
ShengJi+: Playing Tractor with Deep Reinforcement

Learning

Jerry Shan

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-127

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-127.html

May 12, 2023



Copyright © 2023, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
I would like to thank Professor Joseph Gonzalez and Sky Computing for
supporting me throughout my graduate studies and my research project. I
also want to thank Professor Sergey Levine for his amazing CS 285 course
in fall 2022, without which I would not have discovered my interest in deep
reinforcement learning.



ShengJi+: Playing Tractor with Deep Reinforcement Learning

by Jiarui Shan

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of 
California at Berkeley, in partial satisfaction of the requirements for the degree of Master of 
Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Joseph Gonzalez
Research Advisor

(Date)

* * * * * * *

Professor Sergey Levine
Second Reader

(Date)

5/11/23

Joseph E. Gonzalez

Joseph E. Gonzalez
5/11/2023



ShengJi+: Playing Tractor with Deep Reinforcement Learning

Copyright 2023
by

Jiarui Shan



1

Abstract

ShengJi+: Playing Tractor with Deep Reinforcement Learning

by

Jiarui Shan

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

In recent years, humans have made significant progress in building AIs for perfect and imper-
fect information games. However, trick-taking poker games are still considered a challenge
due to their complexity. Tractor (a.k.a. ShengJi) is a 4-player trick-taking card game played
with 2 decks of cards that involves competition, collaboration, and state and action spaces
that are much larger than the vast majority of card games. Currently, there is no existing
AI system that can play Tractor. In this work, we present ShengJi+, an e�ective AI sys-
tem for the Tractor game powered by deep reinforcement learning and Deep Monte Carlo.
ShengJi+ is trained using self-play for ≥1.2 million games and achieves 97.6% Level Rate
over the random baseline agent. In addition to the main architecture, we also experiment
with several training techniques for Tractor and discuss why they do or do not work based
on the match statistics. Through case studies, we believe that ShengJi+ exhibits intelligent
and rational playing strategies that resemble human Tractor players. We open-source our
code1 to motivate future work on this topic and to introduce Tractor as a new benchmark
for imperfect information multi-agent reinforcement learning, and to introduce ShengJi+ as
a strong baseline for future research into this game.

1https://github.com/themoon2000/shengji_plus.

https://github.com/themoon2000/shengji_plus


i

Contents

Contents i

List of Figures iii

List of Tables iv

1 Introduction 1

2 Background of Tractor 2

3 Related Work 6
3.1 Policy Gradient Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Deep Q Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Neural Fictitious Self-Play . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Deep Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.5 Soft Actor Critic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Method 10
4.1 RL Environment and Data Collection . . . . . . . . . . . . . . . . . . . . . . 10
4.2 State Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Reward Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 Learning Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6 Metrics and Game Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Results 19
5.1 Discount Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Comparison of DMC and DQN Methods . . . . . . . . . . . . . . . . . . . . 20
5.3 Dynamic vs. Static Card Encoding . . . . . . . . . . . . . . . . . . . . . . . 22
5.4 Maximum Entropy Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.5 Oracle Guiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.6 Knowledge Transfer Between Game Modes . . . . . . . . . . . . . . . . . . . 25
5.7 Combo Move Penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



ii

5.8 Best Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Conclusion 27

Bibliography 28

7 Appendix 30
7.1 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.2 Pattern Matching and Ru�ng Rules of Tractor . . . . . . . . . . . . . . . . . 38



iii

List of Figures

4.1 A card combination is encoded into a 54 ◊ 2 one-hot matrix conditioned on the
dominant rank and suit. The column represents the category and rank of the
card, and the row represents card counts. Note that in this example, 3-3-5-5�
forms a tractor, because the rank above and below the dominant rank are always
treated as consecutive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1 Average Attacking Point Di�erence learning curves for 5 di�erent discount rates,
while controlling other configurations. . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Deep Monte Carlo vs Deep Q Learning in terms of level rate. . . . . . . . . . . . 21
5.3 Average Attacking Points Di�erence of dynamic and static card encoding. . . . . 23



iv

List of Tables

5.1 Leveling Rates of DMC, DQN, and Random in single and multi-pattern mode respectively. 21
5.2 Leveling rates of dynamic vs static encoding schemes in single-pattern and multi-pattern

modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Leveling rates with and without oracle guiding. . . . . . . . . . . . . . . . . . . . . 24
5.4 Leveling rates of agent trained on single-pattern mode vs on multi-pattern mode. . . . 25
5.5 Leveling rates with combo move penalty of 0 and 0.15. . . . . . . . . . . . . . . . . 26



1

Chapter 1

Introduction

In the history of reinforcement learning, most works have focused on developing intelligent
agents that could interact with and attain certain objectives in a perfect information setting,
such as an AI chess player, or a robot that can run for a long distance. In these tasks, the
agent has full knowledge about the environment, and is possible to always make the optimal
move based on this information, or even learn the environment dynamics. In contrast, in
imperfect information environments, the agent has access to observations which only contain
part of the entire environment state, creating more challenges in learning the optimal policy.

In recent years, there has been considerable progress in using deep reinforcement learning
to train AI players for imperfect information games like Japanese Mahjong (Li et al., 2020),
Texas Hold’em (Brown and Sandholm, 2018), DouDiZhu (Zha et al., 2021; Zhao et al., 2022),
GongZhu (Shi et al., 2021), Dota 2 (Berner et al., 2019), and so on. This is partly achieved
by designing methods that account for and are robust against the inherent uncertainty of
the environment as observed by the agent. Research into imperfect information games is
important, as the uncertainties of game environments resemble uncertainties that an agent
must face when interacting in the real world.

In this work, we study Tractor, a multi-agent and imperfect information poker game.
there is no existing AI system that can play Tractor using deep reinforcement learning. The
properties of Tractor, including its complicated game rules, dynamic trump, large state and
action space, competition, collaboration, multiple separate but causally linked phases, on
top of being an imperfect information game make it a di�cult RL problem to tackle.



2

Chapter 2

Background of Tractor

Tractor is a 2 vs 2 trick-taking poker game. Specifically, Tractor belongs to the family of
point-trick games. In these games, the goal of the players is to maximize the total points
they earn. The standard Tractor is played with 2 decks of cards. Although playing with
more or less decks of cards is possible, the rules are so di�erent that they can be considered
distinct games. Compared to DouDiZhu, another popular card game, Tractor has more game
rules and more players, allowing for more complex collaboration and competition strategies.
In addition to the required rules, there are also many optional rules that can be added to
Tractor depending on what the players agreed upon. Some rules increase the state and action
space dramatically.

In Tractor, the players sit in a circle and across their teammate, and each team collectively
earns as many points as possible. In each round, one of the players is the dealer, and the
dealer’s team is called the defenders. The other team is the attackers, and the defenders’
goal is to prevent the attackers from scoring 80 points or higher. There are 200 points in
total, and they come from the cards that the players play. Each 5 is worth 5 points, each 10
is worth 10 points, and each King is worth 10 points. All other cards have no point value.
In each trick, one player leads with a combination of patterns from the same suit, and the
other players need to follow the pattern combination and play the same number of cards.
There are three types of patterns:

• A single card (single).

• A pair of identical cards.

• Consecutive pairs in the same suit (called a tractor). We use the term n-tractor to
denote a tractor consisting of n consecutive pairs.

The players’ moves in a trick decide who wins the trick. At the end of a trick, all the points
in the cards played go to the team that wins the trick, and the winner of the trick will lead
the next one. The dealer leads the first trick. A round of Tractor ends when all cards have
been played. If the defenders win (e.g. the attackers did not reach 80 points), they keep



CHAPTER 2. BACKGROUND OF TRACTOR 3

defending and the dealer’s teammate becomes the dealer in the next round; if the attackers
win, they become the defenders and the player to the right of the current dealer becomes
the next dealer.

A round of Tractor is played with a predetermined dominant rank between 2 to A, and
during the round there are 4 distinct phases – declaration, kitty, bidding, and the trick
phase – each requires reasoning over di�erent state and action spaces. Each bidding phase
is followed by one more kitty phase for the bidder.

• Declaration phase: the players take turns drawing cards from 2 shu�ed decks. At
any time, a player may declare the trump suit for this round by revealing 1) a card in
the dominant rank, 2) a pair of identical cards in the dominant rank, 3) a pair of Black
Jokers, or 4) a pair of Red Jokers. These declaration types are listed in order from
small to big, and bigger declarations can override smaller ones. Each player draws 25
cards in total, leaving 8 on the table.

• Kitty phase: the dealer (in the first round, the last player to declare becomes the
dealer, and in other rounds, the dealer is predetermined) takes the remaining 8 cards
and discards 8 cards from his hand of 33 cards, The discarded cards, the kitty, will be
revealed at the end of the round.

• Bidding phase (chao di): this is an optional component of Tractor. After the dealer
places the kitty, other players take turns to decide if they want to override the dominant
suit by revealing a pair of identical cards in the dominant rank or a pair of Jokers. The
order of the bids is �, ˙, �, ˝, Black Jokers (XJ), Red Jokers (DJ). Players who bid
takes the current kitty and places 8 cards back as the new kitty. Once a player has
bidded, the dealer can also take part in bidding.

• Main phase: the dominant suit is settled and now the cards are divided into trumps
and non-trumps. A card is a trump if it is a Joker, in the dominant rank, or in the
dominant suit (if Jokers won the bid, there’s no dominant suit). In each trick, the lead-
ing player plays a pattern, and the other players follow the pattern counterclockwise.
A pattern consists of a suit (all trump cards are considered as the same suit) and a
pattern structure (single, pair, tractor, or a combination of those). If a player cannot
exactly match the pattern, they are required to match as much as they can by playing
cards from the same suit. If they don’t have enough cards in the suit, they can play
anything as long as the total number of cards being played add up to the size of the
pattern. If the pattern is non-trump and a player has no cards in that suit, they can
ru� the pattern by matching it using trump cards. The player who has the biggest
cards in the trick collects all the point cards that appeared in the trick for his team,
and leads the next trick. If the attackers win the trick, they also collect all point cards
in the kitty, multiplied by 2 raised to the size of the pattern (e.g. single card = 2, pair
= 4, two consecutive pairs = 24 = 16, up to 26). The attackers win if they collected at
least 80 points in total, in which case, the attackers and defenders switch roles.



CHAPTER 2. BACKGROUND OF TRACTOR 4

The details of pattern matching and ru�ng are rather complicated and are explained
in Appendix 2 along with examples for readers who are interested.

Winning a round is only part of a Tractor game. Each team also has a rank. The ranks
start with 2, and the winning team levels up. Each team’s goal is to level up faster than their
opponents and be the first team that levels up past rank A. The outcome of a round depends
not only on which team won, but also on the number of points earned by the attackers. If
the attackers earned at least 80 points, they become the defenders (with no rank gained),
and for every 40 additional points earned, their team increases their rank by 1. On the other
hand, if the attackers earned below 80 points, the defenders level up by 1 rank; if below 40
points, the defenders level up by 2 ranks; and if 0 points, the defenders level up by 3 ranks.
Since winning by n ranks at once has the same e�ect as winning by 1 rank n times, the
e�ective win rate for team A against B is the proportion of ranks won by team A among
the total ranks won by the two teams. The goal of the players is to maximize the expected
ranks their team wins in any round.

Tractor is a complicated game for AI systems. First, the state is large. Each player starts
the round with a hand of 25 cards, which is more cards per player than in most card games,
and cards with the same rank but di�erent suits are considered distinct. In each round, there
is a dominant rank that is the same as the rank of the dealer’s team and a dominant suit
that is settled during the round. The dominant rank and suit together determine the ranking
of the cards, so the same hand has very di�erent meanings depending on this information.
Therefore, a good AI system needs to adapt its strategy depending on the dominant rank
and suit.

The legal action space of Tractor is variable and di�cult to enumerate directly. In the
standard version of the game, the trick leader can play arbitrary combinations of patterns
from the same suit. Due to computational limitations, however, we focus on a simplified
version where the trick leader can only play a combination of at most 3 patterns, e.g. 1
single + 2 pairs. Even after this simplification, the legal action space of the game could still
be very large, because if a player can’t fully match a pattern, they can choose an arbitrary
card to play for each card that they can’t match. For example, if the pattern consists of 5
cards in a suit a player does not have, the player can choose any 5 cards to play, meaning
there are

125
5

2
= 53130 possible actions to consider. Furthermore, unlike card games that

enforce action ordering (e.g. in DouDiZhu, the next player’s move must be bigger than the
current player’s move), a move in Tractor can be either bigger or smaller than the previous
player’s move, complicating the legal action space. Overall, Tractor is challenging for RL
because many RL algorithms only work well on small and static action spaces, so additional
action and state space reduction techniques need to be considered.

The variable action space also poses another problem, which is that some extremely high
reward moves are rarely present in the legal moves, and when they do, the chance that the
agent actually plays the move is close to zero, so it could take a long time for an RL agent
to discover the move. For example, winning the last trick with a tractor (e.g. 3344) as an
attacker will multiply the kitty points by 16. If there are at least 10 points in the kitty,



CHAPTER 2. BACKGROUND OF TRACTOR 5

which is often the case, such move will add 160 points to the attackers’ score, meaning that
they win the round and level up at least 2 ranks in addition – an extremely good outcome.
However, tractors rarely show up in a hand of 25 cards, and even if one does show up, unless
the agent strategically saves those 4 cards till the end by planning ahead and winning the
second last trick, it wouldn’t discover the 16x kitty points opportunity.

Each round of the game involves hundreds of discrete actions played sequentially, making
the correlation between the early actions of the players and the final outcome very weak.
Also, sometimes bad moves only become costly if the player plays enough of them, so as
a result, the outcome of a round is not always a strong indicator of how good the agent’s
individual actions were, and the model can only learn how good individual moves are when
a huge number of games are played.



6

Chapter 3

Related Work

3.1 Policy Gradient Methods
Policy gradient methods are a family of deep reinforcement learning approaches that directly
optimize a policy network by trying to maximize the expected cumulative reward. Some of
the variants of these methods include REINFORCE (Williams, 1992), Actor-Critic (e.g.
A3C (Mnih et al., 2016), SAC (Haarnoja et al., 2018)), PPO (Schulman et al., 2017), TRPO
(Schulman et al., 2015).

While policy gradient methods are popular and known to work well for a wide variety
of control tasks, they su�er from two critical weaknesses when being used against Tractor
due to Tractor’s immense and varying action space. In Tractor, the possible action space is
insanely big (too big to even enumerate). Fortunately, at any point, the legal action space
for a player is quite small relative to it. However, policy networks are only good at making
a prediction within a known and fixed action space, so it is not e�cient for tasks where
the legal actions are sparse within the possible action space, as most of the computation is
wasted on evaluating illegal actions.

Another related weakness of policy gradient methods is that they don’t tend to generalize
to previously unseen actions, especially for problems with large discrete action spaces (Dulac-
Arnold et al., 2015). When a policy network makes a decision in a discrete action space, it
considers each action separately and does not learn the relationship between actions from
data. Due to the immense possible action space in Tractor, it is infeasible for a trained policy
to observe all actions during training, so when it encounters an unseen action during test
time, it has no idea how good it is because it has never learned to optimize that particular
action during training.

3.2 Deep Q Learning
Deep Q-learning (Mnih et al., 2015) is another type of model-free RL algorithm that learns
a function Q : (S,A) æ R that estimates the expected cumulative reward for taking action



CHAPTER 3. RELATED WORK 7

a œ A at state S and acting optimally thereafter. The network is trained on the Bellman
equation

Q(s, a) = r + “ max
aÕ

Q(sÕ, aÕ).

The policy is never learned directly, but can be extracted from a Q function.
DQN is a plausible approach for Tractor because it can handle its large state space and

dynamic legal action space.
A key advantage of DQN compared to PG is that it can potentially generalize to previ-

ously unseen actions. This is because in DQN, the action is part of the input to the model,
so a neural network, being a smooth function approximator, could reason about a new action
at some state from past training data where the action and state have been very similar.

There are two main limitations of DQN in Tractor. First, Tractor is a task with long
trajectories, which means that Q-learning may take a long time to converge, as for each time
step, the network updates itself based on its estimations for the next time step, so the quality
of Q-value estimations for time step t would only be good if the network’s estimations for
time step t + 1 are good. Second, the Bellman update requires computing the max over
states and actions, but the action space varies from state to state, so it’s inconvenient to do
the updates in batches. As a result, we expect DQN to be slow to train compared to other
methods.

3.3 Neural Fictitious Self-Play
Neural Fictitious Self-Play (NFSP) is a deep reinforcement learning algorithm that aims to
combine the idea of self-play with imperfect information. The agent learns a Q network and
a strategy estimate network during training. The Q network is used to approximate the best
response of the agent, like in Deep Q-Learning. The strategy estimate network’s purpose
is to model the average best response of the agent’s opponent, and outputs a probability
distribution over the opponent’s actions, from which fictitious play samples are drawn during
training. The authors showed that NFSP achieved state-of-the-art performance on the two-
player game Leduc Hold’em.

Unfortunately, NFSP faces the same problem that policy gradient methods face, and
that is the action space of Tractor is too large to either calculate a probability distribution
over, or for the agent to have seen all actions during training. Additionally, the legal actions
a player has in Tractor depends on their hand, which is private, so the other players don’t
even know this player’s action space. Therefore, it’s infeasible to estimate other players’
strategies in Tractor.

3.4 Deep Monte Carlo
Deep Monte Carlo (Silver et al., 2016) is another algorithm in deep reinforcement learning
that uses Monte Carlo simulation to estimate a value function, bypassing the need to su-



CHAPTER 3. RELATED WORK 8

pervise the value function using past versions of itself (as in value iteration). In the original
paper, the authors applied DMC to Go and used a value network and a policy network to
perform Monte Carlo Tree Search. Instead of performing an exhaustive tree search (which is
infeasible for Go), the value function can reduce the tree depth by approximating the values
of the subtrees below a certain depth.

In DouZero (Zha et al., 2021), the authors used the same Monte Carlo idea to approximate
a Q function instead. To optimize the Q function, they first use it as an argmax policy (in an
epsilon-greedy way) to sample random episodes, then for each state-action pair (s, a), they
update Q(s, a) with the return averaged over all the samples concerning (s, a). They applied
this technique to the card game DouDiZhu, and showed that it achieved state-of-the-art
performance.

The main advantage of Deep Monte Carlo is that it can handle stochastic environments
where the reward received by the agent is nondeterministic. This is true for Tractor because
although the game is itself deterministic, the outcome of a round is nondeterministic from
each player’s own perspective, as they can’t observe the full game. Deep Monte Carlo
is unbiased in expectation as it directly approximates the true values (Sutton and Barto,
2018), despite having a high variance, which can be reduced by sampling lots of training
data.

A limitation of Deep Monte Carlo is that it relies on the environment being episodic.
That is, the agent’s interaction with the environment must terminate after a finite number
of moves. However, this is not a problem for episodic games like Go and Tractor.

3.5 Soft Actor Critic
Soft Actor Critic (Haarnoja et al., 2018) is a variant of Actor Critic that maximizes both the
expected return and entropy at the same time. The benefit of maximizing entropy is that
in many RL tasks, a good policy tends to be one where the agent could attain high returns
while acting with randomness. In SAC, the actor learns a stochastic policy that maximizes a
trade-o� between the expected cumulative reward and the entropy of the policy. The entropy
term encourages the actor from becoming too deterministic. By maximizing it, the policy
is encouraged to take actions that are not just optimal, but also diverse, which can help it
find better solutions and avoid getting stuck in local optima.

To control the degree of exploration the policy, SAC has a temperature parameter –
that controls the relative importance of the expected cumulative reward and the entropy.
A high temperature parameter encourages the policy to be more exploratory, while a low
temperature parameter encourages the policy to be more deterministic. By adjusting the
temperature parameter during training, the algorithm can find a good balance between
exploration and exploitation.

A limitation of SAC is that the original implementation requires a policy network, which
is not suited for Tractor. An alternative way to get the entropy could be to compute the



CHAPTER 3. RELATED WORK 9

Q-values for each action in the legal action space, and then take a softmax and then treat it
as a probability distribution.



10

Chapter 4

Method

4.1 RL Environment and Data Collection
To train an AI system on Tractor, it needs to have an environment to interact with. Since
we have not found an existing implementation of Tractor for the purpose of Reinforcement
Learning, we implement a new environment for the game from scratch and open-source it
on GitHub for the benefit of future research.

As previously mentioned, Tractor is a 4 player imperfect information game consisting of
sequential moves. The players sit in a circle, with their teammates sitting across them. To
represent this setup formally, we identify each player with an absolute position being one of
P = {NORTH, SOUTH, EAST, WEST}, where NORTH and SOUTH are a team and EAST and WEST are
a team. Players make move in the counterclockwise direction, following the order

NORTH æ WEST æ SOUTH æ EAST æ NORTH.

At any point during a round, each player observes a di�erent and partial view of the com-
plete game state S. From the players’ perspectives, the absolute positions of the players are
irrelevant when observing the game. Instead, what matters to them is the relative positions
of themselves and the other 3 players, each being one of ÂP = {SELF, OPPOSITE, LEFT, RIGHT}.
Each absolute position establishes a di�erent bijection from P ‘æ ÂP . For example, NORTH
uses the following correspondences when deriving each observation from the game state:

{NORTH æ SELF, SOUTH æ OPPOSITE, EAST æ LEFT, WEST æ RIGHT}.

When deriving observations, we always describe positions relatively. For example, the posi-
tion of the dealer is described as a relative position for each player.

During training, the ShengJi+ plays against itself by moving around the table. On each
player’s turn, it pretends to be that player and makes the move a = argmaxaQ(s, a) among
the legal actions, with access to only the observation s that is available to that player at that
time. The environment collects all moves made by all players for o�-policy training, as well
as all the observations drawn by the players right before those moves. The actions made in

https://github.com/themoon2000/shengji_plus


CHAPTER 4. METHOD 11

the 4 phases of the game are stored separately because they are used to train the 4 di�erent
models. The actions made by each of the 4 player positions are also stored separately for
the purpose of calculating rewards, but are combined when training each of the models. To
speed up the data collection procedure, we come up with a training pipeline that uses parallel
actors to run game simulations, using weights that are shared across these processes.

Algorithm 1 Actor Process of ShengJi+
Input: shared bu�ers BD, BK , BC , and BT for collecting samples for the 4 game phases;
global Q networks QD, QK , QC , QT ; hyperparameters
for 1, 2, . . . do

Initialize local bu�ers DN , DS , DW , DE to store moves for player North, South, West,
and East respectively
Initialize new Tractor round G with random rank œ 2, . . . , 14 and random starting
player œ {N, S, W, E,�}
while round not ended do

Q Ω one of QD, QK , QC , QT based on current phase
j Ω one of N, S, W, E {Get player position}
st,j Ω partial observation at position j derived from current game state G

at,j Ω

Y
]

[
argmaxat

Q(st,j , at) with prob 1 ≠ ‘

random action with prob ‘
Run action at,j in environment, observe r(at, st)
Add (st,j , at,j , rt,j) to Dj

end while
for j œ {N, S, W, E} do

for t = T, T ≠ 1, . . . do
if at,j œ Dj is an action in the main (trick) phase then

r̃t,j = rt,j + “rt+1,j

else
r̃t,j = rt,j + Rj {we don’t discount actions in other phases}

end if
Add (st,j , at,j , r̃t,j) to BD, BK , BC , or BT

end for
end for

end for



CHAPTER 4. METHOD 12

Algorithm 2 Learner Process of ShengJi+
Input: Global Q networks QD, QK , QC , and QT ; shared bu�ers BD, BK , BC , and BT

containing sampled episodes
for phase p œ {D, K, B, T} do

for each batch of data (s, a, r) in Bp do
Predict Q-values r̂ = Qp(s, a)
Update Qp using MSE loss and RMSProp against target values r

end for
end for

4.2 State Representation
In each of the 4 phases of a round, a player has access to di�erent amounts of information.
All information is encoded into one-hot vectors. Below is the subset of information provided
as input to each of the Q networks:

• Declaration phase: the observation includes the player’s hand, the relative position
of the dealer, the current dominant suit, the dominant rank, the position of the last
player who declared (if any), and all trump cards revealed by the 3 other players
(including declarations that are overridden). The actions are all possible declaration
options, as well as the DON’T DECLARE action.

• Kitty phase: the observation is the same as in the declaration phase. The action
is the ID of the chosen card, from 0 to 53. As mentioned previously, we simplify the
task by choosing 1 card at a time for 8 times. The card choice is encoded as a 54-
dimensional one-hot vector conditioned on the dominant rank and suit using the same
ordering as shown in Figure 4.1, except with only one row.

• Bidding phase: the observation is the same as in the declaration phase, with ad-
ditional information on the last person who made the bid. The action is all bidding
options for the player, as well as the DON’T BID action.

• Trick phase: the observation includes everything from before. In addition, it contains
the total number of bids occurred during the bidding phase, the points earned by the
attackers, the points escaped by the defenders, the set of all unplayed cards, the moves
played in the current trick, the kitty if the current player owns the kitty, the sequence
of historical tricks, and the set of cards each player is publicly known to possess but
have not yet played.

Instead of mapping cards to static one-hot vectors, we encode them dynamically condi-
tioned on the dominant rank and the dominant suit, since they change the interpretation of
the cards. The length of the flattened encoding is always the same (108), but the positions of
the individual cards depend on the dominant rank and suit (see Figure 4.1). This dynamic



CHAPTER 4. METHOD 13

1 0
1 0

1 0
0 0

1 0
0 0

0 1
0 0

0 0
0 0

1 1
0 0

0 1
0 1

1 0
1 0

0 0
0 0

1 0
0 0

0 0
0 0

1 0
0 0

0 1
0 0

0 0
0 0

0 1
0 0

0 0
0 0

0 1
0 0

0 0
0 0

1 0
0 0

0 1
0 1

0 0
0 0

0 0
0 0

1 0
0 0

1 0
0 0

0
0
1
0
1
0
0
0
1
0
1
0

J
o
k
e
r

J
o
k
e
r

all trump cardsall non-trump cards

Dominant rank:
Dominant suit:

Figure 4.1: A card combination is encoded into a 54 ◊ 2 one-hot matrix conditioned on the
dominant rank and suit. The column represents the category and rank of the card, and the
row represents card counts. Note that in this example, 3-3-5-5� forms a tractor, because
the rank above and below the dominant rank are always treated as consecutive.

one-hot encoding also reduces the state space significantly by abstracting the dominant rank
and suit. We use this method to encode card sets wherever it is applicable.

4.3 Reward Design
In Tractor, each player tries to maximize the total number of points their team earns, and
it directly determines the outcome of the round. The total points a team earns in Tractor
is the sum of the points it earns in each trick. Therefore, we use both the final outcome
of the round and the points earned in each trick as reward signals. The final reward for a
player is the number of levels their team attained in the round if they won, or the negative
of the number of levels their opponents attained if their team lost. A player also earns a
reward in trick t proportional to the number of points their team earned in trick t, and if
his team lost points in the trick, the reward would be the negative of the number of points
their opponents earned. For the first three phases of a round (declaration, kitty selection,
bidding), no points are being earned yet, so the players’ actions in these rounds only receive
the final outcome as reward signal.

The discount rate “ influences the agent’s preference between earning points now and
planning to earn points in the future. A small discount also means that the agent prioritizes
earning points now as opposed to later or leveling up. Although these two objectives are
similar, they are not identical. For example, suppose that the attackers earned 90 points
by the time that there are 3 remaining cards per player, and that one attacker has a big
move that can either earn them 20 points right now, or possibly earning them 30 points or
above in the last trick. In expectation, the first strategy has a higher reward, but in terms
of maximizing the ranks attained, the agent should play strategy 2, because earning another
20 points is not enough to level up. In contrast, 90 + 30 = 120 points are just enough to



CHAPTER 4. METHOD 14

level up, and it can only be achieved by the second strategy, so the expected number of
ranks attained by strategy 2 is higher than that of strategy 1. Therefore, the relative reward
weights for ranks attained and points scored in a trick directly a�ect the agent’s strategy.

4.4 Architectures
In order to build a good AI system for Tractor, we consider three deep RL architectures for
the main phase. The models for the pre-round phases are all supervised directly on the final
reward without discount, because the trajectory lengths are mostly fixed, the players don’t
earn any points just yet (so no immediate reward for any actions taken in those phases), and
the final reward signal is very far away. The main phase – with the largest state and action
spaces among all phases – is where most of the strategic play happens, so we use this phase
to run our experiments.

All 5 models use fully connected layers with ReLU activations that are optimized using
RMSProp (learning rate = 0.0001) and MSE loss. The model for the trick phase uses an
LSTM to encode the history of the last 15 tricks (each of which consists of 4 moves, one
played by each player), and the output is concatenated with other state and action features.
All agents use an epsilon-greedy exploration scheme with ‘ = 0.015 for all phases. We use
one GPU for training, and train all agents for 700000 games against themselves.

Deep Q Learning Agent
To train the DQN agent, we collect (st, at, st+1, rt) tuples for each action taken by the agent
during self-play, and use them to supervise a Q-network Q(s, a) and value network V (s).
The value network is used to approximate

V (st) ¥ Eat≥fi[Q„(st, at)],

which would otherwise be ine�cient to compute using just the Q-network because the dis-
tribution of at is not fixed. Moreover, the action space is usually large, so computing max(·)
over actions is costly. We use the value network to supervise the Q network using a Mean
Squared Error loss (dt is whether time step t is terminal):

J(„) = E(st,at,st+1)œD

51
2

1
r(st, at) + “(1 ≠ dt)V◊(st+1) ≠ Q„(st, at)

226

Similarly, the value function optimizes the following loss:

L(◊) = E(st,at)œD

51
2

1
Q„(st, at) ≠ V◊(st)

226

Deep Monte Carlo Agent
To train the DMC agent, we supervise all 4 Q-functions using the discounted cumulative
rewards. The t-th move for player j is recorded as a tuple (st,j , at,j , rt,j), and at the end



CHAPTER 4. METHOD 15

of a round, the final reward Rj (which is di�erent for the players) is incorporated into the
reward for each player’s actions with a discount factor “, resulting in (st,j , at,j , r̃t,j) where

r̃t,j = rt,j + “T ≠tRj

for a round with T tricks in total. Then, we use the Mean Squared Error loss to fit Q(st,j , at,j)
to r̃t,j .

Maximum Entropy DQN Agent
To test out whether the maximum entropy framework is useful for Tractor, we implement
a variation of the DQN agent for the main phase that adds an entropy term to the value
function’s training labels, like in Soft Actor-Critic, but without using a policy network. The
agent still learns a Q-function which is used to extract its policy, and it is supervised using
the softened value function (with the entropy term added):

V (st) = Eat≥fi[Q(st, at) ≠ log fi(at | st)]

In order to compute the action space entropy at state st without having a policy network
to compute the action distribution from, we use the rewards Q(·, st) assigned by the Q-
network at st, apply a Softmax, then treat it as a probability distribution and calculate
the entropy from it. Finally, like in SAC, we use a temperature parameter – to weigh the
entropy term against the reward term. It is initialized at 1 and gradually decreases to 0 by
backpropagation. The objective function of – is

J(–) = Eat≥fit [≠– log fit(at | st) ≠ –H̄]

where H̄ is the target entropy.

4.5 Learning Techniques
Oracle Guiding
Inspired by Suphx (Li et al., 2020), we implement a similar oracle guiding mechanism to
drop out information about other players’ private cards gradually. In Tractor, obviously
each player cannot observe the hands of other players, but if they could, this information
would be a great advantage. Similarly, if an AI system is trained with access to the hands
of other players, it should in theory play better. However, it would be unfair for a model to
always have access to this additional information, so we drop out the oracle inputs gradually
using Bernoulli random variables parameterized by ” that decreases from 1 to 0 linearly over
N games, to let the model gradually transition from being all-knowing to being ordinary by
the end of the N -th game.



CHAPTER 4. METHOD 16

Reducing Action Space Through Sequential Moves in Sub-Action
Spaces
In most RL problems with discrete action space, the standard practice involves training a
network that, given the current observation st, either computes a probability distribution
fi(· | st) over the action space A, or assigning a Q-value for each action. However, neither
approach is e�cient for Tractor because |A| could be too big to enumerate explicitly. For
example, a player holding 25 cards from the same suit has an action space of more than
a million moves, since playing any subset of those cards is a valid move. Supposing that
Q(at, st) takes 1 millisecond to compute, deciding on an action would take ¥ 17.7 minutes,
which is too slow to be used in real-world settings. Another situation involving a large action
space is that in each round, the dealer must choose 8 cards to discard from his hand of 33
cards, forming the kitty. This means there are up to

133
8

2
¥ 1.39 ◊ 107 actions to choose

from, again too big to enumerate.
To work around this problem, we decompose actions that come from huge action spaces

as a sequence of sub-actions from smaller action spaces whose union is equivalent to the
original action. For the kitty task, we decompose it into the sub-action of selecting 1 card
to discard each time and repeating this task 8 times sequentially, each time updating the
player’s hand after the move. For the first card, the sub-action space is now at most 33
(could be less as some cards could be pairs), and for each subsequent card, the action space
gets even smaller. The total number of Q-value computations needed for the kitty phase is
now bounded by 33 + 32 + 31 + · · · + 26 = 236 instead of 1.39 ◊ 107.

Likewise, in the trick phase, instead of enumerating all legal moves the player could play,
we decompose it into the task of choosing a pattern to play first, then deciding whether
to add more patterns from the same suit. Doing so reduces the action space down to the
number of individual patterns in the player’s hand, which is small. As an example, suppose
a player has {AKKQQ�, 8�}. To decide what to play, the player chooses from the following
sub-action spaces:

1. {A�, K�, KK�, Q�, QQ�, KKQQ�, 8�} æ A�.

2. {K�, KK�, Q�, QQ�, KKQQ�, �} æ KKQQ�.

3. {�} æ �.

∆ The final move is AKKQQ�.

As shown, the pattern combination is finalized when the player chooses �. The Q-value
of any decision from above is the Q-value of the union the card being chosen up to that
point, treated as one move. In practice, this way of forming moves pattern by pattern is still
slow, so we limit the maximum number of patterns per move to 3. So if the player gets to
the fourth sub-action, they could only choose � to finalize their pattern combination.



CHAPTER 4. METHOD 17

To investigate the value in training with pattern combination moves, we train two agents,
one in single-pattern mode and one in multi-pattern mode, and then compare their perfor-
mances.

Combo Move Penalty
In the real Tractor game, players often avoid playing pattern combinations unless they are
certain that the move is valid (in which case, playing multiple patterns in one move is stronger
than playing them individually) or they strategically use the combo move as a test to gain
information about other players’ cards, at the cost of potentially losing the current trick
(since if any pattern in the combination is dominated by any other player, the current player
is forced to play it). Among the two cases, the former occurs much more frequently, so we
introduce a hyperparameter called the “combo-move penalty” that is subtracted from the
player’s reward for each of their combo moves that has failed. When the penalty is positive,
the agent will be more careful when deciding to play a combo move because they will be
penalized if they do not choose the move wisely.

4.6 Metrics and Game Modes
We use three metrics to compare the performance of two teams A and B in Tractor.

• Win Rate: The percentage of games won by team A divided by the total number
of games played. Attackers win if they score at least 80 points, and otherwise the
defenders win.

• Leveling Rate: The percentages of ranks leveled up by team A divided by the to-
tal number of ranks leveled up by either team. We focus on this metric as it more
accurately describes the objective of Tractor than the raw Win Rate.

• Average Attacking Point Di�erence (AAPD): The di�erence between the average
points team A earns when being attackers against team B and the average points B
earns when being attackers against A. While the LR can measure large performance
di�erences between two models, the point di�erence can capture more subtle di�erences
between two models’ performances. We use this metric more when the models being
compared have similar LR performance.

When simulating matches between two agents, we consider two match settings: single-
pattern mode and multi-pattern mode. In single-pattern mode, the agents are not
allowed to play pattern combinations (which also include single patterns). In multi-pattern
mode (the regular Tractor game), the agents can play pattern combinations, with the stan-
dard rule that if there are any pattern components in the combination that fails to dominate,



CHAPTER 4. METHOD 18

then they are forced to play the smallest dominated pattern. The main purpose of compar-
ing these two modes is to see whether training in multi-pattern mode helps to improve an
agent’s performance in single-pattern mode. The standard Tractor game is multi-pattern.



19

Chapter 5

Results

In this section, we report and compare the match statistics of various agent types and
configurations to determine the best known architecture. The included level rate statistics
have been repeatedly tested and are reproducible up to a ±0.1% error.

5.1 Discount Rate

Figure 5.1: Average Attacking Point Di�erence learning curves for 5 di�erent discount rates,
while controlling other configurations.

Before running other experiments, we first run a preliminary test to understand the
e�ect of the discount rate in Tractor. We run a single-pattern training process on “ =
{0.5, 0.8, 0.9, 0.95, 1.0}, and find that the smaller the discount rate, the faster the model



CHAPTER 5. RESULTS 20

learns initially, and the larger the discount rate, the longer the model learns and the more
times it takes to reach its peak performance. In Figure 5.1, this pattern can be clearly seen
from the AAPD curves. For “ = 0.5, the model learns very fast for the first 50000 games,
but then appears to plateau at AAPD = 80. On the other hand, “ = 0.95 and “ = 1.0
appear to continue to learn even past 500000 games. This suggests that depending on the
available time and computational resources, di�erent discount rates should be used to reach
the peak performance.

The pattern between the learning curves and discount rate is a reasonable one, and it
explains why “ = 0.95 appear to be the best discount rate among the 5 tested choices.
A small discount rate means that the model focuses on maximizing the points it earns in
the next few tricks. However, a locally optimal strategy in Tractor is almost never globally
optimal, because earning and protecting the kitty points necessitates long-term planning.
For example, suppose there are 10 points in the kitty. Playing a large pair early might lead
to 15 points gained in the current trick, but saving the pair until the end and leading the
last trick using it could earn 10 ◊ 4 = 40 points, a higher total return, and thus a better
strategy. However, a “ = 0.5 model discounts future rewards so much that it does not see the
40 points, whereas a “ = 0.95 model would value 40 points opportunity more than earning
10 points now even if it’s 20 tricks away. That is, “20 ◊ 40 ¥ 14.34 > 10.

According to this reasoning, “ = 1 should have the best performance, but empirically this
has not been the case. One explanation is that a discount rate strictly less than 1 encourages
the model to prioritize points it can earn now as opposed to later, because the outcomes of
future tricks are uncertain. Moreover, the closer the discount factor is to 1, the higher the
range and variance of target Q-values the Q network needs to fit, and hence the model could
struggle to converge. Thorugh this preliminary test, we decide to use 0.95 as the discount
rate for all of our other experiments.

5.2 Comparison of DMC and DQN Methods
To find out which deep reinforcement learning approach is most e�ective for Tractor, we set
up two agents with identical configurations except one uses Deep Q-Learning for training
the main network and the other uses Deep Monte Carlo for training the main network. We
match them both against the Random baseline and with each other for a total of 10000
games each. The result suggests that DMC is significantly better.

There are many possible explanations as to why this is the case. One is that DMC is
naturally suited for tasks with high uncertainty, like Tractor. DQN supervises the agent
based on the model’s prediction of what happens next in the game and adds the current step
reward to the maximum expected reward among all actions that can be taken at the next
state. Although rewards are indeed dense in Tractor (since points can be earned in each
trick), they are a result of the combined actions of the other players, which are unknown
to the current player ahead of time. The same move could have led to a high reward this
time, but a large penalty the next time. Due to information imperfect nature of Tractor, an



CHAPTER 5. RESULTS 21

DMC DQN Random
DMC - 69.5% 59.7% 96.7% 97.4%
DQN 30.5% 40.3% - 93.9% 94.2%

Random 3.3% 2.6% 6.1% 5.8% -

Table 5.1: Leveling Rates of DMC, DQN, and Random in single and multi-pattern mode respec-
tively.

Figure 5.2: Deep Monte Carlo vs Deep Q Learning in terms of level rate.

agent’s action in the current trick is very weakly correlated with what reward they will get in
the next trick, so supervising the Q network using a past version of itself is less e�ective than
supervising on the actual cumulative reward. Furthermore, DQN su�ers from overestimation
of Q-values, especially over long episodes. On the other hand, DMC is suited for situations
with high uncertainty because it is “averaging” over cumulative rewards and synthesizing
trajectories that are similar, thus being unbiased.

Another way to think about this di�erence is that Tractor is a game where the value
variance of observations during most of the game is almost as big as the value variance of
observations in the beginning (sometimes you can’t predict who will win until the very end).
However, the Bellman equations behind DQN basically assume that the agent has access to
more information one step into the future, which can be used to reinforce its understanding of
the current state. This might be true for control tasks like learning to run (knowing the next
state helps the agent evaluate whether the action taken is good), but for highly stochastic
games like Tractor, there is not much to be gained by seeing the next state because it’s going
to be di�erent each time. The DQN method accumulates the estimation errors between time
steps, so when the agent predicts Q values for observations that are early on in the game,



CHAPTER 5. RESULTS 22

they could be far away from reality. The DMC agent seems better in this sense, as it learns
moves that are statistically optimal and makes no assumptions about future states.

5.3 Dynamic vs. Static Card Encoding
As shown in 4.1, we propose a dynamic card encoding method for Tractor that maps a set
of cards to a length-108 binary tensor in a way that depends on the dominant rank and
suit. More specifically, the suits are ordered such that the dominant suit is always encoded
last. The motivation of this encoding scheme is to help the model better generalize its
understanding of a hand to di�erent dominant ranks and suits. In the dynamic encoding
mode, all observations related to sets of cards, such as the player’s current hand, the kitty
(if the player placed the kitty), historical cards being played, cards played by players in the
current trick, and the cards revealed cards by each player, use this encoding scheme.

To determine its e�ectiveness, we compare it with a static baseline card encoding scheme
that always encodes cards into a fixed 108 bits-long binary vector according to the canonical
suit order �, ˙, �, ˝, followed by Black and Color Jokers. We match each model with the
random baseline for 10000 games, then matched them against each other for another 10000,
in both single-pattern and multi-pattern modes. Results are shown in table 5.7.

Dynamic Encoding Static Encoding Random
Dynamic Encoding - 51.6% 47.9% 96.7% 97.4%

Static Encoding 48.4% 52.1% - 96.4% 97.1%
Random 3.3% 2.6% 3.6% 2.9% -

Table 5.2: Leveling rates of dynamic vs static encoding schemes in single-pattern and multi-pattern
modes.

The LR statistics suggest that the performance di�erence between the two encoding
schemes is very small, which implies that at least to some extent, deep neural networks are
naturally able to reason about a hand of cards conditioned on the dynamic trump and suit.
This is a meaningful observation because unlike many card games, in Tractor, the same
card can have di�erent meanings depending on the game context. The finding that neural
networks do not require special handling in the encoding of the state/observation suggests
that any complete binary representation could be a good starting point for encoding the
states of such games.

The average attacking points di�erence reflects more subtle di�erences between the two
card encoding schemes, and we can see from figure 5.3 that after training for about 250000
games, the dynamic encoding agent consistently establishes a larger point di�erence when
played against the random model than the static encoding agent does. Although point
di�erence does not necessarily translate into higher leveling rate, it does demonstrate an



CHAPTER 5. RESULTS 23

Figure 5.3: Average Attacking Points Di�erence of dynamic and static card encoding.

understanding of point acquisition strategies, which is at the core of the game tactics of
Tractor.

5.4 Maximum Entropy Signal
To determine if introducing an maximum entropy signal could encourage the Tractor agent
to explore more diverse policies, we run a modified DQN agent that uses a softened value
network to supervise the Q network. However, through our preliminary experiments, we find
that adding the entropy signal does not lead to a statistically significant improvement over
the original DQN agent. The main reason why this could be the case is that the environment
of Tractor is very di�erent from typical RL environments. Maximum entropy encourages the
agent to enter states where there are many possible and equally likely actions to choose from.
However, in Tractor, a player often has more ambiguous choices when being dominated by
another player, in which case, he does not have a strong preference between his choices of
actions because none of them could dominate the other player(s). On the other hand, a
player is likely to be in a good situation when there are not too many actions to choose
from. This is because a player can only dominate another player if he can match the pattern
that the other player played, and if he has a match, then the rules of the game dictates
that he must play one of the matches. Therefore, maximizing the entropy in Tractor could
potentially lead to the agent preferring situations where it is dominated, which is a poor
strategy for Tractor.



CHAPTER 5. RESULTS 24

5.5 Oracle Guiding
Oracle guiding is a general technique for imperfect information games introduced by (Li
et al., 2020) for Japanese Mahjong. To determine if it is e�ective for Tractor, we implement
two agents with and without oracle guiding (keeping other configurations identical), and
compare their performance against each other as well as against the random baseline. For
the agent with oracle guiding, we choose N = 50000.

Without Oracle With Oracle Random
Without Oracle - 65.5% 65.8% 97.2% 96.7%

With Oracle 34.5% 34.2% - 93.4% 93.3%
Random 2.8% 3.3% 6.6% 6.7% -

Table 5.3: Leveling rates with and without oracle guiding.

Contrary to expectation, we find that oracle guiding adversely a�ects the performance of
ShengJi+. The reason this result could initially be a bit surprising is that the information of
the game state available to the oracle-guided model is always greater than or equal to that
of the unguided model. Specifically, the oracle-guided model has strictly more information
for the first N games, and has the same level of information as the unguided one for the
remaining training session.

One possible explanation is that the type of moves that are optimal to play given oracle
access to other players’ cards in Tractor belongs to a di�erent distribution than those which
are good strategies under normal circumstances. One example are moves that have both high
risks and high rewards. Without knowing other players’ cards, one cannot assess the risk of
such a move so it would not be wise to play it straightaway. However, with oracle access,
the agent could tell whether there is any actual risk in this high reward move, and if not,
it would be optimal to play it instead of any low-risk low-reward move. A specific example
could be leading a trick with a 10 in a non-trump suit. In real Tractor games, players almost
never play a point card to lead a trick except if all bigger cards have been played, because
otherwise this move is betting on the teammate having the biggest remaining card(s) in the
suit among the 3 players. If neither A (the biggest card) has been played yet, for instance,
then 10 could only be optimal if the teammate has the pair of A, which is a low probability
event. But, if this is indeed true and the current player knows this information, then playing
10 is a good move, as it would be a no-risk but high-reward move.

In short, we deduce that the oracle-guided agent may have initially started out learning
strategies that cannot be sustained once it loses the oracle access. This may have forced
the agent to have to adapt its strategies after the first N games have passed, taking more
time to learn in total than the unguided agent. Additionally, oracle access increases the
state representation by 3 ◊ 108 to encode other players’ hands, which is a burden in terms
of network size and computational e�ciency.



CHAPTER 5. RESULTS 25

5.6 Knowledge Transfer Between Game Modes
As described in Section 4.6, we consider two game modes when training ShengJi+: single-
pattern (SP) mode and multi-pattern (MP) mode. MP mode can be considered as a superset
of SP mode because both the state and action space of SP mode are a subset of those of
MP mode. To compare training in the MP game environment with training in the SP
environment, we train a baseline model that only plays with itself in SP mode, again for
700000 games. Then we match the baseline model against an agent trained on MP mode
but otherwise has identical configurations.

MP Agent SP Agent Random
MP Agent - 51.4% 52.0% 96.7% 97.4%
SP Agent 48.6% 48.0% - 96.5% 96.6%
Random 3.3% 2.6% 3.5% 3.4% -

Table 5.4: Leveling rates of agent trained on single-pattern mode vs on multi-pattern mode.

The match statistics suggest that the agent trained in MP mode is more competitive than
the SP agent in both game modes. This is unexpected because the SP agent is trained in the
SP game environment, whereas the MP agent is trained on a slightly di�erent environment,
so one would naturally expect the SP agent to be better when playing in its own environment.
However, the MP agent outperforms it even though it is not allowed to make multi-pattern
moves (which presumably are a part of the strategies it learned during training) in SP mode.

We believe that the likely cause of this phenomenon is that by being allowed to make
multi-pattern moves during training, the MP agent acquires additional knowledge about the
game that could generalize to single-pattern mode. A fact supporting this hypothesis is that
a pattern combination move is only valid to play if all of the individual pattern components
are dominating the other players, so a good MP agent would need to have an understanding of
single pattern moves first before reasoning about how these patterns can be combined. Such
information synthesis is also made possible by the smoothness of the neural Q networks. If
the agent plays the combination A�K� and receives a positive reward, then the Q-values for
the individual moves A� and K� may also be increased as a result of this training example.
Conversely, if the agent knows that A� and K� are high value moves, then its valuation of
the combo move A�K� should also be high. This information sharing mechanism would not
exist if the agent instead learned a policy network that computes distributions over actions,
because then A�, K� and A�K� would treated as three distinct actions.

If knowledge transfer does happen from MP mode to SP mode, then it potentially means
that training an RL model on a well-chosen augmented environment could lead to improve-
ments in the original environment. For the Tractor case, this augmented environment hap-
pens to be defined already as part of the game rules, and the augmented legal action space
of MP mode is just the powerset of the legal action space of SP mode for each suit. It would



CHAPTER 5. RESULTS 26

be interesting to investigate how such augmented environments should be defined for other
games and whether training on those environments helps the agent to improve in the original
environments.

5.7 Combo Move Penalty
A common understanding of Tractor among human players is that combo moves are high-
risk high-reward and should be played with caution. To incorporate this knowledge into
ShengJi+, we use the combo move penalty p to adjust how risk-averse the agent is at playing
combo moves. We train two agents, one without the penalty and one with p = 0.15. When
the agent plays a failed combo move, they receive negative reward for any points lost in the
current trick as a result of it, as well as a ≠p reward to penalize the mistake further.

p = 0 p = 0.15 Random
p = 0 - 48.3% 51.3% 96.7% 97.4%

p = 0.15 51.7% 48.7% - 97.2% 96.7%
Random 3.3% 2.6% 2.8% 3.3% -

Table 5.5: Leveling rates with combo move penalty of 0 and 0.15.

The match statistics suggest that a higher combo move penalty increases the model’s
performance in single-pattern mode but decreases its performance in multi-pattern mode.
This is not surprising given that the p = 0.15 agent is discouraged from playing combo moves
relative to the p = 0 agent, so it spent more time playing and learning about single-pattern
moves than combo moves. On the other hand, the p = 0 agent could freely explore combo
moves without cost, so it may have developed more intuition about those moves during
training. It is possible that there exists a midpoint value 0 < p < 0.15 that retains the
benefit of both agents, but this has not been tested in our experiments.

5.8 Best Configuration
From our experiments, we define ShengJi+ to be the configuration that maximizes the
leveling rate in multi-pattern mode (because this is the standard Tractor game). It uses
Deep Monte Carlo for all 4 phase models, dynamic card encodings, no oracle guiding, no
entropy signal, and no combo move penalty. The agent uses epsilon greedy with ‘ = 0.015
and uses a discount rate of “ = 0.95 for the main phase. We train this agent for 1.2 million
games and it achieves a leveling rate of 97.6% and an average attacking point di�erence of
124.74 against the random baseline in the standard (multi-pattern) mode of Tractor.



27

Chapter 6

Conclusion

This work presents an AI system for the 2v2 trick-taking card game Tractor, which has not
yet been studied in the literature either as a game or as a reinforcement learning problem.
Inspired by DouZero (Zha et al., 2021), ShengJi+ uses Deep Monte Carlo and we show that
it is an overall e�cient solution for Tractor when dealing with its large and variable state
and action spaces. Through matches against the random baseline, we obtain a leveling rate
of 97.6%. We hope that the techniques we introduce, such as dynamic card encoding and
sub-action reduction, could serve as a baseline for future research into this game and provide
insight into how better AI systems for Tractor and other related card games can be designed.
We open-source the code1 for both ShengJi+ and the Tractor game environment which we
implemented, including instructions on how to download and play with the pre-trained model
weights.

Through observing ShengJi+ playing against itself and against humans in interactive
mode, we believe that the current system already demonstrates a lot of intelligent behavior
that is similar to how human players reason about the game in the simplified single-pattern
mode. Some of our case studies and detailed analysis of ShengJi+’s tactics can be found
in the appendix. For multi-pattern Tractor, however, we feel that there is still a lot of
room for improvement, because the agent still frequently plays pattern combinations that
fail. The strategies of Tractor are complicated, and it could take a lot more games for a
self-play system to truly master the full game. Some future research directions include ways
to supervise the models on expert data, better reward design, better network architecture,
better ways to reduce/abstract the state and action space, better ways to train the agent to
learn pattern combinations, etc.

1https://github.com/themoon2000/shengji_plus

https://github.com/themoon2000/shengji_plus


28

Bibliography

C. Berner, G. Brockman, B. Chan, V. Cheung, P. DÍbiak, C. Dennison, D. Farhi, Q. Fischer,
S. Hashme, C. Hesse, et al. Dota 2 with large scale deep reinforcement learning. arXiv
preprint arXiv:1912.06680, 2019.

N. Brown and T. Sandholm. Superhuman ai for heads-up no-limit poker: Libratus beats top
professionals. Science, 359(6374):418–424, 2018.

G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap, J. Hunt, T. Mann,
T. Weber, T. Degris, and B. Coppin. Deep reinforcement learning in large discrete action
spaces. arXiv preprint arXiv:1512.07679, 2015.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: O�-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pages 1861–1870. PMLR, 2018.

J. Li, S. Koyamada, Q. Ye, G. Liu, C. Wang, R. Yang, L. Zhao, T. Qin, T.-Y. Liu, and
H.-W. Hon. Suphx: Mastering mahjong with deep reinforcement learning. arXiv preprint
arXiv:2003.13590, 2020.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep
reinforcement learning. nature, 518(7540):529–533, 2015.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In Interna-
tional conference on machine learning, pages 1928–1937. PMLR, 2016.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimiza-
tion. In International conference on machine learning, pages 1889–1897. PMLR, 2015.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

N. Shi, R. Li, and S. Youran. Scrofazero: Mastering trick-taking poker game gongzhu by
deep reinforcement learning. arXiv preprint arXiv:2102.07495, 2021.



BIBLIOGRAPHY 29

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Reinforcement learning, pages 5–32, 1992.

D. Zha, J. Xie, W. Ma, S. Zhang, X. Lian, X. Hu, and J. Liu. Douzero: Mastering doudizhu
with self-play deep reinforcement learning. In M. Meila and T. Zhang, editors, Proceedings
of the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 12333–12344. PMLR, 18–24 Jul 2021. URL http:
//proceedings.mlr.press/v139/zha21a.html.

Y. Zhao, J. Zhao, X. Hu, W. Zhou, and H. Li. Douzero+: Improving doudizhu ai by opponent
modeling and coach-guided learning. arXiv preprint arXiv:2204.02558, 2022.

http://proceedings.mlr.press/v139/zha21a.html
http://proceedings.mlr.press/v139/zha21a.html


30

Chapter 7

Appendix

7.1 Case Studies
Tractor is a complicated game, and even human experts may not always play the optimal
moves because of hidden information. To qualitatively evaluate the policy that ShengJi+
uses, we conduct case studies for each of the 4 game phases of Tractor to see if the choices that
the model makes are similar to what human players would make. The kitty and bidding
phase are combined into one section as the strategies for the kitty phase depends on the
bidding phase. For each phase, we provide an analysis of the moves we see ShengJi+ make.
We provide the seeds for the game rounds we analyze, so that they can be reproduced. The
checkpoint used for this analysis is 1144000; Q-values may di�er for other checkpoints.

Declaration Phase
In the declaration phase, players are dealt 25 cards in counterclockwise order from 2 decks,
leaving 8 on the table, which are reserved for the dealer. As cards are dealt, players who
possess cards in the dominant rank can reveal their card(s) to declare the trump suit of
the current round. Using a pair of dominant rank cards can override an existing 1-card
declaration, and pairs of Jokers can override all (Red Jokers are bigger than Black Jokers).
Since it is advantageous to have a large number of trump cards, a good strategy is to reveal
the suit which the player is stronger in, if the player happens to have the dominant rank
card of that suit. But it’s not always easy to tell which suits are strong until most cards
have been dealt, so a player who declares early faces the risk of their declared suit not being
strong anymore after receiving all 25 cards. But if the player declares late, then some other
player could declare an unfavorable trump suit before he takes action. If there is a bidding
phase, then overriding declarations are not as common, since bidding can achieve the same
result of overriding the trump suit, but in addition, the bidding can swap cards with the
kitty, hence obtaining a stronger hand too.

To examine how ShengJi+ reasons about declaration, we run a random round (random
seed = 1) with ShengJi+ playing with itself, and observe how it makes declarations. In this



CHAPTER 7. APPENDIX 31

round, the dominant rank is 4, and the dealer is predetermined to be North. Upon receiving
the 5th card, West becomes the first player to gain the ability to make a declaration of 4�
with his current hand:

QT4�; T8˝

Declaring � would mean that QT4� become 3 trumps, and any diamond card he receives
also becomes a trump. ShengJi+ computes the following Q-values:

Action Q-value Probability
DON’T DECLARE 0.9426 0.5302

DECLARE 4� 0.8215 0.4698

Based on these values, we can tell that ShengJi+ is optimistic about the outcome of the
game, as it predicts positive Q-values for both of West’s actions. This is logical, because 4�
is a dominant rank card, which is the biggest card except Jokers in this round. West has 1
such card among the 5 cards he drew, and the other 4 cards are relatively big in rank, so
overall, West’s current hand is above average.

Another observation we can make from this is that West prefers not declaring right
away at this point. Most human players would do the same, because 5 cards give too little
information on how much advantage 4� will end up having by the time all 25 cards are
drawn. Specifically, it’s highly uncertain whether diamond will end up being a strong suit
for West, despite 2 are already drawn (4s are always trump in this round, so declaring �
brings 2 additional trumps to West). Therefore, we consider West’s move to be rational in
this case.

Let us now examine a case where a player makes a declaration and evaluate the rationality
of the move. Later in this same round (seed = 1), East makes a declaration of 4˙. When
he makes this move, his current hand is:

93�; QJ84˙; J42�; J642˝; DJ

Based on East’s current hand, we observe that he has the option to declare 4˙, 4�, or
4˝, in addition to not declaring. ShengJi+ predicts the following Q-values for East:

Action Q-value Probability
DECLARE 4˙ 1.1649 0.2642

DON’T DECLARE 1.1482 0.2598
DECLARE 4� 1.1342 0.2562
DECLARE 4˝ 0.9816 0.2199

In this case, 4˙ is indeed the best declaration option for East, because East has 4 total
club cards, making it one of his strongest suits so far. Also, relative to spade, the average
rank of his club cards are bigger, so it makes sense that East prefers to declare ˙. The



CHAPTER 7. APPENDIX 32

ranking of this move above DON’T DECLARE is also understandable, because the majority of
the cards have already been drawn, so from East’s perspective, waiting longer to decide what
suit to declare would create the risk of allowing some other player to declare a suit that’s
not favorable for him. Nevertheless, DON’T DECLARE is ranked 2nd because it could also be
a good strategy in this particular scenario. East should be rather indi�erent between clubs
and spades, and drawing a card in either suit helps break the tie, and his suit counts are
not terribly uneven, so he could a�ord to wait to get one or two more cards before making
a more informed decision. The only irrational Q-value assignment is 4˝, which should be
higher than 4� because East currently has one more spade card. However, since only the
argmax action is chosen, those bottom Q-values have no e�ect on the move carried out by
East.

In both the not declaring and declaring case, we see that overall, ShengJi+ is being
logical and consistent, and produces Q-values that are similar to what humans would think
in the same situation. We also observe that the action’s Q-values may not be entirely sorted
by the actions’ optimality from a human player’s perspective, because an agent only receives
feedback on the actions it actually took.

Kitty and Bidding Phase
In the bidding phase, players who possess pairs of identical dominant rank cards or Jokers
can take the current kitty and put back 8 cards of their choice. The two main purposes
of doing the bid are to acquire a stronger hand and to manipulate the kitty points. The
kitty is revealed at the end of the round, and if the attackers happen to win the last trick,
they receive a certain multiple of the total points in the kitty, depending on how they won
the trick. Therefore, a player would place the kitty di�erently depending on their role and
their perceived chances of winning the last trick. If the bidder is a defender, then he would
be cautious at putting point cards in the kitty, because those points face the risk of being
earned by his opponents with at least a 2x multiplier, and if he is an attacker, then he would
usually place more points in the kitty, especially if he thinks his hand is strong, because
from his perspective, every point he puts down now can be eventually earned back by 2x
or more. An attacker bidder’s strategy could get even more tactical. If he thinks that he
has little chance of winning the last trick, he could put fewer points in the kitty, but trick
the defenders into thinking otherwise and saving (or wasting) their best cards until the end
to protect a pointless kitty while the attackers take advantage and earn points early in the
round.

To see how ShengJi+ makes decisions regarding bidding and kitty selection, we run it on
a random round (seed 14) against itself. In this round, the dominant rank is 3, the dealer is
assigned to South, and the dominant suit is currently ˙ as declared by East. South finishes
placing the kitty and now its East’s turn to decide if he wants to bid. East’s hand is

KQ98�; JT92˙; K9972�; AQT99842˝; 33˝ 3˙ DJ



CHAPTER 7. APPENDIX 33

As we can see, East can either choose not to bid, or bid using 33˝. ShengJi+ makes the
following Q-value estimates:

Action Q-value Probability
BID USING 33˝ 2.1819 0.804

DON’T BID 0.7704 0.196

Obviously, ShengJi+ has a strong preference for bidding. In fact, any reasonable human
player would make the same decision, because East’s spade suit is much stronger than his
club suit, so he definitely wants spade to become the trump suit. In addition, spade is the
largest suit among the 4, so bidding using it ensures that no one else can bid using another
suit after him. This is a massive advantage for East, because he does not need to worry that
some other suit will become the trump suit.

East makes the bid and grabs the kitty placed by South, resulting in a temporary hand
of 33 cards, from which he must pick 8 to discard.

In the table below, we show the Q-value and probability of the top 5 and bottom 5 actions
ShengJi+ infers for East’s “augmented” hand. The Q-value of a card can be considered as
the expected number of ranks that ShengJi+ thinks can be won if the card is discarded into
the kitty:

Action Q-value Probability
10˙ 2.1065 0.075
10˙ 1.951 0.064
K� 1.8693 0.059
8� 1.6967 0.045
K� 1.525 0.0421

· · ·
4˝ 1.0418 0.0259
3˙ 1.0271 0.0256
2˝ 0.9958 0.0248
DJ 0.9684 0.0241
3˝ 0.9589 0.0239

These Q-values suggest that ShengJi+ indeed has a basic understanding of the bidding
phase in a way that’s similar to what human players think. In particular, in this situation,
ShengJi+ understands its role as an attacker and places high probability to point cards (10,
K). It also knows that the most valuable cards to a player are the Jokers and the dominant
rank cards, followed by other trump cards. Although there exists a more optimal ordering
of the cards (e.g. the 2˝ should receive a bigger Q-value than 4˝), ShengJi+ does get
the rough ordering right, which is impressive given that it learned the ranks of the cards
completely through training. When the round is played out, East’s team won by 4 levels,
totaling 220 points, which is a huge win. Among those points, 45 ◊ 4 = 180 points are



CHAPTER 7. APPENDIX 34

extracted from the kitty, which is purposely placed by East. East is able to multiply kitty
points by 4x because he manages to dominate the final trick with his pair of 3˝.

However, ShengJi+ does not seem to exhibit the strategy of getting rid of a suit com-
pletely or almost completely except Aces. Such a strategy is common among human players,
because having no cards from a suit gives a player advantage when other players play the
suit (the player can ru� the trick). It is possible that with more training, ShengJi+ could ac-
quire this strategy when placing the kitty, but we also suspect that because we let ShengJi+
choose one card to discard at a time, it is unable to plan ahead and choose the optimal
8-card subset. Or perhaps getting a suit completely is a very unlikely trajectory to occur
naturally through exploration that the agent never even learned that this strategy is good.
We hope that future research into Tractor can address this limitation of ShengJi+.

Finally, we acknowledge that our current state space representation for the kitty phase
ignores information about which cards came from the original kitty. In actual Tractor, as
the bidder takes the kitty and puts back 8 cards, he can use the original kitty to infer the
hand and suit strengths of the last kitty owner. For example, if the kitty does not contain
any clubs, then the player can infer that the last kitty owner still has clubs in his hand. On
the other hand, if the original kitty contains a wide range of clubs, then the player can infer
that the kitty owner probably got rid of all his clubs, meaning that it would be dangerous
to play clubs during the trick phase. We encourage other researchers to explore ways to
incorporate this additional information into the state space of the kitty phase.

Main (Trick) Phase
In the trick phase, the goal of the attackers is to earn as many points as possible and the
goal of the defenders is to prevent the other team from earning points (called escaping). In
each trick, each player has to play cards of an equal number, and the winner takes all points
for his team. Therefore, one common collaboration strategy is that one player plays a large
move (something guaranteed or very likely to be unbeatable), and his teammate plays point
cards, so that they earn the points. In the following example, we simulate a random round
of ShengJi+ playing against itself (seed = 6), and observe the moves of the players. The
dominant rank is 14, the dealer is West, and the dominant suit is none. That is, only Aces
and Jokers are trumps in this round.

Here are the initial cards of the players, after North is done with placing the kitty:

Player Hand
North AAQQ953�; AQT442˙; AQ97433�; AJJT˝; DJ
West T986532�; KKQT˙; QT976�; AK9976433˝
South KJ864�; AJ986532˙; AJ882�; KQ654˝; XJ, DJ
East KT42�; 9877653˙; KKJT554�; QT8872˝; XJ

Below is the information for the first 10 tricks:



CHAPTER 7. APPENDIX 35

Trick # Trick Leader Player 1 Player 2 Player 3 Player 4
1 North QQ� 62� 64� 42�
2 North JJ˝ 33˝ 54˝ 88˝
3 North 33� 76� 88� KK�
4 East 55� 74� T9� J2�
5 East K� 3� 10� 8�
6 East 77˙ 44˙ KK˙ 32˙
7 West A˝ XJ XJ A˙
8 South A˙ 10� A˝ 7˝
9 South K˝ 2˝ 10˝ 6˝
10 South 6˝ 10˝ A� 4˝

The trick phase involves reasoning over the most complicated state and action spaces,
and from the moves ShengJi+ choose, we can see that although some moves are not optimal
(underlined), there is logic behind its decisions. Below, we comment on the moves that
ShengJi makes in each trick, and discuss the possible reasoning behind those moves:

T1. North begins the first trick with a pair of Q�. This is a very good move based on
his hand because this is the largest non-trump pattern he can play. Since Aces are
trumps in this round, Kings are the largest non-trump cards, but North has none, so
the best he can play is this move. The other players follow the move with two single
diamonds. West and East play optimally because they are not giving away any points
in this trick. South’s decision to not play the K� is also justifiable because K� is the
largest diamond card in this round, so more value could be derived from this card by
saving it until later.

T2. North continues to play optimally by playing the next largest non-trump pair he has,
which is JJ˝. West has a choice of playing 99˝ or 33˝, but since neither pair could
beat JJ˝, he chooses the smaller pair, 33˝. East has no option but to play 88˝. South
has two point cards, K˝ and 5˝, and chooses to play 5˝, which is definitely a good
choice. However, South chooses not to play K˝. This is justifiable for the same reason
as South’s last move.

T3. North leads the trick with 33�. This is actually the optimal move in this situation.
Although North also has a pair of 4˙, 33� is statistically the better choice here because
North only has 2 non-trump club cards (Q˙, 10˙) above rank 4, but 4 non-trump
heart cards (Q�, 9�, 7�, 4�) above rank 3, so 33� has a slightly smaller chance to
be dominated than 44˙.
It turns out that two other players beat North. Among them, East happens to have
the larger pair (KK�) so his team gains 20 points. South has no choice but to play
88�. West also played optimally here by not playing any point cards, as he is the



CHAPTER 7. APPENDIX 36

second player in this trick and it would be irrational for him to bet that East has the
largest heart pair among all 4 players.

T4. East continues to play a pair of hearts (55�). This is now a low-risk high-reward move
for East because all players have already played 2 heart cards (a pair of they have one),
so the chance that someone has a second heart pair is small. North reacts optimally
by playing the two smallest pointless cards (74�). West also plays the point card 10�
under the reasonable assumption that South does not have a second pair of hearts.
Indeed South does, and he plays J2�, the last two non-trump hearts he has.

T5. East plays K�, the largest non-trump diamond card. This is an excellent move, and is
in fact the single most optimal move East should play at this time, because this is the
only move that is guaranteed to dominate the trick, guaranteed to earn 10 points for
his team, and an opportunity for his teammate to play a point card. North and South
respond by playing their smallest pointless cards. West plays optimally by playing
10�, adding another 10 points to his team in this trick.

T6. East plays 77˙, the only pair remaining in his hands. This is the optimal move
for him, because this is the only pattern he could play that has a reasonable chance
of dominating the trick. North has to play 44˙. West happens to have KK˙ and
dominates the trick while earning his team 20 points. South has no club pairs, so he
plays his two smallest pointless cards, again an optimal move.

T7. West plays a trump card, A˝. This is also West’s only trump card. As a reminder,
the only trump cards in this round are Aces and Jokers. West’s move is a good one
because his only trump card is one of the smallest trump cards, so unless he plays it
first, his ˝ will be useless. Playing it first means that only Jokers can dominate it.
But there are only 4 Jokers in total, so seeing the result of this trick can help West
gauge the relative trump strengths of the other players and potentially eliminate a few
Jokers.
South responds optimally by playing a Black Joker. This is better than playing an
Ace because doing that wastes the Ace (it would be dominated by West’s Ace). This
is also better than playing the Red Joker because the Red Joker is a bigger card that
should be saved until later (e.g. to protect kitty points) and not wasted on a trick that
doesn’t have any point cards involved. Additionally, playing the Black Joker means
that if someone dominates it using a Red Joker, then South has the only remaining
Red Joker, which can be a great advantage. Therefore, South plays the Black Joker to
dominate West at the minimal cost.
East has no choice but to play a Black Joker. Doing so reveals to the other players that
East has no Ace (because East would want to play the smallest single trump card).
However, from West’s perspective, East could still have one or more Red Jokers.
North responds optimally by playing an Ace. He has no incentive to waste a Red Joker
to dominate his teammate and for no points.



CHAPTER 7. APPENDIX 37

T8. South continues to play a trump card. This is a good move because South has an
above-average number of trump cards (the average is 3 in this round), so some players
will run out of trump cards before he does. Playing another trump card forces all other
players to play one as well, and by doing so, South can learn the strengths of the other
players’ trump cards. Indeed, both West and East run out of trump cards in this trick.
East plays a 10�. This is not irrational, because from East’s perspective, both Red
Jokers have not been played so his teammate West could potentially have a Red Joker
and earn this point card. However, West has none. As soon as this trick is over, it’s
clear to all players that North and South possess all of the 6 remaining trump cards.

T9. South plays a K˝. Again, this is the largest spade card, so it’s an excellent move that
both dominate the trick and escapes 10 points for his team. East and West both react
optimally by playing pointless spade cards. North plays a 10˝, which helps his team
escape 10 points but this also happens to be North’s last spade card.

T10. South plays another spade card 6˝. This is not unreasonable because at this point,
South has played all good patterns in his hand, so he has no choice but to play a small
single card (note that he does not want to play a trump card because only him and his
teammate have trump cards, so playing a trump card will only consume their team’s
trump cards with no damage to their opponents). East seizes the opportunity to play
a point card. This is a logical move because East knows that currently there is still
one K˝ out there. South just played one in the last trick, so South can’t possible have
the other K˝. North also probably doesn’t have it, because North is the dealer and
would have played it at the beginning of the round if he had the K˝. So, he reasonably
deduces that his teammate West must have the K˝. If this is true, then he expects
that by playing the 10˝, his team will earn 20 points in this trick. However, North
in fact emptied out his spades, so he ru�s the trick using a single Ace, which is the
optimal move. By ru�ng this trick, North secures the 10 points from being earned
by the attackers. West, having observed the ru� move, plays a pointless spade card
instead, again the optimal choice.

Based on our evaluation of ShengJi+’s behavior in this round and other rounds, we
believe that ShengJi+ is able to consistently make rational and (mostly) optimal moves in
the main phase of Tractor. Occasionally, we may observe a move where we think there exists
an alternative move that is provably better (e.g. in trick 7 from the example above, West
could have played K˝ first before playing A˝), but even in those cases, the decisions of
ShengJi+ are interpretable. We very rarely see ShengJi+ making unexplainable and severe
mistakes while playing.



CHAPTER 7. APPENDIX 38

7.2 Pattern Matching and Ru�ng Rules of Tractor
The rules of Tractor in the trick phase are complicated to understand and even more com-
plicated to implement, and in this section we provide a few examples to illustrate the rules
of pattern matching. In each trick, a player will lead the trick by playing a combination of
patterns from a suit. If all players accept the patterns, they go in order and play cards that
match the pattern to the best of their ability. By “best of their ability” we mean that the
players try to play an equal number of cards that match each pattern from the longest (i.e.
tractor) to the shortest (i.e. single). If at some point they can no longer perfectly match the
pattern, they can choose anything to play for the remaining cards.

We will illustrate a few cases by considering only two players. The rules for 4 players are
the same.

Player Hand (non-trump) Hand (trump)
#1 AQQJJTT9�; 862˙; AAK˝ KJ9733� 5˙ 55� XJ XJ
#2 AKK86644�; AQQ443˙; KJ73˝ ATT72� 5˝ DJ

• Single Pattern 1: ˝ Single
Suppose that player 1 moves first, and he plays K˝. This pattern requires player 2 to
respond with any single ˝ card. The possible actions player 2 can take are {K˝, J˝,
7˝, 3˝}.

• Single Pattern 2: Trump Pair
Suppose player 1 plays 33�. This is a pair of trump cards, so player 2 must choose
a trump pair to play if he has one. Since player 2 only has a pair of 10�, his action
space is {TT�}. Playing this action beats player 1.

• Single Pattern 3: ˙ Pair
Suppose player 2 moves first and plays QQ˙. Player 1 cannot perfectly match the
pattern because he doesn’t have a pair of clubs, but can match the suit because he
has at least 2 clubs, so he can freely choose any two to play. The possible actions are
{62˙, 82˙, and 86˙}.

• Single Pattern 3: � 2-Tractor
Suppose player 2 moves first and plays 6644�. This is a tractor because the dominant
rank is 5, so 4 and 6 are consecutive. Player 1 must respond by playing a heart tractor
of length 2. In fact, player 1 has a tractor of length 3 (QQJJTT), which gives him two
choices to play: {QQJJ�, JJTT�}. Either action beats player 2.

• Single Pattern 4: � 3-Tractor



CHAPTER 7. APPENDIX 39

Suppose player 1 moves first and plays QQJJTT�. This is a 3-tractor, and player
2 must try to match the pattern as best as he can. Of course, he doesn’t have any
3-tractors, but he has a 2-tractor, so he has to play it. That matches 4 out of the 6
cards in the pattern. For the 2 remaining cards, player 2 must play a pair if diamonds
if he has one. He does and it’s a pair of K�. So player 2’s action space is {KK6644�}.
It does not beat player 1 as it’s not a perfect pattern match.

• Single Pattern 5: Trump 2-Tractor
Suppose player 1 plays 55� XJ XJ. This is a trump 2-tractor. Player 2 needs to
respond by playing a trump tractor. Since he doesn’t have any, he instead needs to
play 2 trump pairs. But he only has one, so he must play TT�, and in addition, he can
play any two trumps. The possible actions are {TT72�, ATT2�, ATT7�, ATT� 5˝,
TT7� 5˝, TT2� 5˝, ATT� DJ, TT7� DJ, TT2� DJ, TT� 5˝ DJ}. As you can
see, the (legal) action space can easily go up when the move consists of many cards.

• Combo Pattern 1: ˝ Pair + Single
For the next few examples, we will consider the case where the trick leader plays pattern
combinations. Suppose player 1 plays AAK˝. Player 2 must respond by playing a pair
of spades and a single spade. However, player 2 doesn’t have any pairs, so he instead
needs to play any 3 spades. His action space is {J73˝, K73˝, KJ7˝}. None of them
beat player 1’s move.

• Combo Pattern 2: ˙ 2 Pairs + Single
Suppose player 2 plays AQQ44˙. Player 1 has no club pairs and has less than 5 clubs,
so he must play all of them. In addition, he needs to choose any 2 cards to play. The
action space is {862˙ AQ�, 862˙ AJ�, . . . , 862˙ XJ XJ}. Since player 1 is unable
to perfectly match the pattern, he cannot beat player 2 with any move. But among
his choices, some are better than others.

• Combo Pattern 3: � 2-Tractor + Single
In general, a pattern combination is only allowed if none of the other players can
beat any of the patterns components. Suppose player 2 plays A6644�. This is a
combination of a 2-tractor and a single. However, player 1 could reject player 2’s move
in this case because he possesses a larger 2-tractor. So player 2 is punished for failing
to play his move and must play the pattern that is beatable. In this case, he has to
take back A� and play 6644�. Same as before, player 2 chooses an action among
{QQJJ�, JJTT�}. Player 1 is not required to reveal any card to reject player 2’s
move, but player 2’s unplayed A� is now public information to all other players (this
is a disadvantage for player 2). Therefore, human players usually only play a pattern
combination if he knows that the pattern is unbeatable.

• Combo Pattern 4: � 3-Tractor + Single



CHAPTER 7. APPENDIX 40

Suppose player 1 plays AQQJJTT�. Player 2 has no perfect match, but he has 3 pairs
of diamonds, so he must play them. In addition, he needs to play a single. The only
choices are A� and 8�. So player 2’ legal action space is {AKK6644�, KK86644�}.
Neither action beats player 1’s move.

Next, we will introduce the concept of ru�ng. When a player following a pattern doesn’t
have any cards in the pattern’s suit, he can play any set of cards whose length is the same
as the pattern. But for the player to beat the pattern, he must play a set of trump cards
that perfectly match the pattern. Such moves are called ru�s.

To give a few examples of ru� moves, we will use the following initial hands:

Player Hand (non-trump) Hand (trump)
#1 AQQJJTT9˙; AAK˝ KJ33� 5˙ 55� XJ XJ
#2 AJT86644�; AKK4˙ ATT722� 5˝ DJ

• Ru� Example 1: ˝ Single
Suppose player 1 plays K˝. Player 2 doesn’t have any spades (note the 5˝ is not
considered a spade because 5 is the dominant rank), so all single cards are valid moves
(i.e. his legal action space is {A�, J�, . . . , DJ}). Among those moves, every single
trump card can ru� the K˝. For example, player 2 can play 2�, which beats player
1 and gives player 2 the chance to lead the next trick. Deciding what cards to ru� a
trick depends on the position of the player in the trick, and if the player is not the last
to go, he needs to consider the possibility of the next player ru�ng using something
even bigger.
When multiple players ru� a combination of singles, the player with the largest single
card wins. For example, if the trick leader plays AK˝ and the dominant card is 5�,
then 2� DJ beats XJ XJ even though they both ru� the trick.

• Ru� Example 2: ˝ Pair + Single
Suppose player 1 plays AAK˝. Player 2 doesn’t have any spades (again, 5˝ doesn’t
count), so he can play any set of 3 cards. However, if player 2 wants to ru� player 1’s
move, he must play TT� and one more trump card, because ru�ng requires playing a
set of trumps that perfectly match the target pattern, in this case, a pair and a single.
So among player 2’s legal actions, the ones that can beat player 1’s move are {ATT�,
TT7�, TT2�, TT� 5˝, TT� DJ}.
In general, when multiple players ru� a trick containing any number of pairs and
singles, the player with the single largest pair wins. For example, if the dominant suit
is � and the trick leader plays two pairs and a single like AAK99˙, then 88322� beats
7766� DJ even though they both ru� the trick.



CHAPTER 7. APPENDIX 41

• Ru� Example 3: � 2-Tractor + 2 Singles
Suppose player 2 plays AJ6644�. Player 1 doesn’t have any diamonds, so he can
respond by playing any 6 cards. However, if player 1 wants to ru� the trick, he needs
to play 6 trump cards, including a 2-tractor and 2 singles. Player 1’s only trump 2-
tractor is 55� XJ XJ. The valid ru� moves are thus {KJ� 55� XJ XJ, K3� 55� XJ
XJ, K� 5˙ 55� XJ XJ, . . . , 3� 5˙ 55� XJ XJ}.
When multiple players can ru� a pattern combination containing a tractor, they com-
pare their trump tractors and the one with the largest tractor wins, regardless of the
sizes of the other cards (the “kicker” cards) they play.

To build a game environment for Tractor, the algorithm must first be able to identify the
patterns that are present in the trick leader’s move, then check if each pattern component
is unbeatable based on the other players’ hands. If the check is successful, the leading move
is executed and the environment then needs to generate the list of possible response actions
the other players can make. The other players choose from those actions, and finally the
environment needs to decide who wins in the trick. We implement the Tractor environment
and include it in our code.


	Contents
	List of Figures
	List of Tables
	Introduction
	Background of Tractor
	Related Work
	Policy Gradient Methods
	Deep Q Learning
	Neural Fictitious Self-Play
	Deep Monte Carlo
	Soft Actor Critic

	Method
	RL Environment and Data Collection
	State Representation
	Reward Design
	Architectures
	Learning Techniques
	Metrics and Game Modes

	Results
	Discount Rate
	Comparison of DMC and DQN Methods
	Dynamic vs. Static Card Encoding
	Maximum Entropy Signal
	Oracle Guiding
	Knowledge Transfer Between Game Modes
	Combo Move Penalty
	Best Configuration

	Conclusion
	Bibliography
	Appendix
	Case Studies
	Pattern Matching and Ruffing Rules of Tractor


