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Abstract

An Exploration into 3D Generative Models with Nerfstudio

by

Terrance Wang

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Ren Ng, Chair

Techniques combining Neural Radiance Fields (NeRFs) and diffusion models have shown
great promise for generating novel scenes and objects from text input. Most advancements
in the generative 3D space have focused on fine tuning diffusion models to improve per-
formance, but have neglected to investigate other aspects, such as the underlying NeRF
architecture or noise sampling schedule. Because this is a novel approach, there are still
many open questions in this research space that have not been properly explored. In this
work, we explore some of these questions using the open-source platform Nerfstudio. By
implementing these models and conducting experiments in this library, we are able to easily
conduct training and evaluation, while also providing code for others to build on for their
own experiments in this space. The following work shows that the choice of underlying NeRF
model and noise sampling schedule does have an impact on generated outputs, and lays the
groundwork for further experiments in this line of investigation.
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Chapter 1

Introduction

3D reconstruction and novel view synthesis are two fields that have received a lot of research
focus in the last few years, largely due to the introduction of Neural Radiance Fields (NeRFs).
Since the release of the first NeRF paper [15], these models have seen great popularity due
to their ability to reconstruct detailed real world scenes with high accuracy. A trained NeRF
model can not only render out new viewpoints of a given scene, but also extract useful 3D
information from the training data, such as depth maps, surface normals, and meshes. This
means these models are a way to accurately convert from 2D images to 3D information,
which is necessary for many downstream applications. Some common examples of these
applications include visual effects editing, creating 3D assets, and robotics training simula-
tions. The active and fast-paced research in this space has led to many key improvements in
memory [4], speed [16][4][27], and model architecture [3][2][11], making these models more
accessible for the average user.

Within the last year, a new application of NeRFs has emerged, focusing on generating
new objects and scenes rather than reconstructing real world data. This approach combines
NeRFs with image generation models, such as Stable Diffusion [21] and Imagen [24], to create
text-prompted 3D generative models. For the first time, users could describe an object or
scene, and see their ideas come to life in 3D. This area of research saw a lot of interest due
to the potential value of a high quality 3D generative model. 3D modeling was originally a
time consuming and highly technical task, and companies that needed 3D models, such as
video game developers and VFX studios, had to hire experts to create them. Similar to how
image generation models lowered the barrier to entry for digital art and photo editing, 3D
generative models are poised to make 3D modeling more accessible as well.

Because this is a new and fast-moving area of research, there are still many open questions
regarding best practices for training these models. While there have been many papers [12]
[20] [9] investigating how to optimize diffusion models for generative 3D, there has been little
research exploring better NeRF representations. The goal of this thesis is to investigate how
certain training and model choices affect the quality of 3D generative models. Specifically, we
will analyze how different NeRF architectures and different noise sampling schedules affect
the resulting generated 3D models. In the process of answering these questions, these models
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were implemented in the open-source library Nerfstudio [28], which is a modular framework
designed for NeRF development. This framework made it easy to swap between different
NeRF feature representations, model architectures, and ray sampling methods, minimizing
the code that needed to be reimplemented while also providing a foundation for others to
experiment with 3D generative models. The Nerfstudio library also provided a real-time
viewer, which was essential for accurately evaluating the performance of these models.

This work focuses on bringing two existing text to 3D methods, Dreamfusion [18] and
Latent-NeRF [14] into Nerfstudio, and running experiments to explore these potential im-
provements in the 3D generative space. With these contributions, we show that diffusion
model optimization is not the only way to improve 3D generation, and dig into how different
NeRF architectures and noise sampling schedules might provide more stable training and
higher quality results.
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Chapter 2

Background and Related Work

2.1 Diffusion models

Diffusion models [7] are a class of generative models used for image generation. These types
of models utilize two processes: a forward process where noise is iteratively added to remove
structure from input images, and a reverse process that learns to recover structure from noisy
input to reconstruct the original input. The goal of the diffusion model is to accurately learn
this reverse process, so that they can generate new images by taking in random noise and
iteratively applying the denoising process. These models have seen popularity since release
because they were straightforward to train and produce a wide distribution of high quality
results.

Diffusion models replaced Generative Adversarial Networks (GANs) [6] as the go to image
generation model because they did not suffer from the same issues that GANs often faced,
such as training instability and mode collapse. Furthermore, these models were straightfor-
ward to modify for additional functionality, such as including CLIP [19] text embeddings as
additional input to create a text to image model [24], or conditioning the input noise on an
input image to create an image to image model [23].

One issue with the original diffusion model was that it was computationally expensive to
train and run because it operated directly in high dimensional image space. Diffusion models
were made more accessible for regular users with the introduction of latent diffusion models
[21]. These models first use an encoder network to convert images to a lower dimensional
latent space and perform the noising and denoising steps in this latent space.

2.2 3D reconstruction

The objective of this problem is to recover a 3D representation of an object or scene given
2D input images. Existing methods involve using point clouds [10], voxel grids [13], or signed
distance functions [17] to represent the target, and often require a large set of training images
as well as corresponding camera pose estimates in order to obtain accurate results. There



CHAPTER 2. BACKGROUND AND RELATED WORK 4

Figure 2.1: Diffusion models are trained to reconstruct images from noisy images by predict-
ing the parts of the image that are noise. The noising and denoising are gradually applied
iteratively to help these models train better and produce high quality results.

are many practical applications for recovering good solutions to this problem. An accurate
3D representation can be used to generate 3D models for assets or animation, depth maps
for scene editing, or training environments for self-driving and robotics simulations. 2D data
is also easier to capture, and there are many existing sources of data on the internet, making
it valuable to be able to accurately convert from 2D data to 3D information.

2.3 Neural Radiance Fields

Many recent methods have used Neural Radiance Fields (NeRFs) [15], as an approach to
solve 3D reconstruction. NeRFs model appearance and geometry with radiance fields, which
map spatial coordinates and view direction to density and color values. Many papers have
shown that a small MLP with positionally encoded input coordinates can learn to represent
a target scene with a high degree of accuracy [26] [17]. In NeRFs, a small MLP learns to
represent the target radiance field. Through standard volume rendering procedures, rays
can be sampled, evaluated, and converted to image pixels, and the model optimizes over
mean squared error between the outputted RGB and the training images. The radiance field
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Figure 2.2: How images are rendered from NeRFs. Rays are shot through the scene based
on the chosen camera position and intrinsics. Samples along the ray are passed through the
NeRF MLP, which outputs the corresponding RGB and density for each point. The ray
samples are accumulated using volumetric rendering to convert each ray to a pixel’s RGB
value.

can then be rendered out as images, depth maps, or converted to a mesh for downstream
applications.

While NeRFs achieved state of the art reconstruction quality, the model described in the
original paper had a couple serious limitations for practical use. It assumed that the target
object or scene was completely stationary and unchanging throughout all training images. It
was reliant on structure from motion algorithms such as COLMAP [25] to provide accurate
camera pose estimates for the training data. It was also slow and expensive to train each
NeRF, taking a couple hours for a single scene.

However, as research in this area progressed, many papers came out that addressed these
original flaws. Nerf-W [11] enabled training NeRFs on in-the-wild datasets, which consist
of images with inconsistent lighting conditions and transient objects, by training a separate
feature vector and MLP head to model these inconsistencies. TensoRF [4] and Instant NGP
[16] both drastically improved training speeds by using trainable feature vectors as input
to the MLP. MipNeRF 360 [2] introduced another way to speed up training by training a
small proposal network to supervise where points should be sampled along a ray, reducing
the number of samples queried on the larger NeRF MLP. NeRFs can now train 100 times
faster, are more robust to data inconsistencies, and create more accurate reconstructions
than before. As a whole, these improvements caused people to consider NeRFs as a tool
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that could be practically used in more situations.

2.4 3D Generative Models

Recent papers have explored alternative ways of training NeRF models with language and
diffusion models, enabling the creation of text to 3D models. For example, DreamFields [8]
trains a NeRF by directly minimizing the CLIP loss between an input caption and randomly
rendered viewpoints from the NeRF. Other approaches, such as Dreamfusion [18] and Score
Jacobian Chaining [29], use losses that directly leverage the denoising step of a diffusion
model to predict NeRF weight updates. Following Dreamfusion, approaches such as Dream-
booth3D [20] and RealFusion [12] emerged, enhancing the controllability of these models by
incorporating example images along with text as input. These methods rely on fine tuning
parts of the diffusion model, either with Dreambooth [22] or textual inversion [5], to generate
3D models from even a single image. While it is uncertain if the resulting 3D models from
these methods are good enough for use in downstream applications yet, this is an extremely
fast paced area of research, with new ideas and papers being published every few weeks.

2.5 Nerfstudio

Nerfstudio [28] is an open-source library that was created in response to the rapid pace of
advancements in the field of NeRF research, as well as the lack of a centralized repository
that implemented them in a clean and easy-to-use format. Many of these advancements
only involve modifications to one component of the NeRF model, such as the feature repre-
sentation, loss function, or MLP output, meaning they could potentially be in conjunction.
However, these improvements are often spread out across multiple code bases, making it
difficult for researchers and users to use them in their own projects.

Nerfstudio aims to solve this problem by providing a modular open-source library that
incorporates improvements from various major NeRF-related papers. This modular approach
allows for easy integration of new ideas and methods and for mixing and matching different
methods to suit the user’s needs.

The library is designed to be accessible for regular users, with simple installation and
setup instructions. Additionally, it includes a real-time viewer that enables the user to
traverse the scene as it is training and monitor their model’s progress in real-time. The
viewer is crucial for accurately evaluating model performance, as it allows the user to zoom
in and examine the reconstruction in a dynamic way, which can reveal previously hard to
notice artifacts. With the viewer, users can also avoid separately rendering out images or
videos for evaluation, thereby saving time and making the training process more efficient.
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Chapter 3

Methods

In order to run experiments on how NeRF architecture and noise sampling schedules impact
3D generative models, I first brought these methods into Nerfstudio. This chapter will
describe the two novel 3D generative methods that were added to the library, and further
implementation details and modifications.

3.1 Dreamfusion

Problem Setup

Dreamfusion [18] is a generative approach that utilizes priors learnt by a diffusion model to
train a NeRF from text inputs. Unlike text to image models, which have benefited from an
abundance of text-image pair data, no such datasets exist for 3D. Therefore, Dreamfusion
leverages pre-trained 2D diffusion models to provide supervision for training in 3D. This
approach is similar to Dream Fields [8], which employs a frozen CLIP model that is also
trained on text-image pairs. Dream Fields trains a NeRF to maximize the similarity score
between rendered images and an input caption for all viewpoints. Dreamfusion and its
followup works use a diffusion model as the score generator instead, which is used to provide
updates for the weights of the NeRF model.

SDS loss

The loss function used by these diffusion-based text to 3D methods is called the SDS loss,
or Score Distillation Sampling loss, and is first introduced in the Dreamfusion paper. The
intuition behind this loss function is that the NeRF model should look like a valid diffusion
model output from all view directions.

The loss function for optimizing a typical NeRF is:

L =
N∑
i=1

|Fθ(ri)− xi|22 (3.1)
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Figure 3.1: Instead of iteratively applying noise to the NeRF output, we sample one t value
that determines how the noise strength for each training step. The predicted noise from the
diffusion model is then directly used to update and train the NeRF.
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where each xi is a training image in the dataset, each ri is the batch of rays that correspond
with the camera intrinsics of xi, and the loss is the L2 error between the pixel values of xi

and the RGB output from the NeRF model Fθ.
In the text to 3D setup, the diffusion model predictions take the place of ground truth

images. At each training step, a random view direction and random t value is sampled
evaluated by the NeRF model. The t value affects the strength of the noise ϵ that is applied
to the NeRF output. The loss function then optimizes NeRF weights θ to minimize the
difference between the denoiser UNet’s predicted noise vs. the actual noise added.

xnoisy = w(t)Fθ(r) + (1− w(t))ϵ (3.2)

L = (U(xnoisy, t, text)− ϵ) (3.3)

Directly taking the gradient of this loss with respect to θ would involve backpropogating
through the diffusion model UNet, which is expensive to compute due to the UNet’s size.
Instead, we skip this and directly use the difference between the predicted and actual noise
to get the update direction for θ.

∇θL = w(t)(U(xnoisy, t, text)− ϵ)
∂xnoisy

∂θ
(3.4)

Implementation Details

Dreamfusion employs various techniques and regularizers to help with training and enhance
the performance of their model. One such method involves location-based sampling of the
target text caption. During each training step, the input caption is modified based on
the location of the sampled training camera. Four possible modifications are used, which
involve appending the strings “, front view”, “, side view”, “, back view”, and “, top view”
to the caption. These location-based prompts are crucial for generating coherent results.
The original paper illustrates that neglecting these prompts can lead to multiple faces or
incoherent geometry, as the diffusion model tends to default to the front-facing view of an
object given a regular target caption.

Dreamfusion also employs shading-based regularizers to improve model performance.
After the model has partially converged, the RGB image passed to the loss function will
sometimes be randomly replaced with a textureless shaded version of the output. This shaded
output is calculated by randomly sampling a light source position, replacing the output
RGB with white, and rendering using Lambertian shading. This regularization encourages
the model to produce objects with better surfaces, and prevents the degenerate solution of
creating a flat surface that looks correct from most viewing directions.
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Changes and Improvements

One significant difference between our Dreamfusion implementation and the original paper
is the use of the open-source model Stable Diffusion as the underlying diffusion model. This
is Dreamfusion used Imagen as its diffusion model, which does not have publicly available
weights. Unlike Imagen, Stable Diffusion is a latent diffusion model, meaning that its diffu-
sion process operates on an image’s latent space, while Imagen operates directly on image
pixels. This change in diffusion model has a few key consequences for our model training
and results.

Although we render our NeRF at 64x64 per training step, which is the same as Dream-
fusion, we must upsample our rendered image to 512x512 because the image must first
be passed through an autoencoder to encode it into the latent space. The autoencoder
transforms our 512x512x3 dimensional input into a 64x64x4 dimensional latent embedding.
However, the encoding and decoding steps may result in a slight loss of information from
the input images. Additionally, embedding each NeRF render into the latent space at each
training step slows down the training process, especially because we must also backpropogate
through the autoencoder in order to get our weight updates.

The underlying NeRF model in our implementation is a simplified version of the Nerfacto
model, which combines proposal sampling from Mip-NeRF 360 [2] and feature hash grids
from Instant-NGP [16]. This simplification enables faster model training with comparable
quality.

3.2 Latent NeRF

Problem Setup

This paper’s [14] key insight is to avoid running the forward pass and backpropogating
through the autoencoder, by training the NeRF to directly output in the 4-dimensional latent
space of the diffusion model instead of RGB. The same volume rendering procedures can
be applied to render the latent input to the diffusion model U-Net, resulting in comparable
quality to Dreamfusion results with a shorter training time. At evaluation, these latents are
passed through Stable Diffusion’s decoder to convert back to image space.

Besides this change in output representation, the method is largely similar to the one
proposed by Dreamfusion. An SDS loss is applied to use the diffusion model as a score
generator for guiding NeRF training. Furthermore, the directional text prompts are used to
produce coherent geometry.

3.3 Nerfstudio Viewer

The real-time viewer in NerfStudio is a valuable asset for experimenting with these generative
3D models by streamlining the training and evaluation process. Traditional methods of
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tracking and assessing model performance during training involve periodically calculating
metrics, rendering images, and visualizing them using tools such as Tensorboard or Weights
and Biases. While this approach works fine for monitoring conventional NeRF training, it
proves to be more problematic when evaluating generative 3D models.

With traditional NeRFs, model accuracy can be determined by calculating the PSNR
between the model’s RGB and ground truth. However, with generative models, there are
no easy metrics to gauge model performance. Furthermore, rendering out single images is
not sufficient for evaluating the model either. This is because a common failure mode for
these types of models is generating a multi-headed output for non-rotationally symmetric
objects, such as animals. The model may appear to produce coherent results when viewed
from a single image, but when rendered as a video or viewed from multiple angles, it becomes
apparent that the model does not represent the target object. Evaluating the model by ren-
dering videos during training is impractical because it is significantly slower than rendering
a single image. For these reasons, the real-time viewer was invaluable for parameter tuning
and model evaluation.
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Chapter 4

Experiments and Results

4.1 Open questions in 3D generation

Does the underlying NeRF model matter?

The original Dreamfusion paper uses Mip-NeRF 360 as its NeRF representation. This pa-
per has two main contributions: scene contraction, which helps model performance on un-
bounded scenes, and proposal networks, which provide better predictions of where to sample
points along a ray. While Mip-NeRF 360 achieves high quality reconstruction results, these
contributions are less useful in the 3D generative setting. 3D generative scenes are not un-
bounded, and proposal network sampling matters less when sampling in a small bounding
box that is mostly taken up by the generated object. In fact, models such as Instant NGP and
TensoRF can achieve similar reconstruction quality and faster training times on these small
bounded scenes. In these experiments, we will compare Latent-NeRF along with Dream-
fusion using three different NeRF backends: Instant-NGP, TensoRF, and Nerfacto, which
combines proposal networks with Instant-NGP hash encodings. We will analyze if these
NeRF representations can achieve similar generation quality, and if there are any advantages
to choosing one representation over another.

Is there a better way to sample noise?

As described previously, during training random t values are sampled for the SDS loss [18].
Random sampling is chosen primarily for convenience, because it is difficult to manually
find a sampling schedule for t that will work well for a variety of prompts. However, as the
model converges, intuitively we would want to use smaller t values and add less noise to
keep the existing structure intact and focus on sharpening fine detail. In this experiment,
we will explore different t sampling procedures and what effect they have on model training
and convergence.
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4.2 Different NeRF Representations

Experiment Details

The four methods being compared in this experiment are: Dreamfusion, Dreamfusion with
Instant-NGP, Dreamfusion with TensoRF, and Latent-NeRF. As mentioned previously, this
Dreamfusion implementation uses the Nerfacto [28] NeRF model, which combines the ray
sampling method described in Mip-NeRF 360 with the feature hash encoding from Instant-
NGP. Dreamfusion with Instant-NGP replaces this Mip-NeRF 360 ray sampling method with
the occupancy grid based sampling described in Instant-NGP. Dreamfusion with TensoRF
samples rays based on the learned density tensor components and learns RGB with the
color tensor components. Lastly, this Latent-NeRF implementation also uses Nerfacto as its
underlying NeRF representation.

Each model uses the hyperparameter values that were used in their original papers,
and each model was trained for 15k steps on a 12GB GPU. The Dreamfusion models took
approximately an hour to train, while Latent-NeRF trained twice as fast, which is consistent
with the training time described in the Latent-NeRF paper. In the figures below, four views
roughly in a circle around the object are rendered for each prompt and model architecture.

Analysis

As seen in Figure 4.2 below, it is not a straightforward task to compare these different
methods. Unlike in 3D reconstruction, there is no ground truth to compare with or compute
metrics on. There is also an infinite number of prompts that could be given as input,
with some being easier to generate than others. As seen in the pineapple example, all four
methods are able to generate a plausible and detailed pineapple. However, even with this
simple prompt, we can start to observe some of the differences between each method.

Dreamfusion and Latent-NeRF both display a tendency to place clouds of density around
an object, which might be attributed to the proposal network overfitting to the SDS loss.
Dreamfusion with Instant-NGP has a tendency to produce oversaturated and unrealistic col-
ors. Dreamfusion with TensoRF produces good color and geometry, but closer examination
in Figure 4.3 reveals high frequency artifacts along the surface of the model, likely due to
the underlying tensor decomposition that represents the scene. Latent-NeRF’s outputs can
appear smudged with some prompts because it learns the scene directly in latent space, but
it generally also reconstructs good color and geometry.

The frog scene is a more complicated prompt because it is not rotationally symmetric. In
this scene, we can see an example of the multi-headed failure case. In the second and third
columns of the Dreamfusion output, we can see the model start to generate three eyes and
multiple mouths. We can also start to see this effect in the Latent-NeRF frog. This effect
is even more prominent when evaluating in the viewer because the multi-headed effect can
only be seen from certain view directions, as shown in Figure 4.1. This failure mode occurs
because diffusion models are unable to correctly render an object from various viewpoints,
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Figure 4.1: Images from frog prompt rendered in a circle from the viewer. Most view
directions look good, but there are certain angles where the multi-headed issue can been
seen.

and will tend to produce a front-facing viewpoint, even if it was prompted for a side view
or back view. The multi-head issue is explained by the NeRF overfitting to the front-biased
SDS loss.

The banana prompt was included to test the ability of these models to capture fine surface
texture and detail. The Dreamfusion approaches are able to accurately capture the crochet
texture of the banana prompt, while Latent-NeRF only generates a fuzzy texture. Latent-
NeRF performs a lot better on the less object-centric castle scene, while the Dreamfusion
approaches fail to converge.

While no model was definitively superior across all prompts, each produced good results
on at least one input. This speaks to the difficulty of training these generative models, in
large part because the problem of text to 3D generation is heavily under-constrained. With
more hyperparameter tuning and better regularization terms, all of these methods have the
potential to perform well.
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Figure 4.2: Rendered images from different 3D generative architectures with different
prompts. The rotationally symmetric pineapple is the easiest prompt to reconstruct, while
the other three are more challenging due to having facial features and fine details.
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Figure 4.3: Enlarged version of above images
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4.3 Scheduling noise sampling

Experiment Details

This experiment focused on using Dreamfusion to determine how t value sampling affects
model performance. In typical Dreamfusion training, a random t value between 0.02 and
0.98 is sampled at each train step, with larger values of t corresponding with more added
noise when calculating the SDS loss. In this set of experiments, the upper bound of random
t values is linearly interpolated as training progresses, from 0.98 to either 0.75, 0.5, or 0.25.
We evaluate on two prompts: a crochet banana and a blue jay. These prompts were chosen
to see if the surface details of the banana became sharper, and if the multi-headed issue
would be alleviated when training the blue jay.

Analysis

The intuition behind this experiment is that as the NeRF model gets closer to learning our
target scene, we want to apply less drastic changes with the SDS loss. One theory explaining
the multi-headed issue is that it occurs from applying lots of noise to the SDS loss after the
model geometry has converged. This would encourage the NeRF to start generating multiple
faces to overfit to the SDS loss.

In reality, it seems that this naive way of adjusting t sampling does not significantly
sharpen fine detail or help model convergence. In figure 4.4, there seems to be little difference
between the four experiments. As we interpolated to smaller max t values, there does seem to
be a slight improvement in surface texture quality, but there are still blurry and incoherent
areas as well. Overall, it seems that t value interpolation did not seem to hurt model
performance, but did not significantly improve the output quality either.

In figure 4.5, we see another example of how these models can be unstable while train-
ing. The control experiment and the max t = 0.25 experiment both converged to coherent
geometry, though they both still slightly suffer from the multi-headed issue. The t = 0.75
and 0.5 experiments failed to converge, and display the failure mode of learning multiple 2D
images rather than a coherent 3D structure. These results seem to suggest that for harder
scenes, max t interpolation can prevent the model from converging, and may require further
tuning.

4.4 Future Work

These experiments show many promising lines of further exploration into 3D generation.
Models such as the Dreamfusion + TensoRF model can likely see even better performance
with more hyperparameter tuning, and learning the tensor decomposition for a scene seems
to provide more stable training than learning a hash grid of features. Adjusting the learning
rate and resolution for these tensor components may solve the high frequency artifacts and
may help produce a better object surface.
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Another avenue of investigation would be using the real-time viewer in Nerfstudio as a
way to monitor model progress and interactively adjust the max t value accordingly. Because
each prompt may train at a different speed, the viewer would be useful for decreasing the
sampled t values only after the model geometry has converged.

Finally, there are many recently released techniques that improve on the diffusion model
to increase alleviate the multi-headed issue [12] [1]. Implementing these methods into Nerf-
studio and running similar ablations on NeRF model architecture might also lead to more
interesting results.
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Figure 4.4: The given text caption is “a high quality photo of a crochet banana”.
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Figure 4.5: The given text caption is “a high quality photo of a perched blue jay bird, highly
detailed”.
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Chapter 5

Conclusion

These experiments show that 3D generative research should consider modifications not only
in the diffusion model, but in the entire 3D generative pipeline. Switching between different
underlying NeRF representations can have significant effects on the resulting outputs, and
different approaches to sampling t values can effect how the model converges on fine details
in the scene. It is still unclear which combination of approaches will lead to the ultimate
goal of a model that consistently produces high quality results on a wide variety of prompts.

Although there are many more experiments to be done, implementing these 3D gener-
ative models in Nerfstudio is a good starting point to accelerate further research in this
field. Nerfacto, TensoRF, and Instant-NGP are all promising NeRF models for use with 3D
generation, and as the field of NeRF research progresses even further, it will be crucial for
3D generation to investigate and incorporate these improved NeRF models as well.
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