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Abstract

Layerwise Training of Deep Neural Networks

by

Yi Chen Ye

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

The answer to many questions in the artificial intelligence realm has been a data-dependent
solution, supplemented by deep neural networks (DNNs) as data processors. With an optimal
combination of settings, dataset, and architecture, deep networks were introduced to mimic
the human brain through artificial neurons, performing a variety of tasks in computer vision
(CV) and natural language processing (NLP). They serve as tools in data analytics applica-
tions including self-driving, language translation services, medical diagnosis, stock market
trading signals and more. It is natural to assume that a network’s representational power must
scale in complexity with the tasks or dataset it processes. In practice, however, increasing the
amount of data or number of layers and parameters is not always the answer. In certain
resource-constrained settings, training deep networks for an extended period of time is not
only intractable but also unfavorable; redundancies in the network architecture also have the
potential to negatively impact test time performance.

This motivates a more comprehensive view of the inner workings of a deep neural network,
taking a deep dive into each of its components. A common approach is to directly exam-
ine its weights, but the tradeoff is potentially missing out on information about the network
structure. To take the middle ground, we analyze structural characteristics arising from lay-
erwise spectral distributions in order to explain network performance and inform training
procedures. We find that (1) allocating learning rate across layers based on measurements
of their spectral distribution results in more improvement on “vanilla” architectures such as
VGG19, i.e. networks without built-in interactions among layers; and (2) using the same
measurements to inform channel pruning on DenseNet40 leads to our model implicitly gain-
ing self-awareness of its “bottleneck” layers to maintain higher accuracies.
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Chapter 1

Introduction

1.1 Problem Statement
How much granularity can one have with the architecture and the training of deep neural
networks? Past work in deep learning literature traditionally allocates resources and control
training at the “blackbox” model level or takes the perspective from the weights level. In this
thesis, we explore methods that reconcile these two granularity levels.

1.2 Report Overview
In the first half of this technical report, we discuss using heavy-tailed measurements to deter-
mine the amount of learning rate assigned to each layer weight matrix. For the second half,
we use heavy-tailed measurements to inform structured pruning of the proportion of channels
across the layers. Note that we will use “layer weight matrices” with “layer” and “layerwise”
interchangeably in this thesis to refer to this level instead of the higher level layer abstraction.

1.3 Deep Neural Networks and Regularization

Supervised Learning
The three main types machine learning problems are supervised, unsupervised, and rein-
forcement learning. To formulate and solve each of these problems, we follow the machine
learning pipeline of finding a model that minimizes the loss function and picking an opti-
mizer to update our model. We focus on the supervised paradigm, where the goal is to have
a model approximate a function that maps from input examples to target labels [8]. The
two main types of supervised learning problems are classification and regression, where the
model learns to predict a class label and the latter a numerical label, respectively.
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Figure 1.1: Simplified Sketch of the hierarchical structure of a deep neural network.

Deep Learning
To gain a more in-depth perspective of deep learning and deep neural networks, refer to [27].
Deep learning is a subfield in machine learning that attempts to understand and use data to
fulfill tasks by attempting to simulate the behavior of the human brain. This motivates the
structure of deep neural networks, which consist of a hierarchical organization of neuron
layers that propagates computations from the first layer forward through the final layer.

The goal of the network is to learn parameters θ to approximate a function f to predict
label y from input data x, i.e. minimizing the loss ℓ(·, ·) for prediction ŷ:

ℓ(θ) = ℓ(y, ŷ),

ŷ = f(x; θ).
(1.1)

We are using the chained layers to implement the approximated f , which could be consid-
ered as a composition of functions. For a particular epoch t, one would update the weight
parameters with gradient descent for the next epoch t+ 1,

θt+1 = θt − η · δℓ
δθ

, (1.2)

where the loss function ℓ consists of penalizing incorrect network predictions and constraints
on the weights.

Neurons connected between neighboring layers have weights that define how much the
input impacts the output of the next neuron; these weights are updated to improve model
performance. Backpropagation algorithms such as gradient descent update the weights of the
network by correcting errors. The model ingests data in the input layer and gives a prediction
at the output layer.

One could refer to [83] for an overview of the evolution of deep artificial neural networks
since the 1940s (and the 1800s).
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Generalization and Regularization
Formally, regularization is defined as “any modification we make to a learning algorithm that
is intended to reduce its generalization error but not its training error” [27].

Most regularization strategies regularize estimators by reducing variance, at the expense
of increased bias. The bias-variance tradeoff formulates the problem of finding the Goldilocks
zone between overfitting and underfitting, which result from high variance and high bias,
respectively.

Regularization could be implemented as a parameter norm penalty to limit the model
capacity (e.g.: LASSO and ridge regression), including a regularization term r(θ) in the loss
function:

ℓ(θ) = ℓ(y, ŷ) + λr(θ). (1.3)

The λ coefficient is commonly referred to as the weight decay term while the regularization
function r imposes certain constraints on the weights during training.

l0, l1, l2 Regularization: Given an n-length vector x, we define its lp-Norm as

∥x∥p = p

√√√√ n∑
i=1

|xi|p. (1.4)

• The l0-Norm follows from definition to be the number of non-zero elements of the
vector x. l0-Regularization penalizes the objective function to minimize the number of
non-zero parameters, an NP-hard optimization problem that is computationally difficult
to solve.

• l1-Regularization, also called LASSO, is an approximation for l0-Regularization to
yield more sparse solutions.

• l2-Regularization, or ridge regression, takes the form of the commonly used Euclidean
norm. It penalizes large values of θ and yields less sparse solutions compared to the
previous two forms.

Data augmentation adds transformed data to expand the size of the training dataset. More
regularization methods include early stopping, label smoothing, dropout, noise, ensembling
[9, 4, 70].

Prior work correlates complexity measures (norm-based, sharpness-based, optimization-
based) to the generalization of a model, i.e. the model’s performance on unseen data from
the same population as training data [42]. However, adding the complexity measure as a
regularizer makes optimization more difficult and does not lead causality claims. [43] use
correlations in the weight distribution as an explicit regularizer to improve generalization.
Weight correlation decent (WCD) could complement common regularizers such as weight
decay and dropout.

Both [93] and [65] produce phase plots relating different combinations of varying amounts
of explicit regularization methods to effect generalization. For example, finding the opti-
mal amount of added noise, which decreases the amount of effective data relative to the
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Figure 1.2: Finding an optimal learning rate is crucial for reaching global optima.

model complexity, and early stopping (or higher learning rates) could improve generalization
[65]. [93] shows empirically that good generalization is correlated with locally flat, globally
smooth loss landscape, which is a structure that could be realized by explicit regularization.

Learning Rate and Stochastic Gradient Descent
The δℓ

δθ
gradient term requires expensive computation over the entire dataset.

In response, one could use stochastic single example to update the gradient over a single
training point, or perform stochastic mini-batch update using a random set of samples [45].

This is effective in making the gradient computation cheaper without using potentially
redundant information in large datasets with similar examples. It does naturally increase the
chances of staying trapped in local minima or encountering saddle-points, where the function
is neither a local maximum value nor a local minimum value, especially in high-dimensional
settings.

The performance of stochastic gradient descent (SGD) then depends largely on the role
of the learning rate ηt at every epoch t, which is crucial in finding optima 1.2. Larger ηt
causes updates to be too large and skip over the optimal region(s) while smaller ηt would
delay convergence in a reasonable number of steps.

Most state-of-the-art methods assign one single global learning rate to all parameters,
allowing minimal granularity in tuning such settings across the network.

Implicit Regularization
The aforementioned methods are considered explicit regularization, where it takes on the
form of a hyperparameter or direct modification of the model or data. Without imposing
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restrictions on parameters or including any forms of explicit regularization, implicit regular-
ization results unexpectedly from the optimization method to improve generalization [72].

[73] proposes the existence of implicit regularization on capacity control, unrelated to
model size. Even with large number of parameters, the model implicitly finds a solution
with small “complexity”, i.e. implicit norm regularization, without lowering the test time
performance. The authors propose that increasing the model complexity might allow for
“low complexity” solutions and generalize better. This implicit regularization could then
motivate an infinite network.

This report follows prior work analyzing Heavy-Tailed properties that arise in the cor-
relations of deep neural network weight matrices and characterize the increase of Implicit
Self-Regularization over the course of training [65, 64, 61]. We formally introduce Heavy-
Tail Self-Regularization (HT-SR) in the following section.

1.4 Heavy-Tail Self-Regularization (HT-SR) in Layer
Weight Matrices

Layer Weight Matrices
This thesis work is motivated by the analysis of layer weight matrix convergence during
neural network training. Instead of the commonly termed layer abstractions in Deep Neural
Networks, we refer to the layer weight matrices, the lowest level of abstraction in models.

Each layer abstraction consists of different data matrices representing its different coun-
terparts. For example, the first 3× 3 convolutional layer of DenseNet40 has one layer weight
matrix; both the three transportation layers and the 36 layers across the 3 dense blocks include
weight and bias matrices. We analyze only the weight matrices for each layer.

Note that a single layer abstraction could encapsulate multiple layer weight matrices. For
example, aside from the layer weight matrices in the first convolution layer and the final
linear layer, the 8 layer abstractions in the 18-layer ResNet18 encompass shortcut layer(s),
two convolutional layers, each followed by a batch norm layer [33]. We analyze the weight
matrices of the 8 × 2 = 16 convolutional layers, along with the matrices representing the
projection shortcuts that go across feature maps of two sizes. These match dimensions using
1× 1 convolutions with a stride of two.

Note that if we use zero-mapping shortcuts to match the dimensions instead of the projec-
tion matrix, we do not introduce new parameters; similarly, the other residual shortcuts are
identity mapping, which does not entail extra parameters [35].

We regularize deep neural networks from a layer weight matrices perspective, resulting
in more granularity than at the model level.

Empirical Spectral Density (ESD)
The spectrum of a n × m matrix is the set of its eigenvalues Λ = {λ1, ..., λn} ⊂ R. The
empirical spectral density (ESD), or spectral distribution, of the matrix counts the occurrence
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of each eigenvalue, normalized by the total count [48]:

µ(Λ) =
1

n
#{λi ∈ Λ}. (1.5)

Prior work analyzes the behaviors of the limiting spectral distribution for certain classes
of random matrices, including the circular law, which states that the ESD of the covariance
matrix converges almost surely to the uniform distribution on the unit disk {z ∈ C : |z| ≤ 1}
[94, 5, 24, 86, 28]. The Marchenko-Pastur law [63] states that assuming n/m −→ y ∈ (0, 1],
the spectral distribution converges to a deterministic measure, whose density is given by

dµ

dx
=

1

2πxy

√
(b− x)(x− a)1(a≤x≤b),

where a(y) = (1−√
y)2, b(y) = (1 +

√
y)2.

(1.6)

[74] shows the limiting ESD of real random matrices with dependent entries is also given by
the Marchenko-Pastur law and gives a rate of convergence of the expected ESD.

We contextualize the study of ESDs to analyze our layer weight matrices. We provide the
steps of computing the ESDs. For each layer weight matrix W, we compute its correlation
matrix X = 1

N
WTW, whose (i, j)-entry is the correlation between the ith and jth columns

W. The ith and jth columns of W are the weight vectors of the ith and jth neurons, respec-
tively, for the weight matrix of every layer. Large values in the correlation matrix denote a
strong linear relationship between two neurons [77].

For each correlation matrix X, we compute its empirical spectral density (ESD), i.e. a
histogram showing the distribution of eigenvalues of X. Prior work analyzes the ESD of
covariance matrices and their convergence through training [43, 59, 89]. The following are
steps to compute the ESD of layer weight matrix Wi ∈ Rn×m, for i ∈ {1, ..., n}:

1. Compute Xi =
1
N
WT

i Wi, correlation matrix of Wi.

2. Collect the eigenvalues Λi = {λj(Xi) ∈ R : j = 1, ..., n}.

3. ESD := estimate the density distribution over Λi.

Heavy-Tailed Spectral Distribution of Correlations
To observe the heavy-tailedness of the ESD that gradually arises through training, we fit an
estimated power-law (PL) to the tail-end of the ESD through maximum likelihood estimation
(MLE) of α [14, 3], where the fitted power-law takes on the following form,

p(x) ∝ x−α, xmin < x < xmax, (1.7)

where xmin is the lower bound of the power-law behavior.
Given the likelihood measure,

p(x|α) =
n∏

i=1

α− 1

xmin

(
xi

xmin

)−α

, (1.8)
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the following are steps to derive ᾱ, the MLE of α:

L = ln(p(x|α)) =
n∑

i=1

[ln(α− 1)− ln(xmin)− αln(
xi

xmin
)]

= nln(α− 1)− nln(xmin)− α

n∑
i=1

ln(
xi

xmin
)

δL
δα

=
n

α− 1
−

n∑
i=1

ln(
xi

xmin
) = 0

ᾱ =
n∑n

i=1 ln( xi

xmin
)
+ 1.

(1.9)

The power-law (PL) exponent (slope) of the ESD, α, assigns a quality score for each
layer of the network. xmax denotes the maximum eigenvalue, maxjλj , of the covariance
matrix while xmax localizes where the power-law structure is first observed in the ESD. Recent
work shows that α predicts the trends of model quality and generalization abilities in modern
neural networks on both computer vision (CV) and natural language processing (NLP) tasks,
suggesting a negative correlation between α and test time performance within the optimal
range of α ∈ [2, 6] [66, 67, 92, 64]. An α > 6 value indicates an undertrained layer weight
matrix, with correlations resembling those of a Gaussian distribution, while an α < 2 value
indicates an overtrained layer weight matrix in the “rank collapse” phase, where its ESD is
dominated by one or few very large eigenvalues. This corresponds to an ESD with a flattened
tail, where the correlation spectrum is dominated by unusually large elements, resulting in so-
called “correlation traps.” The authors of [64] find no rank-collapse on the natural language
processing models from AllenNLP [22].

The regularized and well-trained matrices exhibit correlations that behave similarly to
those of random matrices with entries drawn from non-Gaussian Universality classes (e.g.,
power-law distribution with heavy tails), which have traditionally modeled strongly corre-
lated physical systems [6]. Therefore, it is likely that a matrix whose correlations exhibit
Heavy-Tailed properties could be characterized as a matrix that is implicitly self-regularized
and well-trained. A matrix with strong correlations has the Empirical Spectral Density (ESD)
of its correlation matrix display a Heavy-Tailed distribution, which would show up as a steady
linear decay in a log-log ESD plot as in 1.3.

Deep Neural Networks are commonly initialized with the Glorot (or Xavier) initialization
[25], with biases as 0 and layer weight entries as

(Wl)ij ∼ U [− 1
√
nc

,
1

√
nc

], (1.10)

where U denotes a uniform distribution and nc is the fan-in dimension, i.e. number of
columns in Wl−1.

For networks that use the rectified linear activation function (ReLU), we need to account
for half of the layer output being 0. We use the He initialization [34] instead such that for
each weight entry,

(Wl)ij ∼ N
(
0,

2
√
nc

)
. (1.11)
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Figure 1.3: Log-log ESD plot showing a favorable linear decay (left), corresponding to
heavy-tailed behaviors in the original ESD vs. one with more randomness (right), resem-
bling a Gaussian distribution closer to correlation ESDs at initialization.

Empirically, ESDs of layer weight matrix correlations follow a Gaussian distribution in the
beginning of training, which converges to a heavy-tailed power-law distribution through train-
ing. Weight matrices with correlation ESDs that exhibit heavy-tailed behaviors have been
empirically shown to correlate with improved generalization on models, characterized by the
generalization gap (i.e., the difference between model performance on training data and its
performance on unseen data from the same distribution) [64, 67, 92].

Model generalization is correlated with levels of implicit regularization, as defined in
Heavy-Tail Self-Regularization (HT-SR) Theory, and this line of work is motivated by exam-
ining measurements that leave a “signature” on the model components, i.e. its layer weight
matrices.
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Chapter 2

Learning Rate Allocation Across Layer
Weight Matrices

The discussion of this section uses the power-law coefficient, α, to characterize heavy-
tailedness in correlation ESDs, as defined in the previous chapter. One could also attempt
to generalize to a wide selection of scale-based, shape-based, and hybrid metrics characteriz-
ing heavy-tailed distributions, available in the WeightWatcher package.

Smaller α measurements correlate with a more well-trained layer weight matrix while
larger α is correlated with a layer weight matrix whose correlations have Gaussian-like ESDs,
demonstrating more random behaviors closer to those at initialization.

2.1 Related Work
Multiple previous work has explored optimizers and learning rate assignment over the past
decade of the Deep Learning literature. Optimizers often take an exponentially weighted
average (vt) of gradients gt through training, with β as the learning parameter

vt = βvt−1 + (1− β)gt. (2.1)

In practice, stochastic gradient descent (SGD) is used with momentum as introduced
in [80], so that the weight update is a linear combination of the previous update and the
exponentially weighted average of gradients,

wt+1 = wt − η · vt, (2.2)

where η is the learning rate. The learning parameter β is commonly set to 0.9 in this case.
RMSProp [87] keeps a weighted average of its squared gradients to scale the gradient,

vt = βvt−1 + (1− β)g2t

wt+1 = wt −
η√

vt + ϵ
· gt,

(2.3)

https://github.com/CalculatedContent/WeightWatcher/tree/master
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with ϵ added to avoid divide by zero errors. Adam (adaptive moment estimation) combines
SGD with momentum and RMSProp to compute individual adaptive learning rates for differ-
ent parameters using first and second moment gradients [46]. Adam tracks two exponentially
weighted averages

vt = β1vt−1 + (1− β1)gt

st = β2st−1 + (1− β2)g
2
t

(2.4)

Weight update is defined as
wt+1 = wt − η

vt√
st + ϵ

· gt (2.5)

Common hyperparameter settings for Adam include

η = 0.001,

β1 = 0.9,

β2 = 0.999,

and ϵ = 10−8.

(2.6)

SGD, Momentum, and AdaGrad are popular optimization methods that require setting
the learning rate to the correct magnitude to ensure good convergence to optima. [55] in-
creases the learning rate at an exponential rate, switches to an exponential growth with lower
exponent when validation loss levels off, and repeats this procedure until model convergence.

[82] introduces variance-based SGD (vSGD) to find optimal learning rates that minimize
the expected loss from weight updates; the network learns to progressively decrease the learn-
ing rate towards its optimal value, without a schedule set in advance.

[91] proposes a dynamically updated adaptive learning rate through an iterative process
between a learning rate controller who proposes learning rates and a trainee network, which
is trained to report back learning rates that reduce validation loss. Instead of a stepwise
or exponentially decreasing schedule, [85] explores cyclical learning rates that vary between
bounds. They introduce triangular, Welch, and Hann learning rate policies, where the learning
rates experience linear, parabolic, and sinusoidal increase then decrease, respectively.

The space of layerwise learning rate schemes have been explored but not extensively
or with substantial backing. MetaLR learns to assign learning rates to each layer automat-
ically and proposes a bi-directional fine-tuning scheme, motivated by the hypothesis that
lower-level layers are domain-specific while higher-level layers are more task specific [12].
However, nested, bi-level optimization schemes are computationally expensive in practice
[19].

AutoLR proposes to contradict the previous notion that lower-level layers extract gen-
eral features while higher-level layers extract specific features [78]. The authors propose an
ordering of the layerwise weight variations such that for the k-th layer,

vkt =
1

nk

∥∥∆wk
t

∥∥ , (2.7)

which should be small for low-level layers while large for high-level layers to adopt them-
selves to a new task. The key to the algorithm is automatically tuning the learning rate of



CHAPTER 2. LEARNING RATE ALLOCATION ACROSS LAYER WEIGHT
MATRICES 11

each layer to control all weight variations such that

v1t ≤ v2t ≤ · · · ≤ vKt . (2.8)

2.2 Experimental Setup

Dataset
We use the CIFAR-100 dataset consisting of 100 classes (20 superclasses), each with 500
training images and 100 images for testing [49].

Architecture
We conduct our experiments on the ResNet architecture introduced in [33, 90] with varying
depths. Namely, we try to determine trends in the shallower 18-layer and 34-layer ResNets
and also try to observe effects on the deeper 101-layer and 152-layer ResNets.

Effects of the skip connections are shown to be stronger on the deeper ResNets than
on their shallower counterparts. Residual networks include skip connections that make the
output of one layer the input of layers deeper in the network to ameliorate impact of vanishing
or exploding gradients. In other words, let the output of any stacked layers be fn(x) for input
x on the plain network, including their activation functions (e.g.: ReLU), then a residual net
would have output

fn(x) + x. (2.9)

To observe the effects of our algorithm on networks with various depths and widths, we
conduct experiments on ResNets to the following fractions of their original width:

{0.25, 0.50, 10, 1.5, 2, 2.5}, (2.10)

with initial learning rates

{0.025, 0.05, 0.075, 0.1, 0.15, 0.2}. (2.11)

2.3 Heavy-tailed Metrics for Layerwise Allocation
We attempt to assign explicit regularization to matrices whose correlation ESDs exhibiting
less power-law behaviors. For instance, we could give these less well-trained layer weight
matrices larger learning rates and larger weight decay values.

The work in this chapter is based on the TempBalance algorithm by Tianyu Pang, with
a high-level description as follows: One usually considers regularization from the model per-
spective, such as assigning a universal learning rate for all model parameters. Then, given n
layer weight matrices, each would be assigned 1

n
-proportion of the model-wise regularization.

We assign the parameter groups associated with each layer weight matrix a different learn-
ing rate, but one could generalize to other training hyperparameters such as weight decay.
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Figure 2.1: Test and Train improvements on shallow ResNets realized by weighted α prob-
abilities 2.3, at different widths and learning rates. On ResNet34, test time improvements
(blue) are more prominent (especially at initial learning rate of 0.2) while suffering minimal
training accuracy loss compared to ResNet18, especially at 25%-width.

Heavy-tailed Metrics as Weighted Probabilities
A natural starting point is to take the power-law α associated with each layer weight matrix
Wi, normalize over their sum, and assign the parameters associated each layer weight matrix

αi∑n
i=1 αi

-fraction of the universal learning rate. In practice, this allocation is performed at every
epoch t, for T (= 200) total epochs. For simplicity, we use the cosine annealing learning rate
schedule for baseline comparison to analyze the effects of allocating learning rates by layer,

lrt =
lr0
2

· (1 + cos(
(t+ 1) · π

T
)). (2.12)

In other words, we use αt,i to assign lrt,i. The weighted average learning rate for every layer
i at every epoch t is,

lrt,i = lrt · n · αt,i∑n
i=1 αt,i

. (2.13)

CKA Similarity [93] uses the correlation-like metric, centered kernel alignment (CKA)
similarity introduced in [47], to measure similarity between outputs of different trained mod-
els. The normalized index CKA is defined as

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
, (2.14)
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Figure 2.2: The CKA similarity between every other layer on the baseline (left) ResNet34
model (with 50%-width, initial learning rate 0.2) vs. using learning rate allocations by α
probabilities from 2.3 (right). The baseline plot shows high similarities between adjacent
layers throughout the model while more differences arise between the shallower and deeper
layers with the learning rate allocations.

where the empirical estimator of Hilbert-Schmidt Independence Criterion (HSIC) is

HSIC(K,L) =
1

(n− 1)2
tr(KHLH),

with H as the centering matrix

Hn = In −
1

n
11T,

Kij = k (xi,xj)

and Lij = l (yi,yj) ,

k and l are kernels.

(2.15)

The authors claim that CKA measures hidden-layer correspondences in neural networks
with different widths and with different random initializations at different widths, fulfilling
invariance to orthogonal transformation and isotropic scaling. In this work, we compare the
CKA (representational) similarity plots between layers within one model. Concretely, we
compare the weighted average α for learning rate allocation against baseline for ResNet34,
50%-width, lr0 = 0.2 in 2.3.

Note the layer count is not the same as the number of layer representations. The axes here
represent the layer modules. Each ResNet layer includes the following modules: layer wrap-
pers, two convolutional layers, two batch norm layers, and one or three shortcuts. ResNet18
has 61 modules and ResNet34 has 109 modules.

A limitation is that the CKA similarity plots are generated on a random batch each time,
so the similarities differ accordingly on other models whose plots excluded. Future work is
needed to incorporate the entire dataset or include data augmentations.
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Variations of α as Weighted Probabilities
We assign learning rates based on a linear weighted relationship among α’s in the previous
section. We can incorporate powers into the probability weighting,

lrt,i = lrt · n ·
α2
t,i∑n

i=1 α
2
t,i

. (2.16)

lrt,i = lrt · n ·
α3
t,i∑n

i=1 α
3
t,i

. (2.17)

With squared average and larger initial learning rates {0.15, 0.2}, the smallest ResNet
model (ResNet18, 25%-width) outperforms baseline during test time (70.09 vs. 69.124 and
69.842 vs. 69.57, respectively), but trained to less saturation. Results worsen with cubed
average, exhibiting lower test accuracies and more unsaturated train accuracies.

Instead, we try the “opposite” direction of function classes, e.g.

α
1
2
t,i, α

1
3
t,i, α

1
4
t,i... (2.18)

along with log(αt,i). In our experiments, the square root or logarithmic functions improve
test time performance on most models.

Another common approach for probability assignment is using the softmax function,

lrt,i = lrt · n · eαt,i∑n
i=1 e

αt,i
. (2.19)

Similar to increasing the power on αi,j’s, softmax does not work as most learning rates are
assigned values of 0, as ex approaches positive infinity quickly as x grows.

Heavy-tailed Metrics as Reference for Permutation
Instead of using weighted variations of α values directly in the assignment, we can define a
probability distribution and use α’s as reference to give us a permutation of the probabilities
for each layer weight matrix.

Probability Distribution: Negative Powers of Two One inspiration comes from Huff-
man Coding, whose optimality of expected codelength is guaranteed when the probabilities
of source symbols are negative powers of two [60]. In the context of layerwise learning rates,
we can consider entropy from two perspectives.

1. Across layer weight matrices: For the baseline scenario, we evenly assign the model’s
learning rate across all layer weight matrices like a uniform distribution, which has
maximum entropy. By assigning layerwise learning rate we are decreasing the entropy.

2. Across learning rates: If the learning rate values are the random variable, the baseline
random variable has no entropy as it takes on one value at every epoch. Our layerwise
assignment would then increase the entropy of this random variable.
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Figure 2.3: Learning rate allocations on ResNet18 (left) and ResNet34 (right) using weighted
probability of α values mapped to identity (orange), square root (green), cube root (red),
logarithm base-2 (purple).
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Figure 2.4: Plots of learning rates assigned to parameter groups using each scheme (left)
and the learning rates ranked in descending order (right). The mapping function of the α’s
before converting them to weighted probabilities is important in determining their scaling
relationship. This plot informs our results that we want variations among layerwise learning
rates while keeping the majority of them as far from 0 as possible.
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Figure 2.5: Plots of learning rates assigned to parameter groups in order (left) using Softmax
weighted probability 2.19 and Negative powers of two 2.3 and the learning rates ranked in
descending order (right). Most parameters have learning rates assigned 0, so the network is
not able to train to full saturation under such schemes.

Our probabilities are then

NegPow2n = [2−n, 2−n−1, 2−n−2, ..., 2−1]. (2.20)

As n → ∞,
∑n

i=1 2
−i → 1. Since n is finite, we add the residue to the largest probability to

maintain the ordering,

NegPow2n[−1] = 2−1 + (1− sum(NegPow2n)). (2.21)

Next, we assign NegPow2n[j] · lrt · n to the layer with the j-th smallest α, j = σ(i):

lrt,j = lrt · n · NegPow2n[j]. (2.22)

Similar to the softmax assignment above, because the negative powers of two approach
zero very quickly as n grows, many parameter groups are not updated. This results in worse
model performance during test time and the model not training to convergence, with 65-
70% train accuracies. A future direction would be to increase the near-zero values, such
as distributing some fraction of the learning rate over from the layer that was assigned the
2−1-fraction.
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2.4 Accounting for Randomness in Observations of
Heavy-tailed Metrics

Power-law-fitted α’s are not always informative. From empirical data, we observe some sort
of randomness, or noise, involved in our α observations. Controlling α is important as we
hypothesize its negative correlation with the training progress of the layer weight matrices.
This hypothesis arises from empirical observations, so we have yet to draw a necessary or
strong theoretical condition regarding α’s and overall model performance.

Improved test time results sometimes simultaneously arise with less variation or lower
values of α across the layer weight matrices through training while other times no improve-
ments are seen. In most cases, we do not observe α converge to the optimal range of [2, 6]
after 200 epochs of training as detailed in [67]. For models with worse performance we do
not always observe α values larger than 6.

As an attempt to account for randomness with respect to the α’s, we model α as a ran-
dom variable that we could sample, which could add more “slack” for the otherwise “fixed”
power-law fitted values it takes on. Without any given assumptions about the moments of the
layerwise α’s, we assume it is normally distributed, i.e. α ∼ N (0, 1). Unknown distributions
are traditionally modeled using the (standard) Gaussian, its motivation generally revolving
around two types of discussions:

1. Distributional universality: The Central Limit Theorem states that for n-large indepen-
dent and identically distributed samples X1, ...Xn from any arbitrary distribution with
mean µ and variance σ2, their sample average

X̄n =

∑n
i=1 Xi

n
(2.23)

converges to the normal distribution N (µ, σ2/n) [7]. Gaussian modeling in this sce-
nario would guarantee “universality,” where the converged distribution remains invari-
ant to its initial distributional assumptions.

2. Claim of maximum uncertainty: According to the Principle of Maximum Entropy, we
should model unknown random variables with the probability distribution that gives
the largest remaining uncertainty, i.e. maximum entropy [39]. This minimizes biases
and assumptions that could otherwise be introduced when representing the current state
of knowledge. [23] draws an equivalence between the Principle of Maximum Entropy
and the conditioning by Bayesian inference, which updates the prior distribution q(θ)
to the Bayesian posterior q(θ|x′), upon observing new data x′. We would replace the
prior joint distribution q(x, θ) with the distribution p(x, θ) that matches the observed
data and minimizes the distributional distance:

KL(p(x, θ)||q(x, θ)) =
∫

KL(p(θ|x)||q(θ|x))p(x)dx+ KL(p(x)||q(x)). (2.24)

This reduces to minimizing KL(p(θ|x′)||q(θ|x′)) by setting

p(θ|x′) = q(θ|x′)

p(x, θ) = p(x)q(θ|x).
(2.25)
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The Bayesian posterior q(θ|x′) then captures the distribution of maximum entropy after
observing x′ [41, 40]. Additionally, maximum entropy distributions most naturally
model systems evolving towards thermodynamic equilibrium, by the second law of
thermodynamics, i.e. entropy only increases [60, 15, 17].

Sampling from n αi-mean distributions
Given our limited empirical observations and lack of prior knowledge regarding the α distri-
butions and their associated noise, we will sample from the Normal distribution N (0, 1) but
with mean shifted by each of the layerwise αi’s, N (αi, 1). Thus for each epoch t ∈ [T ], for
each layer i, we create n distributions

Yi ∼ N (αt,i, 1). (2.26)

We then sample one value yi from each distribution Yi. Following our discussion in 2.3, we
normalize by the weighted average of the yi’s to obtain n learning rates every epoch t,

lrt,i = lrt · n · yi. (2.27)

Sampling Probability Weights from a lrt-mean distribution
Given our baseline schedule of each epoch having one learning rate lrt, we can shift the mean
of N (0, 1) by lrt. For each epoch t ∈ [T ], we create one distribution

Xt ∼ N (lrt, 1). (2.28)

We then sample n values of xi from each distribution Xi for each epoch. Following our
discussion in 2.3, we sort the αt,i to create a permutation xt,j of xt,i such that j = σ(i).
Normalize the xt,j to obtain probabilities x̂t,j so that the layer with the jth largest αt,j gets
the jth largest x̂t,j ,

lrt,j = lrt · n · x̂t,j. (2.29)

Modeling Noise of α with Distributional Assumptions
By observing the evolution of the density of layerwise αi’s through epochs on ResNet18 and
ResNet34 models, we see that the density roughly resembles an exponential (or power-law)
distribution 2.4. Reminder that α is measure of power-law-ness itself.

Following this observation, instead of our original assumptions about the distribution we
sample from, N (µ, σ2), we can model α as the exponential distribution Z ∼ Exp(ν) with
probability density function

f = νe−νx,

E[Z] =
1

ν
, var(Z) =

1

ν2
.

(2.30)
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Figure 2.6: Approximate exponential distribution of α values emerge towards the end of
training on the ResNet18 (left) and ResNet34 (right) models with 0.25-width fraction, initial
learning rate 0.2.

Because our observations are empirically inexhaustive and we work with relatively small
sample sizes of n, we can add an error term ϵα ∼ N (0, 1) to model randomness.

Let A = Z + ϵα, which is an ”exp-norm”, or an exponentially modified Gaussian (EMG)
distribution common in biological sciences [29, 26]. A is still unimodal and if we convolve
the two known distributions, approximately

A ∼ N (
1

ν
+ 0,

1

ν2
+ 1). (2.31)

A proof of the convolution can be found in Appendix A. A = Z + ϵα models an Additive
white Gaussian noise (AWGN) channel [15] with capacity

C =
1

2
log2(1 +

ρ

σ2
),

where σ2 = 1, ρ =
1

ν2
in our setting.

(2.32)

As the test accuracy increases we see a decrease in train accuracy, suggesting the role of
regularization with the sampling, whose effects weaken as the network grows deeper. This is
revealed through lower test accuracy and higher train accuracy on deeper residual networks
(ResNet101, ResNet152) than on shallower ones (ResNet18, ResNet34).

2.5 Future Work
• We currently assume a standard Gaussian distribution for sampling new values of α

and the learning rate, where variance σ2 = 1. Instead of fixing our variance, we could
generalize to optimize over the variance σ2 and proceed to optimize over the signal-to-
noise ratio µ2

σ2 . How do we optimize σ2 to maximize the channel capacity in 2.4?

• What is a more optimal way to restrict to sampling from non-negative continuous prob-
ability distributions?
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• How could we effectively incorporate a noise term ϵα, and what assumptions about its
distribution could we make?

• Is it possible to sample to replace select k < n of the learning rate or α values? How
would we choose k, and which k of the n values do we replace?
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Chapter 3

Layerwise Structured Pruning of Weight
Matrices

3.1 Related Work
Modern day neural networks are frequently over-parameterized. Pruning is a well studied
compression technique with the main motivation of minimizing network size in order to
reduce training time and resources while maintaining, and in some cases improving, per-
formance by removing redundancies. [32, 50, 69, 52] detail the network pruning problem
statement and techniques dating back to the 1980s. [10, 13] provide a literature review and
analysis of recently introduced neural network pruning and techniques.

The most immediate method is weight-based pruning, where unimportant connections
that fall below a certain threshold of importance are removed [31]. A series of prior work
proposes one could find a subnetwork consisting of a subset of weights that achieves the
performance of the original network. The Lottery Ticket Hypothesis presents an algorithm to
identify subnetworks, i.e. “winning tickets”, that converge to the accuracy of the unpruned
model in similar number of iterations [20]. This finding was extended to pre-trained BERT
networks, where pre-trained subnetworks are found at initialization instead pf after some
training time [11]. As an extension, the authors characterize an invariant used to predict
the error of all members of a network family at all dataset sizes and all pruning densities;
this shows that the error of iteratively magnitude-pruned networks has a structural behavior
that could be captured in a simple functional form and parameters [79]. They also adopt an
emsembling approach of combining “sibling” network copies to produce a subnetwork [68].

[75] connects pruning random ReLU networks to the SUBSETSUM problem, showing
that any target network of width d and depth l can be approximated by pruning a random
network that is O(log(dl)) wider and twice as deep. [76] proposes an algorithm to find ”un-
trained subnetworks”; for example, they find a subnetwork in WideResNet-50 that matches
the performance of a ResNet34 on ImageNet.

[58] encourages a different perspective to identify an optimal pruned architecture rather
than simply a set of weights. Regularization is often used to ensure the optimal tradeoff
between network accuracy and pruning ratio. [57] prunes insignificant channels to get thin
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and compact models and lower the number of operations.
However, prior work has found that unstructured pruning, which produces large-sparse

models, outperforms their small, lightly compressed counterparts resulting from structured
pruning [96], and [56] extends this study to Transformer models.

A middle ground of the two levels of granularity between sparse and structured pruning
has been proposed through a series of work with block sparsity [71, 16, 53, 62, 88]. [21]
studies the effect of block sparsity on accuracy with varying patterns and granularity.

Prior Work
The work in this chapter is an extension on the Deep Network Pruning project by Alex Zhao
(axyzhao@berkeley.edu) during his time as an undergraduate at Berkeley, where he imple-
mented both AugPrune and ME-Prune algorithms. We omit the algorithmic details in this
thesis but will give a high-level description for both in the following sections.

The AugPrune Method
The AugPrune algorithm follows the traditional three-step pipeline in the pruning land-
scape, train-prune-finetune. AugPrune performs structured pruning under the criterion of
keeping its top channels ranked by their importance score.

Importance Score The importance score is calculated for each channel z given an aug-
mentation scheme a(x′|x), which produces transformed sample x′ from given sample x. Its
intuition is to prune features whose presence (i) have little impact on the network output and
(ii) largely increase changes in the network’s response to changes in the input as modeled by
a(x′|x).

How to select pruning ratio k We prune k-fraction of the network channels. A natural
question arises, what is a good k value to set? Popular pruning algorithms set a global k-
fraction for the network, but we consider from a layerwise view as well. As a progression of
AugPrune, we determine layerwise ki by normalizing all matrix entropy measurements in
an extended method ME-Prune.

The ME-Prune Method
The ME-Prune Method is based on the algorithm of HYDRA [84], which incorporates
network pruning with robustness considerations. The method assigns importance scores to
weights defined as:

s
(0)
i =

√
6

fan-in i

× 1

max (|θpretrain ,i|)
× θpretrain ,i. (3.1)

Unlike AugPrune, the importance scores are simply scaled values of the original weights,
but we largely follow the same three-stage pipeline. For pruning, we use the matrix entropy
measurements across all layers to determine the layerwise ki-fractions.
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Figure 3.1: Comparing layerwise pruning ratios achieved on WideResNet28 (blue) and
DenseNet40 (orange) using Erdos-Renyi Kernel layerwise [18], Layer-adaptive Sparsity for
the Magnitude-based Pruning (LAMP) [51], and uniform (baseline) schemes.
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Figure 3.2: DenseNet40 (top) and WRN28 (bottom): Effects of AugMix (blue) and tradi-
tional augmentation (light blue) on α (left) and matrix entropy (right) through initial training,
before pruning.

Given matrix W, its matrix entropy follows the definition from [64]:

S(W) =
−1

log(R(W))

∑
i

pi log pi, (3.2)

where pi = ν2
i /

∑
i ν

2
i , νi is the ith singular value of W, and R(W) refers to the rank of W.

The intuition is that matrix entropy measures randomness observed in the spectral dis-
tribution of the layer weight matrix correlations. More formally, the matrix entropy also
captures information about the network structure and its usage is considered a form of spec-
tral regularization, so it falls under the same category of a shape metric as α introduced in 1.7.
Various recent empirical studies have shown spectral regularization improves generalization
power in sparse network and data regimes [1, 30, 54], with [2] explaining when and how
regularizing the spectral representation improves generalization.

Effects of Augmentation during Initial Training
We track two shape-based HT-SR metrics, powerlaw coefficient α and matrix entropy dur-
ing the initial training stage on DenseNet40 and WRN28 to compare the effects of AugMix
and traditional augmentation 3.1. Using AugMix results in higher matrix entropy uniformly
through time, but mitigates the observed entropy rebound phenomenon on DenseNet40, com-
pared to traditional augmentation. Using AugMix also levels the rebound of α on DenseNet40
during training.
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3.2 Comparing Metrics for Assigning Pruning Ratios
In this section, we observe the effects of using different shape and scale measurements of
layer weight matrix ESDs to inform pruning ratios. In addition to the matrix entropy metric,
we compare against baseline (“even” pruning) the effects of using various HT-SR-motivated
metrics that characterize heavy-tailness of layer ESDs:

• Shape metrics: alpha, random distance, stable rank, matrix entropy

• Scale metrics: (log)-norm, log Frobenius norm, (log)-spectral norm λmax

• Hybrid metrics: weighted alpha α̂, log-alpha norm

Random Distance measures the distance, captured by the Jensen-Shannon divergence,
between the eigenvalue distribution of the layer weight matrix W and the eigenvalue distribu-
tion of a randomly generated weight matrix Wrand of the same dimension: 1

n

∑n
i=1 JS(pi, prand,i).

Jensen-Shannon divergence (JS) on two discrete distributions p1 and p2 is defined as the
following,

JS(p1, p2) =
1

2
(KL(p1||p̄) + KL(p2||p̄),

where p̄ =
1

2
(p1 + p2)

and KL(p∥q) =
∑
x∈X

p(x)log
p(x)

q(x)
denotes the Kullback–Leibler divergence [60].

(3.3)

Stable Rank, the ratio of the Frobenius norm to Spectral norm, is defined as in [64]:

Rs(W) =
∥W∥2F
∥W∥22

=

∑
i ν

2
i

ν2
max

=

∑
i λi

λmax

. (3.4)

The α̂ metric combines α (shape) and λmax (scale) metrics: α̂ =
∑

αilogλmax,i.

Controlling Number of Parameters in Channel Pruning
The majority of pruning literature is concerned with the number of parameters in models, but
as each channel is associated with weights of different sizes, channel pruning compromises
the consideration of pruning ratios at the lowest granularity level. Without extra handling,
determining pruning fractions ki based entirely on matrix entropy fails to give us adequate
control over the overall model size in practice.

To address this problem, we define ki as the pruning budget, serving as a stopping condi-
tion for every layer. Instead of directly pruning ki-fraction of the channels for each layer i, we
increment the pruning ratio by 0.01 per iteration. We stop pruning a layer when its pruning
ratio has reached the maximum ki-fraction. In this approach, we would rather under-prune
than over-prune. This added functionality is important as we could now compare the effects
of layerwise learning rate assignment across custom pruning ratios on the same model.

We have four analysis cases, divided by augmentation scheme and relationship between
pruning ratios and HT-SR metrics, as shown in table 3.1.
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Layerwise Pruning Ratios ∼ Metric
Augmentation Scheme Directly Proportional Inversely Proportional

Traditional 1 2
AugMix 3 4

Table 3.1: Resulting figures for this section follow the sequence enumerated in this table.
Settings 1 and 3 prune more for layers with larger HT-SR metrics. Settings 2 and 4 prune
more for layers with smaller HT-SR metrics.

Experimental Setup
Architectures We use the DenseNet40, MobileNetV2, and WideResNet28 models.

DenseNet40 is introduced in [38], where feature maps of each layer are used as inputs
into all subsequent layers. According to the authors, advantages of DenseNets include ame-
liorating the vanishing-gradient problem, encouraging feature reuse, reducing number of pa-
rameters, and more. ResNets follow the similar idea of having high connectivity but combine
features summation while DenseNets concatenate them.

For an L-layer DenseNet, it has L(L+1)
2

instead of L connections for an L-layer network,
hence its name DenseNet (Dense Convolutional Network). Specifically for DenseNet40, it
consists of 1 3x3 convolutional layer, 3 dense blocks with 12 layers each, 2 transportation
layers between the dense blocks, ending with the final classification layer.

MobileNetV2 requires fewer number of operations and memory while maintaining ac-
curacy and is designed for mobile and resource constrained settings [81]. It consists of two
types of blocks, a residual block of stride 1 and a downsizing block of stride 2. Each block
consists of three layers: 1x1 convolution followed by a ReLU6 activation, a depth=wise con-
volution, then a 1x1 convolution without non-linearity, i.e. no ReLU [37]. The accuracy
improves with the removal of the ReLU at the output of the so-called ”bottleneck operator”
module.

WideResNet28-10 (WRN28-10) is a widened ResNet architecture motivated by increas-
ing representational power of residual blocks [95]. The network consists of a convolutional
layer, 3 groups of residual blocks, and average pooling and final classification. The authors
introduce deepening factor l and widening factor k, where l is the number of convolutions in
a block and k scales the number of features in convolutional layers; here we have k = 10.

We use the same CIFAR-100 dataset as we did in the above experiment.
The motivation behind data augmentations is to help the network predict more accu-

rately by providing more variations of the original examples to add to the training data. The
original methods AugPrune and ME-Prune found AugMix to be the best among different
augmentation schemes, including traditional augmentations (random flipping and random
cropping) and ImgAug [36, 44].
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Results
On DenseNet40 with AugMix data augmentation, post-pruning clean accuracy outperforms
the baseline especially in sparse settings when setting larger pruning fraction ki for layers
with larger shape metrics and smaller pruning fraction ki for layers with smaller scale metrics
3.2.

Similar trends arise when using traditional augmentation, but the improvement from base-
line is less significant.

On MobileNetV2, most metric-based pruning does not achieve gains similar to those on
DenseNet40.

On WRN28, uniform pruning is the most optimal option, suggesting the power architec-
ture of the residual blocks with increased depth and width.

Implicit Special Handling of Bottleneck Layers
From observing the layerwise pruning ratios determined by the HT-SR metrics on DenseNet40,
two layers have notably different ratios when using select metrics 3.2.

We zoom in on entropy (namely, matrix entropy), which yields lower pruning ratios in
Settings 1 and 3 and higher pruning ratios in Settings 2 and 4; and norm and spectral norm,
for which the inverse is true. These two layers correspond to the two Transition Layers on
DenseNet40 between the dense blocks.

This observation provides an explanation for the results in the previous section: Methods
outperform uniform pruning when they implicitly identify the Transition Layers, for which
they prune less. Transition Layers have observably lower matrix rank, so it would make sense
that pruning less for layers starting with low number of parameters correlated with improved
model performance, as a result of better forward propagation through the layers.

This type of implicit layer differentiation is not observed on WideResNet28 and Mo-
bileNetV2, which correlate with smaller performance gains from the baseline uniform prun-
ing in various settings. Future work is needed in the direction of developing algorithms that
could determine such trends and structural differentiation for any architectural backbone.

3.3 Layerwise Learning Rates with Uniform Pruning
To analyze the effects of HT-SR-motivated layerwise allocation of learning rates separately
from that of pruning ratios, we perform uniform pruning of channels across all layers. We
now prune k-fraction of all channels for every layer before finetuning with layer-specific
learning rates determined by the algorithm in 2.3. Note that different layers could still end up
with different number of channels.

Experimental Setup
We use the same CIFAR-100 dataset as we did in the above experiment.
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Figure 3.3: Clean test accuracy vs. number of parameters remaining on DenseNet40: Using
Different Shape (blue-green colors) and Scale (red-pink colors) Metrics vs. uniform (“even”)
pruning (yellow).
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Figure 3.4: Prune more for layers with larger metrics.

Figure 3.5: Prune more for layers with smaller metrics.

Figure 3.6: Layerwise pruning ratios with traditional augmentation on DenseNet40.
Columns represent the different 10 HT-SR metrics. Uniform pruning would show a straight
line across the graph. From bottom to top row, in increasing order of model pruning ratio.
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Figure 3.7: Prune more for layers with larger metrics.

Figure 3.8: Prune more for layers with smaller metrics.

Figure 3.9: Layerwise pruning ratios with AugMix on DenseNet40. Columns represent the
different 10 HT-SR metrics. Uniform pruning would show a straight line across the graph.
From bottom to top row, in increasing order of model pruning ratio.



CHAPTER 3. LAYERWISE STRUCTURED PRUNING OF WEIGHT MATRICES 32

Figure 3.10: Prune more for layers with larger metrics.

Figure 3.11: Prune more for layers with smaller metrics.

Figure 3.12: Layerwise pruning ratios with traditional augmentation on MobileNetV2.
Columns represent the different 10 HT-SR metrics. Uniform pruning would show a straight
line across the graph. From bottom to top row, in increasing order of model pruning ratio.
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Figure 3.13: Prune more for layers with larger metrics.

Figure 3.14: Prune more for layers with smaller metrics.

Figure 3.15: Layerwise pruning ratios with AugMix on MobileNetV2. Columns represent
the different 10 HT-SR metrics. Uniform pruning would show a straight line across the graph.
From bottom to top row, in increasing order of model pruning ratio.
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Figure 3.16: Prune more for layers with larger metrics.

Figure 3.17: Prune more for layers with smaller metrics.

Figure 3.18: Layerwise pruning ratios with traditional augmentation on WideResNet28.
Columns represent the different 10 HT-SR metrics. Uniform pruning would show a straight
line across the graph. From bottom to top row, in increasing order of model pruning ratio.



CHAPTER 3. LAYERWISE STRUCTURED PRUNING OF WEIGHT MATRICES 35

Figure 3.19: Prune more for layers with larger metrics.

Figure 3.20: Prune more for layers with smaller metrics.

Figure 3.21: Layerwise pruning ratios with AugMix on WideResNet28. Columns represent
the different 10 HT-SR metrics. Uniform pruning would show a straight line across the graph.
From bottom to top row, in increasing order of model pruning ratio.
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We use the DenseNet40 and VGG19 architectures. Each layer of DenseNet40 connects
with every other layer, resulting in O(L2) connections for L layers. VGG19, on the other
hand, is considered to be more vanilla and has no cross or skip connections.

Our baseline learning rate adopts the cosine annealing schedule as before, and we mainly
consider an initial learning rate value of 0.05. A more comprehensive study would include a
wide range of learning range as in previous experiments.s

Results
On the VGG19 architecture, layerwise learning rate allocation reaches baseline performance
in the sparsest and densest settings without underperforming the baseline training accuracy.
For models with 10 to 80 percent of parameters remaining, the layerwise learning rate method
consistently outperforms the baseline.

On DenseNet40, the observable optimal range of fraction of remaining parameters is
between 55 to 65 percent 3.3. The architectural structures of VGG19 and DenseNet40 could
explain the performance differences: as DenseNet40 already accounts for built-in layerwise
interactions through skip links, its performance gain using layerwise learning rate allocation
is less significant than on the more vanilla VGG19.

3.4 Future Work
A natural direction would be to combine HT-SR-motivated layerwise allocations for both
pruning ratios and learning rates on the same model. We would most likely need to take
into consideration coupling effects as networks could respond differently due to many factors
including size, architectural features, dataset, etc.

We show preliminary results on all four enumerated settings on the pruned DenseNet40
architecture: uniform pruning and global learning rate (baseline), uniform pruning and lay-
erwise learning rates determined by α, layerwise pruning ratios determined by α and global
learning rate (α prune), and both layerwise pruning ratios and layerwise learning rates de-
termined by α 3.4. We could try this layerwise finetuning approach on multiple pruning
algorithms, and explore different parameter settings in the initial training stage.
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Figure 3.22: Zooming into select figures of layer α from VGG19 with 4M parameters 3.3.
Lower overall average α values across all layers are recorded through the finetuning epochs
compared to baseline, indicating overall better training completeness. The top four figures
show that layers assigned learning rates with the largest difference from the baseline also
have smaller α values through finetuning, showing better model convergence.
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Figure 3.23: VGG19 at 11 Sizes: Change of α through finetuning for 3 layers with the largest
increase and 3 layers with largest decrease from initial baseline learning rates (continued on
next page).
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Figure 3.24: (Continued from previous page) VGG19 at 11 Sizes: Change of α through
finetuning for 3 layers with the largest increase and 3 layers with largest decrease from initial
baseline learning rates.

Figure 3.25: Effects of layerwise learning rate allocation on uniformly pruned VGG19, across
a wide range of sparsities.
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Figure 3.26: Comparing the four settings on varying sizes on DenseNet40: uniform pruning
and global learning rate (baseline), uniform pruning and layerwise learning rates determined
by α, layerwise pruning ratios determined by α and global learning rate (α prune), and both
layerwise pruning ratios and layerwise learning rates determined by α. Learning rates are
reallocated for the finetuning stage only, not for the initial training.
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Appendix A

Convolution of Exponential and Normal
Distributions

Thank you to Syomantak Chaudhuri for elaborating and correcting this convolution proof.
Let X ∼ Exp(λ) and Y ∼ N (µ, σ2) and Z = X + Y . We have

fX(x) = λe−λx and fY (x) =
1

σ
√
2πe

−(x−µ)2

2σ2

(A.1)

fX+Y (x) =
λ

σ
√
2π

∫ ∞

0

exp(−λt− (x− µ)2 + t2 − 2t(x− µ)

2σ2
)dt (A.2)

fX+Y (x) =
λ

σ
√
2π

∫ ∞

0

exp(−2σ2λt+ (x− µ)2 + t2 − 2t(x− µ)

2σ2
)dt (A.3)

fX+Y (x) =
λ

σ
√
2π

∫ ∞

0

exp(−t2 + 2t(σ2λ− (x− µ)) + (x− µ)2)

2σ2
)dt (A.4)

fX+Y (x) =
λ

σ
√
2π

∫ ∞

0

exp(−t2 − 2t(x− µ− σ2λ)) + (x− µ)2)

2σ2
)dt. (A.5)

To write the numerator of the exponent as the square of a difference,

[t− (x− µ− σ2λ)2] = t2 − 2t(x− µσ2λ) + (x− µ− σ2λ)2, (A.6)

where (x−µ−σ2λ)2 = x2+µ2+σ4λ2−2xµ+2µσ2λ−2xσ2λ = (x−µ)2+σ2λ(σ2λ+2µ−2x).

fX+Y (x) =
λ

σ
√
2π

∫ ∞

0

exp(− [t− (x− µ− σ2λ)2]− σ2λ(σ2λ+ 2µ− 2x)

2σ2
)dt (A.7)

fX+Y (x) =
λ

σ
√
2π

exp(
σ2λ(σ2λ+ 2µ− 2x)

2σ2
)

∫ ∞

0

exp(
−[t− (x− µ− σ2λ)]2

2σ2
)dt (A.8)
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Change of variables z := t−(x−µ−σ2λ)√
2σ2

, dz = dt√
2σ2

fX+Y (x) =
λ

σ
√
2π

exp(
λ

2
(σ2λ+ 2µ− 2x))

∫ ∞

−(x−µ−σ2λ)√
2σ2

exp(−z2)dz ·
√
2σ2 (A.9)

fX+Y (x) =
λ√
π

exp(
λ

2
(σ2λ+ 2µ− 2x))

∫ ∞

−(x−µ−σ2λ)√
2σ2

exp(−z2)dz. (A.10)

We write the integral as∫ ∞

−(x−µ−σ2λ)√
2σ2

exp(−z2)dz =

∫ 0

−(x−µ−σ2λ)√
2σ2

exp(−z2)dz +

∫ ∞

0

exp(−z2)dz, (A.11)

where
∫∞
0

exp(−z2)dz =erf(∞) ·
√
π
2

=π
2

and erf(∞) = 0. The error function is defined as
erf(y) = 2√

π

∫ y

0
e−t2dt [60]. For a random variable X ∼ N (0, 1√

2
), erf(y) is the probability

that X falls in the range [−y, y].∫ ∞

−(x−µ−σ2λ)√
2σ2

exp(−z2)dz =

√
π

2
erf(

x− µ− σ2λ√
2σ2

) +

√
π

2
. (A.12)

We have

fX+Y (x) =
λ√
π

exp(
λ

2
(2µ+ σ2λ− 2x)) · (

√
π

2
erf(

x− µ− σ2λ√
2σ2

) +

√
π

2
). (A.13)

fZ(x) =
λ

2
exp(

λ

2
(2µ+ σ2λ− 2x)) · (erf(

x− µ− σ2λ√
2σ2

) + 1). (A.14)
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