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Abstract

A Composable Mixed-Signal Generator Framework with Applications to an SRAM
Compiler

by

Rahul Kumar

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Borivoje Nikolić, Chair

Generators are a key component in enabling analog/mixed-signal design automation, reuse,
and optimization. Existing generator frameworks suffer from being tightly integrated with
commercial tools, having performance limitations, and being difficult to customize to circuits
that require different styles of layout. In this thesis, we present Substrate, a new framework
for writing analog and mixed-signal generators. Substrate offers high performance, strongly-
typed APIs, and a wide set of utilities for schematic entry, layout entry, and functional
verification. To provide more compact SRAMs that are easy to integrate into digital flows,
we also develop SRAM22, an open-source SRAM generator for the Skywater 130nm open-
source process. We describe how SRAM22 utilizes Substrate features to generate compact
layout, while retaining the flexibility expected from a generator. SRAM22-generated SRAMs
have been integrated into RISC-V cores produced using both open-source and commercial
digital tools.
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Chapter 1

Introduction

1.1 Motivation

Chip design is expensive, with NRE costs in the ballpark of millions to hundreds of mil-
lions of dollars per chip [4]. With ever-changing process nodes, porting IP blocks and tool
configurations across processes becomes a painstaking endeavor. While digital circuits can
be produced mostly automatically from RTL, no such procedure for analog circuits is in
widespread use. The result is that analog blocks are, by and large, designed by hand, laid
out by hand, and verified by hand, with limited reuse of methodology. Furthermore, only a
small portion of analog design time is spent designing truly custom blocks. The majority is
spent designing and integrating mostly standard blocks, such as ADCs, PLLs, and LDOs.

Generators have emerged as a solution to the problem of encoding design methodology
and enabling greater automation and reuse [3, 7]. Generator frameworks allow users to write
code that accepts some set of parameters and produces instances of a circuit. While writing
a programmatic generator may sound good in principle, there are almost always times when
it is simply faster to design or lay out a circuit by hand. This is especially the case when
designing circuits that exploit process-specific devices or design rules. Thus, a good generator
framework must make it easy to incorporate designs produced outside the framework.

The Berkeley Analog Generator (BAG) is one generator framework developed at UC
Berkeley [2]. Although BAG has been used to design a variety of circuits [8], it has some
limitations. BAG is closely intertwined with Cadence Virtuoso, and although there are on-
going efforts to remove this dependency, BAG generators still require Virtuoso, at least for
initial setup. For open-source processes such as the Skywater 130nm process, the requirement
to have access to Virtuoso makes it difficult to write a standalone generator. Additionally,
BAG provides relatively few primitives for generating area-constrained layouts. The default
transistor cells provided by BAG PDK plugins are difficult to customize, since BAG expects
them to have certain properties (eg. particular gate/source/drain pitches). Fitting the ex-
isting BAG template cells into pitch-constrained layout environments is not always possible.
Another limitation is in routing flexibility. BAG routes are usually specified by assigning
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nets to track indexes via a YAML file. BAG does not support automatic signal routing. Fi-
nally, the use of Python as a language for writing generators precludes strict type-checking,
leading to runtime errors that could easily have been prevented at compile time. Python
also suffers from low performance, meaning that performance-sensitive algorithms must be
written in another language and then wrapped in a Python API. This makes writing flexible
layout algorithms much more tedious.

As a result, we believe that there is room for significant improvements in analog generator
workflows.

1.2 Thesis Organization

Chapter 2 provides a high-level overview of Substrate, a framework for writing analog/mixed-
signal generators. Chapter 3 describes SRAM22, an open-source configurable SRAM gener-
ator build on Substrate. Chapter 4 provides a conclusion and suggests future directions of
work.
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Chapter 2

Substrate

2.1 Architecture

Guiding Principles

Substrate aims to adhere to a few guiding principles:

1. Performance is flexibility. This holds true for both software and hardware.

2. Good APIs allow you to be lazy.

3. Methodology as a library. Substrate aims to be unopinionated about how you design
and lay out your circuits. Frameworks that more rigidly prescribes how circuits are
designed (eg. a library for strictly gridded layout) can be written as libraries using the
lower-level primitives in Substrate. Substrate PDK plugins, for example, are simply
libraries that implement a set of required functions. Substrate itself is a library, which
means that it can be used in any Rust project or library by simply adding it to a
Rust project’s dependency list. Consequently, there is no such thing as a “Substrate
workspace.”

Contexts

Substrate holds all state in a data structure called a context. The context caches circuits
that have been generated, and stores a handle to plugins (eg. for simulation or LVS) that
have been initialized. The context is thread safe and internally synchronized, so users can
run multiple Substrate generators in parallel.

Components

The primary building block in Substrate is a component. Substrate components are analo-
gous to “cells” or “modules” in other design systems. Components accept a set of parameters,
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and produce zero or more views. Substrate currently supports schematic, layout, and timing
views, though other views will likely be added in the future.

In the Rust language, a type is considered a component if it implements the Component
trait shown below:

pub trait Component: Any {

type Params: Serialize;

/// Creates a new instance of this component.

fn new(params: &Self::Params, ctx: &SubstrateCtx) -> Result<Self>

where

Self: Sized;

/// Returns the component name.

fn name(&self) -> ArcStr {

// ...

}

/// Generates a schematic.

fn schematic(&self, ctx: &mut SchematicCtx) -> Result<()> {

// ...

}

/// Generates a layout.

fn layout(&self, ctx: &mut LayoutCtx) -> Result<()> {

// ...

}

}

Components can contain instances of other components.
Substrate can perform the following operations on components:

• Export a schematic to a SPICE netlist

• Export a layout to GDS.

• Run LVS, DRC, or PEX, if an appropriate tool plugin is installed.

Testbenches

All testbenches are components with schematic views. This schematic view should be used
to instantiate voltage sources and the block being simulated.

Testbenches must also implement the Testbench trait, which provides hooks for:

• Setting up simulator analyses

• Including external libraries, if necessary

• Processing simulator output data
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Substrate testbenches are expected to provide the name of their ground net. Prior to
simulation, Substrate will connect this net to the global ground net of the simulator (typically
node 0).

Process Development Kits

Process development kits (PDKs) are ordinary Rust libraries that provide a type implement-
ing the Pdk trait shown below:

pub trait Pdk {

/// The name of the PDK.

fn name(&self) -> &'static str;

/// The name of the underlying process.

/// Will usually be equal to the PDK name.

fn process(&self) -> &'static str;

/// The default unit for lengths.

fn lengths(&self) -> Units;

/// The default unit for voltages.

fn voltages(&self) -> SiPrefix;

/// The layers available to designers.

fn layers(&self) -> Layers;

/// The supply voltages to be used with this PDK.

fn supplies(&self) -> Supplies;

/// Retrieves the list of MOSFETs available in this PDK.

fn mos_devices(&self) -> Vec<MosSpec>;

/// Provide the SPICE netlist for a MOSFET with the given parameters.

fn mos_schematic(&self, ctx: &mut SchematicCtx, params: &MosParams) -> Result<()>;

/// Draws MOSFETs with the given parameters

fn mos_layout(&self, ctx: &mut LayoutCtx, params: &LayoutMosParams) -> Result<()>;

/// Draws a via with the given params in the given context.

fn via_layout(&self, ctx: &mut LayoutCtx, params: &ViaParams) -> Result<()>;

/// The grid on which all layout geometry must lie.

fn layout_grid(&self) -> i64;

/// Called before running simulations.

///

/// Allows the PDK to include model libraries, configure simulation

/// options, and/or write relevant files.

fn pre_sim(&self, _ctx: &mut PreSimCtx) -> Result<()> {

Ok(())

}

/// Returns data that should be prepended to generated netlists,

/// depending on the netlist purpose and the process corner.

fn includes(&self, purpose: NetlistPurpose) -> Result<IncludeBundle> {

Ok(Default::default())
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}

/// Returns a database of the standard cell libraries available in the PDK.

fn standard_cells(&self) -> Result<StdCellDb> {

Ok(StdCellDb::new())

}

/// Returns a database of the available process corners.

fn corners(&self) -> Result<CornerDb> {

Ok(CornerDb::new())

}

}

The layers function returns a layer database, which includes information on GDS layer
numbers, layer purposes, and additional metadata (eg. identifying which metal/via lay-
ers and providing layer names). The standard_cells provides zero or more standard
cell libraries. The corners function provides zero or more process corners. Depending
on the corner the user selects, the PDK can include a different set of model libraries.
The mos_schematic and mos_layout functions instantiate PDK-specific CMOS devices in
schematic and layout mode, respectively. For further information on the other functions
available, see the Substrate documentation.

Since PDKs are simply libraries, they are free to provide functions other than the ones
specified here. For instance, a PDK may export a component for a unit capacitor, even
though Substrate currently does not have a unified API for creating capacitors.

2.2 Schematic Entry

A very simple schematic generator, which produces an ideal resistive voltage divider, is shown
below:

impl Component for VDivider {

// ...

fn schematic(&self, ctx: &mut SchematicCtx) -> Result<()> {

/// Create 3 ports: out, vdd, and vss.

let out = ctx.port("out", Direction::Output);

let vdd = ctx.port("vdd", Direction::InOut);

let vss = ctx.port("vss", Direction::InOut);

/// Instantiate a resistor between Vdd and out.

ctx.instantiate::<Resistor>(&SiValue::new(2, SiPrefix::Kilo))?

.with_connections([("p", vdd), ("n", out)])

.named("R1")

.add_to(ctx);
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/// Instantiate a resistor between out and ground.

ctx.instantiate::<Resistor>(&SiValue::new(1, SiPrefix::Kilo))?

.with_connections([("p", out), ("n", vss)])

.named("R2")

.add_to(ctx);

Ok(())

}

}

This starts by declaring three ports: out, vdd, and vss, with the specified directions.
We then instantiate 2 resistors: one with value 2 kΩ, and one with value 1 kΩ, and connect
them appropriately.

This schematic can easily be exported to a SPICE netlist:

ctx.write_schematic_to_file::<VDivider>(&NoParams, path);

Netlist generation in Substrate involves several passes:

1. Netlists are preprocessed to resolve duplicate net, instance, or module names.

2. The netlist is validated for correctness. This currently involves 3 analyses:

a) A name-validity analysis checks for duplicate or SPICE-incompatible names.

b) A netlist connectivity analysis verifies that all modules have their ports connected
and that all widths are matched.

c) A net driver analysis verifies that all input ports are driven by at least one source
and produces warnings if nets have multiple drivers.

3. A netlisting plugin maps the in-memory representation of Substrate components to
simulator specific syntax and writes the content of the netlist to an output stream
(usually a file).

2.3 Layout Entry

Most analog generators, Substrate included, produce layouts in roughly three steps:

1. Generate or import sub-components.

2. Place sub-components.

3. Route between sub-components.

The first step is described in more detail in Subcomponent Layout Generation, the second
step in Placement Utilities, and the third in Routing.
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Subcomponent Layout Generation

This section describes how base-layer components, such as transistors, resistors, and capac-
itors, can be generated or imported into Substrate.

Hard Macros

Hard macros allow users to import arbitrary layouts into Substrate, and use them as if they
were regular components. They are useful when you are incorporating externally-provided
cells (eg. provided by a foundry or generated by a tool other than Substrate), or where
writing generator code would be slower and have little benefit over a hand-drawn layout.

Hard macros can be incorporated into Substrate using the hard_macro attribute, which
is a Rust procedural macro.

#[hard_macro(

name = "sram_sp_cell",

pdk = "sky130-open",

path_fn = "path",

gds_cell_name = "sky130_fd_bd_sram__sram_sp_cell_opt1",

spice_subckt_name = "sram_sp_cell"

)]

pub struct SpCell;

The arguments to the procedural macro allow the user to specify a path function. The
path function accepts a single argument – a view type (ie. schematic or layout) – and
returns the path at which the appropriate view is stored (ie. a SPICE netlist or a GDS file,
respectively).

Hard macros can then be instantiated as regular Substrate components, in both layout
and schematic mode:

ctx.instantiate::<SpCell>(&NoParams);

Raw Layout Utilities

In the spirit of giving the user complete control over generated layout, Substrate allows users
to specify layouts down to individual polygons. To create layout geometry, users specify a
layer (obtained from the PDK API described in 2.1) and a shape.

There is a rich system of utilities for manipulating rectangular geometry, since rectangles
are the predominant shape in integrated circuit layouts. The Substrate documentation lists
the full set of helpers; an image of one page of the documentation is included here for
reference.

The raw layout system provides utilities for:

• Creating and resizing rectangles.
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Figure 2.1: An example page taken from Substrate’s geometry API documentation.

• Grouping layout elements (such as rectangles and instances of subcomponents).

• Relative placement/alignment of layout elements.

• Rotating/mirroring layout elements and groups of layout elements.

• Calculating bounding boxes.

• Flattening hierarchical layout elements.

• Trimming geometry that lies outside a masking shape.

Placement Utilities

The basis for all placement utilities in Substrate is the AlignRect trait, which provides
functions for rectangular/Manhattan positioning for types that are translatable and have a
bounding box.
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Users of the AlignRect trait specify an AlignMode, a reference bounding box or rectangle,
and a spacing. The implementation of the AlignRect trait then performs the computations
to place a new bounding box at the requested position relative to the reference box.

The AlignMode trait is shown below.

pub enum AlignMode {

Left,

Right,

Bottom,

Top,

CenterHorizontal,

CenterVertical,

ToTheRight,

ToTheLeft,

Beneath,

Above,

}

These options generally do what you expect. For example, AlignMode::Right aligns the
right edges of two boxes, whereas AlignMode::ToTheRight aligns one box to the right of
another box. If a spacing is specified, AlignMode::ToTheRight aligns the second box to the
right of the first box, while leaving the desired spacing in between.

Although the alignment API can be directly useful, it is often more convenient to use
higher-level abstractions when describing the layout of regular (eg. gridded) structures. To
this end, Substrate provides a variety of tiling APIs.

Each of Substrate’s tiling implementations takes as input one or more tiles, as well as
metadata about how to place those tiles:

• The ArrayTiler takes a list of tiles, and places them in a vertical or horizontal line.

• The GridTiler takes a 2D array of tiles, and places them in a grid.

• The nine patch tiler NpTiler takes 9 tiles, and two numbers, nx and ny. It tiles these 9
tiles in a manner similar to nine patch images. The center tile is repeated in an nx×ny

grid. The top and bottom edge tiles are repeated in an nx × 1 array directly above
and below the center tile grid, respectively. The left and right edge tiles are similarly
placed in an ny × 1 array. The corner tiles are placed, unrepeated, at the corners of
the center tile grid.

Each of these tilers uses the raw alignment API to position tiles. To avoid silent errors,
the tiling implementations check that tiles have compatible sizes. For example, in a grid
tiling instance, all tiles in the same column must have the same width, and all tile in the
same row must have the same height.
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To ensure that the tiling APIs are composable, the tilers have few requirements on what
can constitute a tile: anything can be tiled, as long as it can be drawn into a Substrate
layout, and it has a bounding box.

This flexibility makes it easy to add new tile types – to mark a type as tileable, it
just needs to be marked with the CustomTile trait (which in turn requires the type to be
drawable and have a bounding box). Indeed, Substrate uses this flexibility internally to
provide custom tile types of its own.

For example, it is common to tile objects according to their bounding box on a spe-
cific layer (rather than their overall bounding box). Tiling standard cells is a common
example in which this problem arises. In Substrate, supporting layer-specific bounding
box tiling requires no changes to the tiler implementation at all. Instead, Substrate pro-
vides the LayerBbox tile type, which implements the aforementioned CustomTile trait. The
LayerBbox constructor takes an inner tile (eg. a standard cell layout) and a layer identifier,
and exposes a standard tile API to the tiler:

• Drawing a LayerBbox tile simply results in drawing the inner tile.

• When calculating the bounding box, LayerBbox filters the elements of the inner tile,
considering only the elements on its selected layer.

Similarly, there is a Pad tile type, which adds padding to an inner tile as follows:

• Drawing the Pad tile simply draws the inner tile.

• The bounding box of the Pad tile is the bounding box of the inner tile, expanded by
the width of the padding.

These custom types are easily composable. For example, you can create a Pad tile that
wraps a LayerBbox tile that in turn wraps a “regular” tile.

Routing

There are three levels of routing abstraction in Substrate: 1. The lowest level of abstraction
deals with routing tracks. This layer provides utilities for calculating track locations, locating
tracks near a point, and creating half tracks (tracks that are half the width of a normal track,
with the expectation that two half tracks will abut to form a full-size track). 2. The second
level of abstraction handles manual routing. This layer is intended for situations in which
routing performance is important and the rough shape of the route is known in advance. One
such situation is routing the output of a standard cell inverter to the input of an adjacent
inverter. This layer provides methods for creating elbow jogs, S-shaped jogs, and collections
of multiple parallel jogs. 3. The third and highest level of abstraction is fully automatic
gridded routing. Users define a routing grid, then request that the router draw routes. Each
routing request contains a source location and layer, a destination location and layer, and
a net name string. Reusing a net name across multiple routing requests enables the router
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to reuse routes previously drawn on that net. The algorithm currently used for routing is
essentially breadth-first search; the router does not attempt to find globally optimal routes.

Further examples of the routing APIs are given later in this thesis, in the context of
SRAM22.
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Chapter 3

SRAM Generator

SRAM22 is an open-source SRAM generator for the Skywater 130nm open-source process.
SRAM22 programatically generates SRAM blocks by consuming:

1. A TOML configuration file, such as the one shown below.

2. A set of hard macros, including standard cells, a sense amplifier, and SRAM bitcells.

3. A summary of process design rules.

4. A Substrate PDK, which provides a parametric transistor generator.

SRAM22 does not attempt to be process-portable, even though many of the above com-
ponents can, in principle, be swapped out to port SRAM22 to a new process.

An example TOML configuration file is shown below:

num_words = 32

data_width = 32

mux_ratio = 2

write_size = 32

control = "ReplicaV1"

pex_level = "rcc"

These options configure the width/depth of the SRAM, the column muxing ratio, and
the write mask granularity. Since running PEX can often take hours or even days, the
pex_level option allows users to specify the level of accuracy desired.

An invocation of SRAM22 produces all collateral required for integrating SRAM into a
digital flow, including:

• A SPICE netlist.

• A GDS layout.

• A LEF file, identifying pin and blockage locations.
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• A Liberty file, specifying timing constraints.

• A Verilog behavioral model.

Users can also request that SRAM22 run checks on the generated SRAM block, including:

• Running LVS.

• Running DRC.

• Running a sanity-check transistor-level functional simulation.

The complete source code for SRAM22 is available on GitHub. Section 3.1 describes the
architecture of the generated SRAM blocks. Section 3.2 describes how SRAM22 programat-
ically generates layout.

3.1 Architecture

SRAM22 generates self-timed SRAMs. Figure 3.1 shows a block diagram of the macros
generated by SRAM22.

https://github.com/rahulk29/sram22
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Figure 3.1: A block diagram of an SRAM macro generated by SRAM22.

The read muxes and write muxes are implemented using PMOS and NMOS pass transis-
tors, respectively. The sense amplifiers are StrongARM latches. The output buffers ensure
symmetric loading of the sense amplifiers. Figure 3.2 shows a schematic of the column
circuitry.
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Figure 3.2: SRAM column circuitry.
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The control logic is a set of digital logic gates that sequences events during each read
or write operation. It contains a pulse generator that detects the rising edge of the clock.
These pulses then enable the wordlines and the replica column. The replica column’s bitlines
discharge until they cross the threshold of an inverter, at which point the wordline pulse is
disabled and precharge circuitry is activated to prepare for subsequent operations. The
internally generated sense amplifier clock is also derived from the replica bitline. Details on
the design of the replica timing mechanism can be found in 3.1.

Replica Bitline

The purpose of the replica bitline is to accurately track the discharge delay of the true bitlines
across process, voltage, and temperature variations. Since SRAM cells are composed of
special transistors not ordinarily used in logic cells, timing mechanisms based on logic (such
as inverter chains) do not track the true bitlines well.

To minimize power consumption due to charging and discharging the bitlines, the replica
delay can be designed to fire the sense amplifiers when just enough voltage difference has
accumulated. This minimum voltage depends primarily on the sensitivity and offset voltage
of the sense amplifiers.

We present a replica bitline design based on [1]. We use a design in which there are
N replica columns, each of which is smaller than a regular column by a factor of K. In
other words, if a regular SRAM column has h cells, each replica column will have h/K cells.
The N replica columns are connected in parallel to reduce timing variation due to random
effects in active replica cells. An inverter senses the discharging replica bitline and fires sense
amplifiers. A simplified schematic of the replica circuitry is shown in 3.3
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Figure 3.3: A slightly simplified schematic of the replica circuitry.

We now present a method for selecting the values of N and K.
We assume that the following values are known (eg. extracted from simulation) and

constant:

• The bitline capacitance Cbl

• The nominal SRAM cell on current, Icell,0

• The standard deviation of SRAM cell current, σIcell
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• The standard deviation of the sense amplifier offset voltage Vos

• The threshold Vflip at which an inverter output flips from low to high

• The supply voltage VDD

A read error occurs if the sense amps fire before sufficient voltage difference develops on
the true bitlines.

For this analysis, we suppose that we must tolerate up to M1 standard deviations of sense
amp offset voltage and M2 standard deviations of SRAM cell current.

The total bitline capacitance of the replica columns is Creplica = N/KCbl. If this ca-
pacitance is discharged by a current Ireplica, the time at which the sense amps are enabled
is

TSAE =
Creplica

Ireplica
(VDD − Vflip) . (3.1)

Note that nominally Ireplica = NIcell, since the replica column contains N replica cells in
parallel.

For a correct read, the voltage difference at the input of the sense amps must be larger
than M1Vos. If the true bitlines are discharged by a current Icell, we must have

TSAE >
Cbl

Icell
M1Vos. (3.2)

The worst case conditions occur when:

1. The cell being read is slow: Icell = Icell,0 −M2σIcell .

2. The replica cells are fast: Ireplica = NIcell,0 +M2

√
NσIcell .

3. The sense amplifiers have the maximal offset voltage M1Vos.

We now derive a condition for correctness under the worst case conditions.
The worst case (earliest) time at which the sense amps are fired is

TSAE =
Creplica

Ireplica
(VDD − Vflip) =

NCbl (VDD − Vflip)

K
(
NIcell,0 +M2

√
NσIcell

) . (3.3)

The worst case (latest) time at which sufficient bitline voltage margin has accumulated
is

Tmin =
M1CblVos

Icell,0 −M2σIcell

. (3.4)

For correct operation, 3.3 must be larger than 3.4. Thus, the correctness constraint is
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Cbl (VDD − Vflip)

K
(
Icell,0 +M2

1√
N
σIcell

) >
M1CblVos

Icell −M2σIcell

. (3.5)

3.5 shows that increasing N mitigates the variance of the replica cells, though it does
nothing to alleviate the variance of the SRAM cells.

A simple heuristic to select N and K is to solve for K based on the nominal cell current
and worst case sense amp offset voltage:

Cbl (VDD − Vflip)

KIcell,0
=

CblM1Vos

Icell,0
(3.6)

=⇒ K =
VDD − Vflip

MVos

(3.7)

The value of N is then determined by finding the minimumm value of N that satisfies 3.5.
Since N does nothing for the SRAM cell current variation, this approach may not always
yield a positive solution for N . Such cases can be solved iteratively by decreasing K and
then searching for an N satisfying 3.5.

Other replica techniques are possible. For example, [6] uses a larger number of replica
bitcells, resulting in an early sense amp enable signal. This signal is then time-amplified
with respect to a clock edge to generate the final sense amp enable. This excess number
of bitcells reduces variation in the sense amp timing due to replica cell mismatch, but, as
with [1], variation in cell current is not suppressed. The time amplifier also incurs an area
overhead.

3.2 Layout Generation

SRAM22 exercises many of the layout APIs described in 2.3. This section describes a few
representative examples.

This section is organized as follows:

1. Bitcell Array describes how Substrate tiling APIs are used to produce SRAM bitcell
arrays from foundry-provided cells.

2. Precharge describes how Substrate’s raw layout APIs can be used to produce very
compact layouts.

3. Control Logic describes how Substrate’s routing APIs handle custom digital logic,
where layout area is dominated by standard cell area, rather than by routing perfor-
mance, and productivity is important.
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Bitcell Array

SRAM22 uses many of the tiling APIs described in 2.3. As an example, consider the (toy)
8x8 bitcell array shown in 3.4.

Figure 3.4: An 8x8 SRAM bitcell array tiled using Substrate.

The bitcell array has several structural features commonly found in SRAM bitcell arrays:

• One horizontal tap row for every 8 rows of cells.

• One vertical tap column for every 4 columns of cells. Note that this array was generated
for a column mux ratio of 4. For a column mux ratio of 8, the tap columns would be
placed every 8 cells.

• Special row end, column end, and corner cells.
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• Each SRAM bitcell shares bitline and power contacts with its neighbors. As a re-
sult, each cell in a row is reflected horizontally with respect to the cell preceeding it.
Similarly, each cell in a column is reflected vertically with respect to the cell above it.

The requirements for special edge and corner cells makes this a natural fit for a ninepatch
tiler. To use the ninepatch tiling API, we must first partition the bitcell into the nine
ninepatch regions (center, four edges, and four corners).

The center cell is the unit that tiles in both the horizontal and vertical dimensions. For
the example shown above, the center cell contains a horizontal tap row, 8 rows of 4 bitcells,
and a vertical tap column. Tiling this cell will produce an array with the desired frequency
of taps (one horizontal tap every 8 rows, and one vertical tap every 4 columns). An image
of the center cell is shown in 3.5. Note that we have placed taps at the top and left edges of
the cell. We account for this when designing the edge and corner cells.

Figure 3.5: The center ninepatch cell for the bitcell array shown in 3.4.

The remainder of the ninepatch tiles are shown in 3.6 and 3.7.
Since the center cell contains taps at the left and top edges, the left/top ninepatch cells

do not contain internal tap structures, whereas the right/bottom cells do.
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(a) Left edge (b) Right edge (c) Top edge (d) Bottom edge

Figure 3.6: The four edge ninepatch cells for an SRAM bitcell array.
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(a) Upper left (b) Upper right (c) Lower left (d) Lower right

Figure 3.7: The four corner ninepatch cells for an SRAM bitcell array.

Once we have generated layouts of the ninepatch cells, tiling them using Substrate’s
NpTiler is fairly straightforward:

// Build a ninepatch tiler using 9 patch cells.

let tiler = NpTiler::builder()

.set(Region::CornerUl, &corner_ul)

.set(Region::Left, &left)

.set(Region::CornerLl, &corner_ll)

.set(Region::Top, &top)

.set(Region::Center, &center)

.set(Region::Bottom, &bot)

.set(Region::CornerUr, &corner_ur)

.set(Region::Right, &right)

.set(Region::CornerLr, &corner_lr)

.nx(nx)

.ny(ny)

.build();

Each of the nine ninepatch region tiles are composite cells; they each contain multiple
foundry-provided primitive cells. To generate these tiles, we use Substrate’s GridTiler.

For example, 3.8 shows a portion of the code for generating the left edge cell.
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// Create a row of SRAM tiles.

let cell_row: Vec<OptionTile> = into_vec![rowend_replica, cell];

// Create a row of SRAM + OPC tiles.

let cell_opt1a_row: Vec<OptionTile> = into_vec![rowenda_replica, cell_opt1a];

// Create a row of tap tiles.

let hstrap: Vec<OptionTile> = into_vec![rowend_hstrap, hstrap];

// Build a grid from the rows created above.

let mut grid = Grid::new(0, 0);

grid.push_row(hstrap);

for _ in 0..self.params.hstrap_ratio / 2 {

grid.push_row(cell_opt1a_row.clone());

grid.push_row(cell_row.clone());

}

// Tell Substrate to place the cells according

// to their positions in the grid.

let mut grid_tiler = GridTiler::new(grid);

Figure 3.8: A code snippet for generating the left edge cell of an SRAM bitcell array.

This code:

1. Creates three rows of 2 cells each: one normal bitcell row, one bitcell row with slight
modifications to geometry for OPC, and one row for taps. These rows are just collec-
tions of cells; they are not yet placed in the actual cell layout.

2. Adds the tap row as the first (topmost) row in the grid. This row will align with the
topmost row of the ninepatch center cell (3.5), which is also a tap row.

3. Adds alternating rows of regular bitcells and modified-OPC bitcells. Eight rows are
added in total, since self.params.hstrap_ratio is 8 here. As is evident from the
code, the frequency of horizontal tap rows can easily be adjusted.

4. Creates a GridTiler instance to place all of the cells.

The lowest level of cells in the hierarchy (eg. cell, cell_opt1a in the code above) are
imported into Substrate using hard macros (2.3).

In addition to tiling geometry, we also expose relevant ports from each of the tilers. This
allows other generators to figure out how to connect to the bitcell array. For example, we
expose ports for each of the wordlines, bitlines, and power strap connections. The code to
do this is omitted for brevity, but can be found in the SRAM22 source code.

Although bitcell tiling is not fundamentally a hard problem, we believe that the approach
of decomposing the problem into reasonably intuitive parts (such as grid and ninepatch tiling)
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is better and more easily understood than the alternative, “simpler” method of writing a
double for loop with edge cases to handle the array edge cells and periodic taps.

Precharge

The precharge cell illustrates how to use Substrate to produce compact, tileable layouts.
The SRAM bitcell width in the Skywater 130nm process is 1.2 µm. The minimum metal
1 line and space is 0.28 µm, meaning that at most 4 M1 tracks will fit within the bitcell
pitch. However, since minimum-sized vias are wider than the minimum M1 width, we are
practically limited to around 3 M1 tracks. There are four signals involved in the precharge
circuit: the bitline, complementary bitline, VDD, and active low precharge enable. Thus,
routing performance is critical. The precharge cell is very simple: it contains two pull-up
transistors and an equalizing transistor. The schematic is shown in 3.9.

pc
VDD VDD

BL BL

Figure 3.9: Precharge cell schematic.

The final precharge cell layout is shown in 3.10.
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Figure 3.10: The pitch-matched precharge cell in SRAM22.

Before we describe how SRAM22 generates this layout, we first highlight some important
features:

• VDD is routed into the cell from metal 2 (pink) and drops onto split tracks on metal
1 (blue). The split tracks of adjacent cells abut to form a full track.

• The bitlines jog slightly to make space to enable routing precharge enable to the gates
of the precharge devices.

• The total capacitance (and therefore total wire length) on the bitline and bitline com-
plement nets must be approximately equal.

To generate the precharge cell layout, we start by instantiating the three precharge tran-
sistors, as shown in 3.11.

Figure 3.11: The three base transistors of a precharge cell.
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let params = LayoutMosParams {

skip_sd_metal: vec![vec![]; 3],

deep_nwell: true,

// Place all gate contacts on one side of the transistor stack.

contact_strategy: GateContactStrategy::SingleSide,

// Create three FETs with the given dimensions.

devices: vec![

MosParams {

w: self.params.equalizer_width,

l: self.params.length,

m: 1,

nf: 1,

id: mos.id(),

},

MosParams {

w: self.params.pull_up_width,

l: self.params.length,

m: 1,

nf: 1,

id: mos.id(),

},

MosParams {

w: self.params.pull_up_width,

l: self.params.length,

m: 1,

nf: 1,

id: mos.id(),

},

],

};

let mut mos = ctx.instantiate::<LayoutMos>(&params)?;

// Rotate the devices 90 degrees.

mos.set_orientation(Named::R90);

Figure 3.12: A snippet of code for generating the precharge transistors shown in 3.11.

Next, we allocate M1 routing tracks. At the left edge of the cell, the outermost half-tracks
are used for routing VDD; the inner two tracks are the bitlines. Towards the right side of
the cell, the bitline tracks move to make space for the gate contact.

These two routing regions are encoded using a FixedTracks object in Substrate, con-
nected by a SimpleJog. The FixedTracks object produces tracks with a fixed line and
space, centered in a given routing region. It also accepts boundary conditions, which permit
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the user to place full tracks, half tracks, full spaces, or half spaces at the edge of the routing
region.

The SimpleJog object allows the user to specify an arbitrary number of source tracks, and
an equal number of destination tracks. It then jogs each source track to the corresponding
destination track.

A code snippet (lightly edited for clarity) and image of this stage of precharge cell gen-
eration are shown in 3.14 and 3.13.

Figure 3.13: Precharge cell metal 1 routing.
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// Create two sets of fixed tracks.

let in_tracks = FixedTracks::from_centered_tracks(CenteredTrackParams {

line: 140,

space: 230,

span: Span::new(0, 1_200),

num: 4,

lower_boundary: Boundary::HalfTrack,

upper_boundary: Boundary::HalfTrack,

grid: 5,

});

let out_tracks = FixedTracks::from_centered_tracks(CenteredTrackParams {

line: 140,

space: 230,

span: Span::new(0, 1_200),

num: 3,

lower_boundary: Boundary::HalfSpace,

upper_boundary: Boundary::HalfSpace,

grid: 5,

});

// ...

// Jog between the track regions.

let jog = SimpleJog::builder()

.dir(Dir::Vert)

.src_pos(cut)

.src([dsn.out_tracks.index(0), dsn.out_tracks.index(2)])

.dst([dsn.in_tracks.index(1), dsn.in_tracks.index(2)])

.line(dsn.v_line)

.space(dsn.v_space)

.layer(dsn.v_metal)

.build()

.unwrap();

// Extend the tracks beyond the jog up to the bounding box height.

for i in 0..dsn.in_tracks.len() {

let rect = Rect::from_spans(

dsn.in_tracks.index(i),

Span::new(jog.dst_pos(), bbox.height()),

);

ctx.draw_rect(dsn.v_metal, rect);

}

Figure 3.14: A snippet of code for generating precharge cell M1 routing. The resulting layout
is shown in 3.13.
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Next, we draw vias connecting the metal 1 tracks to transistor sources/drains/gates. We
also draw a power strap on metal 2 and drop vias to the VDD tracks on metal 1. Sample
code for drawing a via is shown in 3.15. The ViaExpansion::LongerDirection flag shown
in that figure tells the via generator that the via need not be contained in the overlap of
the geometry on the top and bottom layers; it can expand along the longer direction of the
overlap region. This produces the 2x1 via arrays seen in 3.16. If no expansion is permitted,
Substrate fills the overlap region with as many vias as possible. At least one via will be
drawn, even if it does not fit entirely within the overlap region.

The precharge cell after drawing all vias and the power strap is shown in 3.16.

let mut via1 = ViaParams::builder()

.layers(dsn.v_metal, dsn.h_metal)

.expand(ViaExpansion::LongerDirection)

.geometry(rects[0].double(Side::Left), stripe)

.build();

let via = ctx.instantiate::<Via>(&via1)?;

ctx.draw(via)?;

Figure 3.15: Sample code snippet for drawing a via.

Figure 3.16: The precharge cell after drawing vias and a power strap.

Finally, as shown in 3.17, we trim the precharge cell so that it can be tiled (using the
tiling APIs described previously).
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let bounds = ctx.brect().with_hspan(Span::new(0, dsn.width));

ctx.trim(&bounds);

Figure 3.17: Trimming the precharge cell.

There is an alternate convention for tiling cells, which is to skip the step of trimming the
cell, and instead allow adjacent cells to overlap. However, the convention of trimming cells
is more convenient here for two reasons:

1. Substrate tilers place cells according to their bounding boxes. Tiling untrimmed cells
would require wrapping them in a LayerBbox tile (see 2.3) or manually specifying the
bounding box to the tiler. Trimming the cell is more convenient than either of these
options.

2. Special end cells are required to provide taps. So even if we were to tile untrimmed
cells, we would still need to specify custom cells for the array edges and tap columns.

The precharge cells illustrate how Substrate APIs can be used to produce very compact
layout. Much of the SRAM peripheral circuitry is generated in a similar manner. An image of
the peripheral circuitry layout is shown in 3.18. We omit specific discussion of the generators
for the rest of the column components, since they are similar in principle to the precharge
cell.

Figure 3.18: Tiled column peripheral circuitry. The precharge cells occupy the topmost row.
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Control Logic

The control logic is a small (≈ 100) set of logic gates that control the sequence of events
during read and write operations.

Despite being entirely digital, using a traditional digital flow to lay out the control logic
is undesirable:

• The control logic is pulsed, unlike the typical digital circuits for which these tools are
optimized.

• Minimizing area is important.

• SRAM22 tries not to depend on commercial tools, and open source digital tool flows
are not very mature.

• Dependency on external tools would make SRAM22 more difficult and less convenient
to use.

Therefore, we opt instead to place and route the control logic entirely within SRAM22
and Substrate.

The flow for using digital standard cells in Substrate is:

1. Import the desired standard cell libraries into Substrate.

2. Place the standard cells, often using a GridTiler (2.3) with tiles taking their bounding
box from a “PR boundary” layer.

3. Select routing layers and define a routing grid for each layer.

4. Route between the placed standard cells.

The fourth step is often done with a combination of manual routing and automatic
routing. SRAM22 uses manual routing when drawing routes than run solely on the local
interconnect layer in SKY130. For longer distance routes that span other metal layers,
SRAM22 defers routing to the automatic router in Substrate.

We will focus on the use of the automatic router in this section, since this feature is,
as far as we are aware, not present in other analog generator frameworks. The router
implementation in Substrate is called GreedyRouter, as it creates routes as they are specified,
rather than trying to find a globally optimal routing solution.

To initialize the router, we specify a routing region and a set of routing layers. Each
routing layer holds the line and space of tracks on that layer, a preferred routing direction,
and a reference to a PDK layer. Router intialization is shown in 3.19.
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let mut router = GreedyRouter::with_config(GreedyRouterConfig {

area: group.brect().expand(1840),

// Allow routing on 2 layers: M1 and M2.

layers: vec![

LayerConfig {

line: 320,

space: 140,

dir: Dir::Horiz,

layer: m1,

},

LayerConfig {

line: 320,

space: 140,

dir: Dir::Vert,

layer: m2,

},

],

});

Figure 3.19: Greedy router initialization with two metal layers (M1 and M2).

The current implementation of GreedyRouter only permits on-grid routing. However,
cells being routed may have off-grid pins. These pins must be jogged onto the routing grid
before asking the router to route from/to them. Substrate provides an expand_to_grid

function for doing this. An example usage is shown in 3.20. Users specify a rectangle
representing the off-grid pin and an expansion strategy. The router will automatically find
an appropriate on-grid point to which the off-grid pin can be connected, consistent with the
expansion strategy. Possible expansion strategies include:

• Minimum area: connect to the routing grid using the minimum amount of extra metal
area.

• Top/bottom/left/right: connect to the nearest grid point to the given side of the source
pin.

• Upper left/lower left/upper right/lower right: connect to the nearest grid point off of
the given corner of the source pin.
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let clkp_out = router.expand_to_grid(

clkp_out_via.layer_bbox(m1).into_rect(),

ExpandToGridStrategy::Minimum,

);

router.occupy(m1, clkp_out, "clkp")?;

Figure 3.20: Expanding the (pulse generator output) pin to the routing grid.

Substrate also has more sophisticated routines for bringing off-grid geometry onto the
routing grid. For example, users can ask the Substrate router to jog a bus of off-grid pins
onto adjacent routing tracks. The router will calculate the minimum necessary amount of
spacing in the routing layer’s preferred routing direction. The router logic can handle a wide
range of off-grid pitches, and can handle cases where the off-grid bus is not centered with
the target on-grid tracks. An example of the geometry generated by this procedure is shown
in 3.21.
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Figure 3.21: A sample of the geometry automatically generated by the router to bring off-
grid pins to the routing grid.

Bringing off-grid pins to the routing grid is by far the most tedious part of generating
layouts based on digital standard cells. Further improvements to Substrate have the potential
to make this process easier.

Once all geometry is on-grid, routing becomes very easy (see 3.22).

router.route_with_net(ctx, m1, clkp_out, m1, clkp_in_1, "clkp")?;

router.route_with_net(ctx, m1, clkp_out, m1, clkp_in_2, "clkp")?;

router.route_with_net(ctx, m1, clkp_out, m1, clkp_in_3, "clkp")?;

Figure 3.22: Routing the clock pulse generator output to three consumers.
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By issuing several of these routing commands, the full layout can be programatically
routed. Extracting these routing paths from a schematic view is possible in principle, but
has not been implemented at the time of writing.

The fully-routed layout of SRAM22’s control logic is shown in 3.23. The output pins are
placed towards the upper right for convenience in top-level routing.

Figure 3.23: The control logic cell in SRAM22. Most routing is done via the automatic
router in Substrate.



38

Chapter 4

Conclusion

This thesis presented Substrate, a new framework for analog generators written in the Rust
programming language, as well as SRAM22, a configurable SRAM generator built on top of
Substrate.

4.1 Additional Features

Substrate has many features beyond the ones described in this thesis. In particular, Substrate
provides APIs for functional verification and for verifying digital timing constraints (eg.
setup/hold times) in contexts where analog workflows are more convenient. The latter
feature was used to design and verify a schematic-level tree serializer generator intended
for die-to-die links. Substrate is also capable of generating power straps compatible with
Hammer, the VLSI flow tool developed at Berkeley [5].

4.2 Future Work

There are a wide variety of directions for future work. We suggest a few here.

• Designing an intermediate representation for representing circuits. Such an intermedi-
ate representation would be useful to enable faster design space exploration, and could
enable greater interoperability between generator frameworks.

• Smarter algorithms for analog routing. In particular, it would be nice to have an
automatic router capable of generating symmetric/matched differential routing, while
understanding which nets are aggressors and which are victims.

• Easing the process of integrating analog IP into digital flows, a process that currently
requires setting up flows for several tools not often used in a purely-analog workflow.
Instantiating macros in digital flows is usually done outside of the generator frame-
work, but there are benefits to having the generator be aware of how it integrates
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into a digital-top floorplan. Power strap consistency is one such example. Utilities for
quickly setting up analog/digital co-simulation would also make the process of analog
integration easier.
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