
Latency-Aware Short-Term Video Action Anticipation

and its Application in Trajectory Prediction

Harshayu Girase
Karttikeya Mangalam, Ed.
Jitendra Malik, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-13

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-13.html

January 17, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I am grateful for the many people who supported me during my academic
journey. I want to express my sincere gratitude to my advisor, Professor
Jitendra Malik, for the opportunity to research such fascinating problems.
Thank you to Professor Trevor Darrell for feedback and reviewing this
work. Thank you to my fantastic research mentor Karttikeya Mangalam who
I have worked closely with for the past 3 years during both my undergrad
and master’s. I genuinely learned a lot during our collaborations and it has
been a great pleasure. Thank you to all my friends that supported me
throughout my journey.

Finally, thank you to my grandparents, parents, and sister for their love and
support throughout my journey at Berkeley.

Latency-Aware Short-Term Video Action Anticipation and its Application in
Trajectory Prediction

by

Harshayu Girase

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master’s of Science

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Jitendra Malik, Chair
Professor Trevor Darrell

Fall 2022

1

Abstract

Latency-Aware Short-Term Video Action Anticipation and its Application in
Trajectory Prediction

by

Harshayu Girase

Master’s of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Jitendra Malik, Chair

Following the successes of deep networks for image-based tasks, there has been an emphasis
on developing video models to achieve similar feats. Many common tasks include video
recognition, detection, and segmentation. However, only a few works study the task of
video anticipation, which requires not only video understanding but also modeling of future
behavior. In this work, we propose a novel self-supervised method to anticipate future actions
in the short-term given a video input. As anticipation is a real-time problem, we highlight
the importance of considering latency when developing and evaluating such models. In the
first part of this article, we describe the task of short-term anticipation, dive into the current
methodology, and propose a new metric and model for better evaluation of this task.

Furthermore, we also explore a specific application of short-term action anticipation:
trajectory prediction. To demonstrate how the efficacy of short-term anticipation models
can actually be utilized in practice, we create our own trajectory prediction dataset for
both humans and vehicles. This dataset contains not only labeled trajectories for each
agent but also detailed action labels. We propose a model that performs joint trajectory
and future short-term action prediction. We demonstrate how the task of action
anticipation can assist and improve the primary trajectory prediction task.

2

Acknowledgments

I am grateful for the many people who supported me during my academic journey. I want to
express my sincere gratitude to my advisor, Professor Jitendra Malik, for the opportunity to
research such fascinating problems. Thank you to Professor Trevor Darrell for feedback and
reviewing this work. Thank you to my fantastic research mentor Karttikeya Mangalam who
I have worked closely with for the past 3 years during both my undergrad and master’s. I
genuinely learned a lot during our collaborations and it has been a great pleasure. Thank you
to all the Professors I have had the opportunity to take classes with during my undergrad and
master’s. Thank you to all my friends that supported me throughout my journey. Finally,
thank you to my parents and sister for their love and support throughout my journey at
Berkeley.

i

Contents

Contents i

List of Figures iii

List of Tables vi

1 Introduction 1

2 Background and Prior Work 4
2.1 Action Anticipation . 4
2.2 Transformers for Video Anticipation . 4
2.3 Real-Time Systems . 5

3 Real-Time Action Forecasting Transformer 6
3.1 Problem Formulation . 6
3.2 Pre-trained Video Backbone . 6
3.3 RAFTformer Model Network . 7
3.4 Anticipation Tokens . 8
3.5 Overall Mechanism . 11
3.6 Loss Functions . 11

4 Experiments and Results 13
4.1 Datasets & Metrics . 13
4.2 Evaluation Setting . 14
4.3 EPIC-Kitchens-100 . 14
4.4 Additional Datasets . 17
4.5 Additional Results . 18
4.6 Implementation Details . 19

5 Conclusion 22
5.1 Limitations . 22
5.2 Use Cases . 22

ii

6 Short-Term Anticipation for Trajectory Prediction 24
6.1 Introduction . 24
6.2 Related Work . 27
6.3 LOKI Dataset . 28
6.4 Proposed Method . 32
6.5 Experiments . 36
6.6 Conclusion . 41

Bibliography 42

A Additional Information for LOKI 50
A.1 Details of the LOKI Dataset . 50
A.2 Model Implementation . 51
A.3 Visualizations . 55

iii

List of Figures

1.1 Action Forecasting is the task of predicting actions that will happen after a
pre-determined time span, say tf seconds, into the future. Prior works consider an
offline evaluation setting that ignores the model inference latency. We propose a
latency-aware real-time evaluation setting where the model is required to finish
forecasting tf seconds before the target time. We present RAFTformer, a fast
action anticipation transformer that outperforms prior works both in offline &
real-time setting while forecasting actions in real-time (≥ 25 FPS). 2

1.2 Evaluation Performance Latency. Bigger models perform better in latency
agnostic offline settings. In the real-time evaluation setting, we observe that,
beyond a limit, bigger models with higher latency cause a drop in forecasting
performance. In practical deployment, there exists a trade-off between latency
and high-fidelity forecasts. See 4.3 for details. 3

3.1 RAFTformer is a real-time action anticipation transformer architecture comprised of
two stages. First stage is a pre-trained short-term backbone that produces individual
clip embeddings independently of other clips (3.2). In the second stage (3.3), absolute
position encodings are added and the resulting sequence is shuffled with a sampled
permutation π∗ ∼ π. The permutation encodings (3.4) are then added to the shuffled
sequence and after concatenation with anticipation tokens, the sequence is processed
with the RAFTformer encoder. The output tokens are decoded via short & long-
term action anticipation heads (3.5), as well as the feature prediction head and trained
with self-supervised loss (LSCM), future feature prediction loss (Lfuture) and action
forecasting loss (Lfocal) (3.6). 7

3.2 Random Masking Self-Supervision Illustration of how naive random masking
fails for self-supervised feature prediction task. Ti represents the embeddings for
clip i, as it transforms through the transformer layers. We can see that in Layer 1
the tokens can only access information according to the provided mask. However,
if the same mask is used in Layer 2, there is information leakage across tokens
which is undesirable. 9

iv

4.1 This figure shows qualitative examples in which RAFTformer predicts the next
action correctly, but AVT [32] is incorrect. Note that we show Top-5 predictions.
The frames and their corresponding labels show the past video and corresponding
actions (from 16s ago to the present). 20

4.2 Two examples of failure cases of RAFTformer. We can see that there are some
cases where even RAFTformer has a lot of trouble understanding context and
what exactly is going on. In the first image, a tap is not clearly visible which is
why RAFTformer may fail to predict actions that involve a tap. 21

6.1 We show that reasoning about long-term goals and short-term intents plays a
significant role in trajectory prediction. With a lack of comprehensive
benchmarks for this purpose, we introduce a new dataset for intention and
trajectory prediction. An example use case is illustrated in (a) where we predict
the trajectory of the target vehicle. In (b), long-term goals are estimated from
agent’s own motion. Interactions in (c) and environmental constraints such as
road topology and lane restrictions in (d) influence the agent’s short-term intent
and thus future trajectories. 25

6.2 Distribution of labels sorted according to the different types of intention among
the different classes . 30

6.3 Visualization of three types of labels: (1a-1b) Intention labels for pedestrian;
(2a-2b) Intention labels for vehicle; and (3a-3b) Environmental labels. The left
part of each image is from laser scan and the right part is from RGB camera. In
(1a), the current status of pedestrian is “Waiting to cross” and “Stop”, and the
potential destination shows the intention of pedestrian. In (3a), the blue arrow
indicates the possible action of the current lane where the vehicle is on, and the
red words present the lane position related to the ego-vehicle. 31

6.4 Our model first encodes past observation history of each agent to propose a
long-term goal distribution over potential final destinations for each agent
independently. A goal, G is then sampled and passed into the Joint Interaction
and Prediction module. A scene graph is constructed to allow agents to share
trajectory information, intentions, and long-term goals. Black nodes denote
road entrance/exit information which provides agents with map topology
information. At each timesteps, current scene information is propagated
through the graph. We then predict an intent (what action will the agent take
in the near future?) for each agent. Finally, the trajectory decoder is
conditioned on predicted intentions, goals, past motion, and scene before
forecasting the next position. This process is recurrently repeated for the
horizon length. 33

v

6.5 Visualization of top-1 trajectory prediction result (green: past observation, blue:
ground truth, red: prediction) and frame-wise intention of a particular agent
in dark green circle at the start of the observation time step(GI: Ground truth
Intention, PI: Predicted Intention) is shown at the bottom of each scenario. More
detailed visualizations and comparisons are provided in supplementary material. 37

6.6 Intention prediction confusion matrices. (a-b) results for vehicles under both
unimodal and multimodal sampling, (c-d) those for pedestrians. 38

6.7 Accuracy vs. Future Horizon (in frames). The x axis of each figure is
time and the y axis of each figure is accuracy (from 0 to 1). The change of
intention prediction accuracy over a time horizon for both unimodal and
multimodal predictions. In (a-b) we plot intention accuracy over time for
vehicles for N=1 and N=20 samples respectively. In (c-d) we plot intention
accuracy over time for pedestrians with N=1 and N=20 samples. 39

6.8 ADE Performance based on varying ground-truth intention annotation frequency. 40
A.1 Visualization of three types of labels: (a-b) Intention labels; and (c)

Environmental labels. The left part of each image is from laser scan and the
right part is from RGB camera. In (a), the current status of pedestrian is
“Stopped”, and the potential destination shows where the pedestrian may go in
the future. In (c) left, the blue arrow indicates the possible action of the vehicle
based on the current lane it is on. The red words show the lane position related
to the ego-vehicle. 50

A.2 Visualization of our model’s (Ours+IC+SG) top-1 (out of N=20 multimodal
setting) predictions. Agent’s past trajectory is represented in green. Agent’s
ground truth future is blue. Agent’s predicted trajectories are in red (with
increasing opacity to indicate better matches to the ground truth). We observe
that our model performs reasonably in complex traffic scenarios. 56

A.3 Visualization of our model’s (Ours+IC+SG) top-5 (out of N=20 multimodal
setting) predictions. Agent’s past trajectory is represented in green. Agent’s
ground truth future is blue. Agent’s predicted trajectories are in red (with
increasing opacity to indicate better matches to the ground truth). 57

A.4 Comparison of with and without intention priors/scene graph for trajectory
prediction. Agent’s past trajectory is represented in green. Agent’s ground
truth future is blue. The top-1 predictions by the model without intention
conditioning and scene graph are in purple. The top-1 predictions by the model
with intention conditioning and scene graph are in red. We can qualitatively
observe the efficacy of intention conditioning and incorporating interaction and
environmental cues. 58

vi

List of Tables

3.1 Encoding the input permutation π. Shuffling the input sequence arbitrarily
changes the successor of each token. 10

4.1 Offline Evaluation Results on the EK-100 dataset for tf = 1 second horizon.
Latency is measured over the entire model including the backbone & head
networks on a single 16G Tesla V100 GPU. Methods that use other modalities
(+RGB) are deemphasized. 15

4.2 Real-time Evaluation Results for benchmarking action forecasting methods in a practical setting
(4.2). Each comparison is performed between a pair of models where their start time (‘Inference Start’)
times have been adjusted (Figure 1.1) by their latency so that they produce the forecasting output for
the ‘Target Time’ simultaneously (‘Inference End’). For prior works [32, 112], start & end times are
kept same as their original offline settings (Table 4.1) to avoid any training recipe change. Faster models
can pragmatically utilize recent frames while slower models must rely on higher fidelity prediction from
older frames. Latency measured on a single 16G Tesla V100 GPU. 16

4.3 EK100 Ablation Study. FL is feature loss (no SCM), SCM is Shuffled Causal Masking (3.4), AT
(2×) are single (double) anticipation tokens (3.4). 17

4.4 Offline Evaluation top-1 accuracy results on the Epic-Kitchens-55 dataset. 18
4.5 EGTEA Gaze+. Under same initialization, RAFTformer significantly outperforms all prior methods

without using any additional modalities. 18
4.6 Results of our model compared to others on flow features provided by [28]. Note

that all models used the same input features, but we still outperform prior SOTA.
Results are evaluated using the same train/val split [28, 32] which we refer to as
the offline setting (tf = 1s) . 19

4.7 Results of our model compared to others on object features provided by [28].
Note that all models used the same input features, but we still outperform prior
SOTA. Results are evaluated using the same train/val split [28, 32] which we refer
to as the offline setting (tf = 1s). 19

6.1 Comparison of LOKI dataset with PIE [90], JAAD [88] and STIP [71]. 29

vii

6.2 Trajectory error metrics for N=1 samples: ADE and FDE of various state-of-
the-art baselines and our method using unimodal (single-shot) evaluation. Reported
errors are in meters. Lower is better. We show results evaluated on separate classes to
gain more insight on prediction performance. We report errors on 1) pedestrians, 2)
vehicles (non-static), 3) agents that change lanes, and 4) agents that turn. 36

6.3 Trajectory error metrics for N=20 samples: ADE and FDE of various state-of-
the-art baselines and our method using multimodal evaluation. Reported errors are in
meters. Lower is better. We report errors on the same classes described in Table 6.2. 36

A.1 We use a GRU to encode the observation information for each actor. We use a
hidden dimension of 64. The input is 15 observation frames with 21 inputs at
each frame (2 from position, 8 from vehicle actions, 5 from pedestrian actions,
and 6 from lane information). We use one-hot encoding to represent action types.
We also include a None class for both vehicle and pedestrian actions. This allows
vehicle agents to choose None for pedestrian action types and pedestrian agents
to choose None for vehicle action types. 52

A.2 Sub-network architectures used for the goal-proposal network, modeled closely
from model [78]. Batch size of 1 used for example. 53

A.3 Sub-network architectures used for the Scene Graph + Prediction module. Batch
size of 1 used for example. 54

1

Chapter 1

Introduction

Latency matters. It is a crucial system design consideration for countless applications that
operate in real-time from hardware design [86], network engineering [84], and satellite
communications [39] to capital trading [41], human vision [79] and even COVID
transmission patterns [74]. However, it has not been a center stage design consideration in
modern computer vision systems of the past decade [58, 20]. Modern vision system design
has largely focused on the correctness of the system rather than the latency of the
predictions. Interestingly, recent neural network architectures have adopted FLOPs as a
proxy for latency as a second axis for model design. While being a sufficient fidelity metric
for offline after-the-fact applications like automatic content recognition, latency often
comes second to correctness, even for online real-time systems such as forecasting models.

Forecasting empowers reactive planning [26]. An autonomous system present in rich human
environments inevitably needs to understand human actions around it for smooth task
planning and execution. Autonomous agent planning critically depends on anticipating the
future of the scene in various forms such as trajectory prediction [30, 77, 78, 31], action
forecasting [32, 28, 112] or future scene segmentation [14] and anticipating the future is a
activity humans subconsciously do for day-to-day tasks [80]. And while vision based
forecasting systems are often meant for embodied real-time deployment on autonomous
agents like self-driving cars and robots, they are evaluated in an offline setting where
inference latency is neglected (Figure 1.1).

In this work, we propose a real-time evaluation setting (Figure 1.1) that closely mimics the
real-world deployment for a forecasting system. Suppose that in a real-time system, the
design specifications require the forecasting system outputs tf seconds in advance of the
event to be able to plan and use the forecasts effectively. In current offline settings, the
forecasting system begins the inference tf seconds in advance of the event (‘Present’ in
Figure 1.1) and the model latency is ignored (or assumed to be 0) such that the predictions
are available instantly. However, in our proposed real-time setting, the model is required to
start inference in advance of ‘Present’ so that the outputs are available with a horizon of tf

CHAPTER 1. INTRODUCTION 2

Time Present
Target
Future

Forecasting
Horizon

Inference LatencyObserved Past

LatencyObserved Past

Prior
Methods

RAFTformer

Observed Past

dry	hand fold	cloth take	pizza take	pizzadry	hand

= 0Offline:

Real-time: ≠ 0 Action?

sec

Figure 1.1: Action Forecasting is the task of predicting actions that will happen after a
pre-determined time span, say tf seconds, into the future. Prior works consider an offline
evaluation setting that ignores the model inference latency. We propose a latency-aware
real-time evaluation setting where the model is required to finish forecasting tf seconds
before the target time. We present RAFTformer, a fast action anticipation transformer that
outperforms prior works both in offline & real-time setting while forecasting actions in real-
time (≥ 25 FPS).
seconds, meeting the design specification.

We observe that in the real-time setting, the prior works fare quite poorly because of their
slow model inference latency (Table 4.2). A large latency implies that the model has to
start inference further in the past and has to rely on older video data to make forecasts
with the benefit of more expressiveness (Figure 1.2). A smaller latency means the model
can enjoy more recent video data but has limited capacity. Simply said, models that are
only evaluated in the offline setting may fare poorly in the real-time deployment setting
due to their latency agnostic design (Figure 1.2).

We present, RAFTformer, a real-time action forecasting transformer that uses a two-stage
transformer encoder-based network for lightning fast forecasts in inference. RAFTformer
uses a shuffled casual masking scheme based feature prediction loss for learning strong
temporal cues that transfer to feature prediction. Further, RAFTformer uses specialized

CHAPTER 1. INTRODUCTION 3

21 28 40 110 160 194
Latency (ms)

17.5

18.5

19.3

20.5
To

p-
5

Re
ca

ll
RAFTformer Offline
RAFTformer Real-time

Figure 1.2: Evaluation Performance Latency. Bigger models perform better in latency
agnostic offline settings. In the real-time evaluation setting, we observe that, beyond a limit,
bigger models with higher latency cause a drop in forecasting performance. In practical
deployment, there exists a trade-off between latency and high-fidelity forecasts. See 4.3 for
details.

anticipation tokens for learning to predict action at multiple temporal horizons that
improve model reasoning capabilities of short-term action forecasting as well. Finally, the
model is explicitly designed for real-time embodied deployments that allows inference up to
an order of magnitude faster than prior state-of-the-art methods. In summary, our
contributions are three-fold:

First, we propose Real-time Action Forecasting Transformer (RAFTformer), a real-time
action forecasting transformer with latency at least 9× smaller than prior state-of-the-art
action forecasting methods. RAFTformer uses specialized anticipation tokens and a novel
shuffled casual masking based self-supervision loss that allows it to outperform prior work
while maintaining low latency with a reduction of 94% in GPU training time and 90% in
number of trainable parameters compares to prior works. To the best of our knowledge,
our work is the first to achieve action anticipation in real-time (25 fps).

Second, we propose a latency-aware real-time evaluation setting (Figure 1.1) that better
mimics practical deployment settings for embodied forecasting systems. Real-time
evaluation demonstrates a clear trade-off between inference latency and model forecasting
fidelity, paving the path for development of latency-aware forecasting models in future.

Third, Through extensive experiments, we show that RAFTformer outperforms prior state-
of-the-art methods by 4.9 points on the EGTEA Gaze+ dataset, by 1.4 points on the EPIC-
Kitchens-100 dataset according to the Top-5 Recall metric and by a relative margin of 5.3%
on the top-1 accuracy metric on EPIC-Kitchens-55 dataset.

-•· --· --

4

Chapter 2

Background and Prior Work

2.1 Action Anticipation
Over the last few years, action anticipation has seen significant advances following the
promising results in video recognition [48, 24, 123, 4, 50, 82, 73, 33, 112, 21, 6, 66] and
video segmentation [108, 65, 53, 35, 113]. While earlier works [1, 75, 94] use CNN based
methods for video action anticipation, many follow-up works transitioned into using
recurrent sequence based networks [28, 85, 101, 89, 30]. Using multiple spatial and
temporal scales was another key idea explored in several anticipation works [24, 122, 109,
100, 100, 112]. Masking based self-supervision has proven to be a new frontier for both
image [7, 42, 23, 83, 45] and video [40, 105] representation learning. This concept has also
been explored in the context of video anticipation [32] which differs from prior works that
explore temporal consistency [25, 47, 52, 111, 115], inter-frame predictability [38, 37, 46],
and cross-modal correspondence [5, 54, 104]. In our work we propose a novel generalized
self-supervision scheme which is a crucial part of our models ability to generalize and
outperform SOTA.

2.2 Transformers for Video Anticipation
With the rise of transformers for sequence tasks, recent works have explored various image
and video based transformers [32, 34, 112, 121, 34, 110] for anticipating actions. [32]
proposes a ViT-based [20] spatial transformer backbone with a transformer decoder head
to anticipate next action with a 1s horizon. [32] predicts actions in the same latent space
as their feature decodings causing conflation between feature reconstruction and future
prediction. We propose specialized anticipation tokens to address this problem.
Furthermore, [32] uses a recurrent decoder and frame-level operation, which is inefficient
for both training compute and inference latency. MeMViT [112] proposes another fully
transformer model which extends MViT [21] for better long-range modeling using a novel
caching mechanism. However, their model is trained to only predict next action and thus

CHAPTER 2. BACKGROUND AND PRIOR WORK 5

does not explicitly learn to model the future or evolving scene dynamics. Furthermore,
their model is less efficient than RAFTformer in terms of both training and inference time
due to its larger model and input size and complete end-to-end training. RAFTformer uses
a fixed pre-trained video network and only trains the RAFTformer network. Recently [34]
propose a transformer based model for long-term action anticipation. They focus on a
sequential prediction rather than next-action prediction and does not focus on inference
latency.

2.3 Real-Time Systems
Latency matters, especially for real-time applications. Autonomous agents need to reason
about nearby agents and take real-time decisions. This vision has led to great progress in
the development of real-time systems in the related fields of semantic segmentation [22],
video object segmentation [108], object detection [91, 72, 68, 13], multi-object tracking [51].
While some progress has also been made in activity understanding [118, 103], it is limited to
recognition and detection. Keeping this in mind, some recent works in action anticipation
have also started focusing on efficiency and memory footprint and report training time,
inference time and trainable parameters [112]. Although a step in the right direction, these
works have high inference times in comparison to their desired anticipation horizon. Our
proposed method is significantly faster during both training and inference, has fewer trainable
parameters and smaller memory footprint, and still outperforms state of the art methods.

6

Chapter 3

Real-Time Action Forecasting
Transformer

In this section, we first present the problem formulation (3.1), followed by the architectural
details of the video backbone for feature extraction (3.2) and the RAFTformer model
architecture (3.3) including anticipation tokens (3.4), shuffled causal masking (3.4) and
permutation encodings (3.4), followed by an outline of the loss functions used for training
the model (3.6).

3.1 Problem Formulation
Given an observed video starting from time T = 0 and of arbitrary length t, V0,t = [F0, ..., Ft]
where Fi denotes the frame at time i, the task is to predict the future action tf seconds in
the future, , action At+tf

at time T = t+ tf .

3.2 Pre-trained Video Backbone
In contrast to state-of-the-art models [112, 32] that train end-to-end, we demonstrate that
a 2-stage training process is both efficient and produces high-fidelity forecasts. First, we
split the full duration of the past video V0,t into sub-clips V = [C0, C1, ..., CN] with a sliding
window approach. Each clip, Ci is independently processed with the short-term video
backbone like MViT [21] to extract clip-level features. A video backbone produces much
richer spatio-temporal clip level features than an image backbone that lose temporal
context like ViT [20], which has used in some prior works [32]. Further, using a video
backbone also allows lower latency since the produced clip embeddings already contain
fused features for several images at once.

Our two-stage design also allows for a hierarchical temporal processing of the long-form past
video. The short-term recognition backbone model operates on short, high resolution clips.

CHAPTER 3. REAL-TIME ACTION FORECASTING TRANSFORMER 7

𝐸1

𝐸2

𝐸3

𝐸N

𝜋
*	Shuffle

+

RAFTform
er Encoder

Feature
Prediction

Head

Action
Preds

𝐶1

𝐶2

𝐶3

𝐶N

𝐸2

𝐸3

𝐸1

𝐸N-1

𝐴1

𝐴2

𝜋𝑃𝐸 fut

𝜋𝑃𝐸N-1

𝜋𝑃𝐸N

𝜋𝑃𝐸2

𝐸N

𝐸(fut

𝐸(N-1

𝐸(n

𝐸(2

𝐸N-1𝐶N-1

𝐴1

𝐴2
Long-Term

Head

Short-Term
Head

+
+

+
+

+
+

+
+

APE 2

APE 3

APE 4

+

𝜋*
~ 𝜋

RAFTformer Backbone

M
ViT

O
bserved Video

𝐴𝑃𝐸1

𝐴𝑃𝐸2

𝐴𝑃𝐸3

𝐴𝑃𝐸N-2

𝐴𝑃𝐸N 𝐸* fut

𝐸*N−1

𝐸*n

𝐸*2

𝐸*N-3

RAFTformer
Head

.

. .
.

. .

.

.

.

Figure 3.1: RAFTformer is a real-time action anticipation transformer architecture comprised
of two stages. First stage is a pre-trained short-term backbone that produces individual clip
embeddings independently of other clips (3.2). In the second stage (3.3), absolute position encodings
are added and the resulting sequence is shuffled with a sampled permutation π∗ ∼ π. The
permutation encodings (3.4) are then added to the shuffled sequence and after concatenation with
anticipation tokens, the sequence is processed with the RAFTformer encoder. The output tokens
are decoded via short & long-term action anticipation heads (3.5), as well as the feature prediction
head and trained with self-supervised loss (LSCM), future feature prediction loss (Lfuture) and action
forecasting loss (Lfocal) (3.6).

These extracted features are then used as input to the head network to process longer-range
lower resolution features which captures key information from each clip. This is a crucial
design consideration to lower the inference latency in RAFTformer while still capturing
longer-range temporal dependencies compared to [32, 28].

3.3 RAFTformer Model Network
We propose the RAFTformer encoder be a transformer encoder model. The transformer
encoder has the advantage of being able to effectively learn across clip dependencies by
attending over independently extracted clip features without facing memory bottlenecks
such as faced in LSTM encoders [44] that have been used in some prior works [28, 100].
However, to make the encoder effective for action forecasting on pre-trained features, we
propose several changes to the training process to allow two-staged training to work as well
as end-to-end training for action forecasting.

CHAPTER 3. REAL-TIME ACTION FORECASTING TRANSFORMER 8

3.4 Anticipation Tokens
The extracted clip embeddings [C0 · · ·CN−1] form the first part of input to the action
anticipation head. For, the second part we propose to train learnable ‘anticipation tokens’
that can aggregate global context and later can be decoded into the future predictions.
This design choice stands in contrast to prior works like [32] where the the output of the
anticipation token is implicitly designed to be in the same latent space as the output of
their image-feature tokens. In contrast to prior works, we find that temporal aggregation
such as mean pooling for forecasting, leads to subpar performance (see Table 4.3). Hence,
we use the output tokens corresponding to [C0 · · ·CN] solely for self-supervised feature loss
rather than action anticipation.

Instead, for action anticipation we propose to train learnable ‘anticipation tokens’ to learn
useful global context from the clip tokens. The output of the anticipation token is no
longer restricted to be in the same latent space as the output of clip-feature tokens like in
[32] and can better capture information needed to anticipate the next action. Further, we
propose to use multiple anticipation tokens to generate additional supervision, with each
token attending to different past video length and producing forecasts for different time
horizons in the future.

Self-Supervision via Shuffled Feature Prediction

Prior works have explored using the self-supervision task of predicting frame or clip
features and using a MSE loss[32]. We propose to use a generalized form of masking based
self-supervision [42] based on predicting shuffled future features. Predicting future clip
features has a two-fold benefit: (1) It encourages causally learning the observed sequence
incentivizing the model to grasp the underlying scene dynamics and (2) Prediction in the
latent feature space allows reasoning semantically about the future without wasting
modeling capacity with low pixel level scene details.

Different from loss functions proposed in prior works [32], we propose an improved auto-
regressive scheme for self-supervised learning by future feature prediction. Rather than
sequentially predicting missing clip features in order using a causal attention mask, we
propose to use a model-level augmentation of the attention masking scheme where some of
the attention weights are not used from the original causal mask.

Random Masking. Construction of sparse augmented attention mask is non-trivial.
Simply generating a random mask such as in MAE [42] fails to isolate information within
the intended partitioning due to multi-hop message passing caused by repeated application
of the same mask. For example, consider Figure 3.2. We illustrate the information
available to each token as it passes through multiple layers with a fixed random masking
scheme. Before the first layer, each token has access to only its own features hence, the

CHAPTER 3. REAL-TIME ACTION FORECASTING TRANSFORMER 9

Layer 2

Attention
Mask

Accessible
Information

Input Feature
Layer Layer 1

2
3
4

2 3 41

2
3
4

2 3 41

Figure 3.2: Random Masking Self-Supervision Illustration of how naive random
masking fails for self-supervised feature prediction task. Ti represents the embeddings for
clip i, as it transforms through the transformer layers. We can see that in Layer 1 the tokens
can only access information according to the provided mask. However, if the same mask is
used in Layer 2, there is information leakage across tokens which is undesirable.

accessible information matrix is diagonal. After Layer 1, each token now has access to
tokens that were not masked (white) in the attention mask at Layer 1. However after Layer
2, because of multi-hop message-passing, some tokens (1 and 3 in Figure 3.2) have access
to information from other tokens that are actually masked in the token’s attention matrix
(2 and 3 respectively, shown in red grid border).

Hence, improper masking can cause temporal information leakage, causing self-supervision
to fail. For example, self-supervising token 1 with token 2 feature prediction would fail
in Figure 3.2, despite token 2 being masked in the first row of the attention matrix. To
prevent such an objective collapse, a careful mask generation scheme is needed, so that there
is no unintended multi-hop information leakage. Instead, we propose a simple yet effective
solution.

Shuffled Causal Masking. We know that vanilla causal masks ensure that information
available to each token is invariant under repeated applications of the attention mask, ,
multi-hop message passing. Since multi-hop message passing is token permutation
invariant, any permutation of the tokens from the causal mask will preserve the invariance
of accessible information under multiple hops. Thus, this allows a general framework for
structured randomized mask construction without temporal leakage. We notice that a
row-wise permutation of the attention mask is equivalent to the same permutation applied

CHAPTER 3. REAL-TIME ACTION FORECASTING TRANSFORMER 10

Auto-regressive Shuffle Another Shuffle
[1, 2, 3, 4] π1 : [4, 1, 3, 2] π2 : [3, 4, 2, 1]

1 7→ 2 4 7→ 1 3 7→ 4
2 7→ 3 1 7→ 3 4 7→ 2
3 7→ 4 3 7→ 2 2 7→ 1

Table 3.1: Encoding the input permutation π. Shuffling the input sequence arbitrarily changes
the successor of each token.

to the sequence itself. Hence, the same effect as a properly constructed random masks can
simply be achieved by shuffling the input token sequence itself. This allows generalizing
vanilla auto-regressive prediction order to arbitrary sequence permutations without any
multi-hop information leakage through the layers. Thus, rather predicting clip features
sequentially from 0 to N − 1 like [32], our proposed scheme allows for exponentially more
variations.

Referring to Figure 3.1, we first add absolute position embeddings (APE) to each of the
clip features before shuffling them. This allows transformer to leverage the information
about the actual temporal order of each clip in the video. Without the absolute position
embeddings, the transformer in input permutation equivariant which is not a desirable
property for action forecasting. However, while APE is sufficient for positional information
in vanilla auto-regressive ordering, it is not enough for prediction under our proposed
Shuffled Causal Masking (SCM) scheme. In vanilla autoregressive ordering, for any specific
token, the next token in the sequence corresponds to a fixed position and hence the
self-supervised training process can subtly learn this bias via next token feature
supervision. In contrast, under SCM the temporal position of the next token varies with
the shuffling permutation and hence the self-supervised training cannot learn perform
effective feature prediction without the information about the shuffling permutation.

Permutation Position Encoding

Näıve Encodings. For an L length sequence, there exist L! possible admissible
permutations. Encoding each permutation (π) by itself is clearly intractable. First, we
observe that enocding π∗ as a set of a O(L) embeddings which are shared among different
π is more efficient. A follow-up solution would be to instead encode each predecessor 7→
successor relationship as an encoding and have L − 1 of such embeddings together encode
π∗. This reduces to total number of required embeddings to L(L − 1) from L!. Each π∗

now shares every one of its L embeddings with other π, but considered as a set, the L
embeddings uniquely encode π∗. However, even L2 becomes intractable for large L.

Permutation Position Encodings (πPE) provides an elegant solution for encoding π∗

CHAPTER 3. REAL-TIME ACTION FORECASTING TRANSFORMER 11

requiring only L total encodings to be learnt. πPE encodes the predecessor 7→ successor
relationships but further simplifies by noting that adding the encoding to the token itself
makes the predecessor information redundant. The token itself is the predecessor and has
the positional information available from APE. Hence, we simply encode the successor
positional information and that in combination with APE uniquely encodes π∗. Hence, we
design πPE to be the encoding of the original temporal position of the successor in the
permuted sequence. So for the π1 permutation in Table 3.1, we would add πPE[1] to token
4, πPE[3] to token 1 and πPE[2] to token 3.

3.5 Overall Mechanism
The past video is split into clips, and the clip embeddings [C0 · · ·CN−1] are extracted using a
video backbone (Figure 3.1). Anticipation tokens are concatenated to the extracted sequence
(3.4), followed by addition of absolute position encoding to the concatenated sequence. Now,
the clip embedding are shuffled according to a randomly chosen permutation π∗ to obtain
[Cπ∗[0] · · ·Cπ∗[N−1]]. The sampled permutation π∗ is then encoded by adding the successor’s
(3.4) embedding to each token. In Figure 3.1, π∗[1] = 3 and π∗[2] = N , hence πPE[1] = N
which is used to self-supervise the feature at the second position in the shuffle sequence, ,
token 3 (3.4). The shuffled input sequence, in addition to the anticipation tokens, is now
propagated through the transformer encoder using a causal attention masking scheme and
the output is decoded using the RAFTformer head networks.

Head Networks We propose using three MLP heads on top of the transformer encoder
network (Figure 3.1). Two MLP heads decode the anticipation tokens into the predicted
future action distribution. The third MLP head upsamples the encoded tokens to the original
representation space of the input tokens to allow self-supervision loss.

3.6 Loss Functions
We observe that the ground truth action distributions are often long-tailed, and propose to
use the the focal loss [69], for supervising the future action prediction distributions.

Lfocal =
∑

Ai∈A

n∑
i=0

−(1 − pAi
)γ log(pAi

)

where pi is the predicted probability for the correct class for the ith example, Ai represents
predictions from a specific anticipation token and γ is the focusing parameter where γ = 0 is
cross entropy loss. Increasing γ results in increased penalty for hard, misclassified examples.
For self-supervision using shuffled causal masking to predict next-token embeddings, we
use an expected ℓ2 loss over both past tokens, with the expectation being over sampled

CHAPTER 3. REAL-TIME ACTION FORECASTING TRANSFORMER 12

permutations π∗ ∼ π.

LSCM = E
π∗∼π

N−1∑
j=0

∥Eπ∗[j] − Êπ∗[j]∥
2
2

where Eπ∗[j] and Êπ∗[j] denotes the original and the predicted clip embedding at position j
after permuting with π∗. For future token prediction, we use a simple ℓ2 loss

Lfuture = ∥Efuture − Êfuture∥2
2

Finally, the overall loss is simply a weighed sum,

L = Lfocal + λ1LSCM + λ2Lfuture

13

Chapter 4

Experiments and Results

4.1 Datasets & Metrics
In this work, we explore the widely used EPIC-KITCHENS dataset [16], an unscripted
dataset with nearly 20x more action classes and 10 − 100x more observed sequences than
other action datasets such as Breakfast dataset [59] and 50Salads [61] dataset. We
benchmark the EPIC-KITCHENS dataset on both the EPIC-55 and EPIC-100 anticipation
splits and use the same training/testing split as in prior works [32, 28, 112, 100]. The
EPIC-55 dataset consists of 39,600 segments split up from raw, unscripted videos of
humans performing 2,513 actions in the kitchen. The EPIC-100 dataset contains close to
90,000 segments with 3,806 actions. For EK55, we use the Top-1 accuracy metric which
was the primary metric used by most works on this dataset. For EK100, we use the Top-5
Action Recall metric to compare performance as done in most prior works for this dataset.

We also report results on the EGTEA+ Gaze dataset [67] which contains 106 actions from
over 10,000 segments. Note that we use the same training/testing split (5-fold
cross-validation average) as reported in prior baselines/works [28]. We report with
anticipation horizon, tf = 1 so it is the same for all our datasets in the offline setting.

Since human decision-making is inherently multimodal, we propose an approach to predicting
multiple reasonable future action forecasts. In addition to top-1 accuracy, we report top-5
recall following prior works [28, 32, 112]. We use the baseline data splits and report metrics
on both the validation and test set. In addition, we report the number of trainable model
parameters (M), total compute spent for training the model to convergence on a Tesla V100
GPU (in hours), and the inference latency (in milliseconds).

CHAPTER 4. EXPERIMENTS AND RESULTS 14

4.2 Evaluation Setting

Offline evaluation
In this setting, model inference latency is ignored, or in other words, assumed to be zero. All
prior works [28, 32, 112] consider this setting. Referring to Figure 1.1, prior works assume
access to all past video frames up till the present moment T = t. Using this information,
the model then predicts that action with a tf second horizon at T = t + tf . However, the
prediction would actually be produced at time T = t + tl where tl is the model inference
latency. This is not practically useful since often, we require time horizon tf to meaningfully
use the predicted future outcomes. Further, this does not account for absurdities where a
large model might even have latency tl > tf , in which case the model is predicting an action
that has already happened by the time it predicts it! A complex model can have great offline
performance but might have too long of an inference time for it to be useful in practice.

Real-time evaluation.
To remedy this impractical situation, we consider the real-time evaluation setting. In this
setting, the model is required to finish inference with at least tf seconds horizon before
the target time (Fig. 1.1). Hence, the model is allowed access to past video data only
for T < t − tl. This setting even allows for large models where tl > tf since predictions
would still be produced with tf seconds before the target time. Unlike other recognition
scenarios where latency is a mere annoyance, in the case of future forecasting, models are
often used in real-time rather than offline. The offline setting subtly oversteps the prediction
horizon tf , by receiving forecasts with a margin much less than the postulated tf horizon. By
coupling model latency to the past video data observed, the real-time setting incentivizes the
development of efficient forecasting methods that utilize the recent data better than relying
on slow large models that cannot miss the recent frames, which arguably are the most crucial
for near future prediction.

4.3 EPIC-Kitchens-100

Network Details
For feature extraction, we fix the pre-trained 16x4 (K400+IN1K) and 32x3 (K700)
MViT-B backbones [21, 66] trained for recognition on the EK100 dataset. Each clip is
embedded as a 768-dimensional feature vector. Unless mentioned otherwise, the action
forecasting experiments use a tf = 1 second horizon. RAFTformer encoder is a lightweight
4 layer, 4 head transformer encoder using post-normalization and ReLU activations. A
linear projection from up-projects 768 → 1024 for the transformer. Only during training,
we use an input shuffling probability of 0.3. The output of the encoder is down projected
from 1024 → 768 channels. Both short-term and long-term action prediction heads are fast

CHAPTER 4. EXPERIMENTS AND RESULTS 15

& lightweight MLPs (1024 → 2048 → 3806). We set λ1 = λ2 = 14. For other details, please
see supplementary.

Offline Evaluation

Split Method Addl. Modality Init Epic Boxes Top-5 Recall Parameters
(×106)

GPU
Hours

Inference
Latency (ms)Verb Noun Action

Va
l

TempAgg [100] None IN1K 24.2 29.8 13.0 - - -
RULSTM [28] None IN1K - - 13.3 - - -
RULSTM [28] Obj+Flow IN1K ✓ 30.8 27.8 14.0 - - -
TempAgg [100] Obj+Flow+ROI IN1K ✓ 23.2 31.4 14.7 - - -

AVT [32] None IN21K 30.2 31.7 14.9 378 - 420
AVT+ [32] Obj IN21K ✓ 28.2 32.0 15.9 - - -

TSN-AVT+ [32] Obj IN21K ✓ 31.8 25.5 14.8 - - -
MeMVit [112] None K400 32.8 33.2 15.1 59 - 160
MeMVit [112] None K700 32.2 37.0 17.7 212 368 350
RAFTformer None K400 + IN1K 33.3 35.5 17.6 26 23 40
RAFTformer None K700 33.7 37.1 18.0 26 27 110

RAFTformer-2B None K700 + IN1K 33.8 37.9 19.1 52 50 160

Te
st

RULSTM [28] Obj+Flow IN1K ✓ 25.3 26.7 11.2 - - -
TBN [117] Obj+Flow IN1K ✓ 21.5 26.8 11.0 - - -
AVT+ [32] Obj+Flow IN21K ✓ 25.6 28.8 12.6 - - -

Abstract Goal [95] Obj+Flow IN1K ✓ 31.4 30.1 14.3 - - -
AFFT [121] Obj+Flow - ✓ 20.7 31.8 14.9 - - -
RAFTformer None K400 + IN1K 27.3 32.8 14.0 26 23 40
RAFTformer None K700 27.4 34.0 14.7 26 27 110

RAFTformer-2B None K700 + IN1K 30.1 34.1 15.4 52 50 160

Table 4.1: Offline Evaluation Results on the EK-100 dataset for tf = 1 second horizon.
Latency is measured over the entire model including the backbone & head networks on a
single 16G Tesla V100 GPU. Methods that use other modalities (+RGB) are deemphasized.

In Table 4.1 we first report RAFTformer results against several prior works, including
previous SOTA MeMViT [112], on the validation set. Results that use additional
modalities like Object (Obj), Flow (Flow), Object Region of Interest (ROI) or Epic
Kitchen boxes are de-emphasized. Using only RGB inputs, RAFTformer (K700)
outperforms the AVT RGB model in action T5R by 3.1 points and the AVT RGB+Obj
model by 2.1 points. RAFTformer slightly outperforms MeMViT action T5R while
predicting actions 8.75× faster with 8.2× lesser trainable parameters and a 16× faster
training time. We also combine two separate RAFTformer models to train a two-backbone
model (RAFTformer-2B) that achieves state-of-the-art by a large margin of 1.4%
improvement in T5R performance. In the second section, we report our submitted results
to the EK100 test server. We observe that RAFTformer generalizes well to the test set,
improving upon the AVT+ multimodal ensemble model [32] by 2.8 T5R points.

CHAPTER 4. EXPERIMENTS AND RESULTS 16

Model Init Latency Inference Start Inference End Target Top-5 Recall
(tl ms) Time Stamp Time Stamp Time Stamp Verb Noun Action

AVT[32] IN21K tavt = 420 T T + tavt T + 1 30.2 31.7 14.9
RAFTformer K400 + IN1k tours = 40 T + tavt − tours T + tavt T + 1 34.1 38.2 19.3 (+4.4)

MemViT [112] K400 tvit = 160 T T + tvit T + 1 32.8 33.2 15.1
RAFTformer K400 + IN1k tours = 40 T + tvit − tours T + tvit T + 1 33.8 37.1 18.1 (+3.0)

MemViT [112] K700 tvit = 350 T T + tvit T + 1 32.2 37.0 17.7
RAFTformer K400 + IN1k tours = 40 T + tvit − tours T + tvit T + 1 33.7 37.9 19.0 (+1.3)

Table 4.2: Real-time Evaluation Results for benchmarking action forecasting methods in a practical setting
(4.2). Each comparison is performed between a pair of models where their start time (‘Inference Start’) times
have been adjusted (Figure 1.1) by their latency so that they produce the forecasting output for the ‘Target Time’
simultaneously (‘Inference End’). For prior works [32, 112], start & end times are kept same as their original offline
settings (Table 4.1) to avoid any training recipe change. Faster models can pragmatically utilize recent frames while
slower models must rely on higher fidelity prediction from older frames. Latency measured on a single 16G Tesla
V100 GPU.

Real-time Evaluation
In table 4.2, we fix the target - start time difference to be what the prior models such as,
AVT [32] or MeMViT [112] were designed for, to avoid any unintended change in their
training recipes. Hence, we shift RAFTformer start time so that the output forecasts are
produced simultaneously for the pair.

We observe that RAFTformer outperforms prior methods by an even larger margin in the
real-time evaluation setting than in offline evaluation setting. RAFTformer effectively utilizes
its compute to produce the maximum forecasting effect at least latency cost. This allows
RAFTformer to exploit more recent information that slower models miss because of higher
inference latencies (tours < {tavt, tvit}). This also shows that disproportional effect of inference
latency on forecasting performance. While RAFTFormer K400 + IN1K has similar Top-5
Recall as MeMViT K700 in the offline setting, in the practical real-time evaluation (Table
4.2), RAFTformer outperforms MeMViT by 1.3% by leveraging its faster inference latency
(40 350 ms).

Latency vs. Offline & Real-time Forecasting
In offline evaluation, latency is ignored and all models data access parity. As scaling laws [49]
would predict, bigger models (with higher latency) have stronger forecasting performance
(Blue curve in Fig. 1.2). In the real-time setting, a higher latency implies access to less
recent data (Green curve in Fig. 1.2) and hence, an interesting trade-off materializes. We
evaluate this by varying our model size. At first, as latency (and model size) increases,
the performance improves. This is because the benefit of having a more expressive model
outweighs the cost of access to older video data. However, as the latency increases further, the

CHAPTER 4. EXPERIMENTS AND RESULTS 17

Model Setting Top-5
RecallAT FL SCM 2×AT

Mean pooling 15.2

RAFTformer

✓ 16.1 (+0.9)
✓ ✓ 16.8 (+0.7)
✓ ✓ ✓ 17.4 (+0.6)
✓ ✓ ✓ ✓ 17.6 (+0.2)

Table 4.3: EK100 Ablation Study. FL is feature loss (no SCM), SCM is Shuffled Causal Masking (3.4), AT
(2×) are single (double) anticipation tokens (3.4).

real-time performance starts decreasing. Now the harm of not having access to recent data
outweighs the benefit of a more expressive model. For our setting, the optimal RAFTformer
model has a latency of 40 ms with an offline and real-time performance of 19.6 and 19.3 Top-
5 recall respectively. A similar trade-off would exist for any combination of dataset, model
and deployment hardware regimes. Plots are for RAFTformer models of varying backbone
parameter count for tf = 0.58 second prediction on EK100.

Ablations
We ablate RAFTformer thoroughly in Table 4.3. In contrast to prior works [32, 112] that
either pool information or use the same embedding for feature supervision and action
prediction, we train explicit anticipation tokens (3.4) to perform forecasting, improving
performance by 1.1 T5R. Anticipation tokens specialize in predicting next action instead of
using features that multi-task between reconstructing clip features and future action
prediction [32]. Self-supervision via feature loss (FL) further improves by 0.7 T5R. Further,
our proposed SCM technique effectively regularizes feature loss with input permutations
and improves 0.6 T5R. Finally, an additional anticipation token (2×AT) for supervision
further improves 0.2 T5R. Additional longer-horizon anticipation task helps with learning
relevant global video features that transfer over to the main anticipation task.

4.4 Additional Datasets

EPIC-Kitchens 55
We also compare RAFTformer to prior baselines on the EK55 dataset in Table 4.4 on top-1
accuracy. We evaluate against other models using the same initialization for fair comparison.
We observe that RAFTformer outperforms prior benchmarks by about 0.7% using the exact
same backbone features. This shows the superiority of our proposed shuffle causal masking
(3.4) & anticipation token prediction (3.4) in a controlled setting.

CHAPTER 4. EXPERIMENTS AND RESULTS 18

Model Init Top-1
Acc

RULSTM [28] TSN/IN1k 13.1
ActionBanks [100] TSN/IN1k 12.3

AVT-h [32] TSN/IN1k 13.1
RAFTformer TSN/IN1k 13.8

Table 4.4: Offline Evaluation top-1 accuracy results on the Epic-Kitchens-55 dataset.

Model Init Modality Top-5 Recall
DMR [107] - RGB 38.1
ATSN [16] TSN/IN1k RGB+Flow 31.6
MCE [27] TSN/IN1k RGB+Flow 43.8
TCN [8] - RGB 47.1
FN [17] VGG-16 RGB 42.7
ED [29] VGG-16/TS RGB+Flow 54.6

RULSTM [28] TSN/IN1k RGB+Obj+Flow 58.6
RAFTformer TSN/IN1k RGB 63.5

Table 4.5: EGTEA Gaze+. Under same initialization, RAFTformer significantly outperforms all prior methods
without using any additional modalities.

EGTEA Gaze+
We also evaluate on the EGTEA Gaze+ dataset in Table 4.5 to showcase RAFTformer
performance on new settings outside of EPIC-Kitchens. Again, we use the setting of
anticipating 1s into the future and use the T5R metric. While prior methods use many
input modalities including as object, flow, and RGB, we significantly outperform the prior
state-of-the-art in this setting [28] by 4.9%. Note that we use pre-extracted TSN RGB
features as provided by [28] for direct comparison. Our very strong performance on another
egocentric video dataset with complex human tasks further validates the promise of
RAFTformer.

4.5 Additional Results

Object and Flow Feature Results
In Tables 4.6 and 4.7 we present results on EK55 dataset (Top-1 Accuracy), using flow and
object features as input. Note that this is the standard offline setting. We show that even
with these modalities (which is not used for our final model), we outperform prior models.
Note that the flow and object features are the same used in [28]. All performance

CHAPTER 4. EXPERIMENTS AND RESULTS 19

Model Top-5 Recall
RULSTM [28] 7.8

AVT [32] 8.7
RAFTformer 9.5

Table 4.6: Results of our model compared
to others on flow features provided by
[28]. Note that all models used the same
input features, but we still outperform
prior SOTA. Results are evaluated using
the same train/val split [28, 32] which we
refer to as the offline setting (tf = 1s)

Model Top-5 Recall
RULSTM [28] 7.2

AVT [32] 6.7
RAFTformer 7.5

Table 4.7: Results of our model compared
to others on object features provided by
[28]. Note that all models used the same
input features, but we still outperform
prior SOTA. Results are evaluated using
the same train/val split [28, 32] which we
refer to as the offline setting (tf = 1s).

improvements seen in these tables are due to the RAFTformer Head architecture
(Anticipation Tokens and Shuffled Causal Masking), since the backbone input features are
the exact same (frame-wise TSN features [28]).

Qualitative Results
In figure 4.1, we visualize multiple examples where AVT has incorrect predictions, but
RAFTformer is able to correctly predict the next action. In figure 4.2, we show cases where
RAFTformer has incorrect predictions.

4.6 Implementation Details

MViT Backbone
We perform our own feature extraction using the MViT=B [66, 21] backbone. For the
K400+IN1K model, we use the 16x4 model pre=trained for short-term action recognition on
the Kinetics-400 dataset. The 16x4 model uses 16 frames sampled 4 frames apart at a 30fps.
This translates to each clip being of length 2 seconds sampled at 8fps. We sample directly
from the RGB frames provided in the EPIC-KITCHENS-100 dataset and do not use flow
or object features that few other works such as [28, 32]. Our K700 model uses a different
32x3 pre-trained MViT on the K700 dataset. This model uses 32 frames sampled 3 frames
apart at a 30fps; while the performance is better due to the heavier model architecture, the
inference time is slower. This trade-off is explored in detail in the main paper.

CHAPTER 4. EXPERIMENTS AND RESULTS 20

Figure 4.1: This figure shows qualitative examples in which RAFTformer predicts the next
action correctly, but AVT [32] is incorrect. Note that we show Top-5 predictions. The frames
and their corresponding labels show the past video and corresponding actions (from 16s ago
to the present).

Pre-processing Details
We find that proper data pre-processing is critical to model performance. We use a center
crop of 224x224 and normalize the images after cropping to mean = [0.45, 0.45, 0.45] and

Time (s)

Time (s)

Time (s)

Time (s)

Time(s)

open in

throwt.n

throw skin RAFTformer
throw paper
throw towel

move knife
take late

wash spatula
put spatula

AVT

RAFTformer

v.esh ladle AVT
v.esh grater
put spoon

cut piua
put knife

open container RAFTformer
throw bin

move board

take olive
take mushroom

take pin AVT
take lid
ut izza

put cup
open cupboard

take cup RAFTformer
take milk

open fridge

take cloth
take spoon
dry hand AVT

cut squash
o n bottle

v.esh knife
v.esh spoon
take knife RAFTformer
wash fork
wash board

wash board
wash plate
v.esh pan AVT

turn-on tap
wash cutle

CHAPTER 4. EXPERIMENTS AND RESULTS 21

Figure 4.2: Two examples of failure cases of RAFTformer. We can see that there are some
cases where even RAFTformer has a lot of trouble understanding context and what exactly
is going on. In the first image, a tap is not clearly visible which is why RAFTformer may
fail to predict actions that involve a tap.

STD = [0.25, 0.25, 0.25] following the scheme in MViT [21]. Note that techniques such as
image augmentations, random cropping, and multi-crop evaluation would boost
performance during both inference and training. However, we do not perform
augmentations on our data due to GPU limitations making our training recipe much faster
in practice; training end-to-end with augmentations however would further increase our
performance as well. For example, [32] uses 3-crop testing which significantly improves
performance. Our proposed method does not require end-to-end training and is suitable
for faster experimentation iterations and those with GPU constraints. We use an observed
sequence length of 16-18 seconds which is longer than most previous works by 6+ seconds
but half as long as MemViT’s model [112]. This however helps our model to be lower
latency than SOTA model MemViT.

Training Hyperparameters
We train our model with the AdamW optimizer with momentum 0.8 and weight decay of
0.001. We use a batch size of 512 and AdamW optimizer for training. We train for 75 epochs
using a cosine scheduler with a warm-up of 30 epochs. Our base learning rate is 1e-4 and
end learning rate is 8e-7. We use a dropout of 0.25 for the transformer and a dropout of 0.1
for both the inputs and MLP feature/action heads.

Time (s)

nme (s)

[GT: turn on tap J

put glass
put cup

take glass
take cup

put sponge

GT: take glass

close cupboard
put cup

RAFTformer

put plate RAFTformer
take bowl

take plate

22

Chapter 5

Conclusion

So far, we have proposed Real-Time Action Forecasting Transformer (RAFTformer), a
parsimonious two-stage fully transformer-based architecture consisting of a short-range
video transformer backbone for feature extraction and a long-range head transformer
encoder that temporally aggregates information on a longer horizon across multiple clips.
We also introduce a real-time evaluation setting for action forecasting models that directly
penalizes high latency and closely mimics the real-world deployment scenario for
forecasting models. RAFTformer outperforms prior state-of-the-art methods by significant
margins across several action forecasting benchmarks in the offline setting, and by even
larger margin of upto 4.4 T5R, in the real-time setting. RAFTformer achieves 9× lower
inference latency at the same forecasting fidelity, using 16× less training compute and 10×
lesser trainable parameters than prior baselines. We hope this work pushes future works
toward designing latency-aware action forecasting models.

5.1 Limitations
In this work we focus solely on the short-term anticipation setting. Our model as is would
not work directly for rolling-out multiple steps into the future which could be interesting
for longer-term planning [34]. Furthermore, reasoning about longer-term horizons raises
more questions about different types of multimodality that require additional modeling.
Another limitation is that our model is tested on egocentric videos of a single human
acting in an environment. While this is indeed applicable for human-robot interaction and
robot understanding, testing in even more complex interactive environments would be an
interesting future direction.

5.2 Use Cases
You may be wondering: why is anticipating over such a short horizon of 1 second even
useful? In highly reactive environments, autonomous agents need to quickly anticipate what

CHAPTER 5. CONCLUSION 23

may happen. This quick prediction is critical in deciding what action the autonomous agent
should take during downstream planning. In the next section, we demonstrate how short-
term action anticipation is useful for the task of trajectory prediction – a critical part of the
autonomous vehicle stack.

24

Chapter 6

Short-Term Anticipation for
Trajectory Prediction

Trajectory prediction is a critical task for autonomous agents such as self-driving cars. The
autonomous stack is typically broken down into:

• Perception. Observation of the world (camera, LiDAR, etc.)

• Prediction. How various agents in the world may act in the near future

• Planning. What actions the autonomous agent should take (planned future
trajectory)

• Control. Executing a planned trajectory through steering, throttling, and braking

In this section, we show how short-term actions (referred to as short-term intents) are
helpful for human and vehicle trajectory prediction. We will dive into detail about the task
of trajectory prediction, current state-of-the-art methods, typical datasets, and our
contributions of utilizing short-term actions (short-term intents) for trajectory prediction.
This section aims to provide a concrete application of Chapters 1-5 to a real-world
scenario. Please keep in mind the intent and action are used synonymously hereinafter.

6.1 Introduction
Over the past few years, there has been extensive research into predicting the future
trajectories of dynamic agents in scenes, such as pedestrians and vehicles. This is an
incredibly important and challenging task for safety-critical applications such as
autonomous vehicles or social robot navigation. While these methods have been
significantly advanced over recent years, very few benchmarks specifically test if these
models can accurately reason about key maneuvers such as sudden turns and lane changes
of vehicles or pedestrians crossing the road. Traditional trajectory error metrics may not

CHAPTER 6. SHORT-TERM ANTICIPATION FOR TRAJECTORY PREDICTION 25

Figure 6.1: We show that reasoning about long-term goals and short-term intents plays a
significant role in trajectory prediction. With a lack of comprehensive benchmarks for this
purpose, we introduce a new dataset for intention and trajectory prediction. An example use
case is illustrated in (a) where we predict the trajectory of the target vehicle. In (b), long-
term goals are estimated from agent’s own motion. Interactions in (c) and environmental
constraints such as road topology and lane restrictions in (d) influence the agent’s short-term
intent and thus future trajectories.

capture performance on frame-level maneuvers, which is critical for safe planning.

An intelligent trajectory prediction system should be able to understand and model
dynamic human behaviors. The study of human behavior as goal-directed entities has a
long and rich interdisciplinary history across the subfields of psychology [10], neuroscience
[106] and computer vision [77]. The human decision-making process is inherently
hierarchical, consisting of several levels of reasoning and planning mechanisms that operate
in tandem to achieve respective short and long term desires. Recent works have shown that
explicitly reasoning about long-term goals [77, 15, 120] and short-term intents [71, 90, 11]
can assist with trajectory prediction.

In this work, we propose to couple the tasks of heterogeneous (vehicles, pedestrians, etc.)
multi-agent trajectory forecasting and intention prediction. We believe it is critical to
explicitly reason about agents’ long-term goals as well as their short-term intents. In our
work, we define goals to be a final position an agent wants to reach for a given prediction
horizon [78, 120], while intent refers to how an agent accomplishes their goal [87]. For

• •

(a) (c)

Bounding box

0 Long-term goal

Past trajectory

Possible motion

(d)

CHAPTER 6. SHORT-TERM ANTICIPATION FOR TRAJECTORY PREDICTION 26

example, consider a vehicle at an intersection. At the highest level, say they want to reach
their ultimate goal of turning left to their final goal point, which in turn might be
necessary for some higher-level end (such as going home). However, the exact motion of
their trajectory is subject to many factors including i) agent’s own will, ii) social
interactions, iii) environmental constraints, iv) contextual cues. Thus, when reasoning
about the agent’s intent to turn left it is important to consider not only agent dynamics
but also how intent is subject to change based on map topology or neighboring agents (see
Figure 6.1). We believe this complex hierarchy of short-term intents and long-term goals is
ubiquitous and in fact, crucial, for agent motion planning and hence by extension, for
motion prediction. We propose an architecture that considers long-term goals similar to
[78, 120, 77, 15] but adds a key component of frame-wise intention estimation which is used
to condition the trajectory prediction module. By forcing the model to learn discrete
short-term intents of agents, we observe improved performance by the prediction module.

Equally rich & successful is the contemporary history of the use of datasets for
benchmarking progress in computer vision. Ushered by seminal works such as MNIST [62]
and benchmarks such as ImageNet [57], benchmarking progress and learning from data has
played a key role in the success of modern deep learning. Currently, there exists no public
datasets that allow for explicit frame-wise intention prediction for heterogeneous agents in
highly complex environments. Although few datasets are designed to study pedestrian
intents or actions [88, 90, 71, 76] from egocentric view, it is an inherent limitation to
extensive study of tasks for autonomous driving. Thus, we propose a joint trajectory and
intention prediction dataset that contains RGB images with corresponding LiDAR point
clouds with detailed, frame-wise labels for pedestrians and vehicles. The LOKI dataset
allows explicit modeling of agents’ future intent and extensive benchmarking for both
tasks. It also shows promising directions to jointly reason about intentions and trajectories
while considering different external factors such as agents’ predilection, social interactions
and environmental factors. We show that by modeling short-term intent and long-term
goals with explicit supervision via intention labels, better trajectory prediction accuracy
can be achieved. In addition, predicting a specific intention at each frame adds a layer of
abstraction to our model that improves understanding prediction decisions, an important
step towards maintaining safety-critical applications.

In conclusion, the contribution of our work is twofold. First, we propose the first publicly
available heterogeneous dataset which contains frame-wise intention annotations and
captures trajectories of up to 20 seconds containing both 2D and 3D labels with RGB and
LiDAR inputs. Second, we illustrate the efficacy of separately reasoning about both
long-term goals and short-term intents through ablation studies. Specifically, we highlight
how the subtask of intention prediction improves prediction performance, and propose a
model that outperforms state-of-the-art multimodal benchmarks by upto 27%. We believe
our highly flexible dataset will allow the trajectory prediction community to further explore
topics within the intention-based prediction space. In addition, the problem of intention

CHAPTER 6. SHORT-TERM ANTICIPATION FOR TRAJECTORY PREDICTION 27

estimation is an involved task in and of itself for which our work provides a strong baseline.

6.2 Related Work
Over the past few years, there has been a rapid improvement in the field of trajectory
prediction owing to the success of deep neural networks and larger publicly available datasets
[97, 90, 71, 88, 12, 9, 56, 93, 96]. There have been numerous subtopics of interest within
the trajectory prediction community including compliant trajectory prediction, multi-modal
trajectory prediction, and goal-oriented prediction [98, 36, 70, 77, 78, 60, 15, 3, 19, 55, 90,
120].

Contextual Trajectory Prediction
Earlier works in the field of trajectory prediction focused on unimodal trajectory prediction
– predicting a single future path for each agent. These works underscored the importance
of social [2, 3, 43] and scene compliance [114] when making predictions. Over the past few
years, trajectory prediction studies have extended these ideas to multi-modal frameworks to
account for multiple plausible futures each agent can have. In SocialGAN, Gupta et al. [36]
introduce a socially-aware multi-modal framework that uses generative adversarial networks
to sample a varying number of future trajectories for each agent. Since then, there has been
a major emphasis and many interesting approaches to with multimodal forecasting [98, 63,
78, 36, 64, 15, 55, 99].

Goal-based Prediction
When modeling vehicle and human trajectories, it is natural to formulate the problem as
a goal-directed task. Because humans are not completely stochastic agents and have a
predilection towards certain actions, very recent trajectory forecasting studies have shown
the effectiveness of goal-conditioned predictions [92, 19, 78, 77, 116, 90, 119, 15, 120, 18].
Recently, [78] and [120] showed that considering agents’ final goal points can immensely aid
in forecasting trajectories. However, both of these works only consider positional information
as their goal states. In our work, we propose and show the effectiveness of considering both
long-term positional goals as well as short-term intended actions.

Intention Datasets
To better understand agent intent in traffic scenes, a few works have proposed datasets
that contain intention labels to study underlying intent in addition to the traditional
trajectory prediction task. The JAAD [90], PIE [88] and STIP [71] datasets are recent
datasets designed to study pedestrian intent. The JAAD dataset focuses on traffic scene
analysis and behavior understanding of pedestrian at intersection crossing scenarios. The

CHAPTER 6. SHORT-TERM ANTICIPATION FOR TRAJECTORY PREDICTION 28

PIE dataset expands on JAAD further and contains more annotations for both intention
estimation and trajectory prediction. PIE [90] only predicts intent at the current timestep
and focuses on shorter horizon predictions (1.5 seconds). The STIP dataset solves the
limitation of only being able to do single-shot intention prediction, as it contains
frame-wise intention labels for up to 3 seconds. However, this dataset only contains
“crossing/not crossing” labels for pedestrians and does not focus on trajectory prediction.
All these datasets only consider intentions of pedestrians at intersections which may not
capture the intents of all agents in a highly complex traffic environment with both vehicles
and pedestrians.

IntentNet [11] does consider intents for vehicle trajectory prediction; however, they do not
consider frame-wise intentions. Furthermore, the dataset and labels are not publicly
available. TITAN [76] is another driving action dataset collected from egocentric view.
Although it can be potentially used for intention prediction of traffic agents, it only
contains ego-view tracklets and lacks environmental and LiDAR information that can be
crucial to find agents’ intent. Both these works also only focus on short term predictions
(less than 3 seconds).

To the best of our knowledge, currently no publicly available dataset contains detailed, frame-
wise annotations to allow for heterogeneous multi-agent trajectory forecasting and intention
prediction in joint camera and lidar space. Our dataset contains very diverse traffic scenarios
through long data collection periods in different locations, weather conditions, roads and
lighting. Table 6.1 shows the details of our LOKI dataset in comparison to other recently
available intention datasets (PIE, JAAD, STIP).

6.3 LOKI Dataset
Exploring predictions in a large traffic environment is a complex problem because the
future behavior of each traffic participant is not only indicated by the past behavior, but
also highly impacted by the future goals and intentions. With a lack of comprehensive
benchmarks for this purpose, we introduce a large scale dataset that is designed for the
task of joint intention and trajectory prediction. Our dataset is collected from central
Tokyo, Japan using an instrumented vehicle that is equipped with a camera (SEKONIX
SF332X-10X), LiDAR (Velodyne VLP-32C), GPS and vehicle CAN BUS. The RGB
camera and four LiDAR sensors are placed on top of the vehicle to obtain better
environment coverage. The recordings are suburban and urban driving scenarios that
contain diverse actions and interactions of heterogeneous agents, captured from different
times of the day.

From our recordings, we extracted 644 scenarios with average 12.6 seconds length. The
merged LiDAR data and synced RGB image were down sampled to 5HZ for annotation.

CHAPTER 6. SHORT-TERM ANTICIPATION FOR TRAJECTORY PREDICTION 29

PIE [90] JAAD [88] STIP [71] LOKI (ours)
of scenarios - 346 556 644
of agents 1.8K 2.8K 3.3k 28K
of labeled agents 1.8K 0.6K 3.3 28K
of classes 1 1 1 8
of bboxes 740K 391K 350k 886K
of agent types 1 (Ped) 1 (Ped) 1 (Ped) 8 classes
Avg. agent per frame 2.5 5.2 3.2 21.6
Annotation freq. - - 2 FPS 5 FPS
Frame-wise labels no ✓ ✓ ✓

RGB Images ✓ ✓ ✓ ✓

LiDAR Point cloud no no no ✓

2D Bounding box ✓ ✓ ✓ ✓

3D Bounding box no no no ✓

Lane Info no no no ✓

Pedestrian attributes no ✓ no ✓

Table 6.1: Comparison of LOKI dataset with PIE [90], JAAD [88] and STIP [71].

The total number of agents is over 28K including 8 classes (i.e., Pedestrian, Car, Bus,
Truck, Van, Motorcyclist, Bicyclist, Other) of traffic agents, which results in 21.6 average
agents in a scene. We annotated all these agents’ bounding boxes (total 886K) in the RGB
image (2D) as well as LiDAR point cloud space (3D) by linking with a same track-ID. The
comparison with existing benchmarks is shown in Table 6.1. The LOKI dataset is annotated
with unique attributes that can influence agents’ intent such as interaction related labels,
environmental constraints and contextual information.

Dataset Annotation
Considering that LiDAR point clouds better capture positional relations among agents
than RGB images, we annotate 3D bounding box of agents with their orientation, potential
destination of pedestrians, road entrance / exit, and agents’ intention as well as action
labels in this space. In contrast, in the RGB image space we leverage its contextual clarity
to annotate environmental labels such as lane information (what actions can be made from
this lane), lane number for vehicles (relative position with respect to the autonomous
agent), the gender and age for pedestrian, the state of traffic light, and the type of traffic
sign. Note that we also annotate 2D bounding box, potential destination and road entrance
/ exit information in the RGB space to inspire the potential research in the egocentric

CHAPTER 6. SHORT-TERM ANTICIPATION FOR TRAJECTORY PREDICTION 30

Figure 6.2: Distribution of labels sorted according to the different types of intention among
the different classes

view. By using the consistent tracking ID between the same agent in the 3D LiDAR space
and 2D image space, our labels can be shared across different spaces.

To dig into more complex prediction researches, our dataset provides denser agents per
frame and more meticulous intention attributes compared to other datasets. We have three
types of labels in the LOKI dataset: Intention labels, Environmental labels and Contextual
labels to explore how these can affect the future behavior of agents (details and visuals are
in Figure 6.2 and Figure 6.3).

Intention labels Intentions are defined to be “how” an actor decides to reach a goal via a
series of actions [87]. At each frame, we annotated the current actions of the traffic
participants and then used future actions to generate our intention labels. For example, if
the current action of vehicle is “Moving” and the future action in 1 second is “Stopped”,
the vehicle’s current intention is to stop. Various intention horizons can be explored; we
use 0.8s, as we explore how short-term intent can help guide trajectory prediction.

Environmental labels The environment of driving scene can heavily impact the intention
of agent especially for the driving area users, so we include the environmental information
such as “Road Exit and Entrance” positions, “Traffic light”, “Traffic Sign”, “Lane
Information” in the LOKI dataset. Those labels determined by the structure of the road
and the traffic rules that can be applied to any agent in the scene. The lane information
includes the allowed actions of the current lane where the vehicle is on and the relative
position between other vehicle and ego-vehicles.

Vehicle Pedestrian Lane Information Traffic Infrastructure

105

104

_.11 ■■

Intention Labels Environmental Labels Contextual Labels

CHAPTER 6. SHORT-TERM ANTICIPATION FOR TRAJECTORY PREDICTION 31

Figure 6.3: Visualization of three types of labels: (1a-1b) Intention labels for pedestrian;
(2a-2b) Intention labels for vehicle; and (3a-3b) Environmental labels. The left part of each
image is from laser scan and the right part is from RGB camera. In (1a), the current status
of pedestrian is “Waiting to cross” and “Stop”, and the potential destination shows the
intention of pedestrian. In (3a), the blue arrow indicates the possible action of the current
lane where the vehicle is on, and the red words present the lane position related to the
ego-vehicle.

(la)

(lb)

(2a)

(2 b)

(3a)

(3 b)

1_ Waiting to Cross) Intend to left turn Intend to left cut in ~ Intend to left lane change
- Truck

4iliil, Vehicle .. Van

mi Stopped
,.
8 Intend to right turn ~~ Intend to right cut in ~ Intend to r ight lane change ~ Leftturn r Right turn Go forward

11 l eft lane 1 rl Right lane 1 0 Same lane 01 Opposite lane 1 • Road Exit/Entrance ml Potential Destination

CHAPTER 6. SHORT-TERM ANTICIPATION FOR TRAJECTORY PREDICTION 32

Contextual labels There are some other factors may also affect the future behavior of
agent. We define the “Weather”, “Road condition”, “Gender”, “Age” as external contextual
labels. These factors are the characters of the agent or environment which can cause the
different intentions even under similar environment condition.

6.4 Proposed Method

Problem Formulation
In this work, we tackle the problem of multi-agent trajectory forecasting while concurrently
predicting agent intentions. The type of intentions vary between agent classes: vehicles
and pedestrians. We formulate the problem as follows. Suppose in a given scene, S, we
have N agents, A1:N . Given the past tobs = 3s of trajectory history in BEV coordinates,
the problem requires forecasting the future tpred = 5s coordinates of the agent in top-down
image space. Since our dataset allows for frame-wise intention predictions depending on
agent type (pedestrians vs. vehicles), we define another task to predict discrete intentions
for each agent at each timestep, in addition to the traditional trajectory prediction problem.

Model Design
Long-term Goal Proposal Network

Intuitively, agents have a predetermined, long-term goal that they want to reach. Many
recent goal-directed works have focused on modeling this through estimating final “endpoint”
or “goal state” distributions as done in [78, 77, 120, 19, 15]. Inspired by agents’ rational
decision-making process and the success of prior works, we design a goal network similar
to the method proposed in [78]. For each agent, Ak, we use a Conditional Variational
Autoencoder (CVAE) to estimate the final long term goal Gk that is simply the estimated
position in BEV ukf

= (xkf
, ykf

) where f indicates the final frame. The inputs into the CVAE
are the encodings from the Observation RNN Encoder. The goal network only consider
agents’ own history, as agents have a predetermined long term goal irrespective of other
agents.

Scene Graph + Trajectory Decoder

Our main insight and promising directions from our proposed dataset comes from agents’
short-term intentions. As described earlier, we have different intentions for pedestrians and
vehicles. Without loss of generality, we will refer to agents, A, and intentions, I, without
specifying the type of agent. We believe agents’ have intermediate stochastic intents that
can change depending on agent behavior, agent-agent interaction, or environmental factors.
To account for this, we construct a traffic scene graph G to account for social and

CHAPTER 6. SHORT-TERM ANTICIPATION FOR TRAJECTORY PREDICTION 33

Actor States

Actor Trajectories

…

𝜇
𝜎

Encoder

Long-term Goal Proposal

Predicted
Goal, 𝐺

Ak
A1

A2

A3 A4

Vehicle
Intention, 𝐼𝑣

Pedestrian
Intention, 𝐼𝑝

Trajectory
Decoder

Scene Graph + Prediction

Output Trajectories

Decoder
Observation

Encoder

Figure 6.4: Our model first encodes past observation history of each agent to propose a
long-term goal distribution over potential final destinations for each agent independently. A
goal, G is then sampled and passed into the Joint Interaction and Prediction module. A
scene graph is constructed to allow agents to share trajectory information, intentions, and
long-term goals. Black nodes denote road entrance/exit information which provides agents
with map topology information. At each timesteps, current scene information is propagated
through the graph. We then predict an intent (what action will the agent take in the
near future?) for each agent. Finally, the trajectory decoder is conditioned on predicted
intentions, goals, past motion, and scene before forecasting the next position. This process
is recurrently repeated for the horizon length.

environmental factors that may affect intent and trajectory prediction.

More concretely, suppose we have a scene graph G = (V , E) where vertices, V , denote
agents and road entrances/exits and edges, E , capture agent-agent and agent-map
influence. In a given scene, for neighboring agents vi and vj, there is a directional edge eij

if agent i affects agents j (within a certain distance threshold away). Road entrance/exit
nodes can affect agents but have no incoming edges, as they are static. We connect a
directional edge eij if road entrance/exit node i is within a certain distance from agent j.

We then predict agents’ future locations via a daisy chained process described as follows.
At each frame, m, our model first shares information between agents via the attention
mechanism used in [102]:

xt+1
i = γ(xt

i) +
∑

xj∈N (xi)
αij ∗ ϕ(xt

j, eij),

where xt+1
i represents the updated node features following attention-based feature

aggregation with all of its neighbors xj ∈ N (xi). We use agents’ velocities and relative

h r___ ~
'!-: ~

:-r, I ~ ~~--~--P L_-_-__ -__ -__ -_________________ :J_ -
/---!---------,
r .----~-~'

: ---- I CT~•
~ _ -::·:::;,,,._~ _ !]4 ~~ ~----_m __ . ~~~

I
I \ ___ /

CHAPTER 6. SHORT-TERM ANTICIPATION FOR TRAJECTORY PREDICTION 34

positions as edge features. These features are encoded by a 2-layer MLP prior to message
passing at each timestep. We use the scaled dot-product attention [102] formulation:

aij = softmax(ψ(xi)T ξ(xj, eij)√
d

)

Here, aij represents the attention coefficient between two nodes i and j and d represents
the degree of the node. We use a single-layer for ϕ, γ, ψ, and ξ.

After message passing which allows agents to share their past trajectory, goal, and intention
information along with road information through the road entrance/exit nodes, our model
then predicts agent intent, which we define to be the agent’s future action m+q frames ahead.
In our experiments, we set q = 4, thus predicting short-term intent 0.8s in the future. We
then condition trajectory prediction for frame m+ 1 based on agent intent at frame m. This
process of information sharing and intention conditioning is recurrently repeated for the next
f − ob timesteps where f denotes the last prediction frame number and ob denotes the last
observation frame. Formally, at each frame, m, we first estimate the probability distribution
over a discrete set of intentions (different set of intentions for pedestrian vs. vehicle) for an
agent, Ai:

P (Iim|Iiob:m−1 , Ui0:m−1 , Gi, ai0:ob
,∪Aj∈N (Ai)Ijob:m−1 ,

Uj0:m−1 , Gj, aj0:ob
, Ree)

where I refers to intention, U is position, G is long-term positional goal, a is action, and
Ree refers to road entrances/exit labels. The intention networks are two-layer MLPs which
predicts intention using each actor’s updated hidden states from the most recent message
passing. Following this, we then predict the next position of each agent, U , conditioned as
follows:

P (Uim+1|Iio:m , Ui0:m , Gi, ai0:ob
,∪Aj∈N (Ai)Ijo:m ,

Uj0:m , Gj, aj0:ob
, Ree)

The trajectory decoder module consists of a GRU that updates each actor’s current hidden
state followed by a 2-layer MLP used to predict positions at each step. The overview of our
model is illustrated in Figure 6.4. Specific model architecture details will be provided in the
supplementary material.

Loss Functions

Our goal proposal network (GPN) follows the methodology introduced in [78] and is trained
via the following loss function:

LGP N = α1DKL(N (µ, σ)∥N (0, I)) + α2∥Ĝ−G∥2
2

CHAPTER 6. SHORT-TERM ANTICIPATION FOR TRAJECTORY PREDICTION 35

Here α1 and α2 are tunable parameters to weight the KL Divergence loss and goal
reconstruction loss for training the CVAE. Note that because the intentions are dependent
on the long-term goal, we observed that training via conditioning with ground-truth goal
positions helps with model convergence.

Our decoder module which is responsible for both intention and trajectory prediction is
composed of separate loss terms for each. Our intention loss is defined as follows:

Lint = −
n∑

i=0
wi ∗ yi ∗ log(ŷi)

Due to heavy class imbalance, we not only augment rare trajectories such as lane changes
and turning but also weight the cross entropy loss by wi, which is the inverse frequency of
the class.

Since we predict offsets in position (velocity) rather than position directly for better model
convergence, our loss is on the predicted velocity V for all timesteps:

Ltraj = ||V − V̂ ||2

We train our network end-to-end by weighting each of the loss terms:

LF inal = λ1LGP N + λ2Lint + λ3Ltraj

Evaluation Metrics

For trajectory prediction evaluation, we use the standard Average Displacement Error (ADE)
and Final Displacement Error (FDE) metrics:

ADE =
∑tf

j=tob+1 ∥ûj − uj∥2

(tf − tob)
(6.1)

FDE = ∥ûtf
− utf

∥2 (6.2)
where û and u are the estimated and ground truth positions respectively. Furthermore, we
use the minADE-N and minFDE-N error metric introduced in [36] for multimodal
evaluation. The metric is simply the minimum ADE and FDE out of N future trajectories
predicted at test-time.

For intention prediction, we evaluate frame-wise classification accuracy of intents and
visualize the confusion matrix to analyze classification performance.

CHAPTER 6. SHORT-TERM ANTICIPATION FOR TRAJECTORY PREDICTION 36

S-STGCNN PECNet Ours Ours + IC Ours + IC + SG
ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

Pedestrians 0.96 1.98 0.79 1.31 0.61 1.38 0.56 1.24 0.55 1.21
Vehicles 3.03 7.01 2.52 6.34 2.37 6.20 2.23 5.80 2.24 5.82

Lane Change 4.41 10.17 2.78 7.60 2.93 7.88 2.47 6.78 2.52 6.71
Turn 3.48 8.15 2.97 7.44 2.76 7.26 2.69 7.03 2.69 7.02

Table 6.2: Trajectory error metrics for N=1 samples: ADE and FDE of various state-of-
the-art baselines and our method using unimodal (single-shot) evaluation. Reported errors are in
meters. Lower is better. We show results evaluated on separate classes to gain more insight on
prediction performance. We report errors on 1) pedestrians, 2) vehicles (non-static), 3) agents that
change lanes, and 4) agents that turn.

S-GAN S-STGCNN PECNet Ours Ours + IC Ours + IC + SG
ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

Pedestrians 1.04 2.18 0.63 1.01 0.51 0.70 0.36 0.70 0.37 0.71 0.34 0.64
Vehicles 3.57 8.05 2.28 4.46 1.59 3.05 1.33 3.09 1.20 2.63 1.18 2.64

Lane Change 3.50 8.41 3.00 6.09 1.62 2.85 1.42 3.30 1.26 2.70 1.22 2.71
Turn 3.75 9.01 2.68 5.71 1.96 4.07 1.54 3.59 1.45 3.24 1.40 3.13

Table 6.3: Trajectory error metrics for N=20 samples: ADE and FDE of various state-
of-the-art baselines and our method using multimodal evaluation. Reported errors are in meters.
Lower is better. We report errors on the same classes described in Table 6.2.

6.5 Experiments
In this section, we present results of our model on trajectory & intent prediction tasks and
demonstrate a superior performance against prior state-of-the-art baselines (with publicly
available code) across a variety of settings. We benchmark against PECNet [77], a strong
scene agnostic trajectory prediction method with state-of-the-art performance on standard
intention agnostic prediction datasets. S-STGCNN [81] and S-GAN [36] are strong socially-
aware models that achieved prior state-of-the-art on various benchmarks. We also report an
interesting ablation on the effect of annotation frequency on the final performance, which
confirms our hypothesis for the effectiveness of detailed intent annotations in trajectory
prediction.

Trajectory Prediction Performance. We report our model’s performance and
benchmark it against prior state-of-the-art models for unimodal (single shot, N = 1)
prediction in Table 6.2 and for multimodal predictions (N = 20 shots) in Table 6.3. Our
ablations are with Ours (without action/intention labels), IC (with action/intention labels
for intention conditioning), SG (with scene graph for social reasoning and environmental
cues).

CHAPTER 6. SHORT-TERM ANTICIPATION FOR TRAJECTORY PREDICTION 37

Figure 6.5: Visualization of top-1 trajectory prediction result (green: past observation,
blue: ground truth, red: prediction) and frame-wise intention of a particular agent in
dark green circle at the start of the observation time step(GI: Ground truth Intention, PI:
Predicted Intention) is shown at the bottom of each scenario. More detailed visualizations
and comparisons are provided in supplementary material.

Several interesting trends emerge. First, we observe that in the single shot setting, our
intention conditioned model outperforms prior state-of-the-art method by a significant
margin of 12% in ADE, 9% in FDE. Second, we see a similar trend in multi-shot prediction
setting as well with our model outperforming PECNet by 33% in ADE and 9% in FDE for
pedestrians and a delta of 26% in ADE and 13% in FDE for moving vehicles. Third, notice
that the performance gap is significant in hard non-linear cases such as lane changes and
turns, where our model achieves 30% and 16% better performance in ADE and FDE
respectively.

Also noteworthy is the crucial effect of conditioning predictions on intentions and
incorporating social and environmental cues through the scene graph, which is also shown
in Table 6.2 and Table 6.3. We note that both intention cues and scene graph information
are critical to overall performance, with intention improving ADE performance by upto 7%
and 8% across all agent types (especially nonlinear trajectories such as lane changes and
turns) for the unimodal and multimodal settings. We notice that the scene graph boosts
performance by 3% in ADE for the multimodal setting across all agent types.

We notice an interesting behavior with pedestrians. Conditioning on pedestrian intent such

GI
Pl

GI
Pl ••

I Turn right

--
- \ '

< ; • •• •

Iii.} ' '
I "1 \

.. ,, ' ~
\d i ~

, 1.:1--<~ •

l i • .; •
- .,, _

' :1~
, \I

c) d)
Moving I Turn left I Lane change

CHAPTER 6. SHORT-TERM ANTICIPATION FOR TRAJECTORY PREDICTION 38

(a) Vehicle (N=1) (b) Vehicle (N=20)

(c) Pedestrian (N=1) (d) Pedestrian (N=20)

Figure 6.6: Intention prediction confusion matrices. (a-b) results for vehicles under both
unimodal and multimodal sampling, (c-d) those for pedestrians.

as crossing vs. waiting to cross helps for single-shot prediction as shown in Table 6.2.
However, we do not see a benefit for multimodal prediction. We hypothesize that this is
because the type of intent we label for pedestrian is not as granular as for vehicles in that
it does not change drastically frame-by-frame. This is validated in Figure 6.8 which shows
experiments with downsampled intention annotations. We observe that for pedestrians,
lower frequency annotations does not diminish performance as compared to vehicles.
Because pedestrians have more unconstrained behavior, we cannot have as detailed intent
labels that are used for vehicles such as turn left or lane change. This may explain the
behavior of why intention conditioning only helps for the single-shot case for pedestrians.

In Figure 6.5, we visualize our model’s best-of-20 performance. We observe that predicted
trajectories are fairly accurate and with underlying turning intentions. While there are
limitations in exact frame-wise intention predictions, we notice it can capture key future
actions of turning and can help guide predictions.

Intention Prediction: In addition to trajectory prediction, our dataset enables for a

Moving 0.31 0.11

Stopped 0.02

Parked 0

Lane Change 0.35 0.01

Turn Left 0.17 0.05

Turn Right 0.2 0.09

Moving

Waiting to Cross

Crossing

Stopped

0

0

0

0

0.19 0.2 0.2

0.09 0.18 0.04

0 0 0

0.34 0.12 0.19

0.13 0.45 0.21

0.1 0.2 0.41

1.0

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

-0.2

Moving

Stopped

Parked

Lane Change 0.44 0

Turn Left 0.15 0.02

Turn Right 0.16 0.03

Moving

Waiting to Cross

Crossing

Stopped 0.05

0

0

0

0 .04

0.23 0.17 0.13

0.02 0.05 0.01

0 0 0

0.37 0.12 0.08

0.12

0.11

0.13

0

' .
0

0.05

0.02

0.03

:.~<::-°' "" · <::-°' e,°/:::,
c.,<..o "~ f:? ~o 0 00 ,,:,'--° '--0

.,§°'
~'IY

1.0

0.8

0.6

0.4

-0.2

0.0

0.8

0.6

0.4

-0.2

0.0

CHAPTER 6. SHORT-TERM ANTICIPATION FOR TRAJECTORY PREDICTION 39

(a) Vehicle (N=1) (b) Vehicle (N=20)

(c) Pedestrian (N=1) (d) Pedestrian (N=20)

Figure 6.7: Accuracy vs. Future Horizon (in frames). The x axis of each figure is time
and the y axis of each figure is accuracy (from 0 to 1). The change of intention prediction
accuracy over a time horizon for both unimodal and multimodal predictions. In (a-b) we
plot intention accuracy over time for vehicles for N=1 and N=20 samples respectively. In
(c-d) we plot intention accuracy over time for pedestrians with N=1 and N=20 samples.
more high level understanding of agent intent to mimic how they plan their trajectory.
Figure 6.7 illustrates the performance of intention prediction over a 25 frame (5s)
prediction horizon. Our work is the first to baseline both pedestrian and vehicle intent on a
frame-wise level. We notice that prediction performance monotonically worsens over the
horizon. However, we notice that for vehicles the intention accuracy in the multimodal
setting is significantly improved from the unimodal case. This explains why intention
conditioning helps more in the multimodal case, as agent intents are much more accurately
understood. In contrast, for pedestrians, we notice only a slight improvement in intention
performance. We posit this is because the intents for pedestrians do not change as
frequently and are not as granular capturing directions such as “turn left”; thus, having
more samples does not necessarily increase performance.

To better understand intention estimation, we visualize the confusion matrices as shown in

1.0

>- 0.8
u
re_
::::, 0.6
u
u
<(

0.4

1.0

>- 0.8
u
re_
::::, 0.6
u
~

0.4

Moving ,__ Stopped
............. Parked

Lane Change ~ _ ___
Turn Left

Turn Right
-............. -....°\ ~·-·---'.JIC ·-. ---......_.___ ---·---..... _ ::--.... --·- ·-·-·-·-·-·--· --......,... _~-=~. ---·-·

~~====~====-~ -=
0 5 10 15 20 25

Frame Number

....... __________ __
Waiting to Cross •-.-.-.
Moving

Crossing
Stopped

0 5 10 15 20 25
Frame Number

1.0

>- 0.8
u
m_
::::, 0.6
u
u
<(

0.4

1.0

>- 0.8
u
re_
::::, 0.6
u
~

0.4

Moving

Stopped

..............
Parked

Lane Change ' ______ -....._
Turn Left X ---·-................ -·-

~_ -•- Turn Right ---•--.__ ---.... --......... __ ...,,,,... -·---...... . -..... _____..,-·--·-<-.-: .. ~

0 5 10 15 20
Frame Number

·--==-========---·-·---·-·---=::::::::

Waiting to Cross

Crossing

Stopped

25

0 5 10 15 20 25
Frame Number

CHAPTER 6. SHORT-TERM ANTICIPATION FOR TRAJECTORY PREDICTION 40

Figure 6.8: ADE Performance based on varying ground-truth intention annotation frequency.

Figure 6.6. For vehicles, we use the following set of discrete actions: moving, stopped,
parking, lane change, turn left, and turn right. We observed improved performance for
vehicle intention prediction with multimodal goal destination sampling, indicating that our
model can correlate long-term goals with short-term intent. For pedestrians, we use
moving, waiting to cross, crossing, and stopped. The intents for pedestrians do not rapidly
change unlike those for vehicles. Thus, we see that multimodal predictions do not actually
improve pedestrian intention estimation. These results corroborate the results in Table 6.3
where multimodal predictions with intention fail to outperform predictions without
intentions. This is further examined in the next section.

Effect of Annotation Frequency: Our dataset provides very detailed frame-wise intention
labels at 5FPS for all agents. To examine the importance of having a dataset with such
detailed annotations, we experiment with how changing annotation frequency can affect
performance. We provide our model with oracle intentions available at varying frequencies.
As shown in Figure 6.8, trajectory prediction performance worsens roughly linearly as the
frequency of intention labels reduces. This highlights the importance of our highly detailed
annotations, as a choice to annotate every other frame (2.5fps) clearly affects performance.
Note that this effect is witnessed for primarily for vehicles, especially those that change
lanes or turn. Pedestrian performance is not affected much, as the intention labels used for
pedestrians do not change drastically on a frame-by-frame basis. This is also the reason
why intention conditioning did not help for multimodal evaluation for pedestrians as seen in
Table 6.3.

1.6 ~ <:::::
1.4 -Vl

l....

21.2 •
QJ

~
-1.0

ADE Ped w --0 - ADE Moving Vehicle
<(0.8 - ADE Lane Change

0.6 - ADE Turns

0.4
1 1.25 2.5 5

Intention Annotation FPS

CHAPTER 6. SHORT-TERM ANTICIPATION FOR TRAJECTORY PREDICTION 41

6.6 Conclusion
In this chapter, we presented a large-scale heterogeneous dataset with detailed, frame-wise
intention annotations. This dataset allows for both traditional trajectory prediction as well
as understanding how intent changes over a long time horizon. In doing so, this dataset is
the first that can be used as a benchmark for intention understanding for both vehicles and
pedestrians. Furthermore, we formulate a joint trajectory and intention prediction framework
which outperforms the state-of-the-art on trajectory prediction metrics and offers a strong
baseline for intention prediction. We bridge the gap between trajectory prediction and
intention prediction and show that combining the two can better model agents’ decision-
making process, assisting in trajectory prediction. We believe our dataset can inspire future
works that consider intention prediction in addition to traditional trajectory forecasting.
Doing so can give more insight into models’ decisions and will be critical in designing and
maintaining a safe forecasting system.

42

Bibliography

[1] Yazan Abu Farha, Alexander Richard, and Juergen Gall. “When will you do what?-
anticipating temporal occurrences of activities”. In: CVPR. 2018, pp. 5343–5352.

[2] Alexandre Alahi, Vignesh Ramanathan, and Li Fei-Fei. “Socially-aware large-scale
crowd forecasting”. In: CVPR. 2014, pp. 2203–2210.

[3] Alexandre Alahi et al. “Social lstm: Human trajectory prediction in crowded spaces”.
In: CVPR. 2016, pp. 961–971.

[4] Georges Aoude et al. “Mobile agent trajectory prediction using Bayesian
nonparametric reachability trees”. In: Infotech@ Aerospace 2011. 2011, p. 1512.

[5] Relja Arandjelovic and Andrew Zisserman. “Look, listen and learn”. In: Proceedings
of the IEEE International Conference on Computer Vision. 2017, pp. 609–617.

[6] Anurag Arnab et al. “Vivit: A video vision transformer”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. 2021, pp. 6836–6846.

[7] Yuki M Asano, Christian Rupprecht, and Andrea Vedaldi. “A critical analysis of
self-supervision, or what we can learn from a single image”. In: arXiv preprint
arXiv:1904.13132 (2019).

[8] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling”. In: arXiv preprint
arXiv:1803.01271 (2018).

[9] Holger Caesar et al. “nuscenes: A multimodal dataset for autonomous driving”. In:
CVPR. 2020, pp. 11621–11631.

[10] Susan Carey and Elizabeth Spelke. “Domain-specific knowledge and conceptual
change”. In: Mapping the mind: Domain specificity in cognition and culture 169
(1994), p. 200.

[11] Sergio Casas, Wenjie Luo, and Raquel Urtasun. “Intentnet: Learning to predict
intention from raw sensor data”. In: CORL. PMLR. 2018, pp. 947–956.

[12] Ming-Fang Chang et al. “Argoverse: 3d tracking and forecasting with rich maps”. In:
CVPR. 2019, pp. 8748–8757.

BIBLIOGRAPHY 43

[13] Sayantan Chatterjee, Faheem H Zunjani, and Gora C Nandi. “Real-time object
detection and recognition on low-compute humanoid robots using deep learning”.
In: 2020 6th International Conference on Control, Automation and Robotics
(ICCAR). IEEE. 2020, pp. 202–208.

[14] Hsu-kuang Chiu, Ehsan Adeli, and Juan Carlos Niebles. “Segmenting the future”. In:
IEEE Robotics and Automation Letters 5.3 (2020), pp. 4202–4209.

[15] Chiho Choi et al. “DROGON: A Trajectory Prediction Model based on Intention-
Conditioned Behavior Reasoning”. In: Proceedings of the CORL. 2020.

[16] Dima Damen et al. “Scaling egocentric vision: The epic-kitchens dataset”. In: ECCV.
2018, pp. 720–736.

[17] Roeland De Geest and Tinne Tuytelaars. “Modeling temporal structure with lstm for
online action detection”. In: WACV. IEEE. 2018, pp. 1549–1557.

[18] Patrick Dendorfer, Aljosa Osep, and Laura Leal-Taixé. “Goal-GAN: Multimodal
Trajectory Prediction Based on Goal Position Estimation”. In: ACCV. 2020.

[19] Nachiket Deo and Mohan M Trivedi. “Trajectory forecasts in unknown environments
conditioned on grid-based plans”. In: arXiv preprint arXiv:2001.00735 (2020).

[20] Alexey Dosovitskiy et al. “An image is worth 16x16 words: Transformers for image
recognition at scale”. In: arXiv preprint arXiv:2010.11929 (2020).

[21] Haoqi Fan et al. “Multiscale Vision Transformers”. In: arXiv preprint
arXiv:2104.11227 (2021).

[22] Mingyuan Fan et al. “Rethinking BiSeNet for real-time semantic segmentation”. In:
CVPR. 2021, pp. 9716–9725.

[23] Christoph Feichtenhofer et al. “Masked Autoencoders As Spatiotemporal Learners”.
In: arXiv preprint arXiv:2205.09113 (2022).

[24] Christoph Feichtenhofer et al. “Slowfast networks for video recognition”. In: ICCV.
2019, pp. 6202–6211.

[25] Basura Fernando et al. “Self-supervised video representation learning with odd-one-
out networks”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017, pp. 3636–3645.

[26] R James Firby. “An investigation into reactive planning in complex domains.” In:
AAAI. Vol. 87. 1987, pp. 202–206.

[27] Antonino Furnari, Sebastiano Battiato, and Giovanni Maria Farinella. “Leveraging
uncertainty to rethink loss functions and evaluation measures for egocentric action
anticipation”. In: ECCV. 2018, pp. 0–0.

[28] Antonino Furnari and Giovanni Maria Farinella. “Rolling-unrolling lstms for action
anticipation from first-person video”. In: IEEE transactions on pattern analysis and
machine intelligence 43.11 (2020), pp. 4021–4036.

BIBLIOGRAPHY 44

[29] Jiyang Gao, Zhenheng Yang, and Ram Nevatia. “Red: Reinforced encoder-decoder
networks for action anticipation”. In: arXiv preprint arXiv:1707.04818 (2017).

[30] Harshayu Girase et al. “Loki: Long term and key intentions for trajectory prediction”.
In: ICCV. 2021, pp. 9803–9812.

[31] Harshayu Girase et al. “Physically Feasible Vehicle Trajectory Prediction”. In: arXiv
preprint arXiv:2104.14679 (2021).

[32] Rohit Girdhar and Kristen Grauman. “Anticipative video transformer”. In: ICCV.
2021, pp. 13505–13515.

[33] Rohit Girdhar et al. “Video action transformer network”. In: CVPR. 2019,
pp. 244–253.

[34] Dayoung Gong et al. “Future Transformer for Long-term Action Anticipation”. In:
CVPR. 2022, pp. 3052–3061.

[35] Matthias Grundmann et al. “Efficient hierarchical graph-based video segmentation”.
In: 2010 ieee computer society conference on computer vision and pattern recognition.
IEEE. 2010, pp. 2141–2148.

[36] Agrim Gupta et al. “Social gan: Socially acceptable trajectories with generative
adversarial networks”. In: CVPR. 2018, pp. 2255–2264.

[37] Tengda Han, Weidi Xie, and Andrew Zisserman. “Memory-augmented dense
predictive coding for video representation learning”. In: European conference on
computer vision. Springer. 2020, pp. 312–329.

[38] Tengda Han, Weidi Xie, and Andrew Zisserman. “Video representation learning by
dense predictive coding”. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision Workshops. 2019, pp. 0–0.

[39] Mark Handley. “Delay is not an option: Low latency routing in space”. In: Proceedings
of the 17th ACM Workshop on Hot Topics in Networks. 2018, pp. 85–91.

[40] Harish Haresamudram et al. “Masked reconstruction based self-supervision for human
activity recognition”. In: Proceedings of the 2020 international symposium on wearable
computers. 2020, pp. 45–49.

[41] Joel Hasbrouck and Gideon Saar. “Low-latency trading”. In: Journal of Financial
Markets 16.4 (2013), pp. 646–679.

[42] Kaiming He et al. “Masked autoencoders are scalable vision learners”. In: CVPR.
2022, pp. 16000–16009.

[43] Dirk Helbing and Peter Molnar. “Social force model for pedestrian dynamics”. In:
Physical review E 51.5 (1995), p. 4282.

[44] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural
computation 9.8 (1997), pp. 1735–1780.

BIBLIOGRAPHY 45

[45] Ashish Jaiswal et al. “A survey on contrastive self-supervised learning”. In:
Technologies 9.1 (2020), p. 2.

[46] Dinesh Jayaraman and Kristen Grauman. “Learning image representations tied to
ego-motion”. In: Proceedings of the IEEE International Conference on Computer
Vision. 2015, pp. 1413–1421.

[47] Dinesh Jayaraman and Kristen Grauman. “Slow and steady feature analysis: higher
order temporal coherence in video”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2016, pp. 3852–3861.

[48] Eugen Käfer et al. “Recognition of situation classes at road intersections”. In: 2010
IEEE International Conference on Robotics and Automation. IEEE. 2010,
pp. 3960–3965.

[49] Jared Kaplan et al. “Scaling laws for neural language models”. In: arXiv preprint
arXiv:2001.08361 (2020).

[50] Shian-Ru Ke et al. “A review on video-based human activity recognition”. In:
Computers 2.2 (2013), pp. 88–131.

[51] Chanho Kim et al. “Discriminative appearance modeling with multi-track pooling for
real-time multi-object tracking”. In: CVPR. 2021, pp. 9553–9562.

[52] Dahun Kim, Donghyeon Cho, and In So Kweon. “Self-supervised video representation
learning with space-time cubic puzzles”. In: Proceedings of the AAAI conference on
artificial intelligence. Vol. 33. 01. 2019, pp. 8545–8552.

[53] Irena Koprinska and Sergio Carrato. “Temporal video segmentation: A survey”. In:
Signal processing: Image communication 16.5 (2001), pp. 477–500.

[54] Bruno Korbar, Du Tran, and Lorenzo Torresani. “Cooperative learning of audio and
video models from self-supervised synchronization”. In: Advances in Neural
Information Processing Systems 31 (2018).

[55] Vineet Kosaraju et al. “Social-bigat: Multimodal trajectory forecasting using bicycle-
gan and graph attention networks”. In: arXiv preprint arXiv:1907.03395 (2019).

[56] Parth Kothari, Sven Kreiss, and Alexandre Alahi. “Human trajectory forecasting in
crowds: A deep learning perspective”. In: arXiv preprint arXiv:2007.03639 (2020).

[57] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Advances in neural information processing
systems 25 (2012), pp. 1097–1105.

[58] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Communications of the ACM 60.6 (2017),
pp. 84–90.

[59] Hilde Kuehne, Ali Arslan, and Thomas Serre. “The language of actions: Recovering
the syntax and semantics of goal-directed human activities”. In: CVPR. 2014,
pp. 780–787.

BIBLIOGRAPHY 46

[60] Sumit Kumar et al. “Interaction-Based Trajectory Prediction Over a Hybrid Traffic
Graph”. In: arXiv preprint arXiv:2009.12916 (2020).

[61] Colin Lea, René Vidal, and Gregory D Hager. “Learning convolutional action
primitives for fine-grained action recognition”. In: ICRA. IEEE. 2016,
pp. 1642–1649.

[62] Yann LeCun. “The MNIST database of handwritten digits”. In: http://yann. lecun.
com/exdb/mnist/ ().

[63] Namhoon Lee et al. “DESIRE: Distant future prediction in dynamic scenes with
interacting agents”. In: CVPR. 2017, pp. 336–345.

[64] Jiachen Li, Hengbo Ma, and Masayoshi Tomizuka. “Conditional Generative Neural
System for Probabilistic Trajectory Prediction”. In: 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2019, pp. 6150–6156.

[65] Jiangtong Li et al. “Video Semantic Segmentation via Sparse Temporal
Transformer”. In: Proceedings of the 29th ACM International Conference on
Multimedia. 2021, pp. 59–68.

[66] Yanghao Li et al. “Improved multiscale vision transformers for classification and
detection”. In: arXiv preprint arXiv:2112.01526 (2021).

[67] Yin Li, Miao Liu, and Jame Rehg. “In the eye of the beholder: Gaze and actions in
first person video”. In: IEEE transactions on pattern analysis and machine intelligence
(2021).

[68] Tsung-Yi Lin et al. “Focal loss for dense object detection”. In: ICCV. 2017,
pp. 2980–2988.

[69] Tsung-Yi Lin et al. “Focal loss for dense object detection”. In: ICCV. 2017,
pp. 2980–2988.

[70] Matteo Lisotto, Pasquale Coscia, and Lamberto Ballan. “Social and scene-aware
trajectory prediction in crowded spaces”. In: ICCV Workshops. 2019, pp. 0–0.

[71] Bingbin Liu et al. Spatiotemporal Relationship Reasoning for Pedestrian Intent
Prediction. 2020. arXiv: 2002.08945 [cs.CV].

[72] Wei Liu et al. “Ssd: Single shot multibox detector”. In: ECCV. Springer. 2016,
pp. 21–37.

[73] Ze Liu et al. “Video swin transformer”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2022, pp. 3202–3211.

[74] Zhihua Liu et al. “A COVID-19 epidemic model with latency period”. In: Infectious
Disease Modelling 5 (2020), pp. 323–337.

[75] Tahmida Mahmud, Mahmudul Hasan, and Amit K Roy-Chowdhury. “Joint
prediction of activity labels and starting times in untrimmed videos”. In: ICCV.
2017, pp. 5773–5782.

https://arxiv.org/abs/2002.08945

BIBLIOGRAPHY 47

[76] Srikanth Malla, Behzad Dariush, and Chiho Choi. “Titan: Future forecast using action
priors”. In: CVPR. 2020, pp. 11186–11196.

[77] Karttikeya Mangalam et al. “From Goals, Waypoints & Paths To Long Term Human
Trajectory Forecasting”. In: arXiv preprint arXiv:2012.01526 (2020).

[78] Karttikeya Mangalam et al. “It is not the journey but the destination: Endpoint
conditioned trajectory prediction”. In: ECCV. Springer. 2020, pp. 759–776.

[79] RJW Mansfield. “Latency functions in human vision”. In: Vision research 13.12
(1973), pp. 2219–2234.

[80] Peter McLeod. “Visual reaction time and high-speed ball games”. In: Perception 16.1
(1987), pp. 49–59.

[81] Abduallah Mohamed et al. “Social-stgcnn: A social spatio-temporal graph
convolutional neural network for human trajectory prediction”. In: CVPR. 2020,
pp. 14424–14432.

[82] Daniel Neimark et al. “Video transformer network”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2021, pp. 3163–3172.

[83] Kriti Ohri and Mukesh Kumar. “Review on self-supervised image recognition using
deep neural networks”. In: Knowledge-Based Systems 224 (2021), p. 107090.

[84] Venkata N Padmanabhan and Jeffrey C Mogul. “Improving HTTP latency”. In:
Computer Networks and ISDN Systems 28.1-2 (1995), pp. 25–35.

[85] Bo Pang et al. “Deep rnn framework for visual sequential applications”. In: CVPR.
2019, pp. 423–432.

[86] David A Patterson. “Latency lags bandwith”. In: Communications of the ACM 47.10
(2004), pp. 71–75.

[87] Amir Rasouli. “Pedestrian Simulation: A Review”. In: arXiv preprint
arXiv:2102.03289 (2021).

[88] Amir Rasouli, Iuliia Kotseruba, and John K Tsotsos. “Are they going to cross? a
benchmark dataset and baseline for pedestrian crosswalk behavior”. In: ICCV
Workshops. 2017, pp. 206–213.

[89] Amir Rasouli, Iuliia Kotseruba, and John K Tsotsos. “Pedestrian action anticipation
using contextual feature fusion in stacked rnns”. In: arXiv preprint arXiv:2005.06582
(2020).

[90] Amir Rasouli et al. “Pie: A large-scale dataset and models for pedestrian intention
estimation and trajectory prediction”. In: ICCV. 2019, pp. 6262–6271.

[91] Joseph Redmon et al. “You only look once: Unified, real-time object detection”. In:
CVPR. 2016, pp. 779–788.

[92] Nicholas Rhinehart et al. “PRECOG: PREdiction Conditioned On Goals in Visual
Multi-Agent Settings”. In: arXiv preprint arXiv:1905.01296 (2019).

BIBLIOGRAPHY 48

[93] A Robicquet et al. “Learning social etiquette: Human trajectory prediction in crowded
scenes”. In: ECCV (ECCV). 2020.

[94] Cristian Rodriguez, Basura Fernando, and Hongdong Li. “Action anticipation by
predicting future dynamic images”. In: Proceedings of the European Conference on
Computer Vision (ECCV) Workshops. 2018, pp. 0–0.

[95] Debaditya Roy and Basura Fernando. “Predicting the Next Action by Modeling the
Abstract Goal”. In: arXiv preprint arXiv:2209.05044 (2022).

[96] Andrey Rudenko et al. “Human Motion Trajectory Prediction: A Survey”. In: arXiv
e-prints, arXiv:1905.06113 (2019). arXiv: 1905.06113.

[97] Andrey Rudenko et al. “Human motion trajectory prediction: A survey”. In: The
International Journal of Robotics Research 39.8 (2020), pp. 895–935.

[98] Amir Sadeghian et al. “Sophie: An attentive gan for predicting paths compliant to
social and physical constraints”. In: CVPR. 2019, pp. 1349–1358.

[99] Tim Salzmann et al. “Trajectron++: Dynamically-feasible trajectory forecasting with
heterogeneous data”. In: arXiv preprint arXiv:2001.03093 (2020).

[100] Fadime Sener, Dipika Singhania, and Angela Yao. “Temporal aggregate
representations for long-range video understanding”. In: ECCV. Springer. 2020,
pp. 154–171.

[101] Yuge Shi, Basura Fernando, and Richard Hartley. “Action anticipation with rbf
kernelized feature mapping rnn”. In: ECCV. 2018, pp. 301–317.

[102] Yunsheng Shi et al. “Masked label prediction: Unified massage passing model for
semi-supervised classification”. In: arXiv preprint arXiv:2009.03509 (2020).

[103] Gurkirt Singh et al. “Online real-time multiple spatiotemporal action localisation and
prediction”. In: ICCV. 2017, pp. 3637–3646.

[104] Chen Sun et al. “Videobert: A joint model for video and language representation
learning”. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2019, pp. 7464–7473.

[105] Zhan Tong et al. “Videomae: Masked autoencoders are data-efficient learners for self-
supervised video pre-training”. In: arXiv preprint arXiv:2203.12602 (2022).

[106] Vivian V Valentin, Anthony Dickinson, and John P O’Doherty. “Determining the
neural substrates of goal-directed learning in the human brain”. In: Journal of
Neuroscience 27.15 (2007), pp. 4019–4026.

[107] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. “Anticipating visual
representations from unlabeled video”. In: CVPR. 2016, pp. 98–106.

[108] Haochen Wang et al. “Swiftnet: Real-time video object segmentation”. In: CVPR.
2021, pp. 1296–1305.

https://arxiv.org/abs/1905.06113

BIBLIOGRAPHY 49

[109] Limin Wang et al. “Temporal segment networks for action recognition in videos”.
In: IEEE transactions on pattern analysis and machine intelligence 41.11 (2018),
pp. 2740–2755.

[110] Wen Wang et al. “Ttpp: Temporal transformer with progressive prediction for efficient
action anticipation”. In: Neurocomputing 438 (2021), pp. 270–279.

[111] Donglai Wei et al. “Learning and using the arrow of time”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2018, pp. 8052–8060.

[112] Chao-Yuan Wu et al. “MeMViT: Memory-Augmented Multiscale Vision
Transformer for Efficient Long-Term Video Recognition”. In: arXiv preprint
arXiv:2201.08383 (2022).

[113] Yu-Syuan Xu et al. “Dynamic video segmentation network”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2018, pp. 6556–6565.

[114] Takuma Yagi et al. “Future person localization in first-person videos”. In: CVPR.
2018, pp. 7593–7602.

[115] Ceyuan Yang et al. “Video representation learning with visual tempo consistency”.
In: arXiv preprint arXiv:2006.15489 (2020).

[116] Yu Yao et al. “BiTraP: Bi-directional Pedestrian Trajectory Prediction with Multi-
modal Goal Estimation”. In: IEEE Robotics and Automation Letters (2021).

[117] Olga Zatsarynna, Yazan Abu Farha, and Juergen Gall. “Multi-modal temporal
convolutional network for anticipating actions in egocentric videos”. In: CVPR.
2021, pp. 2249–2258.

[118] Bowen Zhang et al. “Real-time action recognition with enhanced motion vector
CNNs”. In: CVPR. 2016, pp. 2718–2726.

[119] Lingyao Zhang et al. “Map-Adaptive Goal-Based Trajectory Prediction”. In: arXiv
preprint arXiv:2009.04450 (2020).

[120] Hang Zhao et al. “Tnt: Target-driven trajectory prediction”. In: arXiv preprint
arXiv:2008.08294 (2020).

[121] Zeyun Zhong et al. “Anticipative Feature Fusion Transformer for Multi-Modal Action
Anticipation”. In: arXiv preprint arXiv:2210.12649 (2022).

[122] Bolei Zhou et al. “Temporal relational reasoning in videos”. In: ECCV. 2018,
pp. 803–818.

[123] Xizhou Zhu et al. “Deep feature flow for video recognition”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2017, pp. 2349–2358.

50

Figure A.1: Visualization of three types of labels: (a-b) Intention labels; and (c)
Environmental labels. The left part of each image is from laser scan and the right part
is from RGB camera. In (a), the current status of pedestrian is “Stopped”, and the potential
destination shows where the pedestrian may go in the future. In (c) left, the blue arrow
indicates the possible action of the vehicle based on the current lane it is on. The red words
show the lane position related to the ego-vehicle.

Appendix A

Additional Information for LOKI

A.1 Details of the LOKI Dataset
The LOKI dataset is collected from central Tokyo, Japan using an instrumented Honda
SHUTTLE DBA-GK9 vehicle. Driving scenarios are collected from both suburban and
urban areas at different times of the day. The camera, LiDAR, GPS, and vehicle CAN
BUS information were recorded. The RGB camera and four LiDAR sensors are placed on
top of the vehicle to obtain better environment coverage. In addition, the timestamps were

(a)

(b)

(c)

~~ Intend to left lane change

f Go forward

~ Intend to right cut in

r Rightturn

f Intend to right turn • Stopped

01 Opposite lane 1 Van

11 Left lane 1

.Ip Truck

rl Right lane 1 ml Potential Destination

• Road Exit/Entrance

APPENDIX A. ADDITIONAL INFORMATION FOR LOKI 51

recorded for post multi-sensor synchronization processing. The cameras and LiDARs were
placed on top of the vehicle to obtain better environment coverage. The sensors used for
recording this dataset are listed below:

• A color SEKONIX SF332X-10X video camera (30HZ frame rate, 1928×1280 resolution
and 60 degree field-of-view (FOV)).

• Four Velodyne VLP-32C 3D LiDARs (10 HZ spin-rate, 32 laser beams, range: 200m,
vertical FOV 40 degrees).

• A MTi-G-710-GNSS/INS-2A8G4 with output gyros, accelerometers and GPS.

We used the CAN BUS to compensate for the ego-motion while merging the LiDAR data
and then transforming it to the virtual position (the center of the vehicle). The calibration
is obtained through the extrinsic (the transformation between the virtual LiDAR point and
camera) and intrinsic camera parameters.

The recorded agents fall into 8 main classes. The vehicle classes are truck, van, car,
bicyclist, motorcyclist, and bus. The pedestrian classes are pedestrian and wheelchair. As
described in the main manuscript, we have three types of labels in the LOKI dataset:
Intention labels, Environmental labels, and Contextual labels. Intention labels for the
vehicle classes include diverse motion states such as stop, lane change, cut-in, etc., which
can be observed in suburban and urban driving scenarios. Similarly, we annotated intention
labels for the pedestrian classes such as moving, waiting to cross, etc. We additionally
annotate a potential destination of stopped / waiting agents under the pedestrian classes,
which is a direct indicator of their intention. Note that the potential destination cannot be
obtained from the future location of agents as they mostly stay still until the end of the
video clip. To further explore how environments and scene context can affect the future
behavior of agents, we annotate environmental labels (lane information, traffic light/sign,
road entrance/exit) as well as contextual labels (age, gender, weather, road condition).
Figure A.1 illustrates different types of labels that we annotated in the LOKI dataset.

A.2 Model Implementation
In this section we provide more information on our data pre-processing, model choices and
architecture details of each module.

Data Pre-processing
The LOKI dataset contains diverse traffic scenarios of up to 20 seconds, with the average
recorded scene length of 12.6 seconds. With access to longer recordings, our dataset can be
used for a multitude of trajectory prediction settings, from very short-term observations

APPENDIX A. ADDITIONAL INFORMATION FOR LOKI 52

and predictions (3 seconds) to much longer observations and prediction horizons (10+
seconds). In our work, we consider a long-term prediction setting with a 3s observation
horizon and a 5s prediction horizon. Thus, we filter all agents that are not observed for at
least 8s in a given traffic scenario. We use a sliding window of 0.2s to augment tracklets.
Furthermore, as in other works [11, 99], we further augment our dataset during training
with “rare“ examples such as turning and lane changes.

We solve the problem of intention prediction and trajectory prediction jointly as described
in the main manuscript. The types of intentions for pedestrian agents and vehicle agents
are different due to their different traffic restrictions and trajectory behaviors. For vehicles,
we use the following set of discrete actions: Other/moving, Stopped, Parked, Lane change,
Turn left, and Turn right. We group Lane change to the left and Lane change to the right
into a single intention type, as the number of instances that contain lane changes are much
smaller and we noticed that separating the two did not improve performance. Furthermore,
we do not compute a loss or predict trajectories that contain Cut into the left and Cut into
the right , as we noticed that these constitute less than 0.01% of the dataset, making it
hard for the model to meaningfully distinguish between turning and lane-changing
behavior. For pedestrians, we use the following set of intentions: Moving, Waiting to cross,
Crossing the road, and Stopped.

Our dataset originally contains frame-wise action labels for each agent. In order to use them
as intention labels, we define intention to be a future action [87]. Thus, the intention of an
agent at frame m is the agent’s action at frame m + q where we fix q = 4 frames (0.8s) for
our work. Note that for the observation period, we do not use intentions and only input
observed actions to the model to prevent ground-truth leakage; the intention labels are only
used for future trajectory prediction.

Observation Encoder
The observation encoder outputs a representation of past motion history, observed actions,
and lane information for each actor independently. In our paper, we refer to past actions
and lane information as observed states.

Layer Input shape Output shape
0 encoder past.GRUCell.enc [1, 15, 21] [1, 64]

Table A.1: We use a GRU to encode the observation information for each actor. We use a
hidden dimension of 64. The input is 15 observation frames with 21 inputs at each frame (2
from position, 8 from vehicle actions, 5 from pedestrian actions, and 6 from lane information).
We use one-hot encoding to represent action types. We also include a None class for both
vehicle and pedestrian actions. This allows vehicle agents to choose None for pedestrian
action types and pedestrian agents to choose None for vehicle action types.

APPENDIX A. ADDITIONAL INFORMATION FOR LOKI 53

Long-term Goal Proposal Network
For each actor, we first independently predict a proposed long-term goal position [78, 120].
The proposed destination is similar as in other works [78] and is simply the endpoint of the
trajectory, which in our case is 5s in the future. Because there are many plausible futures, we
capture multimodality by learning a long-term goal distribution for each actor. To predict
multiple trajectories, we sample various goals and condition our Scene Graph + Prediction
decoder module on each sampled goal. We follow a similar formulation as proposed in [78]
and use a Conditional Variational Autoencoder (CVAE) to learn a latent distribution of the
goals.

Layer Input shape Output shape
0 encoder destination.Linear 1 [1, 2] [1, 8]
1 encoder destination.ReLU 1 - -
2 encoder destination.Linear 2 [1, 8] [1, 16]
3 encoder destination.ReLU 2 - -
4 encoder destination.Linear 3 [1, 16] [1, 16]
5 encoder latent.Linear 1 [1, 80] [1, 8]
6 encoder latent.ReLU 1 - -
7 encoder latent.Linear 2 [1, 8] [1, 50]
8 encoder latent.ReLU 2 - -
9 encoder latent.Linear 3 [1, 50] [1, 32]
10 decoder latent.Linear 1 [1, 80] [1, 1024]
11 decoder latent.ReLU 1 - -
12 decoder latent.Linear 2 [1, 1024] [1, 512]
13 decoder latent.ReLU 2 - -
14 decoder latent.Linear 3 [1, 512] [1, 1024]
15 decoder latent.ReLU 3 - -
16 decoder latent.Linear 4 [1, 1024] [1, 2]

Table A.2: Sub-network architectures used for the goal-proposal network, modeled closely
from model [78]. Batch size of 1 used for example.

Scene Graph + Prediction Module
The Scene Graph and prediction module performs joint intention and trajectory prediction
while reasoning about various factors that may affect agent intent including i) agent’s own
will ii) agent-agent interaction and iii) agent-environment influence.

We construct a traffic scene graph to capture interaction and environmental influence. We
have two types of nodes: 1) agent nodes 2) road entrance/exit nodes. The agent nodes are
for dynamic agents in a scene (vehicles and pedestrians). The road entrance/exit nodes are
static nodes that are positional markers that indicate where a road entrance or exit lies.
These static nodes are used to provide information regarding map topology. In this work,
we assume that these road markers are accessible to the model based on the annotations in
our dataset. As described in our main manuscript, we use directional edges to propagate

I I I

APPENDIX A. ADDITIONAL INFORMATION FOR LOKI 54

information through the various scene agents. Agents are connected to each other with
bidirectional edges if they are within a certain threshold of 20 meters away from each
other. Similarly, we connect a directed edge from static nodes to dynamic nodes if the
agent is within 35 meters of the road entrance/exit. This graph is flexible in that a variable
number of nodes or node types can be added as modifications to this graph.

The Scene Graph + Prediction Module is then used to recurrently propagate information,
predict intention, and predict trajectory. At each timestep, we first compute edge
attributes between each pair of nodes. We use the edge attr network to embed nodes’
velocities and relative positions between each pair of nodes. We then use the
transformer conv layer (with a single attention head) [102] for message passing and update
each node’s hidden states based on its neighbors. Following this, we use the
vehicle intention predictor and pedestrian intention predictor networks to predict agent
intention at that current timestep. The trajectory predictor is then conditioned on the
hidden state of rnn future GRUCell.dec and the current intention prediction to predict the
next position of each agent. Finally, the predicted positions are then inputted into
rnn future GRUCell.dec to update the hidden states of each actor. This entire process is
repeated for the prediction horizon length to unroll full trajectories while accounting for
interactions and environmental information.

Layer Input shape Output shape
0 trajectory predictor.Linear 1 [1, 93] [1, 80]
1 trajectory predictor.ReLU 1 - -
2 trajectory predictor.Linear 2 [1, 80] [1, 40]
3 trajectory predictor.ReLU 2 - -
4 trajectory predictor.Linear 3 [1, 40] [1, 2]
5 vehicle intention predictor.Linear 1 [1, 80] [1, 256]
6 vehicle intention predictor.ReLU 1 - -
7 vehicle intention predictor.Linear 2 [1, 256] [1, 128]
8 vehicle intention predictor.ReLU 2 - -
9 vehicle intention predictor.Linear 3 [1, 128] [1, 8]
10 pedestrian intention predictor.Linear 1 [1, 80] [1, 256]
11 pedestrian intention predictor.ReLU 1 - -
12 pedestrian intention predictor.Linear 2 [1, 256] [1, 128]
13 pedestrian intention predictor.ReLU 2 - -
14 pedestrian intention predictor.Linear 3 [1, 128] [1, 5]
15 rnn future.GRUCell.dec [1, 1, 80] [1, 1, 80]
16 edge attr.Linear 1 [1, 8] [1, 16]
17 edge attr.ReLU 1 - -
18 edge attr.Linear 2 [1, 16] [1, 16]
19 transformer conv 1 [1, 80] [1, 80]

Table A.3: Sub-network architectures used for the Scene Graph + Prediction module. Batch
size of 1 used for example.

I I I

APPENDIX A. ADDITIONAL INFORMATION FOR LOKI 55

Training
Loss Functions

For convenience, we copy the loss functions used for training from our manuscript:

LGP N = α1DKL(N (µ, σ)∥N (0, I)) + α2∥Ĝ−G∥2
2

Lint = −
n∑

i=0
wi ∗ yi ∗ log(ŷi)

Ltraj = ||V − V̂ ||2

LF inal = λ1LGP N + λ2Lint + λ3Ltraj

We set λ1 = 1, λ2 = 100, λ3 = 200, α1 = 1, α2 = 1

Training details

We train the entire network end-to-end with the LF inal loss using a batch size of 32
scenarios and learning rate of 1 × 10−4 using the ADAM optimizer. The intention
prediction and trajectory forecasting tasks are heavily related with one another; thus we
observed that training end-to-end helped with performance compared to modular training.
Note that our batches are also grouped with an appropriate adjacency list to denote
neighbors (connected edges) in a given batch.

During training, we train with the ground-truth destination as the long-term goal, as we
noticed that because short-term intentions are influenced by long-term goals, it is important
for the intention prediction networks to get a clean signal while training. During testing, we
condition on a sampled goal from the Goal-proposal Network. We also adopt the truncation
trick as in [78] to appropriately sample based on a varying number of future trajectories. The
latent variable is sampled from different distributions depending on the number of future
trajectories to be predicted: for N = 1 (single-shot) we sample the from N (0, 0) while for
N = 20 (multimodal) we sample from N (0, 1.1).

A.3 Visualizations
In this section, we provide multiple visualizations that illustrate our proposed model’s top-
1 predictions (Figure A.2), top-5 multimodal predictions (Figure A.3), and our model’s
predictions with and without intention conditioning (Figure A.4). Please view the video files
provided in the supplementary folder for more detailed visualizations.

APPENDIX A. ADDITIONAL INFORMATION FOR LOKI 56

Figure A.2: Visualization of our model’s (Ours+IC+SG) top-1 (out of N=20 multimodal
setting) predictions. Agent’s past trajectory is represented in green. Agent’s ground truth
future is blue. Agent’s predicted trajectories are in red (with increasing opacity to indicate
better matches to the ground truth). We observe that our model performs reasonably in
complex traffic scenarios.

• l,':
; .i -' .

, ' I, . ' . . ~ ..
-..... :,,,.,,

'r--
·· · ..

~ r--~::::...i;; " :T""

APPENDIX A. ADDITIONAL INFORMATION FOR LOKI 57

Figure A.3: Visualization of our model’s (Ours+IC+SG) top-5 (out of N=20 multimodal
setting) predictions. Agent’s past trajectory is represented in green. Agent’s ground truth
future is blue. Agent’s predicted trajectories are in red (with increasing opacity to indicate
better matches to the ground truth).

,

·.·. ,. ,.,·~
,. X • :-

''·t~ ~\ '/-i:. :f - •

i

• I

APPENDIX A. ADDITIONAL INFORMATION FOR LOKI 58

Figure A.4: Comparison of with and without intention priors/scene graph for trajectory
prediction. Agent’s past trajectory is represented in green. Agent’s ground truth future is
blue. The top-1 predictions by the model without intention conditioning and scene graph
are in purple. The top-1 predictions by the model with intention conditioning and scene
graph are in red. We can qualitatively observe the efficacy of intention conditioning and
incorporating interaction and environmental cues.

,;t-..
_,,·~,

	Contents
	List of Figures
	List of Tables
	Introduction
	Background and Prior Work
	Action Anticipation
	Transformers for Video Anticipation
	Real-Time Systems
	Real-Time Action Forecasting Transformer
	Problem Formulation
	Pre-trained Video Backbone
	RAFTformer Model Network
	Anticipation Tokens
	Overall Mechanism
	Loss Functions
	Experiments and Results
	Datasets & Metrics
	Evaluation Setting
	EPIC-Kitchens-100
	Additional Datasets
	Additional Results
	Implementation Details
	Conclusion
	Limitations
	Use Cases
	Short-Term Anticipation for Trajectory Prediction
	Introduction
	Related Work
	LOKI Dataset
	Proposed Method
	Experiments
	Conclusion
	Bibliography
	Additional Information for LOKI
	Details of the LOKI Dataset
	Model Implementation
	Visualizations

