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Abstract

Perception for Real-World Robotics Applications

by

Yu Xuan Liu

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Pieter Abbeel, Chair

Recent advances in artificial intelligence, particularly deep learning and large foundation
models, have demonstrated remarkable progress. However, when applying AI to real-world
robotics applications, we still face many challenges due to the diverse scenarios and objects
encountered, as well as the need for high throughput and accuracy. Off-the-shelf models often
fail to meet the stringent requirements for high-performing robotic applications, because
they do not adequately model uncertainty that arises in the real world. Moreover, training
such models require large datasets which can be expensive to annotate or not immediately
applicable for robotic applications.

We address these challenges by introducing a novel class of models that explicitly model
and handle ambiguity in 2D and 3D perception. These models offer improved adaptability
and decision-making capabilities by incorporating uncertainty estimation, better equipping
robots for the dynamic nature of real-world environments. Furthermore, we explore methods
of leveraging diverse data collected in robotic applications without requiring costly human an-
notation. We propose a self-supervised learning method that enables robots to autonomously
learn from the rich information available in the diverse images they encounter during op-
eration. This approach leads to enhanced performance and adaptability, allowing robotic
systems to continuously refine their perception capabilities. We hope these contributions
pave the way for more robust, adaptable, and high-performing robotic systems that excel in
complex and dynamic environments, addressing the unique challenges posed by real-world
robotics and bridging the gap between AI research and practical robotic applications.
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Chapter 1

Introduction

1.1 Real-World Robotics

Industrial robotics has been a cornerstone of modern manufacturing and automation for
many decades. Traditionally, these robots perform pre-programmed tasks, acting blindly
and repetitively, executing the same operations over and over again. While this approach
works well for specific tasks in controlled environments, it falls short when attempting more
complex tasks, such as picking objects out of a bin, which require greater adaptability and
perception capabilities due to the diversity of items and numerous edge cases encountered.

Recent advancements in robotics research have focused on enabling robots to solve general
tasks using natural language, exemplified by systems like RT-1[6]. However, these models
often lack the speed and reliability necessary for real-world industrial applications. Ware-
house and industrial settings demand exceedingly high accuracy, often exceeding 99%, and
human-level throughput to meet the efficiency requirements of modern production lines.

In this thesis, we investigate existing models in the literature and identify their short-
comings when applied to real-world industrial use-cases. We delve into the challenges faced
by off-the-shelf models, which often struggle with uncertainty and ambiguity, resulting in
suboptimal performance in diverse and dynamic environments.

To address these limitations, we propose new models that push the boundaries of cur-
rent state-of-the-art perception and decision-making capabilities in robotic systems. Our
research focuses on developing models that can handle ambiguity and uncertainty, allowing
for improved adaptability and performance in real-world scenarios. Moreover, we explore
self-supervised learning methods to leverage diverse data collected in real robotic applica-
tions without the need for costly human annotation, enabling robots to learn and refine their
perception capabilities autonomously.

The contributions of this thesis aim to bridge the gap between AI research and practical
robotic applications in industrial settings. By proposing novel models and methodologies
tailored for real-world robotics, we strive to advance the development of more robust, adapt-
able, and high-performing robotic systems that can tackle the complex challenges inherent
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in diverse and dynamic environments.

1.2 Overview

In this thesis, we address the challenges of real-world robotic applications by proposing new
models that can effectively model uncertainty and leverage self-supervised data for learning.
Specifically, we introduce three novel methods: (1) Autoregressive bounding box prediction,
(2) Latent-MaskRCNN for instance segmentation, and (3) Self-supervised instance segmen-
tation. These methods build upon state-of-the-art techniques to better capture and handle
ambiguity, providing a more robust and adaptable foundation for robotic systems operating
in dynamic and complex environments.

1. Autoregressive Bounding Box Prediction

In the first part of this thesis, we tackle the problem of 3D bounding box prediction, a
widespread intermediate representation in many computer vision applications. Predicting
3D bounding boxes is challenging due to partial observability and the need for a strong sense
of uncertainty. We propose an autoregressive prediction head that enhances the modeling of
the output distribution, allowing the model to capture meaningful uncertainty measures. Our
method achieves strong results on various datasets, including SUN-RGBD, Scannet, KITTI,
and our newly released COB-3D dataset, which highlights new types of ambiguity arising in
real-world robotics applications. This section represents work published in Yuxuan Liu et
al. “Autoregressive Uncertainty Modeling for 3D Bounding Box Prediction”. In: Computer
Vision - ECCV 2022 - 17th European Conference. 2022.

2. Latent-MaskRCNN for Instance Segmentation

In the second part of the thesis, we focus on instance segmentation, a fundamental skill for
many robotic applications. We propose Latent-MaskRCNN, a class of distributional instance
segmentation models using latent codes that can model uncertainty over plausible hypotheses
of object masks. By incorporating uncertainty estimation into instance segmentation, our
model significantly reduces critical errors in robotic systems, including those encountered
in our newly released dataset of ambiguous scenes in a robotic application. In real-world
apparel-picking robots, our method demonstrates a significant reduction in double pick errors
while maintaining high performance. This section represents work published in Yuxuan Liu
et al. “Distributional Instance Segmentation: Modeling Uncertainty and High Confidence
Predictions with Latent-MaskRCNN”. in: 2023 IEEE International Conference on Robotics
and Automation (ICRA). 2023.
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3. Self-Supervised Instance Segmentation from Grasping

In the third and final part of the thesis, we explore the self-supervised learning methods for
instance segmentation in robotic applications. We propose a method that leverages grasp
interactions to collect segmentation supervision, enabling robots to learn from thousands
of grasp interactions without costly human annotation. By segmenting grasped objects
and using a ”cut-and-paste” generation method, instance segmentation models trained with
our method achieve better performance than those trained with 10x the amount of labeled
data. On a real robotic grasping system, our instance segmentation model reduces the
rate of grasp errors by over 3x compared to an image subtraction baseline. This section
represents work published in YuXuan Liu, Xi Chen, and Pieter Abbeel. Self-Supervised
Instance Segmentation by Grasping. 2023. arXiv: 2305.06305 [cs.CV].

https://arxiv.org/abs/2305.06305
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Chapter 2

Autoregressive 3D Bounding Box

2.1 Introduction

Predicting 3D bounding boxes is a core part of the computer vision stack in many real
world applications, including autonomous driving, robotics, and augmented reality. The
inputs to a 3D bounding box predictor usually consist of an RGB image and a point cloud;
the latter is typically obtained from a 3D sensor such as LIDAR or stereo depth cameras.
These 3D sensing modalities have their own idiosyncrasies: LIDAR tends to be accurate
but very sparse, and stereo depth can be both sparse and noisy. When combined with the
fact that objects are only seen from one perspective, the bounding-box prediction problem is
fundamentally underspecified: the available information is not sufficient to unambiguously
perform the task.

Imagine that a robot is going to grasp an object and manipulate it — understanding
the uncertainty over the size can have a profound impact on what the robot decides to do
next. For example, if it uses the predicted bounding box to avoid collisions during motion
planning, then we may want to be conservative and err on the larger side. However, if it
is trying to pack the items into a shipment, then having accurate dimensions may also be
important.

Consider the scene depicted in Figure 2.1, which we observed in a real-world robotics
application. From the image of the object in a), it is fairly easy to gauge the width and
length of the indicated object, but how tall is it? The object could be as deep as the bin, or
it could be a stack of two identical objects, or even a thin object – but from the available
information, it is impossible to say for sure. Formulating bounding box prediction as a
regression problem results in a model that can only make a “pointwise” prediction – even in
the face of ambiguity, we will only get a single predicted bounding box, shown in b).

A sufficiently expressive bounding-box model should be able to output the entire range
of plausible bounding box hypotheses and make different predictions for different confidence
requirements. A 0.5-confidence box d) must contain the object 50% of the time while a
0.8-confidence box e) will expand in the direction of uncertainty to contain the object 80%
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a) object e) 0.8-confidence boxd) 0.5-confidence boxc) 0.2-confidence box f) dimension conditioningb) pointwise

Figure 2.1: a) In this scene from a real-world robotics application, how tall is the object
highlighted in red? b) A pointwise model could output only one box prediction with no notion
of uncertainty c)-e) Predictions from our confidence box method. Notice that the predicted
box expands in the direction of uncertainty as we increase the confidence requirement. f) Our
dimension conditioning method can leverage additional information to make more accurate
predictions.

of the time. Moreover, such a model could leverage additional information, such as known
dimensions of an object, to make even more accurate predictions, as shown in f).

Setting aside partial observability, the prediction space has complexities that require
care in the design of a bounding-box estimator. Making accurate predictions requires the
estimator to reason about rotations, which has been observed to be notoriously difficult for
neural networks to predict and model uncertainty over [98, 23, 69]. Many existing methods
sidestep this problem by constraining their predictions to allow rotation about a single axis
or no rotations at all. This can be sufficient for some applications but has shortcomings for
the general case.

A common thread that links these challenges together is the necessity to reason about
uncertainty. This has been largely underexplored in existing work, but we hypothesize that
it is critical to improving 3D bounding box estimators and expanding their usability in ap-
plications of interest. We propose to tackle this problem by predicting a more expressive
probability distribution that explicitly accounts for the relationships between different box
parameters. Using a technique that has proven effective in other domains, we propose to
model 3D bounding boxes autoregressively: that is, to predict each box component sequen-
tially, conditioned on the previous ones. This allows us to model multimodal uncertainty
due to incomplete information, make high confidence predictions in the face of uncertainty,
and seamlessly relax the orientation constraints that are popular in existing methods. To
summarize our contributions:

1. We propose an autoregressive formulation to 3D bounding box prediction that can
model complex, multimodal uncertainty. We show how this formulation can gracefully
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scale to predict complete 3D orientations, rather than the 0- or 1-D alternatives that
are common in prior work.

2. We propose a method to make high confidence predictions in ambiguous scenarios and
estimate useful measures of uncertainty.

3. We introduce a simulated dataset of robotics scenes that illustrates why capturing
uncertainty is important for 3D bounding box prediction, as well as the benefits and
challenges of predicting full 3D rotations.

4. We show that our formulation applies to both traditional 3D bounding box estima-
tion and 3D object detection, achieving competitive results on popular indoor and
autonomous driving datasets in addition to our dataset.

2.2 Related Work

3D Bounding-box Estimation: Early work on 3D bounding box prediction [64, 70]
assumes that object detection or segmentation has already been performed, and the bounding
box predictor solely needs to identify a single 3D bounding box within a filtered point
cloud. We refer to this task as 3D bounding-box estimation. Much of this work focused
on developing architectures to easily consume point cloud data, which often can be sparse
and/or unstructured when obtained from real-world data.

3D Object Detection: Recently, a number of methods [79, 76, 54, 63, 90, 80, 71]
have explored how to jointly perform object detection and 3D bounding box estimation,
rather than treating them as two explicit steps. This task is known as 3D object detection
and is quickly gaining popularity over the decoupled detection and estimation tasks. The
main focus is on how to take the network architectures that have proven successful at the
estimation task (which have strong inductive biases for operating on point clouds), and
combine them with the architectures commonly used for the 2D object detection method
(which are usually based on region proposals).

Uncertainty Modeling in Object Detection: Uncertainty modeling has been stud-
ied in the context of 2D and 3D Object Detection [60, 46, 97, 59, 28]. In many cases, these
methods will use independent distributions, such as Gaussian or Laplace, to model uncer-
tainty over box parameters such as corners, dimensions, and centers [33, 60, 13]. While
these distributions may capture some uncertainty for simple box parameterizations, they
don’t capture correlations across parameters and have yet to be proven on full 3D rotations.

Autoregressive Models: Deep autoregressive models are frequently employed across
a variety of domains. In deep learning, they first gained popularity for generative modeling
of images [86, 66, 87], since they can model long-range dependencies to ensure that pixels
later in the autoregressive ordering are sampled consistently with the ones sampled earlier.
In addition to being applied to other high-dimensional data such as audio [66], they have
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also been shown to offer precise predictions even for much lower-dimensional data, such as
robot joint angles or motor torques [58].

2.3 Autoregressive 3D Bounding Box Prediction

3D bounding box estimation is typically formulated as a regression problem over the dimen-
sions d = (dx, dy, dz), center c = (cx, cy, cz), and rotation R = (ψ, θ, ϕ) of a bounding box,
given some perceptual features h computed from the scene, e.g. from an image and point
cloud. Prior work has explored various parametrizations and loss functions, but a notable
salient feature to observe is that they all predict a pointwise estimate of the bounding box:
the model simply outputs all of the box parameters at once. In 3D object detection, such
regression is typically applied to every box within a set of candidates (or anchors), and
fits into a larger cascade that includes classifying which anchors are relevant and filtering
out unnecessary or duplicate anchors. In practice, this formulation can be greatly limiting,
especially in the face of partial observability or symmetry.

Autoregressive Modeling

We propose to tackle this problem by autoregressively modeling the components of a 3D
bounding box. That is, for some ordering of the components (e.g. dimensions → center
→ orientation, or any permutation thereof), such a predictor will sequentially predict each
component conditioned on the previous ones. In theory, the particular autoregressive or-
dering should not matter; empirically, we find that dimensions → center → orientation was
effective, so we use this ordering for our model. Having dimension as first in the autoregres-
sive ordering also enables us to condition on dimensions when they are known which can be
effective at improving the prediction accuracy.

We discretize the box parameters rather than predicting continuous values, which is a
well-known technique that allows the model to easily express multimodal distributions [86].
For rotations, we chose Euler angles since each dimension has a fixed range and does not
to be normalized. To make discrete dimension and center predictions, we normalize those
parameters so that they can fit within a fixed set of discrete bins. We normalize dimensions
by some scale s so that most values of d/s are within the range [0, 1], and offset the centers
by c0 so that most normalized centers (c − c0)/s are within the range [−1, 1]. We use 512
bins for each dimension and adjust the bin range to achieve on average ≥ 0.99 IOU with the
quantized box and < 0.1% overflow or underflow due to quantization.

From RGB-D inputs we extract a fixed-dimensional feature vector h for each object.
For each parameter b = (dx, dy, dz, cx, cy, cz, ψ, θ, ϕ) in the autoregressive ordering, we model
p(bi|b1, . . . , bi−1, h) using a MLP with 2-3 hidden layers. This autoregressive model is then
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Features h per objectFeatures h per object

3D Bounding Box 
Base Model

RGB-D

Features h per object

cx cy czdx dy dz ψ 𝜽 φ

cx cy czdx dy dz ψ 𝜽
Autoregressive samples 

Figure 2.2: We compute per-object features h using a base model from RGB-D input. Then,
we autoregressively sample dimensions, center, and rotations, each step conditioned on the
previous one. We can express uncertainty through samples, such as the rotational symmetry
of the bottle, whereas pointwise models could only make a single prediction.

trained using maximum likelihood:

log p(b|h) =
9∑

i=1

log p(bi|b1, . . . , bi−1, h) (2.1)

Model Architectures

Our autoregressive prediction scheme can be applied to any type of 3D bounding box predic-
tor. In this section, we discuss how it might be applied in two different contexts: 3D object
detection and 3D bounding box estimation.

Autoregressive 3D Object Detection.

FCAF3D [76] is a state-of-the-art 3D object detection method that was heavily engineered
to exploit sparse and unstructured point clouds. Given a colored point cloud, it applies
a specialized feature extractor consisting of sparse 3D convolutions, and then proposes 3D
bounding boxes following a popular single-stage detector, FCOS [84].

Autoregressive FCAF3D: We can make FCAF3D autoregressive by adding a head
and training this head with maximum likelihood in addition to the FCAF3D loss LF (h, y)
(Figure 2.3). We found that the pointwise box prediction was useful to condition the autore-
gressive prediction and estimate the scaling normalization factor s = max{d′x, d′y, d′z}, where
d′ is the pointwise dimension prediction of FCAF3D. Bounding box centers c are normalized
by the output locations c0 of the sparse convolutions and scaled by the same s: (c − c0)/s.
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FCAF3D Neck + HeadFCAF3D Neck + Head

FCAF3D Sparse 
3D-Conv Backbone

Point 
cloud

FCAF3D Neck + Head

Classification + Centerness 

Regression Head

Autoregressive Head

Autoregressive 3D Object Detection Autoregressive 3D Bounding Box Estimation

Object-centric features

2D CNN

Autoregressive Head

Figure 2.3: For indoor 3D Object Detection, we use FCAF3D as a base model with an
autoregressive head for bounding box prediction. For 3D Bounding Box Estimation we
take object-centric features from a 2D object detector and pass them into a 2D CNN for
autoregressive bounding box prediction.

Since 3D object detection datasets have at most one degree of freedom for rotation, we
predict only one θ parameter for box rotation.

To optimize the autoregressive prediction for higher IOU, we sample boxes b ∼ p(b|h)
and maximize the IOUs of the samples with the ground truth box y. For this optimization,
we use the conditional expectation b′ where b′i = E[bi|b1, . . . , bi−1, h] (since b

′ is differentiable)
to maximize IOU(b′, y). Altogether, we train autoregressive FCAF3D using the combined
loss:

L(h, y) = LF (h, y)− log p(b|h) + Eb∼p(b|h)[1− IOU(b′, y)] (2.2)

Autoregressive PV-RCNN: Lidar-based object detection networks, such as PV-RCNN
[80], typically have different architectures and inductive biases than indoor detection models.
However, we show that our autoregressive box parameterization is agnostic to the under-
lying architecture by applying it to PV-RCNN. We propose Autoregressive PV-RCNN by
extending the proposal refinement head to be autoregressive, modeling the residual ∆rα as
discrete autoregressive p(∆rα|h). Then, we add − log p(∆rα|h) to the total training loss.

Autoregressive 3D Bounding Box Estimation.

3D Bounding Box Estimation assumes that object detection has already been performed in
2D, and we simply need to predict a 3D bounding box for each detected object. To highlight
that our autoregressive prediction scheme can be applied to any bounding box predictor, we
chose a model architecture that is substantially different from FCAF3D. For each detected
object, we take an object-centric crop of the point cloud, normals, and object mask as input
to a 2D-CNN, producing a fixed feature vector h per object. This h is used as features
for our autoregressive parameterization p(b|h). See Appendix A.1 for more details on the
architecture.

To normalize the input and box parameters, we scale by the range of the first and third
quartiles of each point cloud dimension s = Q3 − Q1, and recenter by the mean of the
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quartiles c0 = Q1+Q3

2
. For full SO(3) rotations, we found there were many box parameters

that could represent the same box; for example, a box with d = (1, 2, 3) is equivalent to a
box with d′ = (2, 1, 3) and a 90◦ rotation. To account for this, we find all the box parameters
B = {b(1), ..., b(m)} that represent the same box and supervise on all of them:

L(h,B) = − 1

|B|
∑
b(i)∈B

log(b(i)|h) (2.3)

2.4 Applying Autoregressive 3D Bounding Box

Models

Given a trained autoregressive bounding-box model, how do we actually obtain predictions
from it? There can be a few different options, depending on how the downstream application
plans to use the predictions.

Beam Search

In many applications, we want to simply obtain the most likely 3D bounding box given the
input observation. That is, we find the box b∗ = argmaxb p(b|h) which is most likely under
the model. Finding b∗ exactly can be computationally expensive, but we can approximate it
using beam search, a technique that has proven especially popular for autoregressive models
in natural language applications [20]. Beam search allows us to estimate the mode of the
distribution learned by the model and serves as an effective pointwise prediction.

Quantile and Confidence Boxes

In applications such as robotics and autonomous driving, 3D bounding boxes are often used
to estimate object extents and avoid collisions. To that end, we often care that an object o
is fully contained in the estimated box b. For a given confidence requirement p, we define
a confidence box bp as a box that contains the true object o with probability at least p:
P(o ⊆ bp) ≥ p. We’ll show how to use an autoregressive bounding box model for confidence
box predictions.

Suppose we draw multiple samples K from our model. If a point x ∈ R3 is contained
in many boxes, then it’s likely that point is actually part of the object. Conversely, a point
that is only contained in a few sampled boxes is not likely to be part of the object. We can
formalize this intuition as the occupancy measure

O(x) = P(x ∈ b) = Eb∼p(b|h)[1{x ∈ b}] ≈
1

K

K∑
i=1

1{x ∈ b(i)} (2.4)

which can be approximated using samples b(1), . . . , b(K) ∼ p(b|h) from our model.
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(1)

(3)

(2)

(4)

a) P(i) = 1/4 

O(x) = 1/4

O(x) = 1/2

O(x) = 3/4

O(x) = 1

b) Occupancy

Q(3/4) = b1/4

Q(1/2) = b1/2

Q(3/4) = b1/4

Q(0) = b1

c) Occupancy Quantiles Q(q) and Confidence Boxes b1-q

Figure 2.4: Consider a scenario where we are estimating the bounding box of a tightly
packed bin of stacked boxes. a) There is not enough visual information to estimate the
object height, however, we know that the object could have heights H/i for i ∈ {1, 2, 3, 4}
with equal probability. b) We compute the occupancy O(x) for different regions. c) We
visualize occupancy quantiles Q(q) which correspond to confidence boxes b1−q. Notice that
as the confidence requirement increases, the size of the box increases to ensure we can contain
the true object.

To find regions that are very likely to be part of an object, consider the set of all points
that have occupancy greater than q:

Q(q) = {x : O(x) > q} (2.5)

which we’ll refer to as the occupancy quantile. The minimum volume bounding box over the
occupancy quantile is the quantile box :

bq = arg min
b:Q(q)⊆b

vol(b) (2.6)

Under some conditions, we can show that quantile boxes are confidence boxes.

Theorem 1 A quantile box with quantile q is a confidence box with confidence p = 1 − q
when p(b|h) is an ordered object distribution.

p(b|h) is an ordered object distribution if for any two distinct boxes bi, bj in the sample space
of p(b|h), one box must be contained within the other, bi ⊂ bj or bj ⊂ bi. Empirically we find
that quantile boxes are good approximations for confidence boxes even when p(b|h) is not an
ordered object distribution. See Figure 2.4 for a visualization of occupancy and confidence
boxes.

Quantile boxes provide an efficient way to make confidence box predictions with an au-
toregressive model. We can use the autoregressive distribution to estimate occupancy using
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supervision from 3D box labels (without requiring meshes for direct occupancy supervision).
Occupancy quantiles provide a fast approach for confidence box estimation on ordered ob-
ject distributions and a good confidence box approximation for general object distributions.
Appendix A.2 has the full proof of Theorem 1 and the details of our fast quantile box
algorithm.

Uncertainty Measure

Uncertainty estimation is an important application of bounding box estimation. When the
3D extent of an object is unknown or not fully observed, it can be valuable if a model can also
indicate that its predictions are uncertain. For instance, a robot may choose to manipulate
that uncertain object more slowly to avoid collisions, or an autonomous vehicle may be more
cautious around a moving object of unknown size.

A pointwise predictor can accomplish this by predicting both a mean µ and variance σ2

for each box parameter, maximizing a N (µ, σ2) likelihood [33]. However, the spread of the
distribution is measured independently for each box parameter which doesn’t measure the
spread of the overall box distribution well.

With an autoregressive box parameterization, we can measure uncertainty in the space of
boxes using quantile boxes. Let bα and bβ be two quantile boxes with different quantiles. If
we consider these boxes as confidence boxes, we can interpret (bα, bβ) as a confidence interval
or the spread of the box distribution. With this intuition, we can measure uncertainty using
the IOU of different quantile boxes Uα,β = 1 − IOU(bα, bβ). This Uα,β effectively measures
the span of the distribution in units of relative volume.

Dimension Conditioning

For some robotics applications, such as object manipulation in industrial settings, we are
often presented with Stock-Keeping Unit, or SKU, information beforehand. In these scenar-
ios, the dimensions of each SKU are provided, and the prediction task essentially boils down
to correctly assigning the dimensions to a detected object instance, and predicting the pose
of the 3D bounding box.

The autoregressive nature of our model allows for conveniently conditioning on the dimen-
sions of each bounding box. However, we don’t know which object in the scene corresponds
to which SKU dimensions. How can we leverage dimension information from multiple SKUs
without object-SKU correspondence? Our autoregressive model provides an elegant solution
using conditioning and likelihood evaluation.

Given {d(1), ..., d(k)} known SKU dimensions, we can make a bounding box prediction
using this information by maximizing:

b∗ = argmax
b
{ max
d(1),...,d(k)

p(b|d(i), h)} (2.7)
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We can find the optimal b∗ by using beam search conditioned on each of the di and returning
the box with the highest likelihood. Figure 2.1 shows an illustrative example of how dimen-
sion conditioning can be used to greatly increase the fidelity of the predicted 3D bounding
boxes.

2.5 Experiments

We designed our experiments to answer the following questions:

1. How does an autoregressive bounding box predictor perform compared to a pointwise
predictor, across a variety of domains and model architectures?

2. How meaningful are the uncertainty estimates from an autoregressive model? Are
quantile boxes confidence boxes for general object distributions?

Datasets

To demonstrate the flexibility of our method, we conducted experiments on a diverse set of
indoor, outdoor, and industrial datasets:

SUN-RGBD [82] is a real-world dataset containing monocular images and point clouds
captured from a stereo depth camera. It features a large variety of indoor scenes and is one
of the most popular benchmarks in 3D object detection. The box labels only include one
rotational degree of freedom θ.

Scannet [15] is a dataset of indoor 3D reconstructions. There are 18 classes and box
labels are axis-aligned (no rotation). We train on 1201 scenes and evaluate on 312 validation
scenes.

KITTI [22] is a widely popular 3D detection dataset for autonomous driving. Objects
in KITTI have one degree of rotational freedom θ, and we report evaluation results on the
validation split.

COB-3D. Common Objects in Bins 3D is a simulated dataset rendered by Theory Stu-
dios to explore a qualitatively different set of challenges than the ones exhibited in popular
datasets in the literature. We are releasing nearly 7000 scenes that aim to emulate industrial
order-picking environments with each scene consisting of a bin containing a variety of items.
There are two main themes we chose to highlight: first, the objects are in a greater range of
orientations than any other 3D-bounding-box dataset. In particular, a model that performs
well must reason about complete 3D rotations, whereas the state-of-the-art methods on SUN-
RGBD only need to predict one rotational degree of freedom. Secondly, it exhibits many
types of ambiguity including rotation symmetry, occlusion reasoning in cluttered scenes, and
tightly-pack bins with unobserved dimensions. See Appendix A.3 for full details on this
dataset including visual examples.

https://www.theorystudios.com/
https://www.theorystudios.com/
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Evaluation

To evaluate 3D-bounding-box predictions, intersection-over-union, or IoU, is commonly used
to compare the similarity between two boxes. 3D object detection uses mean average precision,
or mAP, to measure how well a detector trades off precision and recall. IoU is used to de-
termine whether a prediction is close enough to a ground-truth box to constitute a true
positive. For 3D bounding-box estimation, detection has already happened, so we simply
measure the mean IoU between the prediction and ground-truth, averaged across objects.

Unlike 2D detection, many applications that use 3D bounding boxes especially care about
underestimation more than overestimation: if the predicted bounding box is too large, that
is generally a less costly error than if it is too small. In the latter case, there are parts of
the object that are outside the bounding box, which may result in collisions in robotics or
autonomous driving setting.

To help quantify this error asymmetry, we consider a new similarity functions, the
intersection-over-ground-truth (IoG). IoG measure what fraction of the ground truth box
is contained within the predicted box; when IoG is 1, the ground truth box is fully contained
in the predicted box. With IoG and IoU, we have a more complete understanding of the
types of errors that a bounding-box predictor is making. For the detection task, we compute
mAP separately using IoU and IoG, and for the estimation task, we compute the mean IoG
along with the mean IoU.

3D Object Detection

To evaluate the autoregressive box parameterization for 3D Object Detection, we evaluate
Autoregressive FCAF3D and Autoregressive PV-RCNN introduced in Section 2.3. Table 2.1
shows the comparison between autoregressive models and baselines on SUN-RGBD, Scannet,
and KITTI. We find that beam search generally matches the baseline performance, if not
exceeding performance on IoU APall.

As for quantile boxes, we find that lower quantiles result in higher IoG mAP which
suggests that the predicted boxes are more likely to contain the ground truth box. This
is consistent with our claim from Theorem 1 since lower quantiles correspond to higher
confidence boxes and must contain the true object with higher probability. We find that
quantile boxes 0.4-0.5 strike the best balance between IoU and IoG, achieving better mAP
than baselines in most cases. This flexible quantile parameter enables applications to trade
off bounding box accuracy as measured by IoU with containment probability as measured
by IoG. For instance, an autonomous vehicle may use a lower quantile to mitigate the risk
of collisions at the cost of some bounding box accuracy.

3D Bounding Box Estimation

We evaluate the bounding box estimation on COB-3D using the model architecture described
in Section 2.3. To compare the effectiveness of our autoregressive parameterization, we train
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Table 2.1: 3D Object Detection results on SUN-RGBD, Scannet, and KITTI

IoU IoG
Dataset Method AP0.25 AP0.50 APall AP0.25 AP0.50 APall

S
U
N
-R

G
B
D

FCAF3D 63.8 48.2 37.42 64.72 59.82 48.75
3DETR 59.52 32.17 31.13 63.00 53.33 44.08
VoteNet 60.71 38.98 30.25 62.81 54.58 43.62
ImVoteNet 64.24 39.38 31.12 67.00 57.41 45.78
Beam Search 62.94 47.03 38.15 64.75 58.50 47.17
Quantile 0.1 61.21 30.94 31.06 65.89 64.34 60.08
Quantile 0.4 63.46 48.41 38.43 65.34 61.68 51.76
Quantile 0.45 63.47 48.64 38.55 65.19 61.03 50.36
Quantile 0.5 63.30 47.70 38.50 64.99 59.83 48.44

S
ca
n
n
et

FCAF3D 68.53 53.87 43.32 72.05 67.63 60.66
3DETR 64.09 47.16 39.57 68.62 59.17 49.82
Beam Search 69.06 53.67 43.85 71.46 66.10 59.13
Quantile 0.1 67.10 43.13 34.17 72.23 70.01 66.73
Quantile 0.2 68.03 48.68 38.27 72.30 69.68 65.43
Quantile 0.4 68.73 52.98 42.76 72.08 67.74 61.98

K
IT

T
I

AP IoU Hard Split AP IoG Hard Split
Method Car Ped. Cycl. Car Ped. Cycl.
PVRCNN 82.37 53.12 68.69 91.86 67.08 73.14
Beam Search 82.37 52.28 69.13 91.84 66.96 73.40
Quantile 0.1 59.75 39.26 58.38 96.02 71.85 76.09
Quantile 0.4 81.98 54.15 68.45 93.98 70.63 74.08
Quantile 0.5 82.32 53.78 69.03 91.84 68.14 73.52

the same model architecture with different box parameterizations and losses. All models
receive the same 2D detection results and features as input and must make 3D bounding
box predictions for each detected object. We consider 4 baseline parameterizations for this
task inspired by various works in the literature:

L1 Regression: In this parameterization, the model outputs 9 real values for each of
the 9 box parameters: b = (dx, dy, dz, cx, cy, cz, ψ, θ, ϕ). The model predicts dimensions and
centers in coordinates normalized around the object’s point cloud. This model is trained
using a L1 loss over the normalized box parameters L(b, g) = ||b−g||1, where g is the ground
truth box [63].

Gaussian: For this baseline, the model outputs 18 real values for the mean, µ, and
log-variance, log σ2, of 9 Gaussian distributions N (µ, σ) over the box parameters b [33,
60]. Predicting the variance enables the model to output uncertainty over different box
parameters, independently of each other. We train this model using maximum likelihood:
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Table 2.2: Results of the proposed method & baselines on our dataset. We also show results
for conditioning our method on ground truth dimensions

IoU IoG F1 errdim[m] errquat[rad] errcenter[m]
L1 Regression 0.4219 0.6113 0.4992 0.0436 0.4667 0.0138
Discrete 0.5232 0.6282 0.5709 0.0339 0.2926 0.0105
Gaussian 0.3169 0.5304 0.3967 0.0450 0.5154 0.0119
4-Point 0.5688 0.7113 0.6321 0.0332 0.1999 0.0132
Beam Search 0.6296 0.7877 0.6999 0.0287 0.1598 0.0109
Quantile 0.1 0.3821 0.9723 0.5486 0.0986 0.1762 0.0123
Quantile 0.4 0.5949 0.8871 0.7122 0.0377 0.1640 0.0110
Quantile 0.5 0.6275 0.8295 0.7126 0.0318 0.1657 0.0110
Conditioning 0.6709 0.7899 0.7215 0.0086 0.1674 0.0096

L(µ, log σ2, g) = −
∑

i logN (gi;µi, σi).
Discrete: In some prior works, box parameters are predicted as discrete bins but not in

an autoregressive manner [72]. To evaluate this parameterization and ablate the necessity
of autoregressive predictions, we predict each box parameter independently as discrete bins:
log p(b|h) =

∑9
i=1 log p(bi|h)

4-Point: This baseline outputs 12 real values for four 3D corner points (p0, p1, p2, p3) ∈
R3, constituting a 3D bounding box [60, 59]. We ensure that the 3D bounding box is
orthogonal by applying the Gram-Schmidt process on the basis vectors (p1− p0, p2− p0, p3−
p0). We use an L1-loss on the difference between the predicted points and the points of the
ground truth 3D bounding box. Since there are many permutations of valid 4-point corners
of a bounding box, we supervise on the permutation that induces the minimum loss.

Metrics.

To make reasoning about the trade-off between IoG and IoU more quantifiable, we report
the F1-score equivalent for this use case, i.e., F1score =

2(IoU∗IoG)
IoU+IoG

. We further report metrics
on the dimension & pose errors, which are computed as follows:

◦ errdim = sum(|d− dgt|), where we compute the error across all possible permutations
and then choose the one with the smallest error.

◦ errquat = 2arccos(|⟨q,qgt⟩|), where q represents the rotational part of the pose as a
quaternion. We compute the error across all possible symmetries and choose the one
with the smallest error.

◦ errcenter = ||c− cgt||2, where c is the 3D-center of the bounding box.
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Results.

Table 2.2 shows how our autoregressive methods compare to the baseline parameterizations.
We find that Beam Search achieves the best IoU, dimension & rotation error. As for the
Quantile methods, we find that lower quantiles achieve higher IoG while sacrificing IoU and
dimension error. Quantile 0.5 offers the best tradeoff in terms of overall performance, achiev-
ing higher IoG with similar IoU and dimension error compared to Beam Search. Baseline
models that predict box parameters directly generally performed worse since those models
cannot properly capture multimodal correlations across the box parameters. The Discrete
baseline performs the best in terms of center error, but we can see that the best autore-
gressive methods are only a few millimeters worse. For bounding box predictions with full
rotations in SO(3), we find that an autoregressive bounding box parameterization can effec-
tively model rotation uncertainty, achieving the lowest rotation error. We can also see that
conditioning the model on known dimensions of the items in the scene increases performance
in all relevant metrics (besides IoG), most notably in IoU & dimension error. Note that the
dimension error is non-zero because the model is given the dimensions as an unordered set,
and still needs to predict the association of each dimension tuple to the corresponding item
in the scene.

Quantile and Confidence Boxes

In Section 2.4 we introduced quantile boxes as a fast approximation for confidence boxes.
We showed that when p(b|h) is an ordered object distribution, a quantile box with quantile
q is equivalent to a confidence box with p = 1 − q and should contain the true object with
probability p.

While it’s hard to ensure that real world objects follow an ordered distribution, we
can empirically evaluate whether q confidence boxes contain the ground truth object 1 − q
fraction of the time. To test our hypothesis, we predict quantile boxes with different q and
calculate the fraction of predictions f with IoG > 0.95. In Figure 2.5, we can see that
f ≈ 1 − q and follows a generally linear relationship. This suggests that even for general
object distributions, quantile boxes can be an effective approximation for confidence boxes.

Uncertainty Measures

In Section 2.4, we introduced the uncertainty measure using quantile boxes Uα,β = 1 −
IoU(bα, bβ) as a measure of the span of the confidence box interval. To evaluate the effec-
tiveness of this uncertainty measure, we calculate the ROC AUC of using U0.2,0.8 to predict
when the IoU of the predicted box b with the ground truth box g is less than 0.25. We
also measure the correlation between ground truth IoU and uncertainty using the Spear-
man’s rank correlation rs. We compare U0.2,0.8 on different quantile boxes against Gaussian
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Figure 2.5: We compare fraction of predicted
boxes that contain ground truth boxes f with
different quantiles q and find that q-quantile
boxes contain approximately f ≈ 1−q fraction
of ground truth boxes.

Method ROC AUC Spearman rs
Gaussian 0.731 -0.530
Quantile 0.2 0.897 -0.865
Quantile 0.5 0.878 -0.789
Quantile 0.8 0.967 -0.850

Table 2.3: We compare Quantile Uncer-
tainty Measure U0.2,0.8 with Gaussian di-
mension variance G, and find that U0.2,0.8

a better predictor of ground-truth IoU
compared to G as measured by ROC
AUC. U0.2,0.8 is also better correlated with
ground-truth IoU compared to G as mea-
sured by Spearman rs

dimension variance G =
σdxσdyσdz

µdxµdyµdz
on the Gaussian baseline. Table 2.3 shows that quantile

uncertainty U0.2,0.8 can be a better uncertainty measure than G.

2.6 Discussion

We introduced an autoregressive formulation to 3D bounding prediction that greatly ex-
pands the ability of existing architectures to express uncertainty. We showed that it can
be applied to both the 3D object detection and 3D bounding-box estimation settings, and
explored different ways to extract bounding box predictions from such autoregressive mod-
els. In particular, we showed how the uncertainty expressed by these models can make
high confidence predictions and meaningful uncertainty estimates. We introduced a dataset
that requires predicting bounding boxes with full 3D rotations, and showed that our model
naturally handles this task as well. While autoregressive models are just one class of dis-
tributionally expressive models, they are not the only option for more expressive bounding
box modeling. We hope that future lines of work will continue to build upon the method,
dataset, and benchmarks we introduced.
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Chapter 3

Latent-MaskRCNN for Instance
Segmentation

3.1 Introduction

Instance segmentation is a fundamental problem in many real-world robotic systems. The
goal of instance segmentation is to enumerate the objects (or instances) that appear in an
image, specifying which pixels in the image belong to each object.

In the past few years, recent work has mostly focused on developing specialized archi-
tectures that make the instance segmentation task more amenable to deep learning. For
example, detect-then-segment methods [24, 74, 32, 25, 7, 96], rely on a cascade of classifi-
cation, regression, and filtering to first identify a bounding box for each instance (a related
problem known as object detection), followed by an additional step to predict each instance’s
mask given its bounding box. Another example is pixel-embedding methods [2, 3], which op-
timize pixel-level auxiliary tasks, and then use a specialized clustering procedure to extract
instance predictions from the dense pixel representation.

We observe that existing methods are not well equipped to deal with the inherent ambi-
guity that exists in the real world. We posit that this stems from a phenomenon we describe
as limited distributional expressiveness, namely, that most instance segmentation models
are designed to predict only one possible segmentation hypothesis (a single set of objects).
From this perspective, we can think of existing instance segmentation models as point esti-
mators; they belong to a limited function class that is not expressive enough to model the
full hypothesis space. By contrast, a distributional instance segmentation model should be
capable of expressing uncertainty over complex hypotheses such as, “This group of pixels
might be one large object or two small ones.” Making only a single prediction is limiting in
terms of the accuracy attainable by high-performance autonomous systems: a robot picking
application may only tolerate < 1% of errors caused by incorrect segmentation.

To overcome these limitations, we propose distributional instance segmentation which
models a distribution over plausible hypotheses of objects. The key contributions of this
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MaskRCNN Segmentation Latent-MRCNN Confidence Masks

Grasp on two objects Grasp on one object

Robot unintentionally grasps two 
objects, causing a double pick error

Figure 3.1: Traditional instance segmentation models such as MaskRCNN cannot model
uncertainty over object masks. For robotics, this can result in critical errors such as un-
intentionally picking two objects. Our Latent-MRCNN can predict multiple hypotheses of
object masks and use these to make high-confidence predictions, reducing the rate of double
pick errors.

work are:

1. We introduce a distributional instance segmentation model using latent codes, Latent-
MaskRCNN, which can predict multiple hypotheses of object masks.

2. We propose new methods for using the output of a distributional instance segmentation
model. For robotic applications, we propose high-precision predictions with Confidence
Masks, and we achieve high recall with Union-NMS.

3. We are releasing a dataset of over 5000 annotated images from a real-world robotics
application that highlights the ambiguity in instance segmentation. We show our
method achieves high performance on this dataset as well as popular driving and
instance segmentation datasets.

4. On a real-world apparel picking robot, our method can significantly reduce critical
errors while achieving a high level of performance (Fig. 3.1).
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3.2 Related Work

Detect-then-segment methods are the most popular instance segmentation methods, and
MaskRCNN belongs to this category. While they all first perform object detection and
then segment each instance given its bounding box, there are some variations. For example,
YOLACT [4] follows the same structure as MaskRCNN, but uses YOLO [73] as the object
detector instead of FasterRCNN [74]. YOLO is very similar to FasterRCNN, making ar-
chitectural changes that sacrifice some accuracy in exchange for real-time inference speed.
Thus, we expect YOLACT to have the same distributional limitations as MaskRCNN. Other
methods [29, 30, 62] explore how to express uncertainty during the detection step, but they
consider distributions of individual boxes rather than over sets of object masks.

Mask-proposal methods [9, 89, 11] aim to circumvent bounding boxes as an intermedi-
ate representation. They are structured like FasterRCNN [74], but propose masks directly.
Empirically, they do not behave much differently than MaskRCNN. Distributionally, they
suffer from many of the same limitations as MaskRCNN: each proposal still models each
pixel independently of the others, and they still rely on NMS to filter proposals.

Pixel-embedding [2, 3, 65, 77] methods work in a substantially different way than ei-
ther of the above two families. They generally optimize some auxiliary task that encourages
pixels in the same instance to have similar representations. Then they rely on a clustering-
based inference procedure to extract instance predictions from their pixelwise representa-
tions. However, their performance has lagged quite far behind that of detect-then-segment
methods, which has made them relatively unpopular. They can model per-pixel uncertainty
in a manner similar to a naive semantic segmentation method, but this is likely insufficient
for distributional expressiveness.

A number of methods explore how to express uncertainty in other structured prediction
tasks. However, many of these do so by training multiple replicas of the entire model or
some subset of the parameters, and modifying the training objective in a way that encour-
ages diversity amongst the replicas [43, 27, 78, 21]. This incurs a multiplicative increase
in the computational cost and memory footprint required at training time, which can be
prohibitively expensive for large models. Other latent-variable formulations [42, 38, 47]
offer improvements on medical semantic segmentation and video segmentation tasks. We
find, however, that instance segmentation poses a richer set of challenges and has different
application-specific uses.

3.3 Distributional Instance Segmentation

Distributional instance segmentation seeks to model the full distribution over object sets in an
image. We pose this problem as maximum likelihood, where a model learns the conditional
distribution p(y|x). For a given image input x the model predicts the distribution over
y = (b,m, c), the bounding boxes b, masks m, and classes c.
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b) target object distribution

c) MaskRCNN prediction
d) Latent-MaskRCNN samples

a) image

Figure 3.2: a) For this bin of items, we consider a target distribution b) of three sets of
objects each with varying numbers of objects and locations. c) When MaskRCNN is trained
to fit this distribution, its predictions blend objects from each of the three modes, and
uncertainty in the mask head is expressed as spurious blobs on the left. d) Samples from our
distributionally-expressive Latent-MaskRCNN (Section 3.4) can cleanly capture each mode
of the target distribution.

If we use θ to denote the model parameters and D the dataset, then our training objective
would be the standard maximum likelihood objective: maxθ Ex,y∼D[log pθ(y|x)]. In the
subsequent sections we show, through two concrete examples, how MaskRCNN is unable to
optimize this objective well (it can’t fit the full conditional distribution p(y|x)).

Modeling distributions over object sets

One of the main challenges in distributional instance segmentation is modeling distributions
over variable amounts of objects. Traditional approaches typically output only one set of
objects through a deterministic inference procedure. However, a distributionally expressive
model should be able to express uncertainty over object hypotheses by outputting multiple
plausible object sets.

Consider the example illustrated in Figure 3.2, where we are not sure how many objects
the image contains. We show three segmentations y(1), y(2), y(3) that might be plausible
based on the image (Figure 3.2 (b)). If we construct a toy dataset where this image appears
3 times (once with each label), then the true conditional distribution is p(y = y(j)|x) = 1/3,
for j = 1, 2, 3. (This could, for instance, model human randomness in the annotation process
[83]). Fitting this data requires the model to express a distribution over sets of objects.

However, MaskRCNN can only predict a single set of objects (the one that NMS pro-
duces), so the best it can do is to either choose a mode or blend the modes together. In
Figure 3.2 (c), we see that it picks the mode y(3) at the bounding box level, and blends the
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modes together at the mask level. Meanwhile, a distributional instance segmentation model
would be able to fit the true conditional distribution perfectly, and express the different
possibilities as 3 distinct hypotheses. In Figure 3.2 (d), we show three samples from the
model we propose in Section 3.4, and observe that it correctly captures all three modes.

We find that MaskRCNN’s distributional limitations restrict its ability to model the
full range of possible object hypotheses. In practice, a distributional instance segmentation
model is needed to capture the full range of ambiguity in the real world, which we will explore
in Section 3.6.

Mask distribution expressivity

Another limitation of MaskRCNN is that its mask head cannot output an expressive dis-
tribution over mask hypotheses. Given a bounding box bi, the mask head treats each pixel
pj within the box as independent of the others: p(mi) =

∏n
j=1 p(pj). Samples from this

distribution cannot capture any correlation between pixels.
As a concrete example, consider the image shown in Figure 3.3. In (a), there is a hand

circled in blue: who does it belong to? At a first glance, it might seem like it belongs to
the woman in the center of the frame, but a closer look reveals that it more likely belongs
to the man on the right. In (b), we see that MaskRCNN predicts the correct bounding box
for the woman, but is understandably uncertain about the hand (and even the rest of the
man’s arm). MaskRCNN expresses this uncertainty by outputting probabilities around 0.7
for pixels in the hand, compared to 1.0 for the rest of the woman. However, this is actually
not an accurate reflection of the ambiguity that exists here: in (c), we plot one sample
from the distribution in (b), and see that this is definitely not a plausible possibility. In
practice, MaskRCNN would return the mode of this distribution, the ultimately-incorrect
point estimate shown in (d). Meanwhile, a distributional instance segmentation model would
be able to capture the correlations between pixels, and might predict a distribution over the
two plausible hypotheses shown in (e) or (f): either none of the hand is part of the mask, or
all of it. The sample shown in (c) would be extremely unlikely under such a distribution.

3.4 Distributional Instance Segmentation with Latent

Variables

Latent Variable Formulation

How can we turn instance segmentation into distributionally expressive models, while re-
taining the inductive biases of existing model architectures? Drawing on prior work in
variational inference [42, 40] we consider a latent-variable formulation where we incorporate
latent codes in the style of a variational autoencoder. If we adopt this framework, then an
instance segmentation model becomes a conditional VAE that is trained to maximize the
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Figure 3.3: In the image shown in (a), who does the hand circled in blue belong to? (b)
The pixelwise distribution predicted by MaskRCNN’s mask head, which does not model
the dependence between pixels. (c) A sample from this distribution, which independently
samples the uncertain pixels in the hand, is not a plausible instance mask. (d) The (incorrect)
point estimate that MaskRCNN would return. (e), (f) A more expressive distribution might
allow us to sample plausible hypotheses like these two. In this case, (e) is actually the correct
one.

evidence lower-bound:

log p(y|x) ≥ Ez∼q[log p(y|x, z)]−DKL(q||p(z|x)) (3.1)

Typically q(z|y, x) is known as the encoder, p(y|x, z) as the decoder, and p(z|x) as the
prior, and these components are all learned to maximize the lower-bound. The decoder
is essentially an instance segmentation model in the traditional sense, except that it is
augmented to additionally consume a latent code z. This general technique allows us to
reuse any existing instance segmentation model to implement our decoder (and train it in
the same way), with only a slight modification to incorporate z as an input.

During inference, we can sample from p(y|x) by sampling different latent codes z(k) ∼
p(z|x), and decoding them into different instance predictions y(k) ∼ p(y|x, z). This can be
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Figure 3.4: Overview of Latent-MaskRCNN: At training time, the encoder qθ uses features
extracted from the image x and labels y to sample a latent code z which is passed into the
decoder. The decoder conditions on z and uses a typical MaskRCNN architecture to predict
masks including region proposal, classifier, box, and mask heads. At inference time, z is
sampled through the prior pθ(z|x) which only takes the image x as input. DKL(q||pθ(z|x))
ensures the prior has good coverage over the latent space.

quite powerful since we can now sample multiple structured and expressive hypotheses for a
given image.

Latent-MaskRCNN

In principle, the latent-variable method can be applied to any existing instance segmentation
model. In this section, we explore how it might be applied to MaskRCNN. We call the
resulting model Latent-MaskRCNN (Fig. 3.4). We chose MaskRCNN since it is one of the
most popular instance segmentation models and has served as the basis for most state-of-
the-art methods in recent years.

The decoder of Latent-MaskRCNN uses the same architecture and training objective as
MaskRCNN, with the main change being that it needs to incorporate latent codes. To allow
them to influence as much of the prediction as possible, we want to do this relatively early in
the model. We chose to inject the latent codes directly before region proposal, so that they
can influence region proposal network, object detection head, and mask head. We tile the
latent codes across the spatial dimensions of the image and concatenate them with the feature
maps from the Feature Pyramid Network (FPN) [48]. Then we use a few convolutional layers
to project the combined feature maps back down to their original channel dimensionality.

The encoder of Latent-MaskRCNN takes in an image x along with a set of ground-truth
instances y, and produces a distribution over latent codes qθ(z|y, x) = N (µθ(y, x), σ

2
θ(y, x)).

The architecture for µθ(y, x) and σθ(y, x) takes inspiration from the mask head of MaskR-
CNN: it acts like a “reverse mask head” that operates on each ground-truth instance, and
then pools features from across all instances. For each ground truth instance yi, we extract
ROI-aligned features from the FPN feature maps. Then we use a small CNN to embed each
one into a single feature vector. At this point, we employ a graph neural network [88] to
accumulate information from per-instance features since we need to a single latent code for
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the entire image. After several graph network layers, we mean-pool across the node features
and use a fully-connected layer to produce a mean and log-variance for our latent distribu-
tion. The encoder is only used at training time since it has access to the ground truth mask
labels.

At inference time, we must sample latent codes from the prior to produce mask samples.
This prior takes in an image x and produces a distribution over latent codes pθ(z|x) =
N (µθ(x), σ

2
θ(x)). We apply a few convolutional layers to the FPN feature maps, mean-pool

across the spatial dimensions, and then predict a mean and log-variance using a small MLP.
For all latent distributions, we use a fixed 64-dimension Gaussian with diagonal covariance.

For training, we use the encoder qθ to sample latent codes z, which are passed to the
Mask-RCNN decoder. We maximization the evidence lower bound (Equation 3.1) objective,
where − log p(y|x, z) = LM(x, y, z) is the usual Mask-RCNN loss:

LM(x, y, z) = LRPN + Lcls + Lbox + Lmask (3.2)

DKL(q||p(z|x)) ensures the prior has good coverage over the encoder distribution. During
inference, we sample latent codes from the prior (instead of from the encoder), but the
decoder consumes them in the same way as during training.

We found it helpful to use a KL warm-up, as is a common practice for training VAEs
[34]. The total training loss for Latent-MaskRCNN then becomes:

L(x, y) = Ez∼q[LM(x, y, z)] + βDKL(q||p(z|x)) (3.3)

In the first part of training, we use β = 0 and increase β towards the end of training. This
allows the latent code to encode useful information early on as the rest of the model is still
learning; towards the end of the training, higher β pushes the latent space to be covered by
the prior for better samples. For more details on our models and code, please refer to our
website segm.yuxuanliu.com.

3.5 Applying Distributional Instance Segmentation

Given a distributionally-expressive segmentation model, a natural question might be, how
a downstream application can consume its distributional output? Instance segmentation
often occurs at the beginning of the perception pipeline, and it’s not immediately clear
how samples from a distributional segmentation model can be used downstream. Moreover,
each application may have varying error asymmetries: failing to detect an object can be
catastrophic in autonomous driving but acceptable in robotic picking, while grouping two
objects as one is a critical error in robotic picking but more reasonable in driving applications.
In this section, we show how a single Latent-MaskRCNN model can be used flexibly across
a number of applications with different requirements (Fig. 3.5).

https://segm.yuxuanliu.com
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Figure 3.5: At inference time, the encoder qθ is discarded, and latent variables zi are sampled
from the image x conditioned prior pθ(z|x). Each latent is decoded using pθ(y|x, zi) into a
set of masks, which can be used for our high precision or recall predictions depending on the
application.

High-Precision with p-Confidence Masks

In some applications, it can be very costly to make under-segmentation errors, when an
instance’s mask is predicted to be larger than it actually is. For example, consider a robotic
manipulation application, where the robot must pick objects one at a time and feed them
into a sortation process. If the model undersegments an instance, it may inadvertently pick
multiple objects, which can be an expensive error for the downstream application. How can
we ensure that these errors don’t occur?

Suppose we draw several samples from Latent-MaskRCNN. If two pixels belong to the
same instance mask in many samples, then we can be reasonably confident that they actually
do belong to the same ground-truth instance. Drawing on this intuition, we can then compute
a p-confidence mask, consisting of pixels that are all likely to be contained in a single ground-
truth instance.

For a given confidence requirement p, we define a confidence mask cp as a mask that is
fully contained in a ground truth mask m with probability at least p: P(cp ⊆ m) ≥ p. Using
Latent-MaskRCNN, we can approximate this probability as:

P(cp ⊆ m) = Ep(m|x)[1{cp ⊆ m}] ≈ 1

k

k∑
i=1

1{cp ⊆ mi}

In the finite sample regime, ĉp is an empirical confidence mask if it is contained within a
sampled mask for p fraction of the samples.
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Figure 3.6: Top: Confidence Mask predictions with different p. Notice that as the confidence
requirement p increases, single objects can be split into two, ambiguous object extents are
reduced, and uncertain objects are eliminated entirely. Bottom: Constructing an empirical
confidence mask ĉp by taking intersection of samples m1,m2,m3. When an object’s extent is
uncertain, a high confidence mask prediction will only consist of pixels that are highly likely
to be contained within an object as determined by the samples.

Now consider any subset of masks I consisting of one mask mj from at least kp different
samples. If we take the intersection of all of the masks in I, ĉp =

⋂
mj∈I mj, then this

intersection mask must be contained in each of the masks used in the intersection ĉp ⊆ mj.
Therefore we have:

1

k

∑
mj∈I

1{ĉp ⊆ mj} =
|I|
k
≥ p

and ĉp is an empirical confidence mask by construction.
Figure 3.6 illustrates confidence mask predictions for different p. Notice as the confidence

requirement increases, the unconfident extents of the masks shrink, and some uncertain
masks are eliminated. We can also see how constructing confidence masks via intersection
leads to high confidence region predictions.

Scoring Confidence Masks

Since each confidence mask is an intersection of masks cp =
⋂

I mj, how should we assign the
score of a confidence mask prediction? One intuitive approach might be to take the average
of the score si of each mask in the intersection: 1

|I|
∑
sj. However, a confidence mask is not

an average of masks but rather an intersection.
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To formulate a better score for our confidence mask prediction, consider two scenarios. In
the first scenario, the model is very confident about an object’s mask so it predicts roughly
the same mask in every sample. The resulting confidence mask cp has high IoU with each
of the masks used in the sample mj. On the other hand, consider an unconfident prediction
where the object’s mask varies significantly across samples. Here, the confidence mask cp
represents a small but confident region of the object whose extent is highly uncertain. The
resulting IoU between cp and each mj will be smaller than when the model is confident and
masks are not varying across samples.

We score each confidence mask as the mean score-weighted IoU between the predicted
mask cp and every mask used in the intersection:

scp =
1

|I|
∑
mj∈I

sj
|cp ∩mj|
|cp ∪mj|

When scp is large, this indicates that cp is a confident intersection of masks with very similar
IoU. On the other hand, a small scp indicates that cp has low score or IoU with its samples
and likely does not capture the full extent of the object well.

To predict a set of confidence masks for an image, we iteratively select the highest scoring
confidence mask, excluding the pixels of all of the confidence masks predicted so far. This
algorithm greedily approximates the maximum scoring confidence mask selection optimiza-
tion.

High-Recall with Union-NMS

Other applications might be concerned about over-segmentation, the complement of under-
segmentation. For example, in autonomous driving, failing to identify a pedestrian, or
predicting them to be smaller than they actually are, can lead to a catastrophic error.

To make high-recall predictions with Latent-MaskRCNN, we use a procedure called
Union-NMS. We first sample multiple segmentations from the model, and run NMS on
the predicted masks. It checks if any two masks mi,mj have IoU greater than some thresh-
old, and then discards the lower-scoring one. Suppose that some mask mi remains after we
perform NMS. Then Union-NMS returns the union of mi with every mask that it suppressed,
achieving higher recall by incorporating masks that would have otherwise been ignored. We
describe the Union-NMS algorithm in full detail in Appendix B.4.

Vanilla Prediction with the Prior Mean

Some applications may not have any specific performance requirements or may have strict
inference time requirements. In these cases, a point estimate can be sufficient. With Latent-
MaskRCNN, we can achieve this by always decoding the mean of the prior: z = µθ(x) where
µθ(x) is the mean of the prior pθ(z|x) (for Gaussian pθ(z|x), it is also the mode of the dis-
tribution). We found that this scheme typically matches or yields a small improvement over
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MaskRCNN predictions, suggesting that Latent-MaskRCNN strictly increases the expres-
siveness of MaskRCNN and no performance is lost by using a more expressive distribution.

3.6 Experiments

We conducted experiments seeking to answer the following questions:

1. Can Latent-MaskRCNN with Confidence Masks make high-precision predictions across
a variety of datasets?

2. Can Union-NMS make high-recall predictions?

3. Can Latent-MaskRCNN reduce critical double pick errors in robotic picking applica-
tions?

Datasets

To help us answer these questions, we compared MaskRCNN and Latent-MaskRCNN across
several datasets, each with its own set of challenges.

COCO [49]: This large dataset is the standard benchmark for instance segmentation.
There are many object categories and a huge variety in image composition.

Cityscapes [14]: A real-world dataset from an autonomous driving application. Al-
though it is smaller and more specialized than COCO, it is still a popular benchmark for
instance segmentation. One notable challenge is that there are many background instances
that are still important to segment (e.g. pedestrians), but the limited image resolution can
introduce some uncertainty.

Apparel-5k: We collected this dataset of roughly 5000 images from a robot picking
application. We use 4198 images in the training set and 463 in the validation set. There
is only one object category, but the images exhibit a lot of inherent ambiguity due to com-
plex occlusions, lighting, transparency, etc. We are releasing this dataset on our website
segm.yuxuanliu.com for the broader community to build upon our work.

For each dataset, we trained both MaskRCNN and Latent-MaskRCNN on 8 GPUs using
MaskRCNN’s released hyperparameters and training schedules. We use the same publicly
available train/val splits for all experiments and datasets. We used a Resnet-50 backbone
[31], initialized from pretrained-Imagenet [16] weights (for COCO) or pretrained COCO
weights (for other datasets). Inference with MaskRCNN can take 80-100ms depending on the
number of objects, and inference with Latent-MaskRCNN can take 500-1000ms depending
on the number of samples and objects.

Qualitative Evaluation of Samples

In this section, we qualitatively explore what kinds of uncertainty Latent-MaskRCNN can
express. In Figure 3.7, we visualize samples from the model on images from various datasets,

https://segm.yuxuanliu.com
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(1)

Ground-TruthImage MaskRCNN Latent Sample 1 Latent Sample 2 Latent Sample 3 Latent Sample 4

(2)
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Figure 3.7: Each row corresponds to a single image. Columns 1-2 show the original image and
a zoomed-in version. The remaining columns show instance masks, and the word above the
image is the class of the instance. Column 3 is the ground truth, column 4 is MaskRCNN’s
prediction, and columns 5-8 are samples from Latent-MaskRCNN.

and observe that it does capture several distinct types of ambiguity:
Category confusion: Latent-MaskRCNN can express meaningful uncertainty in the

classification head. In row 2, MaskRCNN confidently classifies this sink as a toilet, while
different samples from Latent-MaskRCNN classify it as toilet, sink, and bowl.

Category imprecision: Even when the class of an instance is obvious, there still may
be ambiguity in how the category is defined. For example, in row 1, both MaskRCNN and
Latent-MaskRCNN are (correctly) confident that this instance is a traffic light. However,
depending on how you define exactly what constitutes the extent of the traffic light, the
instance mask may look very different. Latent-MaskRCNN samples a wide range of plausible
possibilities, but MaskRCNN picks a single (in this case incorrect) mode.

Object and mask ambiguity: Latent-MaskRCNN lets us sample from a distribution
over sets of objects. For example, in row 3, we see that the samples contain different numbers
of objects, variety in bounding boxes, and variety in instance masks. Even though none of
the samples are perfect, they are all plausible and all markedly better than MaskRCNN. In
row 2, we see examples where Latent-MaskRCNN’s hypotheses express uncertainty in both
mask and bounding box, while MaskRCNN picks a single mode.

Evaluating p-Confidence Masks

In Section 3.5, we introduced high precision predictions with p-Confidence masks to address
the problem of under-segmentation. In those cases, we care that predictions have high
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Table 3.1: Evaluation of MaskRCNN and Latent-MaskRCNN across various datasets and
metrics.

COCO Cityscapes Apparel-5k
Method MR@HP AR mAP MR@HP AR mAP MR@HP AR mAP
MaskRCNN 20.0 66.0 35.0 25.3 55.1 35.8 23.6 39.9 26.9
Latent Union NMS 7.4 72.3 26.5 17.7 57.5 33.6 13.6 61.4 34.1
Latent Confidence Mask 22.0 48.1 30.5 28.0 48.6 34.1 42.4 41.8 35.1
Latent Prior Mean 19.5 65.8 35.3 25.7 53.8 35.0 26.9 49.4 34.3

Intersection-over-Prediction: IoP(mi, g) = |mi∩g|
|mi| . When IoP is high, errors due to under-

segmentation are less likely to occur.
When evaluating models in this regime, we need to trade off precision (in terms of IoP)

with recall (to avoid degenerate solutions). To do this, we consider the max recall at high
precision (MR@HP):

MR@HP =
1

|p| · |τ |
∑

pi∈p,τj∈τ

max
t:Precision(τj)≥pi

Recall(t, τj)

For a given precision threshold pi and IoP threshold τj, we can compute the max recall that
each model achieves (or zero, if it never achieves precision pi). The MR@HP metric is the
average of these recalls, over a range of precision threshold p and IoP thresholds τ . For high
precision use-cases, we care about performance at high values of these thresholds, therefore
we use p = τ = [0.75, 0.8, 0.85, 0.9, 0.95].

In Table 3.1, we evaluated Latent-MaskRCNN using both the prior-mean scheme from
Section 3.5 as well as confidence masks with a confidence level p = 0.9. Across all three
datasets, we find that latent confidence masks yield the best performance in terms of
MR@HP. As for mAP, we find that Latent Prior Mean can match if not exceed the per-
formance of MaskRCNN on all three datasets. On the challenging Apparel-5k dataset, we
find that Latent Confidence Mask and Latent Prior Mean significantly outperform MaskR-
CNN in terms of MR@HP and mAP. Overall, we find that Latent-MaskRCNN is a strict
improvement over MaskRCNN by matching overall detection performance in terms of mAP
and offering the best high-precision performance in terms of MR@HP.

Evaluating Union NMS

For the over-segmentation problem, we introduced the Union NMS method in Section 3.5.
In such cases, we care that we have high recall (that we detect every instance that exists),
and that each mask prediction has high IoG (intersection-over-ground-truth): IoG(mi, g) =
|mi∩g|

|g| . To capture both of these considerations, we consider the average-recall (AR) [49]

using IoG. This measures both recall while also penalizing over-segmentation (are there any
predicted masks that are too small).
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Figure 3.8: Latent confidence masks achieve lower double pick rates and generally more
pickable area compared to MaskRCNN.

We evaluated Latent-MaskRCNN using both its prior-mean (Section 3.5) and Union-
NMS. In Table 3.1, we show that the prior-mean predictions are similar to MaskRCNN
on all three datasets, while Union-NMS achieves substantially higher AR (using IoG). This
suggests that Latent-MaskRCNN with Union NMS can more effectively cover different modes
of uncertainty, for high-recall applications.

Can confidence masks reduce double pick errors on Apparel-5K?

In a robotic picking application, it is costly for the robot to pick up two items accidentally,
thinking it had only picked one item since it affects inventory counts and downstream orders.
For the Apparel-5k dataset, we can estimate the double pick rate of a model’s segmentation
prediction by approximating the robot’s gripper as a circle with a fixed radius in pixel space.
Then, we randomly sample circles on the image and count the number of circles D that land
within one predicted mask but more than one ground truth mask. We divide this by the
number of circles N that land within one predicted mask, to arrive at the estimated double
pick rate R = D

N
. Empirically we find that this simulated double pick rate is correlated with

double pick rates on a real robot.
Another metric that we are concerned with in industrial robot picking is pickable area, the

amount of visible surfaces that the robot can pick from. A model that predicts higher, more
accurate pickable areas enables the robot to have more flexibility in its grasping strategy.
To this end, we compute the area of all the predicted masks over the area of all the ground
truth masks, as the fraction of pickable area available.

We compare MaskRCNN and Latent-MaskRCNN with varying p-confidence masks in
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Figure 3.8. We find that Latent-MaskRCNN outperforms MaskRCNN in fraction of pickable
area and double pick rate in all cases. Moreover, the tunable parameter p in Latent confidence
masks allows for application-specific tradeoffs between double pick rate and pickable area.
Higher values of p tend to correspond to lower double pick rate and less pickable area, as the
confidence requirement for each prediction is increased. With traditional MaskRCNN, only
one double pick rate and pickable area fraction is realizable since no tunable knob exists.

Can confidence masks reduce double pick errors on a real-world
apparel-picking robot?

To evaluate whether our dataset evaluation translates to real-robot performance, we compare
MaskRCNN and Latent-MaskRCNN on an apparel-picking robot. We use an ABB1300 with
a 9-cup suction gripper to pick apparel items in polybags between two totes (Fig. 3.1). The
robot uses two overhead camera systems to perform instance segmentation and then grasp
point generation. The grasp points are optimized to land as many suction cups as possible
on a single object detected by the segmentation model.

For our evaluation, we only change which segmentation model is used while holding other
parts of the system constant, including hardware, object set, and grasp point generation.
Each segmentation model is trained on the same Apparel-5k dataset. We run each model with
several hundred grasps and record the number of double picks, grasps that unintentionally
pick two objects. In an industrial warehouse application, these double picks are very costly
errors since they result in incorrect inventory counts and cause errors in downstream sortation
and order fulfillment systems. A typical high automation warehouse can tolerate at most
1% double pick rate before the robot is causing more problems than it solves.

We also measure the average number of sealed cups on a grasped item, since the suction
holding force is proportional to the number of sealed cups. Grasps that use less sealed
cups tend to result in more dropped objects, which leads to jams, lost inventory, and costly
human intervention. A robotic system can reduce double pick rate by shrinking object mask
sizes, chopping up bigger masks into smaller ones, or only using a single small suction cup.
However, all of these approaches indiscriminately reduce the suction holding force on all
items, whereas our approach will be conservative only when ambiguity is present.

Table 3.2 reports the results of our apparel-picking experiments. We find that Latent-
MaskRCNN with 0.9-Confidence mask significantly reduces the double pick rate. This val-
idates our simulated findings on Apparel-5K in Section 3.6. Moreover, Latent-MaskRCNN
achieves slightly better average number of sealed cups, suggesting that suction stability was
not sacrificed. This suggests that our method can make high-confidence predictions and
make the appropriate trade-offs in the face of uncertainty.
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Table 3.2: Apparel-picking robot evaluation. ∗ indicates a statistically significant difference

Method Double Pick Rate Average Sealed Cups
MaskRCNN 4.40%∗ 4.76
Latent-MRCNN 0.82%∗ 4.91

3.7 Discussion

We proposed a new family of models that builds on top of existing instance segmenta-
tion models by using latent variables to achieve more distributional expressiveness. Latent-
MaskRCNN can express a wide range of uncertainty where existing instance segmentation
models often fall short. We can leverage uncertainty expressed by the model using Confi-
dence Masks and Union-NMS to achieve high precision and high recall respectively. These
methods demonstrate strong performance across robotics, autonomous driving, and general
object datasets. On a real apparel-picking robot, we find that our model can significantly
reduce the rate of critical errors while maintaining high performance. Finally, we have high-
lighted the importance of distributional expressiveness and hope that future work in instance
segmentation can continue to build on top of our work and datasets.
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Chapter 4

Self-Supervised Instance
Segmentation

4.1 Introduction

Instance segmentation is often the basis of many robotic applications, including object grasp-
ing, manipulation, and placement. Given an image, the goal of instance segmentation is to
predict the set of pixels that belong to each object. After objects are detected, a robot can
use segmentation masks to execute more generalizable grasping and manipulation policies. A
robust robotic application must be able to recognize thousands of new objects on an ongoing
basis. Instance segmentation also offers clear semantics for application logic such as “only
grasp on one object (not two)” and “count the number of objects in this bin.”

Much of the recent advances in instance segmentation [12, 32, 44, 51] assume that large-
scale labeled datasets of objects from known classes are available [49, 18]. This assumption,
however, does not hold for many robotics applications that must handle a constant stream
of new objects. Collecting and annotating such a dataset is also costly and expensive. How
can a robot learn to segment a diverse range of objects with only limited labeled data?

Consider a grasping robot that uses suction cups to pick objects from one bin and place
them into another, such as in a warehouse automation application. Suppose we train an in-
stance segmentation model on a small set of labeled data, and use this model with a grasping
policy to generate grasps that land on the predicted masks, achieving decent performance
on the initial object set. Every week, the warehouse introduces new SKUs of objects for the
robot to pick; over time, the segmentation model struggles to recognize the new objects and
the grasping performance degrades. To ensure good grasping performance, we would need
to continually label data from the warehouse, incurring an recurring cost. Can we improve
the segmentation performance without expensive human annotation?

An object can be defined as a contiguous group of pixels that move together [8]. When
the robot successfully grasps an object, the pixels of that object are removed from the scene.
The mask of the grasped object can then be inferred from the grasp location, before image,
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Figure 4.1: Overview of our method: the grasp segmentation model takes before and after
images of the grasp to predict the mask of the grasped object. We use the grasp segmentation
model to get object masks for thousands of grasps in a self-supervised manner. These grasped
objects can be “cut” and “pasted” to generate diverse training supervision for the instance
segmentation model.

and after image of the scene. Leveraging this insight, we propose a grasp segmentation model
that predicts the mask of the grasped object. A grasp segmentation model differs from an
instance segmentation model in that it only needs to predict one object (the grasped one),
and has additional information (before/after images and the grasp location) that enables it
to generalize better even when trained on a small dataset.
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Traditional methods of segmenting grasp interactions often use image and background
subtraction which are not robust to occlusions, reflections, and other objects moving [68]. We
find that our learned model overcomes these limitations and can robustly segment grasped
objects, even when other objects in the scene have shifted during grasping. In our ex-
periments, we show that our grasp segmentation model is significantly more accurate at
segmenting grasped objects than traditional image subtraction approaches.

Once we have a grasp segmentation model, we can run this on thousands of unlabeled
grasps to get self-supervised object masks. To reduce noise, we use a suction gauge to
keep only successful grasps and propose an uncertainty-aware filtering method to keep high-
accuracy masks. With these filtered object masks, we can then “cut” objects from their
original scenes and “paste” them into new scenes with random augmentations to generate
instance supervision [1, 95]. We combine this generation scheme with inpainting to generate
a diverse set of photo-realistic scenes with infinite variation of scale, rotation, and occlusion.
This allows our self-supervised robotic system to continually learn to segment new objects,
and improve on known objects, without human annotation. Figure 4.1 shows an overview of
our self-supervised instance segmentation method.

The key contributions of this method are as follows:

1. We propose a self-supervised robotic grasping system that can continually learn and
improve its instance segmentation, on new and known objects, without human anno-
tation.

2. Our novel grasp segmentation model uses before and after grasp images to segment
grasped objects with 5x less error than traditional approaches, while being robust to
occlusions, reflections, and other object moving in the scene.

3. We introduce a “cut-and-paste” and inpaint method to generate supervision for in-
stance segmentation models that outperforms the same model trained with 10x the
amount of labeled data.

4. On a robotic grasping task, we show that models trained with our method can reduce
the rate of grasping failures by over 3x compared to an image subtraction baseline.

4.2 Related work

Instance Segmentation

There has been a significant amount of recent advances in the field of instance segmentation,
with many approaches focusing on supervised learning on large datasets such as COCO
[49]. Detect-then-segment is among the earliest learned approaches that use a two-stage
object detection and segmentation architecture [32]. More recently, single-stage models that
use transformer attention mechanisms, such as Mask2Former, have demonstrated strong
performance [12, 10, 7, 55]. However, all of these methods rely on the availability of large-
scale annotated datasets, which may be costly to obtain for robotics applications that must
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handle a constant stream of new objects. In addition, our method is agnostic to the instance
segmentation model, so we can leverage all past and future advances in instance segmentation
models.

Self-Supervised Segmentation

To address this issue, there have been several approaches that propose self-supervised or
semi-supervised methods for instance segmentation. Cut and paste methods have been
shown to improve instance segmentation performance [1, 95]. Prior work [68, 56] proposed
self-supervised approaches that use image subtraction on before and after grasps to provide
instance segmentation supervision. However, masks recovered from naive image subtraction
are imperfect, resulting in worse performance at higher IOU thresholds, which is insufficient
for high-performing robotic applications. Optical flow methods can also infer contiguous
groups of pixels that move together as the robot is pushing them around [17, 8, 92]. This
may be an impractical approach if continuous high-bandwidth video is not available from
the robot camera, or if the robot is expected to be grasping objects instead of pushing them
in a production environment.

Moving Object Detection

Another class of methods can detect moving objects in video sequences, such as traffic and
surveillance footage. These methods can use a background subtraction approach by model-
ing a static background scene with a mixture of Gaussians [39, 99]. Pixels that are noticeably
different from the background model, as determined at the pixel level or with local features
[26], are segmented as moving objects. More recently, convolutional neural networks have
been applied to learn this background subtraction with 2D and 3D convolutions [5, 36].
Moving object detection models, however, are not directly applicable for grasp segmentation
since they segment all objects that have moved instead of the one that was grasped. If the
robot moves an adjacent object to the grasped object, both objects would be segmented
as one under moving object detection, providing incorrect instance segmentation supervi-
sion. Moreover, methods that learn a background model will have limited data since the
background scene changes with every grasp.

Representation Learning

Other approaches have proposed learning object representations for robotics instead of in-
stance segmentation directly. In Grasp2Vec [37], representations of the object and scene are
learned to satisfy arithmetic consistency. These representations can then be used to learn
policies that manipulate and grasp objects. Similarly, pixel-wise descriptors can be learned
for each object using a contrastive loss [19]. While learned object representations can be
used for robot manipulation, they have yet to be proven effective for learning instance seg-
mentation. The clear semantics of instance segmentation may be desirable for some robotic



CHAPTER 4. SELF-SUPERVISED INSTANCE SEGMENTATION 40

Before & Grasp After Before-After

Resnet-50, Feature Pyrmaid Network

Visible Mask Image SubtractionEntropy

5x5 Gated Resnet Conv, 
128, GroupNorm-4

5x5 Gated Resnet Conv, 
128, GroupNorm-4

Transposed Conv, 128 /2

Figure 4.2: Our grasp segmentation model takes before, after, grasp, and subtraction images
as input to predict the mask of the grasped object. We build upon a Resnet-50 backbone
with a Feature Pyramid Network (FPN) and two additional learned upsampling convolution
blocks to predict masks at the image resolution. Traditional image subtraction methods (on
the right) fail to properly handle reflections and other objects moving in the scene. Our
learned approach can correctly segment the grasped object and express uncertainty via the
entropy of the prediction.

applications such as counting the number of objects, or ensuring that grasps only occur on
a single object.

4.3 Instance Segmentation by Grasping

Our method uses grasp interactions to collect segmentation data for objects in a self-
supervised manner. We propose a grasp segmentation model that can robustly segment
grasped objects from before and after grasp images. We show how our model can pre-
dict masks that are robust to occlusions, reflections, and other objects in the scene chang-
ing. Then, by combining our grasp segmentation model with our uncertainty-aware filtering
method, we can collect a dataset of grasped object masks from unlabeled grasp images.
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Grasp Segmentation Model

Our grasp segmentation model is inspired by prior work that uses grasp interactions to infer
object masks and representations based on sets of pixels that move together [68, 37]. Given
a before grasp image ib, an after grasp image ia, and a grasp mask g, our model predicts the
visible mask of the grasped object mv. This is similar to image subtraction which subtracts
the before and after images |ib− ia| > t and uses a threshold t to determine the object mask.
However, image subtraction is a very brittle segmentation method with very few tunable
parameters that limit its robustness to occlusions, reflections, and other moving objects.

Our model, on the other hand, uses a neural network to predict both the visible mv and
amodal mask ma (including occlusions) [45] of the grasped object. By explicitly reasoning
for occlusions, we can filter out objects that would have been partially visible and providing
incorrect supervision for downstream instance segmentation. A trained model will also learn
to ignore inputs, such as reflections and other moving objects, that are not relevant to
segmenting the grasped object.

We base the grasp segmentation model architecture on a Resnet-50 [31] with a Feature
Pyramid Network (FPN) [48], which has been shown to be effective at segmenting objects at
multiple scales. To initialize the model with features that are amenable for object detection,
we load weights from a Mask-RCNN [32] pre-trained on COCO [49]. We include image
subtraction ib− ia as an input to the model since it provides a good inductive bias for which
pixels have changed. Altogether, we concatenate the inputs [ib, ia, ib−ia, g] along the channel
dimension before passing them into the Resnet-50 backbone. Since the input dimensions are
different than the usual RGB inputs for Resnet, we randomly initialize the first layer of the
Resnet-50 while initializing all other weights from the pre-trained Mask-RCNN.

To make predictions at the original input resolution, we take the highest resolution, stride-
4 feature layer from the FPN, and apply a series of convolutions and transposed convolutions
to upsample the features. We use two blocks of gated residual convolutions followed by a
transposed convolution for upsampling. Similar to regular residual blocks y = x + C1(x),
gated residual blocks use an additional learned gating operation y = x + σ(C2(x))C1(x)
where σ is the sigmoid function and C are learned convolution operators, like in LSTMs
[35]. For our application, this enables the model to easily ignore irrelevant features such
as using the reflective object features to mask out the predicted object mask. Finally, we
make a 2-channel prediction m̂v, m̂a corresponding to the visible and amodal object masks
respectively. Figure 4.2 illustrates our model architecture overview along with sample inputs
and predictions on how our model can be more robust than image subtraction.

We supervise all predictions using a binary cross entropy loss with weighting w

CE(m̂,m,w) =
1

n

n∑
i=1

wi(mi log m̂i + (1−mi) log(1− m̂i)) (4.1)

Due to the imbalanced nature of the classification task, we use multiple weightings to ensure
the neural network gives the appropriate attention to the relevant pixels. The first two
weights, w(1) = m,w(2) = ¬m provide a balanced weighting. Since it’s important for the
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Figure 4.3: By applying the grasp segmentation model to thousands of grasps, we can
collect a large dataset of grasp segmentation objects in a self-supervised manner. Then we
can generate instance segmentation supervision by taking a random subset of segmented
grasped objects and “pasting” them onto any training image. We apply augmentations
such as rotation, scale, and offset to generate cluttered scenes of objects. Then, we use a
pre-trained diffusion inpaint model to smooth out the pasted object boundaries to be more
photorealistic. The resulting inpainted image and pasted masks can be used to train any
off-the-shelf instance segmentation model.

pixels near the mask boundary to be accurate, we use w(3)...(6) = maxpool(m, k) with kernel
sizes k = (11, 51, 101, 201). This enlarges the region around the object and focuses the
model’s loss to predict an accurate object boundary.

We train with the total loss

L(m̂,m) =
6∑

j=1

CE(m̂,m,w(j)) (4.2)

using Adam with learning rate 5e-6 with a batch size of 8 until convergence. We train the
grasp segmentation model using supervised learning on a small dataset of 100-200 labeled
grasp images. To improve generalization, we use augmentations during training including
random crops, resizes, blurs, and color adjustments. Even with such a small training set,
the model can generalize to provide accurate segmentation masks for thousands of grasps on
new objects.

Supervising Instance Segmentation

Once our grasp segmentation model is trained, how can we learn an instance segmentation
model? We propose a 4-step approach: first, we use the grasp segmentation model to collect
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and filter object masks across a large variety of grasped objects. Then, we “cut-and-paste”
object masks using augmentations to generate cluttered scenes of objects. We use inpainting
on object boundaries to reduce pasting artifacts, and use the inpainted images to train
a state-of-the-art instance segmentation model. Figure 4.3 illustrates an overview of our
approach.

Collecting Accurate Object Masks:

First, we use the grasp segmentation model on unlabeled grasp image pairs to predict the
mask of the grasped object. To collect a reliable set of unoccluded object crops, we apply
a several filters on the prediction. We compute the sums of visible and amodal masks
Sv =

∑
m̂v, Sa =

∑
m̂a, and compare the ratio Sv

Sa
> tocc with a threshold. We use a

threshold tocc = 0.95 to filter out objects the model predicts as not fully visible.
The grasp segmentation model could also predict masks that are wrong or uncertain. To

filter out uncertain masks, we can use entropy thresholding where

H(m̂) = −m̂ log m̂− (1− m̂) log(1− m̂) (4.3)

is the binary entropy. We can threshold average relative entropy of the visible mask pre-
diction

∑
H(m̂v)∑
m̂v

< tent to filter out uncertain predictions. We found tent = 0.1 to provide a
reasonable trade-off between precision and recall.

Finally, predicting discontinuous masks can indicate that more than one object was de-
tected or the model is predicting spurious blobs. To avoid this kind of prediction error, we
use OpenCV’s findContours function to find contiguous groups of contours. Then we count
the number of contours with at least 1000 pixels and only keep objects with 1-2 contours.

Image Generation Augmentation:

Once we have filtered out uncertain predictions and obtained a set of accurate object masks,
we can use these masks to generate supervision for instance segmentation. We use object
masks to “cut” images of the objects and “paste” them onto annotated images to generate
instance supervision [1, 95].

To train the model to be robust to a diverse set of objects, we randomize select 0-25 ob-
jects to be pasted on a random training image. We apply different geometric transformations
to the objects such as randomly rotating up to 360 degrees, scaling between 0.75x-1.25x, and
randomly selecting a position. This can help the model learn to better handle variations in
the object orientations, positions, and occlusions in the images. With a small amount of
labeled data, we can augment with self-supervised grasp segmentation to generate a large
dataset of instance segmentation supervision

In-Painting With Diffusion:

While naive cut-and-paste can generate diverse supervision, the augmented images may
contain artifacts such as wrong object boundaries and unrealistic shadows. These artifacts
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can lead a model to learn features that are not present in natural images. To bring the
generated images closer to the natural image space, we use a pre-trained Stable Diffusion
in-painting model that is trained on a large-scale image dataset [75].

First, we take the visible boundary of the objects that are pasted and dilate the boundary
by 5 pixels on all sides to cover the region on the object boundary. We use this mask as
the in-paint mask input to a pre-trained Stable Diffusion in-painting model and run the
denoising process for 4 steps on the masked region. This provides a more photo-realistic
boundary between the background and the object.

Instance Segmentation Model:

Since our method directly generates instance segmentation supervision, it’s compatible with
any off-the-shelf instance segmentation model. This enables greater flexibility of our method
since we can take advantage of any past and future advances in model architecture. We chose
a state-of-the-art model, Mask2Former [12], as the main instance segmentation model for all
of our experiments. Mask2Former uses a multi-scale, masked-attention transformer decoder
with learned queries and a Hungarian matching loss on the masks. We use the official public
implementation of Mask2Former with a Resnet-50 as the backbone and default parameters
(100 queries).

4.4 Evaluating Grasp Segmentation

First, we’ll evaluate the performance of our grasp segmentation model compared to tradi-
tional methods such as image subtraction. Since grasp segmentation provides object masks
for instance segmentation supervision, the accuracy of the grasp segmentation will influence
the performance of downstream instance segmentation.

Grasp Data Collection

For our grasping experiments, we use an ABB-1200 robot with a 5 suction cup end-effector
as shown in Figure 4.1. The robot uses RGB-D cameras to plan pick and place motions
that cycle the objects between two bins. We record the image (640x960 pixels) before the
grasp ib, the image after the grasp ia, and the grasp mask g corresponding to the pixels
of the active suction cups. After grasping, we use suction gauges of each cup to determine
whether the object was indeed picked and whether the grasp was successful. While this
data collection method requires an instance segmentation model with decent performance
to generate grasps, we use the suction gauge to keep only successful grasps in the dataset
which can bootstrap even a poorly performing model.

We collect 110k grasp image pairs across a variety of training and test objects. We label 1k
images from the training set and 6k images from the test objects with instance segmentation
labels. This enables us to train and evaluate both grasp and instance segmentation. The
test objects and the training objects are distinct and have no overlap.
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Background and Image Subtraction

In order to evaluate the performance of our grasp segmentation model, we will compare it
to traditional methods such as image and background subtraction [68, 39, 99, 26]. Image
subtraction is a simple method that subtracts the before-grasp image from the after-grasp
image to obtain the grasp mask. This method assumes that changed pixels correspond to
the grasped object. To make the image subtraction more robust, we apply greyscale and
Gaussian blur before the subtraction, G(I) = GaussianBlur(Greyscale(I)). Then we use
the thresholded difference as the segmentation mask

m̂ = |G(Ia)−G(Ib)| > t

We also consider background subtraction methods such as mixture of gaussians MOG
[39], MOG2 [99] and Local SVD binary pattern (LSBP) [26]. MOG models the background
with a mixture of gaussians while LSBP uses local image features to detect changes. With
all image and background subtraction methods, we can apply the same OpenCV contour
approximation from Section 4.3 as a filter.

Evaluation Results

We train the Grasp Segmentation model on a subset of 100 and 200 grasps from the training
set, until convergence as described in Section 4.3. Then we evaluate on the test set of hold-
out object grasps, using mean intersection over union (mIOU) as the evaluation metric. We
also report the relative error rate, which is the number of incorrectly predicted pixels divided
by the number of pixels in the ground truth mask. For methods that use filtering described
in Section 4.3, we calculate the recall, which is the percentage of mask predictions not filtered
out. When using filtering, the mIOU and Error rates are calculated only on the kept data
after filtering. If a method makes no pixel predictions for a grasp, this prediction will be
filtered as well.

How Do Our Methods Compare With Baselines?

The results of our evaluation are summarized in Table 4.1. All grasp segmentation models
perform better than image and background subtraction baselines (Subtract, MOG, MOG2,
LSBP). As shown in Figure 4.2, these traditional approaches are unable to account for other
objects moving in the scene and will confuse pixels that change with similar intensity.

How Does Performance Vary With Training Set Size?

We can see that the grasp segmentation model with filtering trained on 200 grasps, Grasp-
200-Filter, performs the best. Training with 100 grasps and filtering (Grasp-100-Filter)
achieves slightly worse mIOU, error rate, and less than half the recall of Grasp-200-Filter).
This suggests that increasing the amount of training data improves the accuracy and the
number of scenes the model can confidently segment.
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Table 4.1: Grasp Segmentation Evaluation

Method mIOU Error Recall
Subtract 51.1 396% 98.6
Subtract-Filter 61.6 44.5% 50.4
MOG 51.8 333% 98.3
MOG-Filter 59.9 47.1% 65.4
MOG2 32.4 1289% 99.8
MOG2-Filter 47.3 970% 42.0
LSBP 37.7 1050% 99.8
LSBP-Filter 55.6 359% 44.0
Grasp-100-NoAug 78.3 31.5% 100
Grasp-100 78.7 22.6% 99.8
Grasp-100-NoAug-Filter 80.4 26.9% 92.3
Grasp-200 86.8 14.3% 99.6
Grasp-100-Filter 91.1 9.05% 29.4
Grasp-200-Filter 92.6 7.63% 63.9

What’s The Impact Of Filtering And Augmentations?

Filtering improves the mIOU and error rates while decreasing recall for all methods. We
also see that not using data augmentation, Grasp-100-NoAug-Filter, achieves lower accuracy
metrics but higher recall. This suggests that fewer objects are filtered out and the model
is confidently wrong since it has overfit to the small training set. Data augmentation is
important to training a robust grasp segmentation model.

4.5 Evaluating Instance Segmentation

To evaluate instance segmentation performance, we use the Mask2Former model with R50
backbone and default hyperparameters as described in Section 4.3. We train and evaluate
on the dataset from Section 4.4 and use early stopping to prevent overfitting. We use 100
labeled training images for most evaluations, while benchmarking on 1000 labeled training
images as a reference. We evaluate instance segmentation models using standard metrics,
such as overall Average Precision (AP), IOU thresholded AP (AP@0.5, AP@0.5), and object
size breakdowns (APL, APM).

For Paste methods, we take the corresponding model trained in Section 4.4 to generate
object crops. We apply the same inference and filtering for each method on the 110k un-
labeled grasp dataset. Using the filtered object crops, we then paste them randomly onto
the training set following the procedure described in Section 4.3. As an ablation, we also
paste from training image crops to evaluate our augmentation scheme without grasp data
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Table 4.2: Instance Segmentation Evaluation

Method Paste From Labeled Images AP AP@0.5 AP@0.75 APL APM

Mask2Former-100 None 100 49.30 70.75 51.47 55.34 41.70
Single-Object-100 None 100 22.10 24.05 23.22 27.03 15.48
Paste-Subtract Subtract-Filter 100 62.11 80.13 67.01 69.97 52.83
Paste-Subtract-Robust Subtract-Filter 100 65.07 86.24 72.51 72.97 53.10
Paste-Train Train Objects 100 66.28 84.22 70.54 73.27 55.88
Paste-Grasp Grasp-100 100 69.68 87.37 75.37 77.45 58.47
Paste-Grasp-Filter Grasp-100-Filter 100 69.22 86.15 74.62 77.63 56.72
Paste-Grasp-Robust Grasp-100-Filter 100 63.02 85.33 70.63 70.47 51.54
Paste-Grasp-Inpaint Grasp-100 + Inpaint 100 72.33 88.25 78.11 80.68 59.40
Mask2Former-1000 None 1000 70.08 85.69 74.34 76.12 61.48

(Paste-Train).
AP@0.5 and AP@0.75 measure how well the model can detect objects that are at least

half and three-quarters overlapping with the predicted mask, respectively. AP measures
the overall performance of the instance segmentation model averaged over multiple IOU
Thresholds. APL and APM measure the performance of the model on small and medium
objects, respectively. (APS was not meaningful as there were very few small objects).

Baseline Methods

Single Object Supervision:

One intuitive way to use grasp segmentation data for instance segmentation is to supervise
only on the grasped object. With the Mask2Former loss, this can be done by using only the
predicted grasp segmentation in the Hungarian matching and ignoring the ”no object” loss
term. We combine single-object supervision from the Grasp-100 model with full supervision
from the training set at a 50:50 ratio (Single-Object-100).

Robust Set Loss:

To overcome errors in noisy masks generated by image subtraction, prior work [68] proposed
a robust set loss, which requires the predicted mask to be within only a margin of the ground
truth mask. Given a predicted mask, the robust set loss will use a discrete optimization to
find the closest target mask that is within some IOU margin with the ground truth. We use
the publicly available implementation of robust set loss with IOU threshold 0.7 and replace
the Mask2Former mask loss with the robust set loss.
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Evaluation Results

How Do Baseline Methods Compare?

Table 4.2 summarizes the results of our evaluation. Training with single object supervision,
Single-Object-100, actually results in worse performance than just training on the full super-
vision dataset (Mask2Former-100). We suspect that there isn’t enough negative supervision
from the single-object data since there are only labels for a single object in each image. We
find that pasting with objects from filtered image subtraction (Paste-Subtract), provides a
performance improvement over just supervised learning (Mask2Former-100). Adding the ro-
bust set loss (Paste-Subtract-Robust) further improves the segmentation performance which
is consistent with [68]. Pasting from the labeled training objects, Paste-Train, outperforms
Paste-Subtract-Robust on AP. This suggests that the accuracy of cropped objects in the
training set outweighs the diversity of the less correct crops from image subtraction. More-
over, pasting provides a strong augmentation for learning rotational, scale, and occlusion
invariant instance segmentation.

Does Robust Set Loss Always Improve Performance?

Using the robust set loss with object masks from the more accurate, grasp segmentation
model (Paste-Grasp-Robust) actually hurts performance, unlike in the image subtraction
case. This suggests that the robust set loss is beneficial only when there is a significant
amount of error in the grasp segmentation, such as with image subtraction’s 44.5% error.
With the 9.05% error rates of our grasp segmentation model, supervising with a normal cross
entropy loss is better.

What’s The Impact Of Filtering?

Using object masks from our learned Grasp Segmentation model (Paste-Grasp) can further
improve instance segmentation performance. Paste-Grasp and Paste-Grasp-Filter have sim-
ilar results which suggest there is some trade-off between the error of the object mask and
how many objects are filtered out. Recall from Table 4.1 that Grasp-100 achieves 22.6% error
with 99.8 recall, while Grasp-100-Filter has 9.05% error with 29.4 recall. The non-filtered
model (Paste-Grasp) performs slightly better which suggests that the diversity of the objects
seen outweighs the accuracy of the object segmentation here.

How Does Inpainting Affect Performance?

Finally, we see that using inpainting with the grasp segmentation model (Paste-Grasp-
Inpaint), achieves the best performance, outperforming a Mask2Former model trained on
10x the amount of labeled images on all but one metric. This suggests that inpainting the
pasted objects can produce more realistic supervision for learning instance segmentation
features.
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Table 4.3: Robot Evaluation Results

Method Grasp Error Rate
Paste-Subtract-Robust 29.02%
Mask2Former-1000 8.78%
Paste-Grasp-Inpaint 8.22%

4.6 Robot Grasping Evaluation

Experimental Setup

To evaluate the effectiveness of our method in a real robotic application, we use our trained
instance segmentation models to detect objects for grasping. Using the same grasping setup
from Section 4.4 and the models trained in Section 4.5, we compare grasping success with
different instance segmentation models. A grasp attempt is counted as a success if it picks
up exactly one object and places it into the other bin without dropping. If the predicted
mask is not an actual object, or contains multiple objects, this would be a grasp failure. The
grasping system will try to land as many cups as possible on a detected object mask and
plan a collision-free path to reach that object. By keeping all other parts of the grasping
system constant and only changing the segmentation model, we can isolate the effects of the
segmentation model on grasp performance.

Evaluation Results

We compare the top segmentation models from each method: supervised learning (Mask2Former-
1000), robust image subtraction (Paste-Subtract-Robust), and our grasp segmentation model
with inpainting (Paste-Grasp-Inpaint). We perform 700 grasps on the same object set for
each segmentation model. The results of our robotic grasping evaluation are shown in Ta-
ble 4.3.

Overall we found the grasping evaluation to be consistent with the instance segmentation
evaluation in Section 4.5. Paste-Subtract-Robust performs the worst with most of its grasp
failures due to predicting masks that don’t belong to any object, such as reflections in the
wall or empty areas of the bin. Our Paste-Grasp-Inpaint model achieves the lowest grasp
error rate that is over 3x better than the image subtraction baseline and comparable to a
model trained with 10x the amount of labeled data, Mask2Former-1000.

Failure Analysis

Figure 4.4 highlights three failure categories caused by incorrect instance segmentation that
we will discuss here.
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Grasp Image Paste-Subtract-Robust Mask2Former-1000 Paste-Grasp-Inpaint

Figure 4.4: Visualizations of different types of grasp failures from real robot execution caused
by wrong segmentation. The first column shows the executed grasp with active cups colored
in blue and inactive cups colored in red. Columns 2-4 show the predicted segmentation from
each of the 3 models used in the evaluation. The first row shows an example of a grasp on a
non-object that was incorrectly predicted by the segmentation model. The second row is a
grasp on an unstable part of the object that leads to a drop; the segmentation model splits
the object into two masks, causing an unstable grasp to be executed. The third row is a
grasp on two objects; this is caused by the segmentation model grouping two objects into
one mask.

Grasp On Non-Objects:

In the first row, the robot grasps on the reflection in the bottom left corner of the bin, which
fails since it’s not on an object. Grasping on non-objects such as reflections and empty
areas of the bin is a common failure of the Paste-Subtract-Robust model. We suspect image
subtraction may have incorrectly segmented the reflection or bin as an object, which then
provided misguided supervision to the instance segmentation model. Our learned model, on
the other hand, is robust to these errors and does not make the same mistakes.

Splitting Objects Into Two:

In the second row, an unstable grasp on the top part of the bottle leads to the robot dropping
the item. Here the segmentation model incorrectly split one object into two masks, resulting
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in a grasp that is not centered on the object. All three models fail to segment the bottle
correctly, however our learned Paste-Grasp-Inpaint model has the least amount of errors on
other objects.

Grouping Two Object As One:

Finally, when the segmentation model incorrectly groups two objects as one, this can lead to
a grasp on two objects. Only the Paste-Subtract-Robust model suffers from this failure case,
which suggests that image subtraction incorrectly grouped two objects that moved as one
object. This incorrectly grouped object was then used to supervise the model, leading to this
grasp error. This can cause inventory errors and inconsistencies in warehouse applications
Failures between the supervised and self-supervised models were similar, ranging from grasps
on two object with similar textures to cases where the segmentation was correct but the grasp
sampled could not physically seal on the item. This suggests that our instance segmentation
model trained with self-supervised grasp masks can effective for robotic grasping applications,
without requiring a large, costly labeled dataset.

4.7 Conclusion

In this work, we proposed a novel method for instance segmentation that utilizes self-
supervised grasp images to generate object masks for training. We showed that our grasp
segmentation model can accurately detect objects with high mIOU and low error rate, even
when trained on a small number of labeled images. We then use the grasp object masks to
train an instance segmentation model with a inpainting augmentation method, which out-
performs a model trained with 10x the amount of labeled data. We have also shown that our
method leads to improved grasping performance in a real-world robotic application. This
work highlights the potential of using self-supervised grasp images for learning instance seg-
mentation models, and opens up new possibilities for training such models in a wide range
of robotic applications.
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Chapter 5

Conclusion

In this thesis, we have addressed the challenges associated with perception for real-world
robotic applications by introducing novel models and self-supervised learning methods. We
proposed three methods: (1) Autoregressive bounding box prediction, (2) Latent-MaskRCNN
for instance segmentation, and (3) Self-supervised instance segmentation. These methods
not only capture and handle uncertainty but also leverage diverse data collected in real
robotic applications without the need for costly human annotation.

By incorporating uncertainty estimation and self-supervised learning, we have demon-
strated significant improvements in various robotic systems, reducing critical errors and
enhancing overall performance. Our contributions pave the way for more robust, adaptable,
and high-performing robotic systems that excel in complex and dynamic environments, ad-
dressing the unique challenges posed by real-world robotics and bridging the gap between
AI research and practical robotic applications.

5.1 Future Work

While our proposed methods have demonstrated considerable improvements in real-world
robotic applications, there are still several avenues for future research.

Instance Segmentation

The field of instance segmentation has seen exciting developments recently, especially with
the advent of text-prompted segmentation techniques. These methods hold considerable
promise for improving the adaptability and efficiency of robotic systems. Here, we propose
several directions for future work based on recent advances in this area.

Text-Prompted Segmentation for Rapid Adaptation

The “Segment Anything Model” (SAM) [41] presents a compelling approach to text-prompted
segmentation, enabling models to detect and segment objects based on textual prompts. If
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a robot needs to detect a new edge case such as a broken product, it can take many weeks to
define the semantics of that class to train annotators, collect and annotate data, and train
a new model to detect this case. However with a general segmentation model such as SAM,
robotic systems can detect new object classes within minutes and quickly adapt to new ob-
jects or edge cases. For future work, we propose to explore this text-prompted segmentation
approach in the context of real-world robotics. This could involve developing methods to
effectively integrate text prompts into the robot’s perception pipeline and expanding the
support of such models on scenes a robot would see.

Iterative Image and Text Prompting with Human Feedback

The “Segment Everything Everywhere All at Once” (SEEM) [100] paper offers an intriguing
concept of combining visual and text prompting in an iterative manner, supported by human
feedback. While a model’s initial prediction through text prompting alone may not result in
the correct prediction, by expanding the prompt space to include bounding boxes, scribbles,
outlines, and even dots, humans can arrive at the right prediction through visual prompting.
This expands the traditional notion of a “prompt engineer” to beyond just text to include
visual modes of prompting, enabling the model to refine its predictions and better align with
human expectations.

Building on this concept, we also propose to investigate methods for integrating iterative
prompting and human feedback into robotic systems. This could involve developing inter-
faces for humans to provide feedback to the robot, and algorithms for the robot to interpret
this feedback and adjust its behaviors accordingly. Such an approach could significantly
improve the robot’s ability to handle challenging tasks and adapt to new situations beyond
just at the segmentation level.

Modeling Uncertainty in Segmentation

Both the “Segment Anything” and our Latent-MaskRCNN methods acknowledge the inher-
ent ambiguity in segmentation tasks and attempt to model this uncertainty. For instance,
the “Segment Anything” approach predicts three possible masks for each object, allowing for
multiple plausible segmentations. Segmentation has natural ambiguity that depends on the
application-specific use-case. For example, should a water bottle be segmented as a bottle
and a cap, or as one object? This may depend on if the robot is trying to open the bottle
or just manipulate it as one object.

We propose to further explore this aspect of modeling uncertainty in segmentation tasks.
This could involve developing new methods to quantify and express uncertainty in segmen-
tation predictions, as well as investigating ways to incorporate human feedback into this
process. For instance, when a robot is uncertain about it’s predictions, it could actively
prompt the human for feedback, which can then be incorporated into the models future
predictions. By enabling more flexible and uncertainty-aware predictions, we can enhance
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the ability of robotic systems to handle ambiguous situations and improve their overall per-
formance and reliability.

Self-Supervised 3D Representations for Robotics

In robotics large annotated dataset are often scarce, and labelling them is expensive. In
this thesis, we’ve already explored how we can use self-supervised learning methods to learn
instance segmentation from grasping interactions. However, the richness of the 3D world
that robots operate in suggests a broader question: can we extend these principles to learn
rich 3D object representations?

Camera on Arm Data Collection

A promising direction for future work involves mounting cameras on the robot’s end effector.
By capturing RBGD images as the robot is manipulating various objects, we can collect a
wealth of data for learning 3D representations. Moreover, using the robot’s joint angles and
calibration data, we can recover pose and correspondence supervision across multiple view-
points. The resulting data can be leveraged to learn a wide range of object representations
outlined below.

Dense Descriptors

The question of what constitutes the “right” object representation for manipulation is critical
in robotics. The “Dense Object Nets” paper [19] presents an object representation that
satisfies several desirable properties: task-agnostic, applicable to both rigid and non-rigid
objects, leverages 3D vision, and is learned from self-supervision. However, these descriptors
are intended to work across a single object class. Building upon these ideas, future work
could investigate how to generalize descriptors and affordances across novel objects, enabling
multi-object descriptor learning. This will enable a robot’s manipulation policy learned on
one object to generalize quickly to new objects.

Neural Rendering

Another promising avenue involves the incorporation of Neural Radiance Fields (NeRFs)
[61, 91] into the learning process. By integrating NeRFs, we can learn object descriptors
that are not only useful for recognition and segmentation, but also for rendering objects
from new viewpoints. This could enable the generation of a diverse range of synthetic data,
enriching the robot’s learning environment and enhancing its capacity to generalize to novel
situations.

In line with the concept of Text-to-NeRF [81], future work could also investigate the
possibility of grounding 3D object representations in text. This approach could allow robots
to synthesize and learn from new 3D objects described solely in text, significantly expanding
the range of objects the robot can handle. By capitalizing on the wealth of data available
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from robot interactions and integrating methods like NeRFs and text-grounded learning, we
can equip robots with a more powerful representation of objects they need to manipulate.

Sim2Real and Diffusion Models

Another promising direction for addressing data scarcity in robotics lies in the potential of
simulation-to-reality (sim-to-real) transfer. By leveraging the virtually infinite data gener-
ation capabilities of simulated environments we can augment real-world data to build even
more robust models.

One of the earliest and most influential approaches to sim-to-real transfer is domain
randomization [85]. This technique introduces variations in the simulated environment’s
parameters, enabling the model to learn generalizable features that remain robust to changing
conditions. More recent advancements have explored the use of diffusion models to generate
photo-realistic supervision for perception models. [93] By using diffusion inpainting, we can
position an object or robot into an infinite variation of photorealistic backgrounds.

In future work, the integration of simulation environments with photo-realistic diffusion
techniques could provide a powerful framework for generating diverse and realistic data for
robotic training. By creating a wide range of simulated scenarios and rendering them with
high photorealism, we can provide a rich training resource that prepares robots for the vast
diversity of the real world without costly annotation.

Suction Modelling

While a significant portion of the robotics literature focuses on finger-based grippers, suction-
based manipulation has emerged as an industry-preferred alternative due to its versatile
grasping capability. Yet, comprehensive and versatile modeling of suction-based manipula-
tion remains an open research question, particularly suction stability across a diverse set of
cup types and object materials.

Existing works, such as Dex-Net 3.0 [57] and methods from the Amazon Robotics Chal-
lenge [94], have made valuable strides in modeling suction. Dex-Net 3.0, for example, intro-
duces a compliant suction contact model that calculates the seal quality between the suction
cup and the local target surface. Zeng et al. [94] also use human annotation to learn an
affordance model for suction-based grasping. Yet, such models are only the beginning, and
much remains to be understood about the nuances of suction-based manipulation.

We hope that future work can continue to delve deeper into the modeling of suction-based
manipulation and develop more sophisticated models that account for the diversity of real-
world scenarios. This includes the variability of object materials, from rigid cardboard to
deformable plastics, and the different suction cup types, each with its own unique properties
and performance characteristics. By leveraging the wealth of data that can be collected
during robotic operations, these models can continuously learn and improve, leading to more
effective and reliable suction-based manipulation in a wide range of industrial applications.
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Modeling Uncertainty

The progress we have made in this thesis with models like Latent-MaskRCNN and Autore-
gressive bounding boxes has shed light on the potential benefits of modeling uncertainty in
both 2D and 3D object recognition. In future work, we should strive to build models that
can make distributional predictions and reason about uncertainty. This will be essential in
building any safety-critical or high-performing application.

The very nature of real-world robotics involves dealing with complex, dynamic, and often
unpredictable environments. Given this, it is crucial that our AI models have the capacity
to understand and express their limitations – to know what they don’t know. This is not
just limited to robotics, but extends to AI in general, including text-based models such as
ChatGPT, which has been known to make confident hallucinations [67]. By making AI’s
uncertainty explicit, we allow humans to better understand the system’s limitations and
make more informed decisions about when and how to trust the AI’s outputs.

5.2 Conclusion

In conclusion, this thesis navigates the intersection of AI and robotics, introducing novel
models that handle real-world ambiguity and utilize self-supervised learning, addressing the
gaps in current robotics applications. The future encompasses large-scale, interactive seg-
mentation models, enhanced 3D representations, refined suction modeling, sim-to-real tech-
niques, and models that reason about uncertainty more effectively. We hope this work is
a stepping stone towards making real-world industrial robotics more reliable and efficient,
setting the stage for exciting and promising research directions.
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Appendix A

Appendix for Autoregressive 3D
Bounding Box

A.1 Model Architecture and Training

Autoregressive 3D Bounding Box Estimation

For bounding box estimation, our model operates on 2D detection patch outputs of size 96
x 96. We take the 2D bounding box from object-detection to crop and resize the following
features for each object: 3D point cloud, depth uncertainty score, normals, instance mask,
amodal instance mask (which includes the occluded regions of the object). We normalize
each point p in the point cloud with the 0.25 (Q1) and 0.75 (Q3) quantiles per dimension
using p−c0

s
for c0 =

Q1+Q3

2
, s = Q3−Q1. We omitted RGB since we found it wasn’t necessary

for training and improved generalization.
We stack each 2D feature along the channel dimension and embed the features using

a 2D Resnet U-Net. The features from the top of the U-Net are used in a series of self-
attention modules across embeddings from all objects in a scene so that information can
be shared across objects. The resulting features from self-attention are tiled across the
spatial dimension before the downward pass of the U-Net. Finally, the features from the
highest spatial resolution of the U-Net are passed into several strided-convs, flattened, and
projected to a 128-dimension feature h per object. Figure A.1 shows the overview of our
model architecture.

For the autoregressive layers, we use 9 MLPs with hidden layers (128, 256, 512, 1024). For
baselines, we keep the same architecture through h and use different sized MLPs depending
on the box parameterization. We train using Adam with learning rate 1e-5 with a batch size
of 24 scenes per step with varying number of objects per scene. We train for 10000 steps or
until convergence.
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Object patch features
(N, D, 96, 96)

3x3 Conv(64) x3

3x3 Residual 
Conv(64) x6

3x3 Residual 
Conv(64) x2

2x2 Max pool

x3

Linear(64) on 
flattened spatial 

features

64-dim feature per object

64-dim feature per object

64-dim feature per object

Attend MLP

x4

(N, 64) feature

Tile across spatial dimConcat & Conv(64) 3x3

3x3 Residual 
Conv(64) x2

Bilinear 
Upsample x2

x3

5x5 Conv(64) stride 4 x2

3x3 Conv(32) stride 2

Flatten spatial dims

MLP(128, 128) MLP(128, 256, 512, 1024)

x9

Autoregressive Output Bins

Figure A.1: Overview of Autoregressive Bounding Box Estimation architecture

Autoregressive 3D Object Detection

For Autoregressive FCAF3D, we add 7 autoregressive MLPs with hidden dimensions (128,
256, 512). All other parameters of FCAF3D are the same and we train the same hyper-
parameters as the released code for 30 epochs. For the baseline FCAF3D, we trained the
author-released model for 30 epochs on 8 gpus. We found that the benchmarked numbers
for AP0.25 and AP0.50 were slightly lower than the reported ones in the original paper, so
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in our table, we use the reported average AP across trials from the original paper. APall

was calculated in a similar way as in MS-COCO by averaging AP for iou thresholds over
0.05, 0.10, 0.15, ..., 0.95.

A.2 Quantile Box

Proof of Quantile-Confidence Box

Proof Sketch:

Let P (b) be a distribution over an ordered set of boxes where for any two distinct boxes
b1, b2 in the sample space, one must be contained in the other, b1 ⊂ b2 or b2 ⊂ b1. We’ll show
that a quantile box bq is a confidence box with p = 1 − q by 1) constructing a confidence
box bp for any given q, 2) showing that any x ∈ bp must have O(x) > q, and 3) therefore
bp ⊆ Q(q) ⊆ bq so the quantile box is a confidence box.

1) Confidence Box:

For any p = 1−q, we’ll show how to construct a confidence box bp. Using the ordered object
distribution property of P (b), we can define ordering as containment b1 < b2 ≡ b1 ⊂ b2. This
ordering defines an inverse cdf:

F−1(p) = inf{x : P (b ≤ x) ≥ p} (A.1)

Let bp = F−1(1−q) be the inverse cdf of p; by definition bp is a confidence box with confidence
p since P (b ≤ bp) = P (b ⊆ bp) ≥ p

2) Occupancy of bp:

We’ll show that any x ∈ bp satisfiesO(x) > 1−p. First we’ll prove that that P (b ≥ bp) > 1−p.
Let b0 = inf{b : b < bp}, the smallest box that is strictly contained in bp. (If no such b0
exists, then bp must be the smallest box in the distribution order such that P (b ≥ bp) = 1
and P (b ≥ bp) > 1− p for p ̸= 0)

Since bp is the inverse cdf of p, we know that P (b ≤ b0) < p, otherwise b0 would be the
inverse cdf of p (i.e. b0 = bp a contradiction). It follows that

P (b ≥ bp) = P (b > b0) (A.2)

= 1− P (b ≤ b0) (A.3)

> 1− p (A.4)
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Now consider any point x ∈ bp:
O(x) = P (x ∈ b) (A.5)

=

∫
b

1{x ∈ b}p(b)db (A.6)

≥
∫
b≥bp

1{x ∈ b}p(b)db (A.7)

=

∫
b≥bp

p(b)db (A.8)

= P (b ≥ bp) (A.9)

> 1− p (A.10)

Where (A.7) follows from the nonegativity of 1{x ∈ b}p(b). (A.8) follows from x ∈ bp, bp ⊆ b
which implies x ∈ b.

3) Quantile-Confidence Box:

Since any x ∈ bp satisfies O(x) > 1 − p, it follows that bp ⊆ Q(1 − p), where Q(q) = {x :
O(x) > q} is the occupancy quantile with quantile q. The quantile box by construction must
contain the occupancy quantile Q(q) ⊆ bq, therefore we have bp ⊆ Q(1− p) ⊆ bq, and

P (b ⊆ bq) ≥ P (b ⊆ bp) (A.11)

≥ p (A.12)

So bq is a confidence box with confidence requirement p.

Quantile Box Algorithm

We propose a fast quantile box Algorithm 1 that runs in polynomial time and is easily
batchable on GPU. We use a finite sample of k boxes to approximate the occupancy and
a sample of km points to approximate the occupancy quantile Q(q). To find the minimum
volume box, we assume that one of the sampled box rotations will be close to the optimal
quantile box rotation. We take the sampled rotations and calculate the rotation-axis-aligned
bounding box volume for the occupancy quantile. The minimum volume rotation is selected
for the quantile box and corresponding dimension/center calculated accordingly.

Empirically we find that k = 64, m = 43 provides a good trade-off of variance and
inference time. We can efficiently batch all operations on GPU, and find that quantile box
inference for 15 objects takes no more than 10ms on a NVIDIA 1080TI.

A.3 Dataset

Our dataset consists of almost 7000 simulated scenes of common objects in bins. See Fig-
ure A.2 for examples. Each scene consists of the following data:
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Algorithm 1: Quantile Box Algorithm

Given: quantile q, box distribution P (b|h), numbers of box samples k, number of
point samples m
Sample b(1), ..., b(k) ∼ P (b|h) boxes
For each b(i), sample m random points within b(i), adding all points to a set T
For all x ∈ T , estimate O(x) = 1

k

∑k
i 1{x ∈ b(i)}

Construct the occupancy quantile Q(q) = {x ∈ T : O(x) > q}
for b(1), ..., b(k) do

Let Ri be the rotation of b(i)

Compute the volume of the Q(q) bounding box under Ri,
vi =

∏
a∈x,y,z(maxx∈Q(q)(R

−1
i x)a −minx∈Q(q)(R

−1
i x)a)

Find the minimum volume box i∗ = argmini vi
Let sa = maxx∈Q(q)(R

−1
i∗ x)a, ta = minx∈Q(q)(R

−1
i∗ x)a

Return box b = (d, c, Ri∗) with dimensions d = (tx − sx, ty − sy, tz − sz) and center
c = Ri∗(sx + dx/2, sy + dy/2, sz + dz/2)

Figure A.2: Examples of scenes from our dataset

• RGB image of shape (H, W, 3)

• Depth map of shape (H, W)

• Intrinsic Matrix of the camera (3, 3)

• Normals Map of shape (H, W, 3)

• Instance Masks of shape (N, H, W) where N is the number of objects
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• Amodal Instance masks of shape (N, H, W) which includes the occluded regions of
the object

• 3D Bounding Box of each object (N, 9) as determined by dimensions, center, and
rotation.

A.4 Visualizations

In this section, we show various qualitative comparisons and visualization of our method.

Figure A.3: Visualization of our model predictions on objects with rotational symmetry. The
blue boxes show various samples from our model. The orange point cloud is the occupancy
quantile. The white box is the quantile box.
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Figure A.4: Visualization of our dimension conditioning method. The model is able to
leverage the conditioning information to accurately predict the correct pose & dimension for
each object’s 3D bounding box. The prediction is shown in red-blue-green and the ground
truth in turquoise-yellow-pink. Left: image of the scene. Middle: vanilla beam search.
Right: beam search with dimension conditioning.

Figure A.5: Visualization of bounding box samples from our autoregressive model on a rota-
tionally symmetric water bottle. Our model is able to sample different modes for symmetric
objects whereas a deterministic model would only be able to predict a single mode.
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Figure A.6: Visualization of bounding box predictions with different quantiles. We can see
that lower quantiles lead to larger boxes in the direction of uncertainty. Top: image of the
scene. Left: quantile 0.1 Middle: quantile 0.3. Right: quantile 0.5.
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Appendix B

Appendix for Latent-MaskRCNN

B.1 Latent-MaskRCNN Architecture and Training

In this section, we explain the architecture of Latent-MaskRCNN (Section 3.4) in more
detail. See Figure B.1 for a visual overview.

In our experiments, we use latent codes of a fixed vector dimensionality z ∈ Rd. We
found that d = 64 was a reasonable choice that worked for all datasets.

In the decoder (Figure B.1 (a)), we tile the latent codes across the spatial dimensions of
the image and concatenate them with the feature maps coming out of the FPN. Then we use
a few convolutional layers to project the combined feature maps back down to their original
channel dimensionality. The rest of the model (region-proposal, classifier head, mask head)
uses these latent-augmented feature maps but is otherwise unchanged from MaskRCNN. As
we discussed in Section 3.4, this scheme allows the latent codes to influence every stage of
the prediction.

The encoder (Figure B.1 (b)) produces a Gaussian distribution over latent codes based
on both the image and the ground-truth instances. For each instance yi, we extract RoI-
aligned features from the FPN feature maps, as well as of the ground-truth instance masks.
Then we use a small CNN to embed each one into a single feature vector. At this point,
we want to accumulate information from among the per-instance features, and produce a
latent representation of a fixed size. To do this, we employ a graph neural network (GNN,
[88]), where each instance constitutes a node in a fully-connected graph. After several graph
network layers, we mean-pool across the node features and use a fully-connected layer to
produce a mean and log-variance for our latent code.

The prior (Figure B.1 (c)) also predicts a Gaussian distribution over latent code, but it
does not have access to the ground-truth instances. Instead, we apply a few convolutional
layers to the FPN feature maps, mean-pool across the spatial dimensions, and then predict
a mean and log-variance using a small MLP.

Consider the following training objective, and observe that it is equivalent to the standard
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Ground-truth instances Per-instance features Pooled feature Latent distribution (posterior)

FPN features

FPN features Latent distribution (prior)

(c) Prior

(b) Encoder

Backbone FPN

Region Proposal

Mask Head

Latent Code

RGB

Classifier Head

(a) Decoder

Figure B.1: The architecture of Latent-MaskRCNN. (a) The decoder is exactly the same as
MaskRCNN, except that, before region proposal, we augment the FPN feature maps with
a latent code. (b) The encoder takes the (non-augmented) FPN feature maps and a list of
ground-truth instances and predicts a diagonal Gaussian distribution over latent codes. (c)
The prior takes the (non-augmented) FPN feature maps and predicts a diagonal Gaussian
distribution over latent codes.

VAE objective when β = 1.

L(x, y) = Ez∼q(z|y,x)[log p(y|x, z)]− βDKL(q(z|y, x)||p(z|x))

When training VAEs, it is common to use a KL warmup, where β is ramped up from 0
over the first few epochs of training. This helps encourage the latent codes to become more
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informative since there is no penalty for using them at the beginning of training (when the
encoder is untrained and they are uninformative).

We trained all models on a single 8-GPU machine (1080Ti) of our internal cluster. Train-
ing takes roughly 20-30 hours for each model, depending on the dataset (on par with MaskR-
CNN). Our code is available at https://segm.yuxuanliu.com/

B.2 Datasets

We are releasing the Apparel-5k dataset at https://segm.yuxuanliu.com/. This data was
collected over the course of robot picking items between bins. No personally identifiable
information or human data was collected. We also use COCO and Cityscapes which are
licensed for academic use.

B.3 Metrics

In this section, we describe in detail the application-specific metrics that we used in Sec-
tion 3.5.

First, we provide a brief overview of the mAP (mean average precision) metric that is
commonly used to evaluate instance segmentation predictions. We say that a predicted
instance and a ground-truth constitute a match if they have the same class, and their masks
are within some IoU threshold of each other. We iterate through the predicted instances
in order of decreasing confidence and determine which ones have a matching ground-truth
instance (note that each ground-truth instance can only appear in one match). The predicted
instances that appear in a match are considered true positives, and the remaining ones are
considered false positives. We can then plot a precision-recall curve using this information,
and compute the area under the curve. Typically this is done for each class, and we obtain
the average precision (AP) by averaging across classes. Note that the AP still depends on the
IoU threshold that we choose. The mean average precision (mAP) that is typically reported
is the AP averaged across several IoU thresholds (0.5, 0.55, . . . , 0.9, 0.95).

mAP is a well-balanced metric, in the sense that it equally penalizes over-segmentation
and under-segmentation, and considers both precision and recall. However, for specific ap-
plications like the ones we discussed in Sections 3.6 and 3.5, we may want different metrics
that better reflect the asymmetric costs of different types of errors.

For the high-precision use cases like the one discussed in Section 3.6, we considered the
max recall at high precision (MR@HP). We perform the matching procedure in a similar
manner to mAP, except that we use IoP instead of IoU. Next, for a given precision threshold
pi and IoP threshold τj, we can compute the recall that each model achieves (or zero, if it
never achieves precision pi). The MR@HP metric is the average of these recalls, over a range

https://segm.yuxuanliu.com/
https://segm.yuxuanliu.com/
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Algorithm 2: Confidence Mask

Given: confidence requirement p, k samples of y each with masks mj ∈ y
Initialize M ← {} to be a set of predicted masks
while the masks predicted in M exceed some score do

for mh ∈ yi do
Compute the area of the intersection Ijg = |mh ∩mj \M | with all other
masks mj ∈ yg
Let C be the set of masks with the kp highest Ijg where each mask must
come from a unique yg
Compute the intersection m∗

h =
⋂

m∈C m \M ignoring predicted masks M

Add the mask with the highest score argmax sm∗
h
to M

of precision threshold p and IoP thresholds τ :

MR@HP =
1

|p| · |τ |
∑

pi∈p,τj∈τ

max
t:Precision(τj)≥pi

Recall(t, τj)

For the evaluation in Section 3.6, we use p = τ = [0.75, 0.8, 0.85, 0.9, 0.95].
AR was introduced in [49] and is gaining popularity in the instance segmentation com-

munity as a complement to mAP. It also uses the matching procedure that mAP does, but
then it simply averages each method’s recall over the standard range of IoU thresholds.

For high-recall use cases like the one discussed in Section 3.5, we considered the average
recall (AR), but using IoG instead of IoU. This measures both recall (did the model predict
all the instances?) while also penalizing over-segmentation (are there any predicted masks
that are too small).

B.4 Algorithms

In Section 3.5, we proposed Confidence Masks and Union NMS as two applications of Latent-
MaskRCNN. Algorithm 2 details the iterative greedy confidence mask prediction, and Algo-
rithm 3 details the Union NMS procedure.

B.5 Calibrated Uncertainty

In Section 3.5, we proposed a scoring method for confidence mask predictions. Existing
models such as MaskRCNN tend to be extremely confident in general, even when they
are wrong. However, a distributionally-expressive model should be able to express more
calibrated confidence scores.

To evaluate whether these scores correlate well with mask quality, we compare the com-
puted score with the IoU between the predicted mask and the closest ground-truth mask
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Algorithm 3: Union-NMS

Given: Masks M = {mi}ni=1 sorted by confidence, IoU threshold τ
Initialize S ← {} to an empty map
for i = 1 : n do

if i ∈ K then
continue

S[i]← {}
for j = i+ 1 : n do

if IoU(mi,mj) > τ then
Add j to S[i]

Initialize U ← {}
for i ∈ keys(S) do

m← mi

for j ∈ S[i] do
m← m ∪mj

Add m to U
Result: U

Table B.1: ROC AUC using scores to predict ground truth IoU > 0.5

Method COCO Cityscapes Apparel-5k

MaskRCNN 0.7372 0.8443 0.7756

Confidence Mask 0.7941 0.8666 0.9435

(which indicates how correct the mask is). Figure B.2 plots these two quantities on the
Apparel-5k dataset. We see that MaskRCNN almost always has full confidence (regardless
of the IoU), while the Latent-MaskRCNN produces confidence scores that are reasonably
correlated with the mask accuracy.

Table B.1 also shows ROC AUC where we use each model’s score to predict when the
ground truth IoU exceeds some threshold IoU(cp, G) ≥ 0.5. Across all three datasets, Latent-
MaskRCNN has higher AUCs compared to MaskRCNN, suggesting its scores are more pre-
dictive of mask quality. This suggests that a distributionally expressive model like Latent-
MaskRCNN with the proposed confidence mask scoring can be more effective at measuring
uncertainty.

When we proposed p-confidence masks in Section 3.6, we wanted each confidence mask
to be contained within some object with probability p. To evaluate this, we can compare
the fraction of predictions made by each confidence mask that have IoP > 0.95 with the
confidence requirement p. Figure B.2 shows the IoP quantiles for different confidence mask
p’s on Apparel-5k. We generally find that increasing the confidence requirement, p, also in-
creases the IoP of the predictions. Meanwhile, MaskRCNN can only achieve one distribution
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Figure B.2: Left: Correlation of predicted score with ground truth IoU of each mask on
the Apparel-5k dataset. Latent confidence mask scores tend to be more correlated while
MaskRCNN is overconfident. Right: Increasing the confidence requirement p increases the
IoP of the predictions while MaskRCNN can only realize one IoP distribution.

of IoP’s since no knobs control the confidence of its outputs.
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