial surfaces of some form to point clouds. Yumer
and Kara used a neural network to generate NURBS from input point
sets [56]. DeepFit incorporated a neural network to learn point-wise
weights for weighted least squares polynomial surface fitting [5].
Sharma et al. described a method using neural networks to fit B-
spline patches to input point cloud data [44]. Our fitting method
is not deep learning based; however, being differentiable, it can be
used to bridge the gap between deep learning-based methods in a
3D domain and traditional subdivision surface techniques.



Figure 3: Overview of fitting subdivision surface to a static point cloud.

2.2 Spatio-temporal surface reconstruction

Reconstructing representations for time-varying 3D data is a com-
mon problem in graphics animation and simulation. A common
approach is to fit a template mesh to the consecutive time-series
point cloud or mesh. This is used to reconstruct coherent dynamic
geometry from time-varying point clouds captured by real-time 3D
scanning techniques. One widely used method is to reconstruct
meshes for all frames first and then to fit a template mesh to all
reconstructed meshes [2, 18,49, 50]. These methods always need
additional markers or landmarks which must be specified by the
users. Another method is to generate a template from first frame
and then fit the template directly to the remaining frames [45,51].
In [51], Sussmuth et al. followed the Multi-level Partition of Unity
(MPU) Implicits approach to reconstruct the implicit function that
approximates the time-varying surface defined by the time-varying
point cloud and used the As-Rigid-As-Possible constraint to the
moving of the points. When comparing this approach to our method,
1) it does not fit a subdivision surface to the 4D data and thus the
final resulting surface was not smooth; 2) unlike our distance field
energy, they used an implicit function to represent the point cloud
surface, which must be optimized by solving a sequence of least
squares problems.

A few other methods perform template-free reconstruction [36,
41,43]. In [36], Mitra et al. directly compute the motion of the
scanned object in all frames and estimate the time-deforming object
by kinematic properties. In [43], Sharf et al. used a space-time solid
incompressible flow prior to reconstruct moving and deforming ob-
jects from point data. In [41] a template is constructed gradually
by mapping consecutive frames in a pyramidal fashion. In [54],
Wand et al. reconstructed 3D scanner data by pairwise scanning
alignment. Tevs et al. [52] introduced Animation Cartography, an
intrinsic reconstruction of shape and motion, based on robust estima-
tion of dense correspondences under topological noise and landmark
tracking in temporally coherent and incoherent data. In addition,
there are also some real-time reconstruction methods for general
objects, such as [28,38,58]. Our method described next is distinct
from all the above, specifically in our formulation using the IMLS
surface as an intermediate for fitting.

3 METHOD OVERVIEW

The input to our pipeline is either a static target shape in the form
of a point cloud P or a temporal sequence of target shapes S’ in
the form of a set of triangular meshes. We note that we do not
require the triangular meshes to have the same connectivity. For the
spatial-temporal case. we employ meshes as target shapes instead of
point clouds only because there are currently no available reliable

Figure 4: Overview of fitting subdivision surfaces to a spatial-temporal
sequence by combining Implicit Moving Least Squares (IMLS) with
differential rendering (DR) optimization

differentiable renderers for point clouds. And we need differentiable
rendering since we want to combine it with our differentiable fit-
ting to reconstruct spatial-temporal surfaces. But we would like to
emphasize here that our method poses no conceptual limitations for
using point clouds even for the spatial-temporal case.

The output of our method is a subdivision surface defined by a
control mesh M°. For the spatial-temporal fitting, the vertices of M
will have different 3D positions in each frame. The overview of our
method is presented in Figures 3 and 4. From the point cloud we
first create an initial control mesh. We optimize the vertex positions
of this control mesh by minimizing the distance between the subdivi-
sion surface defined by this control mesh and the underlying IMLS
surface defined by the target point cloud.

Similar to previous work, we compute this distance by sampling
points on the subdivision surface, but in our formulation the sampled
points are expressed as a differentiable analytical function of the
control mesh and the distance function used is also a differentiable
analytical function. This results in an unconstrained optimization
problem of a differentiable analytical function that can be solved
efficiently using standard off the shelf numerical methods. For the
spatial-temporal case, we fit the subdivision surface defined by the
control mesh iteratively to the temporally changing sequence of
shapes, using the solution from one frame as a initial guess for the
subsequent frame. Although this approach is popular and widely
used [34], it often fails due to accumulated drift arising from the
inherently local nature of the geometric distance. Consequently,
additional information is used to correct it, usually either in the
form of boundary constraints [13] or other visual queues such as
optical flow [7,41]. Recently, with the development of differentiable
renderers, rendered image difference metrics can be used to optimize
shape [19]. Adding the image difference loss from the differential
renderer complements our pipeline, adding a global structure to our
local geometric fit thus eliminating the drift and yielding a more
accurate fit.

3.1 Loop subdivision

The first step in our process is to create the control mesh for the
Loop subdivision surface M°(V?, E0). Although the position of the
template mesh vertices will be determined by our optimization, the
number of vertices as well as the topology of this mesh must be
determined a priori. For this, we compute an initial triangular mesh
that fits the point cloud using existing meshing methods; we used
Screened Poisson [22] method in MeshLab [10]. We then simplify
this triangulation using quadratic edge collapse [14] until we obtain
the desired number of vertices requested by the user.

Although Loop subdivision can be evaluated iteratively, for op-
timization purposes it is desirable to have an analytical expression
of the surface. Jos Stam [47] derived an analytical evaluation of the
Loop subdivision surface of any point on the control mesh, but the



Figure 5: A schematic view of our optimization process. (a) Control
mesh (M°). (b) Control mesh after one level of subdivision (M'). The
vertices of this mesh are the Loop subdivision control points. (c) Loop
subdivision surface. (d) Target point cloud. We optimize for M° by
using an IMLS fitted to the point cloud and an ARAP regularizer on
the control mesh M°.

scheme only works on the condition that no two adjacent vertices
on the control mesh are extraordinary vertices (i.e. degree different
from six). As it is very difficult to guarantee this condition especially
when the control mesh has thousands of vertices, a solution is to
apply just the first subdivision step obtaining a mesh M' (V! E1). It
can be easily proven that M! satisfies the above condition, however
the number of vertices of M! are nearly four times as many as in
MO making the representation far more verbose than desirable. A
key observation here is that even though the number of vertices of
the mesh obtained after one level of subdivision M! is much larger,
the added vertices can be computed analytically from the original
mesh M? thus maintaining the same number of degrees of freedom
in controlling the subdivision surface. Therefore, our control mesh
for analytical evaluation of the subdivision surface is M!, but we
only optimize for the vertices of M. This process is illustrated
in Figure 5. Given a point Q on the control mesh M, in order to
compute its position on the final smooth 3D surface we first compute
its position Q on M! by using the Loop subdivision mask [31]. Then
after adjusting the triangle index and getting new barycentric coor-
dinates we follow it by computing the position on the limit surface
as per Stam [47]. This operator L(-) that maps the point 0 on the
control mesh to the point Q onto the final subdivision surface is both
analytical and differentiable.

4 SUBDIVISION SURFACE FITTING
4.1 Fitting a static model

Given a point cloud P = {P;} with associated normals N = {N;},
we fit our template control mesh M?(V9 E®) using the following
optimization:

min Egiy (LM, 0)) + - Ereg(M°, M) M

where Eyi(-) is the IMLS fit energy [39] (eq. 4), L(-) is the 3D
position on the subdivision surface of a set of points Q sampled from
the control mesh, M) is the undeformed control mesh, EReg(+) is the
ARAP regularizer [46] (eq. 5) and « is the weight of the regularizer
term. The overview of the fitting model is shown in Figure 3.

IMLS fit energy Oztireli et al. introduced an Implicit Moving
Least Squares(IMLS) surface in [39], which gave us a definition for
the point cloud surface
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Figure 6: Stanford Bunny [48]:(a) Point cloud with 72,027 vertices. (b)
Optimized control mesh with 4667 vertices. (c) Subdivision surface of
(b). (d) Screened Poisson reconstructed mesh with 155,008 vertices.
(e) Optimized control mesh with 314 vertices. (f) Subdivision surface
of (e).

where ¢ is a locally supported kernel function that vanishes beyond
the cut-off distance h. h is the radius we search for neighbor points
and needs to be manually selected.

o(r) = (1=3)" 3

‘We can use the implicit surface definition in equation 2 to derive a
fit energy [37]
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where P, and Ny are the 3D positions and normals of points in the
input point cloud (Figure 5d) and Q; are points on the subdivision
surface sampled from the control mesh (Figure 5a-c). For simplicity,
in all our examples we only use the vertices of the control mesh, but
we analyse the pros and cons of using more sampled points in the
following sections and illustrated in figure 9.

Regularizer We experimented with several reguralizers and the
As-Rigid-As-Possible (ARAP) regularizer [46] yields the best re-
sults. The ARAP regularizer does not penalize any isometric defor-
mations allowing local rotations, but it penalizes local stretch. More
specifically:

Eng=Y, Y wii (W =V))=R(VP=VI)?, (5
i jeN(i)
where N (i) is the set of vertices adjacent to V, V? is the initial vertex
position and R; is the local estimation rotation matrix for the one ring
of vertices around vertex i. w;; is the standard cotangent Laplacian
weight [35]. At every iteration R; can be computed analytically
using SVD decomposition on the local co-variance matrix [53].
Optimization The optimization of the control mesh vertex posi-
tions V¥ is a non-linear optimization problem, which can be solved
by using a non-linear solver, such as Google Ceres solver [1]. How-
ever, it will be slow if the size of the control mesh is large (i.e.
thousands of vertices). In that case, we use gradient descent method,
which is widely used in learning-based problem optimization.

4.2 Fitting a sptial-temporal model

Differentiable rendering The emergence of differentiable rendering
(DR) [26,42] paved the way for a new set of tools in 2D to 3D sur-
face reconstruction. It allows 3D shape optimization and modeling
from rendered 2D images [19-21,42]. In image space, DR based



Figure 7: Stanford Lucy [48]:(a) Point cloud with 49,987 vertices. (b)
Optimized control mesh with 8002 vertices. (c) Subdivision surface of
(b). (d) Screened Poisson reconstructed mesh with 262,909 vertices.
(e) Optimized control mesh with 20,002 vertices. (f) Subdivision
surface of (e).

optimization can give us a global loss energy when fitting to a mesh,
which is complementary to our local geometric IMLS loss. Inspired
by this, we introduce a new pipeline for fitting subdivision surface
to spatial-temporal (4D) mesh data by combining our method with
DR.

Optimization Similar to the static case, given a control mesh
MO and a sequence of spatial-temporal target meshes S', we are
sequentially fitting the control mesh to each target mesh, using the
solution of the current frame as an initial guess for the next one.
Optimizing using only the geometric energy functionals described
above leads to temporal drift as it can be seen in Figure 2 (a). Instead
we add a image loss term that provides a global stabilization of the
optimization, eliminating the drift as can be seen in Figure 2 (b).

In every iteration’s forward pass, we use the DR to render the
target mesh in different camera positions k£ which give us target
images I% ArceT At same time, we use the same DR to render the
limit surface of the template mesh which gives us predicted images
IIIE.RED in same camera positions as used for rendering the target
images. Suppose the number of pixels for rendered images is N, we
compute image 108$ lipqge by

(I;CJRED — I%"ARGET)2
limage = Z N . (6)
k

As for the geometric loss, we compute it by the same method for
computing energy provided in section 3. Thus, the total 10ss [, is

ltotul = Edist (L(MO)7 Q) +o- Ereg(MovMO) + B : limage- (7)

In our implementation we use the DR available in PyTorch3D [42]
and for the backward pass, we use the gradient descent method,
Adam optimizer [23], to optimize the control mesh.

Figure 8: Kinect scanned koala:(a) Point cloud with 1,018,126 vertices.
(b) Screened Poisson reconstructed mesh with 276,529 vertices. (c)
Optimized control mesh with 2,465 vertices. (d) Subdivision surface
of (c).

Figure 9: Comparison between (a) using only the control mesh ver-
tices to compute the IMLS fit, and (b) using the vertices after one level
of subdivision.

5 RESULTS AND DISCUSSION
5.1 Static surface fitting

We used our method to fit a number of synthetic models (the Stan-
ford Bunny and Lucy, see Figures 6 and 7 as well as a point cloud
acquired using the Microsoft Azure Kinect device (a Koala toy)
Figure 8 The starting searching radius Ao and weight of ARAP regu-
larizer @ were selected manually. We scaled the point clouds to a
unit box before fitting, to increase the numerical stability of the opti-
mization. For the Stanford Bunny and Lucy, we used hg = 0.0005.
For the toy Koala, we used hy = 0.05. As for the «, it depends on
the noise level of the point cloud. When the point cloud is noisy,
you need a bigger weight, such as 0.1. When the point cloud is
very clean, « should be set to very small, such as 0.01. For the
Stanford Bunny and Lucy, we set oc = 0.01. For the toy Koala, we
set oo =0.1.

For the bunny(Figure 6) the original point cloud has 72,027 ver-
tices and the reconstructed mesh using Screened Poisson [22] has
155,008 vertices. We demonstrate two reconstructions. The first
one with a template mesh of 4667 vertices (Figure 6 (c)) that shows
no visual difference to the original, but uses only around 3% of the
Screened Poisson reconstruction. The second one uses only 314
vertices, or only 0.2% of the Screened Poisson reconstruction (Fig-
ure 6 (f)). While a number of details are lost, the main shape is still
reconstructed fairly well.

For the more detailed and complicated Lucy model (Figure 7),
with only 3% of the Screened Poisson reconstruction vertices, we
could retain most of the intricate objects and folds.

In Figure 8 we show the reconstruction of a koala toy. The
physical scanned model is furry so while the original reconstruction
is very detailed it also contained a lot of noise. With only 0.2%
of the original number of vertices and 0.8% of Screened Poisson
reconstruction vertices, we provide a reconstruction that retains the
shape and many of the important details.

The performance of the IMLS distance depends on the number



Figure 10: Fitting result for t-shirt simulation: (a) Optimized control mesh of using both IMLS and DR. (b) Simulation result from Blender [15]. (c)
Fitting result by only IMLS energy(section 3). (d) Fitting result by combining IMLS and DR(section 4.2). (e) Fitting result by only DR.

Figure 11: Fitting result for real scanned puppet. (a) Template control mesh with 1,252 vertices. (b) Reconstructed mesh with 123,234 vertices for
start frame. (c)Fitted subdivision surface using IMLS energy(section 3 for start frame. (d) Fitted subdivision surface using combination of IMLS
energy and DR(section 4.2) for start frame. (e) Fitting result only using DR for start frame. (f) Reconstructed mesh with 123,234 vertices for end
frame. (g) Fitted subdivision surface using IMLS energy for end frame. (h) Fitted subdivision surface using combination of IMLS energy and DR for

end frame. (i) Fitting result only using DR for end frame.

of sampled points on the subdivision surface that we use in the
computation. By default in all our examples we only use the points

in the control mesh. However, it is possible to select more samples.

Figure 9 shows this trade off. Figure 9 (a) is the reconstruction of

the Lucy model using only the vertices in the original control mesh.

Figure 9 (b) is the reconstruction using the vertices obtained after
one level of subdivision (i.e. four times more). The result is slightly
improved, some areas contain more detail, but the optimization takes
about three times as long.

5.2 Spatial-temporal fitting

We tested our spatial-temporal method on two sequences: a synthetic
sequence generated using a cloth simulation of a T-Shirt in Blender
[15], and a spatial-temporal capture of a cow toy using a multi-view
stereo setup. Both sequences have 30 frames and in both cases we
made a template from the first frame. For the cloth sequence we used
for simulation a mesh of 2000 vertices that we randomly re-sampled

in every frame to simulate a real capture to 100,000 vertices (or 2%
of the total vertices). The template mesh has 2046 vertices, For the
puppet sequence the target mesh has around 123,000 vertices and
the template mesh of 1252 vertices (1% of the total vertices).

The settings for the DR are adapted from the PyTorch3D [42] tuto-
rial. We used Soft Silhouette shader whose image size is 256 x 256,
blur radius is log(1/(1e™* — 1) % le™*) and faces per pixel is 100.
When rendering the target shape, we had 20 different camera views
in total. However, in every iteration, we only randomly select 2
views to render the images of template to reduce unnecessary ren-
dering time. The T-Shirt sequence has a lot of geometric details
that is well preserved in the reconstruction. In contrast, the puppet
sequence has less detail and in some cases some reconstruction arti-
facts (see Figure 11 (f)) stay fixed in the reconstruction due to the
continuity properties of the subdivision surfaces.

In Figures 10 and 11 we compare the IMLS fitting scheme with
the DR fitting scheme. Using the DR fitting scheme by itself results



Figure 12: Hausdorff distance between fitting result and target
shape(w.r.t bounding box diagonal)

Figure 13: Running time (in seconds) for fitting subdivision surface
to static model and fitting subdivision surface to spatial-temporal
sequence(30 frames)

in the loss of a lot of details: Figures 10 (e), 11 (e), (i) This is not un-
expected as we only use the silhouette loss. However, the geometric
detail between IMLS and IMLS+DR is very similar (Figures 10 (c),
(d), Figures 11 (c), (d), Figures 11 (g), (h)). The main gain from
adding the DR term is the reduced drift (Figure 2). We also perform
a quantitative evaluation using the Hausdorff distance between the
target mesh and the subdivision surface. For the subdivision surface,
we computed the Hausdorff distance using 3 iterations of subdivi-
sion. Results are presented in Figure 12. The combination of IMLS
+ DR largely outperforms either of them used separately. Figure 13
shows the execution time of our method. The code has been run on
a computer with a CPU 19 12900 and GPU is rtx3060 ti.

6 CONCLUSION, LIMITATIONS AND FUTURE WORK

In this paper, we present a novel differentiable method to fit a Loop
subdivision surface to a point cloud. Because our fitting method is
differentiable, it can be easily integrated into deep learning-based
methods for different applications. We demonstrate our method
on several static point clouds as well as spatial-temporal shape se-
quences. The results show that our method does well in preserving
surface detail while still being very compact, requiring only a small
fraction (between 1% and 3%) of the data, in comparison to recon-
struction methods such as Screened Poisson.

However, our method has some limitations. The spatial-temporal
reconstruction relies on a differential renderer and the ones currently
available only support mesh format. Therefore, for the spatial-
temporal examples, we had to reconstruct a triangular mesh from
each static point cloud. Since the IMLS energy is based on nearest
neighbor search, the optimization may fail when the distance be-
tween template control mesh and the target shape is too large. Thus,
especially in the case of spatial-temporal examples, the frame-to-
frame motion of the data must be relatively small.

Since we focused on geometric fitting, we selected an image loss
based on silhouette only. In the future, it would be of interest to
explore other image losses and point based differential renderers. In

the future, we can also improve our method by using more accurate
implicit surface reconstruction techniques from point-clouds such as
the one proposed by Liu et al. [30].
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