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Abstract

Ising machines have generated much excitement in recent years due to their promise for solving the Ising
problem, a graph-based hard combinatorial optimization problem. In particular, Oscillator-based Ising
Machines (OIMs), which consist of resistively-coupled nonlinear oscillators, are a promising on-chip iteration
of Ising Machines. The system dynamics, represented as differential equations in oscillator phase, admit a
Lyapunov function, i.e., a function with a non-positive time derivative. This Lyapunov function, at stable
equilibria, matches the Ising Hamiltonian, the discrete cost function of the Ising problem. However, there are
both practical barriers to large-scale on-chip implementation and many unanswered fundamental theoretical
questions.

First, achieving physical all-to-all connectivity in integrated circuit (IC) implementations of large, densely-
connected Ising machines remains a key challenge. We present a novel approach, DaS, that uses low-rank
decomposition to achieve effectively-dense Ising connectivity using only sparsely interconnected hardware.
The innovation consists of two components. First, we use the SVD to find a low-rank approximation of the
Ising coupling matrix while maintaining very high accuracy. This decomposition requires substantially fewer
nonzeros to represent the dense Ising coupling matrix. Second, we develop a method to translate the low-rank
decomposition to a hardware implementation that uses only sparse resistive interconnections. We validate
DaS on the MU-MIMO detection problem, important in modern telecommunications. Our results indicate
that as problem sizes scale, DaS can achieve dense Ising coupling using only 5%-20% of the resistors needed
for brute-force dense connections (which would be physically infeasible in ICs). we also show the impact
of this sparsification on achieved minimization using simulated annealing, a widely-used Ising solver. We
achieve nearly 90% sparsity without degrading solution quality at all, even with loose thresholds on the
approximation error of the sparsification process.

Second, it is not well-understood why OIMs perform well on certain problems and don’t get stuck in local
minima. In particular, parameter cycling, i.e., gradually increasing the value of a particular OIM parameter
over during the solution process, can help the system reach global minima. Past work on Ising machines
indicates that traversal of bifurcations, or points where the number of solutions to a system changes, is
essential to their Hamiltonian minimization properties. We explore bifurcations for OIMs with two or three
oscillators, both analytically and using numerical methods. In addition, we draw connections between the
landscape of the Lyapunov function and the potential of OIMs to find global Ising Hamiltonian minima, using
a combination of theoretical analysis, numerical simulation, and Monte Carlo methods.
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1 Introduction and Background
Over the last decade or so, a new and exciting technology called Ising machines has arisen for solving

hard combinatorial optimization (CO) problems. CO problems [1] are important in a wide variety of practical
applications, including protein folding, optimal logistics for healthcare/military operations/transportation,
chip routing, cyber-security and cryptography, secure grids and communication networks, autonomous
vehicles and robotics, etc.. These problems are generally very difficult to solve, e.g., they are typically
NP-hard/complete [2]. It has been shown that these problems can be mapped onto an equivalent NP-hard
CO problem known as the Ising problem [3]. Ising machines, which use analog hardware to solve the Ising
problem, show great promise for outperforming digital and software techniques for solving CO problems
[4–13]. The Ising problem is described using a weighted, undirected graph where the nodes are called spins.
As explained in Section 1.1, solving this problem corresponds to finding spin values that minimize a quantity
known as the Ising Hamiltonian.

1.1 The Ising Problem

The Ising problem involves a weighted, undirected graph of n spin nodes, where there are no self-loops.
The value of spin i is denoted si, and the weight between spins i and j is Ji j. s⃗ is the vector of spin values and
J is the symmetric weighted adjacency matrix of the Ising graph, known as the Ising coupling matrix.

The objective of the Ising problem is to minimize the Ising Hamiltonian,

H (⃗s) =−1
2

n

∑
i=1

∑
j ̸=i

Ji jsis j, (1)

where the spins are restricted to be either +1 or −1 (or, in shorthand, ∈ {±1}).

1.2 Oscillator-based Ising Machines

The focus of this report is Oscillator-based Ising Machines (OIMs) [9–11], which use networks of
resistively-coupled nonlinear electronic oscillators to minimize the Ising Hamiltonian. This section summa-
rizes the relevant aspects of [9] on the dynamics of OIMs.

+

−
v j

i j
+

−
vi

ii
Ri j

Fig. 1: Example of an Ising Machine connectivity mesh.

1.2.1 High-level Circuit Description

On a network level, OIMs are resistively-connected nonlinear oscillator, as pictured in Figure 1. Each
voltage source represents a spin node, or oscillator; the Ising weights are encoded in the conductances
Ji j ∝

1
Ri j

. Concretely, KcJi j =
1

Ri j
, where Kc > 0 is a scalar constant representing the coupling strength of the
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network. Applying Kirchhoff’s Current Law (KCL) at the output of every spin gives us∑ j J1 j · · · 0
. . .

0 · · · ∑ j Jn j

−
J11 · · · J1n

...
. . .

...
Jn1 · · · Jnn


 v1

...
vn

=
i1

...
in

; or

Kc(D− J)⃗v = i⃗,

(2)

where D− J is the Laplacian matrix of the network.
The current injection at spin j due to spin i (the transconductance from spin i to spin j) determines the

Ising coupling via the oscillator’s phase response [11].
As D is diagonal, the D⃗v term does not represent any interactions between spins. Instead, it constitutes

resistive loading on each spin node, which we incorporate into the node’s internal resistance. The −J⃗v term
encodes the weights of the Ising problem that is being solved; the transconductance matrix J is, in fact, the
Ising coupling matrix.

1.2.2 Basic System Dynamics

The oscillators in Figure 1 can be each represented by the differential-algebraic equation:

d
dt

q⃗(⃗x)+ f⃗ (⃗x)+ b⃗(t) = 0⃗, (3)

where x⃗ is the system state and b⃗ is a small time-varying current injection. They are self-sustaining: given a
nonzero initial condition and no input, the state will settle to a periodic steady-state waveform, which we will
denote x⃗s(t). A consequence of this feature is that such oscillators will always be unstable.1

However, they are amplitude-stable: if an spin node’s state is perturbed slightly from its steady state
waveform, it will asymptotically return to the same waveform. The perturbation of the state by the input, b⃗(t),
however, causes a phase shift, α(t), from the nominal x⃗s(t), i.e.,

x⃗(t) = x⃗s(t +α(t)). (4)

As such, we can model the oscillator’s response to b⃗(t) by the time-varying differential equation

d
dt

α(t) = v⃗⊤(t +α(t))⃗b(t). (5)

v⃗, the Perturbation Projection Vector (PPV), is a function of the differential-algebraic equation that defines
the system.

1.2.3 Injection Locking and Oscillator Phase

From here on, let us examine oscillator i in the network from Figure 1. The differential equation of the
time-varying oscillator phase shift is now

d
dt

αi(t) = v⃗⊤i (t +αi(t))⃗bi(t). (6)

Let us consider the current injection from one oscillator, i.e., b⃗i(t) is proportional to the output voltage of
oscillator j, which can be assumed to be a periodic waveform. For the analysis in this report, we will assume
that the state of each oscillator is the scalar sinusoid

xs,i(t) = sin(ωit +∆φi(t)), (7)

1The definition of internal asymptotic stability states than any non-zero initial condition will eventually decay to 0⃗.
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where Ai is the amplitude of the waveform, ωi is the oscillator’s natural frequency in radians/second, and
∆φi(t) is the oscillator phase with respect to some reference waveform at frequency ωi.

Under this model, the input waveform can be represented by

bi(t) = KcJi jA j sin(ω jt +∆φ j(t)), (8)

where ∆φ j(t) is the phase of the input with respect to some reference waveform at frequency ω j.
In this case, we can apply a form of averaging called Adlerization to produce a differential equation for

∆φi, j(t), the phase difference between oscillators i and j:

d
dt

∆φi, j(t) = ωi −ω j −ωiKcJi j
A jAi

2
sin(∆φi, j(t)). (9)

The above equation, known as Adler’s equation, can be used to explain the the phenomenon of injection
locking: when two or more oscillators with natural frequencies that are “close enough” are coupled, then
they will “lock” to the same frequency. Mathematically, this means that the oscillators have a constant phase
difference, i.e., limt→∞

d
dt ∆φi, j(t) = 0. Thus, injection locking can occur when (9) has a stable operating, or

equilibrium, point: ∃∆φ ∗
i, j such that

ω j −ωi

ωi
=−KcJi j

A jAi

2
sin(∆φ

∗
i, j), (10)(

d
d∆φi, j

d∆φi, j(t)
dt

)∣∣∣∣
∆φ∗

i, j

=−ωiKcJi j
A jAi

2
cos(∆φ

∗
i, j)< 0. (11)

From these conditions, we determine that injection locking occurs, only if∣∣∣∣ω j −ωi

ωi

∣∣∣∣< KcJi jA j, (12)

and there is a single stable operating point (as well as one unstable operating point).
Now, let us consider the full oscillator network. We can generate, via superposition, a set of differential

equations for the phase of every oscillator in the network,

d
dt

φi(t) = ωi −ω0 −
KcAi

2
ω0 ∑

j
A j sin(φi(t)−φ j(t)),∀i, (13)

where ω0 is the natural frequency of the entire network (assuming that injection locking occurs, the network
locks to frequency ω0). This set of differential equations is known as the Kuramoto equations. Note that,
in the Kuramoto equations, we drop the ∆ in front of each phase, and φi(t) is understood to be the phase of
oscillator i with respect to a reference waveform at frequency ω0.

For ease of analysis, we will make a few simplifying assumptions. First, we will assume that the variation
in natural frequency between the oscillators is negligible such that we can make the approximation ωi ≈ ω0,
∀i. We will also assume that ω0

AiA j
2 = 1, for every pair of oscillators.2

With these assumptions, the Kuramoto equations become

d
dt

φi(t) =−Kc ∑
j

sin(φi(t)−φ j(t)),∀i. (14)

2In other words, differences in oscillator amplitude are negligible and any constant scaling factor on the summation in (13) is
incorporated into Kc.

5



1.2.4 The Lyapunov Function and Sub-harmonic Injection Locking

The Kuramoto equations have a Lyapunov function, i.e., a function with a nonpositive time derivative:

E(φ⃗(t)) =−1
2 ∑

i
∑
j ̸=i

Ji j cos(φi(t)−φ j(t)), (15)

where φ⃗ ≜
[
φ1 · · · φn

]⊤. Computing the gradient,

d

dφ⃗
E(φ⃗(t)) =− 1

Kc

d
dt

φ⃗(t). (16)

So, the time derivative of the Lyapunov function is

d
dt

E(φ⃗(t)) =
(

d

dφ⃗
E(φ⃗(t))

)⊤
(

dφ⃗

dt

)
=− 1

Kc

∥∥∥∥∥dφ⃗

dt

∥∥∥∥∥
2

≤ 0. (17)

As the time derivative of E(φ⃗(t)) is ≤ 0 and E(φ⃗(t)) is bounded from below,3 the system will asymptotically
settle to local minima of E(φ⃗(t)).

If all phases are restricted to be either 0 or π , then

cos(φi(t)−φ j(t)) =

{
1, φi(t) = φ j(t)
−1, φi(t) ̸= φ j(t)

.

If we say that a spin has value si = 1 when φi(t) = 0 and si =−1 when φi(t) = π , then

cos(φi(t)−φ j(t)) = sis j,

and (15) exactly matches the Ising Hamiltonian, (1).
This phase bistability is achieved through a phenomenon called sub-harmonic injection locking (SHIL).

In brief, when an input to an oscillator is at approximately twice its natural frequency, its frequency will settle
to half the input frequency.

Let us again consider Adler’s equation, this time with input bi(t) = Ks sin(2ωst), where ωs ≈ ω0. This
bi(t) is known as the SYNC signal.

d
dt

∆φi(t) = ω0 −ωs −ω0Ks sin(2∆φi(t)), (18)

where ∆φi(t) is the phase difference between oscillator i and a reference waveform at frequency ωs.
Following the same analysis as in (10) and (11), we see that there are two stable operating points at ∆φ ∗

i
and ∆φ ∗

i +π .4 Defining the reference signal such that ∆φ ∗
i = 0, ∆φi(t) will lock to either 0 or π .

Returning to analysis of the oscillator network, we consider the Kuramoto equations under both funda-
mental harmonic injection locking (from adjacent oscillators) and SHIL (from the SYNC signal):

d
dt

φi(t) =−Kc ∑
j

sin(φi(t)−φ j(t))−Ks sin(2φi(t)),∀i, (19)

where we assume ωs = ω0 and φi(t) is understood to be represent ∆φi(t). Since the input to each oscillator
involves terms at ω0 and 2ω0, the analysis of injection locking is more complicated than what was presented

3By the triangle inequality, E(φ⃗(t))≥−Kc ∑i ∑ j ̸=i |Ji j|.
4As long as

∣∣∣ω0−ωs
ω0

∣∣∣< Ks.
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in this section. Further analysis of the Kuramoto system with SHIL is presented in Section 3. For the purpose
of this section, it suffices to know that, if Ks is high enough with respect to Kc, that SHIL occurs and each
phase is close to either 0 or π .

The Lyapunov function corresponding to (19) is

E(φ⃗(t)) =−1
2 ∑

i
∑
j ̸=i

Ji j cos(φi(t)−φ j(t))−
Ks

2Kc
cos(2φi(t)). (20)

Under SHIL, this reduces to

E(φ⃗(t)) =−1
2 ∑

i
∑
j ̸=i

Ji jsis j −
Ks

2Kc
, (21)

which is equal to the Ising Hamiltonian, with a constant offset. As such, global minimization of the Lyapunov
function is equivalent to global minimization of the Ising Ha miltonian.

1.2.5 Local Minimization of the Ising Hamiltonian

The existence of a Lyapunov function for the Kuramoto equations means that the system will settle to
local minima of (20). However, as the Ising Hamiltonian defines a discrete minimization problem, it may not
have the same local minima as the (continuous) Lyapunov function. In fact, for Ks such that SHIL occurs,
every “grid point,” i.e., φ⃗ ∈ {0,π}n (where n is the number of oscillators) is a stable operating point of the
Kuramoto equations and thus a local minimum of the Lyapunov function. Only some of these points, however,
will be discrete local minima of the Ising Hamiltonian. One key direction of future exploration is in the
relationship between local minimization of the Lyapunov function and the Ising Hamiltonian, as the strength
of the SYNC signal is varied.
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2 Dense as Sparse: Sparsifying Dense On-chip Ising Machines
2.1 Introduction

The structure of the graph defining an Ising problem varies significantly from problem to problem.
Notably, depending on the application, the Ising graph may be densely or sparsely connected. In other words,
either there is all-to-all (or nearly all-to-all) connectivity between the spins, or each spin is connected to only a
few other spins. Dense connectivity is generally difficult to achieve at scale in hardware; this is especially true
for IC implementations of Ising machines [11, 13] as the number of spins increases, due to the difficulty of
routing O(n2) connections between n spins. This constitutes a serious barrier to the development of scalable
on-chip Ising machines for problems that require dense connections. This problem does not appear to have
been considered, far less addressed, in prior work on the subject, despite how important it is for practical
realization of Ising machines.

One such dense problem, important in telecommunications, is the MU-MIMO (Multi-User Multiple-
Input-Multiple-Output) detection problem [14, 15]. The efficacy of Ising machines for MU-MIMO has been
demonstrated in simulation [16], but building hardware to realize this promise, especially for larger problems,
runs into the issue of implementing dense connectivity. It is essential to achieve dense Ising connectivity at
scale if practical Ising machine ICs that solve, e.g., the MU-MIMO problem, are to become a reality.

In this project, we devise a highly accurate method to represent a useful class of dense Ising problems
using only sparse on-chip resistive networks. Such sparse networks are practical to implement at scale on ICs.
Our method exploits low-rank structure in the matrix of Ising couplings (i.e., weights of the Ising graph).
This low-rank structure results in a singular value decomposition (SVD) [17] where most singular values
are negligible. As a result, the matrix can be represented, with very little error, using a truncated SVD that
requires far fewer nonzero values than the original dense matrix needs.

The next task is to map this SVD approximation onto a sparse on-chip resistive network. We first devise a
technique for doing so when all required resistors are positive-valued. We use a small number of Kirchhoff’s
Current Law (KCL)-enforcing auxiliary nodes that form bipartite connections with the spins. We then show
the current-voltage relationship between the spins is equivalent to that from the truncated SVD. There are as
many auxiliary nodes as non-negligible singular values, so this constitutes a sparse connectivity fabric when
the Ising coupling matrix has low-rank structure. We devise a mathematical procedure for generating this
sparse bipartite resistive network from a truncated SVD of the Ising coupling matrix.

Typical Ising problems require a mix of positive and negative resistors,5 the latter being complicated to
implement physically. We show that even negative values in the truncated SVD mapping can be elegantly
implemented using only positive resistors. If each spin has a differential output, any connectivity pattern can
be realized using only positive resistors between the auxiliary nodes and either the positive or negative spins.
Our sparse synthesis algorithm is thus able to treat any Ising coupling matrix using only positive physical
resistors.

We validate DaS on a range of MU-MIMO detection problems, produced using MATLAB’s Phased
Array System Toolbox [19, 20]. For large problem sizes, the MU-MIMO Ising coupling matrix typically
has low effective rank, i.e., many negligible singular values. We achieve density reductions of ∼ 80 to 95%,
depending on the number of scatterers that interfere with the communication link. The SVD approximation
has very little impact on the coupling matrix; the absolute sum of the element-wise approximation error is
less than 10−8 times the absolute sum of the Ising weights.

We also illustrate a simple layout technique, based on a crossbar-style physical architecture, that is
suitable for implementing the sparse, bipartite resistive networks generated by DaS. The technique allows
programmable physical interconnectivity, i.e., any arbitrary Ising problem with a low-rank structure can be
programmed onto the chip.

5Negative resistors [18] have a negative R in the Ohm’s Law relation V = IR.
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2.2 Background and Overview

2.2.1 The MU-MIMO Detection Problem

The MU-MIMO (Multi-User Multiple-Input-Multiple-Output) detection problem is an important problem
in telecommunications that can be mapped to the Ising problem. In modern wireless communication,
multiple users, each with one or more transmit antennas, simultaneously transmit to multiple receive antennas.
The received signals are, therefore, a noisy combination of each user’s transmitted symbols. Because
the transmitted symbols are discrete, recovering them from the received signals turns out to be a hard
combinatorial optimization problem, i.e., the discrete maximum-likelihood estimation (MLE) problem. The
subsequent paragraphs summarize how to map the MU-MIMO problem to the Ising problem, allowing it to
be solved by an Ising machine [15, 16].

Consider a MU-MIMO problem with Nt transmitters and Nr receivers. Let the transmitted signal be
denoted by a vector x⃗ of length Nt , such that xi ∈ {±1}. The resulting vector of received signals is

y⃗ = HCx⃗+ n⃗, (22)

where HC ∈ CNr×Nt is the channel transmission matrix and n⃗ ∈ CNr represents additive white Gaussian noise
(AWGN).

HC, y⃗, and n⃗ are complex, so we represent them using real numbers by vertically stacking their real and
imaginary components:

HC,Re =

[
Re{HC}
Im{HC}

]
∈ R2Nr×Nt , y⃗Re =

[
Re{⃗y}
Im{⃗y}

]
∈ R2Nr ,

n⃗Re =

[
Re{⃗n}
Im{⃗n}

]
∈ R2Nr .

(23)

In the detection problem, we would like to determine the symbols x⃗ that minimize the mean-squared error,
given by

||HC,Re⃗x− y⃗Re||2 = (HC,Re⃗x− y⃗Re)
T (HC,Re⃗x− y⃗Re). (24)

To reach an Ising formulation for this minimization problem, we want to write HC,Re⃗x− y⃗Re as a single
matrix-vector product. To do so, we define

ĤC,Re =
[
HC,Re −⃗yRe

]
, and x̂ =

[⃗
x
1

]
. (25)

With these definitions, (24) becomes
x̂T ĤT

C,ReĤC,Rex̂. (26)

As the objective of the Ising problem is to minimize

−1
2 ∑

i, j
Ji jsis j =−1

2
s⃗T J⃗s, si ∈ {±1}, (27)

the MU-MIMO problem matches the Ising problem if

J =−2ĤT
C,ReĤC,Re, and s⃗ = x̂. (28)

Ising machines, therefore, can be used to solve the MU-MIMO detection problem.
The channel transmission matrix, and therefore the Ising coupling matrix, is invariably dense. Although

on-chip implementations of dense Ising solvers are viable for smaller problems, routing becomes infeasible
as the problems scale. Therefore, we wish to sparsify the MU-MIMO problem to make it more amenable to
large on-chip Ising solver implementations.
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2.2.2 Densely-Connected On-chip Ising Machines

Analog Ising machine connectivity is implemented as resistive meshes, as described in Section 1.2.1
[11–13]. If there is all-to-all connectivity, this mesh has n(n−1)

2 resistors.
Our goal is to utilize low-rank structures in the J matrix to represent the current-voltage relationship in (2)

sparsely, and to translate the sparse mathematical representation to a physically sparse network of resistive
connections. For the purposes of this section, we will ignore the constant scaling factor Kc and instead match

(D− J)⃗v = i⃗. (29)

2.2.3 Overview of Our Method

We show, in Section 2.3, that a singular value decomposition (SVD) of a low-rank dense coupling matrix
can yield a sparse representation. To reach this sparse representation, we compute the truncated SVD of
coupling matrix J ∈ Rn×n, J =UmΣmV T

m . Um ∈ Rn×m, Σm ∈ Rm×m, and Vm ∈ Rm×n, where m is the number
of singular values above a certain threshold. This threshold can be chosen such that the Ising coupling matrix
from the truncated SVD is almost identical to the Hamiltonian of the original coupling matrix. If m ≪ n,
Um, Σm, and Vm have far fewer values than those needed to represent a dense coupling matrix; this is the
provenance of the desired sparsification.

To use this sparse representation for on-chip Ising solvers, it is crucial to map it onto a sparse resistive
network. This process, however, is non-trivial, especially if there are negative entries in Um and Vm and if
Um ̸=Vm (i.e., J is not positive semi-definite), both of which are invariably the case in problems of interest.
We devised a general procedure to translate the SVD representation to a sparse resistive network via a set of
m auxiliary nodes, as described in Section 2.4. We also show, in Section 2.4.5, the basic idea behind how our
scheme can be laid out using a programmable crossbar-style architecture.

In Section 2.5, we show that Ising coupling matrices for many MU-MIMO problems have a low-rank
structure, especially for large numbers of transmitters and receivers. As a result, they are amenable to
sparsification using DaS. In general, the sparsity of a MU-MIMO problem increases as the size of the
problem (number of spins) increases, as the number of scatterers obstructing the communication channel
decreases, or as the spacing between individual transmitters or receivers decreases. That sparsity increases
as problem sizes increase is, in particular, a desirable feature from the standpoint of scalable Ising machine
implementation.

2.3 Low-Rank Decompositions of Resistive Connections

The Ising coupling matrix J may have low effective rank, i.e., a large proportion of its singular values
may be much smaller than its largest singular value. Assuming that J has m non-negligible singular values,
its truncated SVD [21] is J ≈UmΣmV T

m , where Um,Vm ∈ Rn×m and Σm ∈ Rm×m.
As J is a dense, symmetric matrix with zeros on the diagonals, we require n(n−1)

2 values to fully
characterize J. Using the truncated SVD, we can represent J using m(2n+1) values (mn each for Um and Vm

and m for Σm). If m ≪ n, then this is a sparse representation: we can represent J using much fewer values than
n(n−1)

2 , with high accuracy, as seen in the examples in Section 2.5. Here, we define sparsity as the number of
values (later, number of resistors) needed to represent J accurately compared to the n(n−1)

2 resistors required
in Section 2.2.2.

2.3.1 Improved Sparsity of the Truncated SVD for Positive and Negative Semi-Definite Matrices

We can decrease the number of values required to represent the truncated SVD of J by making J positive
semi-definite (PSD) or negative semi-definite (NSD), i.e., having only positive or only negative eigenvalues
[22]. If J is PSD, then its truncated SVD is J =UmΣmUT

m . A symmetric NSD matrix can be represented as
the negative of a symmetric PSD matrix, so its truncated SVD is J =−UmΣmUT

m .
As Vm is the same as or the negative of Um, J can be represented using only m(n+1) values.
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While J is always symmetric in Ising problems, it is generally neither PSD nor NSD. We can, however,
add a constant to the diagonals of J to get a PSD or NSD matrix. For instance,

JPSD ≜ J+αI, or JNSD ≜ J+β I (30)

Additions to the diagonal of J do not affect the Ising problem, since the diagonal contributes nothing to the
Ising Hamiltonian (1). So, we can replace J with JPSD or JNSD without changing the parameters of the Ising
problem.

Consider the case where J is PSD. We wish to minimize the magnitude of α to increase the likelihood
that JPSD has low effective rank. As shown below, we achieve this by setting α =−λmin(J), where λmin(J) is
the smallest eigenvalue of J.

A matrix J ∈ Rn×n is PSD if and only if x⃗T J⃗x ≥ 0, ∀⃗x ∈ Rn. Without loss of generality, let us consider
x⃗ such that ||⃗x||2 = 1. Then, it is guaranteed that x⃗T J⃗x ≥ λmin(J), with equality if x⃗ is in the span of the
eigenvector corresponding to λmin(J).

Setting α =−λmin(J),
x⃗T JPSD⃗x = x⃗T J⃗x+α x⃗T x⃗ ≥ λmin(J)+α = 0. (31)

Thus, J +αI is PSD when α =−λmin(J). This is the minimum value of α such that J +αI is PSD: if
α <−λmin(J) and x⃗ is in the span of the eigenvector corresponding to λmin(J),

x⃗T JPSD⃗x = x⃗T J⃗x+α x⃗T x⃗ = λmin(J)+α < 0. (32)

This scheme is generally effective if the largest negative eigenvalue of J is sufficiently smaller than its largest
positive eigenvalue. Otherwise, adding αI to J will result in a substantial increase in m, making the truncated
SVD no longer sparse.

Likewise, to make J NSD, we set β = −λmax(J). In general, making J NSD improves the sparsity if
the low-rank decomposition of the largest negative eigenvalue of J is much larger than the largest positive
eigenvalue.

2.3.2 Scaling U and V for Increased Sparisty

As we will see in Section 2.4, our hardware implementation requires fewer resistors than the m(2n+1)
(for an arbitrary matrix) or m(n+1) (for a PSD or NSD matrix) values in the truncated SVD.

Let us consider an arbitrary, i.e., not PSD or NSD, Ising coupling matrix. Instead of decomposing the
coupling matrix as J ≈UmΣmV T

m , we will have a relation of the form J ≈ GinDcGT
out, where Dc is the diagonal

matrix of the column sums of Gout (see Section 2.4, specifically Section 2.4.2 for implementation details,
as well as motivation behind the naming of these matrices). The columns of Vm and Σm are scaled to obtain
Gout and Dc such that UmΣV T

m = GinDcGT
out and Dc is the diagonal matrix of the column sums of Gout. So,

we represent J using only 2mn values, as Dc is obtained from Gout.
For a PSD matrix, we represent JPSD as GDcGT , where the columns of G are scaled such that UmΣmV T

m =
GDcGT and Dc consists of the column sums of G. In doing so, we represent JPSD using mn values. Likewise,
we can also represent an NSD matrix using mn values.

2.3.3 Impact of the Truncated SVD Approximation on the Ising Hamiltonian

In choosing m, the number of singular values to use, we must examine the impact of representing J with
a truncated SVD on the Ising Hamiltonian. Let Ĵ =UmΣmV T

m be the rank-m approximation of the coupling
matrix. Define the Ising Hamiltonians for the original and SVD-approximated coupling matrices as

H (⃗s) =−1
2 ∑

i̸= j
Ji jsis j and Ĥ (⃗s) =−1

2 ∑
i̸= j

Ĵi jsis j, (33)

where s⃗,si ∈ {−1,1} is a vector of spin values and Ji j is the element of J at row i, column j.
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The error between H (⃗s) and Ĥ (⃗s) can be bounded as follows:

|H (⃗s)− Ĥ (⃗s)|=

∣∣∣∣∣−1
2 ∑

i̸= j
(Ji j − Ĵi j)sis j

∣∣∣∣∣≤ 1
2 ∑

i̸= j
|(Ji j − Ĵi j)s js j|=

1
2 ∑

i̸= j
|Ji j − Ĵi j|. (34)

Thus, if we would like to choose m to enforce some bound on the approximation error of the Ising Hamiltonian,
|H (⃗s)− Ĥ (⃗s)|< ε , we can choose the minimum m such that

1
2 ∑

i̸= j
|Ji j − Ĵi j|=

1
2 ∑

i̸= j
|Ji j − (UmΣmV T

m )i j|< ε. (35)

2.4 Low-Rank Decompositions as Sparse Resistive Networks

In this section, we devise a method to represent the truncated SVD of a matrix using a resistive network.
This method involves two sets of nodes with bipartite connections: spins and auxiliary nodes, as shown in
Figure 2. There are n spin nodes, where n is the size of the Ising graph, and m auxiliary nodes, where m is the
effective rank of J, as defined in Section 2.3.

The resistor between spin j and auxiliary node k, R jk, has conductance G jk = R−1
jk .

v1

v2

v3
...

vn

e1

e2
...
em

R11

R
12

R32

Rnm

Fig. 2: Bipartite network.

Define the transconductance matrix

G ≜


G11 · · · G1m

...
. . .

...

Gn1 · · · Gnm

, (36)

and define Dc and Dr as the diagonal matrices of the row and column sums
of G, respectively. As in Section 2.2.2 and Figure 1, define i j to be the
current leaving the jth spin node.

To see how this formulation encodes the truncated SVD of a matrix, let
us examine the equations produced by applying KCL at the the auxiliary
and spin nodes. At the auxiliary nodes,

∑ j G j1 · · · 0
. . .

0 · · ·∑ j G jm


e1

...
em

−
G11 · · · Gn1

...
. . .

...
G1m · · · Gnm




v1

...

vn

= 0⃗; or e⃗ = D−1
c GT v⃗. (37)

At the spin nodes,
∑k G1k · · · 0

. . .

0 · · · ∑k Gnk




v1

...

vn

−


G11 · · · G1m

...
. . .

...

Gn1 · · · Gnm


e1

...
em

=


i1

...

in

; or Dr⃗v− G⃗e = i⃗. (38)

Using (37) in (38), we obtain
i⃗ = (Dr −GD−1

c GT )⃗v. (39)

As in Section 2.2.2, we incorporate the loading terms, Dr⃗v, into each spin unit.6 Comparing (39) with (29), we
have J = GD−1

c GT . This matches the form of the SVD of a positive semi-definite matrix, JPSD =UmΣmUT
m .

6These loading terms do not affect the Ising problem or its Hamiltonian, but circuits implementing Ising spins need to take the
loading into account.
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2.4.1 Implementation of Negative Entries in G

Although Um of the SVD of J can contain positive and negative entries, G is comprised of conductances
and is thus restricted to positive values.7 In order to properly implement the SVD, we must revise our
formulation.

To do so, we use differential spin nodes, i.e., each spin has a positive and negative output. In the bipartite
network (Figure 2), we replace each spin v j with the spin pair v j and −v j. A connection between ±v j and
auxiliary node ek is positive if there is a resistor R jk+ = G−1

jk+ between v j+ = v j and ek and negative if there
is a resistor R jk− between v j− =−v j and ek. v j+ = v j

+

−
v j

i j+

v j− =−v j

+

−
v j

i j−

Fig. 3: Differential spin node.

The transconductance matrix is now

G ≜ G+−G− =


G11+ · · · G1m+

...
. . .

...

Gn1+ · · · Gnm+

−


G11− · · · G1m−

...
. . .

...

Gn1− · · · Gnm−

.

We define Dc = Dc++Dc−, where Dc+ and Dc− are the column sums of G+

and G−, respectively. Equivalently, Dr = Dr++Dr−, where Dr+ and Dr− are
the row sums of the respective transconductance matrix.

For this setup, we examine the differential current8 i⃗d = i⃗+− i⃗−, where i⃗+ is the vector of currents leaving
the positive spin nodes and i⃗− is the vector of currents leaving the negative spin nodes. Performing KCL at
the auxiliary nodes,

Dc⃗e− (GT
+v⃗−GT

−v⃗) = Dc⃗e−GT v⃗ = 0⃗; or e⃗ = D−1
c GT v⃗. (40)

At the positive spin outputs, KCL produces the equation

i⃗+ = Dr+v⃗−G+e⃗, (41)

and, at the negative outputs, we have
i⃗− =−Dr−v⃗−G−e⃗. (42)

Taking the differential current,

i⃗d = (Dr++Dr−)⃗v− (G+−G−)⃗e = Dr⃗v− G⃗e = (Dr −GD−1
c GT )⃗v. (43)

This is equivalent to (39), except that G can now hold negative entries. As G = G+−G−, positive entries in
G correspond to positive connections and negative entries to negative connections.

Now, we must show that setting the differential current as in (43) actually relates to the weights of the
Ising Hamiltonian. To do so, we linearize the positive and negative spin units around their steady state
waveforms, with i⃗+ and i⃗− as current inputs. We examine the pair of spin nodes v j+, v j−, looking at the
current inputs i j+ and i j− in superposition.

First, we will determine the effect of i j+ on v j(t), setting i j− to 0. To demonstrate the core concept, we
represent the positive spin by the differential equation

d
dt

v j(t) = f (v j(t))+bi j+(t), (44)

7While it is possible to approximate negative resistors using nonlinear electronic circuits [18], these greatly increase the complexity
of hardware implementation and cannot be perfectly linear.

8It is the differential current that constitutes the coupling input into a spin from another, as we show later in this section.
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for some nonlinear function f (·) and constant b.9 Assume that the spin unit’s differential equation has steady
state v js(t). We then linearize (44) around this steady state to get

d
dt

∆v j(t) =
d
dt
(v j(t)− v js(t)) =

∂ f
∂v j

∣∣∣∣
v js(t)

∆v j(t)+bi j+(t), (45)

where ∆v j(t) represents the change in spin voltage from the steady state due to small perturbation bi j+(t).
Now, we examine the effect of i j−, setting i j+ to 0. Assume the differential equation governing the

negative spin is

d
dt
(−v j(t)) = f (−v j(t))+bi j−(t); or

d
dt

v j(t) =− f (−v j(t))−bi j−(t). (46)

Linearizing around the steady state −v js(t),

d
dt

∆v j(t) =−

(
− ∂ f

∂v j

∣∣∣∣
−v js(t)

)
∆v j(t)−bi j−(t) =

∂ f
∂v j

∣∣∣∣
−v js(t)

∆v j(t)−bi j−(t). (47)

Applying superposition, we add (45) and (47) to get

d
dt

∆v j(t) =

∂ f
∂v j

∣∣∣∣
v js(t)

+ ∂ f
∂v j

∣∣∣∣
−v js(t)

2
∆v j(t)+b

i j+− i j−
2

=

∂ f
∂v j

∣∣∣∣
v js(t)

+ ∂ f
∂v j

∣∣∣∣
−v js(t)

2
∆v j(t)+b

i jd

2
,

(48)

where i jd is the differential current of spin pair v j, −v j.
Therefore, the effective current input that determines the dynamics of the voltage response ∆v j(t) of each

differential spin unit is proportional to the differential current i jd .

2.4.2 Ensuring Column Sums of G Match Singular Values

To make the current-voltage relationship in (39) match that of dense connectivity mesh in (29), we must
have GD−1

c GT =UmΣmUT
m , where J =UmΣmUT

m for a PSD Ising coupling matrix. Now that we are able to
set G to match Um, we must ensure that D−1

c matches Σm, the diagonal matrix of singular values.
The most straightforward solution is to add a resistor from each auxiliary node to ground. Denote the

resistor from node ek to ground by Rek , its conductance by Gek , and the diagonal matrix of these conductances
by De. Now, the KCL equations at the auxiliary nodes are

Dc⃗e+De⃗e−GT v⃗ = (Dc +De)⃗e−GT v⃗ = 0⃗; or e⃗ = (Dc +De)
−1GT v⃗. (49)

The equation for the differential current i⃗d is now

i⃗d = (Dr −G(Dc +De)
−1GT )⃗v. (50)

Thus, we can set De such that (Dc +De)
−1 = Σm, or

Gek +∑
j

G jk++∑
j

G jk− = σ
−1
k , (51)

where σk is the kth singular value of J.
If σ

−1
k > ∑ j G jk++∑ j G jk−, then this method allows (50) to match the truncated SVD of J without any

added resistive loading on the spin nodes. However, if σ
−1
k < ∑ j G jk++∑ j G jk−, then Gek must be a negative

resistor. This, while possible to implement, is design- and area-intensive.

9Any analog Ising machine spin can be represented by such a differential equation [23].
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Alternatively, we can scale the elements of G such that GD−1
c GT =UmΣmUT

m , without any added resistors.
Let us denote the column sums of Um by Dc,U . We will set the transconductance matrix G to UmDβ , where
Dβ is a diagonal matrix of scaling factors diag(β1, . . . ,βm) = Dβ . In this configuration, βk multiplies the kth

column of Um, so the column sums of G are Dc = Dc,U Dβ .
To have GD−1

c G match UmΣmUT
m , we must have

UmDβ D−1
β

D−1
c,U DβUT

m =UmD−1
c,U DβUT

m =UmΣmUT
m , (52)

so we must define Dβ such that
D−1

c,U Dβ = Σm =⇒ Dβ = Dc,U Σm. (53)

One disadvantage of this method is that, if the elements of Dc,U Σm are too large, it could lead to excessive
loading on some spin units. This can be mitigated by scaling J by some constant, positive factor γ .10 If
Σ′

m = γΣm is the singular value matrix after scaling, we have Dβ = γDc,U Σm. The resistive loading term on
the spins is Dr⃗v, so we can choose γ to be small enough such that the row sums of G = γUmDc,U Σm do not
constitute excessive loading.

2.4.3 Representing Negative Semi-Definite (NSD) Matrices

If the coupling matrix is negative semi-definite, we have JNSD =−UmΣmUm. So, at the spin nodes, we
must have the current-voltage relationship

i⃗d = (D− JNSD)⃗v = (D+UmΣmUT
m )⃗v, (54)

where D is a diagonal loading matrix.

v1+

ib1+ vb1+

v1−

ib1− vb1−

...
...

vn+ ibn+ vbn+

vn− ibn− vn−

e1

...
em

R
out,11+

R
out,1m−

Rout,nm−

−ib1+

i1+

−ib1−

i1−

−ibn+

in+

−ibn−

in−

Fig. 4: Formulation for representing NSD matrices, with buffers and current-controlled current sources at each spin node.

To implement this formulation as a resistive network, we add unity gain buffers between the spin nodes
and the resistors connecting them to the auxiliary nodes. We refer to the outputs of these buffers as “buffered
nodes”. The current output of these buffers can then be reflected to the spin nodes via current mirrors, such
that the current leaving spin node v j+ is −ib j+. For the purpose of this report, we represent this process using

10As this modification scales the Ising Hamiltonian by a constant, positive number, it does not affect Hamiltonian minimization.
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current-controlled current sources rather than showing the detailed transistor-level implementation we have
devised. As the number of buffers and current-controlled current sources scales linearly with the number of
spins, they do not significantly impede on-chip layout.

Applying KCL to the buffered nodes in Figure 4, we get the same result as in (43):

i⃗b+− i⃗b− = (Dr −GD−1
c GT )⃗vb, (55)

where Dr and G are defined as in Section 2.4.1, i⃗b+ is the vector of currents leaving the positive buffered spin
nodes, and i⃗b− is the currents leaving the negative buffered spin nodes.

As a result, the differential current i⃗d at the spin nodes is

i⃗d =−(Dr −GD−1
c GT )⃗vb = (−Dr +GD−1

c GT )⃗v. (56)

This matches the desired relation in (54).

2.4.4 Representing Arbitrary Matrices

v1+

vb1+

v1−

vb1−

...
...

vn+ vbn+

vn− vn−

e1

eb1

...
...

em ebm

Rout,11−

Rout,nm+

Rin,11+

Rin,nm−

Fig. 5: Bipartite network with buffers at every spin and auxiliary node, allowing for unidirectional connections.

For coupling matrices that are not PSD or NSD (and cannot be made PSD or NSD without sacrificing
their low-rank structure), we must implement J =UmΣmV T

m , where Um ̸=Vm. To achieve this relationship, we
add buffered nodes to each spin and auxiliary node, as shown in Figure 5. The number of buffers scales as
n+m, so, as in Section 2.4.3, they do not form a barrier to on-chip implementation.

We have resistors Rout, jk+ = G−1
out, jk+ from buffered spin node vb j+ to auxiliary node ek, and an

analogous setup for a negative connection.11 Likewise, we have resistors Rin, jk+ = G−1
in, jk+ from

buffered auxiliary node ebk to spin v j+, and an analogous setup for a negative connection. Define

Gin ≜

Gin,11+ · · · Gin,1m+
... · · ·

...
Gin,n1+ · · · Gin,nm+

−
Gin,11− · · · Gin,1m−

... · · ·
...

Gin,n1− · · · Gin,nm−

 ,
11The “in” subscript refers to resistors with current flowing into the spin nodes, and the “out” subscript refers to current flowing

out of the (buffered) spin nodes into the auxiliary nodes.
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Gout ≜

Gout,11+ · · · Gout,1m+
... · · ·

...
Gout,n1+ · · · Gout,nm+

−
Gout,11− · · · Gout,1m−

... · · ·
...

Gout,n1− · · · Gout,nm−

 ,
the row sum matrices as Dr,in and Dr,out, and the column sum matrices as Dc,in and Dc,out.

Performing KCL at the (non-buffered) auxiliary nodes, we have

Dc,out⃗e = GT
out⃗v =⇒ e⃗ = D−1

c,outG
T
out⃗v, (57)

as vb j = v j. At the (non-buffered) spin nodes, we get

i⃗d = (Dr,in −Gin)⃗e = Dr,in⃗v−GinD−1
c,outG

T
out⃗v. (58)

This matches the desired relationship J = UmΣmV T
m , if we set Gin to be proportional to Um, Dc,out to be

proportional to Σm, and Gout to be proportional to Vm.

2.4.5 Analog DaS Crossbar Programmable Implementation

DaS can be implemented in a programmable fashion using variable resistors and a crossbar switch
architecture. Programmability is essential in order to use the same chip to solve multiple problems that fit
within a maximum number of spins and feature low-rank structure.

A simple physical layout scheme for programmable connectivity is depicted in Figure 6. The spins
are laid out horizontally, and the horizontal wires represent the auxiliary nodes.12 Each square is a switch
potentially connecting a spin to a variable resistor leading to an auxiliary node. There are M layers of switches
and M auxiliary nodes, where M is the maximum effective rank we choose to allow.

v1+

R 11
+

v1−

R 11
−

· · · vn+

R n1
+

v1−

R n1
−

e1

R 12
+

R 12
−

· · ·

R n2
+

R n2
−

e2

R 13
+

R 13
−

· · ·

R n3
+

R n3
−

· · ·

e3

Fig. 6: DaS crossbar implementation for 3 possible auxiliary nodes.

12This simple layout is to illustrate the concept; in practice, the spin nodes are typically laid out in a rectangular grid, and a few
layers of interconnect will be needed. Also, though Figure 6 shows the crossbar architecture concept for a PSD matrix, it is easily
extended to support arbitrary coupling matrices.
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2.5 Results

2.5.1 Sparsification of Coupling Matrices from MU-MIMO

We demonstrate results on a range of MU-MIMO detection problems, where the channel transmission
matrix is produced via MATLAB’s scatteringchannelmtx function in the Phased Array System
Toolbox [19, 20] and the Ising coupling matrix is defined as in (28).

There are several parameters that define a MU-MIMO detection problem. The number of transmitters
and receivers determine the shape of the channel transmission matrix and therefore the size (number of spins)
of the Ising problem: the number of spins is equal to the number of transmitters, plus one. The behavior of
the channel transmission matrix is primarily shaped by the spacing between transmitters and receivers (in
number of wavelengths) and the number of obstructors, or scatterers, in the channel. In general, the channel
transmission matrix is smoother for smaller spacing and for fewer obstructors.

In Figures 7a to 7c, we plot the Ising coupling matrices for 65-spin MU-MIMO problems (64 transmitters,
128 receivers) with different sets of parameters. For the sake of plotting, we omit the last row and column of
J, as these tend to be several times larger in magnitude than the rest of the Ising weights. Figure 7a shows the
coupling matrix produced in the case that the spacing is small and there are few scatterers (0.1-wavelength
spacing and 5 scatterers). This coupling matrix is very smooth and follows an almost sinusoidal pattern. The
coupling matrix in Figure 7b has the same spacing as Figure 7a, but with 15 scatterers instead of 5. The
matrix, although still smooth, has more variation in the magnitude and location of its peaks and troughs. In
Figure 7c, we show the opposite end of the spectrum: relatively spaced out transmitters or receivers, and
many scatterers for the size of the problem (0.45-wavelength spacing and 50 scatterers). This matrix is not
very smooth at all, due to the larger spacing and high number of scatterers.

The MU-MIMO problem (for certain choices of parameters) is well-suited for DaS for two reasons. First,
for relatively smooth MU-MIMO Ising coupling matrices, there are many negligible singular values, i.e., the
matrix has low effective rank. Second, the coupling matrix is nearly negative semi-definite: its largest negative
singular value is much greater in magnitude than its largest positive singular value. So, we use the method
in Section 2.3.1 to make J NSD before performing the truncated SVD. This means that we can implement
an Ising machine for MU-MIMO on-chip using mn resistors, where n is the number of spins (number of
transmitters, plus 1) and m is the effective rank of J. We choose m such that the approximation error on the
Ising Hamiltonian is less than 10−8 times the absolute sum of the Ising weights (see Section 2.3.3).

We performed DaS on MU-MIMO problems with different sets of parameters, choosing m as described
above. We then calculated the relative density of each DaS representation: the number of resistors used in
DaS divided by the number of resistors required for dense connectivity, i.e., nm

n(n−1)/2 = 2m
n−1 .

In Figure 8, we fixed the number of scatterers at 20 and calculated the density of DaS for spacings of
0.05, 0.25, and 0.45 wavelengths, varying the number of transmitters. Overall, the density decreases as the
number of transmitters increases. For smaller numbers of transmitters, larger spacing results in higher density,
but spacing makes little to no difference as the number of transmitters increases to several hundred. All three
curves converge to ∼ 8% density.

In Figure 9, we fixed the spacing to be 0.45 wavelengths and examined problems with 5, 25, and 45
scatterers. As in Figure 8, we varied the number of transmitters, and saw that the density decreases with more
transmitters. The density increases with the number of scatterers. The curves for each number of scatterers
get closer together as the number of transmitters increases, but they do not converge to the same value. The
curves with 5, 25, and 45 scatterers converge to ∼ 2, 9, 18% density, respectively.

2.5.2 Hierarchical Decomposition

Many matrices representing electrostatic and electromagnetic processes have Green’s functions that are
smooth in the far field. As a result, although they do not have low effective rank, they have a low-rank
structure in off-diagonal blocks.
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(a) 64 transmitters, 128 receivers, 5 scatterers, and 0.1 wavelengths
between adjacent transmitters or receivers.

(b) 64 transmitters, 128 receivers, 15 scatterers, and 0.1 wavelengths
between adjacent transmitters or receivers.

(c) 64 transmitters, 128 receivers, 50 scatterers, and 0.45 wavelengths
between adjacent transmitters or receivers.

Fig. 7: Ising coupling matrix J for MU-MIMO problems with various combinations of parameters.
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Fig. 8: Normalized number of resistors needed to represent J (1 is dense) vs. number of transmitters, for various spacing. The
number of scatterers is fixed at 20.
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Fig. 9: Normalized number of resistors needed to represent J (1 is dense) vs. number of transmitters, for various numbers of
scatterers. The spacing is fixed at 0.45 wavelengths.

For Ising coupling matrices derived for such processes, we compute the SVD of matrix blocks as follows:

1. We compute the SVD of J and take note of its effective rank m (the number of singular values above a
certain threshold, determined based on the value of the largest singular value).

2. The number of values needed to represent the SVD of J is Nv = mn if J is PSD or NSD, and Nv = 2mn
otherwise.

3. Divide J into four equally-sized blocks:

J
(

1 :
n
2
,1 :

n
2

)
, J

(
1 :

n
2
,
n
2
+1 : n

)
,J
(n

2
+1 : n,1 :

n
2

)
, J

(n
2
+1 : n,

n
2
+1 : n

)
. (59)

4. For each block, recursively compute its rank map.

5. Denote the number of values required to represent each sub-block as Nv1, Vv2, Nv3, and Nv4. If
Nv1 +Nv2 +Nv3 +Nv4 < Nv,i.e., sub-dividing J decreased the density of the representation, set Nv =
Nv1 +Nv2 +Nv3 +Nv4 and return the recursively-determined rank map. Otherwise, return the SVD of
the full J matrix.

The SVD of each matrix block can be implemented in hardware via the process in Section 2.4.4.
We examine J ≜ AT A, where A is the discretized Green’s function of some asymptotically smooth

electromagnetic process. This discretized Green’s function plays the same role as the scattering channel
matrix H in the MU-MIMO problem, so we take the product AT A to produce an Ising coupling matrix.

For the sake of demonstration, we will approximate the Green’s function by the sum of matrices of the
following form:

Aℓ(i, j) =

{
1

|i− j−ℓ| , i− j ̸= ℓ

0, i− j = ℓ.
(60)

In Figures 10a and 10b, we show the results of recursively decomposing various size-512 matrices of the
form J = AT A. We measure the density of each block as the number of resistors required to implement it in
sparse hardware divided by the number of resistors required for dense connectivity (essentially, m

n ). Blocks of
J are colored according to their density; cyan denotes sparser blocks and magenta denotes denser blocks.

Recursively subdividing these matrices, we achieved a density of 21.36% for A = A25 and a density of
28.52% for A = A400 +A100. Although we did not need this hierarchical low-rank decomposition method for
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MU-MIMO problems, it can serve as a useful component of our DaS toolbox of sparsification methods for
other classes of dense real-world Ising problems.

(a) Decomposition of J = AT A, where A = A25. (b) Decomposition of J = AT A, where A = A400 +A100.

Fig. 10: Sparsity of rank map decompositions of different hypothetical coupling matrices.

2.6 Effect of Dense as Sparse on Ising Solver Results

Using DaS to sparsify dense Ising problems results in approximation error in the couplings between
spins. i.e., the coupling term in (29), −J⃗v, and the coupling term in (58), −UmΣmV T

m v⃗, are not precisely equal.
The error between J, which we shall call the dense coupling matrix, and UmΣmV T

m , which we will call the
sparsified form, decreases as m increases (or as the DaS representation becomes denser). In this section, we
demonstrate how the truncated SVD approximation impacts the quality of solutions produced by simulated
annealing. We also show how this impact changes as we increase or decrease m.

2.6.1 MU-MIMO Problem Generation

We generated 10 different MU-MIMO problems using the same process as in Section 2.5.1, each with
384 transmitters, 768 receivers, 10 scatterers, and a spacing between adjacent transmitters and receivers of 45
wavelengths. Each problem has 385 Ising spins (number of transmitters, plus one).

For each problem, we try a variety of thresholds to choose m, the effective rank of J. We define m as the
minimum number of singular values such that the Frobenius norm of the approximation error, J−UmΣmV T

m ,
is less than the threshold times the Frobenius norm of J.13 We use threshold values of 10−1,10−2, . . . ,10−6.

2.6.2 Comparison of Dense and Sparse Coupling Matrices

First, we determine the impact that the truncated SVD has on the coupling matrix itself. We consider
two quantities: the density and the difference in Ising Hamiltonian values between the dense and sparse
coupling matrices. The density, as defined in Section 2.5.1, determines how many resistors would be required
to implement an on-chip Ising machine using DaS. The error in the Ising Hamiltonian is intrinsically tied to
the solution produced by an Ising machine, as the Hamiltonian is the quantity the Ising machine minimizes.
It is computationally infeasible to calculate the error in the Hamiltonian for all possible combinations of

13Though this differs from the method in Section 2.3.3, using the absolute sum of the errors, we have found empirically that this
makes very little difference in the results.
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spins,14 so we examine the case where the spins are equal to the transmitted symbols.15 In other words, we
consider the Hamiltonian at our desired solution (as explained in Section 2.2.1, the goal of the MU-MIMO
problem is to find the transmitted symbols).

In Figure 11, we present a table of these two quantities, for each MU-MIMO problem we generated
(enumerated in the ”Trials” column). We group results by the threshold we place on the Frobenius norm of
the approximation error, J−UmΣmV T

m . The approximation error of the Ising Hamiltonian we present is the
relative error, or abs((H dense-H sparse)/H dense).

Trial Density Relative Error
in Hamiltonian

Density Relative Error
in Hamiltonian

Density Relative Error
in Hamiltonian

Threshold: 1E-6 Threshold: 1E-5 Threshold: 1E-4

1 10.9375% 4.17E-14% 10.9375% 4.17E-14% 10.9375% 4.17E-14%
2 10.9375% 0% 10.9375% 0% 10.9375% 0%
3 10.9375% 8.50E-14% 10.9375% 8.50E-14% 10.9375% 8.50E-14%
4 10.9375% 1.90E-14% 9.8958% 7.41E-05% 9.8958% 7.41E-05%
5 10.9375% 4.30E-14% 10.9375% 4.30E-14% 10.9375% 4.30E-14%
6 10.9375% 8.94E-14% 10.9375% 8.94E-14% 10.9375% 8.94E-14%
7 10.9375% 2.12E-14% 10.9375% 2.12E-14% 10.9375% 2.12E-14%
8 10.9375% 7.84E-14% 10.9375% 7.84E-14% 10.9375% 7.84E-14%
9 10.9375% 8.87E-14% 10.9375% 8.87E-14% 10.9375% 8.87E-14%
10 10.9375% 8.87E-14% 10.9375% 8.87E-14% 10.9375% 8.87E-14%

Threshold: 1E-3 Threshold: 1E-2 Threshold: 1E-1

1 10.9375% 4.17E-14% 9.895% 1.82E-01% 6.2% 2.02E+00%
2 10.9375% 0% 9.37% 1.93E+00% 6.2% 1.35E+00%
3 10.9375% 8.50E-14% 9.895% 1.20E+00% 6.2% 3.33E-01%
4 9.8958% 7.41E-05% 9.37% 5.46E+00% 5.729% 9.67E-01%
5 10.9375% 4.30E-14% 9.895% 2.21E-01% 6.2% 5.56E-01%
6 10.9375% 8.94E-14% 10.416% 3.65E+00% 7.812% 1.29E-01%
7 10.9375% 2.12E-14% 8.854% 1.38E+00% 4.166% 7.12E-01%
8 10.9375% 7.84E-14% 9.895% 8.05E-02% 6.770% 5.21E-01%
9 10.9375% 8.87E-14% 10.416% 5.04E+00% 5.208% 1.94E+00%
10 10.9375% 8.87E-14% 10.416% 2.64E+00% 5.208% 1.07E+00%

Fig. 11: Table of the density achieved by DaS and the relative error in the Ising Hamiltonian for the transmitted symbols between the
dense and sparse coupling matrices. m was chosen using thresholds on the Frobenius norm of J−UmΣmV T

m of 10−1,10−2, . . . ,10−6.
Both the density and error in the Hamiltonian are in units of percent.

All trials except for trial 4 follow a similar pattern. Below a threshold of 10−2, the Hamiltonian error is
extremely small. For a threshold of 10−2, the density decreases marginally, and the error in the Hamiltonian
value increases significantly. For a threshold of 10−1, the density is almost halved, while the Hamiltonian
error remains approximately the same as for the previous threshold.

To an extent, the behavior of trial 4 differs from the rest: the Hamiltonian error is only extremely small
below the threshold of 10−5. Between 10−5 and 10−3 (inclusive), the approximation error on the Hamiltonian

14The number of possible combinations grows exponentially with the problem size; for n = 385, it is not computationally feasible
to enumerate 2n possibilities.

15More precisely, the first n spins are equal to the transmitted symbols and the (n+1)th spin is 1.
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is larger—on the order of 10−4 percent rather than 10−14 percent. For a threshold of 10−2 and above, the
behavior mirrors the other trials.

To explain the differences in trial 4, we examine the singular values of the Ising coupling matrices for
each trial. For each trial except trial 4, there are m = 21 significant singular values, on the order of 10−1 to
10−4. The rest of the singular values are extremely small, ≈ 10−17 and below. For trial 4, however, there
are 19 singular values on the order of 10−1 to 10−4 and two that are approximately 10−8. As with the other
trials, the remainder of the singular values are negligible. For thresholds between 10−5 and 10−3, the singular
values near 10−8 are discarded. As these singular values are not negligible, their removal leads to a higher
error on the Hamiltonian value.

2.6.3 Simulation Process

To quantify the effect of the SVD approximation of Ising solution quality, we run simulated annealing
using both dense and sparsified forms, with parameters we have empirically found to be well-suited to the
problem.

For each MU-MIMO problem and threshold, we ran simulated annealing 10 times. Each time, we ensured
that simulated annealing was run with the same random seed for both the dense and sparse coupling matrices.
For every run, we stored two quantities:

1. The best (i.e., lowest) Hamiltonian value found. For comparison, we found the relative difference
between the results from the dense and sparse coupling matrices. As previously, this is calculated
as abs((H dense-H sparse)/H dense). For every MU-MIMO problem tested, we averaged
these differences across all simulated annealing runs.

2. The final Ising spins found by simulated annealing. We calculated the difference between the dense
and sparse results as the number of bit errors, i.e., the number of spins that differ, between the two.

2.6.4 Comparison of Simulated Annealing Results

Trial Average Relative Hamiltonian Difference

Thresh=1E-6 1E-5 1E-4 Thresh=1E-3 1E-2 1E-1

1 2.898E-13% 2.481E-13% 2.710E-13% 2.940E-13% 2.896E-01% 3.701E+00%
2 1.197E-13% 1.841E-13% 2.560E-13% 1.749E-13% 3.295E+00% 2.163E-01%
3 3.317E-13% 2.126E-13% 3.338E-13% 2.849E-13% 1.537E+00% 1.410E+00%
4 2.685E-13% 2.233E-01% 2.895E-01% 3.410E-01% 6.818E+00% 3.002E+00%
5 2.862E-13% 2.755E-13% 1.958E-13% 2.152E-13% 4.177E-01% 9.523E-01%
6 2.236E-13% 2.558E-13% 2.487E-13% 2.433E-13% 4.081E+00% 8.934E-01%
7 2.436E-13% 2.394E-13% 2.584E-13% 1.419E-13% 2.047E+00% 1.520E+00%
8 2.391E-13% 2.548E-13% 3.626E-13% 3.058E-13% 2.426E-01% 9.367E-01%
9 2.022E-13% 1.650E-13% 2.679E-13% 1.969E-13% 5.769E+00% 2.467E-01%

10 2.539E-13% 2.029E-13% 2.605E-13% 1.918E-13% 4.221E+00% 3.094E+00%

Fig. 12: Average difference in best Ising Hamiltonians found by running simulated annealing run on dense and sparse coupling
matrices, over 10 runs per MU-MIMO problem. We use the same 10 MU-MIMO problems and the same thresholds on the Frobenius
norm of the approximation error on the coupling matrix as in Figure 11.

In Figure 12, we show the average relative percent difference in best Ising Hamiltonians found by
simulated annealing, as defined in Section 2.6.3. The results largely align with Section 2.6.2. For every
trial except 4, the difference is very small (on the order of 10−13%) until the threshold placed on the
Frobenius norm of J−UmΣmV T

m grows to 10−2 or higher, after which it varies from approximately 0.3 to 6%.
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Trial Average Bit Errors

Thresh=1E-6 1E-5 1E-4 1E-3 1E-2 1E-1

1 0 0 0 0 45.1 60.5
2 0 0 0 0 79.8 80.3
3 0 0 0 0 58.3 74.8
4 0 46.2 43.7 43.5 53.1 56.6
5 0 0 0 0 71.1 69.7
6 0 0 0 0 86.3 75.4
7 0 0 0 0 51.7 57
8 0 0 0 0 64.3 85.7
9 0 0 0 0 65.6 67

10 0 0 0 0 56.8 64.8

Fig. 13: Number of bit errors between the final spins produced by simulated annealing
run on dense and sparse coupling matrices, averaged over 10 runs per problem.

For trial 4, the difference in Hamil-
tonians found is only negligible for
a threshold of 10−6.

This indicates that the differ-
ence in Hamiltonian values when
the spins are equal to the transmitted
symbols (Figure 11) correlates to
the difference in simulated anneal-
ing solutions. As the goal of simu-
lated annealing is to minimize the
Ising Hamiltonian, it makes sense
that a higher difference in the Hamil-
tonian value for a certain set of spins
would lead to a higher difference in
simulated annealing results.

Finally, we display the average
number of bit errors in final spins produced via simulated annealing in Figure 13. For a threshold of 10−6,
running simulated annealing on the dense and sparse coupling matrices produces the exact same Ising spins.
For all problems except trial 4, this is also the case for thresholds below 10−2. At and above a threshold of
10−2, there are 50–90 bit errors, i.e., 13–23% of the spins differ between between results from the original
and the sparsified coupling matrices. For trial 4, this behavior starts with a threshold of 10−5. Overall, this is
consistent with the results we obtained for the differences in Ising Hamiltonian values (Figures 11 and 12).

These results indicate that, for almost any threshold that is not very crude, DaS provides both high sparsity
and extremely high accuracy of Ising solver results. Given 384-transmitter MU-MIMO problems with 10
scatterers, DaS with a threshold of 10−6 achieves a density of approximately 10%. In addition, running
simulated annealing on the original and sparsified coupling matrices for this threshold produces the same
Ising spins and negligible differences in Ising Hamiltonian values.
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3 Exploration: Ising Hamiltonian Minimization Properties
3.1 Introduction

For OIM, the existence of a Lyapunov function that, under sub-harmonic injection locking, matches the
Ising Hamiltonian, guarantees that the system will minimize the Ising Hamiltonian locally over time, i.e.,
the system will settle at local minima of the Lyapunov function. For specific problems and conditions on
system parameters, however, OIMs often empirically find global or near-global minima [11, 16]. Specifically,
the ability of the system to reach near-global minima increases significantly under parameter cycling, i.e.,
keeping either the strength of the SYNC signal, Ks constant and periodically ramping the strength of oscillator
couplings, Kc, up and down, or vice versa. Without loss of generality, we will consider the case when Kc is
held constant at some positive value and Ks is varied. Without loss of generality, we choose Kc = 1/2.16 By
inspection of (19), the ratio between Kc and Ks determines the location and stability of operating points.

3.1.1 Homotopy and Arclength Continuation

We aim to use the tools of homotopy and bifurcation theory to explain this phenomenon and to find
conditions on the Ising coupling matrix, under which OIMs are likely to find near-global minima. Generally
speaking, a homotopy is a function, g(⃗x,λ ), defined on x⃗ ∈ S (for some domain S) and λ ∈ [A,B], that varies
in a continuous and differentiable manner between g(⃗x,A) and g(⃗x,B).

We use a procedure called arclength continuation [24, 25] to numerically determine homotopies, given
one or more approximate starting points. The general concept is is to step along the tangent line of the
homotopy curve defined by g(⃗x,λ ) = 0, given initial condition (⃗x0,λ0). The direction of the tangent line is
the limit of the sequence of secant line segments

y⃗ = y⃗0 + ∆⃗y, s.t.
g⃗(⃗y0 + ∆⃗y)− g⃗(⃗y0)

∥∆⃗y∥2
= 0, (61)

as ∆⃗y → 0⃗. where y⃗ ≜
[⃗
x λ

]⊤.
Recognizing that, in the limit ∆⃗y → 0⃗, the right-hand side becomes dg⃗

d⃗y

∣∣⃗
y0
≜ J⃗y0 , finding the direction of

the tangent line reduces to finding the null space of the J⃗y0 .17

In most cases, a point on this tangent line that is sufficiently close to y⃗0 will be near a solution of g⃗(⃗y) = 0⃗.
So, we can use a point on the tangent line as the initial condition for a numerical solver of g⃗(⃗y) = 0⃗. This
idea, along with techniques to handle certain edge cases, comprises the arclength continuation algorithm.

3.1.2 Bifurcations

A bifurcation is a point on the homotopy g(⃗x,λ ) = 0 where the number of solutions and stability of such
solutions changes. For an example, see the “pitchforks” in Figure 14. [26] characterizes quantum Ising
machines as finding the lowest-energy state (equivalently, the minimum Ising Hamiltonian value) via traversal
of bifurcations (where the system is viewed as a homotopy, with λ being a system parameter that is varied).
We hope to understand whether and how this concept applies to the dynamics of OIMs, setting λ = Ks.

3.2 Motivation: One-Dimensional System

We first considered the simplest possible OIM: a system with two spins, coupled with strength proportional
to J12. The Ising Hamiltonian evaluates to

H =−J12s1s2 =

{
−J12, s1 = s2

J12, s1 ̸= s2
, (62)

16In this case, the gradient of the Lyapunov function is exactly equal to dφ⃗/dt, with a constant offset of −Ks.
17Assuming the dimension of the null space is 1, which is common but not guaranteed. Techniques exist to deal with a

higher-dimensional null space.
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as s1,s2 ∈ {±1}.
There are four possible combinations of spins (two spins, each with two possible values), but only two

values of the Ising Hamiltonian. Multiplying all spins by −1 will not change the value of the Hamiltonian.
So, we can simplify the system by considering s1 relative to s2: we fix the value of s2 at 1 to get

H =−s1J12. (63)

This concept generalizes to higher dimensions: we can always fix the value of the final spin at 1. For this
two-spin system, the Hamiltonian is minimized when s1 =−sgn(J12), and the minimum value is −|J12|.

The Kuramoto equation and Lyapunov function for this system are as follows:

d
dt

φ1(t) =−KcJ12 sin(φ1)−Ks sin(2φ1)≜− f1(φ1), (64)

E(φ1) =−J12 cos(φ1)−
Ks

2Kc
cos(2φ1). (65)

Thus, a solution to the Kuramoto equations must have

0 =
d
dt

φ1(t) =−KcJ12 sin(φ1)−Ks sin(2φ1). (66)

In addition, as described in Section 1.2.3, an operating point is stable if and only if

d
dφ1

d
dt

φ1(t)< 0 =⇒ KcJ12 cos(φ1)+2Ks cos(2φ1)> 0. (67)

If the state is perturbed slightly in the neighborhood of a stable operating point, φ ∗
1 , the system dynamics will

ensure that the state returns to φ ∗
1 .18 As d

dφ1
E =−dφ1

dt = f (φ1), a stable operating point is one such that the
derivative of the Lyapunov function is 0 and its second derivative is positive, i.e., the set of stable operating
points is equivalent to the set of local minima of the Lyapunov function.

For a one-dimensional system, the stable and unstable operating points can be analytically determined.
Applying trigonometric identities, we get that

f (φ1) = KcJ12 sin(φ1)+Ks sin(φ1)cos(φ1) = sin(φ1)(KcJ12 +Ks cos(φ1)) , (68)

so the solutions are sin(φ1) = 0, i.e., φ1 ∈ {0,π}, and cos(φ1) =
KcJ12

Ks
. If
∣∣∣KcJ12

Ks

∣∣∣≥ 1, the only solutions are

{0,π};19 otherwise, there will be four solutions.
Applying trigonometric identities to the stability condition, we have that an operating point is stable if

and only if
KcJ12 cos(φ1)+4Ks cos2(φ1)−2Ks > 0. (69)

Applying this condition to each possible solution,

• The φ1 = 0 solution is stable iff

0 < KcJ12 cos(0)+4Ks cos2(0)−2Ks = KcJ12 +2Ks =⇒ Ks >−KcJ12

2
.

18Intuitively, if the state is φ∗
1 + ε , for sufficiently small ε > 0, then (by a first-order Taylor approximation), dφ1/dt will be

negative, and φ1 will decrease until it returns to φ∗
1 . Similar logic applies for φ1 = φ∗

1 − ε .
19If

∣∣∣KcJ12
Ks

∣∣∣= 1, then KcJ12 +Ks cos(φ1) = 0 when cos(φ1) = 1 or cos(φ1) =−1, which occur at φ1 = 0 and φ1 = π , respectively.
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• The φ1 = π solution is stable iff

0 < KcJ12 cos(π)+4Ks cos2(π)−2Ks =−KcJ12 +2Ks =⇒ Ks >
KcJ12

2
.

• If 0 < KcJ12
Ks

< 1, then the cos(φ1) =
KcJ12

Ks
solution is stable iff

0 < KcJ12 cos(π)+4Ks cos2(π)−2Ks =
(KcJ12)

2

Ks
+4Ks

(KcJ12)
2

K2
s

+2Ks,

which is true iff Ks < 0. This is only possible if J12 < 0.

• Likewise, If −1 < KcJ12
Ks

< 0, then the cos(φ1) =
KcJ12

Ks
solution is stable iff Ks > 0 (J12 > 0).

3.2.1 Homotopy Experiment

We now examine the stable operating points under a simple form of parameter cycling: keeping Kc

constant, increasing the value of Ks from some negative number, −K, to some positive number, K. for the
purposes of this section, we choose K = 2.

To visualize the solutions that we analytically determined for the one-dimensional system, we performed
arclength continuation to determine the homotopy 0 = f (φ1,Ks)≜−dφ1

dt , with respect to the parameter Ks.
The following starting points were sufficient to determine all solutions:

1. φ1 = 0 and Ks = K, initially decreasing Ks: this will find the φ1 = 0 solution.

2. φ1 = π and Ks = K, initially decreasing Ks: this will find the φ1 = π solution.

3. φ1 ≈ π

2 and Ks = K, initially decreasing Ks: If J12 > 0, this finds the section of the cos(φ1) =
KcJ12

Ks

solution where 0 < KcJ12
Ks

< 1. If J12 < 0, this finds the section where −1 < KcJ12
Ks

< 0. Note that, as Ks

increases, KcJ12
Ks

approaches 0, meaning that this solution approaches φ1 =±π

2 .

4. φ1 ≈ π

2 and Ks =−K, initially increasing Ks: If J12 > 0, this finds the section of the cos(φ1) =
KcJ12

Ks

solution where −1 < KcJ12
Ks

< 0. If J12 < 0, this finds the section where 0 < KcJ12
Ks

< 1.

As the stability of the solutions depends only on the sign of J12, we performed this experiment with J12 = 1
and J12 =−1. Plots for both experiments are pictured in Figure 14.

For both cases (J12 =±1), there are four stable solutions at Ks =−K. φ1 = 0 and π are unstable, and the
two branches of cos(φ1) =

KcJ12
Ks

are stable. Both cases also have four stable solutions at Ks = K, where 0
and π are stable, and cos(φ1) =

KcJ12
Ks

is unstable. The region in between, however, differs between the two
experiments.

For J12 = 1, KcJ12
Ks

approaches 1 as Ks → −1
2 , so both branches of cos(φ1) =

KcJ12
Ks

approach φ1 = 1.
When φ1 = −1

2 , there is a bifurcation point: the cos(φ1) =
KcJ12

Ks
solution “disappears,” and the φ1 = 0

solution becomes stable. For −1
2 < Ks <

1
2 , the only solutions are φ1 = 0 and φ1 = π , and only the φ1 = 0

solution is stable. At Ks =
1
2 , there is another bifurcation point: the φ1 = π solution becomes stable, and the

cos(φ1) =
KcJ12

Ks
solution re-emerges, this time starting at φ1 = π and approaching ±π

2 as Ks increases further.
For J12 =−1, both branches of cos(φ1) =

KcJ12
Ks

approach φ1 = π as Ks →−1
2 , and the φ1 = π solution

becomes stable at that bifurcation point. Then, at the φ1 =
1
2 bifurcation, the φ1 = 0 solution becomes stable

and the unstable cos(φ1) =
KcJ12

Ks
solution branches out from φ1 = 0. In the region between the two bifurcation

points, only the φ1 = π solution is stable.

27



Fig. 14: Homotopy curves for the one-dimensional Kuramoto system, with Kc =
1
2 and Ising coupling of 1 (left) and −1 (right).

3.2.2 Asymmetry and Homotopy Plots

In the previous analysis, we assumed that each oscillator has the exact same SYNC current injection. We
also wish to examine how asymmetry between spins affects the solutions of the Kuramoto equations under
parameter cycling. To do so, we introduce asymmetry in the form of a phase shift of the SYNC signal:

d
dt

φ1(t) =−KcJ12 sin(φ1)−Ks sin(2φ1 −α1), (70)

where we refer to α1 as the asymmetry constant for oscillator 1 (with respect to the fixed oscillator 2).

Fig. 15: Homotopy curves for the one-dimensional Kuramoto system, with Kc =
1
2 , positive coupling, and small positive (left) and

negative (right) asymmetry constants.

Homotopy curves for systems with asymmetry values of ±0.1 are shown in Figure 15 (positive coupling)
and Figure 16 (negative coupling). In all cases, the asymmetry “breaks” the pitchfork bifurcations into two
separate segments. The bifurcations are each split into two segments: one continuous segment that is either
consistently stable or consistently unstable for all Ks, and one “sideways U”-shaped segment that has a stable
branch and an unstable branch.
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Fig. 16: Homotopy curves for the one-dimensional Kuramoto system, with Kc =
1
2 , negative coupling, and small positive (left) and

negative (right) asymmetry constants.

For positive coupling, the consistently stable curve starts at φ1 ≈−π

2 at Ks =−K and moves to φ1 = 0
near Ks = −1

2 . The consistently unstable curve starts at φ1 = π and moves to φ2 ≈ π

2 near Ks =
1
2 . For

negative coupling, the stable curve starts at φ1 ≈ 3π

2 and moves to φ1 = π near Ks =−1
2 . The unstable curve

starts at φ1 = 0 and moves to φ1 ≈ π

2 near Ks =
2
2 . It may be significant that, in both cases, the stable curve

converges to the value of φ that minimizes the Ising Hamiltonian (if we set s1 = 1 when φ = 0 and s1 =−1
when φ =−π). More exploration is needed on the role of asymmetry in Ising Hamiltonian minimization,
especially for higher-dimensional systems.

3.2.3 Connection Between Stability of φ1 ∈ {0,π} and the Ising Hamiltonian

In a Kuramoto system with no asymmetry, the grid points (φ⃗ ∈ {0,π}n) will always be equilibria of the
Kuramoto equations, (19), as all of the sines will become zero. We would like to quantify when a grid point
is a stable equilibrium and draw a connection to the stability region of a grid point and the Ising Hamiltonian,
evaluated at that grid point.

For a one-dimensional system, the connection is clear: a grid point is stable, if and only if, Ks
Kc

> cos(φ1)
J12
2 .

Setting the Ising spin value as s1 ≜ cos(φ1), we get that the grid point is stable when

Ks

Kc
>−cos(φ1)

J12

2
=−1

2
J12s1 =

1
2

H(s1), (71)

where H(s1) is the Ising Hamiltonian, evaluated at s1 = cos(φ1). So, the grid point corresponding to the
lower Hamiltonian (i.e., the solution to the Ising problem), will become stable first as we increase Ks from
Ks =−K <−Kc

2 .
Let us assume that, as we cycle Ks from −K to K, that the state remains in the neighborhood of a stable

equilibrium point at all times.20 Then this, combined with the analysis of Figure 14, guarantees that the
system will settle to the grid point that minimizes the Ising Hamiltonian as we increase Ks.

We hope to explore whether such a connection exists, theoretically and experimentally, for higher-
dimensional systems. The current work in this direction is described in the rest of this report, and there is
much future research to be done.

20Based on the Lyapunov minimization property, the state will converge to a stable equilibrium point given that Ks is held constant
for long enough. So, this is a reasonable assumption to make if we cycle Ks slowly enough.
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3.3 Visualization of Solutions to a Two-Dimensional System and Stability Regions

We will now consider a two-dimensional system: three coupled oscillators, where our frame of reference
is the phase of the third oscillator (i.e., we fix s3 = 1, or φ3 = 0). The Kuramoto equations are

d
dt

φ⃗ =

[ d
dt φ1
d
dt φ2

]
=

[
−KcJ12 sin(φ1 −φ2)−KcJ13 sin(φ1)−Ks sin(2φ1)
−KcJ12 sin(φ2 −φ1)−KcJ23 sin(φ2)−Ks sin(2φ1)

]
≜− f⃗ (φ⃗1) =

[
− f1(φ⃗)

− f2(φ⃗)

]
, (72)

the Lyapunov function is

E(φ⃗) =−J12 cos(φ1 −φ2)− J13 cos(φ1)− J23 cos(φ2)−
Ks

2Kc
cos(2φ1)−

Ks

2Kc
cos(2φ1), (73)

and the Ising Hamiltonian is

H =−J12s1s2 − J13s1s3 − J23s2s3 =−J12s1s2 − J13s1 − J23s2. (74)

As it is much less tractable to analytically determine stable solutions than for the one-dimensional case, and
analytical solutions (if possible to determine for a general three-node graph) are likely to be complicated and
not yield immediate insight, we aim to visualize:

1. Setting Kc at 1
2 , how the stable and unstable solutions to the Kuramoto equations change as we vary Ks

from −K to K (for a sufficiently-large value of K).

2. For a fixed ratio Ks
Kc

, the locations of the stable and unstable equilibria. If the system is given an initial
condition φ⃗ 0, how can we determine the steady state, limt→∞ φ⃗(t) = φ⃗ ∗, where φ⃗ ∗ is a stable solution?

3.3.1 Kuramoto Equilibria, Varying Ks: Homotopy Experiments

To determine the solutions of the two-dimensional Kuramoto system under Ks cycling, we perform
homotopy experiments similar to Section 3.2.1. As before, we pay special attention to the system behavior as
we pass across bifurcation thresholds.

The arclength continuation initial conditions were all permutations of φ1,φ2 ∈
{

0, π

2 ,π,
3π

2

}
, at both

Ks =−3 ≜−K and Ks = K. This is because, as Ks →±∞ (and the SYNC term dominates), the solutions
approach φ1,φ2 ∈

{
0, π

2 ,π,
3π

2

}
. So, for a relatively high value of Ks, all of the solutions will be near these

initial conditions. This procedure is not guaranteed to give us all solutions to the Kuramoto equations,
∀Ks ∈ [−K,K], but it is sufficient to at least partially understand how the system evolves under parameter
cycling.

Homotopy curves for three random coupling matrices are shown in Figures 17 to 19. The solutions
are colored based on whether they are a minimum (green), maximum (red), or saddle point (orange) of the
Lyapunov function. Due to the large number of solutions at any given value of Ks and overall complexity of
the homotopy curves, it is difficult to draw definitive, overarching conclusions about the Kuramoto solutions.
However, we have seen trends, specifically in bifurcations and stability of the grid points, that provide
directions for future research.

Notably, we tend to see pitchfork bifurcations, as we did for the one-dimensional system, when grid
points become stable. We see similar bifurcations when a grid point goes from being a local maximum
of the Lyapunov function to a saddle point. If the bifurcations occur at smaller Ks, the pitchfork tends to
point towards −K. In these cases, the stability of the outer solutions matches the stability of the grid point
at Ks = K∗

s + ε , where K∗
s is the location of the bifurcation and ε > 0 (e.g., they are stable if the grid point

becomes stable at the bifurcation). For bifurcations at larger Ks, the pitchfork points towards K and the
stability of the outer solutions matches the stability of the grid point at K∗

s −ε (e.g., they are Lyapunov saddle
points if the grid point becomes stable).
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Fig. 17: Homotopy curves for J =

 0 3.90 2.27
3.90 0 −0.39
2.27 −0.39 0

 and Ks =
1
2 , where λ = Ks. As this is a 3D plot, we show two different

angles. Stable solutions are plotted in green, local maxima of the Lyapunov function are plotted in red, and saddle points of the
Lyapunov function are plotted in orange. Note that φ1 and φ2 are plotted in the range [0,2π], so some of the curves appear to be split
in half due to phase wrapping.

Fig. 18: Homotopy curves for J =

 0 −2.90 2.61
−2.90 0 −3.33
2.61 −3.33 0

 and Ks =
1
2 , from two angles.
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Fig. 19: Homotopy curves for J =

 0 −1.75 4.47
−1.75 0 −3.96
4.47 −3.96 0

 and Ks =
1
2 , from two angles.

It might be significant that grid points that become stable at lower Ks tend to have pitchfork bifurcations
pointing towards −K. When we increase Ks, if the state follows the stable prongs of the bifurcation, it
will end up at the grid point. As explored in Section 3.5, for many Ising problems, there is a correlation
towards grid points being stable at lower Ks and global minimization of the Ising Hamiltonian. So, there may
be a connection between traversing these bifurcations and the ability of OIMs to find global Hamiltonian
minima. This intuition provides context for future analytical work in understanding bifurcations of the
two-dimensional Kuramoto system.

We also considered the two-dimensional Kuramoto system with asymmetry, i.e.,

d
dt

φ⃗ =

[ d
dt φ1
d
dt φ2

]
=

[
−KcJ12 sin(φ1 −φ2)−KcJ13 sin(φ1)−Ks sin(2φ1 −α1)
−KcJ12 sin(φ2 −φ1)−KcJ23 sin(φ2)−Ks sin(2φ1 −α2)

]
. (75)

Some homotopy plots for systems with asymmetry are shown in Figures 20 and 21. As with the one-
dimensional system, the asymmetry “breaks” the pitchfork bifurcations (even if only one oscillator has
asymmetry). Beyond this fact, more exploration is required to understand the solutions of the two-dimensional
asymmetric Kuramoto system.

3.3.2 Kuramoto Equilibria for Fixed Ks

To examine the trajectory of the Kuramoto system from an initial condition φ⃗ 0 with respect to mini-
mization of the Lyapunov function, we plotted φ⃗ superposed on the level sets of E(φ⃗). The results for two
different coupling matrices and initial conditions are shown in Figure 22.

The trajectory is orthogonal to the level sets of the Lyapunov function (i.e., tangent to the gradient), as
dφ⃗

dt ∝ − d
dφ⃗

E(φ⃗).21 As a result, we can use features of the Lyapunov function and the Lyapunov minimization

property to demarcate regions of the φ⃗ space such that converge to each stable operating point.
Empirically, we have seen that the the φ⃗ space is almost always subdivided by a series of simple closed

curves that we call “ridges,” were the interior of each curve contains exactly one local minimum. We define a

21As a side note, we can think of the Kuramoto system as performing gradient descent on the Lyapunov function, φ⃗(tk+1) =
φ⃗(tk)−η

d
dφ⃗

E(φ⃗), where tk+1 − tk → 0, η → 0, and η

tk+1−tk = 1
Kc

.
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Fig. 20: Homotopy curves for J =

 0 2.84 4.60
2.84 0 −0.17
4.60 −0.17 0

, Ks =
1
2 , and

[
α1
α2

]
≜ α⃗ =

[
0.1
−0.2

]
, from two angles. Note that phase

wrapping has caused some single-point curves to appear: those are an artifact of plotting, not of the system itself.

Fig. 21: Homotopy curves for J =

 0 0.10 3.34
0.10 0 −2.28
3.34 −2.28 0

, Ks =
1
2 , and α⃗ =

[
0

0.1

]
, from two angles.
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(a) J =

0 1 1
1 0 1
1 1 0

, φ⃗ 0 =

[
4.5
1.4

]
, and Ks = 0.75. (b) J =

 0 −2 −4.45
−2 0 1.82

−4.45 1.82 0

, φ⃗ 0 =

[
3
3

]
, and Ks =−0.2.

Fig. 22: State, φ⃗ =
[
φ1 φ2

]⊤, of the Kuramoto system, for two different coupling matrices and initial conditions, and values of Ks

(with Kc =
1
2 ). The initial condition is represented by ♦ and the steady state is represented by •. φ⃗ , being a phase, is plotted mod 2π ,

and there is phase wrapping in the left plot.

ridge as a curve such that every point is a local maximum of the Lyapunov function in the direction orthogonal
to the curve. Intuitively, these look like ridges in geology: areas that are “raised” with respect to their
surroundings. By this definition, ∇E(φ⃗) is tangent to the curve. Either ∇E(φ⃗) = 0 or the direction orthogonal
to ∇E(φ⃗) must be aligned with an eigenvector of ∇2E(φ⃗) corresponding to a negative eigenvalue. Though
we have yet to prove that such ridges are guaranteed to exist, we will consider the behavior of the system in
the case that they do exist.

We would like to prove that the ridges determine the steady state corresponding to each initial condition.
Namely, if the system’s initial condition starts in the interior of a ridge, then we hypothesize that the state
will always converge to the local minimum of the Lyapunov function contained within that ridge. We have
made progress towards a proof of this, based on the Lyapunov minimization property of the Kuramoto
system. In this proof, we have the additional constraint that, ∀λ (φ⃗), where λ (φ⃗) is the eigenvalue of ∇E(φ⃗)
corresponding to the direction orthogonal to the ridge, λ (φ⃗)≤−λ ∗ < 0.

1. The state will never leave the interior of the ridge.

We first show that, ∃ε > 0 such that, ∀φ⃗ 0 a distance of less than ε from the ridge, there is a component
of dφ⃗

dt that points away from the ridge. Let φ⃗ r be the point on the ridge closest to φ⃗ 0. We know that
(φ⃗ 0 − φ⃗ r) is orthogonal to the ridge, or (φ⃗ 0 − φ⃗ r)⊥ ∇E(φ⃗ r).

By the Taylor approximation of ∇E⃗(φ) around φ⃗ r,

− 1
Kc

dφ⃗

dt

∣∣∣∣
φ⃗ 0

= ∇E(φ⃗ 0) = ∇E(φ⃗ r)+∇
2E(φ⃗ r)(φ⃗ 0 − φ⃗ r)+O

(∥∥∥φ⃗ 0 − φ⃗ r

∥∥∥2

2

)
= ∇E(φ⃗ r)+λ (φ⃗ r)(φ⃗ 0 − φ⃗ r)+O

(∥∥∥φ⃗ 0 − φ⃗ r

∥∥∥2

2

)
.

The remainder terms, represented by O
(∥∥∥φ⃗ 0 − φ⃗ r

∥∥∥2

2

)
, are ≤ α

∥∥∥φ⃗ 0 − φ⃗ r

∥∥∥2

2
≤ αε2 in magnitude,
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where α > 0 is a constant based on the higher-order terms of the Taylor series.22 So, the component
of dφ⃗

dt

∣∣
φ⃗ 0

orthogonal to the ridge lies between 1
Kc
(−λ (φ⃗ r)−αε)ε u⃗ and 1

Kc
(−λ (φ⃗ r)+−αε)ε u⃗, where

u⃗ is the unit vector pointing in the direction of φ⃗ 0 − φ⃗ r (away from the ridge. If ε < λ ∗/α , then, as
λ (φ⃗ r)<−λ ∗ < 0, this component is guaranteed to point away from the ridge.

Intuitively, since dφ⃗

dt has a component pointing away from the ridge, the system’s trajectory will push
the state farther from the ridge. In future research, we hope to prove this rigorously.

2. The system is guaranteed to settle at a local minimum of the Lyapunov function. As the state must
remain inside the curve, it will settle to the unique local minimum in the ridge’s interior.

The fact that ∇E(φ⃗) =− 1
Kc

dφ⃗

dt is tangent to the ridge allows us to find ridges via transient simulation: if
we start transient simulation of the Kuramoto equations at a point precisely on a ridge, then the system will
trace the shape of the ridge. If there is numerical error (due to finite-precision floats and finite simulation
timestep), however, the state will not remain precisely on the ridge. In that case, as derived above, it will
instead settle to a local minimum of the Lyapunov function somewhere in the interior of the ridge.

We can circumvent this by negating the Kuramoto equations (and, therefore, their Lyapunov function).
Loosely speaking, a ridge is now a local minimum of E(φ⃗) in its orthogonal direction, meaning that the
system will return to the ridge after a small deviation from the curve. This intuition yields the following
practical algorithm for finding ridges of the Lyapunov function:

1. Find the local maxima and saddle points of the Lyapunov function. Unless the ridge is constant-valued,
it will contain at least one local maximum of the Lyapunov function and one saddle point. This
is because the ridge is a closed set and the Lyapunov function is continuous, so E : C → R, where
C denotes the ridge, attains a maximum and minimum on C. As the Lyapunov function is a local
maximum in the direction orthogonal to the ridge, a local maximum of E : C → R is a local maximum
of E : R2 → R, and a local minimum of E : C → R is a saddle point of E : R2 → R. By similar logic,
between any two distinct, adjacent local maxima on the ridge, there will be one saddle point.

2. For every saddle point, negate Kc and Ks, and therefore the Kuramoto equations and Lyapunov function
and run two transient simulations:

(a) Set the initial conditions to be on either side of the saddle point. Specifically, the initial conditions
are φ⃗ s+ε v⃗ and φ⃗ s−ε v⃗, where φ⃗ s is the saddle point, ε is a small constant, and v⃗ is the eigenvector
of ∇2E(φ⃗ s) (the original non-negated Lyapunov Hessian) with a positive eigenvalue (⃗v must be
tangent to the ridge, assuming the saddle point lies on a ridge: by the Spectral Theorem, it is
orthogonal to the eigenvector with a negative eigenvalue).

(b) Run transient simulation, starting at each initial condition. As dφ⃗

dt ∝ ∇E(φ⃗), this will trace the
ridge, ending at a local minimum of the negated Lyapunov function.

Results of this procedure, applied to random coupling matrices and various values of Ks, are in Figure 23.
In Figure 24, we plotted the results on top of a surface plot of the Lyapunov function to verify, visually, that
the procedure indeed traced the ridges of the Lyapunov function.

22α can be assumed to be absolute with respect to φ⃗ r. Since the Lyapunov function is a finite linear combination of sinusoids,
there exists an absolute bound on each term of the third derivative of E with respect to φ⃗ . So, by the Taylor remainder theorem, an
absolute bound can also be placed on the remainder term of the Taylor approximation.
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Fig. 23: Presumed ridges of the Lyapunov function, plotted on top of the level sets of the Lyapunov function, for various values of J
and Ks (Kc is fixed at 1

2 ). Stable solutions of the Kuramoto equations are shown as red dots. To showcase the continuous and closed
nature of these curves, φ1 and φ2 are plotted between 0 and 4π instead of 0 and 2π . Deep blue represents the lowest values of the
Lyapunov function, and yellow represents the highest values.
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Fig. 24: Ridges from Figure 23, on a 3D plot of the Lyapunov function.

37



3.4 Eigenvalues of the Lyapunov Hessian for Grid Points

In general, a solution to the Kuramoto equations is stable if and only if the Jacobian of the Kuramoto
equations, d

dφ⃗

dφ⃗

dt , is negative definite. Equivalently, the Hessian of the Lyapunov function must be positive
definite (PD), i.e., all of its eigenvalues must be positive.

First, let us determine the relationship between the stability of φ⃗ ∈ {0,π}n (which, as mentioned in
Section 3.2.3, will always be operating points) and the ratio Ks

Kc
. To do so, we split the Lyapunov function

onto two functions: one representing contributions of couplings between spins, and one representing the
contribution of SYNC: E(φ⃗) = Ec(φ⃗)+Es(φ⃗), where

Ec(φ⃗) =−1
2 ∑

i
∑

j
Ji j cos(φi −φ j), (76)

Es(φ⃗) =− Ks

2Kc
∑

i
cos(2φi). (77)

So, by the linearity of differentiation,

∇
2E(φ⃗) = ∇

2Ec(φ⃗)+∇
2Es(φ⃗), (78)

where ∇2Ec(φ⃗) does not depend on Ks
Kc

and

∇
2Es(φ⃗) =

2Ks

Kc
diag(cos(2φ1), . . . ,cos(2φn)) . (79)

At grid points, cos(2φi) = 1, so ∇2Es(φ⃗) becomes 2 Ks
Kc

times the identity matrix. This matrix has the form
∇2Ec(φ⃗)+2 Ks

Kc
I; as such, the eigenvalues of ∇2E(φ⃗) have a linear relationship with Ks

Kc
:

λi

{
∇

2E(φ⃗)
}
= λi

{
∇

2Ec(φ⃗)
}
+2

Ks

Kc
. (80)

This has a few relevant consequences:

1. If a grid point is stable for Ks = Ks,0, then it will be stable ∀Ks ≥ Ks,0.

2. Fix φ⃗ 0 ∈ {0,π}n, and denote the minimum eigenvalue of the Hessian as λmin,φ⃗ 0
. If λmin,φ⃗ 0

is positive,

then the grid point φ⃗ 0 is stable, as all of the eigenvalues of the Lyapunov Hessian are positive. If we
set Ks to some constant and order λmin,φ⃗ , for all grid points, that ordering will remain constant as we

vary Ks. Thus, we only need to consider the eigenvalues of ∇2Ec(φ⃗) to determine the which grid point
becomes stable first as we cycle Ks.

Analytically determining a relationship between the eigenvalues of the Lyapunov Hessians for the two-
dimensional (three-spin) Kuramoto system and the corresponding Hamiltonian is a direction for future
research. As of now, we have not analytically found a conclusive relationship. However, we have empirically
seen a connection between the minimum Hamiltonian and the grid point with the largest λmin. Two examples
of this phenomenon, as well as the linear relationship between λmin and Ks, are shown in Figure 25. The
smallest eigenvalue of ∇2E(φ⃗) at grid points is plotted with respect to Ks, for a randomly-generated two-
dimensional (three-spin) and three-dimensional (four-spin) Ising problem.

In both cases, the grid point with the largest eigenvalue also corresponded to the lowest Hamiltonian
values. This indicates that there might be some relationship, either analytical or probabilistic, between the
grid point that minimizes the Ising Hamiltonian and the one with the largest λmin. As the value of λmin
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determines at which Ks the grid point first becomes stable, this would mean that the grid point that becomes
stable first under Ks cycling (as we increase Ks starting from some negative value) is likely to be the one that
minimizes the Ising Hamiltonian.

In lieu of analytical results, we have turned to Monte Carlo-style experiments to quantify when and how
often this phenomenon occurs.

(a) J =

 0.00 0.73 −2.69
0.73 0.00 −3.65
−2.69 −3.65 0.00

, Kc =
1
2 . (b) J =


0.00 −3.64 4.55 0.72
−3.64 0.00 −4.96 3.83
4.55 −4.96 0.00 4.92
0.72 3.83 4.92 0.00

, Kc =
1
2 .

Fig. 25: Minimum eigenvalue of the Lyapunov Hessian, plotted with respect to Ks.

3.5 Results: Monte Carlo Simulations

Although there is not a direct relationship between the eigenvalues of ∇2E(φ⃗) and the value of the Ising
Hamiltonian at grid points, we empirically saw a correlation between the configuration of spins producing
the minimum Hamiltonian and the grid point that becomes stable with the lowest Ks.

To verify this, we ran Monte Carlo simulations to determine the probability that the grid point with the
largest λmin corresponds to the “ground state,” or minimum Ising Hamiltonian. To do so, we first generate
some large number of Ising coupling matrices. For every coupling matrix, we perform a brute force search
over all configurations of spins (⃗s ∈ {±1}n, where n is the number of non-fixed spins), storing the spin
configurations that produce the minimum Hamiltonian and the maximum λmin. We then determine the
Hamming distance between the two sets of spin values (i.e., the number of spins that differ between the two).
The proportion of Hamming distances that are zero estimates the desired probability.

3.5.1 Uniform Random Coupling Matrices

First, we generated random coupling matrices, where each non-diagonal element of J was sampled from
uniform distribution between −10 and 10. For problem sizes (number of spins, minus one) ranging from two
to eight, we generated 50,000 coupling matrices of each size. Histograms of the Hamming distances produced
by these experiments are in Figure 26. As the problem size increases, the height of the “0’ Hamming distance’
bin decreases (resulting in less correlation between the ground state and the spins producing the largest λmin).
Outside of the “0 Hamming distance” bin, the heights of the bins increase as the Hamming distance increases.
It is unclear whether this fact is relevant.

We also plotted histograms of the difference between the λmin of the grid point that minimizes the Ising
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Hamiltonian and the largest λmin across all grid points (Figure 27). For all problem sizes shown, there is a
large “zero” bin (the eigenvalues are identical), with a small Gaussian-looking tail pointing toward the left.
The height of this Gaussian increases as the problem size increases, indicating increased differences in the
two eigenvalues (the eigenvalues of the Lyapunov Hessian for the ground state deviate more from the largest
λmin for all grid points).

(a) Two non-fixed spins: 2.860% of 50,000 runs yielded a non-zero
Hamming distance.

(b) Four non-fixed spins: 14.284% of 50,000 runs yielded a non-zero
Hamming distance.

(c) Six non-fixed spins: 25.650% of 50,000 runs yielded a non-zero
Hamming distance.

(d) Eight non-fixed spins: 34.686% of 50,000 runs yielded a non-zero
Hamming distance.

Fig. 26: Histogram of Hamming distances for uniform random Ising coupling matrices, over 50,000 runs.

3.5.2 MU-MIMO Coupling Matrices

Results from random coupling matrices, however, do not necessarily apply to real-world problems. So,
we also performed Monte Carlo experiments on small MU-MIMO problems with varying sizes and numbers
of scatterers.23 We chose MU-MIMO problems in particular because OIMs perform well on classes of these

23The size of the problems we can consider is limited, as each Monte Carlo iteration involves doing a brute force search over
O(2n) different spin configurations.
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(a) Two non-fixed spins. (b) Four non-fixed spins.

(c) Six non-fixed spins. (d) Eight non-fixed spins.

Fig. 27: Histogram of {λmin of the ground state − largest λmin across all grid points}, for the random coupling matrices from
Figure 26.
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problems [27], and it is of interest to investigate when and why this is the case. The process for generating
coupling matrices, as well as the relevance of different problem parameters, is described in Section 2.5.1.

Transmitters Receivers Scatterers % of Runs with Non-zero Hamming Distance

6 12 20 0.264%
6 12 12 0.768%
6 12 6 2.624%
6 12 3 7.740%
6 12 2 12.352%

10 20 100 0.038%
10 20 10 2.78%
10 20 5 9.46%
10 20 3 17.824%
10 20 2 25.342%

12 24 100 0.024%
12 24 20 0.956%
12 24 12 2.916%
12 24 6 10.836%
12 24 2 31.158%

Fig. 28: Percentage of 25,000 Monte Carlo runs that yielded a non-zero Hamming distance, for Ising coupling matrices derived from
MU-MIMO problems, varying the problem size and number of scatterers.

Some results for problems with six, ten, and twelve non-fixed spins are in Figure 28. For a high enough
number of scatterers (e.g., twelve scatterers for the size-six problem and 20 for the size-twelve problem),
the ground state matched the grid point with the highest λmin for over 99% of Monte Carlo iterations. Then,
as the number of scatterers decreases, so does the proportion of runs where the same set of phases yields
the minimum Hamiltonian and largest λmin. Each problem size appears to have a “threshold” number of
scatterers, below which the probability of a non-zero Hamming distance increases rapidly. This threshold is
positively correlated with problem size. These results indicate that OIM, under parameter cycling, is less
likely to find global minima when the number of scatterers is below a threshold. In the future, we hope to
verify this via simulation of the Kuramoto equations.
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