
Object and Scene Reconstruction using Neural

Radiance Fields

Matthew Tancik

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-128

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-128.html

May 12, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Object and Scene Reconstruction using Neural Radiance Fields

by

Matthew Tancik

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Assistant Professor Angjoo Kanazawa, Co-chair
Associate Professor Ren Ng, Co-chair

Professor Alexei Efros
Jon Barron

Spring 2023

Object and Scene Reconstruction using Neural Radiance Fields

Copyright 2023
by

Matthew Tancik

1

Abstract

Object and Scene Reconstruction using Neural Radiance Fields

by

Matthew Tancik

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Berkeley

Assistant Professor Angjoo Kanazawa, Co-chair

Associate Professor Ren Ng, Co-chair

This dissertation explores the synthesis of novel views of complex scenes through the optimization
of a volumetric scene function using a sparse set of input views. Our approach represents the
scene as a neural radiance field (NeRF), a field of densities and emitted radiance based on 5D
coordinates encompassing spatial location (x, y, z) and viewing direction (✓,�). NeRF enables
the rendering of photorealistic novel views that surpass previous techniques, leading to numerous
follow-ups and extensions in the computer vision and graphics communities. To enhance the
representation of high-frequency details in NeRFs, we introduce a Fourier feature mapping technique
that effectively learns high-frequency functions within low-dimensional problem domains, including
NeRF. We demonstrate the benefits of leveraging learned initial weight parameters through standard
meta-learning algorithms, resulting in accelerated convergence, stronger priors, and improved
generalization for coordinate-based networks. In addition, we improve the scalability of NeRFs with
a proposed method capable of representing arbitrarily large scenes. This method enables city-scale
reconstructions using data captured under diverse environmental conditions. Finally, we present
the Nerfstudio framework, a comprehensive suite of modular components and tools designed for
the development and deployment of NeRF-based methods. This framework empowers researchers
and practitioners with real-time visualization, streamlined data pipelines, and export capabilities,
facilitating the democratization of NeRFs and extending their impact beyond research settings. With
their potential to transform computer graphics, virtual reality, augmented reality, and other domains,
NeRFs hold promise for revolutionizing the way we perceive and interact with digital worlds.

i

Contents

Contents i

List of Figures iii

List of Tables v

1 Introduction 1
1.1 Representing the Plenoptic Fuction . 1
1.2 Dissertation Overview . 3

2 Neural Radiance Fields 6
2.1 Related Work . 8
2.2 Neural Radiance Field Scene Representation . 10
2.3 Volume Rendering with Radiance Fields . 11
2.4 Optimizing a Neural Radiance Field . 11
2.5 Results . 14
2.6 Discussion . 20

3 Representing High Frequencies in Coordinate-Based Networks 21
3.1 Related Work . 23
3.2 Background and Notation . 23
3.3 Fourier Features for a Tunable Stationary Neural Tangent Kernel 25
3.4 Stationary kernels . 26
3.5 Manipulating the Fourier Feature Mapping . 27
3.6 Experiments . 30
3.7 Discussion . 39

4 Initializing Coordinate-Based Networks 41
4.1 Related Work . 42
4.2 Overview . 43
4.3 Implementation details . 45
4.4 Results . 47
4.5 Discussion . 56

ii

5 Scaling Neural Radiance Fields 57
5.1 Related Work . 58
5.2 Background . 61
5.3 Method . 61
5.4 Results and Experiments . 66
5.5 Model Parameters / Optimization Details . 66
5.6 Limitations and Future Work . 71
5.7 Discussion . 72

6 Nerfstudio Framework 73
6.1 Related Works . 76
6.2 Framework Design . 77
6.3 Core components . 78
6.4 Nerfacto Method . 81
6.5 Nerfstudio Dataset . 83
6.6 Experiments . 83
6.7 Open-source Contributions . 87
6.8 Discussion . 87

7 Conclusion 89
7.1 Why NeRFs and the Role of Representation . 89
7.2 Limitations . 90
7.3 The Future of 3D . 91

Bibliography 92

iii

List of Figures

1.1 From NeRF to Nerfstudio . 2

2.1 Neural Radiance Field problem setup. 7
2.2 Overview of Neural Radiance Field pipeline. 9
2.3 Visualization of view-dependent emitted radiance. 10
2.4 Ablation of view dependence and positional encoding. 12
2.5 Comparisons on test-set views of Blender synthetic scenes. 16
2.6 Comparisons on test-set views of real world scenes 17

3.1 Demonstration of improvements when using Fourier features across multiple tasks. . . 22
3.2 Fitting non-centered Gaussian functions with MLPs. 27
3.3 Visualization of the neural tangent kernel when using Fourier features. 28
3.4 Convergence plots when using Fourier feature mappings. 29
3.5 Effects of sweeping the standard deviation of the random Fourier features. 30
3.6 Results for the 2D image regression task. 32
3.7 Results on 3D shape occupancy task. 34
3.8 Results on 2D CT task. 35
3.9 Results on 3D MRI task. 36
3.10 Results on inverse rendering task. 37
3.11 Optimizing the Fourier feature mappings for specific target signals. 39
3.12 Frequency spreading in deeper networks. 39
3.13 NTK for networks of varying depths. 40

4.1 Illustrative example of meta-learned initializations. 42
4.2 Faster convergence result on 2D image regression. 49
4.3 CT reconstructions from a sparse set of views. 52
4.4 Single view reconstructions of ShapeNet. 53
4.5 Faster reconstruction of ShapeNet objects. 54
4.6 Reconstructions from the Phototourism dataset. 55

5.1 Large-scale scene reconstructions. 58
5.2 NeRF sampling and merging strategy. 62
5.3 Block-NeRF network architecture. 63

iv

5.4 Using appearance codes to modify lighting and weather. 63
5.5 Altering exposure settings during inference. 64
5.6 Matching Block-NeRF with different appearances. 66
5.7 Ablations of the Block-NeRF model. 69

6.1 Overview of the Nerfstudio framework. 74
6.2 Nerfstudio pipeline components. 75
6.3 Real-world Nerfstudio dataset. 75
6.4 Representation of samples along a camera ray. 79
6.5 NeRF export options provided in Nerfstudio. 81
6.6 Nerfacto model architecture. 82
6.7 Visualization of unbounded samples contracted to a bounded space. 83
6.8 Nerfstudio ablation qualitative examples. 84
6.9 Screenshots of the provided real-time viewer. 86

v

List of Tables

2.1 Quantitative comparisons on synthetic and real images. 15
2.2 Ablation study of neural radiance fields. 19

3.1 2D image results (mean ± standard deviation of PSNR) 33
3.2 3D shape regression results. 33
3.3 2D CT results (mean ± standard deviation of PSNR). 35
3.4 3D MRI results (mean ± standard deviation of PSNR). 36
3.5 3D NeRF results (mean ± standard deviation of PSNR). 38

4.1 Comparison of different initialization methods on an image regression task. 50
4.2 PSNR comparison of four different dataset-specific learned initializations for image

regression. 50
4.3 Comparison of initialization methods on a CT reconstruction task. 51
4.4 Metrics for single image ShapeNet reconstructions using a simple-NeRF model. 54
4.5 Reconstruction results on Phototourism data. 55

5.1 Ablations of different Block-NeRF components on a single intersection. 68
5.2 Comparison of different numbers of Block-NeRFs for reconstructing the Mission Bay

dataset. 69
5.3 Effect of different NeRF overlaps in the 8 block scenario with 0.25M weights per block

(2M weights in total). The default setting used for other experiments is marked *. . . . 70
5.4 Comparison of interpolation methods. 71

6.1 Average metrics on the MipNeRF360 dataset. 85
6.2 Average metrics for ablations on the Nerfstudio Dataset. 87

vi

Acknowledgments

I am incredibly fortunate to have been surrounded by remarkable individuals during my time at
Berkeley. While it is impossible to thank everyone who has played a crucial role in my success, I
want to express my gratitude to those who have had a significant impact on my journey.

First and foremost, I would like to extend my deepest appreciation to my advisors, Ren Ng and
Angjoo Kanazawa. When I was considering different universities, Ren’s approach to research and
his holistic perspective on life instantly captivated me. He taught me the importance of non-technical
aspects in research, such as effective communication, problem framing, and maintaining a healthy
work-life balance. Ren’s graphics background provided a unique lens that complemented the
machine learning perspective. My initial interaction with Angjoo during a remote meeting during
the peak of the COVID-19 pandemic left a lasting impression. Her infectious energy breathed life
into otherwise mundane virtual gatherings, and I knew immediately that I wanted to work with
her. I greatly appreciate her encouragement of collaboration among students, as I have learned
how rewarding it can be. Her dedication to staying at the forefront of emerging topics, rather than
following established paths, is truly admirable. I consider myself incredibly fortunate to have had
two exceptional advisors during my time at Berkeley.

My PhD experience can be divided into two distinct phases: pre-COVID and post-COVID.
During the early years, I had the pleasure of working and socializing in the Soda office with
an amazing group of individuals including Ben Mildenhall, Pratul Srinivasan, Utkarsh Singhal,
Grace Kuo, Vivien Nguyen, and Cecilia Zhang. Among them, I want to highlight Ben and Pratul,
with whom I worked on multiple joint projects, including NeRF, which has come to define my
time at Berkeley. They were not only excellent mentors who patiently guided me as a young and
inexperienced graduate student but also became great friends. They not only imparted invaluable
research skills but also showed me how to derive joy from the process. During the latter half of my
PhD, I had more interactions with the vision groups, particularly Angjoo’s lab. I have had numerous
enriching experiences, conversations, and collaborations with Ethan Weber, Justin Kerr, Evonne
Ng, Ruilong Li, Brent Yi, Chun Min Kim, Alex Yu, Frederik Warburg, Ilija Radosavovic, Antonio
Loquercio, Georgios Pavlakos, Shubham Goel, Vickie Ye, and Hang Gao. Working with Ethan has
been particularly rewarding. He is not only a talented researcher but also a genuinely good person,
and I am grateful for the opportunity to work with him in the lab and enjoy our time together outside
of it. I want to express my gratitude to everyone who contributed their time and energy to the
Nerfstudio project. Its success is a testament to the dedication and support of all those involved. I
would like to give special recognition to Ethan and Evonne for their willingness to take the leap and
invest their time in starting the project, even if it meant diverting attention from traditional research.
Lastly, I want to thank all the undergraduate and master’s students I had the privilege of working
with during my PhD. It has been a rewarding experience, and I have thoroughly enjoyed watching
your research and careers evolve over the years. I would also like to express my gratitude to Henrik
Kretzschmar, Vincent Casser, Xinchen Yan, and Sabeek Pradhan for the stimulating intellectual
discussions and collaborations during my time as an intern at Waymo.

I would also like to express my gratitude to the other members of my dissertation committee,
Alyosha Efros and Jon Barron. Conversations with Alyosha about our shared love for California

vii

hikes have always been enjoyable. I consider myself privileged to have had the opportunity to work
with Jon on multiple projects over the years. We have had many insightful research discussions, and
Jon has consistently been a valuable source of life advice.

Prior to Berkeley, I had the opportunity to work in Ramesh Raskar’s and Fredo Durand’s labs
at MIT during my undergraduate and master’s studies. I am particularly grateful to Guy Satat and
Zoya Bylinskii for their mentorship and for igniting my passion for research. Before working with
them, I had never considered pursuing a PhD, but their guidance and encouragement opened new
doors for me.

Beyond the lab, I have been fortunate to form friendships with many of the individuals mentioned
above. It is through these friendships and others that I have been able to maintain my sanity
throughout the years. I have cherished the adventures, skiing trips, backpacking excursions, and
more that I have experienced with Ian Chesser, Julia Longmate, David Ye, Kenny Friedman,
Alejandro Escontrela, Patience Stevens, and Stephen McCrory. I want to extend a special thank you
to Suzie Petryk for being by my side through the highs and lows, and for being my enthusiastic
adventure companion, even if it simply means watching goats graze on grass down the street.

Lastly, I would like to express my heartfelt gratitude to my family for their unwavering support
throughout my PhD journey. To my mom, who always prioritizes my happiness and never hesitates
to offer a vacation or understand when my school commitments take precedence. And to my father,
who introduced me to technology through his old laptops and cameras when I was young. Although
he is no longer with us to witness the completion of this dissertation, his influence was instrumental
in shaping the person I am today.

1

Chapter 1

Introduction

The ability to replicate the world around us in three dimensions has been a longstanding pursuit of
humanity. Throughout history, humans have employed various artistic techniques, from the earliest
cave paintings to intricate Renaissance masterpieces, to capture and represent the world in visual
form. However, this endeavor has always been time-consuming and required immense skill and
craftsmanship.

The invention of the camera revolutionized the way we perceive and document the world. With
the ability to capture and freeze moments in time onto a two-dimensional plane, photography
brought about a new era of visual representation. However, despite the remarkable advancements in
two-dimensional imaging technology, we are still faced with the challenge of faithfully reproducing
the full three-dimensional complexity of the world around us.

Currently, the generation of three-dimensional content requires a significant amount of manual
work. While there are technologies such as photogrammetry that can convert images into 3D models,
the quality of the reconstructions often falls short of the desired level of realism. These methods
still require substantial manual cleanup and refinement to achieve accurate representations.

The aim of this dissertation is to develop techniques that enables the replication of the three-
dimensional world around us. By leveraging advancements in computer vision, graphics, and
machine learning, we seek to overcome the limitations of current approaches and create novel
methodologies for generating highly realistic and accurate 3D representations.

1.1 Representing the Plenoptic Fuction
The ultimate goal of this dissertation is to develop a representation for the plenoptic function, which,
if achieved, would enable novel view synthesis. The plenoptic function encapsulates the complete
information about the distribution of light rays passing through every point in a scene. In our context,
we aim to represent a 5D version of the plenoptic function, considering both spatial location and
viewing direction as dimensions.

To accomplish this, there are a few crucial aspects that need to be addressed: the representation
of non-Lambertian effects, the representation of high-resolution details, and the ability to reconstruct

CHAPTER 1. INTRODUCTION 2

NeRF Nerfstudio

Figure 1.1: This dissertation introduces neural radiance fields (NeRF) as a technique for reconstruct-
ing 3D scenes from a collection of posed images. Through subsequent research efforts, we have
further enhanced and expanded upon the NeRF framework to improve its functionality and accessi-
bility. The culmination of these advancements is the development of Nerfstudio, a comprehensive
framework that enables the reconstruction of real-world unbounded scenes.

from sparse views. These factors pose significant challenges in the field of 3D representation.
Firstly, representing non-Lambertian effects requires the ability to capture and represent different

colors and intensities of light as they vary with viewing angles. Lambertian surfaces, which exhibit
uniform reflectance regardless of the viewing angle, fail to capture the intricate interplay of light and
materials, resulting in less realistic reconstructions. Traditional photogrammetry methods typically
make a Lambertain assumption leading to less photorealistic reconstructions, particularly for shiny
or transparent objects. Our objective is to develop methods that can accurately model and represent
these non-Lambertian effects, enabling us to achieve more faithful and visually compelling 3D
reconstructions.

Secondly, achieving high-resolution representations is crucial for capturing fine-grained details
and preserving the complexity of real-world scenes. However, handling high-resolution data poses
significant memory and computational challenges. Storing data for every viewing direction of every
spatial location in a naïve implementation would quickly become memory-intensive, imposing a
significant burden on memory resources.

Finally, the task of wide baseline reconstruction from a sparse set of viewpoints presents a
formidable challenge. The Nyquist theorem guides us on the necessary sampling rate for signal
reconstruction, but achieving such a rate is infeasible in our scenario. To be practically applicable,
it becomes imperative to devise methods capable of generating these scenes from tens to hundreds
of photos.

To address these challenges, in Chapter 2, we propose a solution that mitigates the memory issue
by employing a neural network trained to map a 5D coordinate to both color and density values.
This approach enables us to represent a “cloud” of densities and view-dependent colors, which
can then be rendered into an image using established volumetric rendering techniques. We refer
to this representation as a neural radiance field (NeRF). By representing the scene as a continuous

CHAPTER 1. INTRODUCTION 3

volume, NeRF allows for more efficient optimization compared to surface-based representations.
By leveraging volumetric supervision, NeRF exhibits surprising effectiveness in reconstructing
scenes from sparse view sets. The incorporation of loss gradients across multiple regions along
each camera ray contributes to improved accuracy and convergence during the rendering process.
This stands in contrast to surface-based representations, which primarily focus on gradient updates
near an object’s surface.

By leveraging the power of NeRFs, we aim to overcome the limitations of previous approaches,
capturing the richness of non-Lambertian effects, preserving high-resolution details, and wide
baseline reconstruction from sparse viewpoints.

Leveraging Technologies
An often overlooked aspect is the ability to leverage accessible technologies and advancements in
the field. In the case of this research, we harnessed the power of deep learning and neural networks
when developing our representation. By framing our problem within the context of machine learning,
we were able to tap into the capabilities offered by modern auto-differentiation libraries. This
familiar setup played a crucial role in the widespread adoption of NeRFs within the computer vision
community.

Throughout this dissertation, we keep this lesson in mind, emphasizing the importance of
abstraction. We recognize that providing accessible and user-friendly frameworks is key to enabling
the wider adoption and development of these methods. It is with this motivation that we introduce
the Nerfstudio framework in Chapter 6. The goal of Nerfstudio is to streamline and simplify the
process of developing NeRF-related methods, making them more accessible to computer vision
practitioners. By abstracting away implementation complexities, researchers can focus on pushing
the boundaries of the field and exploring novel applications of NeRFs without being hindered by
technical barriers.

1.2 Dissertation Overview
This dissertation delves into the development and applications of neural radiance fields (NeRFs),
tracing its journey from motivation and development to the creation of Nerfstudio, a comprehensive
framework crafted to streamline NeRF usage. In addition to these key contributions, this work
delves into the theoretical aspects of NeRFs, providing a deeper understanding, and explores
various advancements aimed at extending the functionality and capabilities of NeRFs. Through
these endeavors, this dissertation presents a holistic approach to NeRF research, encompassing
theory, development, and advancements, with the overarching goal of advancing the field of neural
rendering and view synthesis. It is important to emphasize that the full appreciation of many results
requires experiencing them through videos. For videos and supplementary results, please visit .

https://www.matthewtancik.com/

CHAPTER 1. INTRODUCTION 4

Chapter 2
This chapter the key novel method of this dissertation, NeRFs, for synthesizing new views of
complex scenes. The approach involves optimizing a volumetric scene function using a sparse set
of input views. The scene is represented by a fully-connected deep network that takes a single 5D
coordinate (including spatial location and viewing direction) as input and produces the volume
density and view-dependent emitted radiance at that location. To synthesize new views, the method
queries 5D coordinates along camera rays and uses classic volume rendering techniques to project
the output colors and densities into an image. Because volume rendering is inherently differentiable,
the method requires only a set of images with known camera poses as input to optimize the
representation. We explain how to effectively optimize neural radiance fields to render photorealistic
novel views of scenes with complex geometry and appearance, and demonstrate results that surpass
previous work in the field of neural rendering and view synthesis.

Chapter 3
This chapter explores the application of a simple Fourier feature mapping to enhance the representa-
tion of high-frequency details in NeRFs. Specifically, the aim is to enable multilayer perceptrons
(MLPs) to effectively learn high-frequency functions in low-dimensional problem domains, which
are referred to as coordinate-based neural networks. Through insights drawn from the neural tangent
kernel (NTK) literature, the chapter highlights the inherent slow convergence of standard MLPs
when it comes to high-frequency signal components, owing to their spectral bias. To overcome this
limitation, the chapter proposes the utilization of a Fourier feature mapping, which transforms the
effective NTK into a stationary kernel with an adjustable bandwidth. Furthermore, an approach
for selecting problem-specific Fourier features is suggested, greatly improving the performance of
MLPs in low-dimensional regression tasks that are relevant to the fields of computer vision and
graphics.

Chapter 4
In the context of optimizing coordinate-based networks, the traditional approach of initializing
weights randomly for each new signal proves to be inefficient. To address this challenge, this
chapter proposes a solution that involves applying standard meta-learning algorithms to learn
the initial weight parameters of fully-connected networks based on the specific class of signals
being represented. For instance, this approach can be tailored for signals such as images of faces
or 3D models of chairs. By incorporating minor modifications into the implementation process,
utilizing learned initial weights offers several advantages. It facilitates faster convergence during
optimization, acts as a strong prior over the signal class being modeled, and enhances generalization
even when only partial observations of a given signal are available. The chapter investigates the
benefits of this technique across various tasks, encompassing 2D image representation, CT scan
reconstruction, and the recovery of 3D shapes and scenes from 2D image observations.

CHAPTER 1. INTRODUCTION 5

Chapter 5
This chapter details the exploration of scaling NeRFs for large environments. The proposed Block-
NeRF method decomposes city-scale scenes into multiple NeRFs that are individually trained. This
decomposition allows for scaling rendering to arbitrarily large environments while decoupling
rendering time from scene size. To ensure robustness to data captured over long periods and under
varying environmental conditions, several architectural changes are adopted, such as incorporating
appearance embeddings, learned pose refinement, and controllable exposure to each individual
NeRF. The chapter also introduces a process for aligning the appearance between adjacent NeRFs,
enabling seamless combination. The research resulted in the creation of a grid of Block-NeRFs
using 2.8 million images representing a neighborhood in San Francisco.

Chapter 6
This chapter introduces Nerfstudio, a modular PyTorch framework designed to facilitate the develop-
ment and deployment of NeRF-based methods. Nerfstudio provides plug-and-play components that
make it easy for researchers and practitioners to integrate NeRF into their projects. Its modular de-
sign supports real-time visualization tools, streamlined pipelines for importing captured in-the-wild
data, and tools for exporting to video, point cloud, and mesh representations. Nerfstudio’s modular-
ity also allows the development of Nerfacto, a method that balances speed and quality by combining
components from recent papers while remaining flexible for future modifications. All associated
code and data are publicly available with open-source licensing, encouraging community-driven
development.

Chapter 7
In this concluding chapter, we delve into the insights gleaned from the preceding chapters. We
examine the remaining limitations in scene reconstructions and offer perspectives on the future
directions that this research can be taken.

6

Chapter 2

Neural Radiance Fields

In this chapter, we address the long-standing problem of novel view synthesis given a set of captured
images. We introduce a novel approach that directly optimizes the parameters of a continuous
5D volumetric scene representation to minimize the error between rendered images and captured
images of the scene.

We represent a static scene as a continuous 5D function that outputs the radiance emitted in
each direction (✓,�) at each point (x, y, z) in space, and a density at each point which acts like a
differential opacity controlling how much radiance is accumulated by a ray passing through (x, y, z).
Our method optimizes a deep fully-connected neural network without any convolutional layers
(often referred to as a multilayer perceptron or MLP) to represent this function by regressing from a
single 5D coordinate (x, y, z, ✓,�) to a single volume density and view-dependent RGB color. To
render this neural radiance field (NeRF) from a particular viewpoint we: 1) march camera rays
through the scene to generate a sampled set of 3D points, 2) use those points and their corresponding
2D viewing directions as input to the neural network to produce an output set of colors and densities,
and 3) use classical volume rendering techniques to accumulate those colors and densities into a 2D
image. Because this process is naturally differentiable, we can use gradient descent to optimize this
model by minimizing the error between each observed image and the corresponding views rendered
from our representation. Minimizing this error across multiple views encourages the network to
predict a coherent model of the scene by assigning high volume densities and accurate colors to the
locations that contain the true underlying scene content. Figure 2.2 visualizes this overall pipeline.

We find that the basic implementation of optimizing a neural radiance field representation for a
complex scene does not converge to a sufficiently high-resolution representation and is inefficient in
the required number of samples per camera ray. We address these issues by transforming input 5D
coordinates with a positional encoding that enables the MLP to represent higher frequency functions,
and we propose a hierarchical sampling procedure to reduce the number of queries required to
adequately sample this high-frequency scene representation.

Our approach inherits the benefits of volumetric representations: both can represent complex
real-world geometry and appearance and are well suited for gradient-based optimization using

This chapter is based on joint work published at ECCV 2020 [123]

CHAPTER 2. NEURAL RADIANCE FIELDS 7

Input Images Optimize NeRF Render new views

Figure 2.1: We present a method that optimizes a continuous 5D neural radiance field representation
(volume density and view-dependent color at any continuous location) of a scene from a set of
input images. We use techniques from volume rendering to accumulate samples of this scene
representation along rays to render the scene from any viewpoint. Here, we visualize the set of 100
input views of the synthetic Drums scene randomly captured on a surrounding hemisphere, and we
show two novel views rendered from our optimized NeRF representation.

projected images. Crucially, our method overcomes the prohibitive storage costs of discretized voxel
grids when modeling complex scenes at high-resolutions by utilizing a compact neural network
representation, requiring only a few megabytes of memory instead of gigabytes. In summary, our
technical contributions are:

• An approach for representing continuous scenes with complex geometry and materials as 5D
neural radiance fields, parameterized as basic MLP networks.

• A differentiable rendering procedure based on classical volume rendering techniques, which
we use to optimize these representations from standard RGB images. This includes a hier-
archical sampling strategy to allocate the MLP’s capacity towards space with visible scene
content.

• A positional encoding to map each input 5D coordinate into a higher dimensional space,
which enables us to successfully optimize neural radiance fields to represent high-frequency
scene content.

We demonstrate that our resulting neural radiance field method quantitatively and qualitatively
outperforms state-of-the-art view synthesis methods, including works that fit neural 3D repre-
sentations to scenes as well as works that train deep convolutional networks to predict sampled
volumetric representations. As far as we know, this paper presents the first continuous neural scene
representation that is able to render high-resolution photorealistic novel views of real objects and
scenes from RGB images captured in natural settings.

CHAPTER 2. NEURAL RADIANCE FIELDS 8

2.1 Related Work
A promising recent direction in computer vision is encoding objects and scenes in the weights of
an MLP that directly maps from a 3D spatial location to an implicit representation of the shape,
such as the signed distance [31] at that location. However, these methods have so far been unable to
reproduce realistic scenes with complex geometry with the same fidelity as techniques that represent
scenes using discrete representations such as triangle meshes or voxel grids. In this section, we
review these two lines of work and contrast them with our approach, which enhances the capabilities
of neural scene representations to produce state-of-the-art results for rendering complex realistic
scenes.

A similar approach of using MLPs to map from low-dimensional coordinates to colors has also
been used for representing other graphics functions such as images [184], textured materials [65,
135, 152, 151], and indirect illumination values [159].

Neural 3D shape representations Recent work has investigated the implicit representation of
continuous 3D shapes as level sets by optimizing deep networks that map xyz coordinates to signed
distance functions [76, 137] or occupancy fields [54, 115]. However, these models are limited by
their requirement of access to ground truth 3D geometry, typically obtained from synthetic 3D
shape datasets such as ShapeNet [21]. Subsequent work has relaxed this requirement of ground
truth 3D shapes by formulating differentiable rendering functions that allow neural implicit shape
representations to be optimized using only 2D images. Niemeyer et al. [130] represent surfaces as
3D occupancy fields and use a numerical method to find the surface intersection for each ray, then
calculate an exact derivative using implicit differentiation. Each ray intersection location is provided
as the input to a neural 3D texture field that predicts a diffuse color for that point. Sitzmann et al.
[177] use a less direct neural 3D representation that simply outputs a feature vector and RGB color
at each continuous 3D coordinate, and propose a differentiable rendering function consisting of a
recurrent neural network that marches along each ray to decide where the surface is located.

Though these techniques can potentially represent complicated and high-resolution geometry,
they have so far been limited to simple shapes with low geometric complexity, resulting in over-
smoothed renderings. We show that an alternate strategy of optimizing networks to encode 5D
radiance fields (3D volumes with 2D view-dependent appearance) can represent higher-resolution
geometry and appearance to render photorealistic novel views of complex scenes.

View synthesis and image-based rendering Given a dense sampling of views, photorealistic
novel views can be reconstructed by simple light field sample interpolation techniques [93, 28, 32].
For novel view synthesis with sparser view sampling, the computer vision and graphics communities
have made significant progress by predicting traditional geometry and appearance representations
from observed images. One popular class of approaches uses mesh-based representations of scenes
with either diffuse [201] or view-dependent [17, 33, 209] appearance. Differentiable rasterizers [24,
56, 106, 109] or pathtracers [95, 132] can directly optimize mesh representations to reproduce a
set of input images using gradient descent. However, gradient-based mesh optimization based on

CHAPTER 2. NEURAL RADIANCE FIELDS 9

(x,y,z,

Figure 2.2: An overview of our neural radiance field scene representation and differentiable
rendering procedure. We synthesize images by sampling 5D coordinates (location and viewing
direction) along camera rays (a), feeding those locations into an MLP to produce a color and volume
density (b), and using volume rendering techniques to composite these values into an image (c).
This rendering function is differentiable, so we can optimize our scene representation by minimizing
the residual between synthesized and ground truth observed images (d).

image reprojection is often difficult, likely because of local minima or poor conditioning of the loss
landscape. Furthermore, this strategy requires a template mesh with fixed topology to be provided as
an initialization before optimization [95], which is typically unavailable for unconstrained real-world
scenes.

Another class of methods use volumetric representations to address the task of high-quality
photorealistic view synthesis from a set of input RGB images. Volumetric approaches are able to
realistically represent complex shapes and materials, are well-suited for gradient-based optimization,
and tend to produce less visually distracting artifacts than mesh-based methods. Early volumetric
approaches used observed images to directly color voxel grids [90, 173, 189]. More recently, several
methods [44, 66, 79, 119, 141, 183, 198, 230] have used large datasets of multiple scenes to train
deep networks that predict a sampled volumetric representation from a set of input images, and then
use either alpha-compositing [144] or learned compositing along rays to render novel views at test
time. Other works have optimized a combination of convolutional networks (CNNs) and sampled
voxel grids for each specific scene, such that the CNN can compensate for discretization artifacts
from low resolution voxel grids [178] or allow the predicted voxel grids to vary based on input time
or animation controls [108]. While these volumetric techniques have achieved impressive results
for novel view synthesis, their ability to scale to higher resolution imagery is fundamentally limited
by poor time and space complexity due to their discrete sampling — rendering higher resolution
images requires a finer sampling of 3D space. We circumvent this problem by instead encoding a
continuous volume within the parameters of a deep fully-connected neural network, which not only
produces significantly higher quality renderings than prior volumetric approaches, but also requires
just a fraction of the storage cost of those sampled volumetric representations.

CHAPTER 2. NEURAL RADIANCE FIELDS 10

(a) View 1 (b) View 2 (c) Radiance Distributions

Figure 2.3: A visualization of view-dependent emitted radiance. Our neural radiance field repre-
sentation outputs RGB color as a 5D function of both spatial position x and viewing direction d.
Here, we visualize example directional color distributions for two spatial locations in our neural
representation of the Ship scene. In (a) and (b), we show the appearance of two fixed 3D points
from two different camera positions: one on the side of the ship (orange insets) and one on the
surface of the water (blue insets). Our method predicts the changing specular appearance of these
two 3D points, and in (c) we show how this behavior generalizes continuously across the whole
hemisphere of viewing directions.

2.2 Neural Radiance Field Scene Representation
We represent a continuous scene as a 5D vector-valued function whose input is a 3D location
x = (x, y, z) and 2D viewing direction (✓,�), and whose output is an emitted color c = (r, g, b)
and volume density �. In practice, we express direction as a 3D Cartesian unit vector d. We
approximate this continuous 5D scene representation with an MLP network F⇥ : (x,d) ! (c, �)
and optimize its weights ⇥ to map from each input 5D coordinate to its corresponding volume
density and directional emitted color.

We encourage the representation to be multiview consistent by restricting the network to predict
the volume density � as a function of only the location x, while allowing the RGB color c to be
predicted as a function of both location and viewing direction. To accomplish this, the MLP F⇥ first
processes the input 3D coordinate x with 8 fully-connected layers (using ReLU activations and 256
channels per layer), and outputs � and a 256-dimensional feature vector. This feature vector is then
concatenated with the camera ray’s viewing direction and passed to one additional fully-connected
layer (using a ReLU activation and 128 channels) that output the view-dependent RGB color.

See Fig. 2.3 for an example of how our method uses the input viewing direction to represent
non-Lambertian effects. As shown in Fig. 2.4, a model trained without view dependence (only x as
input) has difficulty representing specularities.

CHAPTER 2. NEURAL RADIANCE FIELDS 11

2.3 Volume Rendering with Radiance Fields
Our 5D neural radiance field represents a scene as the volume density and directional emitted
radiance at any point in space. We render the color of any ray passing through the scene using
principles from classical volume rendering [78]. The volume density �(x) can be interpreted as the
differential probability of a ray terminating at an infinitesimal particle at location x. The expected
color C(r) of camera ray r(t) = o+ td with near and far bounds tn and tf is:

C(r) =

Z tf

tn

T (t)�(r(t))c(r(t),d)dt , where T (t) = exp

✓
�
Z t

tn

�(r(s))ds

◆
. (2.1)

The function T (t) denotes the accumulated transmittance along the ray from tn to t, i.e., the
probability that the ray travels from tn to t without hitting any other particle. Rendering a view
from our continuous neural radiance field requires estimating this integral C(r) for a camera ray
traced through each pixel of the desired virtual camera.

We numerically estimate this continuous integral using quadrature. Deterministic quadrature,
which is typically used for rendering discretized voxel grids, would effectively limit our representa-
tion’s resolution because the MLP would only be queried at a fixed discrete set of locations. Instead,
we use a stratified sampling approach where we partition [tn, tf] into N evenly-spaced bins and
then draw one sample uniformly at random from within each bin:

ti ⇠ U

tn +

i� 1

N
(tf � tn), tn +

i

N
(tf � tn)

�
. (2.2)

Although we use a discrete set of samples to estimate the integral, stratified sampling enables us
to represent a continuous scene representation because it results in the MLP being evaluated at
continuous positions over the course of optimization. We use these samples to estimate C(r) with
the quadrature rule discussed in the volume rendering review by Max [113]:

Ĉ(r) =
NX

i=1

Ti(1� exp(��i�i))ci , where Ti = exp

�

i�1X

j=1

�j�j

!
, (2.3)

where �i = ti+1 � ti is the distance between adjacent samples. This function for calculating Ĉ(r)
from the set of (ci, �i) values is trivially differentiable and reduces to traditional alpha compositing
with alpha values ↵i = 1� exp(��i�i).

2.4 Optimizing a Neural Radiance Field
In the previous section we have described the core components necessary for modeling a scene as
a neural radiance field and rendering novel views from this representation. However, we observe
that these components are not sufficient for achieving state-of-the-art quality, as demonstrated
in Section 2.5). We introduce two improvements to enable representing high-resolution complex

CHAPTER 2. NEURAL RADIANCE FIELDS 12

Ground Truth Complete Model No View Dependence No Positional Encoding

Figure 2.4: Here we visualize how our full model benefits from representing view-dependent emitted
radiance and from passing our input coordinates through a high-frequency positional encoding.
Removing view dependence prevents the model from recreating the specular reflection on the
bulldozer tread. Removing the positional encoding drastically decreases the model’s ability to
represent high frequency geometry and texture, resulting in an oversmoothed appearance.

scenes. The first is a positional encoding of the input coordinates that assists the MLP in representing
high-frequency functions, and the second is a hierarchical sampling procedure that allows us to
efficiently sample this high-frequency representation.

Positional encoding
Despite the fact that neural networks are universal function approximators [67], we found that having
the network F⇥ directly operate on xyz✓� input coordinates results in renderings that perform
poorly at representing high-frequency variation in color and geometry. This is consistent with recent
work by Rahaman et al. [148], which shows that deep networks are biased towards learning lower
frequency functions. They additionally show that mapping the inputs to a higher dimensional space
using high frequency functions before passing them to the network enables better fitting of data that
contains high frequency variation.

We leverage these findings in the context of neural scene representations, and show that refor-
mulating F⇥ as a composition of two functions F⇥ = F 0

⇥ � �, one learned and one not, significantly
improves performance (see Fig. 2.4 and Table 2.2). Here � is a mapping from R into a higher
dimensional space R2L, and F 0

⇥ is still simply a regular MLP. Formally, the encoding function we
use is:

�(p) =
�
sin(2

0⇡p), cos(2
0⇡p), · · · , sin

�
2
L�1⇡p

�
, cos

�
2
L�1⇡p

� �
. (2.4)

This function �(·) is applied separately to each of the three coordinate values in x (which are
normalized to lie in [�1, 1]) and to the three components of the Cartesian viewing direction unit
vector d (which by construction lie in [�1, 1]). In our experiments, we set L = 10 for �(x) and
L = 4 for �(d).

A similar mapping is used in the popular Transformer architecture [199], where it is referred to
as a positional encoding. However, Transformers use it for a different goal of providing the discrete
positions of tokens in a sequence as input to an architecture that does not contain any notion of order.
In contrast, we use these functions to map continuous input coordinates into a higher dimensional

CHAPTER 2. NEURAL RADIANCE FIELDS 13

space to enable our MLP to more easily approximate a higher frequency function. Concurrent work
on a related problem of modeling 3D protein structure from projections [229] also utilizes a similar
input coordinate mapping.

We investigate positional encoding further in chapter 3.

Hierarchical volume sampling
Our rendering strategy of densely evaluating the neural radiance field network at N query points
along each camera ray is inefficient: free space and occluded regions that do not contribute to
the rendered image are still sampled repeatedly. We draw inspiration from early work in volume
rendering [92] and propose a hierarchical representation that increases rendering efficiency by
allocating samples proportionally to their expected effect on the final rendering.

Instead of just using a single network to represent the scene, we simultaneously optimize two
networks: one “coarse” and one “fine”. We first sample a set of Nc locations using stratified
sampling, and evaluate the “coarse” network at these locations as described in Eqns. 2.2 and 2.3.
Given the output of this “coarse” network, we then produce a more informed sampling of points
along each ray where samples are biased towards the relevant parts of the volume. To do this, we
first rewrite the alpha composited color from the coarse network Ĉc(r) in Eqn. 2.3 as a weighted
sum of all sampled colors ci along the ray:

Ĉc(r) =
NcX

i=1

wici , wi = Ti(1� exp(��i�i)) . (2.5)

Normalizing these weights as ŵi =
wi/PNc

j=1 wj produces a piecewise-constant PDF along the ray.
We sample a second set of Nf locations from this distribution using inverse transform sampling,
evaluate our “fine” network at the union of the first and second set of samples, and compute the
final rendered color of the ray Ĉf (r) using Eqn. 2.3 but using all Nc +Nf samples. This procedure
allocates more samples to regions we expect to contain visible content. This addresses a similar
goal as importance sampling, but we use the sampled values as a nonuniform discretization of the
whole integration domain rather than treating each sample as an independent probabilistic estimate
of the entire integral.

Implementation details
We optimize a separate neural continuous volume representation network for each scene. This
requires only a dataset of captured RGB images of the scene, the corresponding camera poses and
intrinsic parameters, and scene bounds (we use ground truth camera poses, intrinsics, and bounds
for synthetic data, and use the COLMAP structure-from-motion package [170] to estimate these
parameters for real data). At each optimization iteration, we randomly sample a batch of camera
rays from the set of all pixels in the dataset, and then follow the hierarchical sampling described in
Sec. 2.4 to query Nc samples from the coarse network and Nc +Nf samples from the fine network.
We then use the volume rendering procedure described in Sec. 2.3 to render the color of each ray

CHAPTER 2. NEURAL RADIANCE FIELDS 14

from both sets of samples. Our loss is simply the total squared error between the rendered and true
pixel colors for both the coarse and fine renderings:

L =

X

r2R

���Ĉc(r)� C(r)
���
2

2
+

���Ĉf (r)� C(r)
���
2

2

�
(2.6)

where R is the set of rays in each batch, and C(r), Ĉc(r), and Ĉf (r) are the ground truth, coarse
volume predicted, and fine volume predicted RGB colors for ray r respectively. Note that even
though the final rendering comes from Ĉf (r), we also minimize the loss of Ĉc(r) so that the weight
distribution from the coarse network can be used to allocate samples in the fine network.

In our experiments, we use a batch size of 4096 rays, each sampled at Nc = 64 coordinates
in the coarse volume and Nf = 128 additional coordinates in the fine volume. We use the Adam
optimizer [86] with a learning rate that begins at 5⇥ 10

�4 and decays exponentially to 5⇥ 10
�5

over the course of optimization (other Adam hyperparameters are left at default values of �1 = 0.9,
�2 = 0.999, and ✏ = 10

�7). The optimization for a single scene typically take around 100–300k
iterations to converge on a single NVIDIA V100 GPU (about 1–2 days).

2.5 Results
We quantitatively (Tables 2.1) and qualitatively (Figs. 2.5 and 2.6) show that our method outperforms
prior work, and provide extensive ablation studies to validate our design choices (Table 2.2).

Datasets
Synthetic renderings of objects We first show experimental results on two datasets of synthetic
renderings of objects (Table 2.1, “Diffuse Synthetic 360°” and “Realistic Synthetic 360°”). The
DeepVoxels [178] dataset contains four Lambertian objects with simple geometry. Each object is
rendered at 512⇥ 512 pixels from viewpoints sampled on the upper hemisphere (479 as input and
1000 for testing). We additionally generate our own dataset containing pathtraced images of eight
objects that exhibit complicated geometry and realistic non-Lambertian materials. Six are rendered
from viewpoints sampled on the upper hemisphere, and two are rendered from viewpoints sampled
on a full sphere. We render 100 views of each scene as input and 200 for testing, all at 800⇥ 800

pixels.

Real images of complex scenes We show results on complex real-world scenes captured with
roughly forward-facing images (Table 2.1, “Real Forward-Facing”). This dataset consists of 8
scenes captured with a handheld cellphone (5 taken from the LLFF paper and 3 that we capture),
captured with 20 to 62 images, and hold out 1/8 of these for the test set. All images are 1008⇥ 756

pixels.

CHAPTER 2. NEURAL RADIANCE FIELDS 15

Diffuse Synthetic 360
� [178] Realistic Synthetic 360

� Real Forward-Facing [119]
Method PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS#
SRN [177] 33.20 0.963 0.073 22.26 0.846 0.170 22.84 0.668 0.378
NV [108] 29.62 0.929 0.099 26.05 0.893 0.160 - - -
LLFF [119] 34.38 0.985 0.048 24.88 0.911 0.114 24.13 0.798 0.212
Ours 40.15 0.991 0.023 31.01 0.947 0.081 26.50 0.811 0.250

Table 2.1: Our method quantitatively outperforms prior work on datasets of both synthetic and
real images. We report PSNR/SSIM (higher is better) and LPIPS [228] (lower is better). The
DeepVoxels [178] dataset consists of 4 diffuse objects with simple geometry. Our realistic synthetic
dataset consists of pathtraced renderings of 8 geometrically complex objects with complex non-
Lambertian materials. The real dataset consists of handheld forward-facing captures of 8 real-world
scenes (NV cannot be evaluated on this data because it only reconstructs objects inside a bounded
volume). Though LLFF achieves slightly better LPIPS, we urge readers to view our supplementary
video where our method achieves better multiview consistency and produces fewer artifacts than all
baselines.

CHAPTER 2. NEURAL RADIANCE FIELDS 16

Ship

Lego

Microphone

Materials

Ground Truth NeRF (ours) LLFF [119] SRN [177] NV [108]

Figure 2.5: Comparisons on test-set views for scenes from our new synthetic dataset generated
with a physically-based renderer. Our method is able to recover fine details in both geometry
and appearance, such as Ship’s rigging, Lego’s gear and treads, Microphone’s shiny stand and
mesh grille, and Material’s non-Lambertian reflectance. LLFF exhibits banding artifacts on the
Microphone stand and Material’s object edges and ghosting artifacts in Ship’s mast and inside the
Lego object. SRN produces blurry and distorted renderings in every case. Neural Volumes cannot
capture the details on the Microphone’s grille or Lego’s gears, and it completely fails to recover the
geometry of Ship’s rigging.

CHAPTER 2. NEURAL RADIANCE FIELDS 17

Fern

T-Rex

Orchid

Ground Truth NeRF (ours) LLFF [119] SRN [177]

Figure 2.6: Comparisons on test-set views of real world scenes. LLFF is specifically designed for
this use case (forward-facing captures of real scenes). Our method is able to represent fine geometry
more consistently across rendered views than LLFF, as shown in Fern’s leaves and the skeleton
ribs and railing in T-rex. Our method also correctly reconstructs partially occluded regions that
LLFF struggles to render cleanly, such as the yellow shelves behind the leaves in the bottom Fern
crop and green leaves in the background of the bottom Orchid crop. Blending between multiples
renderings can also cause repeated edges in LLFF, as seen in the top Orchid crop. SRN captures the
low-frequency geometry and color variation in each scene but is unable to reproduce any fine detail.

CHAPTER 2. NEURAL RADIANCE FIELDS 18

Comparisons
To evaluate our model we compare against current top-performing techniques for view synthesis,
detailed below. All methods use the same set of input views to train a separate network for each
scene except Local Light Field Fusion [119], which trains a single 3D convolutional network on a
large dataset, then uses the same trained network to process input images of new scenes at test time.

Neural Volumes (NV) [108] synthesizes novel views of objects that lie entirely within a bounded
volume in front of a distinct background (which must be separately captured without the object of
interest). It optimizes a deep 3D convolutional network to predict a discretized RGB↵ voxel grid
with 128

3 samples as well as a 3D warp grid with 32
3 samples. The algorithm renders novel views

by marching camera rays through the warped voxel grid.

Scene Representation Networks (SRN) [177] represent a continuous scene as an opaque surface,
implicitly defined by a MLP that maps each (x, y, z) coordinate to a feature vector. They train
a recurrent neural network to march along a ray through the scene representation by using the
feature vector at any 3D coordinate to predict the next step size along the ray. The feature vector
from the final step is decoded into a single color for that point on the surface. Note that SRN is
a better-performing followup to DeepVoxels [178] by the same authors, which is why we do not
include comparisons to DeepVoxels.

Local Light Field Fusion (LLFF) [119] LLFF is designed for producing photorealistic novel
views for well-sampled forward facing scenes. It uses a trained 3D convolutional network to directly
predict a discretized frustum-sampled RGB↵ grid (multiplane image or MPI [230]) for each input
view, then renders novel views by alpha compositing and blending nearby MPIs into the novel
viewpoint.

Discussion
We thoroughly outperform both baselines that also optimize a separate network per scene (NV and
SRN) in all scenarios. Furthermore, we produce qualitatively and quantitatively superior renderings
compared to LLFF (across all except one metric) while using only their input images as our entire
training set.

The SRN method produces heavily smoothed geometry and texture, and its representational
power for view synthesis is limited by selecting only a single depth and color per camera ray. The
NV baseline is able to capture reasonably detailed volumetric geometry and appearance, but its use
of an underlying explicit 1283 voxel grid prevents it from scaling to represent fine details at high
resolutions. LLFF specifically provides a “sampling guideline” to not exceed 64 pixels of disparity
between input views, so it frequently fails to estimate correct geometry in the synthetic datasets
which contain up to 400-500 pixels of disparity between views. Additionally, LLFF blends between
different scene representations for rendering different views, resulting in perceptually-distracting
inconsistency.

CHAPTER 2. NEURAL RADIANCE FIELDS 19

Input #Im. L (Nc , Nf) PSNR" SSIM" LPIPS#
1) No PE, VD, H xyz 100 - (256, -) 26.67 0.906 0.136
2) No Pos. Encoding xyz✓� 100 - (64, 128) 28.77 0.924 0.108
3) No View Dependence xyz 100 10 (64, 128) 27.66 0.925 0.117
4) No Hierarchical xyz✓� 100 10 (256, -) 30.06 0.938 0.109
5) Far Fewer Images xyz✓� 25 10 (64, 128) 27.78 0.925 0.107
6) Fewer Images xyz✓� 50 10 (64, 128) 29.79 0.940 0.096
7) Fewer Frequencies xyz✓� 100 5 (64, 128) 30.59 0.944 0.088
8) More Frequencies xyz✓� 100 15 (64, 128) 30.81 0.946 0.096
9) Complete Model xyz✓� 100 10 (64, 128) 31.01 0.947 0.081

Table 2.2: An ablation study of our model. Metrics are averaged over the 8 scenes from our realistic
synthetic dataset. See Sec. 2.5 for detailed descriptions.

The biggest practical tradeoffs between these methods are time versus space. All compared
single scene methods take at least 12 hours to train per scene. In contrast, LLFF can process a
small input dataset in under 10 minutes. However, LLFF produces a large 3D voxel grid for every
input image, resulting in enormous storage requirements (over 15GB for one “Realistic Synthetic”
scene). Our method requires only 5 MB for the network weights (a relative compression of 3000⇥
compared to LLFF), which is even less memory than the input images alone for a single scene from
any of our datasets.

Ablation studies
We validate our algorithm’s design choices and parameters with an extensive ablation study in
Table 2.2. We present results on our “Realistic Synthetic 360°” scenes. Row 9 shows our complete
model as a point of reference. Row 1 shows a minimalist version of our model without positional
encoding (PE), view-dependence (VD), or hierarchical sampling (H). In rows 2–4 we remove these
three components one at a time from the full model, observing that positional encoding (row 2) and
view-dependence (row 3) provide the largest quantitative benefit followed by hierarchical sampling
(row 4). Rows 5–6 show how our performance decreases as the number of input images is reduced.
Note that our method’s performance using only 25 input images still exceeds NV, SRN, and LLFF
across all metrics when they are provided with 100 images. In rows 7–8 we validate our choice of
the maximum frequency L used in our positional encoding for x (the maximum frequency used
for d is scaled proportionally). Only using 5 frequencies reduces performance, but increasing
the number of frequencies from 10 to 15 does not improve performance. We believe the benefit
of increasing L is limited once 2

L exceeds the maximum frequency present in the sampled input
images (roughly 1024 in our data).

CHAPTER 2. NEURAL RADIANCE FIELDS 20

2.6 Discussion
This chapter addresses deficiencies of prior work that uses MLPs to represent objects and scenes
as continuous functions. We demonstrate that representing scenes as 5D neural radiance fields (an
MLP that outputs volume density and view-dependent emitted radiance as a function of 3D location
and 2D viewing direction) produces better renderings than the previously-dominant approach of
training deep convolutional networks to output discretized voxel representations.

Although we have proposed a hierarchical sampling strategy to make rendering more sample-
efficient (for both training and testing), there is still much more progress to be made in investigating
techniques to efficiently optimize and render neural radiance fields. Another direction for future
work is interpretability: sampled representations such as voxel grids and meshes admit reasoning
about the expected quality of rendered views and failure modes, but it is unclear how to analyze
these issues when we encode scenes in the weights of a deep neural network. We believe that this
work makes progress towards a graphics pipeline based on real world imagery, where complex
scenes could be composed of neural radiance fields optimized from images of actual objects and
scenes.

21

Chapter 3

Representing High Frequencies in
Coordinate-Based Networks

One of the fundamental aspects that facilitated NeRF’s ability to capture high-frequency details,
as elaborated in Chapter 2, was the positional encoding of network inputs. This technique is
not exclusive to NeRF and can be extended to any “coordinate-based” MLP which takes low-
dimensional coordinates as inputs (typically points in R3) and are trained to output a representation
of shape, density, and/or color at each input location (see Figure 3.1). This strategy is compelling
since coordinate-based MLPs are amenable to gradient-based optimization and machine learning,
and can be orders of magnitude more compact than grid-sampled representations. Coordinate-
based MLPs have been used to represent images [128, 184] (referred to as “compositional pattern
producing networks”), volume density [123], occupancy [115], and signed distance [137], and have
achieved state-of-the-art results across a variety of tasks such as shape representation [26, 34, 53,
55, 76, 118, 137], texture synthesis [64, 135], shape inference from images [104, 105], and novel
view synthesis [123, 130, 169, 177].

We leverage recent progress in modeling the behavior of deep networks using kernel regression
with a neural tangent kernel (NTK) [71] to theoretically and experimentally show that standard
MLPs are poorly suited for these low-dimensional coordinate-based vision and graphics tasks.
In particular, MLPs have difficulty learning high frequency functions, a phenomenon referred to
in the literature as “spectral bias” [10, 148]. NTK theory suggests that this is because standard
coordinate-based MLPs correspond to kernels with a rapid frequency falloff, which effectively
prevents them from being able to represent the high-frequency content present in natural images
and scenes.

A few recent works [123, 229] have experimentally found that a heuristic sinusoidal mapping
of input coordinates (called a “positional encoding”) allows MLPs to represent higher frequency
content. We observe that this is a special case of Fourier features [150]: mapping input coordinates v
to �(v) =

⇥
a1 cos(2⇡bT

1 v), a1 sin(2⇡b
T
1 v), . . . , am cos(2⇡bT

mv), am sin(2⇡bT
mv)

⇤T before passing
them into an MLP. We show that this mapping transforms the NTK into a stationary (shift-invariant)

This chapter is based on joint work published at NeurIPS 2020 [193]

CHAPTER 3. REPRESENTING HIGH FREQUENCIES IN COORDINATE-BASED
NETWORKS 22

y

 (v)

v

B

x y

GR

(a) Coordinate-based MLP

N
o

Fo
ur

ie
rf

ea
tu

re
s

�
(v

)
=

v
W

ith
Fo

ur
ie

rf
ea

tu
re

s
�
(v

)
=

F
F
(v

)

(b) Image regression (c) 3D shape regression (d) MRI reconstruction (e) Inverse rendering

(x,y)! RGB (x,y,z)! occupancy (x,y,z)! density (x,y,z)!RGB, density

Figure 3.1: Fourier features improve the results of coordinate-based MLPs for a variety of high-
frequency low-dimensional regression tasks, both with direct (b, c) and indirect (d, e) supervision.
We visualize an example MLP (a) for an image regression task (b), where the input to the network is
a pixel coordinate and the output is that pixel’s color. Passing coordinates directly into the network
(top) produces blurry images, whereas preprocessing the input with a Fourier feature mapping
(bottom) enables the MLP to represent higher frequency details.

kernel and enables tuning the NTK’s spectrum by modifying the frequency vectors bj , thereby
controlling the range of frequencies that can be learned by the corresponding MLP. We show that the
simple strategy of setting aj = 1 and randomly sampling bj from an isotropic distribution achieves
good performance, and that the scale (standard deviation) of this distribution matters much more
than its specific shape. We train MLPs with this Fourier feature input mapping across a range of
tasks relevant to the computer vision and graphics communities. As highlighted in Figure 3.1, our
proposed mapping dramatically improves the performance of coordinate-based MLPs. In summary,
we make the following contributions:

• We leverage NTK theory and simple experiments to show that a Fourier feature mapping can
be used to overcome the spectral bias of coordinate-based MLPs towards low frequencies by
allowing them to learn much higher frequencies (Section 3.3).

• We demonstrate that a random Fourier feature mapping with an appropriately chosen scale can
dramatically improve the performance of coordinate-based MLPs across many low-dimensional
tasks in computer vision and graphics (Section 3.5).

CHAPTER 3. REPRESENTING HIGH FREQUENCIES IN COORDINATE-BASED
NETWORKS 23

3.1 Related Work
Our work is motivated by the widespread use of coordinate-based MLPs to represent a variety of
visual signals, including images [184] and 3D scenes [115, 123, 137]. In particular, our analysis
is intended to clarify experimental results demonstrating that an input mapping of coordinates
(which they called a “positional encoding”) using sinusoids with logarithmically-spaced axis-
aligned frequencies improves the performance of coordinate-based MLPs on the tasks of novel view
synthesis from 2D images [123] and protein structure modeling from cryo-electron microscopy [229].
We analyze this technique to show that it corresponds to a modification of the MLP’s NTK, and we
show that other non-axis-aligned frequency distributions can outperform this positional encoding.

Prior works in natural language processing and time series analysis [81, 199, 211] have used
a similar positional encoding to represent time or 1D position. In particular, Xu et al. [211] use
random Fourier features (RFF) [150] to approximate stationary kernels with a sinusoidal input
mapping and propose techniques to tune the mapping parameters. Our work extends this by directly
explaining such mappings as a modification of the resulting network’s NTK. Additionally, we
address the embedding of multidimensional coordinates, which is necessary for vision and graphics
tasks.

To analyze the effects of applying a Fourier feature mapping to input coordinates before passing
them through an MLP, we rely on recent theoretical work that models neural networks in the limits
of infinite width and infinitesimal learning rate as kernel regression using the NTK [7, 12, 39, 71,
91]. In particular, we use the analyses from Lee et al. [91] and Arora et al. [7], which show that
the outputs of a network throughout gradient descent remain close to those of a linear dynamical
system whose convergence rate is governed by the eigenvalues of the NTK matrix [7, 10, 12, 91,
213]. Analysis of the NTK’s eigendecomposition shows that its eigenvalue spectrum decays rapidly
as a function of frequency, which explains the widely-observed “spectral bias” of deep networks
towards learning low-frequency functions [10, 11, 148].

We leverage this analysis to consider the implications of adding a Fourier feature mapping
before the network, and we show that this mapping has a significant effect on the NTK’s eigenvalue
spectrum and on the corresponding network’s convergence properties in practice.

3.2 Background and Notation
To lay the foundation for our theoretical analysis, we first review classic kernel regression and its
connection to recent results that analyze the training dynamics and generalization behavior of deep
fully-connected networks. In later sections, we use these tools to analyze the effects of training
coordinate-based MLPs with Fourier feature mappings.

Kernel regression. Kernel regression is a classic nonlinear regression algorithm [202]. Given
a training dataset (X,y) = {(xi, yi)}ni=1, where xi are input points and yi = f(xi) are the
corresponding scalar output labels, kernel regression constructs an estimate f̂ of the underlying

CHAPTER 3. REPRESENTING HIGH FREQUENCIES IN COORDINATE-BASED
NETWORKS 24

function at any point x as:

f̂(x) =
nX

i=1

�
K�1y

�
i
k(xi,x) , (3.1)

where K is an n ⇥ n kernel (Gram) matrix with entries Kij = k(xi,xj) and k is a symmetric
positive semidefinite (PSD) kernel function which represents the “similarity” between two input
vectors. Intuitively, the kernel regression estimate at any point x can be thought of as a weighted
sum of training labels yi using the similarity between the corresponding xi and x.

Approximating deep networks with kernel regression. Let f be a fully-connected deep network
with weights ✓ initialized from a Gaussian distribution N . Theory proposed by Jacot et al. [71]
and extended by others [7, 10, 91] shows that when the width of the layers in f tends to infinity and
the learning rate for SGD tends to zero, the function f(x; ✓) converges over the course of training
to the kernel regression solution using the neural tangent kernel (NTK), defined as:

kNTK(xi,xj) = E✓⇠N

⌧
@f(xi; ✓)

@✓
,
@f(xj; ✓)

@✓

�
. (3.2)

When the inputs are restricted to a hypersphere, the NTK for an MLP can be written as a dot product
kernel (a kernel in the form hNTK(xT

i xj) for a scalar function hNTK : R ! R).
Prior work [7, 10, 71, 91] shows that an NTK linear system model can be used to approximate

the dynamics of a deep network during training. We consider a network trained with an L2 loss and
a learning rate ⌘, where the network’s weights are initialized such that the output of the network at
initialization is close to zero. Under asymptotic conditions stated in Lee et al. [91], the network’s
output for any data Xtest after t training iterations can be approximated as:

ŷ(t) ⇡ KtestK
�1
�
I� e�⌘Kt

�
y , (3.3)

where ŷ(t)
= f(Xtest; ✓) are the network’s predictions on input points Xtest at training iteration t,

K is the NTK matrix between all pairs of training points in X, and Ktest is the NTK matrix between
all points in Xtest and all points in the training dataset X.

Spectral bias when training neural networks. Let us consider the training error ŷ(t)
train � y, where

ŷ(t)
train are the network’s predictions on the training dataset at iteration t. Since the NTK matrix K

must be PSD, we can take its eigendecomposition K = Q⇤QT, where Q is orthogonal and ⇤ is a
diagonal matrix whose entries are the eigenvalues �i � 0 of K. Then, since e�⌘Kt

= Qe�⌘⇤tQT:

QT
(ŷ(t)

train � y) ⇡ QT
��
I� e�⌘Kt

�
y � y

�
= �e�⌘⇤tQTy . (3.4)

This means that if we consider training convergence in the eigenbasis of the NTK, the ith component
of the absolute error |QT

(ŷ(t)
train � y)|i will decay approximately exponentially at the rate ⌘�i. In

other words, components of the target function that correspond to kernel eigenvectors with larger
eigenvalues will be learned faster. For a conventional MLP, the eigenvalues of the NTK decay rapidly
[11, 12, 61]. This results in extremely slow convergence to the high frequency components of the
target function, to the point where standard MLPs are effectively unable to learn these components,
as visualized in Figure 3.1. Next, we describe a technique to address this slow convergence by using
a Fourier feature mapping of input coordinates before passing them to the MLP.

CHAPTER 3. REPRESENTING HIGH FREQUENCIES IN COORDINATE-BASED
NETWORKS 25

3.3 Fourier Features for a Tunable Stationary Neural Tangent
Kernel

Machine learning analysis typically addresses the case in which inputs are high dimensional points
(e.g. the pixels of an image reshaped into a vector) and training examples are sparsely distributed.
In contrast, in this work we consider low-dimensional regression tasks, wherein inputs are assumed
to be dense coordinates in a subset of Rd for small values of d (e.g. pixel coordinates). This setting
has two significant implications when viewing deep networks through the lens of kernel regression:

1. We would like the composed NTK to be shift-invariant over the input domain, since the training
points are distributed with uniform density. In problems where the inputs are normalized to
the surface of a hypersphere (common in machine learning), a dot product kernel (such as the
regular NTK) corresponds to spherical convolution. However, inputs in our setting are dense
in Euclidean space. A Fourier feature mapping of input coordinates makes the composed NTK
stationary (shift-invariant), acting as a convolution kernel over the input domain (see Section 3.4
for additional discussion on stationary kernels).

2. We would like to control the bandwidth of the NTK to improve training speed and generalization.
As we see from Eqn. 3.4, a “wider” kernel with a slower spectral falloff achieves faster training
convergence for high frequency components. However, we know from signal processing that
reconstructing a signal using a kernel whose spectrum is too wide causes high frequency aliasing
artifacts. We show in Section 3.5 that a Fourier feature input mapping can be tuned to lie between
these “underfitting’ and “overfitting” extremes, enabling both fast convergence and low test error.

Fourier features and the composed neural tangent kernel. Fourier feature mappings have been
used in many applications since their introduction in the seminal work of Rahimi and Recht [150],
which used random Fourier features to approximate an arbitrary stationary kernel function by
applying Bochner’s theorem. Extending this technique, we use a Fourier feature mapping � to
featurize input coordinates before passing them through a coordinate-based MLP, and investigate
the theoretical and practical effect this has on convergence speed and generalization. The function
� maps input points v 2 [0, 1)d to the surface of a higher dimensional hypersphere with a set of
sinusoids:

�(v) =
⇥
a1 cos(2⇡b

T
1 v), a1 sin(2⇡b

T
1 v), . . . , am cos(2⇡bT

mv), am sin(2⇡bT
mv)

⇤T
. (3.5)

Because cos(↵� �) = cos↵ cos � + sin↵ sin �, the kernel function induced by this mapping is:

k�(v1,v2) = �(v1)
T�(v2) =

mX

j=1

a2j cos
�
2⇡bT

j (v1 � v2)
�
= h�(v1 � v2) , (3.6)

where h�(v�) ,
mX

j=1

a2j cos(2⇡b
T
j v�) . (3.7)

CHAPTER 3. REPRESENTING HIGH FREQUENCIES IN COORDINATE-BASED
NETWORKS 26

Note that this kernel is stationary (a function of only the difference between points). We can think
of the mapping as a Fourier approximation of a kernel function: bj are the Fourier basis frequencies
used to approximate the kernel, and a2j are the corresponding Fourier series coefficients.

After computing the Fourier features for our input points, we pass them through an MLP to get
f(�(v); ✓). As discussed previously, the result of training a network can be approximated by kernel
regression using the kernel hNTK(xT

i xj). In our case, xi = �(vi) so the composed kernel becomes:

hNTK(x
T
i xj) = hNTK

⇣
�(vi)

T�(vj)

⌘
= hNTK(h�(vi � vj)). (3.8)

Thus, training a network on these embedded input points corresponds to kernel regression with the
stationary composed NTK function hNTK � h� . The MLP function approximates a convolution of
the composed NTK with a weighted Dirac delta at each input training point vi:

f̂ = (hNTK � h�) ⇤
nX

i=1

wi�vi (3.9)

where w = K�1y (from Eqn. 3.1). This allows us to draw analogies to signal processing, where
the composed NTK acts similarly to a reconstruction filter. In the next section, we show that the
frequency decay of the composed NTK determines the behavior of the reconstructed signal.

3.4 Stationary kernels
One of the primary benefits of our Fourier feature mapping is that it results in a stationary composed
NTK function. In this section, we offer some intuition for why stationarity is desirable for our
low-dimensional graphics and imaging problems.

First, let us consider the implications of using an MLP applied directly to a low-dimensional
input (without any Fourier feature mapping). In this setting, the NTK is a function of the dot product
between its inputs and of their norms [10, 12, 14, 71]. This makes the NTK rotation-invariant, but
not translation-invariant. For our graphics and imaging applications, we want to be able to model
an object or scene equally well regardless of its location, so translation-invariance or stationarity
is a crucial property. We can then add approximate rotation invariance back by using an isotropic
frequency sampling distribution.

This aligns with standard practice in signal processing, in which k(u,v) = h̃(u�v) = h̃(v�u)
(e.g. the Gaussian or radial basis function kernel, or the sinc reconstruction filter kernel). This
Euclidean notion of similarity based on difference vectors is better suited to the low-dimensional
regime, in which we expect (and can afford) dense and nearly uniform sampling. Regression with a
stationary kernel corresponds to reconstruction with a convolution filter: new predictions are sums
of training points, weighted by a function of Euclidean distance.

One of the most important features of our sinusoidal input mapping is that it translates between
these two regimes. If u,v 2 Rd for small d, � is our Fourier feature embedding function, and k
is a dot product kernel function, then k(�(u), �(v)) = h(�(u)T�(v)) = h̃(u� v). In words, our

CHAPTER 3. REPRESENTING HIGH FREQUENCIES IN COORDINATE-BASED
NETWORKS 27

sinusoidal input mapping transforms a dot product kernel into a stationary one, making it better
suited to the low-dimensional regime.

This effect is illustrated in a simple 1D example in Figure 3.2, which shows that the benefits of a
stationary composed NTK indeed appear in the MLP setting with a basic Fourier featurization (using
a single frequency). We train MLPs with and without this basic Fourier embedding to learn a set of
shifted 1D Gaussian probability density functions. The plain MLP successfully fits a zero-centered
function but struggles to fit shifted functions, while the MLP with basic Fourier embedding exhibits
stationary behavior, with good performance regardless of shifts.

Figure 3.2: A plain coordinate-based MLP can learn a centered function (in this case a Gaussian
density) but struggles to model shifts of the same function. Adding a basic Fourier embedding
(with a single frequency) enables the MLP to fit the target function equally well regardless of shifts.
The NTK corresponding to the plain MLP is based on dot products between inputs, whereas the
NTK corresponding to the NTK with Fourier embedding is based on Euclidean distances between
inputs, making it shift-invariant. In this experiment we train an MLP (4 layers, 256 channels, ReLU
activation) for 500 iterations using the Adam [86] optimizer with a learning rate of 10�4. We report
mean and standard deviation performance over 20 random network initializations.

3.5 Manipulating the Fourier Feature Mapping
Preprocessing the inputs to a coordinate-based MLP with a Fourier feature mapping creates a
composed NTK that is not only stationary but also tunable. By manipulating the settings of the aj
and bj parameters in Eqn. 3.5, it is possible to dramatically change both the rate of convergence
and the generalization behavior of the resulting network. In this section, we investigate the effects
of the Fourier feature mapping in the setting of 1D function regression.

We train MLPs to learn signals f defined on the interval [0, 1). We sample cn linearly spaced
points on the interval, using every cth point as the training set and the remaining points as the test set.
Since our composed kernel function is stationary, evaluating it at linearly spaced points on a periodic
domain makes the resulting kernel matrix circulant: it represents a convolution and is diagonalizable
by the Fourier transform. Thus, we can compute the eigenvalues of the composed NTK matrix by

CHAPTER 3. REPRESENTING HIGH FREQUENCIES IN COORDINATE-BASED
NETWORKS 28

Figure 3.3: Adding a Fourier feature mapping can improve the poor conditioning of a coordinate-
based MLP’s neural tangent kernel (NTK). (a) We visualize the NTK function kNTK(xi, xj)

(Eqn. 3.2) for a 4-layer ReLU MLP with one scalar input. This kernel is not shift-invariant and
does not have a strong diagonal, making it poorly suited for kernel regression in low-dimensional
problems. (b) A basic input mapping �(v) = [cos 2⇡v, sin 2⇡v]T makes the composed NTK
kNTK(�(vi), �(vj)) shift-invariant (stationary). (c) A Fourier feature input mapping (Eqn. 3.5) can
be used to tune the composed kernel’s width, where we set aj = 1/jp and bj = j for j = 1, . . . , n/2.
(d) Higher frequency mappings (lower p) result in composed kernels with wider spectra, which
enables faster convergence for high-frequency components (see Figure 3.4).

simply taking the Fourier transform of a single row. All experiments are implemented in JAX [15]
and the NTK functions are calculated automatically using the Neural Tangents library [133].

Visualizing the composed NTK. We first visualize how modifying the Fourier feature mapping
changes the composed NTK. We set bj = j (full Fourier basis in 1D) and aj = 1/jp for j =

1, . . . , n/2. We use p = 1 to denote the mapping �(v) = [cos 2⇡v, sin 2⇡v]T that simply wraps
[0, 1) around the unit circle (this is referred to as the “basic” mapping in later experiments).
Figure 3.3 demonstrates the effect of varying p on the composed NTK. By construction, lower p
values result in a slower falloff in the frequency domain and a correspondingly narrower kernel in
the spatial domain.

Effects of Fourier features on network convergence. We generate ground truth 1D functions by
sampling cn values from a family with parameter ↵ as follows: we sample a standard i.i.d. Gaussian
vector of length cn, scale its ith entry by 1/i↵, then return the real component of its inverse Fourier
transform. We will refer to this as a “1/f↵ noise” signal.

In Figure 3.4, we train MLPs (4 layers, 1024 channels, ReLU activations) to fit a bandlimited
1/f 1 noise signal (c = 8, n = 32) using Fourier feature mappings with different p values. Fig-
ures 3.4b and 3.4d show that the NTK linear dynamics model accurately predict the effects of
modifying the Fourier feature mapping parameters. Separating different frequency components of
the training error in Figure 3.4c reveals that networks with narrower NTK spectra converge faster for
low frequency components but essentially never converge for high frequency components, whereas
networks with wider NTK spectra successfully converge across all components. The Fourier feature
mapping p = 1 has adequate power across frequencies present in the target signal (so the network
converges rapidly during training) but limited power in higher frequencies (preventing overfitting or
aliasing).

Tuning Fourier features in practice. Eqn. 3.3 allows us to estimate a trained network’s theoretical

CHAPTER 3. REPRESENTING HIGH FREQUENCIES IN COORDINATE-BASED
NETWORKS 29

Figure 3.4: Combining a network with a Fourier feature mapping has dramatic effects on conver-
gence and generalization. Here we train a network on 32 sampled points from a 1D function (a)
using mappings shown in Fig. 3.3. A mapping with a smaller p value yields a composed NTK
with more power in higher frequencies, enabling the corresponding network to learn a higher
frequency function. The theoretical and experimental training loss improves monotonically with
higher frequency kernels (d), but the test-set loss is lowest at p = 1 and falls as the network starts to
overfit (b). As predicted by Eqn. 3.4, we see roughly log-linear convergence of the training loss
frequency components (c). Higher frequency kernels result in faster convergence for high frequency
loss components, thereby overcoming the “spectral bias” observed when training networks with no
input mapping.

loss on a validation set using the composed kernel. For small 1D problems, we can minimize this
loss with gradient-based optimization to choose mapping parameters aj (given a dense sampling of
bj). In this carefully controlled setting (1D signals, small training dataset, gradient descent with
small learning rate, very wide networks), we find that this optimized mapping also achieves the best
performance when training networks. Please refer to section 3.6 for details and experiments.

In real-world problems, especially in multiple dimensions, it is not feasible to use a feature
mapping that densely samples Fourier basis functions; the number of Fourier basis functions scales
with the number of training data points, which grows exponentially with dimension. Instead, we
sample a set of random Fourier features [150] from a parametric distribution. We find that the
exact sampling distribution family is much less important than the distribution’s scale (standard
deviation).

Figure 3.5 demonstrates this point using hyperparameter sweeps for a variety of sampling
distributions. In each subfigure, we draw 1D target signals (c = 2, n = 1024) from a fixed 1/f↵

distribution and train networks to learn them. We use random Fourier feature mappings (of length

CHAPTER 3. REPRESENTING HIGH FREQUENCIES IN COORDINATE-BASED
NETWORKS 30

Figure 3.5: We find that a sparse random sampling of Fourier features can perform as well as a
dense set of features and that the width of the distribution matters more than the shape. Here, we
generate random 1D signals from 1/f↵ noise and report the test-set accuracy of different trained
models that use a sparse set (16 out of 1024) of random Fourier features sampled from different
distributions. Each subplot represents a different family of 1D signals. Each dot represents a trained
network, where the color indicates which Fourier feature sampling distribution is used. We plot the
test error of each model versus the empirical standard deviation of its sampled frequencies. The
best models using sparsely sampled features are able to match the performance of a model trained
with dense Fourier features (dashed lines with error bars). All sampling distributions trace out the
same curve, exhibiting underfitting (slow convergence) when the standard deviation of sampled
frequencies is too low and overfitting when it is too high. This implies that the precise shape of the
distribution used to sample frequencies does not have a significant impact on performance.

16) sampled from different distribution families (Gaussian, uniform, uniform in log space, and
Laplacian) and sweep over each distribution’s scale. Perhaps surprisingly, the standard deviation of
the sampled frequencies alone is enough to predict test set performance, regardless of the underlying
distribution’s shape. We also observe that passing this sparse sampling of Fourier features through
an MLP matches the performance of using a dense set of Fourier features with the same MLP,
suggesting a strategy for scaling to higher dimensions. We proceed with a Gaussian distribution for
our higher-dimensional experiments in Section 3.6 and treat the scale as a hyperparameter to tune
on a validation dataset.

3.6 Experiments
We validate the benefits of using Fourier feature mappings for coordinate-based MLPs with experi-
ments on a variety of regression tasks relevant to the computer vision and graphics communities.

Compared mappings
We compare the performance of coordinate-based MLPs with no input mapping and with the
following Fourier feature mappings (cos, sin are applied elementwise):

CHAPTER 3. REPRESENTING HIGH FREQUENCIES IN COORDINATE-BASED
NETWORKS 31

Basic: �(v) = [cos(2⇡vv), sin(2⇡v)]T. Simply wraps input coordinates around the circle.
Positional encoding: �(v) =

⇥
. . . , cos(2⇡�j/mv), sin(2⇡�j/mv), . . .

⇤T for j = 0, . . . ,m � 1.
Uses log-linear spaced frequencies for each dimension, where the scale � is chosen for each task
and dataset by a hyperparameter sweep. This is a generalization of the “positional encoding” used
by prior work [123, 199, 229]. Note that this mapping is deterministic and only contains on-axis
frequencies, making it naturally biased towards data that has more frequency content along the axes.

Gaussian: �(v) = [cos(2⇡Bv), sin(2⇡Bv)]T, where each entry in B 2 Rm⇥d is sampled from
N (0, �2

), and � is chosen for each task and dataset with a hyperparameter sweep. In the absence of
any strong prior on the frequency spectrum of the signal, we use an isotropic Gaussian distribution.

Our experiments show that all of the Fourier feature mappings improve the performance of
coordinate-based MLPs over using no mapping and that the Gaussian RFF mapping performs best.

Tasks
We conduct experiments with direct regression, where supervision labels are in the same space as
the network outputs, as well as indirect regression, where the network outputs are passed through a
forward model to produce observations in the same space as the supervision labels. For each task
and dataset, we tune Fourier feature scales on a held-out set of signals. For each target signal, we
train an MLP on a training subset of the signal and compute error over the remaining test subset.
All tasks (except 3D shape regression) use L2 loss and a ReLU MLP with 4 layers and 256 channels.
The 3D shape regression task uses cross-entropy loss and a ReLU MLP with 8 layers and 256
channels. We apply a sigmoid activation to the output for each task (except the view synthesis
density prediction). We use 256 frequencies for the feature mapping in all experiments.

2D image

The 2D image regression tasks presented in the main text all use 512⇥ 512 resolution images. A
subsampled grid of 256⇥ 256 pixels is used as training data, and an offset grid of 256⇥ 256 pixels
is used for testing. We use two image datasets: Natural and Text, each consisting of 32 images. The
Natural images are generated by taking center crops of randomly sampled images from the Div2K
dataset [4]. The Text images are generated by placing random strings of text with random sizes and
colors on a white background (examples can be seen in Figure 3.6). For each dataset we perform a
hyperparameter sweep over feature mapping scales on 16 images. We find that scales �g = 10 and
�p = 6 work best for the Natural dataset and �g = 14 and �p = 5 work best for the Text dataset.
In Table 3.1, we report model performance using the optimal mapping scale on the remaining 16
images.

Each model (MLP with 4 layers, 256 channels, ReLU activation, sigmoid output) is trained
for 2000 iterations using the Adam [86] optimizer with default settings (�1 = 0.9, �2 = 0.999,
✏ = 10

�8). Learning rates are manually tuned for each dataset and method. For Natural images a
learning rate of 10�3 is used for the Gaussian RFF and the positional encoding, and a learning rate
of 10�2 is used for the basic mapping and “no mapping” methods. For the Text images a learning
rate of 10�3 is used for all methods.

CHAPTER 3. REPRESENTING HIGH FREQUENCIES IN COORDINATE-BASED
NETWORKS 32

(a) Ground Truth (b) No mapping (c) Basic (d) Positional enc. (e) Gaussian

Figure 3.6: Results for the 2D image regression task, for three images from our Natural dataset
(top) and two images from our Text dataset (bottom).

3D shape

We evaluate the 3D shape regression task (similar to Occupancy Networks [115]) on four complex
triangle meshes commonly used in computer graphics applications (Dragon, Armadillo, Buddha,
and Lucy, shown in Figure 3.7), each containing hundreds of thousands of vertices. We train one
coordinate-based MLP network to represent a single mesh rather than trying to generalize one
network to encode multiple objects, since our goal is to demonstrate that a network with no mapping

CHAPTER 3. REPRESENTING HIGH FREQUENCIES IN COORDINATE-BASED
NETWORKS 33

Natural Text
No mapping 19.32± 2.48 18.40± 2.23
Basic 21.71± 2.71 20.48± 1.96
Positional enc. 24.95± 3.72 27.57± 3.07
Gaussian 25.57± 4.19 30.47± 2.11

Table 3.1: 2D image results (mean ± standard deviation of PSNR)

or the low frequency “basic” mapping cannot accurately represent even a single shape, let alone a
whole class of objects.

We use a network with 8 layers of 256 channels each and a ReLU nonlinearity between each
layer. We apply a sigmoid activation to the output. Our batch size is 323 points, and we use the
Adam optimizer [86] with a learning rate starting at 5⇥ 10

�4 and exponentially decaying by a factor
of 0.01 over the course of 10000 total training iterations. At each training iteration, we sample a
batch of 3D points uniformly at random from the bounding box of the mesh, and then calculate
ground truth labels (using the point-in-mesh method implemented in the Trimesh library [117],
which relies on the Embree kernel for acceleration [203]). We use cross-entropy loss to train the
network to match these classification labels (0 for points outside the mesh, 1 for points inside).

The meshes are scaled to fit inside the unit cube [0, 1]3 such that the centroid of the mesh is
(0.5, 0.5, 0.5). We use the Lucy statue mesh as a validation object to find optimal scale values for
the positional encoding and Gaussian feature mapping. As described in the caption for Table 3.2,
we calculate error on both a uniformly random test set and a test set that is close to the mesh
surface (randomly chosen mesh vertices that have been perturbed by a random Gaussian vector with
standard deviation 0.01) in order to illustrate that Fourier feature mappings provide a large benefit
in resolving fine surface details. Both test sets have 64

3 points.

Uniform points Boundary points
No mapping 0.959± 0.006 0.864± 0.014
Basic 0.966± 0.007 0.892± 0.017
Positional enc. 0.987± 0.005 0.960± 0.011
Gaussian 0.988± 0.007 0.973± 0.010

Table 3.2: 3D shape results (mean ± standard deviation of intersection-over-union). Uniform points
is an “easy” test set where points are sampled uniformly at random from the bounding box of the
ground truth mesh, while Boundary points is a “hard” test set where points are sampled near the
boundary of the ground truth mesh.

In Figure 3.7, we visualize additional results on all four meshes mentioned above (including the
validation mesh Lucy). We render normal maps, which are computed by taking the cross product
of the numerical horizontal and vertical derivatives of the depth map. The original depth map is

CHAPTER 3. REPRESENTING HIGH FREQUENCIES IN COORDINATE-BASED
NETWORKS 34

(a) Ground Truth (b) No mapping (c) Basic (d) Positional enc. (e) Gaussian

Figure 3.7: Results for the 3D shape occupancy task [115].

generated by intersecting camera rays with the first 0.5 isosurface of the network. We select the
Fourier feature scales for (d) and (e) by doing a hyperparameter search based on validation loss for
the Lucy mesh in the last row and report test loss over the other three meshes (Table 3.2). Note that
the weights for each trained MLP are only 2MB, while the triangle mesh files for the objects shown
are 61MB, 7MB, 79MB, and 32MB respectively.

2D CT

In computed tomography (CT), we observe measurements that are integral projections (integrals
along parallel lines) of a density field. We construct a 2D CT task by using ground truth 512⇥ 512

resolution images, and computing 20 synthetic integral projections at evenly-spaced angles. For
each of these images, the supervision data is the set of integral projections, and the test PSNR is
evaluated over the original image.

We use two datasets for our 2D CT task: randomized Shepp-Logan phantoms [175], and the

CHAPTER 3. REPRESENTING HIGH FREQUENCIES IN COORDINATE-BASED
NETWORKS 35

(a) Ground Truth (b) No mapping (c) Basic (d) Positional enc. (e) Gaussian

Figure 3.8: Results for the 2D CT task.

ATLAS brain dataset [99]. For each dataset, we perform a hyperparameter sweep over mapping
scales on 8 examples. We found that scales �g = 4 and �p = 3 work best for the Shepp dataset and
�g = 5 and �p = 5 work best for the ATLAS dataset. In Table 3.3, we report model performance
using the optimal mapping scale on a distinct set of 8 images.

Shepp ATLAS
No mapping 16.75± 3.64 15.44± 1.28
Basic 23.31± 4.66 16.95± 0.72
Positional enc. 26.89± 1.46 19.55± 1.09
Gaussian 28.33± 1.15 19.88± 1.23

Table 3.3: 2D CT results (mean ± standard deviation of PSNR).

Each model (MLP with 4 layers, 256 channels, ReLU activation, sigmoid output) is trained
for 1000 iterations using the Adam [86] optimizer with default settings (�1 = 0.9, �2 = 0.999,
✏ = 10

�8). The learning rate is manually tuned for each method. Gaussian RFF and positional
encoding use a learning rate of 10�3, and the basic and “no mapping” method use a learning rate of
10

�2.

3D MRI

In magnetic resonance imaging (MRI), we observe measurements that are Fourier coefficients of
the atomic response to radio waves under a magnetic field. We construct a toy 3D MRI task by
using ground truth 96⇥ 96⇥ 96 resolution volumes and randomly sampling ⇠13% of the Fourier
coefficients for each volume from an isotropic Gaussian. For each of these volumes, the supervision

CHAPTER 3. REPRESENTING HIGH FREQUENCIES IN COORDINATE-BASED
NETWORKS 36

(a) Ground Truth (b) No mapping (c) Basic (d) Positional enc. (e) Gaussian

Figure 3.9: Results for the 3D MRI task.

data is the set of sampled Fourier coefficients, and the test PSNR is evaluated over the original
volume.

We use the ATLAS brain dataset [99] for our 3D MRI experiments. We perform a hyperparameter
sweep over mapping scales on 6 examples. We find that scales �g = 5 and �p = 4 perform best.
In Table 3.4, we report model performance using the optimal mapping scale on a distinct set of 6
images. Each model (MLP with 4 layers, 256 channels, ReLU activation, sigmoid output) is trained
for 1000 iterations using the Adam [86] optimizer with default settings (�1 = 0.9, �2 = 0.999,
✏ = 10

�8). We use a manually-tuned learning rate of 2 ⇥ 10
�3 for each method. Results are

visualized in Figure 3.9.

ATLAS
No mapping 26.14± 1.45
Basic 28.58± 2.45
Positional enc. 32.23± 3.08
Gaussian 34.51± 2.72

Table 3.4: 3D MRI results (mean ± standard deviation of PSNR).

3D inverse rendering for view synthesis

In this task we use the “tiny NeRF” simplified version of the view synthesis method NeRF [123]
where hierarchical sampling and view dependence have been removed. The model is trained to
predict the color and volume density at an input 3D point. Volumetric rendering is used to render
novel viewpoints of the object. The loss is calculated between the rendered views and ground
truth renders. In our experiments we use the NeRF Lego dataset of 120 images downsampled to
400⇥ 400 pixel resolution. The dataset is split into 100 training images, 7 validation images, and
13 test images. The reconstruction quality on the validation images is used to determine the best
mapping scale; for this scene we find �g = 6.05 and �p = 1.27 perform best.

The model (MLP with 4 layers, 256 channels, ReLU activation, sigmoid on RGB output)
is trained for 5 ⇥ 10

5 iterations using the Adam [86] optimizer with default settings (�1 = 0.9,

CHAPTER 3. REPRESENTING HIGH FREQUENCIES IN COORDINATE-BASED
NETWORKS 37

(a) Ground Truth (b) No mapping (c) Basic (d) Positional enc. (e) Gaussian

Figure 3.10: Results for the inverse rendering task [123].

�2 = 0.999, ✏ = 10
�8). The learning rate is manually tuned for each mapping: 10�2 for no mapping,

5⇥ 10
�3 for basic, 5⇥ 10

�4 for positional encoding, and 5⇥ 10
�4 for Gaussian. During training

we use batches of 1024 rays.
The original NeRF method [123] uses an input mapping similar to the Positional encoding we

compare against. The original NeRF mapping is smaller than our mappings (8 vs. 256 frequencies).
We include metrics for this mapping in Table 3.5 under Original pos. enc. The positional encoding
mappings only contain frequencies on the axes, and are therefore biased towards signals with on-axis
frequency content. In our experiments we rotate the Lego scene, which was manually axis-aligned
in the original dataset, for a more equitable comparison. Table 3.5 also reports metrics for positional
encodings on the original axis-aligned scene. Results are visualized in Figure 3.10.

Optimizing validation error through the NTK linear dynamics
Using Eqn. 3.3, we can predict what error a trained network will achieve on a set of testing points.
Since this equation depends on the composed NTK, we can directly relate predicted test set loss to
the Fourier feature mapping parameters a and b for a validation set of signals yval:

Lopt =
��u(t) � yval

��2
2
⇡
���KvalK

�1
�
I� e�⌘Kt

�
y � yval

���
2

2
, (3.10)

CHAPTER 3. REPRESENTING HIGH FREQUENCIES IN COORDINATE-BASED
NETWORKS 38

3D NeRF
No mapping 22.41± 0.92
Basic 23.16± 0.90
Original pos. enc. 24.81± 0.88
Positional enc. 25.28± 0.83
Gaussian 25.48± 0.89
Original pos. enc. (axis-aligned) 25.60± 0.76
Positional enc. (axis-aligned) 26.27± 0.91

Table 3.5: 3D NeRF results (mean ± standard deviation of PSNR). Error is calculated based on
held-out images of the scene since the ground truth radiance field is not known.

where Kval is the composed NTK evaluated between points in a validation dataset Xval and training
dataset X, and ⌘ and t are the learning rate and number of iterations that will be used when training
the actual network.

In Figure 3.11, we show the results of minimizing Eqn. 3.10 by gradient descent on aj values
(with fixed corresponding “densely sampled” bj = j) for validation sets sampled from three different
1/f↵ noise families. Note that gradient descent on this theoretical loss approximation produces
aj values which are able to perform as well as the best “power law” aj values for each respective
signal class (compared dashed lines versus ⇥ markers in Figure 3.11b). As mentioned in the main
text, we find that this optimization strategy is only viable for small 1D regression problems. In our
multidimensional tasks, using densely sampled bj values is not tractable due to memory constraints.
In addition, the theoretical approximation only holds when training the network using SGD, and in
practice we train using the Adam optimizer [86].

Feature sparsity and network depth
In our experiments, we observe that deeper networks need fewer Fourier features than shallow
networks. As the depth of the MLP increases, we observe that a sparser set of frequencies can
achieve similar performance; Figure 3.12 illustrates this effect in the context of 2D image regression.

Again drawing on NTK theory, we understand this tradeoff as an effect of frequency “spreading,”
as illustrated in Figure 3.13. A Fourier featurization consists of only discrete frequencies, but
when composed with the NTK, the influence of each discrete frequency “spreads” over its local
neighborhood in the final spectrum. We find that the “spread” around each frequency feature
increases for deeper networks. For an MLP to learn all of the frequency components in the target
signal, its corresponding composed NTK must contain adequate power across the frequency support
of the target signal. This is accomplished either by including more frequencies in the Fourier
features or by spreading those frequencies through sufficient NTK depth.

CHAPTER 3. REPRESENTING HIGH FREQUENCIES IN COORDINATE-BASED
NETWORKS 39

Figure 3.11: The Fourier feature mappings can be optimized for better performance on a class
of target signals by using the linearized network approximation. Here we consider target signals
sampled from three different power law distributions. In (a) we show the spectrum for composed
kernels corresponding to different optimized feature mappings, where the feature mappings are
initialized to match the “Power 1” distribution. In (b) we take an alternative approach where
we sweep over "power law" settings for our Fourier features. We find that tuning this simple
parameterization is able to perform on par with the optimized feature maps.

Figure 3.12: In a 2D image regression task (ex-
plained in Section 3.6) we find that shallower
networks require more Fourier features than
deeper networks. This is explained by the fre-
quency spreading effect shown in Figure 3.13.
In this experiment we use the Natural image
dataset and a Gaussian mapping. All of the
network layers have 256 channels, and the net-
works are trained using an Adam [86] optimizer
with a learning rate of 10�3.

3.7 Discussion
We leverage NTK theory to show that a Fourier feature mapping can make coordinate-based MLPs
better suited for modeling functions in low dimensions, thereby overcoming the spectral bias inherent
in coordinate-based MLPs. We experimentally show that tuning the Fourier feature parameters offers
control over the frequency falloff of the combined NTK and significantly improves performance
across a range of graphics and imaging tasks. These findings shed light on the burgeoning technique
of using coordinate-based MLPs to represent 3D shapes in computer vision and graphics pipelines,
and provide a simple strategy for practitioners to improve results in these domains. This technique
is leveraged utilized in all of the remaining projects in this dissertation.

CHAPTER 3. REPRESENTING HIGH FREQUENCIES IN COORDINATE-BASED
NETWORKS 40

Figure 3.13: Each frequency included in a Fourier embedding is “spread” by the NTK, with deeper
NTKs causing more frequency spreading. We posit that this frequency spreading is what enables an
MLP with a sparse set of Fourier features to faithfully reconstruct a complex signal, which would
be poorly reconstructed by either sparse Fourier feature regression or a plain coordinate-based MLP.

41

Chapter 4

Initializing Coordinate-Based Networks

In the previous chapters we explored the potential of representing complex low-dimensional signals
using deep fully-connected neural networks. However, one limitation of these neural representations
is that computing network weights ✓ that reproduce a given signal typically requires solving an
optimization problem by running many steps of gradient descent. This can take between seconds
(when encoding a small image) and hours (when solving an inverse problem to recover a high
resolution radiance field, as in NeRF [123]). Common approaches to address this issue include
concatenating a latent vector to the input coordinate and supervising a single neural network to
represent an entire class of signals [115, 137], or training a hypernetwork to map from signal
observations (or a latent code) to MLP weights [179, 177]. However, each of these strategies is
restricted to representing only signals within its learned latent space, potentially limiting its ability
to express previously unseen target signals.

Recent work [180] has shown that optimization-based meta-learning can dramatically reduce
the number of gradient descent steps required to optimize a neural representation to encode a new
signal in the case of signed distance fields of 2D and 3D shapes. In this work, we propose learning
the weight initialization for neural representations across a wide variety of underlying signal types,
such as images, volumetric data, and 3D scenes. We show that compared to a standard random
initialization, using fixed, learned values for the initial network weights acts as a strong prior that
enables both faster convergence during optimization and better generalization when only partial
observations of the target signal are available. In the context of using neural representations for
3D reconstruction from images, a learned initialization specialized to a particular ShapeNet [21]
class allows the network to recover 3D shape from a single image over the course of optimization,
whereas a standard randomly initialized network fails unless provided with multiple input views.
Given a meta-training set consisting of observations of different signals sampled from a fixed
underlying class, our setup applies an optimization-based meta-learning algorithm (MAML [41] or
Reptile [129]) in order to produce initial weights better suited for representing that specific signal
class (e.g., face images from CelebA [107] or 3D chairs from ShapeNet [21]).

The biggest advantage of our approach is its simplicity. Given an existing framework for test-

This chapter is based on joint work published at CVPR 2021 [194]

CHAPTER 4. INITIALIZING COORDINATE-BASED NETWORKS 42

Input Coordinate

R

yx

G B
Value at

Coordinate

Standard
Initialization

Meta-Learned
Initialization

Figure 4.1: A coordinate-based MLP, illustrated on the left, takes a coordinate as input and outputs
a value at that location. For example, the network could take in a pixel coordinate (x, y) and emit
the (R,G,B) color at that pixel as output, thereby representing a 2D image. The network weights ✓
are typically optimized via gradient descent to produce the desired image, as depicted on the right.
However, finding good parameters can be computationally expensive, and the full optimization
process must be repeated for each new target. We propose using meta-learning to find initial network
weights ✓⇤0 that allow for faster convergence and better generalization.

time optimization of a neural representation, implementing an outer loop with MAML or Reptile
update steps only requires a few extra lines of code and a dataset of training examples. Once the
meta-learning phase is complete, the learned initial weights can be stored and later reloaded in
place of a standard network initialization whenever a new signal needs to be encoded. This minor
implementation change can significantly alter the behavior of the network during optimization.

4.1 Related Work
Neural Representations Neural representations have recently risen to prominence as compact
representations for 3D shapes. These methods represent shapes as implicit surfaces defined as a
level set of an MLP network and enable full object reconstruction from incomplete 3D point cloud
data or depth scans [26, 34, 53, 55, 76, 115, 118, 137]. Later work combined this idea with various
formulations of differentiable rendering to recover neural representations of 3D shape using only
2D image observations [105, 104, 123, 131, 177, 215].

Coordinate-based neural networks have also been used to represent other low-dimensional
signals, such as 2D images, where such networks (when trained via genetic algorithms) have been
referred to as compositional pattern–producing networks [185]. Recent works have shown that
standard ReLU MLPs fail to adequately represent fine details in these complex low-dimensional
signals due to a spectral bias [149] and address this issue by either replacing the ReLU activations

CHAPTER 4. INITIALIZING COORDINATE-BASED NETWORKS 43

with sine functions [179] or by lifting the input coordinates into a Fourier feature space [193]. Our
work makes use of these observations and presents a technique that enables a coordinate-based MLP
to learn from the process of fitting many signals within a category so that it can quickly optimize to
fit any new signal using fewer steps and fewer observations.

Meta-learning Meta-learning typically addresses the problem of few-shot learning, where some
examples of a given task (including training and test data) are used to learn an algorithm that
achieves better performance on new, previously unseen instances of the same task. A prototypical
example from computer vision is few-shot image classification, where a network must learn to
differentiate between new classes at test time based on only a small number of labeled instances of
each class.

Most relevant to this work are optimization-based meta-learning algorithms such as Model-
Agnostic Meta Learning (MAML) [41] and Reptile [129], as well as various extensions [6, 40, 42,
98, 153]. Given a network architecture for performing a task, these methods use an outer loop of
gradient-based learning to find a weight initialization that allows the network to more efficiently
optimize for new instances of the underlying task at test time. These methods assume the use of
a standard gradient-based optimization method such as stochastic gradient descent or Adam [86]
at test time, making them easy to layer on top of existing implementations, as opposed to more
complex methods such as Ravi et al. [156], which trains a “meta-learner” LSTM network to
perform gradient updates for the underlying task. An exhaustive review of meta-learning algorithms
is provided in the survey paper by Hospedales et al. [68].

MetaSDF [180] specifically applies this idea of learning a weight initialization to the task of
fitting neural representations to represent signed distance fields, and shows that this strategy achieves
much more rapid convergence than standard approaches such as DeepSDF [137]. Our work applies
meta-learning to neural representations for a wider variety of underlying signal types and further
explores the power of using initial weight settings as a prior.

4.2 Overview
We define a finite signal T as a function mapping from a bounded set C 2 Rd to Rn, where we
refer to elements x 2 C as d-dimensional coordinates. Examples include images (mapping from
2D pixel coordinates to 3D color values) or volumetric representations for 3D shapes (mapping
from 3D locations to 4D tuples of color and density). A coordinate-based neural representation f✓
for T is a fully connected neural network with d input and n output channels whose weights ✓ are
optimized such that f✓ matches T as closely as possible for all coordinates in x 2 C.

If direct pointwise observations {(xi, T (xi)}i of the signal T are available, f✓ can be supervised
by gradient descent using a simple L2 loss:

L(✓) =
X

i

kf✓(xi)� T (xi)k22 . (4.1)

CHAPTER 4. INITIALIZING COORDINATE-BASED NETWORKS 44

Let ✓0 denote the initial network weights before any gradient steps are taken, and let ✓i denote the
weights after i steps of optimization. Basic gradient descent applies the rule:

✓i+1 = ✓i � ↵r✓L(✓)|✓=✓i , (4.2)

with a learning rate parameter ↵, whereas more sophisticated optimizers such as Adam [86] keep
track of gradient moments over time to redirect the optimization trajectory. Given a fixed budget
of m optimization steps, different initial weight values ✓0 will result in different final weights ✓m
and signal approximation error L(✓m). When emphasizing the functional dependence of ✓m on the
initial weights and a particular signal, we will write ✓m(✓0, T).

It is often the case that only indirect observations of T are available, taken through some forward
measurement model M(T,p). For example, if T is a 3D object, M(T,p) could be a 2D image
captured of the object from camera pose p. In this case, recovering a neural representation for T
from observations {pi,M(T,pi)}i requires solving an inverse problem by taking gradient steps on
a loss that incorporates the forward model M :

LM(✓) =
X

i

kM(f✓,pi)�M(T,pi)k22 . (4.3)

If M discards too much information about T or the set of provided observations is too small, the
resulting network f✓ may not match T closely. For example, accurately recovering a 3D object from
a single 2D view may not be possible without strong a priori knowledge of the object’s shape.

Optimizing initial weights
We assume that we are given a dataset of observations of signals T from a particular distribution
T (e.g., 2D face images or 3D chairs) and our goal is to find initial weights ✓⇤0 that will result in
the lowest possible final loss L(✓m) when optimizing a network f✓ to represent a new, previously
unseen signal from the same distribution:

✓⇤0 = argmin✓0ET⇠T [L(✓m(✓0, T))] (4.4)

This problem of trying to learn the initial weights of a network to serve as a good starting point
for gradient descent across a distribution of tasks is addressed by a variety of optimization-based
meta-learning algorithms, such as MAML [41] and Reptile [129].

MAML [41] Given a task T , calculating the weight values ✓m(✓0, T) requires taking m optimiza-
tion steps, which are collectively referred to as the inner loop. MAML wraps an outer loop of
meta-learning around this inner loop in order to learn the initial weights ✓0. Each outer loop samples
a signal Tj from T and applies the update rule:

✓j+1
0 = ✓j0 � �r✓L(✓m(✓, Tj))|✓=✓j0

(4.5)

with meta-learning step size �. This update rule applies gradient descent to the loss on the weights
✓m(✓

j
0, Tj) resulting from the inner loop optimization.

CHAPTER 4. INITIALIZING COORDINATE-BASED NETWORKS 45

Reptile [129] Reptile uses the same meta-learning setup as MAML but applies a simpler update
rule that does not require calculating second-order gradients:

✓j+1
0 = ✓j0 � �(✓m(✓

j
0, Tj)� ✓j0) . (4.6)

This rule moves the previous weight initialization ✓j0 in the direction of the task-optimized weights
✓m(✓

j
0, Tj).

Experimental setup
The meta-learning algorithms described previously are conceptually simple, requiring no changes to
the architecture or optimization procedure of a coordinate-based neural representation when given a
new signal to encode at “test time” (after meta-learning is complete). These algorithms produce
only a set of initial network weights ✓⇤0 that are then used as a starting point for gradient descent.
Test-time optimization on new signals is not limited to the same number of steps m as were used in
the inner loop during meta-learning; indeed, at test time we often observe benefits from optimizing
for significantly more iterations than were used during the inner loop of the meta-learning algorithm.

MAML is typically able to produce a better initialization than Reptile given a fixed number
of inner loop steps m, but Reptile can be unrolled for more inner loop steps because it is less
memory-intensive than MAML. For some tasks, MAML’s limited number of inner loop steps means
that it can only observe a small percentage of the observations of a target signal. In these cases, we
use Reptile to maximize the number of different observations seen over the course of the inner loop.
Experimentally we find it beneficial to unroll more steps for more complex tasks.

Each of our experiments involves two phases:
1. Meta-learning, where we use MAML or Reptile in combination with a training dataset of

example tasks (observations of different signal instances) to optimize initial network weights
for that class of signals, and

2. Test-time optimization, where we use standard gradient-based optimization to fit the weights
of a network to observations of a previously unseen signal from the same class.

We aim to answer the following question: how do different initial network weight settings influence
the ability of a neural representation to fit to a new signal during test-time optimization?

4.3 Implementation details
We found that modifying the weight initialization for these coordinate-based networks drastically
changed their convergence behavior during test-time optimization. As a result, we tuned the opti-
mization method and hyperparameters for each part of each experiment (using held-out validation
sets) in order to provide the fairest possible comparison and to not bias the results against the
non-meta-learned initializations. For example, we often found that SGD outperformed Adam when
doing test-time optimization using meta-learned initializations, but that Adam was significantly
better than SGD with a standard random initialization.

CHAPTER 4. INITIALIZING COORDINATE-BASED NETWORKS 46

All experiments are implemented in JAX [15]. Each experiment is trained on either a single
NVIDIA V100, 2080 Ti, or 3080 Ti. In all cases where the Adam optimizer [86] is used, we keep
the standard parameter choices for �1 = 0.9, �2 = 0.999, ✏ = 10

�8.

Image regression
For this task we use a SIREN [179] architecture (!0 = 200) with 5 layers of 256 channels each. For
the randomly initialized Standard baseline, we use the specific initialization procedure as proposed
in the SIREN paper.

MAML [41] is trained for 150K iterations. Each iteration has an outer batch size of 3 target
images. The inner batch contains all pixels of the target image. The outer loop uses the Adam
optimizer with learning rate of 10�5. The inner loop performs two steps of gradient descent with a
learning rate of 10�2.

During test-time optimization, we use gradient descent with learning rate of 10�2 when starting
from the MAML initial weights. For the baseline methods (Standard, Mean, Matched, Shuffled)
we used Adam with learning rate of 10�4, which performed significantly better than than gradient
descent.

CT reconstruction
For this task we use an MLP with 5 layers of 256 channels each. The network uses a ReLU
activation after each layer with the exception of the last layer, which has a sigmoid activation.
Prior to inputting the coordinates into the network, we encode them using random Fourier features
sampled from a normal distribution with � = 30, as was done in Tancik et al. [193].

Reptile [129] is trained for 100K iterations. Each iteration has an outer batch size of 1. The inner
batch contains 20 CT projections, each with 256 measurements, taken from a randomly sampled
direction. The outer loop uses the Adam optimizer with learning rate of 5⇥ 10

�5. The inner loop
performs 12 inner loop steps of gradient descent with a learning rate of 101.

ShapeNet [21] view synthesis
We use a simplified NeRF [123] model for our view synthesis tasks. This model uses a single
network rather than two networks (coarse and fine), and we do not provide view directions as
input. The network is an MLP with 6 layers, each with 256 channels and ReLU activations. As in
NeRF [123], we apply a positional encoding to each input coordinate with the form

N[

i=0

�
cos

�
2
fi/Nx

�
, sin

�
2
fi/Nx

�
, (4.7)

with N = 20 encodings and log-max frequency f = 8. We accumulate 128 samples per ray for
rendering.

CHAPTER 4. INITIALIZING COORDINATE-BASED NETWORKS 47

Reptile is trained for 100K iterations with an outer batch size of 1. The inner loop step optimizes
over a batch of 128 rays. We perform 32 inner loop steps for every outer loop step. The outer loop
uses the Adam optimizer with learning rate 5 ⇥ 10

�4 for the Chairs scenes and 5 ⇥ 10
�5 for the

Lamps and Cars scenes.
The test-time optimization parameters vary depending on the scene and the number of views

available during meta-learning. Each experiment uses an inner batch of 64 rays. The Shuffled
and Matched initializations are computed based on the MV Meta weights. For the 25 view chair
reconstruction, we use stochastic gradient descent with a learning rate of 10�1 for the Reptile
initialization; for the standard initialization, we use Adam with a learning rate of 10�4.

Phototourism [77] view synthesis
We use the same architecture as described in §4.3. Reptile is trained for 150K iterations with an
outer batch size of 1. The inner loop step optimizes over a batch of 64 rays, with 128 volume
rendering samples per ray. The outer loop uses the Adam optimizer with a learning rate of 5�4. We
train with 64 inner loop steps using gradient descent with a learning rate of 10. We compare to
Basic NeRF which has the same setup, but only one inner step. For Basic NeRF we train Trevi for
60K iterations, Brandenburg for 100K iterations, and Sacre Coeur for 200K iterations. To transfer
the appearance of a new photo during test-time optimization, we take 150 gradient steps with a
learning rate of 10.

4.4 Results
We present results on 2D image regression, 2D computed tomography (CT) reconstruction, 3D
object reconstruction, and 3D scene reconstruction. For each task, we demonstrate the benefits of
using meta-learned initial weights optimized to reconstruct a specific class of signals.

For 2D image regression, a meta-learned weight initialization leads to faster convergence
and better performance during test-time optimization. For CT reconstruction, it allows for better
reconstruction quality from fewer supervision views during test-time optimization. For 3D shape
reconstruction from images, it allows for faster convergence at test time and makes single view
reconstruction possible. For Phototourism landmark reconstruction, it can be optimized at test time
to transfer the appearance of a single input image onto the whole landmark, which can then be
rendered from novel camera views.

Tasks
Image regression A prototypical example of a coordinate-based neural representation is an MLP
optimized to represent a 2D image [179, 193] by taking in 2D pixel coordinates and outputting RGB
color values. We consider four different distributions T : images of faces (CelebA [107]), natural
images (Imagenette [69]), images of text (Text), and 2D signed distance fields of simple curves
(SDF). Each category contains around ten thousand examples. Given a sampled image T ⇠ T , we

CHAPTER 4. INITIALIZING COORDINATE-BASED NETWORKS 48

provide all 178⇥ 178 pixels as observations for optimizing the network weights ✓ in the inner loop.
Since this task is not memory constrained, we use MAML to meta-learn the weights over 2 unrolled
gradient steps (separately for each category T). In each of these inner loop steps, the entire image
is reconstructed and used to calculate the loss. For the MLP f✓, we use 5 layers with 256 channels
each and sine function nonlinearities, as in SIREN [177].

CT reconstruction Computed tomography (CT) is a widely used medical imaging technique that
captures projective measurements of the volumetric density of a target object. Tancik et al. [193]
use a coordinate-based neural representation to reconstruct a 2D signal from 1D integral projections;
the underlying MLP f✓ takes in a 2D coordinate and outputs a scalar volume density at that location.
Here T is a dataset of 2048 randomly generated 256 ⇥ 256 pixel Shepp-Logan phantoms [175],
where we provide 2D integral projections of a bundle of 256 parallel rays from a random angle as
the measurement for each sampled signal T during meta-learning. We use Reptile to meta-learn
the initial weights over 12 unrolled gradient steps. We found this to outperform MAML, which
was limited to 3 unrolled steps due to memory constraints. For the MLP f✓, we use 5 layers with
256 channels each and ReLU nonlinearities, and we apply random Fourier features to the input
coordinates [193].

View synthesis for ShapeNet [21] objects The goal of view synthesis is to generate a novel view
of a scene from a set of reference images. We use NeRF described in chapter 2 for this task. The
NeRF network is optimized to minimize the residual of re-rendering each of the input reference
images from their respective camera poses. In our view synthesis experiments, we use a simplified
NeRF model (simple-NeRF) that maintains the same image supervision and volume rendering
context. Unlike the original NeRF model, we do not feed in the viewing direction and we use a
single model instead of the two “coarse” and “fine” models used by NeRF.

For view synthesis on objects from the ShapeNet [21] dataset, we consider three categories T :
Chairs, Cars, and Lamps. We provide 25 128⇥ 128 pixel reference images during meta-learning for
each 3D object T . The reference viewpoints are randomly distributed on a sphere and are oriented
towards the target object, and each object is oriented in the canonical coordinate frame. The scenes
are lit by a randomly selected environment map [51] and rendered using ray tracing. We use Reptile
to meta-learn the initial weights (for each shape category) over 32 unrolled gradient steps. For the
MLP f✓, we use 6 layers with 256 channels each and ReLU nonlinearities, and apply a positional
encoding to the input coordinates [123].

View synthesis for Phototourism [77] scenes This dataset consists of thousands of posed tourist
photographs of famous landmarks. Our objective is to use these images to create an underlying
representation that can be explored and rendered from novel viewpoints with varying lighting
conditions. The primary challenge is the diversity of the capture conditions: the photos are taken
with different lighting conditions, camera hardware, camera viewpoint, and varying transient objects
like people and cars. Each underlying dataset T for meta-learning ✓⇤0 consists of images of a single
landmark (Trevi, Sacre Couer, or Brandenburg); the category is the overall 3D structure of the

CHAPTER 4. INITIALIZING COORDINATE-BASED NETWORKS 49

Initialization

St
an

da
rd

M
et

a

Step 1 Step 2

Target

Step 1 Step 2

Target
Sh

uf
fle

d
M

ea
n

Initializations meta optimized on CelebA dataset

M
at

ch
ed

Figure 4.2: Faster convergence: Examples of optimizing a network to represent a 2D image
from different initial weight settings. The meta-learned initialization (Meta) is specialized for the
class of human face images but still helps speed up convergence on other natural images (right).
Non-meta-initialized networks take 10 to 20 times as many iterations to reach the same quality as
the meta-initialized network does after only 2 gradient steps (see Table 4.1).

landmark itself, and the signal is its particular appearance (resulting from the time of day, lighting,
weather conditions, etc) within a single photo. If a standard NeRF model is trained directly on
this data, it learns a blurry representation of the scene that roughly corresponds to the mean of
the environmental conditions. NeRF in the Wild [112] explores these shortcomings and proposes
extensive architectural modifications to account for the variations. We find that these shortcomings
can be addressed to some degree solely with a better initialization and no architectural changes.

CHAPTER 4. INITIALIZING COORDINATE-BASED NETWORKS 50

Init. Method 2 Step PSNR " # of iters to match #
Standard 10.88 37.92± 6.31
Mean 14.48 25.59± 4.57
Matched 13.73 26.32± 4.17
Shuffled 16.29 25.80± 4.02
Meta 30.37 -

Table 4.1: Comparison of different initialization methods on an image regression task using the
CelebA dataset. We report reconstruction PSNR after two steps of test-time optimization. The
meta-learned initialization (Meta) significantly outperforms all other initializations. We also report
the average number of iterations necessary to match the accuracy of Meta after two steps.

Task
CelebA Imagenette Text SDF

In
it.

CelebA 30.37 26.44 21.53 36.45
Imagenette 28.51 27.07 22.63 34.80
Text 14.65 15.83 27.85 23.14
SDF 19.80 20.05 17.23 51.73

Table 4.2: PSNR comparison of four different learned initializations for image regression. Each
row corresponds to an initialization meta-learned over a different underlying image dataset. The
columns indicate which dataset images are sampled from during testing. The best initialization
for each task (bolded) is the one specifically optimized on training images drawn from the same
dataset. We observe that initializations transfer better between more similar datasets (CelebA and
Imagenette, both natural images) and poorly between less similar datasets (the frequency spectrum
of Text images is unlike that of the other categories).

We apply meta-learning to the same simple-NeRF model from the ShapeNet experiment. The
meta-training dataset for each landmark consists of thousands of images with varying resolution
and intrinsic/extrinsic camera parameters. We use Reptile to meta-learn the initial weights (for each
landmark) over 64 unrolled gradient steps. At test time, we optimize the simple-NeRF (starting from
the initial weights ✓⇤0 for that landmark) to reproduce the appearance of a new image, and then render
that simple-NeRF from other viewpoints. For the underlying MLP f✓, we use 6 layers with 256
channels each and ReLU nonlinearities, and apply positional encoding to the input coordinates [123].

Baselines
As well as a Standard randomly initialized network (Glorot et al. [57]), we compare to various
other initialization schemes in several of our experimental settings:

CHAPTER 4. INITIALIZING COORDINATE-BASED NETWORKS 51

Init. PSNR
Method 1 Views 2 Views 4 Views 8 View
Standard 13.63 14.15 16.31 21.49
Mean 14.72 15.39 17.43 25.19
Matched 14.07 15.51 20.25 24.77
Shuffled 13.64 14.17 16.69 22.09
Meta 15.09 18.70 22.00 27.34

Table 4.3: Comparison of initialization methods on a CT reconstruction task. Each “view” consists of
256 parallel rays. The data-dependent prior acquired during meta-learning improves reconstruction
quality when fewer views are observed.

• Mean: we optimize a network from scratch such that its output matches the mean signal
ET⇠T [T] from the current class T .

• Matched: we optimize a network from scratch such that its output matches the output of a
network using the meta-learned initialization for the current class T .

• Shuffled: we randomly permute the weights (within each network layer) of the meta-learned
initialization ✓⇤0 for the current class T .

Both the Mean and Matched baselines demonstrate the difference between having a good ini-
tialization in signal space versus weight space—despite Mean and Matched being initialized so
that the loss against a randomly sampled signal will be low, they are a worse starting point for
gradient descent than the actual meta-learned initial weights. The Shuffled baseline demonstrates
that matching the statistical distribution of the meta-learned initial weights is not sufficient for
better convergence or generalization. We find that using the Adam [86] optimizer performs best for
all of the baseline initializations, but that standard stochastic gradient descent works best for the
meta-learned initializations (we choose the best optimizer and hyperparameters for each task and
initialization using a held-out validation set).

Faster convergence
Image regression In Figure 4.2, we visualize the network output for a variety of initial weight
settings, showing the output images after 0, 1, and 2 gradient steps of test-time optimization. The
meta-learned initial weights are optimized to represent face images (CelebA [107]). When using
the learned initial weights ✓⇤0 (Meta), the target image is already clearly visible after the very first
step. In contrast, the baseline initialization methods take an order of magnitude more iterations to
represent the target image to the same accuracy (see Table 4.1). The Mean, Matched, and Shuffled
baselines perform better than the completely random Standard initialization, but still take over ten
times as many iterations to reach the same quality as the meta-initialized network can after 2 steps.
In particular, this demonstrates that neither matching the image space output nor the statistical
distribution of the meta-learned weights is sufficient for achieving a similar speedup.

CHAPTER 4. INITIALIZING COORDINATE-BASED NETWORKS 52

Target

M
ea

n
St

an
da

rd

8 Views4 Views2 Views1 View

M
et

a
M

at
ch

ed
Sh

uf
fle

d

Figure 4.3: Sparse Recovery: Examples of CT reconstructions of a Shepp-Logan phantom from a
sparse set of views. The meta-learned initial weights encode a data-dependent prior that improves
reconstruction in the limited data regime.

View synthesis for ShapeNet [21] objects In Figure 4.5, we plot the image reconstruction
accuracy for a held-out test set of objects from the Chair category. During test-time optimization,
25 views are observed. We find that starting from the optimized weights ✓⇤0 allows the network to
recover the chair more quickly compared to the Standard weight initialization. We note that after
many steps, both methods end up at a similar quality.

Generalizing from partial observations
Image regression within a category We perform meta-learning experiments across multiple
datasets to determine the extent that the optimized weight initialization acts as a class-specific prior.
We compare initializations trained on four different image datasets (CelebA, Imagenette, Text, and
SDF). Table 4.2 presents a confusion matrix demonstrating that optimizing the network initialization

CHAPTER 4. INITIALIZING COORDINATE-BASED NETWORKS 53

Chairs

In
pu

t V
iew

Ta
rg

et
St

an
da

rd
SV

 M
et

a
M

V
 M

et
a

Cars Lamps

Figure 4.4: Single view reconstructions of ShapeNet [21] objects. The simple-NeRF formulation
relies on multi-view consistency for supervision and therefore fails if naively applied to the task of
single view reconstruction, as seen in the Standard column. However, if the model is trained starting
from meta-learned initial weights, it is able to recover 3D geometry. The MV Meta initialization has
access to multiple views per object during meta-learning, whereas the SV Meta initialization only
has access to a single view per object during meta-learning. All methods only receive a single input
view during test-time optimization.

does in fact induce a dataset-dependent prior, with each learned initialization generalizing best to
the same dataset distribution it was trained on.

CT reconstruction from sparse views We report the reconstruction quality over a test set of
phantoms given varying numbers of views at test time in Table 4.3 and visualize one test example in
Figure 4.3. We observe poor reconstructions from the Standard initialization when few views are
provided. The meta-learned initializations are consistently able to match the PSNR of Standard with
half as many views. The Mean initialization is generated by training a network to reconstruct the
mean of the training phantoms. It is better able to preserve the structure of the phantom compared
to Standard but still performs worse than the meta-learned initializations.

Single image view synthesis for ShapeNet [21] A simple-NeRF model with a Standard random
initialization relies on multi-view consistency to reconstruct the appearance of a 3D object. With
only a single view, this naïve model is unable to recover any meaningful shape. We find that
a learned initialization “bakes in” a class-specific shape prior that enables the recovery of 3D
geometry (Figure 4.4, Table 4.4). We can meta-learn an effective weight initialization for single-
view reconstruction by optimizing over a dataset with 25 training views of each object (MV Meta).

CHAPTER 4. INITIALIZING COORDINATE-BASED NETWORKS 54

Figure 4.5: Reconstruction quality over the course of training for models optimized to reconstruct
ShapeNet chairs from a set of 25 reference images. The model starting from the meta-learned initial
weights outperforms the network using a standard random initialization throughout training.

PSNR
Chairs Cars Lamps

Standard 12.49 11.45 15.47
MV Matched 16.40 22.39 20.79
MV Shuffled 10.76 11.30 13.88
MV Meta 18.85 22.80 22.35
SV Meta 16.54 22.10 20.95

Table 4.4: Metrics for single image ShapeNet reconstructions using a simple-NeRF model. See
Figure 4.4 for image examples and §4.4 for experimental details.

We find that this prior persists even if the meta-training dataset only contains a single reference
image per scene (SV Meta), meaning that the meta-learning phase has no access to multiview
information for any particular object.

View synthesis with appearance transfer for Phototourism [77] As described in §4.4, these
images have different camera poses and visual appearance (lighting, sky, etc.) as they are taken by
tourists at different times. Our goal at test time is to explore the landmark from varying camera
viewpoints but rendered with the same appearance as in a target photograph. In every step of
the meta-learning outer loop, we supervise the simple-NeRF model to match the appearance of
a random photo of the landmark (with varying pose and appearance). We find that performing

CHAPTER 4. INITIALIZING COORDINATE-BASED NETWORKS 55

Input View

Po
se

Input View

Po
se

Figure 4.6: Reconstructions of the Trevi Fountain and Sacre Coeur landmarks from the Phototourism
dataset [77]. The meta-learning algorithm is run over tourist images taken at different locations
and times. During the test-time optimization, the neural representation is trained to recover the
input view on the left. The strong prior from the initialization captures the underlying geometry,
allowing us to render views from the camera positions of the images in the top row while retaining
the appearance of the input view.

PSNR
Trevi Sacre Coeur Brandenburg

Basic NeRF 17.14 17.59 17.77
Meta 19.35 19.33 19.11

Table 4.5: Reconstruction results on Phototourism data. Multi-view data with consistent appearance
is not available in this dataset, so we optimize on one half of an image and report image metrics
on the other half. We compare our Reptile setup (Meta) with a standard NeRF network trained on
all images of the landmark and then test-time optimized to fit each held-out target image. This is
equivalent to training Reptile with one inner loop gradient step.

test-time optimization using a single new photograph allows us to render convincing unobserved
viewpoints of the scene with the same environmental conditions.

In Figure 4.6, we show results for two landmarks. We test-time optimize the meta-learned
weights for five target images (shown on the left side of the grid), taking 150 gradient steps for
each image. We then render each of the resulting simple-NeRF networks from the five different
viewpoints (shown in the row above the grid). The result is an image from the camera position of
the corresponding top row image and matching the appearance of the left column image.

CHAPTER 4. INITIALIZING COORDINATE-BASED NETWORKS 56

Quantitative evaluation on the Phototourism dataset is difficult as multiple views with the same
environmental conditions do not exist. To overcome this, for Table 4.5 we optimize and evaluate on
the same image, by optimizing to match the appearance of the left half of the image and subsequently
evaluating metrics on the right half. For comparison, we train a simple-NeRF model with a standard
random initialization from scratch on each landmark, then test-time optimize it to match the left
half of each new view before evaluating it on the right half. This is algorithmically equivalent to
Reptile with one inner optimization step. We find that unrolling Reptile for 64 inner steps performs
better, producing significantly clearer renderings of the landmark.

4.5 Discussion
Our results show that simply modifying a coordinate-based neural representation’s initial weight
values can guide the network along a significantly better optimization trajectory, without changing
the underlying architecture or test-time optimization procedure. These meta-learned initial weights
can result in faster convergence or act as a strong prior for representing signals from a given
distribution. This partially ameliorates a major shortcoming of neural representations (separately
optimizing a network for each new signal) without limiting their representational power.

There are many additional directions to explore, such as applying more sophisticated meta-
learning algorithms or more precisely characterizing the geometry of weight space for these
networks. One limitation of our current approach is that it requires a sizable dataset of example
signals from a target distribution in order to derive beneficial initial weights. Another shortcoming
is that our method still requires some amount of test-time optimization.

As the number of use cases for neural representations continues to rapidly expand, we believe
this work takes an important step toward understanding the importance of their initial weights
and optimization behavior. In the following chapters we will explore new use cases for neural
representations.

57

Chapter 5

Scaling Neural Radiance Fields

In this chapter we investigate scaling up NeRFs to arbitrarily large scenes. In the previous chapters,
we focused on small-scale and object-centric reconstructions. Though some methods address scenes
the size of a single room or building [8], these are generally still limited and do not naïvely scale
up to city-scale environments. Applying these methods to large environments typically leads to
significant artifacts and low visual fidelity due to limited model capacity.

Reconstructing large-scale environments enables several important use-cases in domains such as
autonomous driving [136, 96, 214] and aerial surveying [38, 101]. One example is mapping, where
a high-fidelity map of the entire operating domain is created to act as a powerful prior for a variety of
problems, including robot localization, navigation, and collision avoidance. Furthermore, large-scale
scene reconstructions can be used for closed-loop robotic simulations [36]. Autonomous driving
systems are commonly evaluated by re-simulating previously encountered scenarios; however, any
deviation from the recorded encounter may change the vehicle’s trajectory, requiring high-fidelity
novel view renderings along the altered path. Beyond basic view synthesis, scene conditioned
NeRFs are also capable of changing environmental lighting conditions such as camera exposure,
weather, or time of day, which can be used to further augment simulation scenarios.

Reconstructing such large-scale environments introduces additional challenges, including the
presence of transient objects (cars and pedestrians), limitations in model capacity, along with
memory and compute constraints. Furthermore, training data for such large environments is highly
unlikely to be collected in a single capture under consistent conditions. Rather, data for different
parts of the environment may need to be sourced from different data collection efforts, introducing
variance in both scene geometry (e.g. , construction work and parked cars), as well as appearance
(e.g. , weather conditions and time of day).

We extend NeRF with appearance embeddings and learned pose refinement to address the envi-
ronmental changes and pose errors in the collected data. We additionally add exposure conditioning
to provide the ability to modify the exposure during inference. We refer to this modified model
as a Block-NeRF. Scaling up the network capacity of Block-NeRF enables the ability to represent
increasingly large scenes. However this approach comes with a number of limitations; rendering

This chapter is based on work completed when the author was an intern at Waymo LLC, published at CVPR
2022 [192] (U.S. Patent Pending App. No. 18/074,371).

CHAPTER 5. SCALING NEURAL RADIANCE FIELDS 58

Alamo Square, SF

1 km

Block-NeRF

Sept.

June

Figure 5.1: Block-NeRF is a method that enables large-scale scene reconstruction by representing
the environment using multiple compact NeRFs that each fit into memory. At inference time,
Block-NeRF seamlessly combines renderings of the relevant NeRFs for the given area. In this
example, we reconstruct the Alamo Square neighborhood in San Francisco using data collected
over 3 months. Block-NeRF can update individual blocks of the environment without retraining on
the entire scene, as demonstrated by the construction on the right. Video results can be found on the
project website waymo.com/research/block-nerf.

time scales with the size of the network, networks can no longer fit on a single compute device, and
updating or expanding the environment requires retraining the entire network.

To address these challenges, we propose dividing up large environments into individually
trained Block-NeRFs, which are then rendered and combined dynamically at inference time.
Modeling these Block-NeRFs independently allows for maximum flexibility, scales up to arbitrarily
large environments and provides the ability to update or introduce new regions in a piecewise
manner without retraining the entire environment as demonstrated in Figure 5.1. To compute a
target view, only a subset of the Block-NeRFs are rendered and then composited based on their
geographic location compared to the camera. To allow for more seamless compositing, we propose
an appearance matching technique which brings different Block-NeRFs into visual alignment by
optimizing their appearance embeddings.

5.1 Related Work

Large Scale 3D Reconstruction
Researchers have been developing and refining techniques for 3D reconstruction from large image
collections for decades [46, 181, 142, 97, 3, 233], and much current work relies on mature and
robust software implementations such as COLMAP to perform this task [170]. Nearly all of these
reconstruction methods share a common pipeline: extract 2D image features (such as SIFT [111]),
match these features across different images, and jointly optimize a set of 3D points and camera
poses to be consistent with these matches (the well-explored problem of bundle adjustment [60,

http://waymo.com/research/block-nerf

CHAPTER 5. SCALING NEURAL RADIANCE FIELDS 59

197]). Extending this pipeline to city-scale data is largely a matter of implementing highly robust
and parallelized versions of these algorithms, as explored in work such as Photo Tourism [181] and
Building Rome in a Day [3]. Core graphics research has also explored breaking up scenes for fast
high quality rendering [110].

These approaches typically output a camera pose for each input image and a sparse 3D point
cloud. To get a complete 3D scene model, these outputs must be further processed by a dense
multi-view stereo algorithm (e.g. , PMVS [47]) to produce a dense point cloud or triangle mesh.
This process presents its own scaling difficulties [48]. The resulting 3D models often contain
artifacts or holes in areas with limited texture or specular reflections as they are challenging to
triangulate across images. As such, they frequently require further postprocessing to create models
that can be used to render convincing imagery [174]. However, this task is mainly the domain of
novel view synthesis, and 3D reconstruction techniques primarily focus on geometric accuracy.

In contrast, our approach does not rely on large-scale SfM to produce camera poses, instead
performing odometry using various sensors on the vehicle as the images are collected [196].

Novel View Synthesis
Given a set of input images of a given scene and their camera poses, novel view synthesis seeks to
render observed scene content from previously unobserved viewpoints, allowing a user to navigate
through a recreated environment with high visual fidelity.

Geometry-based Image Reprojection. Many approaches to view synthesis start by applying
traditional 3D reconstruction techniques to build a point cloud or triangle mesh representing the
scene. This geometric “proxy” is then used to reproject pixels from the input images into new
camera views, where they are blended by heuristic [18] or learning-based methods [63, 163, 164].
This approach has been scaled to long trajectories of first-person video [88], panoramas collected
along a city street [89], and single landmarks from the Photo Tourism dataset [116]. Methods reliant
on geometry proxies are limited by the quality of the initial 3D reconstruction, which hurts their
performance in scenes with complex geometry or reflectance effects.

Volumetric Scene Representations. Recent view synthesis work has focused on unifying recon-
struction and rendering and learning this pipeline end-to-end, typically using a volumetric scene
representation. Methods for rendering small baseline view interpolation often use feed-forward
networks to learn a mapping directly from input images to an output volume [43, 231], while
methods such as Neural Volumes [108] that target larger-baseline view synthesis run a global
optimization over all input images to reconstruct every new scene, similar to traditional bundle
adjustment.

Neural Radiance Fields (NeRF) [123] combines this single-scene optimization setting with a
neural scene representation capable of representing complex scenes much more efficiently than a
discrete 3D voxel grid; however, its rendering model scales very poorly to large-scale scenes in
terms of compute. Followup work has proposed making NeRF more efficient by partitioning space

CHAPTER 5. SCALING NEURAL RADIANCE FIELDS 60

into smaller regions, each containing its own lightweight NeRF network [157, 158]. Unlike our
method, these network ensembles must be trained jointly, limiting their flexibility. Another approach
is to provide extra capacity in the form of a coarse 3D grid of latent codes [102]. This approach has
also been applied to compress detailed 3D shapes into neural signed distance functions [191] and to
represent large scenes using occupancy networks [140].

We build our Block-NeRF implementation on top of mip-NeRF [9], which improves aliasing
issues that hurt NeRF’s performance in scenes where the input images observe the scene from many
different distances. We incorporate techniques from NeRF in the Wild (NeRF-W) [112], which
adds a latent code per training image to handle inconsistent scene appearance when applying NeRF
to landmarks from the Photo Tourism dataset. NeRF-W creates a separate NeRF for each landmark
from thousands of images, whereas our approach combines many NeRFs to reconstruct a coherent
large environment from millions of images. Our model also incorporates a learned camera pose
refinement which has been explored in previous works [216, 186, 100, 207, 219].

Some NeRF-based methods use segmentation data to isolate and reconstruct static [212] or
moving objects (such as people or cars) [224, 136] across video sequences. As we focus primarily
on reconstructing the environment itself, we choose to simply mask out dynamic objects during
training.

Urban Scene Camera Simulation
Camera simulation has become a popular data source for training and validating autonomous
driving systems on interactive platforms [5, 85]. Early works [49, 162, 166, 36] synthesized data
from scripted scenarios and manually created 3D assets. These methods suffered from domain
mismatch and limited scene-level diversity. Several recent works tackle the simulation-to-reality
gaps by minimizing the distribution shifts in the simulation and rendering pipeline. Kar et al. [80]
and Devaranjan et al. [35] proposed to minimize the scene-level distribution shift from rendered
outputs to real camera sensor data through a learned scenario generation framework. Richter et al.
[161] leveraged intermediate rendering buffers in the graphics pipeline to improve photorealism of
synthetically generated camera images.

Towards the goal of building photo-realistic and scalable camera simulation, prior methods [96,
214, 25] leverage rich multi-sensor driving data collected during a single drive to reconstruct 3D
scenes for object injection [25] and novel view synthesis [214] using modern machine learning
techniques, including image GANs for 2D neural rendering. Relying on a sophisticated surfel
reconstruction pipeline, SurfelGAN [214] is still susceptible to errors in graphical reconstruction
and can suffer from the limited range and vertical field-of-view of LiDAR scans. In contrast to
existing efforts, our work tackles the 3D rendering problem and is capable of modeling the real
camera data captured from multiple drives under varying environmental conditions, such as weather
and time of day, which is a prerequisite for reconstructing large-scale areas.

CHAPTER 5. SCALING NEURAL RADIANCE FIELDS 61

5.2 Background
We build upon NeRF [123] described in Chapter 2 and its extension mip-NeRF [9]. Here, we
summarize relevant parts of mip-NeRF. For details, please refer to the original papers.

mip-NeRF Preliminaries
Recall that to enable the NeRF MLPs to represent higher frequency detail [193], the inputs x and d
are each preprocessed by a componentwise sinusoidal positional encoding �PE:

�PE(z) = [sin(2
0z), cos(20z), . . . , sin(2L�1z), cos(2L�1z)] (5.1)

where L is the number of levels of positional encoding.
NeRF’s MLP f� takes a single 3D point as input. However, this ignores both the relative

footprint of the corresponding image pixel and the length of the interval [ti�1, ti] along the ray
r containing the point, resulting in aliasing artifacts when rendering novel camera trajectories.
Mip-NeRF [9] remedies this issue by using the projected pixel footprint to sample conical frustums
along the ray rather than intervals. To feed these frustums into the MLP, mip-NeRF approximates
each of them as Gaussian distributions with parameters µi,⌃i and replaces the positional encoding
�PE with its expectation over the input Gaussian

�IPE(µ,⌃) = EX⇠N (µ,⌃)[�PE(X)] , (5.2)

referred to as an integrated positional encoding.

5.3 Method
Training a single NeRF does not scale when trying to represent scenes as large as cities. We
instead propose splitting the environment into a set of Block-NeRFs that can be independently
trained in parallel and composited during inference. This independence enables the ability to
expand the environment with additional Block-NeRFs or update blocks without retraining the entire
environment (see Figure 5.1). We dynamically select relevant Block-NeRFs for rendering, which
are then composited in a smooth manner when traversing the scene. To aid with this compositing,
we optimize the appearances codes to match lighting conditions and use interpolation weights
computed based on each Block-NeRF’s distance to the novel view.

Block Size and Placement
The individual Block-NeRFs should be arranged to collectively ensure full coverage of the target
environment. We typically place one Block-NeRF at each intersection, covering the intersection
itself and any connected street 75% of the way until it converges into the next intersection (see

CHAPTER 5. SCALING NEURAL RADIANCE FIELDS 62

Block-NeRF Origin

Block-NeRF Training Radius

Visibility Prediction

Color Prediction

Combined
Color Prediction

Target View

Discarded

Figure 5.2: The scene is split into multiple Block-NeRFs that are each trained on data within some
radius (dotted orange line) of a specific Block-NeRF origin coordinate (orange dot). To render
a target view in the scene, the visibility maps are computed for all of the NeRFs within a given
radius. Block-NeRFs with low visibility are discarded (bottom Block-NeRF) and the color output is
rendered for the remaining blocks. The renderings are then merged based on each block origin’s
distance to the target view.

Figure 5.1). This results in a 50% overlap between any two adjacent blocks on the connecting
street segment, making appearance alignment easier between them. Following this procedure means
that the block size is variable; where necessary, additional blocks may be introduced as connectors
between intersections. We ensure that the training data for each block stays exactly within its
intended bounds by applying a geographical filter. This procedure can be automated and only relies
on basic map data such as OpenStreetMap [58].

Note that other placement heuristics are also possible, as long as the entire environment is
covered by at least one Block-NeRF. For example, for some of our experiments, we instead place
blocks along a single street segment at uniform distances and define the block size as a sphere
around the Block-NeRF Origin (see Figure 5.2).

CHAPTER 5. SCALING NEURAL RADIANCE FIELDS 64

Figure 5.5: Our model is conditioned on exposure, which helps account for exposure changes
present in the training data. This allows users to alter the appearance of the output images in a
human-interpretable manner during inference.

a translation and a rotation component. We optimize these offsets jointly with the NeRF itself,
significantly regularizing the offsets in the early phase of training to allow the network to first learn
a rough structure prior to modifying the poses.

Exposure Input

Training images may be captured across a wide range of exposure levels, which can impact NeRF
training if left unaccounted for. We find that feeding the camera exposure information to the appear-
ance prediction part of the model allows the NeRF to compensate for the visual differences (see
Figure 5.3). Specifically, the exposure information is processed as �PE(shutter speed⇥analog gain/t)
where �PE is a sinusoidal positional encoding with 4 levels, and t is a scaling factor (we use 1000 in
practice). An example of different learned exposures can be found in Figure 5.5.

Transient Objects

While our method accounts for variation in appearance using the appearance embeddings, we assume
that the scene geometry is consistent across the training data. Any movable objects (e.g. cars,
pedestrians) typically violate this assumption. We therefore use a semantic segmentation model [27]
to produce masks of common movable objects, and ignore masked areas during training. While
this does not account for changes in otherwise static parts of the environment, e.g. construction, it
accommodates most common types of geometric inconsistency.

Visibility Prediction

When merging multiple Block-NeRFs, it can be useful to know whether a specific region of space
was visible to a given NeRF during training. We extend our model with an additional small MLP
fv that is trained to learn an approximation of the visibility of a sampled point (see Figure 5.3).

CHAPTER 5. SCALING NEURAL RADIANCE FIELDS 65

For each sample along a training ray, fv takes in the location and view direction and regresses the
corresponding transmittance of the point Ti. The model is trained alongside f�, which provides
supervision. Transmittance represents how visible a point is from a particular input camera: points
in free space or on the surface of the first intersected object will have transmittance near 1, and
points inside or behind the first visible object will have transmittance near 0. If a point is seen
from some viewpoints but not others, the regressed transmittance value will be the average over all
training cameras and lie between zero and one, indicating that the point is partially observed. Our
visibility prediction is similar to the visibility fields proposed by Srinivasan et al. [182]. However,
they used an MLP to predict visibility to environment lighting for the purpose of recovering a
relightable NeRF model, while we predict visibility to training rays.

The visibility network is small and can be run independently from the color and density networks.
This proves useful when merging multiple NeRFs, since it can help to determine whether a specific
NeRF is likely to produce meaningful outputs for a given location, as explained in § 5.3. The
visibility predictions can also be used to determine locations to perform appearance matching
between two NeRFs, as detailed in § 5.3.

Merging Multiple Block-NeRFs
Block-NeRF Selection

The environment can be composed of an arbitrary number of Block-NeRFs. For efficiency, we
utilize two filtering mechanisms to only render relevant blocks for the given target viewpoint. We
only consider Block-NeRFs that are within a set radius of the target viewpoint. Additionally, for
each of these candidates, we compute the associated visibility. If the mean visibility is below a
threshold, we discard the Block-NeRF. An example of visibility filtering is provided in Figure 5.2.
Visibility can be computed quickly because its network is independent of the color network, and it
does not need to be rendered at the target image resolution. After filtering, there are typically one to
three Block-NeRFs left to merge.

Block-NeRF Compositing

We render color images from each of the filtered Block-NeRFs and interpolate between them using
inverse distance weighting between the camera origin c and the centers xi of each Block-NeRF.
Specifically, we calculate the respective weights as wi / distance(c, xi)

�p, where p influences the
rate of blending between Block-NeRF renders. The interpolation is done in 2D image space and
produces smooth transitions between Block-NeRFs. We also explore other interpolation methods in
§ 5.5.

Appearance Matching

The appearance of our learned models can be controlled by an appearance latent code after the
Block-NeRF has been trained. These codes are randomly initialized during training and therefore
the same code typically leads to different appearances when fed into different Block-NeRFs. This

CHAPTER 5. SCALING NEURAL RADIANCE FIELDS 66

Before Appearance Matching After Appearance Matching

Base Block-NeRF Adjacent Block-NeRF

Figure 5.6: When rendering scenes based on multiple Block-NeRFs, we use appearance matching
to obtain a consistent appearance across the scene. Given a fixed target appearance for one of the
Block-NeRFs (left image), we optimize the appearances of the adjacent Block-NeRFs to match. In
this example, appearance matching produces a consistent night appearance across Block-NeRFs.

is undesirable when compositing as it may lead to inconsistencies between views. Given a target
appearance in one of the Block-NeRFs, we aim to match its appearance in the remaining blocks. To
accomplish this, we first select a 3D matching location between pairs of adjacent Block-NeRFs.
The visibility prediction at this location should be high for both Block-NeRFs.

Given the matching location, we freeze the Block-NeRF network weights and only optimize
the appearance code of the target in order to reduce the `2 loss between the respective area renders.
This optimization is quick, converging within 100 iterations. While not necessarily yielding perfect
alignment, this procedure aligns most global and low-frequency attributes of the scene, such as time
of day, color balance, and weather, which is a prerequisite for successful compositing. Figure 5.6
shows an example optimization, where appearance matching turns a daytime scene into nighttime
to match the adjacent Block-NeRF.

The optimized appearance is iteratively propagated through the scene. Starting from one root
Block-NeRF, we optimize the appearance of the neighboring ones and continue the process from
there. If multiple blocks surrounding a target Block-NeRF have already been optimized, we consider
each of them when computing the loss.

5.4 Results and Experiments

5.5 Model Parameters / Optimization Details
Our network follows the mip-NeRF structure. The network f� is composed of 8 layers with width
512 (Mission Bay experiments) or 1024 (all other experiments). fc has 3 layers with width 128
and fv has 4 layers with width 128. The appearance embeddings are 32 dimensional. We train
each Block-NeRF using the Adam [86] optimizer for 300K iterations with a batch size of 16384.
Similar to mip-NeRF, the learning rate is an annealed logarithmically from 2 · 10�3 to 2 · 10�5, with
a warm up phase during the first 1024 iterations. The coarse and fine networks are sampled 256
times during training and 512 times when rendering the videos. The visibility is supervised with

CHAPTER 5. SCALING NEURAL RADIANCE FIELDS 67

MSE loss and is scaled by 10
�6. The learned pose correction consists of a position offset and a

3⇥ 3 residual rotation matrix, which is added to the identity matrix and normalized before being
applied to ensure it is orthogonal. The pose corrections are initialized to 0 and their element-wise
`2 norm is regularized during training. This regularization is scaled by 10

5 at the start of training
and linearly decays to 10

�1 after 5000 iterations. This allows the network to learn initial geometry
prior to applying pose offsets.

Each Block-NeRF takes between 9 and 24 hours to train (depending on hyperparameters). We
train each Block-NeRF on 32 TPU v3 cores available through Google Cloud Compute, which
combined offer a total of 1680 TFLOPS and 512 GB memory. Rendering an 1200⇥ 900px image
for a single Block-NeRF takes approximately 5.9 seconds. Multiple Block-NeRF can be processed
in parallel during inference (typically fewer than 3 Block-NeRFs need to be rendered for a single
frame).

Datasets
We perform experiments on datasets that we collect specifically for the task of novel view synthesis
of large-scale scenes. Our dataset is collected on public roads using data collection vehicles. While
several large-scale driving datasets already exist, they are not designed for the task of view synthesis.
For example, some datasets lack sufficient camera coverage (e.g. , KITTI [52], Cityscapes [30]) or
prioritize visual diversity over repeated observations of a target area (e.g. , NuScenes [20], Waymo
Open Dataset [188], Argoverse [22]). Instead, they are typically designed for tasks such as object
detection or tracking, where similar observations across drives can lead to generalization issues.

We capture both long-term sequence data (100 s or more), as well as distinct sequences captured
repeatedly in a particular target area over a period of several months. We use image data captured
from 12 cameras that collectively provide a 360� view. 8 of the cameras provide a complete surround
view from the roof of the car, with 4 additional cameras located at the vehicle front pointing forward
and sideways. Each camera captures images at 10Hz and stores a scalar exposure value. The
vehicle pose is known and all cameras are calibrated. Using this information, we calculate the
corresponding camera ray origins and directions in a common coordinate system, also accounting
for the rolling shutter of the cameras. As described in § 5.3, we use a semantic segmentation
model [27] to detect movable objects.

San Francisco Alamo Square Dataset. We select San Francisco’s Alamo Square neighborhood
as the target area for our scalability experiments. The dataset spans an area of approximately
960m⇥ 570m, and was recorded in June, July, and August of 2021. We divide this dataset into 35

Block-NeRFs. Example renderings and Block-NeRF placements can be seen in Figure 5.1. Each
Block-NeRF was trained on data from 38 to 48 different data collection runs, adding up to a total
driving time of 18 to 28 minutes each. After filtering out some redundant image captures (e.g.
stationary captures), each Block-NeRF is trained on between 64 575 to 108 216 images. The overall
dataset is composed of 13.4 h of driving time sourced from 1330 different data collection runs, with
a total of 2 818 745 training images.

CHAPTER 5. SCALING NEURAL RADIANCE FIELDS 68

San Francisco Mission Bay Dataset. We choose San Francisco’s Mission Bay District as the
target area for our baseline, block size, and placement experiments. Mission Bay is an urban
environment with challenging geometry and reflective facades. We identified a long stretch on Third
Street with far-range visibility, making it an interesting test case. Notably, this dataset was recorded
in a single capture in November 2020, with consistent environmental conditions allowing for simple
evaluation. This dataset was recorded over 100 s, in which the data collection vehicle traveled
1.08 km and captured 12 000total images from 12cameras. We will release this single-capture
dataset to aid reproducibility.

Model Ablations

NeRFs PSNR" SSIM" LPIPS#

mip-NeRF 17.86 0.563 0.509

O
ur

s

-Appearance 20.13 0.611 0.458
-Exposure 23.55 0.649 0.418
-Pose Opt. 23.05 0.625 0.442

Full 23.60 0.649 0.417

Table 5.1: Ablations of different Block-NeRF components on a single intersection in the Alamo
Square dataset. We show the performance of mip-NeRF as a baseline, as well as the effect of
removing individual components from our method.

We ablate our model modifications on a single intersection from the Alamo Square dataset. We
report PSNR, SSIM, and LPIPS [228] metrics for the test image reconstructions in Table 5.1. The
test images are split in half vertically, with the appearance embeddings being optimized on one
half and tested on the other. We also provide qualitative examples in Figure 5.7. Mip-NeRF alone
fails to properly reconstruct the scene and is prone to adding non-existent geometry and cloudy
artifacts to explain the differences in appearance. When our method is not trained with appearance
embeddings, these artifacts are still present. If our method is not trained with pose optimization, the
resulting scene is blurrier and can contain duplicated objects due to pose misalignment. Finally, the
exposure input marginally improves the reconstruction, but more importantly provides us with the
ability to change the exposure during inference.

Block-NeRF Size and Placement
We compare performance on our Mission Bay dataset versus the number of Block-NeRFs used. We
show details in Table 5.2, where depending on granularity, the Block-NeRF sizes range from as
small as 54m to as large as 544m. We ensure that each pair of adjacent blocks overlaps by 50%
and compare other overlap percentages. All were evaluated on the same set of held-out test images
spanning the entire trajectory. We consider two regimes, one where each Block-NeRF contains

CHAPTER 5. SCALING NEURAL RADIANCE FIELDS 69

Ground Truth mip-NeRF Full
Block-NeRF

-Pose Opt.-Exposure-Appearance

Figure 5.7: Model ablation results on multi segment data. Appearance embeddings help the network
avoid adding cloudy geometry to explain away changes in the environment like weather and lighting.
Removing exposure slightly decreases the accuracy. The pose optimization helps sharpen the results
and removes ghosting from repeated objects, as observed with the telephone pole in the first row.

Blocks Weights / Total Size Compute PSNR" SSIM" LPIPS#

1 0.25M / 0.25M 544m 1⇥ 23.83 0.825 0.381
4 0.25M / 1.00M 271m 2⇥ 25.55 0.868 0.318
8 0.25M / 2.00M 116m 2⇥ 26.59 0.890 0.278

16 0.25M / 4.00M 54m 2⇥ 27.40 0.907 0.242

1 1.00M / 1.00M 544m 1⇥ 24.90 0.852 0.340
4 0.25M / 1.00M 271m 0.5⇥ 25.55 0.868 0.318
8 0.13M / 1.00M 116m 0.25⇥ 25.92 0.875 0.306

16 0.07M / 1.00M 54m 0.125⇥ 25.98 0.877 0.305

Table 5.2: Comparison of different numbers of Block-NeRFs for reconstructing the Mission Bay
dataset. Splitting the scene into multiple Block-NeRFs improves the reconstruction accuracy,
even when holding the total number of weights constant (bottom section). The number of blocks
determines the size of the area each block is trained on and the relative compute expense at inference
time.

CHAPTER 5. SCALING NEURAL RADIANCE FIELDS 70

the same number of weights (top section) and one where the total number of weights across all
Block-NeRFs is fixed (bottom section). In both cases, we observe that increasing the number of
models improves the reconstruction metrics. In terms of computational expense, parallelization
during training is trivial as each model can be optimized independently across devices. At inference,
our method only requires rendering Block-NeRFs near the target view. Depending on the scene
and NeRF layout, we typically render between one to three NeRFs. We report the relative compute
expense in each setting without assuming any parallelization, which however would be possible and
lead to an additional speed-up. Our results imply that splitting the scene into multiple lower capacity
models can reduce the overall computational cost as not all of the models need to be evaluated (see
bottom section of Table 5.2).

Block-NeRF Overlap Comparison
In the main paper, we include experiments on Block-NeRF size and placement (§5.3). For these
experiments, we assumed a relative overlap of 50% between each pair of Block-NeRFs, which aids
with appearance alignment.

Table 5.3 is a direct extension of Table 5.2 and shows the effect of varying block overlap in the
8 block scenario. Note that varying the overlap changes the spatial block size.

The metrics imply that reducing overlap is beneficial for image quality metrics. However, this
can likely be attributed to the resulting reduction in block size. In practice, having an overlap
between blocks is important to avoid temporal artifacts when interpolating between Block-NeRFs.

Overlap Size PSNR" SSIM" LPIPS#
0% 77m 26.77 0.895 0.262
25% 97m 26.75 0.894 0.269
50%* 116m 26.59 0.890 0.278
75% 136m 26.51 0.887 0.283

Table 5.3: Effect of different NeRF overlaps in the 8 block scenario with 0.25M weights per block
(2M weights in total). The default setting used for other experiments is marked *.

Interpolation Methods
We explore different interpolation methods in Table 5.4. We experiment with multiple methods to
interpolate between Block-NeRFs and find that simple inverse distance weighting (IDW) in image
space produces the most appealing videos due to temporal smoothness. We use an IDW power
p of 4 for the Alamo Square renderings and a power of 1 for the Mission Bay renderings. We
experiment with 3D inverse distance weighting for each individual pixel by projecting the rendered
pixels into 3D space using the expected ray termination depth from the Block-NeRF closest to
the target view. The color value of the projected pixel is then determined using inverse distance

CHAPTER 5. SCALING NEURAL RADIANCE FIELDS 71

Interpolation Consistent? PSNR" SSIM" LPIPS#

Nearest – 26.40 0.887 0.280
IDW 2D 3 26.59 0.890 0.278
IDW 3D – 26.57 0.890 0.278

Pixelwise Visibility – 27.39 0.906 0.242
Imagewise Visibility – 27.41 0.907 0.242

Table 5.4: Comparison of interpolation methods. For our flythrough video results, we opt for 2D
inverse distance weighting (IDW) as it produces temporally consistent results.

weighting with the nearest Block-NeRFs. Artifacts occur in the resulting composited renders due to
noise in the depth predictions. We also experiment with using the Block-NeRF predicted visibility
for interpolation. We consider imagewise visibility where we take the mean visibility of the entire
image and pixelwise visibility where were directly utilize the per-pixel visibility predictions. Both
of these methods lead to sharper results but come at the cost of temporal inconsistencies. Finally
we compare to nearest neighbor interpolation where we only render the Block-NeRF closest to the
target view. This results in harsh jumps when transiting between Block-NeRFs.

5.6 Limitations and Future Work
The proposed method handles transient objects by filtering them out during training via masking
using a segmentation algorithm. If objects are not properly masked, they can cause artifacts in
the resulting renderings. For example, the shadows of cars often remain, even when the car itself
is correctly removed. Vegetation also breaks this assumption as foliage changes seasonally and
moves in the wind; this results in blurred representations of trees and plants. Similarly, temporal
inconsistencies in the training data, such as construction work, are not automatically handled and
require the manual retraining of the affected blocks. Further, the inability to render scenes containing
dynamic objects currently limits the applicability of Block-NeRF towards closed-loop simulation
tasks in robotics. In the future, these issues could be addressed by learning transient objects during
the optimization [112], or directly modeling dynamic objects [212, 136]. In particular, the scene
could be composed of multiple Block-NeRFs of the environment and individual controllable object
NeRFs. Separation can be facilitated by the use of segmentation masks or bounding boxes.

In our model, distant objects in the scene are not sampled with the same density as nearby
objects which leads to blurrier reconstructions. This is an issue with sampling unbounded volumetric
representations. Techniques proposed in NeRF++ [226] and concurrent Mip-NeRF 360 [8] could
potentially be used to produce sharper renderings of distant objects.

In many applications, real-time rendering is key, but NeRFs are computationally expensive to
render (up to multiple seconds per image). Several NeRF caching techniques [50, 221, 62] or a
sparse voxel grid [102] could be used to enable real-time Block-NeRF rendering. Similarly, multiple

CHAPTER 5. SCALING NEURAL RADIANCE FIELDS 72

concurrent works have demonstrated techniques to speed up training of NeRF style representations
by multiple orders of magnitude [126, 187, 45].

5.7 Discussion
In this chapter we proposed Block-NeRF, a method that reconstructs arbitrarily large environments
using NeRFs. We demonstrate the method’s efficacy by building an entire neighborhood in San
Francisco from 2.8M images, forming the largest neural scene representation at the time. We
accomplish this scale by splitting our representation into multiple blocks that can be optimized
independently. At such a scale, the data collected will necessarily have transient objects and
variations in appearance, which we account for by modifying the underlying NeRF architecture. A
substantial portion of the project involved re-implementing and combining several advancements
from the NeRF literature. This process served as a strong motivation to develop a framework,
Nerfstudio [195], that streamlines NeRF development. Further details on Nerfstudio are discussed
in Chapter 6.

73

Chapter 6

Nerfstudio Framework

In the previous chapters we have discussed how NeRFs can be used to create photorealistic 3D
scene representations. Ever since the initial NeRF publication, there has been rapid research pushing
the field forward.There has been an influx of papers focusing on advancements to the core method
including few-image training [220, 206], explicit features for editing [103, 204, 225], surface
representations for high-quality 3D mesh exports [134, 217, 205], speed improvements for real-time
rendering and training [45, 187, 125], 3D object generation [143], and more [210]. In chapter 5 we
combined multiple of these advancements to create the Block-NeRF method.

These research innovations have driven interests in a wide variety of disciplines in both academia
and industry. Roboticists have explored using NeRFs for manipulation, motion planning, simulation,
and mapping [83, 2, 37, 19, 234, 176]. NeRFs are also explored for tomography applications [168],
as well as perceiving people in videos [139]. Visual effects and gaming studios are exploring the
technology for production and digital asset creation. News outlets capture NeRF portraits to tell
stories in new formats [208]. The potential applications are vast, and even startups 1 are emerging
to focus on deploying this technology.

Despite the growing use of NeRFs, support for development is still rudimentary. Due to the influx
of papers and lack of code consolidation, tracking progress is difficult. Many papers implement
features in their own siloed repository. This complicates the process of transferring features and
research contributions across different implementations. Additionally, few tools exist to easily run
NeRFs on real-world data collected by users. To address these challenges, we present Nerfstudio
(Fig. 6.1), a modular framework that consolidates NeRF research innovations and makes them easier
to use in real-world applications.

Furthermore, while NeRFs solve an inherently visual task, there is a lack of comprehensive and
extensible tools for visualizing and interacting with NeRFs trained on real-world data. Despite the
availability of several NeRF repositories, existing implementations are often focused on achieving
state-of-the-art results on metrics such as PSNR, SSIM, and LPIPS. These evaluations are typically
based on held-out images along the capture trajectory that are similar to the training images. This
often makes them misleading indicators of performance for many real-world applications when

This chapter is based on joint work published at Siggraph 2023 [195]
1https://lumalabs.ai/

CHAPTER 6. NERFSTUDIO FRAMEWORK 74

Input Real-time web viewer Export

Encoders

Samplers Fields

Renderers
Positional Encoding
Fourier Features
Hash Encoding
Spherical Harmonics
Matrix Decomposition

Uniform
Occupancy
PDF
Proposal

Fused MLP
Voxel Grid

RGB
RGB-SH
Depth
Accumulation
Normals

Video

Point Cloud

Mesh

Polycam
Record3D

KIRI Engine

COLMAP
Metashape

RealityCapture

Modular Components

Desktop

Mobile

Figure 6.1: Nerfstudio framework. Nerfstudio is a Python framework for Neural Radiance Field
(NeRF) development. Nerfstudio supports multiple input data pipelines, is built around multiple
modular core NeRF components, integrates with a real-time web viewer, and supports multiple
export modalities. The goal of the Nerfstudio framework is to simplify the development of custom
NeRF methods, processing of real-world data, and interacting with reconstructions.

data is captured in unstructured environments and novel views are rendered with large baselines.
Qualitative evaluations have historically been a challenge due to the computational demands of NeRF,
which often resulted in rendering times up to multiple seconds per image. Recent developments
such as Instant-NGP [125] significantly reduce computational overhead, enabling real-time training
and rendering. However, Instant-NGP relies significantly on GPU accelerations with custom CUDA
kernels, making development and quick prototyping a challenge. We present a framework that
enables interactive visualizations while also being flexible and model-agnostic.

Nerfstudio is an extensible and versatile framework for neural radiance field development. Our
design goals are the following:

1. Consolidating various NeRF techniques into reusable, modular components.

2. Enabling real-time visualization of NeRF scenes with a rich suite of controls.

3. Providing an end-to-end, easy-to-use workflow for creating NeRFs from user-captured data.

For modularity, we devise an organization among components across various NeRFs that
allows abstracting away method-specific implementations. Our real-time visualizer is designed
to work with any model during training or testing. Furthermore, the visualizer is hosted on the
web, making it accessible without requiring a local GPU machine. The modular nature of our
framework facilitates the integration of various data input formats, thereby simplifying the workflow
for incorporating user-captured real-world scenes. We provide support for images and videos with
various camera types, as well as other mobile capture applications (Polycam, Record3D, KIRI
Engine) and outputs from popular photogrammetry software like RealityCapture and Metashape. In
particular, integration with these applications enable users to by-pass structure-from-motion tools

CHAPTER 6. NERFSTUDIO FRAMEWORK 75

Model
RayBundle

Ray GT

RayOutputs
Encoders
Samplers

Fields
Renderers

RayGenerator Loss Dict

DataManager

Pipeline

DataParser

Figure 6.2: Pipeline components. Each NeRF method is implemented as a custom Pipeline.
DataManagers process input images into bundles of rays (RayBundles) that get rendered by the
Model to produce a set of NeRF outputs (RayOutputs). A dictionary of losses supervises the
pipeline end-to-end.

Egypt

AspenFloating Tree Person Stump

Giannini HallKitchen Plane Dozer

Sculpture

Figure 6.3: Nerfstudio Dataset. Our Nerfstudio Dataset contains 10 scenes: 4 phone captures
with pinhole lenses and 6 Mirrorless camera captures with a fisheye lens. We focus our efforts on
real-world data, and these scenes can help benchmark progress.

like COLMAP [170], which can be time-consuming. Furthermore, we provide support for multiple
export formats, including video, depth maps, point clouds, and meshes.

The modularity of Nerfstudio enables developing Nerfacto, our method that combines compo-
nents from recent papers to achieve a balance between speed and quality. We show that this method
is comparable to the other state-of-the-art methods such as MipNeRF-360 [8] while achieving an
order of magnitude speedup. We also conduct an ablation study that demonstrates its flexibility on a
new in-the-wild dataset consisting of 10 in-the-wild scenes. Our findings highlight the limitations
of commonly used NeRF metrics and the importance of a real-time viewer for qualitative assess-
ments. The potential of our framework as a consolidated codebase for NeRF research is reflected
in the traction thus far with extensions such as SDFStudio [222]. Furthermore, Nerfstudio is an
open-source project with active improvements from both academic and industry contributors.

CHAPTER 6. NERFSTUDIO FRAMEWORK 76

6.1 Related Works

Frameworks and tools
Software frameworks have played a crucial role in consolidating and driving the advancement of var-
ious fields. In deep learning, Caffe [75], TensorFlow [1], and PyTorch [138] provide readily usable
machine learning functionalities. Similarly, frameworks such as PyTorch3D [155] and Kornia [160]
provide reusable components for 3D computer vision tasks. Other examples of frameworks include
Mitsuba3 [72], Halide [147], Taichi [70], and Reyes [29] for graphics, Phototourism [181] and
COLMAP [170, 172, 171] for photogrammetry and visualization, and AverageExplorer [232] for
data collection. Despite the diversity of topics covered, each of these frameworks originated from the
need to provide reusability and reproducibility to a rapidly expanding field. In light of the fast-paced
growth of NeRFs in both academia and industry, Nerfstudio aims to streamline advancements in
neural rendering by offering a flexible and comprehensive framework for development.

NeRF codebases
In recent years, several codebases for NeRFs have gained popularity among the research commu-
nity, including the original NeRF codebase[123], nerf-pytorch [218, 127], Nerf_pl [146], Instant
NGP [125], torch-ngp, Ngp_pl, and MultiNeRF [121]. Due to the lack of consolidation, there
exists a significant number of NeRF repositories that focus on improving specific components
of specific algorithms. For example, Mip-NeRF [9] aims to address the anti-aliasing problem of
NeRF [123] and Mip-NeRF 360 [8] addresses the limitations of Mip-NeRF. Additionally, Plenox-
els [45], TensoRF [23] and InstantNGP [125] propose different approaches to address the problem
of computational efficiency. Furthermore, RawNeRF [122], Ref-NeRF [200], and NeRF-W [112]
each address distinct challenges related to NeRF, resulting in parallel, non-interacting implementa-
tions. Nerfstudio aims to address the lack of consolidated development in the field of NeRFs by
consolidating critical techniques introduced in the existing literature. This allows for more efficient
and effective experimentation with combining components from multiple solutions into a single,
comprehensive method, and facilitates the ability of the community to build upon existing prior
approaches.

Neural rendering frameworks
Concurrent efforts such as NeRF-Factory [73], NerfAcc [94], MultiNeRF [121], and Kaolin-
Wisp [190] all make significant efforts in advancing the usability of NeRFs. While NeRF-Factory
consolidates multiple prior works into a single repository, it places less emphasis on reusable
modules shared across these prior works and focuses more on benchmarking. NerfAcc prioritizes
pythonic modularity, but focuses primarily on the lower-level components rather than the entire
pipeline. Kaolin-Wisp and Multi-NeRF each consolidate multiple paper implementations into a
single repository. None of these repositories are as comprehensive as Nerfstudio in delivering our
three design goals: modularity, real-time visualization, and end-to-end usability for user-captured

CHAPTER 6. NERFSTUDIO FRAMEWORK 77

data. Furthermore, Nerfstudio is released under an Apache2 license, which allows for its use by
both researchers and companies.

6.2 Framework Design
The goals of Nerfstudio are to provide (1) modularity, (2) real-time visualization for development,
and (3) ease of use with real data. In designing the framework, we consider trade-offs against
designs that optimize for faster rendering or higher quality results on synthetic scenes. For instance,
we prefer an implementation that allows for a modularized pythonic non-CUDA method over one
that supports a faster, non-modularized CUDA method. Additionally, our design choices lead to
simpler interfacing with an extensive visualization ecosystem which supports real-time rendering
during test and train with custom camera paths. Finally, we focus on delivering results for real-world
data rather than synthetic scenes to address audiences outside research including those in industry
and non-technical users.

With these three goals, the design of Nerfstudio promotes collaborations by providing a consoli-
dated platform on which people can request for or contribute to new features. The long-term goal is
for Nerfstudio to continue improving through community-driven contributions.

Modularity
We propose an organization of components that is both intuitive and abstract, enabling the imple-
mentation of existing and novel NeRFs by swapping reusable components. Fig. 6.1 shows a subset
of the components types and implementations we currently have available in Nerfstudio.

Visualization for development
The Nerfstudio real-time viewer offers an interactive and intuitive way to visualize Neural Radiance
Fields (NeRFs) during both training and testing phases. To ensure ease of use, the visualizer is
simple to install, works seamlessly across both local and remote GPU compute environments,
supports different models, and offers a user interface for creating and rendering custom camera
paths, shown in Fig. 6.5 (a).

Our real-time visualization interface is particularly useful for qualitatively evaluating a model,
allowing for more informed decisions during method development. While metrics such as PSNR can
provide some insight, they do not offer a comprehensive understanding of performance–especially
for views that are far away from the capture trajectory. Qualitative evaluation with an interactive
viewer addresses these limitations and allows developers to gain a more holistic understanding of
the model performance.

CHAPTER 6. NERFSTUDIO FRAMEWORK 78

Easy workflow for user-captured data
While we offer support for synthetic datasets (Blender [123], D-NeRF [145]), in Nerfstudio we
focus primarily on "real world data" — images or videos from a physical phone or camera. To
this end, we present a new Nerfstudio Dataset (shown in Fig. 6.3) composed of real-world scenes
casually captured with mobile phones and a mirrorless camera. Our motivation is to provide a
framework compatible with a diverse array of applications which requires supporting real data. For
instance, a few use cases for Nerfstudio outside of research include VFX, gaming, and non-technical
film-makers who create 3D and video art. To support this wide range of expertise in NeRFs, we
ensure our codebase is easily installable and deployable.

6.3 Core components
The proposed framework of Nerfstudio, illustrated in Fig. 6.2, is based on the conceptual grouping
of NeRF methods into a series of basic building blocks. Nerfstudio takes a set of posed images
and optimizes for a 3D representation of the scene, which is defined by radiance (color), density
(structure), and possibly other quantities (semantics, normals, features, etc.). We ingest these inputs
into the framework which comprises of a DataManager and a Model, where the DataManager is
responsible for (1) parsing image formats via a DataParser and (2) generating rays as RayBundles.
These rays are then passed into a Model, which will query Fields and render quantities. Finally, the
whole Pipeline is supervised end-to-end with a loss.

DataManagers and DataParsers
The first step of the Pipeline is the DataManager which is responsible for turning posed images into
RayBundles, which are slices of 3D space that start at a camera origin. Within the DataManager,
the DataParser first loads the input images and camera data. The DataParser is designed to be
compatible with arbitrary data formats such as COLMAP. Previous research codebases primarily
utilize COLMAP with helper scripts [125], however, COLMAP can be challenging to install and use
for non-technical users. To make the framework more accessible to a wider range of users, including
scientists, artists, photographers, hobbyists and journalists, we have implemented DataParsers for
mobile apps (Record3D, Polycam, KIRI Engine) and 3D tools such as Metashape and Reality
Capture. Once the images are properly loaded and formatted, the DataManager iterates through
the data, generating RayBundles and ground truth supervision. It can also optimize camera poses
during training.

RayBundles, RaySamples, and Frustums
NeRFs operate on regions of 3D space, which can be parametrized in many different ways. We have
adopted a more generic representation of 3D space through the use of Frustum for both point-based
and volume-based samples. The RayBundles, which are primitives that represent a slice through
3D space, are parameterized with an origin, direction, and other meta-information such as camera

CHAPTER 6. NERFSTUDIO FRAMEWORK 79

indices and time. By specifying the interval bin spacing, the RayBundles generate RaySamples,
which represent sampled chunks of 3D space along each ray. These chunks, represented as Frustums,
can be encoded either as point samples [123] or as Gaussians with mean and covariance [9], which
have been shown to help with anti-aliasing. This abstraction allows for flexibility in representation,
as the user can decide which representation to use with a simple function call. A visualization of
this abstraction can be found in Fig. 6.4.

direction [3]

origin [3]

start [1]

end [1]

pixel area [1]

Neig
hb

ori
ng

 Ray

1

Frustums as Gaussians Frustums as point samples

Bundle of frustumsFrustum parameterization

Figure 6.4: Sample representations. (Top) We define a frustum as a cone with a start and end.
This region of space can be converted into Gaussians (bottom left) or point samples (bottom right)
depending on the field input format.

Models and Fields
The RayBundles are sent to Models as input, which samples them into RaySamples. The RaySam-
ples are consumed by Fields to turn regions of space (i.e., Frustums) into quantities such as color or
density. The Nerfstudio framework contains various implementations of models and fields. We’ve
implemented various feature encoding schemes including fourier features, hash encodings [125],
spherical harmonics, and matrix decompositions [23]. Field components include fused MLPs, voxel
grids, and surface normal MLPs [200], activation functions, spatial distortions [8], and temporal
distortions [145].

Real-time web viewer
We draw inspiration from the real-time viewer presented in Instant NGP [125], which facilitates
real-time rendering during training. However, the viewer in Instant NGP is designed to work
on local compute, which can be cumbersome to setup in remote settings. To address this is-
sue, we have developed a ReactJS-based web viewer packaged as a publicly hosted website at
https://viewer.nerf.studio.

https://viewer.nerf.studio/

CHAPTER 6. NERFSTUDIO FRAMEWORK 80

The viewer is designed to be accessible to a wide range of users, including those utilizing both
local and remote GPUs. The process of utilizing remote compute is streamlined, requiring only the
forwarding of a port locally via SSH. Once training begins, the web interface renders the NeRF in
real-time as training progresses (See Fig. 6.9). Users can pan, zoom and rotate around the scene as
the optimization runs or while evaluating a trained model.

Implementation

Real-time training visualization utilizes WebSockets to establish a connection between the NeRF
training session and the web client. This approach eliminates the need to install local screens and
other GUI software. Upon opening the web viewer, a WebSocket connection is established with the
training session, which subsequently populates the scene with training images. The web viewer
continuously streams the viewport camera pose to the training session during the training process.
The training session utilizes this camera pose to render images and transmits them via the websocket.
Additionally, the viewer camera controls and UI are implemented using ThreeJS, allowing us to
overlay 3D assets such as images, splines, and cropping boxes in front of the NeRF renderings.
For instance, the viewer displays training images at their capture locations, letting users intuitively
compare performance at seen and novel viewpoints.

Viewer features

Our viewer is compatible with different models of varying rendering speeds. We accomplish
this by balancing the computation of training and viewer rendering on a single GPU. Similar to
Instant-NGP [125], we adjust the rendering resolution based on the speed of the camera movement.
When the camera moves quickly, the rendering resolution will be smaller to maintain a frame rate
and prevent lag in the user experience. We can also reduce the time spent on training and allocate
more resources for rendering in the viewer. Some of the features of our viewer include:

• Switching between various model outputs (e.g., rgb, depth, normals, semantics).

• Creating custom camera paths composed of keyframes with position and focal length interpo-
lation (Fig. 6.5).

• Visualizing the captured training images in 3D.

• Crop and export options for point clouds and meshes.

• Mouse and keyboard controls to easily navigate in the scene.

The viewer played an instrumental role in providing qualitative assessments that informed
design choices in our default method Nerfacto. Other codebases have integrated our viewer into
their own codebases, including ArcNerf [223] and SDFStudio [222].

CHAPTER 6. NERFSTUDIO FRAMEWORK 81

Figure 6.5: Exporting videos and geometry. We make exporting videos (a) and geometry (b) easy
with real-data captures. The left side shows the interactive camera trajectory editor, which allows
animatable poses, FOVs, and speed, to eventually render videos of NeRF’s outputs. On the right
we show the cropping interface in the viewer and resulting export formats including point clouds,
TSDFs, and textured meshes.

Geometry export
Many creators and artists have workflows that require exporting to point clouds or meshes for
further processing and incorporation in downstream tools such as game engines. Hence, our
framework accommodates various export methods and facilitates the easy addition of new export
methods. Fig. 6.5b illustrates our export interface, as well as some of the supported formats,
including point clouds, a truncated signed distance function (TSDF) to mesh, and Poisson surface
reconstruction [82]. We apply texture to the mesh by densely sampling the texture image, utilizing
barycentric interpolation to determine corresponding 3D point locations, and rendering short rays
near the surface along the normals to obtain RGB values.

6.4 Nerfacto Method
We leverage our modular design to integrate ideas from multiple research papers into our default and
recommended method, Nerfacto. This method is heavily influenced by the structure of MipNeRF-
360 [8], but certain parts of the original design are replaced to improve performance. We reference
papers such as NeRF-- [207], Instant-NGP [125], NeRF-W [112], and Ref-NeRF [200] in Nerfacto.
Fig. 6.6 illustrates how these papers are used.

CHAPTER 6. NERFSTUDIO FRAMEWORK 82

Proposal Network
SamplerRay Generator

RaySamples

Nerfacto Method

rgb
depth

normalsRayBundle
Uniform

Linear Disparity
PDF

Optimized
Cameras

NeRF Field

Scene Contraction
Hash Encoding

Appearance Embedding
Fused MLP

Papers: NeRF--, MipNeRF-360, Instant-NGP, NeRF-W, Ref-NeRF

...

Figure 6.6: Nerfacto method. Diagram of the Nerfacto method. It combines features from many
papers (bottom left). The method will evolve over time as new papers and features are added to the
Nerfstudio codebase.

Ray generation and sampling
The Nerfacto method first optimizes camera views using an optimized SE(3) transformation [207,
100, 192]. These camera views are then used to generate RayBundles. To improve the efficiency
and effectiveness of the sampling process, we employ a piece-wise sampler. This sampler samples
uniformly up to a fixed distance from the camera, followed by samples that are distributed such that
the step size increases with each sample. This allows efficient sampling of distant objects while still
maintaining a dense set of samples for nearby objects. These samples are then fed into a proposal
network sampler, proposed in the MipNeRF-360 method [8]. The proposal sampler consolidates
the sample locations into regions of the scene that contribute most to the final render, typically
the first surface intersection. This importance sampling greatly improves reconstruction quality.
Furthermore, we use a small fused MLP with a hash encoding [125] for the scene’s density function
as it has been found to have sufficient accuracy and is computationally efficient. To further reduce
the number of samples along rays, the proposal network sampler can contain multiple density fields.
These density fields iteratively reduce the number of samples. Empirically, using two density fields
works well. In our base Nerfacto configuration, we generate 256 samples from the piece-wise
sampler, which gets resampled into 96 samples in the first iteration of the proposal sampler followed
by 48 samples in the second.

Scene contraction and NeRF field
Many real-world scenes are unbounded, meaning they could extend indefinitely. This poses a
challenge for processing as input samples could have position values that vary across many scales
of magnitude. To overcome this issue, we utilize scene contraction, which compresses the infinite
space into a fixed-size bounding box. Our method of contraction is based on the one proposed in
MipNeRF-360 [8], but we use L1 norm contraction instead of L2 norm, which contracts to a cube
rather than a sphere. The cube better aligns with voxel-based hash encodings. Fig. 6.7 illustrates
how L1 contraction maps samples into the range with minimum values of -2,-2,-2 and maximum
values of 2,2,2. These samples can then be used with the hash encoding introduced by Instant-NGP
and is available via the tiny-cuda-nn [124] Python bindings.

CHAPTER 6. NERFSTUDIO FRAMEWORK 83

No scene contraction contraction contraction

Figure 6.7: Scene contraction. Here we show cameras contained in an inner sphere with Gaussian
samples along rays. Scene contraction warps the unbounded samples into bounded space before
querying a NeRF field. We use L1 contraction rather than MipNeRF-360’s L2 contraction to better
accommodate the geometry/capacity of the hash grid.

Nerfacto’s field incorporates per-image appearance embeddings to account for differences in
exposure among training cameras [112]. Additionally, we use techniques from Ref-NeRF [200]
to compute and predict normals. Nerfacto is implemented using PyTorch, which allows for easy
customization and eliminates the need for complex and custom CUDA code. We will incorporate
new papers into Nerfacto as the field progresses.

6.5 Nerfstudio Dataset
Our "Nerfstudio Dataset" includes 10 in-the-wild captures obtained using either a mobile phone
or a mirror-less camera with a fisheye lens. We processed the data using either COLMAP or the
Polycam app to obtain camera poses and intrinsic parameters. Our goal is to provide researchers
with more 360 real-world captures that are not limited to forward-facing scenes [120]. Our dataset
is similar to MipNeRF-360 [8] but does not focus on a central object and includes captures with
varying degrees quality. We have used this dataset to select the default settings for our proposed
NeRF-based method, Nerfacto, and we encourage other researchers to similarly employ real-world
data in the development and evaluation of NeRF methods.

6.6 Experiments
We benchmark Nerfacto against a state-of-the-art method MipNeRF-360 and emphasize the modu-
larity of our repository by conducting ablation studies. Furthermore, we highlight the limitations of
commonly used evaluation metrics such as PSNR, SSIM, and LPIPS when applied to subsampled
evaluation images.

CHAPTER 6. NERFSTUDIO FRAMEWORK 84

Nerfacto w/o app w/o pose no contraction

Nerfacto w/o app 1 prop network random background color

Figure 6.8: Nerfstudio ablation qualitative examples. Here we show renderings from different
Nerfacto ablation variants. (Top) is the "Egypt" capture and (bottom) is the "aspen" capture from the
Nerfstudio Dataset. These novel views are far from the training images to get a sense of how well
these methods perform qualitatively. We zoom in on crops to highlight differences in the rendered
images.

Mip-NeRF 360 dataset comparison
Here we compare Nerfacto with numbers reported in the MipNeRF-360 [8] paper. We evaluate on
their 7 publicly available scenes. We train our method for up to 30K iterations (30 minutes) on an
NVIDIA RTX A5000, but we also report results at 5K iterations (5 minutes).

Evaluation protocol. The evaluation protocol followed is similar to that of MipNeRF360, but
we process their data using our COLMAP pipeline to recover poses. The original images were
downsampled by a factor of 4x. We used 7/8 of the images for training and the remaining 1/8
images were evenly spaced and used for evaluation. Note that this protocol does not include camera
pose optimization as it is not an option implemented in MipNeRF360.

Findings. Table 6.1 presents the averages of the results across the 7 captures in the MipNeRF-
360 dataset. The complete table can be found in the appendix. In as little as 5K iterations (⇠5
minutes), our Nerfacto method achieves reasonable quality in contrast to MipNeRF-360 which
takes several hours on a TPU with 32 cores. Training for up to 30K (⇠30 minutes) iterations
further improves quality. While Nerfacto falls short of metric results obtained by MipNeRF-360,
we prioritize efficiency and general usability over optimizing quantitative metrics on this particular
benchmark. Fig. 6.9 shows qualitative results on the "garden" scene in our viewer after only a few
minutes.

CHAPTER 6. NERFSTUDIO FRAMEWORK 85

Method PSNR " SSIM " LPIPS #

MipNeRF-360 29.23 0.844 0.207
Nerfacto (ours) 26.75 / 25.38 0.748 / 0.688 0.307 / 0.390

Table 6.1: Average metrics on the MipNeRF360 dataset. Our methods are evaluated without pose
optimization or per-image appearance embeddings. MipNeRF-360 takes several hours to train. Our
metrics reported as { after 30K iterations (⇠30min) / after 5k iterations (⇠5min) }.

It is worth emphasizing that our Nerfacto method is optimized for qualitative novel-view quality
by using the web viewer, rather than solely relying on common metrics. For further illustration, we
refer the reader to the appendix where we provide rendered videos from our Nerfacto method.

Nerfacto component ablations
Given the modularity of our codebase, we can easily conduct ablation studies on our method
Nerfacto, a unified approach that combines important components from various papers to achieve
a fast, high-quality method. We experiment with disabling the pose optimization, appearance
embeddings, scene contraction, and variations of the proposal networks, and more. The modularity
of our codebase allows for easy implementation of these modifications through the use of different
flags with the command line interface.

Evaluation protocol. In our ablation study, we utilize the Nerfstudio Dataset for evaluation.
Due to the complexity of the appearance embeddings and pose optimization modules, we adopt a
test-time optimization procedure for the evaluation. Specifically, we employ Adam optimizers to
optimize the evaluation camera poses. Once the camera poses are fixed, we randomly select either
the left or right side of the evaluation image and optimize the appearance code as done in Martin
et al. [112]. Finally, with the optimized camera pose and appearance embedding, we compute
PSNR, SSIM, and LPIPS. For these experiments, we hold out 1 in every 10 frames of our data
as the evaluation set to evaluate on a representative distribution of our data.. We will release this
evaluation protocol so future work can run similar experiments.

Findings. Table 6.2 presents the average results of our ablation studies. The complete table
for all 10 scenes can be found in the appendix. This study highlights the challenge in extracting
meaningful insights from quantitative metrics alone (Table 6.2), due to the fact that held-out evalua-
tion images are close to the training images. For instance, disabling the appearance embeddings
("w/o app") leads to an improvement in PSNR and SSIM. However, Fig. 6.8 illustrates that the
"w/o app" method results in the production of blurry "floater" artifacts. These artifacts correspond
with the training camera locations because the model overfits to small discrepancies in lighting
conditions in the training data by placing these artifacts directly in front of the training cameras.
(bottom row, bottom left crop). Furthermore, ablations such as "1 prop network" result in subtle
changes in the metrics but are more evident in visualizations of the novel views. The use of "1 prop
network" as opposed to "Nerfacto (default)" with 2 prop networks leads to aliasing artifacts as can

CHAPTER 6. NERFSTUDIO FRAMEWORK 86

Depth output Depth from 1st proposal networkRGB output (30K iters)

(b)

(c)

(a)

100 iters
~ 0 min

2K iters
~ 2 min

5K iters
~ 5 min

5K iters
~ 5 minTraining Paused

Method controls Render path Scene objects Export geometry
Viewer controls

Figure 6.9: Real-time viewer use. (a) Training Nerfacto on the MipNeRF-360 garden scene. Good
quality can be achieved after a few minutes. Pausing the training increases the rendered resolution.
(b) Visualizing different model outputs with the viewer. (c) Viewer controls and settings available
in the viewer.

CHAPTER 6. NERFSTUDIO FRAMEWORK 87

Nerfacto method PSNR " SSIM " LPIPS #

Nerfacto (default) 20.99 0.663 0.389
w/o pose 20.93 0.659 0.393
w/o app 22.65 0.672 0.406
w/o pose & app 22.53 0.671 0.411
1 prop network 21.07 0.669 0.396
l2 contraction 20.98 0.664 0.388
shared prop network 20.95 0.661 0.391
random backg. color 21.00 0.663 0.392
no contraction 18.59 0.534 0.506
synthetic on real 20.09 0.542 0.509

Table 6.2: Average metrics for ablations on the Nerfstudio Dataset. We remove and change
various components of the Nerfacto method and report { PSNR, SSIM, LPIPS } on the Nerfstudio
Dataset. Further details on the experiments can be found in the Appendix.

be seen around the small tree branches (bottom row, middle crop). While these artifacts are visible
to the eye especially in the interactive viewer, such temporal discontinuity caused by aliasing is
not captured by the quantitative metrics. Furthermore, scene contraction is necessary to correctly
recover far objects (top row, right crop).

Overall, the real-time viewer proves to be useful for viewing out-of-distribution renders. The
crops in Fig. 6.8 aid in illustrating where certain methods excel over others, regardless of the metrics
on the evaluation images. Developing more appropriate evaluation metrics is an important avenue
for future research.

6.7 Open-source Contributions
One of the key strengths of our proposed framework is its versatility and ease of use, as demonstrated
by our open-source contributions. Our GitHub repository has grown to include over 60 contributors
and over 3K stars, reflecting a strong and active community. Additionally, two new libraries,
SDFStudio [222] and ArcNerf [223], have been built on top of our framework. Since the release
of Nerfstudio in October 2022, our contributors have enhanced and expanded Nerfstudio by
addressing various GitHub issues and feature requests including improved camera paths, colab
support, additional camera models, reconstruction of dynamic objects.

6.8 Discussion
We draw upon existing techniques and propose a framework that supports a more modularized
approach to NeRF development, allows for real-time visualization, and is readily usable with

CHAPTER 6. NERFSTUDIO FRAMEWORK 88

real-world data. We emphasize the importance of utilizing the interactive real-time viewer during
training to compensate for imperfect quantitative metrics in model design decisions. We hope
the consolidation brought about by this new framework will facilitate the development of NeRF-
based methods, thereby accelerating advances in the neural rendering community. Future research
directions include the development of more appropriate evaluation metrics and integration of the
framework with other fields such as computer vision, computer graphics, and machine learning.

89

Chapter 7

Conclusion

In this dissertation, we introduce NeRFs (Chapter 2) as a novel approach to achieve high-quality
novel view synthesis, showcasing photorealistic results with non-Lambertian lighting effects. We
investigate the efficacy of positional encodings for capturing fine details (chapter 3), extend the
generalization capabilities of NeRF in chapter 4, and extend its scalability to handle arbitrarily large
scenes in chapter 5. Finally, we present the Nerfstudio framework (chapter 6), offering a valuable
tool to facilitate future NeRF development and exploration.

7.1 Why NeRFs and the Role of Representation
The popularity of NeRFs prompts an intriguing question: why did they gain widespread attention?
While it is true that NeRFs produce high-quality results, so did previous methods [120] implying
that there may be other factors at play. One potential reason is the simplicity of the representation
employed by NeRFs, which sets them apart from other approaches prevalent at the time, such
as mesh or signed distance function (SDF) based methods. NeRFs are more similar in setup to
other deep learning methods, making them accessible to researchers familiar with the principles
of deep learning and modern machine learning frameworks like PyTorch, TensorFlow, and JAX.
With just a few hundred lines of code, one can quickly set up a basic version of NeRF, enabling
researchers from the computer vision community to contribute and participate without requiring
extensive expertise in the field.

As the field has progressed, it has become evident that the core aspect for successful NeRF-
based reconstruction lies in the volume rendering technique, rather than the specific neural network
representation itself. In fact, studies have shown that comparable reconstruction quality can be
achieved using voxel-based methods alone [45]. This realization highlights that the underlying
representation plays a more crucial role in optimization and inference speed, rather than solely
determining the output quality. As a result, many recent approaches have adopted a hybrid approach,
combining the strengths of neural networks with other representations [126, 187, 23]. It is still
an open question why global optimization of the volume, supervised by volume rendering, is so
effective at explaining sparse views.

CHAPTER 7. CONCLUSION 90

It is intriguing to note that while neural networks played a pivotal role in popularizing NeRFs,
they are also the component undergoing significant changes to make these representations more
practical. As we delve into developing lower-level methods, it becomes crucial to provide abstrac-
tions that ensure accessibility. This need for accessibility was one of the driving factors behind the
development of Nerfstudio. By providing a user-friendly framework, Nerfstudio enables researchers
from domains outside of 3D computer vision to more easily utilize and contribute to NeRFs. Fur-
thermore, for those engaged in NeRF-related research, we have developed nerfacc [94], a NeRF
acceleration toolbox implemented in CUDA with a Python API. These tools and abstractions aim to
facilitate the adoption and development of NeRFs, allowing researchers to focus on advancing the
field without being hindered by implementation complexities.

7.2 Limitations
While NeRFs have demonstrated impressive capabilities in scene reconstruction, they are not
without their limitations. The original formulation described in Chapter 2 made several assumptions
that constrained its applicability. It assumed static scenes, where objects did not move between
images, and lighting and exposure remained constant. It also assumed images were captured
without motion blur and that camera poses were accurate. Furthermore, the method was limited to
bounded or forward-facing scenes and lacked generalization due to the absence of learned priors.
Additionally, NeRF required thorough scene coverage and suffered from slow reconstruction times,
often taking up to a day for a single scene.

In Chapters 4 and 5, we addressed a subset of these limitations by exploring topics such as
generalization, appearance changes, pose errors, and unbounded scenes. It is worth noting that the
academic community has shown significant interest in NeRF, resulting in over a thousand follow-up
papers since its original publication. In response to this growing body of work, Chapter 6 presents
Nerfstudio, a framework that consolidates and builds upon these advancements.

Despite the progress made, several challenges remain to be addressed. These include achieving
high-quality dynamic reconstruction of arbitrary objects beyond humans, developing compact and
efficient methods that can be trained and deployed on devices with limited computational resources
(e.g., mobile devices), and enabling scene editing and synthesis using generative approaches. There
is also a question regarding the choice of inputs. Currently, many methods assume prior knowledge
of camera poses before training, but it is reasonable to expect that NeRF optimization will be able
to learn and optimize the poses from scratch in the future. It is peculiar that we currently employ
complete structure-from-motion pipelines like COLMAP, only to discard everything except the
poses. There are already some promising developments in this direction [100, 114, 207, 74].

Another interesting direction to explore is the application of NeRFs beyond view synthesis. This
includes leveraging NeRFs for tasks such as navigation, scene understanding, and robotic simulation.
While there have been some works in these areas [234, 167, 176, 87, 84, 83], they are relatively
nascent and hold significant potential for further exploration and development. By extending the
capabilities of NeRFs to address these diverse applications, we can unlock new possibilities in fields
such as robotics and virtual reality.

CHAPTER 7. CONCLUSION 91

7.3 The Future of 3D
This dissertation has been dedicated to the replication of our world, a task historically challenging
and limited to technical experts. However, the desire to not only replicate but also modify and create
entirely new worlds is becoming increasingly prevalent. Similar to replication, creation currently
requires specialized expertise, presenting a significant area for future development.

We have recently witnessed the transformative power of generative 2D tools [154, 165, 16, 227],
which have revolutionized image creation and editing. This shift has moved the field beyond being
purely technical, allowing for more conceptual and creative exploration. These methods enable the
synthesis of high-quality images from text or other simple operations, empowering users to unleash
their artistic vision like never before. Similar transformations are expected to unfold in the realm
of 3D. Already, we are witnessing the emergence of text-to-3D models, exemplified by tools like
Dreamfusion [143], as well as techniques for scene modification using high-level instructions, as
demonstrated by Instruct-NeRF2NeRF [59].

The era of relying on complex tools like Blender to create production-quality 3D assets is
gradually fading. Instead, we should anticipate a future where untrained individuals can generate
assets of comparable quality using nothing more than their smartphones. For example, users could
capture a few photos or a video of a scene and have it converted to 3D, or start from a text prompt.
They can then iteratively modify the colors, textures, and shapes of objects through text prompts
and simple interactions such as clicking, unlocking the ability to create their desired scene. This
paradigm shift empowers users to effortlessly create and customize 3D content, democratizing the
process and unlocking endless creative possibilities. While this vision holds tremendous promise, it
necessitates further research and advancement.

We find ourselves at an exciting juncture where the potential for 3D creation and manipulation is
poised to reach new heights. The journey toward realizing this future entails continued exploration
and innovation in the field, as we strive to unlock the full potential of accessible and user-friendly
3D tools. With sustained research efforts, we can propel the field of 3D graphics into an era of
unprecedented creativity and inclusivity.

92

Bibliography

[1] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
2015.

[2] Michal Adamkiewicz et al. “Vision-Only Robot Navigation in a Neural Radiance World”.
In: CoRR abs/2110.00168 (2021). arXiv: 2110.00168. URL: https://arxiv.org/
abs/2110.00168.

[3] Sameer Agarwal et al. “Building rome in a day”. In: Communications of the ACM (2011).

[4] Eirikur Agustsson and Radu Timofte. “NTIRE 2017 Challenge on Single Image Super-
Resolution: Dataset and Study”. In: CVPR Workshops (2017).

[5] Alexander Amini et al. “Learning robust control policies for end-to-end autonomous driving
from data-driven simulation”. In: IEEE Robotics and Automation Letters (2020).

[6] Antreas Antoniou, Harrison Edwards, and Amos Storkey. “How to train your MAML”. In:
ICLR (2018).

[7] Sanjeev Arora et al. “Fine-Grained Analysis of Optimization and Generalization for Over-
parameterized Two-Layer Neural Networks”. In: ICML (2019).

[8] Jonathan T Barron et al. “Mip-nerf 360: Unbounded anti-aliased neural radiance fields”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2022, pp. 5470–5479.

[9] Jonathan T Barron et al. “Mip-nerf: A multiscale representation for anti-aliasing neural
radiance fields”. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2021, pp. 5855–5864.

[10] Ronen Basri et al. “Frequency Bias in Neural Networks for Input of Non-Uniform Density”.
In: arXiv preprint arXiv:2003.04560 (2020).

[11] Ronen Basri et al. “The Convergence Rate of Neural Networks for Learned Functions of
Different Frequencies”. In: NeurIPS (2019).

[12] Alberto Bietti and Julien Mairal. “On the Inductive Bias of Neural Tangent Kernels”. In:
NeurIPS (2019).

[13] Piotr Bojanowski et al. “Optimizing the latent space of generative networks”. In: arXiv:1707.05776
(2017).

https://arxiv.org/abs/2110.00168
https://arxiv.org/abs/2110.00168
https://arxiv.org/abs/2110.00168

BIBLIOGRAPHY 93

[14] Blake Bordelon, Abdulkadir Canatar, and Cengiz Pehlevan. “Spectrum Dependent Learning
Curves in Kernel Regression and Wide Neural Networks”. In: arXiv preprint arXiv:2002.02561
(2020).

[15] James Bradbury et al. JAX: composable transformations of Python+NumPy programs.
Version 0.1.68. http://github.com/google/jax. 2018. URL: http://github.
com/google/jax.

[16] Tim Brooks, Aleksander Holynski, and Alexei A Efros. “Instructpix2pix: Learning to follow
image editing instructions”. In: arXiv preprint arXiv:2211.09800 (2022).

[17] Chris Buehler et al. “Unstructured Lumigraph Rendering”. In: SIGGRAPH. 2001.
[18] Chris Buehler et al. “Unstructured lumigraph rendering”. In: Computer graphics and

interactive techniques (2001).
[19] Arunkumar Byravan et al. NeRF2Real: Sim2real Transfer of Vision-guided Bipedal Motion

Skills using Neural Radiance Fields. 2022. DOI: 10.48550/ARXIV.2210.04932.
URL: https://arxiv.org/abs/2210.04932.

[20] Holger Caesar et al. “nuscenes: A multimodal dataset for autonomous driving”. In: CVPR
(2020).

[21] Angel X Chang et al. “Shapenet: An information-rich 3d model repository”. In: arXiv:1512.03012
(2015).

[22] Ming-Fang Chang et al. “Argoverse: 3d tracking and forecasting with rich maps”. In: CVPR
(2019).

[23] Anpei Chen et al. “TensoRF: Tensorial Radiance Fields”. In: European Conference on
Computer Vision (ECCV). 2022.

[24] Wenzheng Chen et al. “Learning to Predict 3D Objects with an Interpolation-based Differ-
entiable Renderer”. In: NeurIPS. 2019.

[25] Yun Chen et al. “GeoSim: Realistic Video Simulation via Geometry-Aware Composition
for Self-Driving”. In: CVPR (2021).

[26] Zhiqin Chen and Hao Zhang. “Learning Implicit Fields for Generative Shape Modeling”.
In: CVPR. 2019.

[27] Bowen Cheng et al. “Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up
panoptic segmentation”. In: CVPR (2020).

[28] Michael Cohen et al. “The Lumigraph”. In: SIGGRAPH. 1996.
[29] Robert L Cook, Loren Carpenter, and Edwin Catmull. “The Reyes image rendering archi-

tecture”. In: ACM SIGGRAPH Computer Graphics 21.4 (1987), pp. 95–102.
[30] Marius Cordts et al. “The cityscapes dataset for semantic urban scene understanding”. In:

CVPR (2016).
[31] Brian Curless and Marc Levoy. “A volumetric method for building complex models from

range images”. In: SIGGRAPH. 1996.

http://github.com/google/jax
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.48550/ARXIV.2210.04932
https://arxiv.org/abs/2210.04932

BIBLIOGRAPHY 94

[32] Abe Davis, Marc Levoy, and Fredo Durand. “Unstructured Light Fields”. In: Eurographics.
2012.

[33] Paul Debevec, Camillo J. Taylor, and Jitendra Malik. “Modeling and Rendering Architecture
from Photographs: A Hybrid Geometry-and Image-Based Approach”. In: SIGGRAPH. 1996.

[34] Boyang Deng et al. “Neural Articulated Shape Approximation”. In: arXiv preprint arXiv:1912.03207
(2019).

[35] Jeevan Devaranjan, Amlan Kar, and Sanja Fidler. “Meta-sim2: Unsupervised learning of
scene structure for synthetic data generation”. In: ECCV (2020).

[36] Alexey Dosovitskiy et al. “CARLA: An open urban driving simulator”. In: Conference on
robot learning (2017).

[37] Danny Driess et al. “Learning Multi-Object Dynamics with Compositional Neural Radiance
Fields”. In: arXiv preprint arXiv:2202.11855 (2022).

[38] Dawei Du et al. “The unmanned aerial vehicle benchmark: Object detection and tracking”.
In: ECCV (2018).

[39] Simon S. Du et al. “Gradient Descent Provably Optimizes Over-parameterized Neural
Networks”. In: ICLR (2019).

[40] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. “On the convergence theory of
gradient-based model-agnostic meta-learning algorithms”. In: AISTATS. 2020.

[41] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks”. In: ICML (2017).

[42] Sebastian Flennerhag et al. “Meta-learning with warped gradient descent”. In: ICLR (2020).

[43] John Flynn et al. “Deepstereo: Learning to predict new views from the world’s imagery”.
In: CVPR (2016).

[44] John Flynn et al. “DeepView: view synthesis with learned gradient descent”. In: CVPR.
2019.

[45] Sara Fridovich-Keil et al. “Plenoxels: Radiance Fields Without Neural Networks”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2022, pp. 5501–5510.

[46] Christian Früh and Avideh Zakhor. “An automated method for large-scale, ground-based
city model acquisition”. In: IJCV (2004).

[47] Yasutaka Furukawa and Jean Ponce. “Accurate, Dense, and Robust Multi-View Stereopsis”.
In: IEEE TPAMI (2010).

[48] Yasutaka Furukawa et al. “Towards internet-scale multi-view stereo”. In: CVPR (2010).

[49] Adrien Gaidon et al. “Virtual worlds as proxy for multi-object tracking analysis”. In: CVPR
(2016).

BIBLIOGRAPHY 95

[50] Stephan J Garbin et al. “Fastnerf: High-fidelity neural rendering at 200fps”. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. 2021, pp. 14346–14355.

[51] Marc-André Gardner et al. “Learning to predict indoor illumination from a single image”.
In: arXiv preprint arXiv:1704.00090 (2017).

[52] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for autonomous driving?
the kitti vision benchmark suite”. In: CVPR (2012).

[53] Kyle Genova et al. “Learning Shape Templates with Structured Implicit Functions”. In:
ICCV (2019).

[54] Kyle Genova et al. “Local Deep Implicit Functions for 3D Shape”. In: CVPR. 2020.

[55] Kyle Genova et al. “Local Deep Implicit Functions for 3D Shape”. In: CVPR (2020).

[56] Kyle Genova et al. “Unsupervised Training for 3D Morphable Model Regression”. In:
CVPR. 2018.

[57] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep feedfor-
ward neural networks”. In: AISTATS (2010).

[58] Mordechai Haklay and Patrick Weber. “Openstreetmap: User-generated street maps”. In:
IEEE Pervasive computing (2008).

[59] Ayaan Haque et al. “Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions”. In: arXiv
preprint arXiv:2303.12789 (2023).

[60] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Second.
Cambridge University Press, 2004.

[61] Reinhard Heckel and Mahdi Soltanolkotabi. “Compressive sensing with un-trained neu-
ral networks: Gradient descent finds the smoothest approximation”. In: arXiv preprint
arXiv:2005.03991 (2020).

[62] Peter Hedman et al. “Baking neural radiance fields for real-time view synthesis”. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision. 2021, pp. 5875–
5884.

[63] Peter Hedman et al. “Deep blending for free-viewpoint image-based rendering”. In: ACM
Transactions on Graphics (TOG) (2018).

[64] Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. “Learning a Neural 3D Texture Space
from 2D Exemplars”. In: CVPR (2020).

[65] Philipp Henzler, Niloy J. Mitra, and Tobias Ritschel. “Learning a Neural 3D Texture Space
from 2D Exemplars”. In: CVPR. 2020.

[66] Philipp Henzler et al. “Single-Image Tomography: 3D Volumes from 2D Cranial X-Rays”.
In: Eurographics. 2018.

[67] K. Hornik, M. Stinchcombe, and H. White. “Multilayer Feedforward Networks Are Univer-
sal Approximators”. In: Neural Networks (1989).

BIBLIOGRAPHY 96

[68] Timothy Hospedales et al. “Meta-learning in neural networks: A survey”. In: arXiv preprint
arXiv:2004.05439 (2020).

[69] Jeremy Howard. imagenette. URL: https://github.com/fastai/imagenette/.

[70] Yuanming Hu et al. “Taichi: a language for high-performance computation on spatially
sparse data structures”. In: ACM Transactions on Graphics (TOG) 38.6 (2019), pp. 1–16.

[71] Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural Tangent Kernel: Convergence
and generalization in neural networks”. In: NeurIPS (2018).

[72] Wenzel Jakob et al. Mitsuba 3 renderer. Version 3.1.1. https://mitsuba-renderer.org. 2022.

[73] Yoonwoo Jeong, Seungjoo Shin, and Kibaek Park. NeRF-Factory: An awesome PyTorch
NeRF collection. 2022. URL: https://github.com/kakaobrain/NeRF-Factory/.

[74] Yoonwoo Jeong et al. “Self-calibrating neural radiance fields”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. 2021, pp. 5846–5854.

[75] Yangqing Jia et al. “Caffe: Convolutional architecture for fast feature embedding”. In:
Proceedings of the 22nd ACM international conference on Multimedia. 2014, pp. 675–678.

[76] Chiyu Jiang et al. “Local Implicit Grid Representations for 3D Scenes”. In: CVPR. 2020.

[77] Yuhe Jin et al. “Image matching across wide baselines: From paper to practice”. In: Interna-
tional Journal of Computer Vision (2020), pp. 1–31.

[78] James T. Kajiya and Brian P. Von Herzen. “Ray Tracing Volume Densities”. In: Computer
Graphics (SIGGRAPH) (1984).

[79] Abhishek Kar, Christian Häne, and Jitendra Malik. “Learning a Multi-View Stereo Machine”.
In: NeurIPS. 2017.

[80] Amlan Kar et al. “Meta-sim: Learning to generate synthetic datasets”. In: ICCV (2019).

[81] Seyed Mehran Kazemi et al. “Time2Vec: Learning a Vector Representation of Time”. In:
arXiv preprint arXiv:1907.05321 (2019).

[82] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. “Poisson surface reconstruction”.
In: Proceedings of the fourth Eurographics symposium on Geometry processing. Vol. 7.
2006.

[83] Justin Kerr et al. “Evo-NeRF: Evolving NeRF for Sequential Robot Grasping of Transparent
Objects”. In: 6th Annual Conference on Robot Learning. 2022.

[84] Justin Kerr et al. “LERF: Language Embedded Radiance Fields”. In: arXiv preprint
arXiv:2303.09553 (2023).

[85] Seung Wook Kim et al. “DriveGAN: Towards a Controllable High-Quality Neural Simula-
tion”. In: CVPR (2021).

[86] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In:
ICLR. 2015.

https://github.com/fastai/imagenette/
https://github.com/kakaobrain/NeRF-Factory/

BIBLIOGRAPHY 97

[87] Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitzmann. “Decomposing NeRF for
Editing via Feature Field Distillation”. In: Advances in Neural Information Processing
Systems. Vol. 35. 2022. URL: https://arxiv.org/pdf/2205.15585.pdf.

[88] Johannes Kopf, Michael Cohen, and Rick Szeliski. “First-person Hyperlapse Videos”. In:
SIGGRAPH (2014).

[89] Johannes Kopf et al. “Street slide: browsing street level imagery”. In: ACM Transactions on
Graphics (TOG) (2010).

[90] Kiriakos N. Kutulakos and Steven M. Seitz. “A theory of shape by space carving”. In:
International Journal of Computer Vision (2000).

[91] Jaehoon Lee et al. “Wide neural networks of any depth evolve as linear models under
gradient descent”. In: NeurIPS (2019).

[92] Marc Levoy. “Efficient Ray Tracing of Volume Data”. In: ACM Transactions on Graphics
(1990).

[93] Marc Levoy and Pat Hanrahan. “Light Field Rendering”. In: SIGGRAPH. 1996.

[94] Ruilong Li, Matthew Tancik, and Angjoo Kanazawa. “NerfAcc: A General NeRF Acclera-
tion Toolbox.” In: arXiv preprint arXiv:2210.04847 (2022).

[95] Tzu-Mao Li et al. “Differentiable Monte Carlo Ray Tracing through Edge Sampling”. In:
ACM Transactions on Graphics (SIGGRAPH Asia) (2018).

[96] Wei Li et al. “AADS: Augmented autonomous driving simulation using data-driven algo-
rithms”. In: Science robotics (2019).

[97] Xiaowei Li et al. “Modeling and recognition of landmark image collections using iconic
scene graphs”. In: ECCV (2008).

[98] Zhenguo Li et al. “Meta-sgd: Learning to learn quickly for few-shot learning”. In: arXiv
preprint arXiv:1707.09835 (2017).

[99] Sook-Lei Liew et al. “A large, open source dataset of stroke anatomical brain images and
manual lesion segmentations”. In: Scientific Data (2018).

[100] Chen-Hsuan Lin et al. “Barf: Bundle-adjusting neural radiance fields”. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision. 2021, pp. 5741–5751.

[101] Andrew Liu et al. “Infinite nature: Perpetual view generation of natural scenes from a single
image”. In: ICCV (2021).

[102] Lingjie Liu et al. “Neural Sparse Voxel Fields”. In: NeurIPS (2020).

[103] Lingjie Liu et al. “Neural sparse voxel fields”. In: Advances in Neural Information Process-
ing Systems 33 (2020), pp. 15651–15663.

[104] Shaohui Liu et al. “DIST: Rendering Deep Implicit Signed Distance Function with Differ-
entiable Sphere Tracing”. In: CVPR. 2019.

https://arxiv.org/pdf/2205.15585.pdf

BIBLIOGRAPHY 98

[105] Shichen Liu et al. “Learning to Infer Implicit Surfaces without 3D Supervision”. In: NeurIPS.
2019.

[106] Shichen Liu et al. “Soft Rasterizer: A Differentiable Renderer for Image-based 3D Reason-
ing”. In: ICCV. 2019.

[107] Ziwei Liu et al. “Deep Learning Face Attributes in the Wild”. In: ICCV (2015).

[108] Stephen Lombardi et al. “Neural volumes: Learning dynamic renderable volumes from
images”. In: ACM Transactions on Graphics (SIGGRAPH) (2019).

[109] Matthew M. Loper and Michael J. Black. “OpenDR: An Approximate Differentiable Ren-
derer”. In: ECCV. 2014.

[110] Frank Losasso and Hugues Hoppe. “Geometry clipmaps: terrain rendering using nested
regular grids”. In: Siggraph (2004).

[111] David G Lowe. “Distinctive image features from scale-invariant keypoints”. In: IJCV (2004).

[112] Ricardo Martin-Brualla et al. “NeRF in the Wild: Neural Radiance Fields for Unconstrained
Photo Collections”. In: CVPR (2021), pp. 7210–7219.

[113] Nelson Max. “Optical models for direct volume rendering”. In: IEEE Transactions on
Visualization and Computer Graphics (1995).

[114] Quan Meng et al. “GNeRF: GAN-based Neural Radiance Field without Posed Camera”. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 2021.

[115] Lars Mescheder et al. “Occupancy Networks: Learning 3D Reconstruction in Function
Space”. In: CVPR. 2019.

[116] Moustafa Meshry et al. “Neural Rerendering in the Wild”. In: CVPR (2019).

[117] Michael Dawson-Haggerty et al. trimesh. Version 3.2.0. https://trimsh.org/. 2019.

[118] Mateusz Michalkiewicz et al. “Implicit surface representations as layers in neural networks”.
In: ICCV. 2019.

[119] Ben Mildenhall et al. “Local Light Field Fusion: Practical View Synthesis with Prescriptive
Sampling Guidelines”. In: ACM Transactions on Graphics (SIGGRAPH) (2019).

[120] Ben Mildenhall et al. “Local light field fusion: Practical view synthesis with prescriptive
sampling guidelines”. In: ACM Transactions on Graphics (TOG) 38.4 (2019), pp. 1–14.

[121] Ben Mildenhall et al. MultiNeRF: A Code Release for Mip-NeRF 360, Ref-NeRF, and
RawNeRF. 2022. URL: https://github.com/google-research/multinerf.

[122] Ben Mildenhall et al. “Nerf in the dark: High dynamic range view synthesis from noisy raw
images”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022, pp. 16190–16199.

[123] Ben Mildenhall et al. “NeRF: Representing Scenes as Neural Radiance Fields for View
Synthesis”. In: ECCV. 2020.

https://trimsh.org/
https://github.com/google-research/multinerf

BIBLIOGRAPHY 99

[124] Thomas Müller. tiny-cuda-nn. Version 1.6. Apr. 2021. URL: https://github.com/
NVlabs/tiny-cuda-nn.

[125] Thomas Müller et al. “Instant neural graphics primitives with a multiresolution hash encod-
ing”. In: arXiv preprint arXiv:2201.05989 (2022).

[126] Thomas Müller et al. “Instant neural graphics primitives with a multiresolution hash encod-
ing”. In: ACM Transactions on Graphics (ToG) 41.4 (2022), pp. 1–15.

[127] Krishna Murthy. nerf-pytorch: A PyTorch re-implementation. 2020. URL: https://
github.com/krrish94/nerf-pytorch.

[128] Anh Nguyen, Jason Yosinski, and Jeff Clune. “Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images”. In: CVPR (2015).

[129] Alex Nichol, Joshua Achiam, and John Schulman. “On first-order meta-learning algorithms”.
In: arXiv preprint arXiv:1803.02999 (2018).

[130] Michael Niemeyer et al. “Differentiable Volumetric Rendering: Learning Implicit 3D
Representations without 3D Supervision”. In: CVPR. 2019.

[131] Michael Niemeyer et al. “Differentiable Volumetric Rendering: Learning Implicit 3D
Representations without 3D Supervision”. In: CVPR (2020).

[132] Merlin Nimier-David et al. “Mitsuba 2: A Retargetable Forward and Inverse Renderer”. In:
ACM Transactions on Graphics (SIGGRAPH Asia) (2019).

[133] Roman Novak et al. “Neural Tangents: Fast and Easy Infinite Neural Networks in Python”.
In: ICLR (2020).

[134] Michael Oechsle, Songyou Peng, and Andreas Geiger. “Unisurf: Unifying neural im-
plicit surfaces and radiance fields for multi-view reconstruction”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. 2021, pp. 5589–5599.

[135] Michael Oechsle et al. “Texture fields: Learning texture representations in function space”.
In: ICCV. 2019.

[136] Julian Ost et al. “Neural scene graphs for dynamic scenes”. In: CVPR (2021).

[137] Jeong Joon Park et al. “DeepSDF: Learning Continuous Signed Distance Functions for
Shape Representation”. In: CVPR. 2019.

[138] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep learning library”.
In: Advances in neural information processing systems 32 (2019).

[139] Georgios Pavlakos et al. “The One Where They Reconstructed 3D Humans and Envi-
ronments in TV Shows”. In: European Conference on Computer Vision. Springer. 2022,
pp. 732–749.

[140] Songyou Peng et al. “Convolutional occupancy networks”. In: Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III
16. Springer. 2020, pp. 523–540.

https://github.com/NVlabs/tiny-cuda-nn
https://github.com/NVlabs/tiny-cuda-nn
https://github.com/krrish94/nerf-pytorch
https://github.com/krrish94/nerf-pytorch

BIBLIOGRAPHY 100

[141] Eric Penner and Li Zhang. “Soft 3D Reconstruction for View Synthesis”. In: ACM Transac-
tions on Graphics (SIGGRAPH Asia) (2017).

[142] Marc Pollefeys et al. “Detailed real-time urban 3d reconstruction from video”. In: IJCV
(2008).

[143] Ben Poole et al. “DreamFusion: Text-to-3D using 2D Diffusion”. In: The Eleventh Interna-
tional Conference on Learning Representations. 2023. URL: https://openreview.
net/forum?id=FjNys5c7VyY.

[144] Thomas Porter and Tom Duff. “Compositing Digital Images”. In: Computer Graphics
(SIGGRAPH) (1984).

[145] Albert Pumarola et al. “D-nerf: Neural radiance fields for dynamic scenes”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, pp. 10318–
10327.

[146] Chen Quei-An. Nerf_pl: a pytorchlightning implementation of NeRF. 2020. URL: https:
//github.com/kwea123/nerf%5C_pl/.

[147] Jonathan Ragan-Kelley et al. “Halide: a language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines”. In: Acm Sigplan Notices 48.6
(2013), pp. 519–530.

[148] Nasim Rahaman et al. “On the Spectral Bias of Neural Networks”. In: ICML. 2018.

[149] Nasim Rahaman et al. “On the spectral bias of neural networks”. In: ICML (2019).

[150] Ali Rahimi and Benjamin Recht. “Random features for large-scale kernel machines”. In:
NeurIPS (2007).

[151] Gilles Rainer et al. “Neural BTF Compression and Interpolation”. In: Computer Graphics
Forum (Eurographics) (2019).

[152] Gilles Rainer et al. “Unified Neural Encoding of BTFs”. In: Computer Graphics Forum
(Eurographics) (2020).

[153] Aravind Rajeswaran et al. “Meta-learning with implicit gradients”. In: NeurIPS (2019).

[154] Aditya Ramesh et al. “Zero-shot text-to-image generation”. In: International Conference on
Machine Learning. PMLR. 2021, pp. 8821–8831.

[155] Nikhila Ravi et al. “Accelerating 3d deep learning with pytorch3d”. In: arXiv preprint
arXiv:2007.08501 (2020).

[156] S. Ravi and H. Larochelle. “Optimization as a Model for Few-Shot Learning”. In: ICLR
(2017).

[157] Daniel Rebain et al. “Derf: Decomposed radiance fields”. In: CVPR (2021).

[158] Christian Reiser et al. “KiloNeRF: Speeding Up Neural Radiance Fields With Thousands
of Tiny MLPs”. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV). 2021, pp. 14335–14345.

https://openreview.net/forum?id=FjNys5c7VyY
https://openreview.net/forum?id=FjNys5c7VyY
https://github.com/kwea123/nerf%5C_pl/
https://github.com/kwea123/nerf%5C_pl/

BIBLIOGRAPHY 101

[159] Peiran Ren et al. “Global Illumination with Radiance Regression Functions”. In: ACM
Transactions on Graphics (2013).

[160] Edgar Riba et al. “Kornia: an open source differentiable computer vision library for pytorch”.
In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.
2020, pp. 3674–3683.

[161] Stephan R Richter, Hassan Abu AlHaija, and Vladlen Koltun. “Enhancing photorealism
enhancement”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 45.2
(2022), pp. 1700–1715.

[162] Stephan R Richter et al. “Playing for data: Ground truth from computer games”. In: ECCV
(2016).

[163] Gernot Riegler and Vladlen Koltun. “Free View Synthesis”. In: ECCV (2020).

[164] Gernot Riegler and Vladlen Koltun. “Stable View Synthesis”. In: CVPR (2021).

[165] Robin Rombach et al. “High-resolution image synthesis with latent diffusion models”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2022, pp. 10684–10695.

[166] German Ros et al. “The synthia dataset: A large collection of synthetic images for semantic
segmentation of urban scenes”. In: CVPR (2016).

[167] Antoni Rosinol, John J Leonard, and Luca Carlone. “NeRF-SLAM: Real-Time Dense
Monocular SLAM with Neural Radiance Fields”. In: arXiv preprint arXiv:2210.13641
(2022).

[168] Darius Rückert et al. “NeAT: Neural Adaptive Tomography”. In: ACM Trans. Graph.
41.4 (2022). ISSN: 0730-0301. DOI: 10.1145/3528223.3530121. URL: https:
//doi.org/10.1145/3528223.3530121.

[169] Shunsuke Saito et al. “PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed
Human Digitization”. In: ICCV (2019).

[170] Johannes Lutz Schönberger and Jan-Michael Frahm. “Structure-from-Motion Revisited”.
In: CVPR. 2016.

[171] Johannes Lutz Schönberger et al. “A Vote-and-Verify Strategy for Fast Spatial Verification
in Image Retrieval”. In: Asian Conference on Computer Vision (ACCV). 2016.

[172] Johannes Lutz Schönberger et al. “Pixelwise View Selection for Unstructured Multi-View
Stereo”. In: European Conference on Computer Vision (ECCV). 2016.

[173] Steven M. Seitz and Charles R. Dyer. “Photorealistic scene reconstruction by voxel coloring”.
In: International Journal of Computer Vision (1999).

[174] Qi Shan et al. “The Visual Turing Test for Scene Reconstruction”. In: 3DV (2013).

[175] Lawrence A. Shepp and Benjamin F. Logan. “The Fourier reconstruction of a head section”.
In: IEEE Transactions on nuclear science (1974).

https://doi.org/10.1145/3528223.3530121
https://doi.org/10.1145/3528223.3530121
https://doi.org/10.1145/3528223.3530121

BIBLIOGRAPHY 102

[176] Anthony Simeonov et al. “Neural Descriptor Fields: SE(3)-Equivariant Object Representa-
tions for Manipulation”. In: ICRA. 2022, pp. 6394–6400. URL: https://doi.org/10.
1109/ICRA46639.2022.9812146.

[177] Vincent Sitzmann, Michael Zollhoefer, and Gordon Wetzstein. “Scene Representation
Networks: Continuous 3D-Structure-Aware Neural Scene Representations”. In: NeurIPS.
2019.

[178] Vincent Sitzmann et al. “DeepVoxels: Learning Persistent 3D Feature Embeddings”. In:
CVPR. 2019.

[179] Vincent Sitzmann et al. “Implicit Neural Representations with Periodic Activation Func-
tions”. In: NeurIPS (2020).

[180] Vincent Sitzmann et al. “MetaSDF: Meta-Learning Signed Distance Functions”. In: NeurIPS
(2020).

[181] Noah Snavely, Steven M Seitz, and Richard Szeliski. “Photo tourism: exploring photo
collections in 3D”. In: ACM siggraph 2006 papers. 2006, pp. 835–846.

[182] Pratul P. Srinivasan et al. “NeRV: Neural reflectance and visibility fields for relighting and
view synthesis”. In: CVPR (2021).

[183] Pratul P. Srinivasan et al. “Pushing the Boundaries of View Extrapolation with Multiplane
Images”. In: CVPR. 2019.

[184] Kenneth O Stanley. “Compositional pattern producing networks: A novel abstraction of
development”. In: Genetic programming and evolvable machines (2007).

[185] Kenneth O Stanley. “Compositional pattern producing networks: A novel abstraction of
development”. In: Genetic programming and evolvable machines 8.2 (2007), pp. 131–162.

[186] Shih-Yang Su et al. “A-nerf: Articulated neural radiance fields for learning human shape,
appearance, and pose”. In: Advances in Neural Information Processing Systems 34 (2021).

[187] Cheng Sun, Min Sun, and Hwann-Tzong Chen. “Direct voxel grid optimization: Super-
fast convergence for radiance fields reconstruction”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2022, pp. 5459–5469.

[188] Pei Sun et al. “Scalability in perception for autonomous driving: Waymo open dataset”. In:
CVPR (2020).

[189] Richard Szeliski and Polina Golland. “Stereo matching with transparency and matting”. In:
ICCV. 1998.

[190] Towaki Takikawa et al. Kaolin Wisp: A PyTorch Library and Engine for Neural Fields
Research. https://github.com/NVIDIAGameWorks/kaolin-wisp. 2022.

[191] Towaki Takikawa et al. “Neural Geometric Level of Detail: Real-time Rendering with
Implicit 3D Shapes”. In: CVPR (2021).

https://doi.org/10.1109/ICRA46639.2022.9812146
https://doi.org/10.1109/ICRA46639.2022.9812146
https://github.com/NVIDIAGameWorks/kaolin-wisp

BIBLIOGRAPHY 103

[192] Matthew Tancik et al. “Block-nerf: Scalable large scene neural view synthesis”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022,
pp. 8248–8258.

[193] Matthew Tancik et al. “Fourier Features Let Networks Learn High Frequency Functions in
Low Dimensional Domains”. In: NeurIPS (2020).

[194] Matthew Tancik et al. “Learned Initializations for Optimizing Coordinate-Based Neural
Representations”. In: CVPR. 2021.

[195] Matthew Tancik et al. “Nerfstudio: A modular framework for neural radiance field develop-
ment”. In: arXiv preprint arXiv:2302.04264 (2023).

[196] Sebastian Thrun. “Probabilistic robotics”. In: Communications of the ACM (2002).

[197] Bill Triggs et al. “Bundle adjustment—a modern synthesis”. In: International workshop on
vision algorithms (1999).

[198] Shubham Tulsiani et al. “Multi-view Supervision for Single-view Reconstruction via Differ-
entiable Ray Consistency”. In: CVPR. 2017.

[199] Ashish Vaswani et al. “Attention is all you need”. In: NeurIPS. 2017.

[200] Dor Verbin et al. “Ref-nerf: Structured view-dependent appearance for neural radiance
fields”. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE. 2022, pp. 5481–5490.

[201] Michael Waechter, Nils Moehrle, and Michael Goesele. “Let There Be Color! Large-Scale
Texturing of 3D Reconstructions”. In: ECCV. 2014.

[202] Martin J. Wainwright. “Reproducing Kernel Hilbert Spaces”. In: High-Dimensional Statis-
tics: A Non-Asymptotic Viewpoint. Cambridge Series in Statistical and Probabilistic Mathe-
matics. Cambridge University Press, 2019, pp. 383–415. DOI: 10.1017/9781108627771.
012.

[203] Ingo Wald et al. “Embree: a kernel framework for efficient CPU ray tracing”. In: ACM
Transactions on Graphics (TOG) (2014).

[204] Can Wang et al. “Clip-nerf: Text-and-image driven manipulation of neural radiance fields”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2022, pp. 3835–3844.

[205] Peng Wang et al. “NeuS: Learning Neural Implicit Surfaces by Volume Rendering for
Multi-view Reconstruction”. In: NeurIPS (2021).

[206] Qianqian Wang et al. “Ibrnet: Learning multi-view image-based rendering”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, pp. 4690–
4699.

[207] Zirui Wang et al. “NeRF–: Neural radiance fields without known camera parameters”. In:
arXiv preprint arXiv:2102.07064 (2021).

https://doi.org/10.1017/9781108627771.012
https://doi.org/10.1017/9781108627771.012

BIBLIOGRAPHY 104

[208] Katherine Watson et al. Creating workflows for NeRF Portraiture. 2022. URL: https://
rd.nytimes.com/projects/creating-workflows-for-nerf-portraiture.

[209] Daniel N. Wood et al. “Surface Light Fields for 3D Photography”. In: SIGGRAPH. 2000.
[210] Yiheng Xie et al. “Neural fields in visual computing and beyond”. In: Computer Graphics

Forum. Vol. 41. 2. Wiley Online Library. 2022, pp. 641–676.
[211] Da Xu et al. “Self-attention with Functional Time Representation Learning”. In: NeurIPS

(2019).
[212] Bangbang Yang et al. “Learning Object-Compositional Neural Radiance Field for Editable

Scene Rendering”. In: ICCV (2021).
[213] Greg Yang and Hadi Salman. “A fine-grained spectral perspective on neural networks”. In:

arXiv preprint arXiv:1907.10599 (2019).
[214] Zhenpei Yang et al. “SurfelGAN: Synthesizing realistic sensor data for autonomous driving”.

In: CVPR (2020).
[215] Lior Yariv et al. “Multiview Neural Surface Reconstruction by Disentangling Geometry and

Appearance”. In: NeurIPS (2020).
[216] Lior Yariv et al. “Multiview Neural Surface Reconstruction by Disentangling Geometry and

Appearance”. In: Advances in Neural Information Processing Systems 33 (2020).
[217] Lior Yariv et al. “Volume rendering of neural implicit surfaces”. In: Advances in Neural

Information Processing Systems 34 (2021), pp. 4805–4815.
[218] Lin Yen-Chen. NeRF-pytorch. https : / / github . com / yenchenlin / nerf -

pytorch/. 2020.
[219] Lin Yen-Chen et al. “iNeRF: Inverting Neural Radiance Fields for Pose Estimation”. In:

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2021.
[220] Alex Yu et al. “pixelnerf: Neural radiance fields from one or few images”. In: Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, pp. 4578–
4587.

[221] Alex Yu et al. “Plenoctrees for real-time rendering of neural radiance fields”. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. 2021, pp. 5752–5761.

[222] Zehao Yu et al. SDFStudio: A Unified Framework for Surface Reconstruction. 2022. URL:
https://github.com/autonomousvision/sdfstudio.

[223] Yan-Pei Cao Yue Luo. ArcNerf: Nerf-based object/scene rendering and extraction frame-
work. 2022. URL: https://github.com/TencentARC/arcnerf/.

[224] Jiakai Zhang et al. “Editable free-viewpoint video using a layered neural representation”.
In: ACM Transactions on Graphics (TOG) (2021).

[225] Kai Zhang et al. “Arf: Artistic radiance fields”. In: Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXI.
Springer. 2022, pp. 717–733.

https://rd.nytimes.com/projects/creating-workflows-for-nerf-portraiture
https://rd.nytimes.com/projects/creating-workflows-for-nerf-portraiture
https://github.com/yenchenlin/nerf-pytorch/
https://github.com/yenchenlin/nerf-pytorch/
https://github.com/autonomousvision/sdfstudio
https://github.com/TencentARC/arcnerf/

BIBLIOGRAPHY 105

[226] Kai Zhang et al. “Nerf++: Analyzing and improving neural radiance fields”. In: arXiv
preprint arXiv:2010.07492 (2020).

[227] Lvmin Zhang and Maneesh Agrawala. Adding Conditional Control to Text-to-Image Diffu-
sion Models. 2023. arXiv: 2302.05543 [cs.CV].

[228] Richard Zhang et al. “The Unreasonable Effectiveness of Deep Features as a Perceptual
Metric”. In: CVPR. 2018.

[229] Ellen D. Zhong et al. “Reconstructing continuous distributions of 3D protein structure from
cryo-EM images”. In: ICLR. 2020.

[230] Tinghui Zhou et al. “Stereo Magnification: Learning View Synthesis using Multiplane
Images”. In: ACM Transactions on Graphics (SIGGRAPH) (2018).

[231] Tinghui Zhou et al. “Stereo magnification: Learning view synthesis using multiplane im-
ages”. In: arXiv:1805.09817 (2018).

[232] Jun-Yan Zhu, Yong Jae Lee, and Alexei A Efros. “Averageexplorer: Interactive exploration
and alignment of visual data collections”. In: ACM Transactions on Graphics (TOG) 33.4
(2014), pp. 1–11.

[233] Siyu Zhu et al. “Very large-scale global SFM by distributed motion averaging”. In: CVPR
(2018).

[234] Zihan Zhu et al. “NICE-SLAM: Neural Implicit Scalable Encoding for SLAM”. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2022.

https://arxiv.org/abs/2302.05543

	Contents
	List of Figures
	List of Tables
	Introduction
	Representing the Plenoptic Fuction
	Dissertation Overview

	Neural Radiance Fields
	Related Work
	Neural Radiance Field Scene Representation
	Volume Rendering with Radiance Fields
	Optimizing a Neural Radiance Field
	Results
	Discussion

	Representing High Frequencies in Coordinate-Based Networks
	Related Work
	Background and Notation
	Fourier Features for a Tunable Stationary Neural Tangent Kernel
	Stationary kernels
	Manipulating the Fourier Feature Mapping
	Experiments
	Discussion

	Initializing Coordinate-Based Networks
	Related Work
	Overview
	Implementation details
	Results
	Discussion

	Scaling Neural Radiance Fields
	Related Work
	Background
	Method
	Results and Experiments
	Model Parameters / Optimization Details
	Limitations and Future Work
	Discussion

	Nerfstudio Framework
	Related Works
	Framework Design
	Core components
	Nerfacto Method
	Nerfstudio Dataset
	Experiments
	Open-source Contributions
	Discussion

	Conclusion
	Why NeRFs and the Role of Representation
	Limitations
	The Future of 3D

	Bibliography

