
Probabilistic State Estimation to Enable Manipulation

and Interactive Perception for Robotic Cable

Untangling and Object Search

Kaushik Shivakumar
Ken Goldberg

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-129

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-129.html

May 12, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

The work in this thesis is a result of substantial collaborations with Vainavi
Viswanath, Jainil Ajmera, Mallika Parulekar, Justin Kerr, Satvik Sharma,
and Raven Huang, among others. I'm forever grateful to Professor Ken
Goldberg for the opportunity to work on research in his lab, as well as my
friends and family for supporting me through it all.

Probabilistic State Estimation to Enable Manipulation and Interactive Perception for
Robotic Cable Untangling and Object Search

by

Kaushik Shivakumar

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ken Goldberg, Chair
Professor Joseph E. Gonzalez

Spring 2023

Probabilistic State Estimation to Enable
Manipulation and Interactive Perception for
Robotic Cable Untangling and Object Search

Kaushik Shivakumar

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for
the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Commi�ee

Professor Ken Goldberg
Research Advisor

(Date)

¢ ¢ ¢ ¢ ¢ ¢ ¢

Professor Joseph E. Gonzalez
Second Reader

(Date)

�����������������������		�������
�����������������������

���������

���������

Probabilistic State Estimation to Enable Manipulation and Interactive Perception for
Robotic Cable Untangling and Object Search

Copyright 2023
by

Kaushik Shivakumar

1

Abstract

Probabilistic State Estimation to Enable Manipulation and Interactive Perception for
Robotic Cable Untangling and Object Search

by

Kaushik Shivakumar

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ken Goldberg, Chair

Probabilistic state estimation is crucial in robotics when full state reconstruction is not
possible due to partial observability. Outputting distributions over the state space allows for
expression of uncertainty in a useful way for a downstream planner, which can interact with
the scene to increase confidence via a method called interactive perception and eventually
make task progress. We investigate probabilistic state estimation and interactive perception
for cable untangling and object search in semantically organized shelves. First, we introduce
Tracing to Untangle Semi-planar Knots (TUSK), a learned cable tracing algorithm that
resolves overcrossings and undercrossings to recognize knot structure and grasp points for
untangling from a single RGB image. This work focuses on semi-planar knots, containing
crossings each with at most 2 cable segments. We conduct experiments on 3-meter cables
with up to 15 semi-planar crossings across 6 di↵erent knot types. We find that in scenes with
multiple identical cables, TUSK can trace a single cable with 81% accuracy on 7 new knot
types. In single-cable images, TUSK can trace and identify the correct knot with 77% success
on 3 new knot types. We incorporate TUSK into a bimanual robot untangling system and
find it successfully untangles 64% of cable configurations, including those with new knots
unseen during training, across 3 levels of di�culty. Second, we introduce Semantic Spatial
Search on Shelves (S4) to improve e�ciency when locating a fully occluded target object in
a shelf. Shelves in pharmacies, restaurant kitchens, and grocery stores are often organized
such that semantically similar objects are placed close to one another. With Semantic
Spatial Search on Shelves (S4), we use large language models (LLMs) to generate a�nity
matrices, where entries correspond to semantic likelihood of physical proximity between
objects. We derive occupancy distributions by synthesizing semantics with learned spatial
constraints. Simulation experiments suggest that S4 combined with an interactive perception
policy reduces search time relative to pure spatial search by an 24% across three domains:
pharmacy, kitchen, and o�ce shelves, and physical experiments in a pharmacy shelf suggest
47.1% improvement. We conclude with limitations and areas for future work.

i

To my parents, grandparents, sister, and incoming puppy.

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Overview . 1
1.2 Cable Untangling . 2
1.3 Object Search . 4

2 Cable Untangling: Background 7
2.1 Related Work . 7
2.2 Problem Statement . 9

3 TUSK: Tracing to Untangle Semi-Planar Knots 11
3.1 Learned Cable Tracer . 11
3.2 Over/Undercrossing Predictor . 13
3.3 Analytic Knot Detection . 15
3.4 Algorithmic Cage-Pinch Point Detection . 16
3.5 Robot Untangling using TUSK . 17

4 TUSK Results 20
4.1 Workspace . 20
4.2 TUSK Setup . 20
4.3 Results . 23

5 Semantic Spatial Search: Background 27
5.1 Related Work . 27
5.2 Problem Statement . 29

6 Semantic Spatial Search on Shelves (S4) 30
6.1 A�nity Matrix Generation . 30

iii

6.2 Object Detection Refinement . 31
6.3 Semantic Occupancy Distribution . 33
6.4 Semantic Spatial Search on Shelves (S4) Algorithm 34

7 S4 Results 36
7.1 A�nity Matrix . 36
7.2 Semantic Scene Generation . 37
7.3 Object Detection . 38
7.4 Simulation Object Retrieval Experiments . 40
7.5 Physical Object Retrieval Experiments . 41

8 Limitations and Conclusion 44
8.1 TUSK . 44
8.2 S4 . 44
8.3 Conclusion . 45
8.4 Ending Notes . 46

Bibliography 47

iv

List of Figures

1.1 TUSK: TUSK first performs cable tracing (1, 2). The trace is shown through
a rainbow gradient (from violet to purple), depicting the sequence in which the
cable is traced. After tracing, TUSK does crossing recognition (3) to obtain
the full topology of the cable. Next, using crossing cancellation rules from knot
theory, it analytically determines knots (4) in the cable. Next, TUSK surveys
possible cage-pinch points (5) and selects the best candidate points to grasp to
execute a cage-pinch dilation action, untangling the knot (6). 3

1.2 (A) Consider a robot search for a target object such as Tylenol in a semantically
arranged environment such as a pharmacy shelf. (B) Semantic Spatial Search
on Shelves (S4) computes a spatial distribution and a semantic distribution (see
shaded areas) over where the target object could be. The spatial distribution
is based on object shapes while the semantic distribution encodes likelihood of
physical proximity (e.g., Tylenol is likely closest to Ibuprofen). (C) These are
combined into a single semantic spatial distribution. 5

2.1 Reidemeister Moves and Crossing Cancellation: Top left depicts Reide-
meister Move II. Top right depicts Reidemeister Move I. The bottom row shows
that by algorithmically applying Reidemeister Moves II and I, we can cancel
trivial loops, even if they visually appear as knots. 10

3.1 Simulated and real crops used for training TUSK: On the left are simulated
cable crops augmented with Gaussian noise, brightness, and sharpening to match
the real images (right) as closely as possible. 12

3.2 Input and Prediction of Iterative Learned Cable Tracer: the iterative
learned cable tracer takes small crops around the cable and one step at a time,
predicts the next point in the trace. The input crop is a 64x64x3 crop centered
on the previous trace point. The first channel contains the previous trace points
within the crop. The second and third channel are the gray scale image of the
crop. The prediction is a 64x64 heatmap, where we infer the argmax of the
heatmap to be the next point in the trace. 14

v

3.3 Untangling Algorithm with TUSK: We first detect the endpoints and ini-
tialize the tracer with start points. If we are not able to obtain start points, we
perturb the endpoint and try again. Next, we trace. While tracing, if the cable
exits the workspace, we pull the cable towards the center of the workspace. If
the tracer gets confused and begins retracing a knot region, we perform a partial
cage-pinch dilation that will loosen the knot, intended to make the configuration
easier to trace on the next iteration. If the trace is able to successfully complete,
we analyze the topology. If there are no knots, we are done. If there are knots,
we perform a cage-pinch dilation and return to the first step. 18

4.1 Starting configurations for the 3 categories for TUSK experiments and the 3
levels for physical experiments. 21

4.2 Multi-cable tracing: Top row: illustrative examples of each of the 3 tiers
of di�culty for multi-cable tracing experiments. Bottom row: Corresponding
successful traces outputted by the learned tracer. 22

6.1 System overview of Semantic Spatial Search on Shelves (S4). The a�nity matrix
is computed o✏ine. Given an RGBD image, we use object detection combined
with refinement to query the a�nity matrix and construct a semantic occupancy
distribution. We multiply this by a spatial occupancy distribution to use in a
mechanical search policy. 31

6.2 Here we have an example scene where the target is Omega-3 and the visible
objects are labeled. We illustrate the process of calculating the 2D semantic dis-
tribution (xy-plane of the shelf) and then projecting to a 1D semantic distribution
(shaded blue in the xz-plane), as described in Section 6.3. 34

6.3 Ground truth a�nity matrix and a�nity matrices generated by OpenAI Embed-
dings and PaLM. The matrices are able to roughly capture the block diagonal
structure of the ground truth matrix. 35

7.1 Physical setup with a cardboard shelf, pharmacy objects, Kinova Gen2 robot,
a bluction tool [34] for extracting objects in the shelf, and an Intel RealSense
RGBD camera mounted on the bluction tool. 42

vi

List of Tables

4.1 TUSK Experiments . 24
4.2 TUSK and Physical Robot Experiments (90 total trials) 24
4.3 Multi-Cable Tracing Results . 25

7.1 A�nity matrix results. We report the average Jensen-Shannon Distance (JSD)
between each row of the a�nity matrix and the ground truth matrix, as well as
the percentage improvement over the uniform JSD (i.e., (uniform JSD - method
JSD) / uniform JSD). 37

7.2 Object Detection Refinement Results. We ablate the components of our object
detection system (Section 6.2) and report the mean average precision (mAP) of
the predicted bounding boxes and top-K accuracy of the predicted labels. 38

7.3 Simulation Experiment Results. Please refer to the paper for detailed perfor-
mance with 18 objects, which is omitted to save space. 39

7.4 Simulation Experiment: Performance in Non-Semantic (RAND) Scenes with 15
objects. “RAND” refers to randomly arranging the objects in the scene as op-
posed to semantically arranging them with the procedure in Section 7.2. 39

7.5 Simulation Experiment Results in Table 7.3 averaged over number of objects, also
reported with % Reduc., percentage reduction in actions from Spatial NN. . . 40

7.6 Physical Experiment Results (12 trials each). We report the average number of
actions taken to reveal the target object as well as the percentage reduction in
the number of actions over the spatial neural network. 43

vii

Acknowledgments

Working on research at UC Berkeley has been an extremely enriching experience for me.
I’d like to thank Professor Joe Hellerstein for accepting me into his group at RISE lab
as a freshman and David Chu for mentoring me during my first three years at Berkeley
when I was working on distributed systems research on automatic protocol optimization.
Professor Hellerstein was extremely helpful when I expressed interest in robotics research,
recommending AUTOLab to me.

I want to thank Professor Goldberg for welcoming me into his research group, providing
me the opportunity even as an undergraduate to co-lead a project, and putting me in a
position to learn and collaborate with experts in the field. It is di�cult to even express
how much I’ve learned since joining AUTOLab; I went from a complete amateur to someone
who feels confident reading most papers from the deep learning and robotics community.
Obviously, I’m no expert and have a long way to go, but thank you to Professor Goldberg
and the AUTOLab community for getting me started on this journey.

Specifically, I’d like to thank my collaborators, without whom none of the work I’ve
done would be possible. I’d like to thank Justin Kerr, Raven Huang, Ryan Hoque, Brijen
Thananjeyan, Ashwin Balakrishna, Ellen Novoseller, Je↵rey Ichnowski, and Yahav Avigal
for providing me with invaluable guidance and mentorship as Ph.D. students and Postdocs.

I also want to acknowledge the other undergraduates and MS students I’ve had the
opportunity to collaborate with: Vainavi Viswanath, Satvik Sharma, Mallika Parulekar,
Jainil Ajmera, Anrui Gu, Shrey Aeron, Gabriel Deza, and Aditya Ganapathi. All of you are
always so full of great ideas, and I’ve learned so much from working with you.

I’m of course extremely grateful to my primary collaborator for the past few years, Vainavi
Viswanath. Thank you for welcoming me into the cable untangling project, teaching me,
and inspiring me with your dedication, organization, and work ethic in pursuit of research
goals. I’ve learned so much from you, and your energetic and bubbly presence in the lab
never fails to make me smile.

None of the work I’m presenting in the thesis is entirely my own; rather, it is a
result of long-standing collaborations, cross-fertilization of ideas, and countless hours of hard
work from everyone I’ve mentioned. Specifically, for the first half on TUSK, I want especially
to acknowledge Vainavi’s hard work developing the tracer and grasp point selection methods,
and Jainil and Mallika’s work on ideating on and implementing analytic knot detection
techniques. For the second half on S4, I want to thank Satvik for his development of a�nity
value extraction and normalization, persistence during physical experiments, and numerous
ideas like those on refining object detections using semantics, and Raven for her expertise
from prior mechanical search projects.

I want to thank my friends and roommates at Berkeley for making my college experience
incredibly enjoyable, and all the teachers and professors who’ve bestowed me with much of
the knowledge I have today.

Finally, I have infinite gratitude for my parents, who always provided me every opportu-
nity to learn and grow and supported me unconditionally through my education, my sister

viii

who never misses an opportunity to tease me, and my grandparents, who have looked after
me and taken interest in my work ever since I was very young.

1

Chapter 1

Introduction

1.1 Overview

State Estimation

State estimation is a challenging but crucial task in robotics. In its most general form, the
problem boils down to estimating the state st 2 S of a system based on a sequence of ob-
servations o1, o2, ...ot 2 O. While this is a trivial problem if the observation ot contains the
state st, full state estimation can become challenging or even impossible in the presence of
sensor noise, occlusions, and partial observability. Given these challenges, instead of produc-
ing a single state estimate, outputting a probability distribution over states p(st|o1...ot) is
often su�cient to enable downstream planning and control in robotics. This thesis focuses
on providing probabilistic state estimates using just a single observation for two problem
settings to enable manipulation policies and interactive perception.

Active and Interactive Perception

In 1984, Goldberg and Bajcsy [29] explored active perception of shape using a robot to
actively move a touch sensor to trace object contours. In 1988, Bajcsy [9] defined active per-
ception as a search of models and control strategies for perception. Strategies vary according
to the sensor and the task goal, including controlling camera parameters [10] and moving a
tactile sensor according to haptic input [29]. Recently, Bohg et al. [13] explore the di↵erences
between active and interactive perception, the latter of which specifically exploits environ-
ment interactions to simplify and enhance perception to achieve a better understanding of
the scene [13, 60]. Within robotic manipulation, several works have focused on improving
understanding of the environment through scene interaction. Tsikos and Bajcsy [79] pro-
pose interacting with random heaps of unknown objects through pick and push actions for
scene segmentation. Danielczuk et al. [24] present the mechanical search problem, where a
robot locates and retrieves an occluded target object from a cluttered bin through a series
of targeted parallel jaw grasps, suction grasps, and pushes. Novkovic et al. [60] propose a

CHAPTER 1. INTRODUCTION 2

combination of camera motions with environment interactions to find a target cube hidden
in a pile of cubes. Interactive perception has also been applied to deformable manipulation.
Willimon et al. [86] interact with a pile of laundry to isolate and identify individual clothing
items.

Outline

In this thesis, we demonstrate methods to enable the application of learned state estimation
and interactive perception to the following problems:

1. Cable Untangling: We study the problem of estimating the trace of a cable from an
overhead RGB image to enable downstream tasks such as cable topology estimation,
knot detection, and untangling. In this work, we introduce a novel algorithm called
Tracing to Untangle Semi-planar Knots, building on our prior keypoint-based work on
long cable untangling [70, 82].

2. Semantic Spatial Search on Shelves: We study the problem of searching for ob-
jects in a shelf, in the presence of significant occlusions. This operates via a combination
of a learned spatial probability distribution combined with a semantic distribution ex-
tracted from large language models (LLMs). These two distributions can be seen as
probabilistic state estimates over the state of the target object, which are used for the
downstream task of object search.

1.2 Cable Untangling

In industrial and household settings, tangled long cables can pose a threat to the safety of
individuals, especially older or at-risk adults, by impeding their movement. Additionally,
in environments where heavy machinery is operated, cables can get caught in moving parts
and cause potential damage or harm [65, 55, 80, 88].

Untangling long cables can be di�cult due to challenges in manipulation and perception
alike. Developing manipulation primitives that can adapt to di↵erent knot topologies is
non-trivial since knot dynamics are challenging to predict and can depend on unobservable
parameters of the cable like sti↵ness. Also, estimating cable state from an RGB image is
di�cult since long cables often fall into complex configurations with many crossings. Long
cables can also contain a significant amount of free cable (referred to as slack), which can
occlude and inhibit the perception of true knots from an overhead image. The task of
autonomously untangling cables requires a generalizable system that can track a cable path
in complex configurations and handle the wide distribution of knots present in long cables.

Much of prior work bypasses full state estimation by employing object detection net-
works and keypoint selection networks to identify knots and grasp points directly based on
geometric patterns [82, 70]. These works can disentangle 2 types of knots (overhand and

CHAPTER 1. INTRODUCTION 3

1. Cable Tracing 2. Full Trace

Next
Prev

3. Crossing Recognition

Over

4. Knot Detection & Topology

Knot

Cage Pinch

5. Cage-Pinch Points 6. Robot Execution

Figure 1.1: TUSK: TUSK first performs cable tracing (1, 2). The trace is shown through a
rainbow gradient (from violet to purple), depicting the sequence in which the cable is traced.
After tracing, TUSK does crossing recognition (3) to obtain the full topology of the cable.
Next, using crossing cancellation rules from knot theory, it analytically determines knots
(4) in the cable. Next, TUSK surveys possible cage-pinch points (5) and selects the best
candidate points to grasp to execute a cage-pinch dilation action, untangling the knot (6).

figure-8), but the methods do not generalize well to the large number of complex configu-
rations long cables can form. Other prior work is able to achieve some generality for knot
disentanglement, but only for short cables up to 15 cm in length. In such short cables, the
knot configurations are less complex, and there is little di�culty with slack management,
eliminating the need to estimate the cable path [83, 30, 76, 74]. This work considers long
cables up to 3 meters in length consisting of semi-planar knots, i.e. knots comprised of
semi-planar crossings, where each crossing consists of at most 2 cable segments when viewed
from above. The single-cable semi-planar knots considered in this work are overhand, figure
8, overhand honda, bowline, linked overhand, and figure 8 honda knots. The double-cable
semi-planar knots considered in this work are carrick bend, sheet bend, and square knots.

CHAPTER 1. INTRODUCTION 4

This work focuses on high-accuracy state estimation techniques and algorithms grounded
in knot theory to process the results of state estimation and select untangling actions for a
broader class of knots.

We presents TUSK, which makes the following contributions:

1. A novel cable state estimator consisting of a learning-based iterative tracer and a
crossing classifier with a crossing correction algorithm.

2. An analytic knot detection algorithm and untangling point selection algorithm given
the cable state estimates.

3. An untangling point selection algorithm that determines optimal graspable points for
executing untangling action primitives.

4. A cable untangling system using TUSK and incorporating interactive perception.

5. Data from physical experiments using TUSK to trace and untangle configurations with
semi-planar knots. Results suggest TUSK can correctly trace and segment a single
cable in multi-cable settings with 81% accuracy, detect knots with 77% accuracy, and
function in a physical system for untangling semi-planar knots with 64% untangling
success in under 8 minutes.

1.3 Object Search

Robotic mechanical search [23] aims to retrieve a desired target object from a scene where
the target object is fully occluded. This problem is especially challenging in shelves due to
limited camera views and robot access. However, these environments are often organized
semantically for ease of retrieval. For instance, pain relief medications such as Tylenol and
Ibuprofen are often stored near each other. Can the semantic structure of an environment
guide mechanical search by informing the robot about what areas are likely to contain the
target object? Prior work in mechanical search either fails to consider semantic information
[35, 34, 36] or uses manually constructed semantic similarities [45].

We propose using large language models (LLMs) [25, 4] as semantic knowledge bases
for guiding robotic mechanical search. Since LLMs are trained on large corpora of human
language, we hypothesize that they e↵ectively encode the semantics of both common and
rare objects. In contrast to recent systems like SayCan [7], we apply LLMs o✏ine to fa-
cilitate searching and manipulating cluttered shelf environments where many objects are
fully occluded. We generate an occupancy distribution, a probability distribution over the
potential locations of the target object. We develop a novel method to estimate a seman-
tic occupancy distribution by precomputing an a�nity matrix from an LLM. The semantic
a�nity matrix consists of many rows, where values in row i encode physical proximity of
every object to object i. We combine the semantic occupancy distribution with a learned

CHAPTER 1. INTRODUCTION 5

Figure 1.2: (A) Consider a robot search for a target object such as Tylenol in a semantically
arranged environment such as a pharmacy shelf. (B) Semantic Spatial Search on Shelves (S4)
computes a spatial distribution and a semantic distribution (see shaded areas) over where
the target object could be. The spatial distribution is based on object shapes while the
semantic distribution encodes likelihood of physical proximity (e.g., Tylenol is likely closest
to Ibuprofen). (C) These are combined into a single semantic spatial distribution.

spatial occupancy distribution which encodes constraints due to object geometry and cam-
era perspective, shown to be helpful in prior work [34, 36] (Figure 1.2). We then use the
resulting semantic spatial distribution to e�ciently search in the target domain.

Since generating a semantic distribution requires objects in the shelf to be identified cor-
rectly, we use object detection and segmentation to identify objects in the shelf. To improve
performance, we refine the object detection class probabilities to more accurately identify
heavily occluded objects and distinguish between visually similar objects (e.g., shampoo and
conditioner), in two ways: 1) by extracting brand names or labels from the images through
Optical Character Recognition (OCR), and 2) by using clues from nearby, more confident
object detections to refine detections. Hence, we apply LLMs to improving object detection
without any additional annotated data, which is often required to deploy object detection

CHAPTER 1. INTRODUCTION 6

models in robotics. We find that OCR with an o↵-the-shelf text embedding model combined
with context-based semantic refinement with LLMs significantly improves object detection.

Existing product taxonomies such as the open-source Google Product Taxonomy [16]
provide semantic context for objects, but they have a limited vocabulary and mostly consist
of categories (e.g., “supplements”) rather than specific products (e.g., “Omega-3”). In this
work, we evaluate our method in the pharmacy, kitchen, and o�ce domains indexed in
the Google Product Taxonomy, which we treat as ground truth for generating semantically
organized scenes and evaluating a�nity matrices.

This work makes the following contributions:

1. A novel approach for synthesizing semantic a�nity matrices from o✏ine LLM queries.

2. A systematic comparison of BERT [25], CLIP [63], OpenAI Embeddings [2], OPT-13B
[5], and PaLM with the Google Product Taxonomy for inferring the semantic similarity
of pharmacy products.

3. Semantic Spatial Search on Shelves (S4), a novel algorithm that combines object se-
mantics with geometric constraints to guide mechanical search using interactive per-
ception.

4. A method for refining the predictions of an o↵-the-shelf object detection model using
Optical Character Recognition (OCR) and context using LLMs.

5. Simulation and physical experiments evaluating S4 with and without semantics, OCR,
and semantic arrangement of shelves. S4 outperforms prior work by 24% in the sim-
ulated pharmacy, kitchen, and o�ce domains and 47.1% in the physical experiments
for the pharmacy domain.

7

Chapter 2

Cable Untangling: Background

2.1 Related Work

Deformable Object Manipulation

Robot manipulation of deformable objects, such as cables (1D), fabric (2D), and bags (3D),
is di�cult because they have a near-infinite state space, can form self-occlusions, and are
di�cult to model. This study focuses on the problem of untangling knots in long cables.
Recently, there has been progress in deformable manipulation, including algorithms for un-
tangling cables [30, 76, 83, 51], smoothing and folding fabric [67, 85, 28, 33, 44, 78, 32], and
placing objects into bags [68, 17].

Methods for intelligently and autonomously manipulating deformable objects lie on a
spectrum ranging from completely model-free, directly perception-driven approaches to those
that directly estimate the state of the object of interest and then perform planning on it.

Examples of model-based methods for deformable objects are dense descriptors [27],
which have been applied to cable knot tying [75] and fabric smoothing [28], as well as
visual dynamics models for non-knotted cables [89, 84] and fabric [33, 89, 49]. Model-free
approaches include reinforcement or self-supervised learning for fabric smoothing and folding
[54, 87, 46, 8] and straightening curved ropes [87], or directly imitating human actions [67].

Cable Perception, Manipulation, and Untangling

Pioneering research in untangling, such as that conducted by Lui and Saxena [50], relies on
decomposing point clouds of rope into segments which are refined into a graphical repre-
sentation of the cable’s structure based on priors on cable behavior such as bending radius.
Other methods learn visual models for cable manipulation over which to plan [58], investi-
gate iteratively refining dynamic actions [20], or use approximate state dynamics along with
a learned error function [56]. Fusing point clouds across time has shown success in tracking
segments of cable provided they are not tangled on themselves [66, 77].

CHAPTER 2. CABLE UNTANGLING: BACKGROUND 8

Studies on dense knots, such as those by [30] and [76], employ learning-based keypoint
detection to parameterize action primitives for untangling isolated knots. The work of [82]
expands on this idea to long (3m) cables, with the addition of a learned knot detection
pipeline. This approach works well for a certain range of knot types within the model’s train-
ing distribution as it uses end-to-end perception systems trained on human labels. Scaling
these methods to arbitrary knot types would require an intractable amount of human labels,
motivating the local topology estimation approach in this work.

Prior cable state estimation work includes that led by [37], which estimates the topo-
logical state of multiple ropes against varying backgrounds and uses primitives to untangle
rope configurations consisting primarily of loops with 2 to 4 crossings. Additional linear
deformable tracing work includes that of [42], which models cables as chains of jointed
cylindrical bodies, then uses the model for routing tasks. The works of [39] and [61] trace
surgical strings in stereo or mono images by optimizing a continuous spline representation.
In contrast, this work primarily focuses on much longer cables with a greater variety of
configurations, for which analytical methods struggle to di↵erentiate nearby, twisted cables.
Some prior work approaches this problem [62] but does not fully estimate cable state, only
identifying crossings.

CHAPTER 2. CABLE UNTANGLING: BACKGROUND 9

2.2 Problem Statement

The objective is to bring a long (3 m) cable containing semi-planar knots into an untangled
configuration, where no knots remain (knots defined in Section 2.2).

The workspace is defined by an (x, y, z) coordinate system and consists of a bilateral robot
and a foam-padded manipulation surface, which lies in the (x, y) plane. The workspace also
contains a fixed overhead RGB-D camera that faces the manipulation surface and outputs
grayscale images and depth data. However, depth data is not used in TUSK. Rather, it
is only used during manipulation. We work with a 300 cm cable. We assume the cable is
visually distinguishable from the manipulation surface, its initial configuration has at least
one endpoint visible, and is semi-planar as assumed in [30], meaning each crossing in the
knot has at most 2 intersecting cable segments. For perception experiments, we work with
knots as tight as 5 cm in diameter. For physical experiments, due to robot graspability
constraints, we work with knots of varying density, or approximate diameter, upwards of 10
cm in diameter. We define cable state to be ✓(s) = {(x(s), y(s), z(s))} where s is an arc-
length parameter that ranges [0, 1], representing the normalized length of the cable. Here,
(x(s), y(s), z(s)) is the location of a cable point at a normalized arc length of s from the
cable’s first endpoint. We also define the range of ✓(s)—that is, the set of all points on the
cable at time t—to be Ct.

Knot Definition

Consider a pair of points p1 and p2 on the cable path at time t with (p1, p2 2 Ct). Knot theory
strictly operates with closed loops, so to form a loop with the current setup, we construct an
imaginary cable segment with no crossings joining p1 to p2 [64]. This imaginary cable segment
passes above the manipulation surface to complete the loop between p1 and p2 (“p1 ! p2

loop”). A knot exists between p1 and p2 at time t if no combination of Reidemeister moves
I, II (both shown in Figure 2.1), and III can simplify the p1 ! p2 loop to an unknot, i.e. a
crossing-free loop. In this paper, we aim to untangle semi-planar knots. For convenience,
we define an indicator function k(s) : [0, 1] ! {0, 1} which is 1 if the point ✓(s) lies between
any such points p1 and p2, and 0 otherwise.

Based on the above knot definition, this objective is to remove all knots, such thatR
k(s)10 = 0. In other words, the cable, if treated as a closed loop from the endpoints, can

be deformed into an unknot. We measure the success rate of the system at removing knots,
as well as the time taken to remove these knots.

CHAPTER 2. CABLE UNTANGLING: BACKGROUND 10

Figure 2.1: Reidemeister Moves and Crossing Cancellation: Top left depicts Reide-
meister Move II. Top right depicts Reidemeister Move I. The bottom row shows that by
algorithmically applying Reidemeister Moves II and I, we can cancel trivial loops, even if
they visually appear as knots.

11

Chapter 3

TUSK: Tracing to Untangle
Semi-Planar Knots

We present TUSK (Tracing to Untangle Semi-planar Knots) a system that takes grayscale
images as input and reconstructs the state of a cable with semi-planar knots and crossings,
performs knot detection, and selects graspable points for untangling. The first component is
an iterative, learned cable tracer which estimates the path the cable takes through an image
observation, combined with a crossing classifier which classifies over and under-crossings.
Together, these estimate the state of the cable. TUSK then analyzes the state to detect
knots and find graspable points for untangling. We will reference these points as cage-pinch
points since during manipulation, one of these points receives a pinch grasp and the other a
cage grasp (Section 3.5).

3.1 Learned Cable Tracer

We frame the problem of tracing a cable as estimating the most likely sequence of points that
the cable passes through, where the goal of each step is to produce a probability distribution
over the next point given the past points. This module estimates the spline (“trace”) of
the cable in an image by sequentially performing inference using a neural network on image
crops. At each step, the model takes in a crop of the image along with trace points from
previous iterations and predicts a heatmap, where we interpret the argmax as the next
point along the trace. Since it operates on crops, the model su↵ers less from overfitting and
benefits from more easy sim-to-real transfer as it operates on local information about the
cable, rather than global visual and geometric appearance of knots.

More formally, representing the RGB image as I, and the spline in the image stot as a
sequence of pixels s0, s1, ...sn, we break the probability distribution over splines conditioned
on the image into smaller, tractable pieces using the chain rule of probability, where f✓

represents our learned neural network and crop(I, p) represents a crop of image I centered
at pixel p.

CHAPTER 3. TUSK: TRACING TO UNTANGLE SEMI-PLANAR KNOTS 12

Sim Real

Figure 3.1: Simulated and real crops used for training TUSK: On the left are simu-
lated cable crops augmented with Gaussian noise, brightness, and sharpening to match the
real images (right) as closely as possible.

P (stot|s0, I) =
nY

i=1

P (si|s0...si�1, I) ⇡
nY

i=1

P (si|s0...si�1, crop(I, si�1))

The favorable properties of the autoregressive method are that it allows calculating the
probability of a given trace, and also allows easy sampling from the posterior.

Initialization

To initialize the trace, we supply a start pixel along the cable (in practice, one endpoint).
We use an analytic tracer as in [70] to trace approximately 96 pixels, then use these points
to initialize the learned tracer, as the model requires previous trace points to predict the
next point along the trace.

Model Architecture and Inference

After initialization, the tracer sequentially applies a learned model to grow the trace. At
each step, the network receives an input of an overhead image cropped to the center of the
last predicted trace point, 64⇥ 64 pixels. To provide the model with information about the
cable’s previous path, we fuse the previous points of the trace into a gradient segmented line
with the same thickness as the cable. The most recently traced point is brightest and the
line decreases in brightness until it exits the crop. This is included in one channel of the
input image. The other two channels contain an identical version of the grayscale image.
The input dimension to the model is thus 64 ⇥ 64 ⇥ 3. The model outputs a 64 ⇥ 64 ⇥ 1

CHAPTER 3. TUSK: TRACING TO UNTANGLE SEMI-PLANAR KNOTS 13

heatmap indicating the likelihood of each pixel being the next step in the cable trace. We
choose the highest point in this heatmap as the next point in the trace. This process is
applied iteratively until the tracer reaches another endpoint or leaves the visible workspace.

We use the UNet architecture for the model, which is known to be e↵ective in image
segmentation tasks [38]. Section 3.1 describes the dataset and training process. Each point
in the trace is approximately 12 pixels apart, chosen by grid search to provide a balance
between adding context and reducing overfitting. To reduce the input space for the model
and thus increase data e�ciency, we pre-rotate the input image such that the last two points
of the trace are aligned horizontally and the trace always travels left to right with the most
recently traced point being the right most point. We explore another important tradeo↵
between context and overfitting via grid search by tuning the size of the crop, 64⇥ 64, and
number of previous points inputted into the model, 3.

Dataset and Model Training

To train the learned tracer model, we leverage simulation to procedurally generate a dataset
which encompasses a wide distribution of crossing configurations. sing Blender [21], we col-
lect a dataset of 30,000 simulated grayscale images, whose visual appearance closely matches
real observations (Fig. 3.1). Cable configurations are generated via random Bezier curves
through the following 3 methods: (1) a weighted combination of successively choosing random
points outside of a small exclusion radius around the current point, (2) segments intention-
ally designed to be near-parallel, and (3) other sections of cable designed to appear dense
and knot-like by confining certain segments of the cable to regions in space.

We sample image crops randomly along the cable, with 95% of samples distributed on ca-
ble crossings, as these represent the challenging cases. The simulated images are augmented
with Gaussian noise with standard deviation of 6, brightness with standard deviation of 5,
and sharpening to imitate the appearance of real cable crops. Additionally, we augment the
dataset with a smaller dataset of 568 real, grayscale cable crop images hand-labeled with
splines, sampled during training such that real images are approximately 20% of the examples
seen. During training we use the Adam optimizer [43] with pixelwise binary cross-entropy
loss, using a batch size of 64 and learning rate of 10�5.

3.2 Over/Undercrossing Predictor

To convert the 2D trace of a cable into a topology for the downstream task of untangling, we
use a convolutional neural network (CNN) to classify over and under-crossings in the cable.

Data and Model Input

We use simulated and real over/undercrossing crops of size 20x20. Similar to the cable tracer,
the 568 real images are oversampled such that they are seen 20% of the time during training.

CHAPTER 3. TUSK: TRACING TO UNTANGLE SEMI-PLANAR KNOTS 14

Prediction

Input

Figure 3.2: Input and Prediction of Iterative Learned Cable Tracer: the iterative
learned cable tracer takes small crops around the cable and one step at a time, predicts the
next point in the trace. The input crop is a 64x64x3 crop centered on the previous trace
point. The first channel contains the previous trace points within the crop. The second and
third channel are the gray scale image of the crop. The prediction is a 64x64 heatmap, where
we infer the argmax of the heatmap to be the next point in the trace.

The simulated data is augmented in the same manner to the cable tracer to imitate the
appearance of real cable crossings when observed as 20x20 crops. We provide the network
with a 20x20x3 crop as input. The first channel encodes the points of the trace indicating the
cable segment of interest (in other words, the cable segment with respect to which we aim
to classify the crossing as an over/undercrossing). Similar to how the points are inputted
for the learned tracer, the points are fused together into a line segment, but now the line
segment does not decrease in brightness as points become less recent. The crop is rotated so
the first and last point in the line segment are horizontal. The second channel is a Gaussian
heatmap centered at the position of the crossing we aim to classify. This helps deal with
dense configurations that can have nearby consecutive crossings captured in the same crop.
By receiving a position of interest, the network learns to ignore other crossings. Lastly, as
all images are grayscale, the third channel encodes the grayscale image of the cable crossing.

CHAPTER 3. TUSK: TRACING TO UNTANGLE SEMI-PLANAR KNOTS 15

Model Architecture and Inference

We use a ResNet-34 classification model to output a prediction score in the interval [0, 1].
This model is trained using binary cross-entropy loss with a single output unit with sigmoid
activation. We tune a threshold to binarize the output by determining accuracy on a held-
out validation set of 75 images on threshold values in the range [0.05, 0.95] at intervals of
0.05. Based on the tuning results, we obtain a threshold of 0.275 such that a prediction score
< 0.275 corresponds to an undercrossing prediction and a score � 0.275 corresponds to an
overcrossing prediction. We output the raw prediction score along with a scaled confidence
value (ranging [0.5, 1]) indicating the probability associated with the classifier’s prediction.

3.3 Analytic Knot Detection

We construct line segments between consecutive points on the trace outputted by the learned
cable tracer (Section 3.1). Crossings are located at the points of intersection of these line
segments. We use the crossing classifier (Section 3.2) to estimate whether these crossings
are over/undercrossings. We also implement probabilistic crossing correction with the aim
of rectifying classification errors, as we describe in Section 3.3.

We denote the sequence of corrected crossings, in the order that they are encountered in
the trace, by X = (c1, ..., cn), where n is the total number of crossings and c1, ..., cn represent
the crossings along the trace. To reduce the number of actions required to successfully
untangle the cable, we algorithmically apply Reidemeister moves I and II to discard non-
essential crossings (Fig. 2.1). We exclude Reidemeister move III from this scheme as it
does not lead to a direct reduction in the number of crossings, unlike moves I and II. We
are allowed to perform this algorithmic manipulation as Reidemeister moves maintain knot
equivalence [64].

Crossing Correction

Given the assumption of knot semi-planarity, a single crossing location must contain one
overcrossing and one undercrossing. In situations where the over/undercrossing classifier
incorrectly predicts that the crossings at a location are both overcrossings or both under-
crossings, we defer to the detection with higher confidence to correct the crossing assignment.
The algorithm updates the probability associated with the corrected crossing to 1� its origi-
nal value. This is to take into account model uncertainty when calculating confidence scores
for the overall knot.

Crossing Cancellation

Crossing cancellation allows for the simplification of cable structure by removing non-essential
crossings, shown in Figure 2.1. It allows the system to filter out some trivial configurations.

CHAPTER 3. TUSK: TRACING TO UNTANGLE SEMI-PLANAR KNOTS 16

We cancel all pairs of consecutive crossings (ci, ci+1) in X for some j) that meet any of the
following conditions:

• Reidemeister I: ci and ci+1 are at the same location, or

• Reidemeister II: ci and ci+1 are at the same set of locations as cj and cj+1 (cj, cj+1 2 X).
Additionally, ci and ci+1 are either both overcrossings or both undercrossings. We also
cancel (cj, cj+1) in this case.

We algorithmically perform alternating Reidemeister moves I and II as described. We
iteratively apply this step on the subsequence obtained until there are no such pairs left. We
denote the final subsequence, where no more crossings can be canceled, by X

0.

Knot Detection

We say that a subsequence of X 0, Kij = (ci, ..., cj), defines a potential knot if:

• ci is an undercrossing, and

• cj is an overcrossing at the same location, and

• at least one intermediate crossing, i.e. crossing in X
0 that is not ci or cj, is an over-

crossing.

The first invariant is a result of the fact that all overcrossings preceding the first un-
dercrossing (as seen from an endpoint) are removable. We can derive this by connecting
both endpoints from above via an imaginary cable (as in Section 2.2): all such overcrossings
can be removed by manipulating the loop formed. The second invariant results from the
fact that a cable cannot be knotted without a closed loop of crossings. The third and final
invariant can be obtained by noting that a configuration where all intermediate crossings
are undercrossings reduces to the unknot via the application of the 3 Reidemeister moves.
Therefore, for a knot to exist, it must have at least one intermediate overcrossing.

Notably, these conditions are necessary, but not su�cient, to identify knots. However,
they improve the likelihood of bypassing trivial configurations and detecting knots. This
increases the system’s e�ciency by enabling it to focus its actions on potential knots.

3.4 Algorithmic Cage-Pinch Point Detection

As per the definition introduced in Section 3.3, given knot Kij = (ci, ..., cj), ci and cj define
the segments that encompass the knot where ci is an undercrossing and cj is an overcrossing
for the same crossing. The pinch point is located on the overcrossing cable segment, intended
to increase space for the section of cable and endpoint being pulled through. The cage point
is located on the undercrossing cable segment. To determine the pinch point, we search
from crossing cu1 to crossing cu2. cu1 is the previous undercrossing in the knot closest in

CHAPTER 3. TUSK: TRACING TO UNTANGLE SEMI-PLANAR KNOTS 17

the trace to j. u2 > j and cu2 is the next undercrossing after the knot. We search in this
region and select the most graspable region to pinch at, where graspability (G) is defined by
the number of pixels that correspond to a cable within a given crop and a requirement of
su�cient distance from all crossings ci. To determine the cage point, we search from crossing
ci to ck where i < k < j and ck is the next undercrossing in the knot closest in the trace to
ci. We similarly select the most graspable point. If no points in the search space for either
the cage or pinch point are graspable, meaning G < T where T is an experimentally derived
threshold value, we continue to step along the trace from cu2 for pinch and from ck for cage
until G � T . This search process is shown in Figure 1.2.

3.5 Robot Untangling using TUSK

Manipulation Primitives

We use the same primitives as in SGTM 2.0 (Sliding and Grasping for Tangle Manipulation
2.0) [70] to implement TUSK as shown in Figure 3.3 for untangling long cables. We add a
perturbation move.

Cage-Pinch Dilation

We use cage-pinch grippers as in [82]. We have one gripper cage grasp the cable, allowing
the cable to slide between the gripper fingers but not slip out. The other gripper pinch grasps
the cable, holding the cable firmly in place. This is crucial for preventing knots in series
from colliding and tightening during untangling. The partial version of this move introduced
by [70] separates the grippers to a small, fixed distance of 5 cm.

Reveal Moves

First, we detect endpoints using a Mask R-CNN object detection model. If both endpoints
are visible, the robot performs an Endpoint Separation Move by grasping at the two endpoints
and then pulling them apart and upwards, away from the workspace, allowing gravity to
help remove loops before placing the cable back on the workspace. If both endpoints are
not visible, the robot performs an Exposure Move. This is when it pulls in cable segments
exiting the workspace. Building on prior work, we add a focus on where this move is applied.
While tracing, if we detect the trace hits the edge, we perform an exposure move at the point
where the trace exits the image.

Perturbation Move

If an endpoint or the cable segment near an endpoint has distracting cable segments nearby,
making it di�cult for the analytic tracer to trace, we perturb it by grasping it and translating

CHAPTER 3. TUSK: TRACING TO UNTANGLE SEMI-PLANAR KNOTS 18

in the x-y plane by uniformly random displacement in a 10cm ⇥ 10cm square in order to
separate it from slack.

Certain

Endpoint Detection

Tracer Initialization

Perturb Endpoint

Cable Tracer

No Knots

Analyze TopologyPartial DilationExposure Move

Dilation

Uncertain

Left Workspace Re-Encountered Trace Hit Endpoint

Knot

(Re)start

Figure 3.3: Untangling Algorithm with TUSK: We first detect the endpoints and ini-
tialize the tracer with start points. If we are not able to obtain start points, we perturb the
endpoint and try again. Next, we trace. While tracing, if the cable exits the workspace, we
pull the cable towards the center of the workspace. If the tracer gets confused and begins
retracing a knot region, we perform a partial cage-pinch dilation that will loosen the knot,
intended to make the configuration easier to trace on the next iteration. If the trace is able
to successfully complete, we analyze the topology. If there are no knots, we are done. If
there are knots, we perform a cage-pinch dilation and return to the first step.

Cable Untangling System

Combining TUSK and the manipulation primitives from Section 3.5, the cable untangling
algorithm works as follows: First, detect endpoints and initialize the learned tracer with 6
steps of the analytic tracer. If TUSK is unable to get these initialization points, perturb
the endpoint from which we are tracing and return to the endpoint detect step. Otherwise,
during tracing, if the cable leaves the workspace, perform an exposure move. If the trace
fails and begins retracing itself, which can happen in denser knots, perform a partial cage-
pinch dilation as in [70]. If the trace completes and reaches the other endpoint, analyze
the topology. If knots are present, determine the cage-pinch points for it, apply a cage-
pinch dilation move to them, and repeat the pipeline. If no knots are present, the cable is
considered to be untangled. The entire system is depicted in Figure 3.3.

Importantly, this algorithm makes use of similar interactive perception components
to SGTM 2.0; because we can tell whether the trace is successful or confident, we can take
disambiguation actions as necessary to increase the likelihood of successful traces in the
future (for example, the partial cage-pinch dilation if a ”retrace” is encountered). Certainly,
there is more to explore with regards to extracting probability distributions from the tracer,

CHAPTER 3. TUSK: TRACING TO UNTANGLE SEMI-PLANAR KNOTS 19

and that is left to future work. Please refer to SGTM 2.0 [70] for a more extensive look at
interactive perception.

20

Chapter 4

TUSK Results

We test the performance of 1) TUSK, 2) the learned cable tracer, and 3) TUSK applied to
autonomous robot untangling.

4.1 Workspace

The workspace consists of a 1 m ⇥ 0.75 m surface with a bimanual ABB YuMi robot and
an overhead Photoneo PhoXi camera with 773 ⇥ 1032 ⇥ 4 RGB-D observations. Although
there are 3 color channels, images outputted by the PhoXi are grayscale. Additionally, the
workspace is padded with a 5 cm tall piece of foam and covered with a black cloth.

4.2 TUSK Setup

To test TUSK, we use a single 3 m, white, braided USB-A to micro-USB cable to the
workspace.

We test TUSK on 3 di↵erent categories of cable configurations, shown in Figure 4.1. The
ordering of the categories for these experiments does not indicate varying di�culty. Rather,
they are 3 categories of knot configurations to test TUSK on.

1. Tier A1: Loose (35-40 cm in diameter) figure 8, overhand, overhand honda, bowline,
linked overhand, and figure 8 honda knots.

2. Tier A2: Dense (5-10 cm in diameter) figure 8, overhand, overhand honda, bowline,
linked overhand, and figure 8 honda knots.

3. Tier A3: Fake knots (trivial configurations positioned to appear knot-like from afar).

We evaluate TUSK on the 3 categories across the following ablations:

1. SGTM 2.0 perception system: using a Mask R-CNN model trained on overhand and
figure-8 knots for knot detection.

CHAPTER 4. TUSK RESULTS 21

Category 3

Tier A1 Tier A2 Tier A3

Tier C1 Tier C2 Tier C3

Figure 4.1: Starting configurations for the 3 categories for TUSK experiments and the
3 levels for physical experiments.

2. TUSK (-LT): replacing the Learned Tracer with the same analytic tracer from [70] as
described in Section 4.2 combined with the topology identification and knot detection
methods without learned tracing.

3. TUSK (-CC): using the learned tracer and topology identification scheme to do knot
detection without Crossing Cancellation, the iterative algorithmic application of Rei-
demeister moves I and II.

4. TUSK: the full perception system.

We report the success rate of each of these algorithms in the following manner. If a knot
is present, the algorithm is successful if it correctly detects the first knot and correctly labels
the first undercrossing corresponding to that knot. If there are no knots, the algorithm is
successful if it correctly detects no knots.

Tracing in Multi-Cable Settings Setup

For this set of perception experiments, the workspace contains a power strip. Attached to
the power strip are 3 MacBook adapters, with two 3m USB-C to USB-C cables and one 2m
plain white USB-C to MagSafe 3 cable. This setup is depicted in the top row of Figure 4.2.
We evaluate perception on multi-cable settings on 3 tiers of di�culty.

CHAPTER 4. TUSK RESULTS 22

Tier B2 Tier B3Tier B1

Figure 4.2: Multi-cable tracing: Top row: illustrative examples of each of the 3 tiers
of di�culty for multi-cable tracing experiments. Bottom row: Corresponding successful
traces outputted by the learned tracer.

1. Tier B1: No knots; cables are dropped onto the workspace, one at a time.

2. Tier B2: Each cable is tied with a single knot that is 5-10 cm in diameter (one of
figure 8, overhand, overhand honda, bowline, linked overhand, and figure 8 honda).
The cables are then randomly dropped onto the workspace, one after another.

3. Tier B3: Each cable is tied with another cable through the following 2 cable knot
types (square, carrick bend, and sheet bend) with up to 3 knots in the scene. As in
the other tiers, the cables are randomly dropped onto the workspace, one by one.

Across all 3 tiers, we assume the cable of interest cannot exit and re-enter the workspace and
that crossings must be semi-planar. Additionally, we pass in the locations of all 3 adapters
to the tracer and an endpoint to initialize from. To account for noise in the input images,

CHAPTER 4. TUSK RESULTS 23

we take 3 images of each configuration and count the experiment a success if 2/3 have the
correct trace and reach their corresponding adapter, otherwise we report a failure.

We evaluate the performance of the learned tracer from TUSK against an analytic tracer
from [70] as a baseline with scoring rules inspired by the work of [51] and [42]. The analytic
tracer explores all potential paths and determines the most correct trace through a scoring
metric from [70]. The scoring metric prefers paths that reach an endpoint, discarding traces
that do not reach adapters. This is because the scoring metric sees reaching an endpoint as
indicative of completing a trace. Of the paths that reach an endpoint, the trace returned is
the one with the least sharp angle deviations and the highest coverage score.

Physical Robot Untangling Setup

Physical experiments are conducted on a single 3 m, white, braided USB-A to micro-USB
cable, which is added to the workspace.

We evaluate TUSK in untangling performance on the following 3 levels of di�culty (Fig-
ure 4.1), where all knots are upward of 10 cm in diameter, and compare performance to
SGTM 2.0 [70]:

1. Tier C1: A cable consisting of an overhand, figure 8, or overhand honda knot. The
full cable configuration has 6 crossings.

2. Tier C2: A cable consisting of a bowline, linked overhand, or figure 8 honda knot.
The full cable configuration has � 6 and < 10 crossings.

3. Tier C3: A cable consisting of 2 knots (one of a knot class from Tier C2 and one of
a knot class from Tier C1). The full cable configuration has � 10 and < 15 crossings.

Similar to [70], we use a 15-minute timeout on each rollout. We report metrics including
success rate for untangling 1 and 2 knots, as well as the time to do so. We also report the
success rate for termination, as well as the time required to do so, as a fraction of the number
of rollouts that succeeded in fully untangling the cable.

4.3 Results

TUSK

As summarized in Table 4.1, TUSK outperforms SGTM 2.0, TUSK (-LT), and TUSK (-CC)
on categories 1 and 2. SGTM 2.0 outperforms TUSK in tier A2. This is because the Mask
R-CNN is trained on dense overhand and figure 8 knots. While other knots in tier A2 are
out of distribution, they visually resemble the overhand and figure 8 knots. The network is,
therefore, able to still detect them as knots.

The following are the failure modes:

CHAPTER 4. TUSK RESULTS 24

Table 4.1: TUSK Experiments

SGTM 2.0 TUSK (-LT) TUSK (-CC) TUSK
Tier A1 2/30 14/30 20/30 24/30
Tier A2 28/30 8/30 21/30 26/30
Tier A3 12/30 14/30 0/30 19/30
Failures (A) 30, (B) 18 (D) 11, (F) 7 (B) 38, (C) 5, (B) 11, (D) 8

(G) 24, (H) 11 (E) 6 (F) 1

Table 4.2: TUSK and Physical Robot Experiments (90 total trials)

Tier C1 Tier C2 Tier C3

SGTM 2.0 TUSK SGTM 2.0 TUSK SGTM 2.0 TUSK
Knot 1 Success Rate 11/15 12/15 6/15 11/15 9/15 14/15

Knot 2 Success Rate - - - - 2/15 6/15

Verification Rate 11/11 8/12 6/6 6/11 1/2 2/6
Avg. Knot 1 Time (min) 1.09±0.12 2.11±0.25 3.45±0.74 3.88±1.09 1.84±0.38 2.00±0.42
Avg. Knot 2 Time (min) - - - - 3.11±1.18 7.45±1.55
Avg. Verif. Time (min) 5.71±0.88 6.13±1.44 6.35±1.81 10.10±0.67 5.38 9.58±1.48

Failures (7) 4 (1) 2, (2) 1 (1) 3, (5) 6 (2) 2, (4) 1 (1) 3, (2) 3 (1) 2, (2) 3
(5) 1 (5) 3, (6) 2, (7) 2 ((3) 1, (6) 3

(A) The system fails to detect a knot that is present—a false negative.

(B) The system detects a knot where there is no knot present—a false positive.

(C) The tracer retraces previously traced regions of cable.

(D) The crossing classification and correction schemes fail to infer the correct cable topol-
ogy.

(E) The knot detection algorithm does not fully isolate the knot, also getting surrounding
trivial loops.

(F) The trace skips a section of the true cable path.

(G) The trace is incorrect in regions containing a series of close parallel crossings.

(H) The tracer takes an incorrect turn, jumping to another cable segment.

For SGTM 2.0, the most common failure modes are (A) and (B), where it misses knots
or incorrectly identifies knots when they are out of distribution. For TUSK (-LT), the most
common failure modes are (F), (G), and (H). All 3 failures are trace-related and result in
knots going undetected or being incorrectly detected. For TUSK (-CC), the most common
failure modes are (B) and (E). This is because TUSK (-CC) is unable to distinguish between
trivial loops and knots without the crossing cancellation scheme. By the same token, TUSK

CHAPTER 4. TUSK RESULTS 25

Table 4.3: Multi-Cable Tracing Results

Analytic Learned
Tier B1 3/30 27/30
Tier B2 2/30 23/30
Tier B3 1/30 23/30
Failures (I) 3, (II) 45, (III) 36 (I) 14, (II) 1, (III) 2

(-CC) is also unable to fully isolate a knot from surrounding trivial loops. For TUSK, the
most common failure mode is (B). However, this is a derivative of failure mode (D), which
is present in TUSK (-LT), TUSK (-CC), and TUSK. Crossing classification is a common
failure mode across all systems and is a bottleneck for accurate knot detection. In line with
this observation, we hope to dig deeper into accurate crossing classification in future work.

Tracing through Multi-Cable Settings

Table 4.3 shows that the learned tracer significantly outperforms the baseline analytic tracer
on all 3 tiers of di�culty with a total of 81% success across the tiers.

The following are the failure modes:

(I) Misstep in the trace, i.e. the trace did not reach any adapter.

(II) The trace reaches the wrong adapter.

(III) The trace reaches the correct adapter but is an incorrect trace.

The most common failure mode for the learned tracer, especially in Tier B3, is (I). One
reason for such failures is the presence of multiple twists along the cable path (particularly
in Tier B3 setups, which contain more complex inter-cable knot configurations). The tracer
is also prone to deviating from the correct path on encountering parallel cable segments. In
Tier B2, we observe two instances of failure mode (III), where the trace was almost entirely
correct in that it reached the correct adapter but skipped a section of the cable.

The most common failure modes across all tiers for the analytic tracer are (II) and (III).
The analytic tracer particularly struggles in regions of close parallel cable segments and
twists. As a result of the scoring metric, 87 of the 90 paths that we test reach an adapter;
however, 45/90 paths did not reach the correct adapter. Even for traces that reach the
correct adapter, the trace is incorrect, jumping to other cables and skipping sections of the
true cable path.

Physical Robot Untangling

Results in Table 4.2 show that our TUSK-based untangling system (29/45) outperforms
SGTM 2.0 (19/45) in untangling success rate across 3 tiers of di�culty. SGTM 2.0 is,

CHAPTER 4. TUSK RESULTS 26

however, faster than TUSK in each of the 3 tiers. This is due to the fact that TUSK requires
a full trace of the cable. TUSK also requires the full cable to be in view in order to claim
termination, which is di�cult to achieve as the cable is 3 ⇥ as long as the width of the
workspace. Because the cable falls in varying complex configurations, many of which leave
the visible workspace, the untangling algorithm performs cable reveal moves before detecting
knots. This increases the time needed to untangle and verify that the cable is untangled,
causing some runs to time out before verification.

On the other hand, SGTM 2.0 has false termination as its main failure mode because it
does not account for the cable exiting the workspace. This is beneficial for speed because
the system terminates as early as possible. However, the system fails when an o↵-workspace
knot remains and goes undetected. This allows rollouts to end quickly, even if the cable is
not untangled.

The following are the failure modes:

(1) Incorrect actions create a complex knot.

(2) The system misses a grasp on tight knots.

(3) The cable falls o↵ the workspace.

(4) The cable drapes on the robot, creating an irrecoverable configuration.

(5) False termination.

(6) Manipulation failure.

(7) Timeout.

The main failure modes in TUSK are (1), (2), and (6). Due to incorrect cable topology
estimates, failure mode (1) occurs: a bad action causes the cable to fall into complex,
irrecoverable states. Additionally, due to the limitations of the cage-pinch dilation and
endpoint separation moves, knots sometimes get tighter during the process of untangling.
While the perception system is still able to perceive the knot and select correct grasp points,
the robot grippers bump the tight knot, moving the entire knot and causing missed grasps
(2). Lastly, we experience manipulation failures while attempting some grasps as the YuMi
has a conservative controller (6). We hope to resolve these hardware issues in future work.

The main failure modes in SGTM 2.0 are (5) and (7). Perception experiments indicate
that SGTM 2.0 has both false positives and false negatives for cable configurations that are
out of distribution. (5) occurs when out-of-distribution knots go undetected. (7) occurs
when trivial loops are identified as knots, preventing the algorithm from terminating.

27

Chapter 5

Semantic Spatial Search: Background

In the prior chapters, we introduced TUSK to estimate the trace of a cable in a semi-planar
configuration. The following work focuses on providing a state estimate not for a single,
complex, deformable object, but instead for the position of a fully occluded target object
which is fully occluded at the start of a search process.

5.1 Related Work

Large Language Models

Language models (LMs) output probability distributions over sequences of natural language
tokens w1, w2, . . . , wn. LMs typically factor the probability of the sequence with the chain rule
and autoregressively perform next-token prediction: p(w1..i) = p(w1)·p(w2|w1) · · · p(wi|w1..i�1).
In recent years, the Transformer neural network architecture [81] has enabled LMs to scale
to “large language models” (LLMs) that train billions of parameters on terabytes of data,
such as GPT-3 [6] and PaLM [1]. LLMs encode semantic context and have achieved state-
of-the-art results on tasks such as machine translation, question answering, text generation,
and text summarization [25, 6, 1].

Natural Language for Robotics

Prior work at the intersection of natural language processing and robotics includes language-
conditioned imitation learning [71, 53, 72, 52], language-conditioned reinforcement learning
[57, 40, 59], and online correction of robot policies through language feedback [69, 22]. [47]
use code synthesis with LLMs to write robot control policies. Ichter et al. [3] propose
SayCan, which uses a LLM for high-level planning and generating associations between
language instructions and robot action primitives (e.g., “pick up the sponge”). In contrast,
S4 uses a LLM to create an occupancy distribution for mechanical search of fully occluded
objects. Unlike SayCan, S4 queries LLMs o✏ine (before robot execution) because LLM
inference is costly in terms of both time and compute [6].

CHAPTER 5. SEMANTIC SPATIAL SEARCH: BACKGROUND 28

Similar to our work, [15] uses language models to compute a�nity scores among objects
for spatial scene understanding. They propose HOLM, a system for determining where ob-
jects may be in partially observable scenes based on semantics. However, HOLM is evaluated
only in simulation and considers camera adjustment actions rather than physical interactions
with the environment. In contrast, we use object a�nities to generate a semantic occupancy
distribution, a novel way to interpret the scene and integrate geometric constraints for real-
world mechanical search.

Robotic Mechanical Search

Much of prior work on mechanical search considers shelves, but not in semantically arranged
environments [34, 36, 35, 18]. Prior work proposes the LAX-RAY system [35], which uses a
neural network to predict a spatial “occupancy distribution” for where an occluded target
object could be located at a given time, by considering object geometries and camera per-
spective e↵ect (e.g., high target object can’t be occluded by short object and object in the
center of the camera frame occludes more areas). At each timestep, the spatial occupancy
distribution is updated to be the minimum of the previous distribution and the current pre-
dicted distribution. LAX-RAY proposes Distribution Area Reduction (DAR) as a search
policy that specifies the sequence of lateral pushing actions to take in order to reveal the
target object as quickly as possible. DAR is a greedy strategy that first moves the object
whose segmentation mask maximally overlaps with the spatial occupancy distribution to an
area of minimal overlap. In this work, we extend the notion of occupancy distributions to
semantics and use DAR as our mechanical search policy.

[45] consider both semantics and geometry for mechanical search. However, they manu-
ally generate semantic categories with typically 1-2 categories in the shelf, which can deviate
from real world distribution. Their approach does not scale to the complexity of real world
semantics and is tested only in simulation. In contrast, we harness the knowledge of large
language models to extract open-vocabulary semantic information and accelerate robotic
mechanical search.

Object Detection Refinement

Accurate object detection is a critical step in many downstream robotics applications, in-
cluding mechanical search. We propose using OCR and LLMs in S4 to refine object detection
by considering the conditional probabilities of all the object classes given the text present
on them. While OCR has been used in prior work to aid object detection [41], we use text
embedding combined with OCR for better performance. S4 also uses the semantic context
of nearby objects to refine object detection. There exists prior work [11, 52, 26, 19] that
considers using context from surrounding regions and objects to inform object detection,
but these approaches do not use large language models as semantic knowledge bases. There
are some recent object detection models such as DETR [14, 73] that are based on Trans-
formers [81] and use full scene context to detect objects. However, these models learn these

CHAPTER 5. SEMANTIC SPATIAL SEARCH: BACKGROUND 29

relationships from scratch, which requires an extensive amount of training data. By using
o↵-the-shelf large language models, we can provide this context without any additional data
or learning from pixels.

5.2 Problem Statement

The starting state of a scene is drawn from the space of semantically organized scenes,
sampled proportionally to its approximate likelihood of occurrence in the real world. We
base these likelihoods on the Google Product Taxonomy [16] and describe our procedure for
scene generation in Section 7.2.

We consider the problem of robotic mechanical search for a target object OT in a
cluttered, semantically organized shelf containing the target and N other rigid objects
{O1, ...,ON} of cuboidal shapes in stable poses. We build on the problem statement and
assumptions in [34]. We model the setup as a finite-horizon Partially Observable Markov
Decision Process (POMDP). States st 2 S consist of the full geometries and poses of the
objects in the shelf at timestep t and observations yt 2 Y = R

H⇥W⇥4 are RGBD images
from a robot-mounted depth camera at timestep t. Actions at 2 A = Ap [As are either
pushing or suction actions, where the former are horizontal linear translations of an object
along the shelf and the latter pick up an object with a suction gripper and translate it to an
empty location on the shelf with no other objects in front of it.

We make the following assumptions:

• The dimensions of the shelf are known.

• Each dimension of each object is between size Smin = 5 cm and size Smax = 25 cm.

• The shelf is semantically organized.

• The names of all objects in the shelf are a subset of a known list of object names.

• Actions cannot inadvertently topple objects or move multiple objects simultaneously.

The objective is to minimize the total number of actions required to reveal at least X% of
the target object to the camera. A trial is successful if this threshold visibility X is reached
within H = 2N actions, and unsuccessful otherwise.

30

Chapter 6

Semantic Spatial Search on Shelves
(S4)

6.1 A�nity Matrix Generation

LLMs are best known for their ability to generate unstructured free-form text. However, in
our work, we use them to provide probabilistic completions to textual prompts in order to
generate an occupancy distribution encoding the semantics of any scene that may contain it
along with other objects. This is possible because training data for such models contains a
vast amount of information about object semantics [1, 6]. We extract this information from
language models o✏ine (i.e., before robot task execution).

We query the language model with a specific prompt: “In a shelf, the X goes next to the
.” Note that this prompt queries the LLM for the notion of physical proximity rather

than pure semantic similarity. We use the scoring mode of the language models to find the
probabilities of each of the object names appearing in the blank space. This creates a row
of the a�nity matrix corresponding to object X. We iterate over all object names to create
the full matrix, M raw.

M
raw, however, still requires additional modification. Let N (B,A) represent the event

that B is the nearest object to A in the shelf, and let SA denote the event that object A is
in the shelf. The a�nity matrix should provide the probability that B is the nearest object
to A given that both are present (but not necessarily visible) in the scene:

P (N (B,A)|SA, SB) =
P (N (B,A), SB|SA)

P (SB|SA)
(6.1)

The a�nity matrix, however, gives P (N (B,A), SB|SA), which di↵ers from the desired
quantity by a normalizing constant. This causes the objects corresponding to words that
are used less frequently in the LLM training data to be incorrectly penalized. Because
we assume Si ? Sj 8i, j , we remedy this by using the sum of the probabilities across each
column (object B) as a proxy for the denominator to perform per-column normalization. We

CHAPTER 6. SEMANTIC SPATIAL SEARCH ON SHELVES (S4) 31

follow this with a per-row normalization to obtain a probability vector for each row (object
A). We also set the main diagonal of the matrix to zero probability as these elements reflect
the a�nity of objects with themselves, which is not required for mechanical search. This
leads to matrix M

norm.
We only need to control the hyperparamter temperature �, meant to control the “con-

fidence” by regulating the uniformity of the language model’s predictions. For each row
i,

Mi / exp (��1 logMnorm
i

).

This procedure leads to our ready-to-use a�nity matrix M.

Mechanical
Search Policy

Affinity Matrix

ViLD Object
Detection

+ OCR

RGBD Image yt

Object class labels
(toothpaste, shampoo, sunscreen, …)

“In a shelf, toothpaste
goes next to _____.”

Large Language Model

Semantic Spatial
 Occupancy Dist.

Semantic Occupancy Dist.

Spatial Occupancy Dist.

Target Object:
Toothbrush

Action at

Offline

Figure 6.1: System overview of Semantic Spatial Search on Shelves (S4). The a�nity ma-
trix is computed o✏ine. Given an RGBD image, we use object detection combined with
refinement to query the a�nity matrix and construct a semantic occupancy distribution.
We multiply this by a spatial occupancy distribution to use in a mechanical search policy.

6.2 Object Detection Refinement

OCR

We use an object detection and segmentation model that returns object segmentation masks
from an RGB input. We filter out all objects less than size Smin and greater than size Smax,
as well as objects contained fully within other objects, in order to avoid false positives. We
use the general-purpose object detector ViLD [31] to detect, segment, and classify objects
in our shelf.

Because ViLD is a general-purpose detector, it cannot easily distinguish between objects
belonging to the same domain (e.g., Advil versus Ibuprofen). Because of this, we use OCR
with Keras OCR (https://pypi.org/project/keras-ocr/) to improve the quality of the
object detections. For each object, we concatenate the text observed on it and compute the

https://pypi.org/project/keras-ocr/

CHAPTER 6. SEMANTIC SPATIAL SEARCH ON SHELVES (S4) 32

text embedding using OpenAI Embeddings. Then, we compute the dot product between
the embeddings of the concatenated text and every class label. We then normalize this
probability vector by subtracting the minimum value and then adjusting the vector with
some temperature. Then, we finally multiply this by the object detection probability vector.

Let Ci denote the class label of object Oi (e.g., “Tylenol” as opposed to the broader
category “medication”); Ii represent the general shape, size, and color-related features of
Oi; and Ti be the detected text on Oi. Recall that all objects belong to some class Ci. We
calculate

P (Ci| Ii, Ti)

=
P (Ii, Ti|Ci) · P (Ci)

P (Ii, Ti)

=
P (Ti|Ii, Ci) · P (Ii|Ci) · P (Ci)

P (Ii, Ti)

=
P (Ti|Ci) · P (Ii|Ci) · P (Ci)

P (Ii, Ti)

=
P (Ci|Ti)P (Ti)

P (Ci)
·
P (Ci|Ii)P (Ii)

P (Ci)
·

P (Ci)

P (Ii, Ti)

/ P (Ci|Ti)P (Ci|Ii)

as Ti is independent of Ii when conditioned on Ci, and P (Ci) is uniform. This illustrates
that the multiplication of the OCR probabilities and the object detection probabilities can
give us a refined estimate of the category probabilities.

Semantics

We further refine the object detection probabilities by using other objects in the scene which
we are more confident about. We sort the object bounding boxes from most to least confident
using the Shannon entropy of each distribution over object labels after OCR refinement. We
then threshold the entropy values on a confidence threshold c to determine which object
bounding boxes to refine. We iterate over these high-entropy bounding boxes in increasing
order of entropy and refine the distribution for the i-th bounding box using the following
equation:

P (i)0 = P (i) ·

P
i�1
j=0 d(i, j) ·Mj

P
i�1
j=0 d(i, j)

Here, P (i) is the existing class distribution for the i-th bounding box, d(·) is an exponen-
tially decaying kernel function based on distance between any two objects in the scene, and
Mj is the row of the a�nity matrix corresponding to the label of the j-th object. Thus, we
update probabilities to be a weighted average of the a�nities of known objects, weighted by

CHAPTER 6. SEMANTIC SPATIAL SEARCH ON SHELVES (S4) 33

the distance to the uncertain object. The kernel function we use is of the form d(x) = e
�ax,

where x is the pixel distance between the centers of the objects and a is a hyperparameter
that depends on the dimensions of the image to normalize the distance metric across di↵erent
resolutions.

6.3 Semantic Occupancy Distribution

Here we describe the process of converting a�nities and object detections into a semantic
probability distribution over possible locations of the target object.

Tracking the Original Scene

To build the semantic distribution, the system requires knowledge of object locations in
the original scene s0. Once mechanical search begins, the shelf may become semantically
disorganized. One technique to avoid this issue is to freeze the semantic distribution at t = 0,
but this prevents adding information about initially occluded objects. To remedy this, we
keep track of the location of every object the first time it is seen and add new objects that
are later unveiled. At every step t in a rollout, we compute our semantic distribution on our
most up-to-date understanding of the object classes and their locations in the original scene.

Calculating the Distribution

The semantic occupancy distribution models the probability that the target object occupies
a given location, given the classes of observed objects in the scene. The semantic distribution
takes the form

P (LT = l | L1...n = l1...n, C1...n = c1...n),

where LT is the location of the target object, L1...n are the inferred positions of the visible
objects (n N , the total number of objects in the shelf), and C1...n are the inferred classes
of the visible objects (i.e., the class labels with the highest probabilities) from Section 6.2.
We abbreviate this quantity as P (LT = l |L,C).

We interpret a�nity values Mij to be the probability of object j being the closest to
object i in expectation across scenes. However, given the current scene, there may be more
or less space that is nearest to a particular object, so we interpret these a�nity values as
being normalized per unit area. This means that the height of the semantic distribution is
directly proportional to the a�nity value of the nearest object. Formally, given that N(l) is
a function returning the index of the object closest to location l = (xl, yl),

P (LT = l |L,C) / Mtarget,N(l).

In simulation experiments, N(·) is computed using the 3D coordinates of the visible
objects obtained from depth image. We compute the 2D semantic occupancy distribution

CHAPTER 6. SEMANTIC SPATIAL SEARCH ON SHELVES (S4) 34

Figure 6.2: Here we have an example scene where the target is Omega-3 and the visible
objects are labeled. We illustrate the process of calculating the 2D semantic distribution
(xy-plane of the shelf) and then projecting to a 1D semantic distribution (shaded blue in
the xz-plane), as described in Section 6.3.

(in the xy plane of the shelf) and reduce it to 1D by summing along camera rays. In physical
experiments, to avoid errors due to noisy depth readings we compute the distribution directly
in 2D, using pixel distance for N(·) instead of world coordinates. As a final post-processing
step to account for noise when objects are moved or bumped around slightly, we apply
smoothing using a Gaussian kernel with standard deviation �. The process of calculating
the semantic distribution is illustrated in Figure 6.2.

6.4 Semantic Spatial Search on Shelves (S4)
Algorithm

S4 combine the semantic occupancy distribution with a spatial distribution and provide it
as input to a mechanical search policy. We use the method from [34] to learn a spatial
occupancy distribution from a depth image of the scene. This distribution estimates where
the target object can be based on possible occlusions of the known dimensions of the target
object. We multiply this spatial occupancy distribution element-wise with the semantic

CHAPTER 6. SEMANTIC SPATIAL SEARCH ON SHELVES (S4) 35

Figure 6.3: Ground truth a�nity matrix and a�nity matrices generated by OpenAI Em-
beddings and PaLM. The matrices are able to roughly capture the block diagonal structure
of the ground truth matrix.

occupancy distribution from Section 6.3. This weights the spatial distribution with where
the object is semantically likely to be. We then use the Distribution Area Reduction (DAR),
an interactive perception policy from [34] with the synthesized distribution to perform
mechanical search. A full overview of S4 is shown in Figure 6.1. The use of interactive
perception is absolutely critical for this problem due to the fact that the target object is
occluded by at least one other object, making it necessary to build on the probabilistic state
estimate that S4 provides in the form of a semantic spatial probability distribution.

36

Chapter 7

S4 Results

In this section, we evaluate (1) the quality of a�nity matrices generated by di↵erent LLMs
via comparison to the Google Product Taxonomy (Section 7.1), (2) ablations of key com-
ponents of the object detection system such as OCR (Section 7.3), and (3) the e↵ect of
LLM-based semantics on the speed of mechanical search in simulation and physical environ-
ments (Sections 7.4 and 7.5).

7.1 A�nity Matrix

The choice of LLM a↵ects the values in the a�nity matrix. In order to compare di↵erent
LLMs and quantitatively evaluate the quality of a�nity matrices, we use the open-source
Google Product Taxonomy [16] as the “ground truth” matrix. In the pharmacy domain, we
use the following 6 categories and items from the taxonomy:

1. Supplements: vitamins, fish oil, omega-3, calcium, probiotics, protein powder, COQ10,
anthocyanin

2. Hair Care: shampoo, conditioner

3. Oral Care: toothpaste, toothbrush, dental floss

4. Cosmetics: face wash, sunscreen, lotion, hand cream, body wash

5. Medication: aspirin, tylenol, ibuprofen, advil, pain relief

6. Outliers: shaving cream, eye drops, deodorant, band-aid

For the ground-truth matrix, all elements in a category are given uniform a�nities to
each other, and each row is normalized to sum to 1.0 probability. Note that each item in
the “outliers” category (e.g., eye drops) does not belong to any of the other 5 categories and
is treated as its own category. With the categories listed in order along both axes of the

CHAPTER 7. S4 RESULTS 37

matrix, the ground truth a�nity matrix has a block-diagonal structure with a uniform block
for each category (Figure 6.3A). We evaluate the following LLMs and embedding models
o↵-the-shelf, without finetuning: BERT [25], CLIP [63], embeddings from the OpenAI API
[2], OPT-13B [5], and PaLM. For LLMs, we generate a�nity matrices as described in 6.1
with � = 1, and for embedding models we take the dot product of the embeddings of the
object names and optimize the � to minimize the Jensen-Shannon Distance (JSD) [48] to
the ground truth. JSD measures the similarity between two probability distributions, so
we measure the similarity between each row of the a�nity matrix and the corresponding
row of the ground truth. Then, we average across the rows to get the average distance
from each object’s probability distribution to that object’s ground truth. We observe that
the choice of LLM has a significant impact on the a�nity matrix (Table 7.1), and that the
LLMs can approximately recover the block diagonal structure of the ground truth matrix
(Figure 6.3). PaLM attains the highest accuracy, with a 44.6% improvement over a uniform
a�nity matrix.

Table 7.1: A�nity matrix results. We report the average Jensen-Shannon Distance (JSD)
between each row of the a�nity matrix and the ground truth matrix, as well as the percentage
improvement over the uniform JSD (i.e., (uniform JSD - method JSD) / uniform JSD).

Method JSD (#) % Improvement (")
Uniform 0.65 N/A
BERT Embedding 0.64 1.5
CLIP Embedding 0.52 20.0
OpenAI Embedding 0.43 33.8
OPT-13B 0.38 41.5
PaLM 0.36 44.6

7.2 Semantic Scene Generation

We consider three shelf domains to apply our method: a pharmacy, an industrial kitchen, and
an o�ce. We select 27, 24, and 40 representative objects respectively in these domains from
the Google Product Taxonomy [16]. We provide the full lists of objects in the appendix. We
use the taxonomy as a ground truth reference for producing realistic semantically arranged
scenes in simulation and physical experiments. Both simulation and real experiments take
place in a 0.8m ⇥ 0.35m ⇥ 0.57m shelf.

The taxonomy defines a tree where each category is a node and each object name is a leaf
node. To create a scene with N objects in a given domain, we begin by uniformly sampling
N objects without replacement from the total objects available in that domain. We then
generate scenes in a top-down recursive manner using the taxonomy tree. At the root, we

CHAPTER 7. S4 RESULTS 38

start with the whole shelf available to us. At each node, we split the shelf in half either hor-
izontally or vertically with 50% probability each and recursively continue scene generation
in these sub-shelves. If a node has more than 8 descendants, however, we always split the
scene horizontally to avoid overcrowding resulting from the aspect ratio of the shelf. At each
level of recursion, we accumulate random noise to the eventual placement of each object in
the current branch, uniformly sampled from -2 cm to 2 cm. At the last non-leaf node, we
place all leaves in random positions within the current level’s sub-shelf. We resolve collisions
by iteratively moving objects along the displacement vector between colliding objects and
discard scenes where such a procedure takes longer than 1 second to run. We also discard
scenes where there is no potential target object that is invisible from the camera’s perspective
at the start of the rollout. We reiterate that the taxonomy is independent of the language
models used to generate a�nities. The LLMs are applicable beyond manual semantic cate-
gorizations like the Google Taxonomy, but we use this resource for evaluation purposes. The
scenes for all simulation, physical, and object detection experiments are generated by this
procedure.

We use approximate sizes of these items to generate collision-free scenes. In simulation,
we also scale these objects down in order to be able to run experiments on the same-sized
shelf, which has an e↵ect similar to running experiments in a larger shelf where more items
could originally fit. The scaling factors for the pharmacy and kitchen domains are 0.7, but
0.4 in the o�ce domain due to overall larger objects unable to easily fit and move within a
small shelf.

7.3 Object Detection

Table 7.2: Object Detection Refinement Results. We ablate the components of our object
detection system (Section 6.2) and report the mean average precision (mAP) of the predicted
bounding boxes and top-K accuracy of the predicted labels.

Method mAP (") Top-K Accuracy % (")
k=1 k=3 k=5

ViLD 2.4 14.7 32.3 41.6
ViLD + OCR 28.9 45.0 62.0 69.5
ViLD + OCR

30.6 49.9 67.4 74.6
+Semantic Refinement

We test object detection performance on scenes generated through isolated perception
experiments. We take RGB images of 100 scenes of the Pharmacy domain using a high-
resolution camera and run three object detection methods:

1. ViLD: O↵-the-shelf ViLD [31].

CHAPTER 7. S4 RESULTS 39

2. ViLD + OCR: Refinement of ViLD with OCR as described in Section 6.2.

3. ViLD + OCR + Semantic Refinement: The full object detection method in
Section 6.2.

Results for this experiment are in Table 7.2. As is standard in the computer vision
literature, we report mAP (mean Average Precision) averaged over intersection-over-union
(IOU) thresholds from 0.50 to 0.95 with a step size of 0.05, as well as top-k classification
accuracy (i.e., if the ground truth label appears in the k labels with the highest probabilities).
The results show that OCR leads to a significant improvement across all metrics, with
mAP improving by a factor of 12 and top-1 accuracy improving by a factor of 3. Adding
semantic refinement further improves mAP by 1.7% and all of the top-k accuracy metrics
by approximately 5%, suggesting that LLMs can provide zero-shot improvement to object
detection. Such a technique is especially useful when the data and model capacity required
to learn such semantic relationships is limited.

Table 7.3: Simulation Experiment Results. Please refer to the paper for detailed performance
with 18 objects, which is omitted to save space.

Pharmacy Domain

12 objects 15 objects 18 objects 21 objects

Successes # Actions Successes # Actions Successes Successes # Actions

Spatial NN 168/190 4.06± 0.23 160/186 5.17± 0.28 144/188 104/177 8.24± 0.67
S
4
(Embed.) 176/190 2.90± 0.18 159/186 3.77± 0.26 146/188 110/177 5.69± 0.54

S
4
(PaLM) 176/190 2.66± 0.14 162/186 3.26± 0.19 150/188 118/177 5.47± 0.43

Kitchen Domain

12 objects 15 objects 18 objects 21 objects

Successes # Actions Successes # Actions Successes Successes # Actions

Spatial NN 185/192 2.15± 0.14 182/194 2.97± 0.23 177/193 159/191 4.36± 0.38
S
4
(Embed.) 186/192 1.56± 0.08 188/194 2.15± 0.15 184/193 167/191 3.07± 0.25

S
4
(PaLM) 184/192 1.60± 0.10 184/194 2.04± 0.13 179/193 163/191 3.17± 0.28

O�ce Domain

12 objects 15 objects 18 objects 21 objects

Successes # Actions Successes # Actions Successes Successes # Actions

Spatial NN 172/194 2.60± 0.18 152/188 4.15± 0.38 136/190 115/181 5.86± 0.56
S
4
(Embed.) 173/194 3.01± 0.22 152/188 3.80± 0.31 140/190 115/181 5.33± 0.50

S
4
(PaLM) 172/194 2.33± 0.13 161/188 3.50± 0.31 142/190 123/181 5.50± 0.49

Table 7.4: Simulation Experiment: Performance in Non-Semantic (RAND) Scenes with 15
objects. “RAND” refers to randomly arranging the objects in the scene as opposed to
semantically arranging them with the procedure in Section 7.2.

Pharmacy Kitchen O�ce

Successes # Actions Successes # Actions Successes # Actions

Spatial NN 170/190 4.65± 0.29 164/189 4.14± 0.30 140/173 4.34± 0.32
S
4
(Embed.) 172/190 5.35± 0.31 162/189 4.70± 0.31 135/173 4.74± 0.32

S
4
(PaLM) 169/190 4.62± 0.25 157/189 3.95± 0.29 138/173 3.85± 0.35

CHAPTER 7. S4 RESULTS 40

Table 7.5: Simulation Experiment Results in Table 7.3 averaged over number of objects, also
reported with % Reduc., percentage reduction in actions from Spatial NN.

Pharmacy Domain Kitchen Domain O�ce Domain

Successes # Actions Successes # Actions Successes # Actions

Spatial NN 576/741 5.56± 0.20 703/770 3.32± 0.14 575/753 4.14± 0.19
S
4
(Embed.) 591/741 4.18± 0.17 725/770 2.43± 0.10 580/753 4.10± 0.18

S
4
(PaLM) 606/741 3.76± 0.14 710/770 2.42± 0.10 598/753 3.63± 0.16

7.4 Simulation Object Retrieval Experiments

We run an extensive suite of experiments using the same simulator as prior work in me-
chanical search [34]. In simulation experiments, we consider three domains: a pharmacy,
an industrial kitchen, and an o�ce. We assume perfect object detection and thus do not
render the physical appearance of the objects. We use a grid search on the average number
of actions required in the pharmacy domain with 15 objects to tune the Gaussian smoothing
� to be 50 pixels and � for PaLM to be 1 and for OpenAI Embeddings to be 0.004. We use
the same parameters for the other two domains.

For each domain, we generate scenes with the procedure from Section 7.2 with various
numbers of objects: N = 12, 15, 18, and 21. We generate 200 scenes for each value of N .
We also test shelves that are not semantically organized, with all objects placed randomly
(denoted as RAND). We discard scenes where the target object starts out visible, resulting
in just under 200 scenes for each value of N . Termination occurs when at least X = 1% of
the target object becomes visible. The reason for the low threshold is that the DAR policy
has trouble making progress on a partially revealed target object [35], which may dilute the
comparison between di↵erent methods for generating semantic distributions.

We test the following algorithms on each type of scene:

1. Spatial NN: Mechanical search with the learned spatial occupancy distribution from
[35]. No semantic information is used.

2. S4 (Embeddings): S4 using the a�nity matrix built with OpenAI Embeddings [2]
and the same spatial distribution model as 1).

3. S4 (PaLM): S4 using the a�nity matrix built with PaLM and the same spatial dis-
tribution model as 1).

We report the following metrics in simulation and physical experiments:

1. Successes: The ratio of trials where the target object is found (without running out
of actions or hitting the maximum action limit (2 ·N)) to the total number of trials.

2. Number of actions: The mean and standard error of the number of actions required
to reveal the target object.

CHAPTER 7. S4 RESULTS 41

We report results for all numbers of objects N in Table 7.3, semantically arranged versus
randomly arranged scenes in Table 7.4, and the results averaged across all values of N in
Table 7.5. In the pharmacy domain, S4 (PaLM) outperforms both S4 (Embeddings), while
also beating Spatial NN across various values of N in terms of success rate (by an additional
30/741 scenes) and average number of actions required (by 32.4%). A point of note is that
the action di↵erential percentage grows as the number of objects increases. At 21 objects,
Spatial NN requires 8.24 actions on average, whereas S4 requires just 5.47. This trend agrees
with intuition that it is unscalable to search large environments with no semantic intuition.

In the kitchen domain, S4 (Embeddings) and S4 (PaLM) perform similarly to each other
but both outperform Spatial NN significantly once again, improving the success rate and
improving the number of actions required by approximately 27%. We hypothesize that the
embeddings here are better able to approximate physical proximity between kitchen objects
as the categories are distinct enough such that nearby objects in the embedding vector space
would also be found closer together in simulated shelves.

For the o�ce experiments, we see that S4 (PaLM) consistently has the highest success
rate starting at N = 15 and higher. Overall, it achieves a 12% reduction in the number
of actions and increases the success rate by 23/753 scenes. We hypothesize that this lower
improvement is due to a majority of the o�ce environment consisting of generic o�ce supplies
which do not have a clear semantic categorization, making semantic search less e↵ective. S4

(Embeddings) is not e↵ective in reducing the number of actions required in this setting. We
believe that this is because embeddings are not able to capture subtle di↵erences between
categories as well as the LLM is.

In Table 7.4, we observe that when scenes are not semantically arranged, S4 (PaLM) has
comparable performance to Spatial NN in all three domains despite having a slightly lower
success rate. However, the performance of S4 (Embeddings) degrades more significantly.
Ultimately, results with S4 (PaLM) indicate that semantic spatial search can perform as well
as pure spatial search as long the scene is not adversarial (e.g., the target object is located
at a very unlikely location in an otherwise semantically arranged shelf).

Overall, the results suggest that S4 (PaLM) can accelerate mechanical search compared to
the spatial distribution in semantically arranged environments by 32.4%, 27.1%, and 12.3%
in the pharmacy, kitchen, and o�ce domains respectively, while improving success rates.

7.5 Physical Object Retrieval Experiments

We use the Kinova Gen2 robot fitted with a 3D-printed “bluction” (blade and suction) tool,
as in [34]. We use an Intel RealSense depth camera mounted on the tool to provide RGB
and depth observations. For physical experiments, we focus on the pharmacy domain. For
these experiments, we use 3 scenes each of N = 7, 8, 9, and 10 objects for a total of 12 scenes
and a threshold visibility of X = 50%. See Figure 7.1 for the physical setup.

Because the RealSense camera is not able to capture the fine details of the text on the
objects when observing the entire scene at resolution 640⇥ 480 pixels, we perform a three-

CHAPTER 7. S4 RESULTS 42

Figure 7.1: Physical setup with a cardboard shelf, pharmacy objects, Kinova Gen2 robot, a
bluction tool [34] for extracting objects in the shelf, and an Intel RealSense RGBD camera
mounted on the bluction tool.

stage scan of the scene by moving the end-e↵ector to 3 adjacent positions, all of which are
closer to the shelf, where the text is more easily readable. At each of these poses, we take
a picture of the scene, project the known world position of the objects to the new camera
frame, identify text with OCR, and assign each text detection to the object it is contained
in. If there are detections on the same object from multiple scan locations, we use the OCR
that has the lowest entropy for its distribution, a measure of confidence. During the physical
experiments rollouts, when the action given by the policy causes unintentional toppling or a
missed grasp due to depth sensor noise, we reset the object to undo the action and run the
policy again.

We evaluate the following algorithms in physical experiments:

1. Spatial NN: Same as in simulation.

2. S4 (PaLM)-Heuristic: Due to the cost of deploying neural networks in the real world,
we test replacing the Spatial NN in S4 with a simple geometric heuristic: summing the
bitwise OR of all the segmentation masks in the image along the y-axis to get a 1D
distribution along the x-axis.

3. S4 (PaLM): Same as in simulation.

Results are in Table 7.6. An identical set of 12 semantically arranged scenes (starting
configurations) generated by the procedure in Section 7.2 is used for each method. We

CHAPTER 7. S4 RESULTS 43

Table 7.6: Physical Experiment Results (12 trials each). We report the average number of
actions taken to reveal the target object as well as the percentage reduction in the number
of actions over the spatial neural network.

Method # Actions % Reduc
Spatial NN 4.25± 0.64 N/A

S4 (PaLM)-Heuristic 2.50± 0.53 41.2
S4 (PaLM) 2.25± 0.46 47.1

observe that S4 significantly accelerates mechanical search, reducing the average number of
actions by 47.1%. In physical experiments, the depth image has noise while in simulation we
have ground truth depth information. This results in the spatial distribution in simulation
being strictly better than the spatial distribution in real. This discrepancy between the
quality of the spatial distribution makes the semantic distribution more critical in identifying
where a target object may lie in physical experiments. Thus, S4 (PaLM) outperforms the
spatial distribution by a larger margin, 47.1%, in physical experiments compared to 32.5%
in the simulated pharmacy domain. Moreover, although prior work has shown that the
geometric heuristic does not perform as well as the Spatial NN method [35], the results
suggest that it can enable comparable mechanical search times to S4 (PaLM) when coupled
with a semantic occupancy distribution.

44

Chapter 8

Limitations and Conclusion

8.1 TUSK

TUSK is a perception pipeline that iteratively traces and determines the topology of semi-
planar cable configurations, detects knots given the cable state, and detects graspable points
for untangling the knots. Experiments show that TUSK can successfully trace a single cable
in a multi-cable setting with 81% accuracy, significantly outperforming an analytic baseline.
TUSK is also able to detect knots with 77% accuracy. Lastly, when TUSK is applied to a
robot untangling problem, the system is able to achieve 64% success in untangling. TUSK
has notable limitations: The robot system executing TUSK still depends on a depth camera.
Future work will address this and aim to remove depth for the 1D deformable grasping task.
TUSK is also tested on only a mono-color workspace.

Future work will investigate generalizing TUSK to function independent of backgrounds,
allowing the system to work in a non-solid, multi-color workspace that imitates home en-
vironments. Additionally, in real world scenarios, cables vary in color and thickness, so we
will also pursue making TUSK invariant to cable appearance. Lastly, on the manipulation
side, the untangling system struggles to grasp tight loops. Future work will explore servoing
methods to improve grasping reliability in tight regions. A major additional extension of
this work might be to build towards the optimal architecture and framework for obtaining a
well-calibrated uncertainty or distribution of cable traces from the tracer. At the moment,
we have indications that it is possible to obtain an uncertainty estimate or a set of candi-
date splines by adding perturbations to the start points, but this has yet to be rigorously
explored.

8.2 S4

S4 is a system to facilitate mechanical search in semantically arranged environments using
LLMs. It has the following limitations: (1) S4 cannot accelerate mechanical search in shelves
that are not semantically arranged (e.g., a kitchen pantry after hosting a dinner party),

CHAPTER 8. LIMITATIONS AND CONCLUSION 45

(2) S4 requires setting a temperature hyperparameter in the a�nity matrix to mitigate the
e↵ects of unintuitive or incorrect semantic relationships, (3) semantic refinement of object
detection is less e↵ective if the object detection distribution is low-entropy but incorrect (i.e.,
confidently wrong).

In future work, we hope to mitigate the limitations of S4 as well: for instance, adding a
perception module that estimates the degree of semantic arrangement in a shelf in order to
autonomously determine a temperature for spatial semantic search. We are also interested
in exploring the potential applications of interactive perception [12] to this task by, for
example, developing a policy that interacts with objects for the purpose of uncovering new
information about the semantics of a scene. We also hope to extend S4 to mechanical search
in larger spaces such as homes or o�ce buildings, where hierarchical occupancy distributions
can model entire rooms (e.g., plates are likely to be found in the kitchen or dining area).
Yet another direction for possible extensions involves using LLMs, and specifically a�nity
values, as featurizers to enable few-shot learning (i.e. calibration of how the a�nities should
be used). Finally, we would like to relax the assumption of knowing the object names ahead
of time, instead being able to perform mechanical search from purely visual observations.

8.3 Conclusion

Ultimately, we have presented two instances of probabilistic state estimation and interactive
perception for two di↵erent problem domains: deformable object manipulation and object
search. For cable state estimation, we train a conditional autoregressive model to generate
splines of a cable, with applications to isolation in multi-cable settings and untangling of
long cables. For object search, we use a pre-trained LLM to construct zero-shot a semantic
spatial distribution that takes into account where a target object could be hidden in addition
to where it is likely to be present, enabling e�cient mechanical search.

Going forward, it would be interesting to explore a way to generalize the presented ideas
into a more unified framework. For example, exploring methods for jointly learning state
estimation techniques and manipulation policies that reveal information about the state as
useful for a downstream task would certainly be worthwhile. While everything can be framed
as a Partially Observed Markov Decision Process (POMDP), it may pay o↵ to recognize a
reasonably large subclass of problems where a certain type of inductive bias would improve
sample e�ciency over end-to-end learning.

Yet another perhaps unrelated learning is just how much of a step up the real world
is compared to simulation. Problems of workspace reachability, camera calibration, lack of
high-quality sensor data, and open-loop action primitives have no clear solution and always
end up costing us severely when attempting to deploy robotic systems in the real world. The
methods always matter, but good system implementation and design choices often underlie
impressive physical demos.

Finally, this is a really interesting time to be doing research in the field. Foundation
models are rapidly on the rise, and sometimes it’s hard to dismiss the ever-lingering question

CHAPTER 8. LIMITATIONS AND CONCLUSION 46

of whether a closed-source foundation model trained on many tasks could perform tasks like
cable untangling and mechanical search as well as our specialized algorithms. As of the
moment I’m writing this thesis, as impressive as these multimodal text and image models
appear to be, I would guess not. I do think that the untangling problem remains harder for
such a general-purpose model to accomplish. It would certainly be interesting to investigate
the properties these models have when it comes to perceiving complex scenes, performing
state estimation implicitly, and planning using interactive perception.

8.4 Ending Notes

I’ve learned a lot during my 5th year MS at Berkeley. I want to thank Professor Goldberg for
this opportunity and all my collaborators for helping me learn about the research process,
academia, deep learning, and robotics. Through the course of my work, I’ve been able to
better understand the current challenges and opportunities in the field. For now, I am
heading to Google DeepMind and am excited to see what the future holds.

47

Bibliography

[1] Aakanksha Chowdhery et al. “PaLM: Scaling Language Modeling with Pathways”. In:
arXiv preprint arXiv:2204.02311 (2022).

[2] Arvind Neelakantan et al. “Text and Code Embeddings by Contrastive Pre-Training”.
In: arXiv preprint arXiv:2201.10005 (2022).

[3] Brian Ichter et al. “Do As I Can, Not As I Say: Grounding Language in Robotic
A↵ordances”. In: 6th Annual Conference on Robot Learning. 2022.

[4] Rishi Bommasani et al. “On the Opportunities and Risks of Foundation Models”. In:
ArXiv preprint arXiv:2108.07258 (2021).

[5] Susan Zhang et al. “OPT: Open Pre-trained Transformer Language Models”. In: ArXiv
preprint 2205.01068 (2022).

[6] Tom B. Brown et al. “Language Models are Few-Shot Learners”. In: ArXiv preprint
arXiv:2005.14165 (2020).

[7] Wenlong Huang et al. “Inner Monologue: Embodied Reasoning through Planning with
Language Models”. In: arXiv preprint arXiv:2207.05608 (2022).

[8] Yahav Avigal et al. SpeedFolding: Learning E�cient Bimanual Folding of Garments.
2022. doi: 10.48550/ARXIV.2208.10552. url: https://arxiv.org/abs/2208.
10552.

[9] Ruzena Bajcsy. “Active perception”. In: Proceedings of the IEEE 76.8 (1988), pp. 966–
1005.

[10] Ruzena Bajcsy, Yiannis Aloimonos, and John K Tsotsos. “Revisiting active percep-
tion”. In: Autonomous Robots 42.2 (2018), pp. 177–196.

[11] Ehud Barnea and Ohad Ben-Shahar. “Contextual Object Detection with a Few Rele-
vant Neighbors”. In: ArXiv preprint arXiv:1711.05705 (2017).

[12] Jeannette Bohg et al. “Interactive Perception: Leveraging Action in Perception and
Perception in Action”. In: IEEE Transactions on Robotics 33 (2016), pp. 1273–1291.

[13] Jeannette Bohg et al. “Interactive perception: Leveraging action in perception and
perception in action”. In: IEEE Transactions on Robotics 33.6 (2017), pp. 1273–1291.

[14] Nicolas Carion et al. “End-to-End Object Detection with Transformers”. In: European
Conference on Computer Vision (ECCV) (2020).

https://doi.org/10.48550/ARXIV.2208.10552
https://arxiv.org/abs/2208.10552
https://arxiv.org/abs/2208.10552

BIBLIOGRAPHY 48

[15] Nicolas Carion et al. “HOLM: Hallucinating Objects with Language Models for Refer-
ring Expression Recognition in Partially-Observed Scenes”. In: Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (ACL). 2020.

[16] Google Merchant Center. Google Product Category. https://support.google.com/
merchants/answer/6324436?hl=en. Accessed: 2023-01-31.

[17] Lawrence Yunliang Chen et al. AutoBag: Learning to Open Plastic Bags and Insert
Objects. 2022. doi: 10.48550/ARXIV.2210.17217. url: https://arxiv.org/abs/
2210.17217.

[18] Lawrence Yunliang Chen et al. “Optimal Shelf Arrangement to Minimize Robot Re-
trieval Time”. In: IEEE International Conference on Automation Science and Engi-
neering (CASE) (2022).

[19] Zhe Chen, Shaoli Huang, and Dacheng Tao. “Context Refinement for Object Detec-
tion”. In: European Conference on Computer Vision. 2018.

[20] Cheng Chi et al. “Iterative Residual Policy for Goal-Conditioned Dynamic Manipula-
tion of Deformable Objects”. In: Proceedings of Robotics: Science and Systems (RSS).
2022.

[21] Blender Online Community. Blender - a 3D modelling and rendering package. Blender
Foundation. Stichting Blender Foundation, Amsterdam, 2018. url: http : / / www .
blender.org.

[22] Yuchen Cui et al. “No, to the Right: Online Language Corrections for Robotic Manip-
ulation via Shared Autonomy”. In: ACM/IEEE International Conference on Human-
Robot Interaction (HRI) (2023).

[23] Michael Danielczuk et al. “Mechanical Search: Multi-Step Retrieval of a Target Object
Occluded by Clutter”. In: 2019 International Conference on Robotics and Automation
(ICRA). 2019.

[24] Michael Danielczuk et al. “Mechanical search: Multi-step retrieval of a target object
occluded by clutter”. In: 2019 International Conference on Robotics and Automation
(ICRA). IEEE. 2019, pp. 1614–1621.

[25] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding”. In: ArXiv preprint arXiv:1810.04805 (2019).

[26] Santosh K. Divvala et al. “An empirical study of context in object detection”. In: 2009
IEEE Conference on Computer Vision and Pattern Recognition. 2009, pp. 1271–1278.

[27] Peter R Florence, Lucas Manuelli, and Russ Tedrake. “Dense object nets: Learning
dense visual object descriptors by and for robotic manipulation”. In: Conf. on Robot
Learning (CoRL). 2018.

[28] Aditya Ganapathi et al. “Learning to Smooth and Fold Real Fabric Using Dense Object
Descriptors Trained on Synthetic Color Images”. In: Proc. IEEE Int. Conf. Robotics
and Automation (ICRA). 2021.

https://support.google.com/merchants/answer/6324436?hl=en
https://support.google.com/merchants/answer/6324436?hl=en
https://doi.org/10.48550/ARXIV.2210.17217
https://arxiv.org/abs/2210.17217
https://arxiv.org/abs/2210.17217
http://www.blender.org
http://www.blender.org

BIBLIOGRAPHY 49

[29] Kenneth Y Goldberg and Ruzena Bajcsy. “Active touch and robot perception”. In:
Cognition and Brain Theory 7.2 (1984), pp. 199–214.

[30] Jennifer Grannen et al. “Untangling dense knots by learning task-relevant keypoints”.
In: Conference on Robot Learning (2020).

[31] Xiuye Gu et al. “Open-vocabulary Object Detection via Vision and Language Knowl-
edge Distillation”. In: International Conference on Learning Representations (ICLR)
(2021).

[32] Ryan Hoque et al. “Learning to Fold Real Garments with One Arm: A Case Study
in Cloud-Based Robotics Research”. In: 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2022, pp. 251–257. doi: 10.1109/IROS47612.
2022.9981253.

[33] Ryan Hoque et al. “VisuoSpatial Foresight for Multi-Step, Multi-Task Fabric Manip-
ulation”. In: Proc. Robotics: Science and Systems (RSS). 2020.

[34] Huang Huang et al. “Mechanical Search on Shelves using a Novel “Bluction” Tool”.
In: IEEE International Conference on Robotics and Automation (ICRA) (2022).

[35] Huang Huang et al. “Mechanical Search on Shelves using Lateral Access X-RAY”. In:
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
2021, pp. 2045–2052.

[36] Huang Huang et al. “Mechanical Search on Shelves with E�cient Stacking and Destack-
ing of Objects”. In: International Symposium on Robotics Research (ISRR) (2022).

[37] Xuzhao Huang et al. “Untangling Multiple Deformable Linear Objects in Unknown
Quantities With Complex Backgrounds”. In: IEEE Transactions on Automation Sci-
ence and Engineering (2023), pp. 1–13. doi: 10.1109/TASE.2023.3233949.

[38] Pavel Iakubovskii. Segmentation Models Pytorch. https://github.com/qubvel/
segmentation_models.pytorch. 2019.

[39] Russell C. Jackson et al. “Real-Time Visual Tracking of Dynamic Surgical Suture
Threads”. In: IEEE Transactions on Automation Science and Engineering 15.3 (2018),
pp. 1078–1090. doi: 10.1109/TASE.2017.2726689.

[40] Yiding Jiang et al. “Language as an Abstraction for Hierarchical Deep Reinforce-
ment Learning”. In: Conference on Neural Information Processing Systems (NeurIPS)
(2019).

[41] Sezer Karaoglu, Jan Gemert, and T. Gevers. “Object Reading: Text Recognition for
Object Recognition”. In: vol. 7585. Oct. 2012. isbn: 978-3-642-33884-7. doi: 10.1007/
978-3-642-33885-4_46.

[42] Azarakhsh Keipour, Maryam Bandari, and Stefan Schaal. “Deformable One-Dimensional
Object Detection for Routing and Manipulation”. In: CoRR abs/2201.06775 (2022).
arXiv: 2201.06775. url: https://arxiv.org/abs/2201.06775.

https://doi.org/10.1109/IROS47612.2022.9981253
https://doi.org/10.1109/IROS47612.2022.9981253
https://doi.org/10.1109/TASE.2023.3233949
https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch
https://doi.org/10.1109/TASE.2017.2726689
https://doi.org/10.1007/978-3-642-33885-4_46
https://doi.org/10.1007/978-3-642-33885-4_46
https://arxiv.org/abs/2201.06775
https://arxiv.org/abs/2201.06775

BIBLIOGRAPHY 50

[43] Diederik P Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: International Conference on Learning Representations. 2015.

[44] Thomas Kollar et al. “SimNet: Enabling Robust Unknown Object Manipulation from
Pure Synthetic Data via Stereo”. In: Conference on Robot Learning. PMLR. 2022,
pp. 938–948.

[45] Andrey Kurenkov et al. “Semantic and Geometric Modeling with Neural Message
Passing in 3D Scene Graphs for Hierarchical Mechanical Search”. In: International
Conference on Robotics and Automation (ICRA) (2021).

[46] Robert Lee et al. “Learning Arbitrary-Goal Fabric Folding with One Hour of Real
Robot Experience”. In: Conf. on Robot Learning (CoRL). 2020.

[47] Jacky Liang et al. “Code as Policies: Language Model Programs for Embodied Con-
trol”. In: ArXiv preprint arXiv:2209.07753 (2022).

[48] J. Lin. “Divergence measures based on the Shannon entropy”. In: IEEE Transactions
on Information Theory 37.1 (1991), pp. 145–151. doi: 10.1109/18.61115.

[49] Xingyu Lin et al. “Learning visible connectivity dynamics for cloth smoothing”. In:
Conference on Robot Learning. PMLR. 2022, pp. 256–266.

[50] Wen Hao Lui and Ashutosh Saxena. “Tangled: Learning to Untangle Ropes with RGB-
D Perception”. In: 2013 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. 2013.

[51] Wen Hao Lui and Ashutosh Saxena. “Tangled: Learning to untangle ropes with RGB-D
perception”. In: 2013 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. IEEE.
2013, pp. 837–844.

[52] Corey Lynch and Pierre Sermanet. “Language conditioned imitation learning over
unstructured data”. In: Robotics: Science and Systems (RSS) (2021).

[53] Corey Lynch et al. “Interactive Language: Talking to Robots in Real Time”. In: ArXiv
preprint arXiv:2210.06407 (2022).

[54] Jan Matas, Stephen James, and Andrew J Davison. “Sim-to-real reinforcement learning
for deformable object manipulation”. In: Conf. on Robot Learning (CoRL). 2018.

[55] Hermann Mayer et al. “A system for robotic heart surgery that learns to tie knots using
recurrent neural networks”. In: Advanced Robotics 22.13-14 (2008), pp. 1521–1537.

[56] Dale McConachie et al. “Learning When to Trust a Dynamics Model for Planning in
Reduced State Spaces”. In: CoRR abs/2001.11051 (2020). arXiv: 2001.11051. url:
https://arxiv.org/abs/2001.11051.

[57] Dipendra Kumar Misra, John Langford, and Yoav Artzi. “Mapping Instructions and
Visual Observations to Actions with Reinforcement Learning”. In: Conference on Em-
pirical Methods in Natural Language Processing (EMNLP). 2017.

[58] Ashvin Nair et al. “Combining Self-Supervised Learning and Imitation for Vision-
Based Rope Manipulation”. In: CoRR abs/1703.02018 (2017). arXiv: 1703.02018.
url: http://arxiv.org/abs/1703.02018.

https://doi.org/10.1109/18.61115
https://arxiv.org/abs/2001.11051
https://arxiv.org/abs/2001.11051
https://arxiv.org/abs/1703.02018
http://arxiv.org/abs/1703.02018

BIBLIOGRAPHY 51

[59] Suraj Nair et al. “Learning Language-Conditioned Robot Behavior from O✏ine Data
and Crowd-Sourced Annotation”. In: Conference on Robot Learning (CoRL). 2021.

[60] Tonci Novkovic et al. “Object finding in cluttered scenes using interactive perception”.
In: 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2020, pp. 8338–8344.

[61] Nicolas Padoy and Gregory Hager. “Deformable Tracking of Textured Curvilinear Ob-
jects”. In: Proceedings of the British Machine Vision Conference. BMVA Press, 2012,
pp. 5.1–5.11. isbn: 1-901725-46-4. doi: http://dx.doi.org/10.5244/C.26.5.

[62] Paritosh Parmar. “Use of computer vision to detect tangles in tangled objects”. In:
2013 IEEE Second International Conference on Image Information Processing (ICIIP-
2013). IEEE, Dec. 2013. doi: 10.1109/iciip.2013.6707551.

[63] Alec Radford et al. “Learning Transferable Visual Models From Natural Language
Supervision”. In: International Conference on Machine Learning (ICML). 2021.

[64] Kurt Reidemeister. Knot theory. BCS Associates, 1983.

[65] Jose Sanchez et al. “Robotic manipulation and sensing of deformable objects in domes-
tic and industrial applications: a survey”. In: The International Journal of Robotics
Research 37.7 (2018), pp. 688–716.

[66] John Schulman et al. “Tracking deformable objects with point clouds”. In: 2013 IEEE
International Conference on Robotics and Automation. 2013, pp. 1130–1137. doi: 10.
1109/ICRA.2013.6630714.

[67] Daniel Seita et al. “Deep imitation learning of sequential fabric smoothing from an
algorithmic supervisor”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Sys-
tems (IROS). 2020.

[68] Daniel Seita et al. “Learning to Rearrange Deformable Cables, Fabrics, and Bags with
Goal-Conditioned Transporter Networks”. In: Proc. IEEE Int. Conf. Robotics and Au-
tomation (ICRA). 2021.

[69] Pratyusha Sharma et al. “Correcting robot plans with natural language feedback”. In:
Robotics: Science and Systems (RSS) (2022).

[70] Kaushik Shivakumar et al. “SGTM 2.0: Autonomously Untangling Long Cables using
Interactive Perception”. In: arXiv preprint arXiv:2209.13706 (2022).

[71] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. “Cliport: What and where pathways
for robotic manipulation”. In: Conference on Robot Learning (CoRL) (2021).

[72] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. “Perceiver-Actor: A Multi-Task
Transformer for Robotic Manipulation”. In: Conference on Robot Learning (CoRL)
(2022).

[73] Hwanjun Song et al. “ViDT: An E�cient and E↵ective Fully Transformer-based Object
Detector”. In: International Conference on Learning Representations. 2022.

https://doi.org/http://dx.doi.org/10.5244/C.26.5
https://doi.org/10.1109/iciip.2013.6707551
https://doi.org/10.1109/ICRA.2013.6630714
https://doi.org/10.1109/ICRA.2013.6630714

BIBLIOGRAPHY 52

[74] Yu Song et al. “Vision Based Topological State Recognition for Deformable Linear
Object Untangling Conducted in Unknown Background”. In: 2019 IEEE International
Conference on Robotics and Biomimetics (ROBIO). 2019, pp. 790–795. doi: 10.1109/
ROBIO49542.2019.8961652.

[75] Priya Sundaresan et al. “Learning Rope Manipulation Policies Using Dense Object
Descriptors Trained on Synthetic Depth Data”. In: Proc. IEEE Int. Conf. Robotics
and Automation (ICRA). 2020.

[76] Priya Sundaresan et al. “Untangling dense non-planar knots by learning manipulation
features and recovery policies”. In: Proc. Robotics: Science and Systems (RSS) (2021).

[77] Te Tang and Masayoshi Tomizuka. “Track deformable objects from point clouds with
structure preserved registration”. In: The International Journal of Robotics Research
41.6 (2022), pp. 599–614. doi: 10.1177/0278364919841431. eprint: https://doi.
org/10.1177/0278364919841431. url: https://doi.org/10.1177/0278364919841431.

[78] Brijen Thananjeyan et al. All You Need is LUV: Unsupervised Collection of Labeled
Images using Invisible UV Fluorescent Indicators. 2022. doi: 10.48550/ARXIV.2203.
04566. url: https://arxiv.org/abs/2203.04566.

[79] Constantine J Tsikos and Ruzena K Bajcsy. “Segmentation via manipulation”. In:
Technical Reports (CIS) (1988), p. 694.

[80] Jur Van Den Berg et al. “Superhuman performance of surgical tasks by robots using
iterative learning from human-guided demonstrations”. In: 2010 IEEE International
Conference on Robotics and Automation. IEEE. 2010, pp. 2074–2081.

[81] Ashish Vaswani et al. “Attention Is All You Need”. In: Neural Information Processing
Systems (NeurIPS). 2017.

[82] Vainavi Viswanath et al. “Autonomously Untangling Long Cables”. In: Robotics: Sci-
ence and Systems (RSS) (2022).

[83] Vainavi Viswanath et al. “Disentangling Dense Multi-Cable Knots”. In: Proc. IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS) (2021).

[84] Angelina Wang et al. “Learning robotic manipulation through visual planning and
acting”. In: Robotics: Science and Systems (RSS) (2019).

[85] Thomas Weng et al. “FabricFlowNet: Bimanual Cloth Manipulation with a Flow-based
Policy”. In: Conference on Robot Learning. PMLR. 2022, pp. 192–202.

[86] Bryan Willimon, Stan Birchfield, and Ian Walker. “Classification of clothing using
interactive perception”. In: 2011 IEEE International Conference on Robotics and Au-
tomation. IEEE. 2011, pp. 1862–1868.

[87] Yilin Wu et al. “Learning to manipulate deformable objects without demonstrations”.
In: arXiv preprint arXiv:1910.13439 (2019).

https://doi.org/10.1109/ROBIO49542.2019.8961652
https://doi.org/10.1109/ROBIO49542.2019.8961652
https://doi.org/10.1177/0278364919841431
https://doi.org/10.1177/0278364919841431
https://doi.org/10.1177/0278364919841431
https://doi.org/10.1177/0278364919841431
https://doi.org/10.48550/ARXIV.2203.04566
https://doi.org/10.48550/ARXIV.2203.04566
https://arxiv.org/abs/2203.04566

BIBLIOGRAPHY 53

[88] Yuji Yamakawa et al. “One-handed knotting of a flexible rope with a high-speed mul-
tifingered hand having tactile sensors”. In: 2007 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems. IEEE. 2007, pp. 703–708.

[89] Wilson Yan et al. “Learning Predictive Representations for Deformable Objects Using
Contrastive Estimation”. In: Conf. on Robot Learning (CoRL). 2020.

	Contents
	List of Figures
	List of Tables
	Introduction
	Overview
	Cable Untangling
	Object Search

	Cable Untangling: Background
	Related Work
	Problem Statement

	TUSK: Tracing to Untangle Semi-Planar Knots
	Learned Cable Tracer
	Over/Undercrossing Predictor
	Analytic Knot Detection
	Algorithmic Cage-Pinch Point Detection
	Robot Untangling using TUSK

	TUSK Results
	Workspace
	TUSK Setup
	Results

	Semantic Spatial Search: Background
	Related Work
	Problem Statement

	Semantic Spatial Search on Shelves (S4)
	Affinity Matrix Generation
	Object Detection Refinement
	Semantic Occupancy Distribution
	Semantic Spatial Search on Shelves (S4) Algorithm

	S4 Results
	Affinity Matrix
	Semantic Scene Generation
	Object Detection
	Simulation Object Retrieval Experiments
	Physical Object Retrieval Experiments

	Limitations and Conclusion
	TUSK
	S4
	Conclusion
	Ending Notes

	Bibliography

