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Abstract

Resource-Constrained Sensing as a Shared Utility

by

Joshua David Adkins

Doctor of Philosophy in Electrical Engineering

University of California, Berkeley

Associate Professor Prabal Dutta, Chair

Professor John Wawrzynek, Co-chair

Cloud computing revolutionized the ease with which we can build, deploy, and scale distributed
computing services. These advances, however, have not extended to the physically distributed
and resource-constrained computers deployed throughout the world to collect data, and their
resource constraints have thus far confined them to function as inefficient, fixed-purpose data
forwarders. Breaking these distributed sensors free of their resource-constraints by including
them in a dynamic, programmable, distributed system will not only enable easier deployment
and scaling of applications relying on their data, but it will also give us the ability to collect
and process never-before-seen data and discover new ways sensing the world around us.

We enable this vision in two parts. First we present a signpost-based platform which eases
the building and deployment of sensors by providing the core services and hardware necessary
for them to function. Next we explore the benefits of, and build a resource manager to
form these resource-constrained sensors into a compute cluster akin to those found in the
cloud. This enables multiple users to simultaneous program a cluster of sensors and quickly
iterate on their programs through an application framework which abstracts away the details
of scheduling and task distribution. By forming these sensors into a multiprogrammable
cluster, we enable them to be accessed as a shared sensing utility rather than as a collection
of individual nodes.
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2.1 The Signpost platform easily mounts to existing street sign posts, harvests from
an integrated 0.1mm solar panel, and provides tenant sensor modules with power,
communications, processing, storage, time, and location. Signpost is open source,
with all hardware and software available online. . . . . . . . . . . . . . . . . . . 6

2.2 Signpost platform overview. Signpost monitors and distributes energy to connected
modules and provides shared networking, Linux processing, storage, time, and
location services. Modules implement one or more sensing modalities and utilize
many possible software stacks, running one or more applications or even providing
additional services to the platform. Applications can potentially be distributed
across the platform and modules. This platform design supports development and
deployment of urban sensing applications. . . . . . . . . . . . . . . . . . . . . . 9

2.3 Signpost architecture. The Power Module is capable of harvesting energy from a
solar panel, storing energy in a battery, supplying power at the correct voltage
to modules, and monitoring the energy use of modules. The Control Module
provides storage, time and location, and Linux processing services, and also
monitors modules with the capability of isolating them from the system if necessary.
Finally, there are the modules themselves, with many possible capabilities. This
architecture allows for modular and extensible sensing while minimizing deployment
complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 A populated Backplane (a), Control Module (b) and Development Backplane (c).
The Backplane serves as the Signpost interconnect, while the smaller Development
Backplane is the desktop equivalent, enabling easy module and application creation
and testing. The Control Module manages Signpost energy and provides services
to sensor modules. Existing sensor modules are also shown, with the RF spectrum
and radar modules at the top and bottom right of the populated Backplane
respectively, and the environmental and audio sensing modules on the top left
and top right of the Development Backplane. . . . . . . . . . . . . . . . . . . . 16
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2.5 Solar harvesting in four different cardinal directions and two seasons. The ex-
periments are run in July 2016 and March 2017 in Ann Arbor, Michigan, with
each including periods of both sunny and cloudy days. At left is estimated power
generated from solar panels mounted vertically in four cardinal directions captured
in 10 second intervals over a week. At right is the average daily power provided by
each solar panel. There are large variations in average power both due to direction
and daily weather patterns. While some daily variations can be buffered by the
battery, Signpost will still experience variability in available energy to which it
must adapt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Fraction of weeks when an application can expect a minimum power income at
different latitudes and cardinal directions. To evaluate how much power a Signpost
application can expect under varying deployment conditions, we model the solar
harvesting potential of a vertical Signpost facing the four cardinal directions across
the United States. We use a standard solar model that accounts for both direct
and diffuse light [56] along with hourly irradiance data from the NREL MTS2 2005
dataset [57]. We group these locations by latitude, and also plot distributions for
Seattle, Washington and San Diego, California, where local weather patterns create
poor and near-ideal solar harvesting conditions, respectively. The per application
expected minimum power is calculated by subtracting the static power draw
(16mW) from the weekly average harvested power, dividing among an expected
five applications, and multiplying by the regulator efficiency (76%). We find that
orientation generally has a stronger influence on harvested energy than latitude
or climate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Energy isolation on Signpost. Energy allocation and five-minute average power
draw are displayed for three simultaneously running applications and the platform
as a whole. Each application employs a different strategy for energy use. The
first is only active for a brief period every ten minutes, achieving a low average
power, and storing up an allocation of energy. The second continuously runs,
exhausting its budget, and is disabled by the platform, to be enabled later when
energy is available again. The third adapts its actions based on the available
energy, running continuously without depleting its allocation. Signpost is capable
of balancing the needs of these three applications simultaneously, assigning each a
“virtual allocation” of energy it draws from without affecting the operation of the
others. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8 Communication policy in practice. The power draw of the Radio Module is shown
along with the number of messages queued to be sent. The communication policy
is set to automatically transfer data over a cellular connection if the queue reaches
twenty messages, as can be seen by the increased power draw. This policy allows
the platform to adapt to both increased application requests and poor network
conditions by utilizing high-power resources. . . . . . . . . . . . . . . . . . . . 25
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2.9 Resource usage of example applications. We break apart the major components of
usage for example applications into sensing cost, local computation, and network
and time service requests. Heavily duty-cycled applications such as the weather
monitoring app have nearly inconsequential average power. Applications perform-
ing constant sensing with tight timing requirements both draw a higher total
power and remit a greater share platform power draw. Applications like spectrum
sensing can achieve moderate average power draw even with high instantaneous
sensing power using duty cycling. Dynamically adjusting duty cycling allows
spectrum sensing to adapt to energy availability. . . . . . . . . . . . . . . . . . 26

2.10 Vehicle counting application. Several days of processed audio data are collected in
October 2017 for the vehicle counting application. Prominent peaks across several
audio frequency bands are used to detect vehicles. We plot estimated vehicles
per minute averaged over a one hour time window. The Signposts on University
Drive are close, but do not have completely redundant traffic paths. We note that
Gayley Road sees traffic much later into the night because it is a through street
that routes around campus. Interestingly, all the Signposts experience traffic until
around midnight on October 14th, and after further examination, this was due to
a concert at a nearby venue. Clear peaks in traffic can be seen before and after
the concert, which started at 20:00. . . . . . . . . . . . . . . . . . . . . . . . . 27

2.11 Example module software. This software snippet from the vehicular sensing
application collects averaged volume data for ten seconds and transmits it using
the network API. Timestamps for the collected data are requested from the time
API and appended to the data before transmitting it. Access to the Signpost
APIs makes applications easier to create. . . . . . . . . . . . . . . . . . . . . . 28

2.12 RF spectrum sensing application. A sample of RF spectrum data from October
2017 in three frequency bands corresponding to a local TV station (560MHz),
AT&T owned spectrum (722MHz), and Verizon owned spectrum (746MHz).
Distributed and fined-grained spectrum sensing could help to build better models
of RF propagation and inform policy around the reuse of underutilized spectrum.
The two higher frequency bands are particularly interesting due to their cyclic
nature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



ix

3.1 The energy per bit per meter of low-power wireless radio technologies, including
commercial technologies, realized research technologies, and simulated or estimated
research technologies. Distance is presented at the most optimal efficiency and is
calculated using published link budgets and the Hata model [78] with a 20 dbm
fading margin or from reported measurements. The use of the Hata model is
an attempt to compare technologies across different deployment scenarios and
frequency ranges, but could lead to error in the calculated metric for indoor
deployments. We see an exponential drop in the amount of energy required
to perform wireless communication over time and clear 4-6 year lag between
efficiencies in the research domain and those available commercially. While energy
efficiency continues to improve, especially commercially, the improvements of
efficiency in the research domain have slowed in recent years. With the exception
of Judo [79], no realized passive technologies are more efficient than realized active
radio technologies [80, 81]. From analyzing these trends there is no indication
of an upcoming dramatic shift in wireless communication efficiency that would
change the energy optimal trade-off between the processing and sending of data.
The full dataset can be found in Appendix A . . . . . . . . . . . . . . . . . . . 35

3.2 The number of MCU cycles that can be performed per bit of data transmitted a
10m distance at a unit energy over time. A point is plotted in every year that a
more efficient processor or radio technology was released commercially. Energy per
bit required for a 10 m transmission is calculated using the energy per bit per meter
metric presented in Figure 3.1, and processor energy per cycle metrics are from
published datasheets. We see that energy efficiency improvements in low-power
processors have recently significantly outpaced energy improvements in wireless
communication. This makes more local computation more energy efficiency if
it filters or ultimately reduces the amount of data that must be transmitted.
Complete data used to generate this figure can be found in Appendix A. . . . . 37

5.1 EdgeRM Architecture. EdgeRM agents send available resources to a central
to be offered to multiple frameworks with their own independent schedulers.
Compared to cloud-targeted resource managers, EdgeRM includes support for
WASM runtimes, adds extended resource types, and uses communication protocols
designed for resource-constrained agents with attached sensors. . . . . . . . . . . 57

5.2 Utilization of the edge cluster (top) and a single sensor (bottom) by three pro-
gramming frameworks over a ten minute period. Multiple users deploy jobs to
the edge cluster through three programming frameworks using EdgeRM. These
three frameworks are capable of multiplexing the cluster and can deploy tasks
on both sensor and server nodes simultaneously. The mediation of resources
through EdgeRM enables multi-tenancy on constrained, embedded devices that
are traditionally singe-purpose. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
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5.3 Compute and power overhead of the EdgeRM agent, plotted as a function of agent
ping interval. As the ping interval is increased, overhead falls proportionately. On
the embedded agent (evaluated on an NRF52840 MCU) ping intervals greater
than 1 s have CPU utilization below 5%, and ping intervals greater than 100 s
have a power consumption of less than 34 µW. A bounded exponential back-off
on ping interval maintain interactivity while decreasing power. . . . . . . . . . . 69

5.4 Latency overhead of accessing on-board sensors through WASM.Sensors are ac-
cessed a number of times using a WebAssembly task with the WASM sensor
interface and access time is compared to directly accessing the sensor with through
the underlying platform. WebAssembly introduces less than 5 % latency overhead. 71

6.1 A step-by-step workflow of using EdgeRM through the Sensor MapReduce frame-
work (§6.3). (1) A user submits map and reduce jobs to the application framework;
(2) The framework’s interpreter wraps user code in boilerplate communication
code and compiles it into WASM modules and docker containers. (3) These tasks
are sent to framework’s scheduler, (4) which uses the EdgeRM scheduling library
to fetch available resources, plan task placement, and configure tasks (i.e. with
source and destination addresses). Active scheduling techniques such as agent
profiling are used to assist placement (§6.2). (5) Tasks are issued to the EdgeRM
central, (6) and forwarded to EdgeRM Agents to execute. . . . . . . . . . . . . . 75

6.2 Use cases for active scheduling in EdgeRM. (Left) Location and context moni-
toring tasks can be used to optimize the deployment of larger or more resource
intensive tasks pausing their deployment until a condition is met such as the
location of a device changing or a sensor returning a specific data value. (Center)
Performance profiling enables to frameworks to measure processor performance,
network throughput, or other dynamic agent qualities. This allows for schedulers
to understand the relative performance of nodes in the case of great node hetero-
geneity. (Right) Network topology detection can help schedulers place tasks within
local networks such that they keep operating in cases of wide-area network failure
or to preserve the privacy of local data. All active scheduling allows schedulers
to adapt to the resource-constrained sensing context by allowing them to collect
information necessary to assist with scheduling that cannot be known or is difficult
to annotate at the time of deployment. . . . . . . . . . . . . . . . . . . . . . . . 79
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2.1 Services required by existing applications. Time is millisecond-accurate as provided
by services like NTP, while Sync is microsecond-accurate as provided by GPS.
Location is GPS-level accurate coordinates. These represent the minimum services
a platform should provide to support existing applications and simplify the creation
of new ones. Many of these applications could run on Signpost without significant
modifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Signpost API examples. Abstract versions of several Signpost API calls for each
system service are shown. Providing a high-level API enables easier application
development. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 An overview of the energy and throughput of various wireless communication
technologies. This provides a sense of the amount of energy a sensor using these
technologies may use to transmit data and the associated latency of transmitting
that data. Note that these technologies are not easily comparable. They operate
at vastly different communication ranges and networking topologies. Many of
the technologies have the ability to scale data rate up or down depending on
the available link budget. For cellular technologies the energy associated with
starting a transmission and scheduling is significant and not easily included in
a single energy per bit metric. The presented numbers attempt to present the
lowest reasonable energy metric for each technology so that conclusions drawn
about the amount of computation that is optimal to perform locally are valid even
for conditions that are most favorable towards offloading data. . . . . . . . . . . 34
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3.2 The energy ratio of transmitting the input data over the specified wireless tech-
nology and performing the task locally. Numbers greater than 1 are more efficient
to perform locally. The processor is assumed to an ARM Cortex M4 with an
FPU running at 20µA/MHz and 3.3 V, which is efficient, but not state-of-the-art
among modern MCUs such as those listed in Appendix A. Energy to transmit the
data uses the lowest energy per bit presented in Table 3.1. This is favorable to
transmitting the data as it is often only achieved in during large batch transmis-
sions and doesn’t fully account for scheduling overhead [74]. We see that even for
the most computationally intensive published algorithms, such as neutral networks
designed to classify images and detect audio wake words on resource-constrained
processors, it is still more energy efficient to perform the task locally on all active
radios except for the most intensive algorithms using the most energy efficient
radio technologies. The results for Bharadia et al. [82] are in simulation only and
have a range limited to 7m, but represent the potential for future passive radio
technologies to shift this trade-off if simulations results are upheld in practice. . 38

3.3 The monthly cost of sending sensor data over the cellular network with varying
degrees of local processing. Often streaming continuous data is untenable, but
anomaly detection or local summarization can reduce data usage and the subse-
quent cellular cost to a reasonable amount. Cellular costs are based on common
costs for both consumer and IoT cellular plans [98, 99] . . . . . . . . . . . . . . 40

4.1 An overview of related work on utility sensing covering select projects from re-
search on resource-constrained networked sensors, cloud computing, and edge/fog
computing. More focus is given to projects which enable the programming and
management of resource-constrained devices. The number of programming frame-
works, schedulers, and container orchestration frameworks targetting unix-based
edge devices is too great to enumerate here; while the ideas in these papers may
be helpful, they do not enable their applications to extend to resource-constrained
devices [116]. We see that research targetting resource-constrained devices gen-
erally does not offer all three of multiprogramming, macroprogramming, and
a general-purpose compute framework. Many are either underlying technolo-
gies which can enable general-purpose multiprogramming on a single device [53,
117–119], or macroprogramming frameworks which are limited to executed an
application-specific task [120–122]. Cloud computing frameworks and resource
manager enable general-purpose multiprogramming and macro-programming but
rely on underlying containerization and virtualization technologies which are not
available on resource-constrained embedded devices. . . . . . . . . . . . . . . . . 46

5.1 Memory usage of existing resource manager agent processes. We see that existing
resource managers can’t be used directly on sensor nodes at least in part due to
their memory footprint, which well exceeds the less than 128 kB of RAM available
on resource-constrained sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
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5.2 Resources and attributes in a EdgeRM deployment. All devices list common
resource types such as CPU and memory, however resources such as devices, domain
names, and the available power are unique to a wide area sensor deployment.
Device resource types have extended properties that correspond to their non-
traditional resource usage. The shareability field indicates the ability for multiple
applications to sue the device, the API field indicates the API through which
devices are accessed, the config field indicates mutually exclusive configuration
sets a device may be placed in and sample rate fields enable EdgeRM to make
offers of specific sample rates for sensors while still enabling the sensor to be shared. 59

5.3 EdgeRM messaging protocol. An overview of the messages between different
components in EdgeRM and their fields, with sub-messages separated for clarity.
Required fields are marked with *. All messages are client-initiated, where the
Agent and Framework act as clients, and the central is the server. The central
then responds, piggybacking information onto the response. This allows agents
to control their energy usage at the cost of higher latency for task execution,
and it allows for agents and frameworks to communicate with the central from
behind a NAT. Many fields are left optional so that agents can further limit
communication to strictly what is necessary to keep their resources and task
states up to date. Currently HTTP, CoAP, and WebSockets are supported the
communication protocol, however any client-server protocol could be used. . . . 61

5.4 WebAssembly Sensor Interface. While a standardized WASM interface for sensors
is under development [162], we develop our own interface to balance the needs of
both low-power sensing and high-sample rate sensing. The above interface allows
applications to use few resources when waiting on a sensor to meet a certain value
with the getSampleWhen API call. This enables the runtime to push thresholds
into hardware and sleep if possible, conserving resources. The interface also enables
sensors to perform high rate sampling of signals such as an accelerator or audio
interface with the the double-buffered getSampleBufferContinuous call. These
calls are inserted into the WAMR runtime, and the resources, sample rates, and
configurations they consume are checked against the task’s allocated resources
before execution. Time handling calls which take runtime resources are allocated
to the task’s CPU utilization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.5 Memory and code footprints of the EdgeRM agent implementations. The embedded
agent flash and RAM utilization are decomposed into constituent components. A
significant portion of Flash and RAM utilization is due to the networking stack
and the underlying OS, which would also be required by a monolithic firmware.
Remaining unused memory is available to store and execute WASM tasks. The
minimum memory for each task is 22,269 Bytes, which includes all task state,
thread stack and heap, and the minimum 16,384B required to execute a WASM
module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
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A.1 Power consumption and efficiency of commercial wireless radios focusing on low-
power and particularly efficient or commonly used models over the last 25 years.
When multiple transmission powers or data rates were available the most efficient
were chosen. Link budget calculated with the receive sensitivity at a standard 1%
packet error rate. Efficiency may be slightly higher by pairing transmitters with
more sensitive receivers available in a given year. Distance is calculated using the
Hata Model for all radios to aid in comparability, however this introduces error at
higher frequencies and in indoor settings [78]. . . . . . . . . . . . . . . . . . . . 103

A.2 Power consumption and efficiency of research radios focusing on low-power and par-
ticularly efficient examples. Priority is given to searching for standards-compliant
radios. Research falls broadly into two categories: (1) fabricated radios that
optimize the circuitry to make traditional active radio transmitters and receivers
more efficient and (2) new communication topologies such as passive and back-
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Chapter 1

Introduction

Cloud computing, and more broadly computing as an abstract utility, revolutionized the ease
with which we can build, deploy and scale web-based computing services. Programmers can
build services by using frameworks that facilitate the programming of complex distributed
systems, take advantage of virtualization to amortize the cost of hardware management,
and liberally deploy multiple versions of their program to simultaneously operate code in
production and iterate quickly during development. All require compute easily accessible
behind a consistent, reliable abstraction.

In contrast, it is currently not nearly as easy to place sensors in the world, collect data
from them, and use the data they collect. Being physically close to the source of the data
imposes constraints on the sensor’s size, power, and communication options, and overcoming
these constraints often requires an expert who understands how to build and optimize the
sensor’s hardware and software. After being built, these bespoke systems often serve as static
and single-purpose data collectors. There is rarely a notion of sharing the data coming from
a deployed sensor or dynamically reconfiguring a set of sensors based on a change in their
context, and if updates are made it’s often with high risk and requiring physical access to the
sensors upon failure.

We want to enable a world in which people without deep technical expertise, like city
planners, environmental scientist, building managers, and economists, could build or buy a
sensor, deploy those sensors, and collect and share the sensor data. We also wish to enable a
world in which embedded systems experts use sensors to build advanced applications rather
than focusing on the painful process of manually reimplementing the resource optimizations
required for basic functionality. To do this, we focus on two distinct aspects of the problem.
First, we address the difficulty of reimplementing the core services necessary for a resource
constrained sensor and its deployment, and then we build systems to make sets of these
sensors function as reliable infrastructure, amenable to being re-tasked and shared as an
abstract utility like the modern cloud.

We address the difficulty of building and deploying sensors by constructing a multi-tenant
sensor platform that mounts on signposts around a city. The platform can be easily deployed by
bolting to a standard street sign and uses wireless communication and solar energy harvesting
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rather than their expensive and limited wired counterparts. After deployment, up to five
sensors modules can then plug into the platform, sharing the platform’s services—power,
communication, location high-performance compute, time, and storage—without requiring
their own implementations of these functions. Providing these platform services makes the
sensors significantly easier to build, often possible with small modifications to off-the-shelf
components. Sharing the platform also amortizes the cost of deployment and maintenance
across multiple sensors.

Once the resources themselves are provided it becomes obvious that the availability of
these key services is only one aspect of the challenge to collecting and using the data from a
set of sensors. Due to the unaddressed resource constraints and concerns about reliability
and privacy, data cannot be directly streamed from the sensors to the cloud for processing.
At least some, and often quite a bit more, compute needs to be placed on the sensor to filter,
transform, and fuse the raw data. This compute is often application-specific, and sometimes
even specific to individual sensors within a broad deployment. Writing, deploying, testing,
and iterating on such sensor-level code can be extremely challenging both for experts and
non-experts alike.

The code is difficult to write because it often is comprised of many different applications
coordinating within a sensor network. The code is difficult to test because it can often only
be tested in situ, because sensor have unique access to the data required for testing. Iterative
software development becomes difficult because code updates to sensors are quite risky given
that they rarely run true operating systems which can isolate failures and receive a new
program. A sensor hardware platform with only key services is akin to a data center with
power and networking, but no common operating system, and no virtualization or tooling
to help with building, deploying and testing code. Solutions have been proposed to these
individual problems, but not in an architecture which addresses all of them simultaneously.

To truly ease the use and management of sensors distributed throughout our environment,
we claim that we need to build tooling and programming frameworks analogous to those
which run in the cloud, but which can operate within the sensor’s resource constraints. This
brings use to our thesis statement.

1.1 Thesis Statement
Enabling multiple, non-cooperative, full-stack applications to be deployed on distributed,
resource-constrained sensors and their supporting infrastructure facilitates easier and more
confident application deployment and iteration, and ultimately leads to higher-quality data
collection from distributed sensors.
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1.2 Contributions of the Dissertation
This dissertation articulates both the key problems of deploying and programming resource-
constrained sensors and proposes solutions to those problems with the goal of making sensor
networks easier to build, and dynamic, taskable, and more accessible, like today’s cloud
infrastructure, once deployed.

We begin with a signpost-based sensor platform which makes it easier to build and
deploy sensors within cities. The platform changes the deployment strategy of city-scale
sensors by shifting to use solar energy harvesting and wireless networking over their wired
counterparts and it makes sensors easier to build by providing key services like networking,
energy, and storage to pluggable sensor modules. We show that this deployment strategy
can provide enough energy for common applications and sensing modalities, from tens to
hundreds of milliwatts per sensor module, even in worst case scenarios, and that a sensor
module’s energy usage can be monitored and isolated from that of other modules. We then
discuss the limitations of this platform and draw parallels between the needs of software
multiprogramming and isolation, and the resource isolation and multi-tenancy that the
platform provides in hardware.

In Chapter 3, we make both a quantitative and philosophical case for the deployment of
more complex applications to resource-constrained sensors. We show that given the state
of processors and wireless communication it is currently one to five orders of magnitude
more efficient to perform common processing tasks locally on a sensor node rather than after
transmitting data to the cloud; by analyzing processor and radio power trends we show this
trade-off will increasingly favor local processing over time. We also discuss the opportunity
local processing provides for the training of machine learning models by providing access to
data that cannot be transmitted to the cloud and for the future reliability and privacy of
sensor networks.

In Chapter 4, we list and categorize prior work on making sensors and distributed cloud
environments easier to program, multiprogram, task, and manage. We show that while
past systems have enabled most of the properties necessary for utility sensing, none have
simultaneously offered all of the key components. Sensor-specific approaches successfully
enable either the distributed programming of sensors or the multi-programming of sensors,
but never both; architectures built targeting cloud servers, or access-points and other powered,
gateway-class devices can enable all of the key components but cannot operate under the
more severe resource constraints common to battery-powered, energy-harvesting, or more
physically-distributed devices. This points to the need for a solution which can bridge the
gap between these two domains.

We then propose a resource-manager in Chapter 5, which enables the simultaneous
multiprogramming and distributed macroprogramming of sensors and cloud servers by multiple
application frameworks. This resource manager takes advantage of advances in virtual
machine and processor technology to enable multiple, isolated applications to run on a
resource-constrained sensor, and all elements of the resource manager are reconsidered, from
low-power networking protocols to sensor-specific resource abstractions, to enable the resource
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manager to run in a distributed, resource-constrained environment. In addition to the resource
management architecture, we propose runtime abstractions which enable applications to
collect and efficiently share data from the same sensor on a sensor node. In testing we show
that the resource manager enables multiple programming frameworks with multiple users
to simultaneously task and reconfigure the sensor network and that the resource manager
has an acceptably low energy and memory overhead to operate on energy-harvesting and
battery-powered devices.

We end in Chapter 6 by giving an example of how application frameworks can be built
for the resource manager. We discuss the core components of an application framework that
allow it to uniquely adapt to distributed sensing. A proposal for active scheduling enables
application frameworks to make scheduling decision in the face of dynamic environments
and the heterogeneous performance of sensor and cloud nodes by deploying tasks specifically
designed to collect information about the context and performance of a sensor. We then
present the application frameworks that we implemented for the resource manager, including
a streaming version of MapReduce, and reflect on the successes and shortcomings of these
application frameworks. While we are not yet able to program sensor networks in high-level
data processing languages used by domain scientists, the resource managers and application
frameworks presented in this dissertation enable utility sensing by turning a network of
sensors into reliable, retaskable, and shareable sensing infrastructure.
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Chapter 2

Signpost: Sensing as a Shared Utility

Today, more than 50% of the world’s population live in urban areas, and the U.N. projects
that to increase to 66% by 2050 [1]. With increasing population density, there is growing
interest in making cities safer, cleaner, healthier, more sustainable, more responsive, and more
efficient—in a word, smarter. Supporting this interest are numerous funding opportunities [2–
4], interested cities [5–7], and active research projects [8–11], all targeting new technology to
enable smarter cities. And for good reason: applications such as pedestrian route planning
based on air quality, noise pollution monitoring, and automatic emergency response alerts
can all improve the quality of life for a city’s inhabitants.

However, we believe that the difficulty of deploying existing smart city technology and
applications is impeding progress. Deployments are rooted in single-purpose hardware,
necessitating redesigns to support upgraded sensors or revised goals. Moreover, each system
requires a re-implementation of standard resources such as power, communications, and
storage, taking developer time away from the core application. Deploying sensors is difficult
too, with the reliance on energy from wired mains constraining installation locations. These
problems limit not only production-ready technology, but also make it particularly challenging
to perform short-term, exploratory research, speaking to the need for a platform that will
lower the barrier to entry.

To address these challenges, we present Signpost, a modular, energy-harvesting platform
enabling deployable city-scale sensing applications. It mounts to pervasive sign posts (Fig-
ure 2.1) and harvests energy from a vertically mounted solar panel. To reduce the burden of
developing new applications, Signpost provides commonly required services including power,
communications, processing, storage, time, and location. The platform is modular, with eight
pluggable slots for sensors, processors, and radios, facilitating modifications and upgrades to
the system. To enable shared deployments, Signpost is multi-tenant, supporting multiple
applications simultaneously and enforcing isolation between them.

Key to Signpost’s deployability is its energy-harvesting, modular architecture. Harvesting
energy enables the system to sever ties to wired infrastructure. This in turn opens up
an increased selection of deployment locations, allowing for more granular deployments.
Harvesting also enables short-term, pop-up deployments to drive application development and
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Figure 2.1: The Signpost platform easily mounts to existing street sign posts, harvests
from an integrated 0.1mm solar panel, and provides tenant sensor modules with power,
communications, processing, storage, time, and location. Signpost is open source, with all
hardware and software available online.

experimentation. Support for modularity allows the sensors on the platform to be changed to
suit application needs. More fundamentally, however, modularity permits Signpost to take
advantage of future technology improvements, improving its capabilities over time.

An energy-harvesting, multi-tenant platform faces challenges that do not exist for mains-
powered, single-purpose systems. For one, eliminating the connection to mains power limits
the energy available for sensing. We assess the expected solar energy throughout the US,
finding that a module can expect an average power of at least 120–210 mW for 50% of weeks.
We also provide APIs allowing software to adapt to existing energy, reducing functionality
in times of famine and opportunistically increasing it when possible. Another challenge is
managing and sharing platform resources to support multiple stakeholders with unaligned
interests. We explore the hardware and software requirements for measuring usage and
enforcing isolation, describing guarantees necessary for sharing Signpost’s limited energy
budget between applications.

We envision a testbed of Signposts supporting short-term experimentation by many users.
Signposts have been deployed on the University of California, Berkeley campus for five years.
The ongoing deployment monitors weather, senses TV whitespace spectrum usage, and
observes vehicular traffic. We have found Signpost modules are generally easy to create and
the software API is simple to implement on commonly used software and hardware platforms
such as Arduino and ARM Mbed. To facilitate the creation of new hardware and software
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to run on Signpost, we have also created desktop development kits capable of emulating
deployed behavior. We hope that by providing a platform for city-scale sensing that reduces
the barriers to deployable applications, supporting that platform with development tools and
accessible interfaces, and working with the community to realize their sensing needs, we can
gain deeper insight into the workings of urban areas and enable higher-level applications that
impact policy and quality of life throughout a city.

2.1 Prior Shared Sensing Platforms
Existing work in urban sensing generally falls into three categories: static deployments of
sensing applications, mobile or human-based participatory sensing, and—most similarly to
Signpost—deployments of generic sensing infrastructure. The first two categories are particu-
larly insightful as a guide to which services are frequently needed by existing applications,
which we summarize in Table 2.1.

Examples of static deployments include acoustic sensors to monitor, characterize, and
localize different sounds [8, 11, 12], particulate sensors to monitor air quality [10], and electro-
magnetic, radiological, and meteorological sensing to track people [13] and cars [14], measure
road conditions [15, 16], monitor wireless traffic [17], locate point sources of radiation [18], and
identify severe weather in urban environments [19]. Most deployments are not long-term and
are only deployed for the purposes of evaluation. Additionally, almost all of these deployments
depend on either mains power or a battery for an energy source, motivated by the desire
for rapid prototyping. Many of these deployments use a proof-of-concept node design built
mostly with off-the-shelf components, without much consideration for optimized energy con-
sumption [8, 11–13, 15, 16]. By providing a platform that already handles energy-harvesting,
Signpost could provide sustainability to these deployments. Further, based on reported
power numbers, with the exception of the high power Micronet nodes [19, 20], many of these
applications and experiments could run on the Signpost platform without significant redesign.

The majority of work that targets urban sensing uses participatory methods, in which
users participate with mobile phones and other handheld devices [22, 23], or vehicles are
outfitted with various sensors [24, 25]. These methods use existing mobile resources to collect
similar data to static deployments. Many have paired mobile phones with handheld air
quality monitors [10, 26–28], or used phones to directly meter noise pollution [29–31] or
traffic conditions [32–34]. Similar to participatory sensing methods, vehicular sensor networks
monitor air quality, traffic, and road conditions [25, 28, 35–37], and even detect rogue cellular
base stations [21]. These types of deployments often scale very well as the mobility of the
devices allows a few sensors to reach a much larger area. However, incentivizing participation
can be difficult and coverage can be unpredictable and potentially insufficient.

Finally, several platforms provide generic sensing infrastructure, suitable for many types of
smart city applications. CitySense proposes an open, city-scale wireless networking and sensor
testbed [38]. It utilizes mains-powered, street pole mounted embedded Linux nodes with
802.11 mesh networking and enables in-situ node programming by end users. Argos, a passive
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Deployment Energy Network Processing Storage Time Sync Location
Caraoke [14] ✓ ✓ ✓
Bouillet et al. [15] ✓ ✓
AirCloud [10] ✓ ✓
Girod et al. [12] ✓ ✓ ✓ ✓ ✓
Lédeczi et al. [11] ✓ ✓ ✓ ✓ ✓
SenseFlow [13] ✓ ✓
Argos [17] ✓ ✓ ✓
SONYC [8] ✓ ✓ ✓ ✓
Kyun Queue [16] ✓ ✓ ✓ ✓
Micronet [20] ✓ ✓ ✓
Seaglass [21] ✓ ✓ ✓ ✓ ✓

Table 2.1: Services required by existing applications. Time is millisecond-accurate as provided
by services like NTP, while Sync is microsecond-accurate as provided by GPS. Location is
GPS-level accurate coordinates. These represent the minimum services a platform should
provide to support existing applications and simplify the creation of new ones. Many of these
applications could run on Signpost without significant modifications.

wireless mapping application, builds on a 26 node CitySense deployment [17]. Unfortunately,
the CitySense architecture met many logistical challenges that ultimately limited a scaled
deployment [39]. The Array of Things project utilizes a network of sensor nodes distributed
throughout Chicago to gather environmental data including light, temperature, humidity,
and air quality [9]. Like CitySense, Array of Things sensor nodes assume wired power
and networking, and thus must be installed in locations where these resources are present.
Signpost also provides an open testbed for smart city research. However, through its focus on
deployability and modularity, Signpost reaches a different design point than these projects,
resulting in a resource-constrained, energy-harvesting, and multi-tenant platform that is more
easily deployed, but potentially more challenging to program.

2.2 Platform Overview
In the following sections, we present the design, implementation, and evaluation of Signpost,
a modular, solar energy-harvesting, sensing platform. In the Signpost platform, sensor
hardware connects to a shared backplane via a standard electrical and mechanical interface,
enabling modularity. The backplane serves as the module interconnect and has the ability to
electrically isolate each module, allowing energy use of any particular module to be limited.
To support these sensor modules, the platform harvests solar energy, monitors a shared
battery, and distributes metered power. It provides multiple radio interfaces for different
communication patterns and shares them among the modules. Other services are implemented
as well, including time and location, data storage, and compute offload using a Linux-class
co-processor, and these services can be accessed by modules through a standard software
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Figure 2.2: Signpost platform overview. Signpost monitors and distributes energy to connected
modules and provides shared networking, Linux processing, storage, time, and location services.
Modules implement one or more sensing modalities and utilize many possible software stacks,
running one or more applications or even providing additional services to the platform.
Applications can potentially be distributed across the platform and modules. This platform
design supports development and deployment of urban sensing applications.

API. Resources and modules are orchestrated by a microcontroller-based system controller
that oversees the operation of the Signpost platform. All of these components are housed in
a waterproof aluminum case that to bolts to a standard street sign post for easy deployment.
Figure 2.2 shows an overview of the platform.

2.3 Platform Design Requirements
The Signpost platform’s design is guided by four high-level goals:

• Deployability is the primary concern of the platform and is key to enabling larger and
more frequent deployments, and ultimately wider adoption by the community.

• Accessibility reduces burden for developers, thus the platform needs to provide services
that meet common application needs.

• Modularity allows developers to modify and extend sensing capabilities to support new
applications and upgrade modules as technology improves.

• Multi-tenancy enables the platform to simultaneously host mutually-untrusting appli-
cations created by multiple stakeholders, reducing deployment burden and the cost of
experimentation.

Deployability

Deployability is the primary concern for the Signpost platform. Many urban sensing ap-
plications require fine-grained sensing, which is not possible for platforms that can only be
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deployed with easy access to mains power or wired networking. Additionally, to support
ad-hoc experimentation, the platform needs to be easily installed, removed, and moved. A
deployment made today may not meet the sensing needs of an application tomorrow.

In order to enable deployability, Signpost does not depend on mains power or wired
networks. Relying on wired infrastructure would limit Signpost deployments to locations with
grid access, such as the top of streetlight poles, and would require costly and time-consuming
installation by city utility workers. To support easy physical installation, the platform
attaches to existing infrastructure found ubiquitously in urban areas—sign posts.

Making these deployability decisions allows Signpost to better support some applications
while restricting others, particularly applications with high power sensors, significant band-
width needs, or heavy computation. To address these concerns, the platform needs to provide
software primitives that enable applications to adapt to available energy and bandwidth.
Even if these primitives prove insufficient, we believe that in time most applications will still
become possible on Signpost due to the rapid power scaling of embedded hardware. In the
last decade alone, best-in-class microcontroller active current has decreased from 220 µA/MHz
to 10µA/MHz [40, 41], radio transmission power has reduced by 3-5x [42, 43], and many
sensors have followed similar trajectories. By embracing modularity, hardware can be updated
to capitalize on these improvements, with the tradeoff between deployability and resource
constraints increasingly favoring the Signpost architecture.

Accessibility

Informed by a review of prior sensing projects in Section 2.1, Signpost provides several services
to support accessibility and reduce the burden for application developers.

Energy

Since wired mains power is not an option for Signpost, we turn to batteries and energy
harvesting to power the system. Batteries alone may be sufficient for short-term research
deployments, but replacement is not scalable for geographically distributed deployments.
Instead, a battery would need to store enough energy for the entire deployment duration.
Assuming a 1 cm thick Li-ion battery the size of the Signpost solar panel (0.096m2) yields
a storage capacity of 576Wh [44]. For one year of lifetime, this would result in an average
platform power budget of 66mW.

The expected budget can be improved significantly with the addition of solar energy
harvesting. An optimally oriented, 17% efficient solar panel with the same area as Signpost’s
would generate 2.4W on average indefinitely in Seattle, a city with notably poor solar
conditions [45]. Even with vertical panel placement and sub-optimal panel orientation, the
addition of energy harvesting yields an increase in energy provided to the platform as we
demonstrate in Section 2.5, resulting in increased application capabilities.
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Communications

Signpost needs to support periodic data transmissions, firmware updates, and occasional bulk
data uploads. Coverage is needed over a wide area and neither wired network nor WiFi access
points can be expected to be accessible for all deployed Signposts. One solution to these
problems is cellular radios, especially the machine-to-machine focused LTE Cat-1, LTE-M, or
NB-IoT networks. Cellular networks provide high throughput and good coverage, but also
come with costs, both in terms of high power draw and network usage fees.

Alternative solutions include low-power, wide-area networks such as LoRaWAN [46],
which provides data transfer at rates of 1-20 kbps with a range of several kilometers and
power draw significantly lower than cellular radios. LoRaWAN networks can be deployed
by end users, allowing a network to be set up to support a Signpost deployment. However,
LoRaWAN predominately supports uplink communications, making firmware updates and
other downlink-focused applications more difficult.

Finally, local communication facilitates interactions between a Signpost and any nearby
residents or users of the platform. Communication protocols such as Bluetooth Low Energy
would enable the platform to interact directly with nearby smartphones.

Processing

In nearly any sensing system, data must be processed, batched, transformed, and analyzed,
and in the face of energy constraints, local computation is preferable over transferring all
data to the cloud. Providing a processing service is not necessarily just about computational
capability. A familiar processing environment in which developers can use familiar languages
and libraries lowers the barrier to entry for domain scientists.

Many existing urban sensing platforms provide processing by using some variation of a
Linux computer as their primary processor [8, 9, 17, 18, 38]. For an energy-constrained system,
however, supporting an always-on Linux computer is problematic. Even the lowest power
Linux compute modules we survey draw 200-500 mW when active [47]. One compromise is to
use a Linux environment not as a core controller, but as a co-processor, employed occasionally
to process batched data. This allows developers to use languages and libraries to which they
are accustomed, but requires them to split applications between two execution environments.

Storage

With low power and low cost flash memory widely available, data storage could be a module-
supplied resource. However, we argue it should be centralized on Signpost for two reasons.
First, a central data store aids manual data collection (likely over a short-range wireless link).
This is useful for collecting high-fidelity data from multiple modules, particularly in the early
experimentation phases of a deployment. Second, co-locating the central storage with shared
processing resources allows for fast and easy access to batched data.



CHAPTER 2. SIGNPOST: SENSING AS A SHARED UTILITY 12

Time and Location

Synchronizing clocks throughout a sensor network deployment is critical to many applica-
tions [48]. Providing the capability to synchronize within 100 ns allows a group of Signposts
to achieve localization within 30 m for RF signals and less than one meter for audio signals. In
addition to just synchronization, the ability to timestamp data and understand the local time
of day and year is useful for adapting operation (for example, slowing sampling before night)
or predicting available solar harvesting energy. Location also provides automatic installation
metadata and enables localization-based applications, such as gunshot detection. Fortunately,
all are easily provided by GPS modules, although some care needs to be taken when expecting
GPS use in dense city environments where fewer satellites may be in line-of-sight of the
receiver. The addition of a stable and low power real-time clock can act as an optimization for
a time and location system on a stationary platform by allowing the GPS to be predominantly
disabled. This reduces system power draw while maintaining sufficient accuracy for many
applications.

Modularity

Modularity enables not only specialization, but it also allows the platform to be upgraded
over time, adapting to technology improvements for sensor modules and platform resources
alike. Supporting modularity requires standardized electrical and mechanical interfaces to
allow sensor modules to be installed and replaced as needed. The electrical interface should be
simple but sufficient, including connections to power and an internal communication bus over
which modules access platform services. Other signals can be added to support performance,
for example a time synchronization signal, but such additions should be kept to a minimum
to keep module creation simple.

Regarding mechanical considerations, the interface must allow for a robust connection to
the physical platform without significantly limiting sensing capability. Weatherproofing plays
an important part in the design of this interface since Signpost will be deployed outdoors,
as does physical security since platforms will be unattended for long periods. Additionally,
sensor module developers should be able to easily tailor the module enclosure to support the
physical and environmental requirements of their sensors.

Multi-tenancy

Finally, Signpost is designed to support multiple stakeholders simultaneously, allowing a single
hardware deployment to act as a testbed for multiple applications. Support for multi-tenancy
requires fair sharing of resources between applications. For most system services, this reduces
to platform software recording usage and implementing some fairness policy.

Sharing energy is a more complex problem and the top priority of a multi-tenant, energy-
harvesting system [49]. The power requirements of one application should not limit the
capabilities of another. To support this, a platform must first be able to accurately measure
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and control access to energy. This involves metering not just modules, but also system
resources, so that their energy draw may be charged against the application which accessed
them.

Second, the platform must use these measurements to implement an energy policy. In the
presence of variability, applications need guarantees of energy availability to reason about
future processing capabilities. There is one important guarantee: the energy allocated to
an application must only decrease in a predictable fashion. It can be spent directly by the
application, indirectly by a service the application uses, or taken regularly as a platform tax,
but it must not decrease in a manner unpredictable to the application. Particularly, energy
should never be taken to support other applications (although it could be given). If energy is
harvested by the platform, the allocation of a particular application may increase, but having
a minimum known energy to rely on allows applications to plan for future actions. Support
for energy isolation has been explored in prior work [49].

Features to support multi-tenancy have an added benefit in supporting overall system
reliability. Modules can be isolated from the platform entirely if a hardware or software
failure occurs.

2.4 Platform Implementation
The Signpost architecture is shown in Figure 2.3. The Signpost platform is defined by the
Power Module, Control Module, Backplane, and Radio Module. Additional modules connect
via a standard electrical and mechanical interface. A full Signpost has six general-purpose
module slots, one of which is taken by the Radio Module, leaving five for sensing capabilities.
The size of the entire system, including a case, is 42.9 cm high, 30.0 cm wide, and 8.4 cm
thick. For comparison, the minimum size of a speed limit sign in the United States is 91 cm
by 61 cm [50].

Backplane

The Backplane is the backbone of the Signpost. It has physical and electrical connections for
modules, signal routing between modules, and isolation hardware. The Backplane has eight
slots in which modules can be connected. Two are special-purpose, corresponding to dedicated
signals for the Power Module and Control Module. The remaining six are standard interfaces
for modules. The interface provides power at 5 V, access to a shared I2C bus, two dedicated
I/O lines to the Control Module, a Pulse Per Second (PPS) signal for synchronization, and a
USB slave connection.

Modules are not required to implement all signals in this interface. However, we expect
that most modules will use the I2C bus and dedicated I/O signals, and that some complex
modules will implement USB or PPS support.

All module connections can be individually isolated, along with buffering for I2C con-
nections. These isolators can be activated by the Control Module and prevent individual
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Figure 2.3: Signpost architecture. The Power Module is capable of harvesting energy from a
solar panel, storing energy in a battery, supplying power at the correct voltage to modules,
and monitoring the energy use of modules. The Control Module provides storage, time and
location, and Linux processing services, and also monitors modules with the capability of
isolating them from the system if necessary. Finally, there are the modules themselves, with
many possible capabilities. This architecture allows for modular and extensible sensing while
minimizing deployment complexity.

modules from negatively impacting the rest of the Signpost. The Backplane also accepts a
voltage reference signal from each module and handles translation of voltage levels for all
signals except USB, allowing modules to perform I/O at any voltage between 1.65 V and 5 V.

Power Module

The Power Module is responsible for energy harvesting, management, monitoring, and
distribution on the Signpost platform. Energy is harvested from a Voltaic Systems 17 W solar
panel, a 37 cm by 26 cm panel with an expected 17% efficiency. The solar panel output is
monitored by a coulomb counter, and regulated by a maximum power point tracking battery
charger. Excess energy is stored in a custom 100Wh Li-ion battery pack.

System energy is further regulated for consumption before being distributed to the
Backplane and modules. Each regulator can provide a constant 1.5 A, and is protected from
shorts by a load switch. Each module’s power rail is monitored by a coulomb counter that
also provides instantaneous current readings, supporting energy accounting.

The Power Module also includes a hardware watchdog that monitors the platform. This
further increases Signpost reliability by providing a redundant watchdog in the event of
software failures.
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Control Module

The Control Module handles system tasks, such as managing the module energy usage,
assigning module addresses, and monitoring system faults. It also provides time, location,
storage, and processing services to the sensor modules. Computation is handled by two ARM
Cortex-M4 microcontrollers.

One microcontroller is responsible for isolation, managing the GPS, and accounting for
module energy. It can also communicate with sensor modules on the shared I2C bus and
through dedicated per-module I/O signals, sending information such as location and time
to the sensor modules in response to Signpost API calls. A globally synchronized Pulse Per
Second signal is routed from the GPS to all sensor modules. The second microcontroller is
responsible for managing an SD card and providing the storage API to the sensor modules.
Each of these subsystems is power gated and can be entirely disabled to save energy.

Finally, the Control Module has an Intel Edison Linux compute module for higher
performance processing capabilities. Contrary to common system design, while the Edison is
the most capable computer on the Signpost, it is not in control of the system. Instead, the
Edison is a coprocessor, capable of batch processing and using languages and libraries that
are difficult or impractical to port to embedded microcontrollers. The Intel Edison connects
directly to modules over USB, with each module playing the role of a USB slave device. It
can also communicate with modules over an internal SPI bus by using one of the Cortex-M4s
on the Control Module to forward messages to the shared I2C bus. The power usage of the
Edison is individually monitored, allowing its energy to be attributed to the module utilizing
its services.

Radio Module

The Radio Module provides communications services to the Signpost. To handle diverse
communication needs, it hosts cellular, LoRa, and BLE radios. An ARM Cortex-M4 mi-
crocontroller handles receiving messages through the shared I2C bus or via USB from the
Intel Edison and sending them to the appropriate radio interface. A U-blox SARA-U260
cellular radio is capable of both 2G and 3G operation at up to 7.2 Mb/s. However, it draws
up to 2.5W in its highest throughput modes [51]. A Multitech xDot radio module provides
LoRaWAN communications. Sending data through LoRaWAN is more sustainable from an
energy budget standpoint, with the module drawing less than 0.5W in its highest power
state [52]. Finally, the Radio Module includes an nRF51822 BLE SoC. This enables Signpost
to send real-time data about the environment to nearby smartphones. Providing three
communications interfaces allows Signpost to make decisions about which radio to use based
on quality of service, latency, throughput, and energy requirements.
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(a)

(b)

(c)

Figure 2.4: A populated Backplane (a), Control Module (b) and Development Backplane (c).
The Backplane serves as the Signpost interconnect, while the smaller Development Backplane
is the desktop equivalent, enabling easy module and application creation and testing. The
Control Module manages Signpost energy and provides services to sensor modules. Existing
sensor modules are also shown, with the RF spectrum and radar modules at the top and
bottom right of the populated Backplane respectively, and the environmental and audio
sensing modules on the top left and top right of the Development Backplane.

Sensor Modules

Four sensor modules have been created for Signpost and are in use. The existing modules
perform ambient environmental sensing (temperature, humidity, pressure, and light), monitor
energy in seven audio frequency bins ranging from 63Hz to 16 kHz, measure RF spectrum
usage within 15MHz to 2.7GHz, and detect motion within 20m with a microwave radar.
Each was made by a different student, including two undergraduates. All of the sensor
modules and the Signpost Backplane are shown in Figure 2.4.
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Service System Call Description
Init i2c_address = module_init(api_handles) Initialize module
Network response = network_post(url, request) HTTP POST data to URL

network_advertise(buf, len) Advertise data over BLE
network_send_bytes(destination, buf, len) Send via best available medium

Storage record = storage_write(buf, len) Store data
Energy energy_info = energy_query( ) Request module energy use

energy_set_warning(threshold, callback) Receive energy usage warning
energy_set_duty_cycle(duty_cycle) Request duty cycling of module

Processing processing_call_rpc(path, buf, len, callback) Run code on Linux compute
Messaging messaging_subscribe(callback) Receive message from a module

messaging_send(module_id, buf, len) Send message to another module
Time time_info = get_time( ) Request current time and date

time_info = get_time_of_next_pps( ) Request time at next PPS edge
Location location_info = get_location( ) Request location

Table 2.2: Signpost API examples. Abstract versions of several Signpost API calls for each
system service are shown. Providing a high-level API enables easier application development.

Module Software

To enable access to the resources on Signpost, we provide APIs for applications that abstract
away the specific details of messages sent over the shared I2C bus and allow module creators to
write software at a higher level. Abstract versions of several API calls are listed in Table 2.2,
including calls to allow module applications to POST data, write to an append-only log, be
automatically duty-cycled, start processes on the Intel Edison, and send messages to other
modules.

All API calls are layered on a minimal intra-Signpost network protocol. The library code
is written in C on top of a hardware abstraction layer requiring I2C master, I2C slave, and
GPIO implementations. We implement the library using the Tock operating system [53] for
our own development purposes and have ported the library to the Arduino [54] and ARM
Mbed [55] stacks to support a wider array of module designs.

Signpost supports multiple views on what it means to be an application. A module may run
one or more applications, and an application may be constrained to a single module, include
processing code run on the Intel Edison, exist logically across several modules connected by
the messaging API, or even across Signposts distributed around a city, connected by wireless
communications. An example of the Signpost software model is shown in Figure 2.2 where
one or more applications are running on heterogeneous sensor modules and accessing Signpost
services through a common API.

Development

In addition to the full, weatherproofed Signpost platform, a development version of the
system aids in creating and testing module hardware and software, as shown in Figure 2.4.
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The development Signpost supports two modules and a Control Module. While meant to
be wall-powered, it has the same isolation and monitoring hardware as a full Signpost,
allowing it to emulate various energy states, track module energy use, and disable modules
when they exceed their allocation. Rather than including radios, the development Signpost
implements the radio API, but sends data over a USB serial connection instead of an RF
link. Identical Control Module and Backplane hardware is used on both systems, allowing
desktop experimentation with applications that is faithful to deployed system.

2.5 Evaluation of Resource Sufficiency and Sharing
We evaluate the key claims of the Signpost platform, including deployability, the implications
of a deployable design on energy availability, and the ability to support multiple applications.
We also benchmark several Signpost services. Finally, given these capabilities and constraints,
we explore the types of applications capable of running on Signpost and how they interact
with system resources.

Deployment Metrics

A primary goal of the Signpost platform is deployability, and over the course of nine months
we deploy the platform on over 50 occasions, for varying lengths of time, at several locations.
In all of these deployments, we found Signpost to meet our deployability goals in both speed
and effort.

Specifically, we find that two students can deploy a single Signpost in less than five minutes.
In a specific case, it took less than 90 minutes to walk and deploy twelve Signposts across a
portion of the UC Berkeley campus. Although we take no precautions, the deployments have
experienced no vandalism or theft, even with Signposts placed near a popular concert venue
in an area with relatively high property crime. We believe that this indicates the platform is
unobtrusive and blends in with other city infrastructure. Approval for these deployments,
while sometimes slow for bureaucratic reasons, has been simple due to the non-destructive,
attachment method. While this level of deployability comes at the cost of energy availability,
a system with these properties greatly facilitates ad-hoc experiments and highly-granular
long term sensing applications.

Signpost Energy

This focus on deployability makes energy availability a fundamental challenge for Signpost.
We investigate the overhead of multi-tenancy and expectations for how much energy Signpost
can harvest.
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Platform Overhead

While supporting city-scale sensing is the purpose of Signpost, not all energy goes directly
to applications. In particular, multi-tenancy and platform services each incur overhead.
These costs can be primarily attributed to the static power of the regulation and monitoring
hardware, which have a total quiescent power draw of 13.2 mW. The components for module
isolation draw an additional 1mW, as do the microcontrollers on the Control Module, on
average.

Additionally, the over-sized charging and regulation circuitry has a lower efficiency than
similar circuitry designed to match the requirements of a single-purpose sensor. We measure
the battery charging efficiency to be 85% at a wide range of power inputs, and the regulator
efficiency to be 89% at all but the lowest power draws. Across the platform, this totals to
76% efficiency and a base power draw of 16 mW, less than 2% of the 50th percentile average
power budget and 6-18% of the 95th percentile budget. We believe this is an acceptable
overhead for the advantages of multi-tenancy.

Services provided by the Control Module, such as storage and location, are power gated
when not in use and do not contribute to the static power of the platform. If applications
request these services, their energy is attributed to the sensor modules using them. We find
the Intel Edison Linux module draws 15–24mW in sleep mode, the GPS chip draws 40mW
when tracking satellites, and the Radio Module sleeps at less than 1mW. The SD card is
enabled on demand, and therefore has no idle power draw.

Harvesting

A key enabler of deployability is the shift to a solar energy-harvesting power source. To further
increase deployability, it is preferable to make no assumptions about solar panel positioning,
and therefore expect the panel to be deployed vertically facing an arbitrary direction. We
evaluate the expected energy availability under these constraints in different locations, solar
panel directions, and times of year.

We start this evaluation by deploying four solar panels on sign posts in Ann Arbor,
Michigan, with one panel pointing in each cardinal direction. A building is located to the
south of the posts and a small hill directly west. For each panel, we record the open-circuit
voltage and short-circuit current at ten second intervals and estimate the power output of
the panels by assuming an 80% fill factor. Figure 2.5 shows the output of this experiment
for one week in July 2016 and one week in March 2017. We present both the instantaneous
output of each solar panel and the daily averages.

This experiment shows that the power availability of a Signpost is highly variable, ranging
from over 3.08W for the south facing panel on March, 22nd to only 219mW for the north
facing panel on March, 25th. We find that the direction, season, and degree of cloud cover all
contribute to this variability. While some of the variability can be buffered by the battery,
variability will inevitably be experienced by applications running on Signpost.
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Figure 2.5: Solar harvesting in four different cardinal directions and two seasons. The experiments are run in July
2016 and March 2017 in Ann Arbor, Michigan, with each including periods of both sunny and cloudy days. At left
is estimated power generated from solar panels mounted vertically in four cardinal directions captured in 10 second
intervals over a week. At right is the average daily power provided by each solar panel. There are large variations in
average power both due to direction and daily weather patterns. While some daily variations can be buffered by the
battery, Signpost will still experience variability in available energy to which it must adapt.
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Figure 2.6: Fraction of weeks when an application can expect a minimum power income at different latitudes and
cardinal directions. To evaluate how much power a Signpost application can expect under varying deployment conditions,
we model the solar harvesting potential of a vertical Signpost facing the four cardinal directions across the United
States. We use a standard solar model that accounts for both direct and diffuse light [56] along with hourly irradiance
data from the NREL MTS2 2005 dataset [57]. We group these locations by latitude, and also plot distributions for
Seattle, Washington and San Diego, California, where local weather patterns create poor and near-ideal solar harvesting
conditions, respectively. The per application expected minimum power is calculated by subtracting the static power
draw (16 mW) from the weekly average harvested power, dividing among an expected five applications, and multiplying
by the regulator efficiency (76%). We find that orientation generally has a stronger influence on harvested energy than
latitude or climate.
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To more broadly determine the expected power budget for a sensing application running
on Signpost, we create an energy availability model that predicts the average weekly power
available to Signposts at different geographic locations in the United States throughout the
year. The model is based on hourly direct and diffuse light measurements at 1,500 locations
around the United States from the NREL MTS2 dataset [57], and these measurements are
converted into expected power output using a standard harvesting model for tilted solar
panels which takes into account solar panel direction, angle, and the harvestable portion of
diffuse light [56]. We compare our model with the experimental data shown in Figure 2.5
and find the model strictly underestimates our experimental results by an average 3.3% on
sunny days and 22% on cloudy days. We believe this error primarily can be attributed to
diffuse light collection for north-facing solar panels, a scenario that is not well studied in solar
modeling literature.

The results of this model are displayed in Figure 2.6 as the fraction of weeks at which an
application will have a minimum available power. To generate this plot, we group the weekly
average power data by latitude, subtract the platform overhead and regulator efficiency losses
discussed in Section 2.5, then divide by an expected five applications (assuming one for each
available module slot on Signpost). In addition to showing data for each latitude, we also plot
energy available in Seattle, Washington and San Diego, California, which are particularly poor
and ideal solar energy harvesting locations, respectively, in the United States. We see that
the 95th percentile of available weekly average power ranges from 3.84 mW per application for
a north facing Signpost in Seattle, WA to 147 mW per application for a south facing Signpost
in San Diego, CA.

We conclude that, in general, the direction at which Signpost is placed impacts available
energy more than the latitude of the platform. This creates a tradeoff between deployability
and energy availability. While it is possible to entirely ignore orientation when deploying
Signposts, this comes at the cost of expected energy for some of the deployed systems. Putting
in care to avoid facing north when possible may be a sufficient compromise.

One aspect which is not included in the prior evaluations is potential shading from nearby
obstructions. This is a particularly real concern in urban areas where buildings are expected to
obstruct direct sunlight for portions of each day. The amount of shade a Signpost can expect
is, however, particularly deployment-specific and difficult to predict in a general fashion. For
example, due to its vertical orientation, even with a building directly to its east a west facing
Signpost can expect to harvest most of its predicted clear-sky energy. In our deployments,
we have found that Signposts deployed under moderate, continuous shade (under a tree in
this case) see harvested energy similar to a north facing, clear-sky Signpost.
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Managing Multi-tenancy

Signpost expects to host not just a single application, but several. Here, we evaluate how the
system responds to multiple demands to its resources simultaneously.

Energy Isolation

The primary resource that must be shared between all applications is energy. On Signpost,
we virtualize stored energy, making it appear to each application that they have independent
batteries. Stored energy in the battery is split into a “virtual allocation” for each application.
A virtual allocation is guaranteed to never deplete except when predictably spent. For
example, it will never be taken to support another application’s needs. This allows programs
to plan and make decisions based on available energy that are independent of the actions
and needs of others.

On an energy-harvesting platform, an additional question arises in how to distribute
incoming energy. A fair model distributes energy equally between applications, but there
must be a maximum allocation for each. If an application stores the energy it is given but
does not use it, its allocation would eventually expand to the entire capacity of the battery.
Instead, we define a maximum capacity for each virtual allocation. Harvested energy is then
divided between applications that are below maximum capacity. This adds variability to the
amount of energy an application receives based on the actions of other applications running
on the platform. However, this variability is no worse than the variability inherent to energy
harvesting systems in the first place. Policy choices and support for energy isolation are
discussed further in another work [49].

Figure 2.7 demonstrates energy sharing in practice. Three modules are installed on one
Signpost, each running a single application and given virtual allocations with a maximum
capacity of 10,000mWh. Data is shown for a 20 hour period, from night to night. The
deployed Signpost has a building directly to the east, only allowing it to harvest later in
the day. Displayed are the five-minute average power draws for each application and the
net power into the battery. Energy allocations are also reported every five minutes for each
module and the battery.

Each application has a different strategy for energy use. The first heavily duty-cycles
itself and is active for only a brief period every ten minutes. This results in an average power
draw of less than 4mW, and consequently its virtual allocation stays near or at maximum
capacity the entire time. The second application continuously draws 250mW, an amount
that cannot be sustained while the Signpost is receiving no direct sunlight. It eventually
exhausts its allocation and is disabled by the platform. Later in the day, when energy is
being harvested, it is allocated a portion of incoming energy and resumes operation. The
third application adapts to the amount of energy available to it, remaining in continuous
operation. Its power draw increases when the solar panel receives direct light, corresponding
to an increase in sampling rate in the application. As this experiment demonstrates, Signpost
is able to isolate the energy needs of applications from each other.
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Figure 2.7: Energy isolation on Signpost. Energy allocation and five-minute average power draw are displayed for three
simultaneously running applications and the platform as a whole. Each application employs a different strategy for
energy use. The first is only active for a brief period every ten minutes, achieving a low average power, and storing
up an allocation of energy. The second continuously runs, exhausting its budget, and is disabled by the platform, to
be enabled later when energy is available again. The third adapts its actions based on the available energy, running
continuously without depleting its allocation. Signpost is capable of balancing the needs of these three applications
simultaneously, assigning each a “virtual allocation” of energy it draws from without affecting the operation of the others.
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Figure 2.8: Communication policy in practice. The power draw of the Radio Module is shown
along with the number of messages queued to be sent. The communication policy is set to
automatically transfer data over a cellular connection if the queue reaches twenty messages,
as can be seen by the increased power draw. This policy allows the platform to adapt to both
increased application requests and poor network conditions by utilizing high-power resources.

Internal Communication

The Signpost design includes a single, shared, multi-master I2C network for internal com-
munication, such as requests to platform services. When multiple applications are running
simultaneously, this bus can be a source of contention. While the Signpost design expects
only a modest utilization of the shared I2C bus, in practice sensing events can often be
correlated and traffic can be bursty. Theoretically the listen-before-talk requirement of I2C
should make the bus achieve nearly 100% reception rates even in these scenarios, however
we observe that this feature is not implemented in all TWI/I2C peripherals. Assuming no
carrier sense capability, the I2C bus resembles the original unslotted ALOHAnet [58], and the
target utilization rate should be kept to the 20% proposed by ALOHA. This corresponds to
a total traffic of 80 kbps on a 400 kHz I2C bus, which we believe is sufficient for most sensing
applications. Applications that require higher throughput can make use of the optional USB
bus.

Microbenchmarks

Several services are important to benchmark due to their impact on the range and performance
of Signpost applications.

Communication Policy

Signpost provides multiple wireless interfaces. These have an advantage in supporting various
communication policies that determine how data should be be transmitted based on quality of
service needs and the current energy state of the platform. One simple policy is to primarily
use the lower power LoRaWAN radio for data transmission unless the message queue gets
too full, which could occur when applications have large amounts of data to transfer or in
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Figure 2.9: Resource usage of example applications. We break apart the major components
of usage for example applications into sensing cost, local computation, and network and
time service requests. Heavily duty-cycled applications such as the weather monitoring app
have nearly inconsequential average power. Applications performing constant sensing with
tight timing requirements both draw a higher total power and remit a greater share platform
power draw. Applications like spectrum sensing can achieve moderate average power draw
even with high instantaneous sensing power using duty cycling. Dynamically adjusting duty
cycling allows spectrum sensing to adapt to energy availability.

poor radio conditions when LoRaWAN bandwidth is limited. When the queue gets too full,
the cellular radio is activated and all queued messages are transferred quickly. In Figure 2.8,
we demonstrate an example of this policy. Poor communication conditions are emulated by
removing the LoRaWAN radio antenna, causing messages to be queued until the cellular
radio is activated to dispatch them, resulting in briefly increased power draw.

Synchronization

Some applications require coordination between multiple modules on a single Signpost or
between multiple Signposts, requiring tight synchronization [48]. On Signpost, a PPS signal is
routed to each of the sensor modules from the GPS to provide this synchronization. We find the
timing difference across Signposts to be 75 ns in the average case with a 95th percentile metric
of 97 ns. We observe little skew in the signal from Control Module to sensor modules (less
than 6 ns) and almost no variation from module to module. We expect this synchronization
precision to suffice for many applications, providing sufficient resolution for RF localization
on the order of tens of meters and sub-meter audio localization.
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Figure 2.10: Vehicle counting application. Several days of processed audio data are collected
in October 2017 for the vehicle counting application. Prominent peaks across several audio
frequency bands are used to detect vehicles. We plot estimated vehicles per minute averaged
over a one hour time window. The Signposts on University Drive are close, but do not have
completely redundant traffic paths. We note that Gayley Road sees traffic much later into the
night because it is a through street that routes around campus. Interestingly, all the Signposts
experience traffic until around midnight on October 14th, and after further examination, this
was due to a concert at a nearby venue. Clear peaks in traffic can be seen before and after
the concert, which started at 20:00.

2.6 Example Applications
Applications run on sensor modules and have access to system resources through physical
connections and software APIs. We design several applications (and sensor modules) and
deploy them on the Berkeley campus for several months. While applications written by users
will be different, these examples can inform the types of applications that are possible on
Signpost. We describe our applications, the platform resources they use, and some example
results. Figure 2.9 shows the power drawn by different components of the applications, broken
down into draw by sensors, local processors, and the communications and time services.

Weather Monitoring

The weather monitoring application uses the environmental sensing module to sample tem-
perature, pressure, and humidity every ten minutes, sending it to the cloud via the Signpost
network API. After the data reaches the cloud, it is posted to Weather Underground to help
support their goal of distributed weather sensing. The application achieves very low power
operation even without implementing sleep mode by using the energy API to power off the
sensor module between samples.
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uint8_t send_buf[DATA_SIZE ];

void send_samples (void) {
// Add a timestamp to the data
time_t time = get_time ();
memcpy(send_buf , time , sizeof(time_t ));

// Send data over network , allowing Signpost to decide how
network_send_bytes(send_buf , DATA_SIZE );

}

int main (void) {
// Initialize the module with Signpost
api_t* handles [] = NULL; // provides no services
module_init(handles );

// Collect audio data with an ADC , placing it into send_buf
adc_continuous_sample(SAMPLE_RATE , &data_ready_callback );

// Send samples every ten seconds
timer_every (10000 , &send_samples );

}
Figure 2.11: Example module software. This software snippet from the vehicular sensing
application collects averaged volume data for ten seconds and transmits it using the network
API. Timestamps for the collected data are requested from the time API and appended to
the data before transmitting it. Access to the Signpost APIs makes applications easier to
create.

Vehicle Counting

The vehicle counting application runs on the audio sensing module, which provides the volume
of audio in seven frequency bins collected up to 100 times per second. This module should
in principle allow high-level event recognition (e.g. vehicle detection), without capturing
recognizable human speech. The application records these volumes, averages them over a
second, and every transmits the results every ten seconds to the cloud using the network
API. To properly identify vehicle movement, the application must know the precise time
at which a volume sample is taken, so the time API is used to timestamp each batch. The
code for this application is shown in Figure 2.11, and the average power draw and resource
usage are shown in Figure 2.9. The requirement for precise timing information results in the
application being charged for a portion of the GPS power. Additionally, the local processor
must stay active to continually sample and process incoming audio volume data. Once the
data are in the cloud, it is processed to look for peaks that are indicative of a moving car.
An example of the output is shown in Figure 2.10.
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Figure 2.12: RF spectrum sensing application. A sample of RF spectrum data from October
2017 in three frequency bands corresponding to a local TV station (560 MHz), AT&T owned
spectrum (722 MHz), and Verizon owned spectrum (746 MHz). Distributed and fined-grained
spectrum sensing could help to build better models of RF propagation and inform policy
around the reuse of underutilized spectrum. The two higher frequency bands are particularly
interesting due to their cyclic nature.

RF Spectrum Sensing

The white space sensing application runs on the RF spectrum module and periodically
samples the energy on each of the TV white space channels (every 6 MHz from 470-830 MHz).
For thirty seconds, the spectrum analyzer reads the energy on these channels and computes
the min, max, mean, and standard deviation for each channel. The application then sends
this data with the Signpost network API and uses the energy API to power off. While the
duration for power off is currently set to three minutes, it could be adapted to available
energy without significantly degrading the utility of the application.

Three days of this data are shown for several interesting channels in Figure 2.12. While our
RF spectrum module does not yet meet the FCC requirements for a white space utilization
sensor, collecting distributed RF spectrum data can be used to inform RF propagation models
and inform policy about the reuse of underutilized spectrum.
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2.7 Lessons Learned: A Case for Dynamic
Multiprogramming and Resource Management

The goal of the Signpost platform was to lower the bar to deploying distributed sensing
applications within cities, and in some respects it achieved that goal. The platform made
it easier to build, deploy, and test new modalities of sensors. It alleviated the designer
from needing to think about the often-difficult to implement core services, and the energy
and communication resources provided by a signpost are sufficient to support many kinds
of sensors and many sensing applications. Furthermore, resource metering and hardware
isolation work well and enable the amortization of deployment and maintenance between
multiple sensors. From the outside, these properties met the goals of sensing as a shared
utility in the sense that users can effectively share Signpost, which lowers the bar to deploying
resource-constrained sensors.

One difficulty that the platform faced, however, was that the applications we could build
with sensors using Signpost were not particularly compelling. They were mostly simple,
sense-and-send applications. The level of sensing was severely constrained by the available
resources. Using the platform and its hardware resources for more complex functions was
extremely difficult. Even for simple applications, the extra burden of reacting to the resources
available to the sensor required a type of programming to which most developers are not
accustomed.

Building more complex, stand-alone applications, such as event detectors which performed
local signal processing or sophisticated filtering was difficult for several reasons: (1) writing
complex code in a low-level language like C is slow, (2) deploying new code iterations on a
Signpost sensor was risky because a bug in an update could prevent future updates, (3) code
could often only be tested in situ because the events being detected only occur in the field,
and (4) deploying and testing new code disrupted the collection of possibly valuable data
from the existing application.

Writing applications which coordinated between sensors running on multiple signposts or
even two sensors on the same Signpost was even more challenging, repeating all the challenges
of stand-alone applications stated above and additionally requiring the programmer to handle
coordination in the face of variable and constrained resources. This essentially required
each programmer to implement a bespoke distributed computing framework. We tried and
ultimately failed to implement several kinds of event detection and localization applications
on Signpost.

The team that designed signpost anticipated that programming the sensors, and specifically
running distributed applications across multiple sensors would be a key challenge in a
deployment of Signposts. Many of the early design concepts focused on this issue rather
than the hardware platform itself. In retrospect, we did not realize at the time that we
were trying to solve a challenging problem that spanned several domains. Conversations
jumped from around from the language and programming models we would use to describe a
distributed application, to the way each individual sensor would participate in the distributed
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application, to how multiple sensors producing different data streams could make their data
available to other programmers and applications, all while contending with the fact that an
operating system which provided multiprogramming, resource isolation, or even a snapshot
of what resources were available did not yet exist for this class of sensor or the dynamism we
anticipated.

Perhaps that is why we built signpost the way we did—to provide sensor builders with
the appearance of an operating system through a standard hardware interface at a time when
making a software operating system was too difficult due to heterogeneity and lack of hardware
isolation techniques in the embedded processor space. It’s clear now that unless one decided
to array a Signpost with five identical sensors, this platform-level resource metering and
isolation is foundational to, but did not help us achieve Signpost’s goal of making applications
easier to develop, and, more fundamentally, did not go far enough in enabling the idea of
sensing as a shared utility. Achieving this loftier goal requires two major additional steps.

The first is the ability to perform resource isolation and dynamically multiprogram an
individual sensor module. While at the time we knew this would be possible, and it is even a
architecture we call out in Figure 2.2, in practice, the Tock embedded operating system, was
not quite ready to support multiple applications at the time of Signpost’s implementation.
With multiprogramming at the sensor module-level, code iteration is de-risked because
the underlying multiprogramming abstraction can necessarily isolate misbehaving code,
production and development code and run simultaneously, and, if the goal is to enable a
shared sensing fabric, it can allow multiple users to use the sensors on a Signpost in an
application without necessarily needing to know how to build and deploy a sensor module.

The second requirement, alluded to above, is the need for a high-level programming
abstraction, especially for distributed applications. It should also be noted that nearly
every embedded sensing application is necessarily distributed at least between the sensor
collecting data and a cloud application that receives and processes that data, even if multiple
sensors are not involved. Today we rarely program other distributed systems by individually
programming each node in the system. Instead, a unified programming model is provided,
and a programming framework either statically or dynamically distributes code fragments
throughout the system and connects their inputs and outputs. This is true in distributed
data processing systems, and web frameworks, and these frameworks were created because
the alternative—thinking about and manually distributing the code to each element of the
system—is often untenable. In the case of a Signpost, or any resource-constrained sensing
system, the distribution requires knowledge about available resources to be centralized so
that a programming framework can make code placement decisions without exceeding those
resources. This is the topic we turn to next.
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Chapter 3

Advantages of Dynamic Local Processing

We would not need to write complex or dynamic applications for a platform like Signpost if
all sensor data could be streamed directly from the sensor to a more capable computer in
the cloud, and many existing sensing architectures and researchers argue for the simplicity
of deploying sensors which act as single-purpose data forwarders. In this chapter we push
back against the idea of sensors as statically-configured data forwarders, and motivate the
need for dynamic applications to be deployed to sensors for local data processing. We show
that it is not only currently more efficient to perform local processing on the sensor for
most applications, but that it is becoming increasingly more efficient over time. In addition
to efficiency, properties such as reliability and privacy also motivate the need for dynamic,
on-sensor compute as opposed to entirely cloud-based processing.

More philosophically, the ability to easily perform local computation at the source of the
data gives us access significant data that can be sensed but not communicated back to the
cloud due to resource constraints. Sensors which are confined to acting as single-purpose
data forwarders could not extract value from this data, and such an architecture assumes
that our knowledge of a sensor’s data streams is complete at the time of deployment. This
assumption of knowledge is often contradictory to the need to deploy a sensor in the first
place, and certainly contradictory to using resource-constrained sensors for novel science.
Dynamic applications are therefore necessary to realize the full value of a sensor deployment.

3.1 Efficiency
Placing sensors near the source of the data often puts the sensors themselves under resource
constraints. Because they are placed in the physical world, wires for communication and
power are costly and difficult to provision, and their size is constrained for practical and
aesthetic reasons, limiting the size of a sensor’s battery or ability to harvest energy from its
environment. The presence of these resource constraints often requires the sensor designer to
carefully optimize the use of energy on a sensor, including the decision of when to send data
to a computer with more resources and when to process and filter data locally.
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Traditionally, the amount of energy used to wirelessly communicate dominated a sensor’s
energy budget [59, 60]. In recent years, however, wireless radios and protocols have improved,
lowering the amount of energy required to send data. At the same time, the amount of energy
used by the processors to perform computation has also fallen significantly, and processors
have added features like floating point units (FPUs) [61] and special-purpose machine learning
accelerators [62, 63] to lower the amount of energy and increase the processing speed of
specific applications.

To determine the whether it is more efficient to perform computation locally or send
data to the cloud, we examine the energy efficiency of a range of wireless protocols then
compare the amount of energy to send data through those protocols to the amount of energy
it would take to process that data for a variety of applications on low-power processors.
Additionally we examine this trade-off over the last two decades to better understand whether
future energy efficiency trends will favor more or less local processing. We also discuss new
technologies such as backscatter communications that have the potential to dramatically
change this trade-off between transmission and computation.

Energy of wireless communication technologies

To perform an energy trade-off analysis, we need a catalog of the amount of energy required to
communicate using the wireless technologies commonly found on sensor nodes. An overview
is shown in Table 3.1. These technologies span from lower power and lower-range protocols
such as Bluetooth Low Energy (BLE) and WiFi, to long range and managed cellular networks
like LoRa and LTE, to newer IoT focused cellular protocols such as LTE-M and NB-IoT.

We see that the amount of energy required to transmit data spans four orders of magnitude,
largely due to the range of communication achieved which itself spans from tens of meters to
many kilometers. Even within a protocol, the energy required to transmit usable data can span
several orders of magnitude due to differences in transmit power between implementations,
the amount of energy required to startup the radio, and the overhead of protocol tasks such
as scheduling. Some protocols and radios have the ability to scale back the amount of energy
used based on needed range and network congestion, but often these options are discrete or
themselves have energy overhead. In Section 3.1 we use the best available energy efficiency
to compare the amount of energy required to send and process data using several select
algorithms.

Due to the wide range in energy per bit, to evaluate how the energy efficiency of wireless
communication is changing in time, and to subsequently compare that to the energy efficiency
of low-power processors, we must create a metric that standardizes communication energy
efficiency across protocols and implementations. To do this we use energy per bit per meter.
While this combined metric is an approximation and favors shorter range communication,
all options fall well short of the theoretical limits of wireless communication efficiency and
most technologies being compared have similar transmit ranges [64]. Wireless radios from
the recent past are compared using this metric in Figure 3.1.
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Technology Energy/bit (nJ) Throughput
Bluetooth Low Energy [65–67] 10 - 30 1Mbps
802.15.4 [66, 68] 63 -85 250 kbps
WiFi [69, 70] 3 - 1,000 72+Mbpsca

LoRa [71, 72] 3,500 - 361,000 980 - 21,900 bps
2G [73] 8,000 - 30,000b 239 kbpsc

3G [73, 74] 431 - 10,000b 2Mbpsc

LTE [74, 75] 500 - 10,000b 100Mbpsc

LTE-M [76, 77] 922 - 2,322d 300 - 375 kbps
NB-IoT [76, 77] 2,700 - 6,900 30 - 169 kbps
a The WiFi protocol and available radios are able to transmit much
faster than 72Mbps, but this analysis only includes radios focused on
low-power and embedded WiFi.
b Broad ranges in energy per bit are due to significant transmission
start-up cost. The lowest energy numbers are achieved during large
transmission at the peak data rate. For a single transmission energy
per bit could be as high as 500,000 nJ. c Max throughput is listed,
however throughput may be lowered when transmission is longer range
or during periods of higher congestion.

Table 3.1: An overview of the energy and throughput of various wireless communication
technologies. This provides a sense of the amount of energy a sensor using these technologies
may use to transmit data and the associated latency of transmitting that data. Note that
these technologies are not easily comparable. They operate at vastly different communication
ranges and networking topologies. Many of the technologies have the ability to scale data
rate up or down depending on the available link budget. For cellular technologies the energy
associated with starting a transmission and scheduling is significant and not easily included
in a single energy per bit metric. The presented numbers attempt to present the lowest
reasonable energy metric for each technology so that conclusions drawn about the amount of
computation that is optimal to perform locally are valid even for conditions that are most
favorable towards offloading data.

We see that the energy efficiency of wireless radios is improving exponentially in time and
that commercial technologies lag those presented in research by 4-6 years. We also see that
the trend of continuing efficiency improvements in active radios has not continued in recent
years, and that even across protocols, radios achieve similar peak efficiencies. This makes
sense as active radios are all bound by the same physical limitations and the same circuits
which improve efficiency for one protocol can be used in other protocols.
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Figure 3.1: The energy per bit per meter of low-power wireless radio technologies, including commercial technologies,
realized research technologies, and simulated or estimated research technologies. Distance is presented at the most
optimal efficiency and is calculated using published link budgets and the Hata model [78] with a 20 dbm fading margin
or from reported measurements. The use of the Hata model is an attempt to compare technologies across different
deployment scenarios and frequency ranges, but could lead to error in the calculated metric for indoor deployments.
We see an exponential drop in the amount of energy required to perform wireless communication over time and clear
4-6 year lag between efficiencies in the research domain and those available commercially. While energy efficiency
continues to improve, especially commercially, the improvements of efficiency in the research domain have slowed in
recent years. With the exception of Judo [79], no realized passive technologies are more efficient than realized active
radio technologies [80, 81]. From analyzing these trends there is no indication of an upcoming dramatic shift in wireless
communication efficiency that would change the energy optimal trade-off between the processing and sending of data.
The full dataset can be found in Appendix A
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One possibility for a discontinuity this trend is passive or backscatter radios which do not
use their energy to transmit a wireless signal, but instead rely on the energy of the powered
base station or access point and encode data in the signal reflected to the base station or
reader. Back-scatter radios in Figure 3.1 include Bharadia et al [82], Kellog et al [83, 84],
Talla et al [85], Zhang et al [80, 86], Varshney et al [79, 87], and Pérez-Penichet et al [81].
While this does not lower the energy of receiving data, which still must be extracted in the
same way active radios, it has the potential to significantly improve the efficiency of offloading
data from a low-power sensor to the cloud.

In practice, however, because a signal is reflected and not transmitted, it experiences
double the path loss, and the effective range of a passive radio is much lower than an active
radio using the same bandwidth, coding, and protocol. Additionally, with the exception of
Varshney et al. [79] no constructed and measured passive radio improves on the combined
efficiency metric of active research or even commercially available radios. It is unclear power
consumption results presented in simulation from Bharadia et al [82], Kellog et al [83], and
Talla et al. [85] would be as efficient if produced and measured. Given this, we do not
expect passive radios to dramatically improve the widely available energy efficiency of wireless
communication in the near future, but we may see ideas from passive radios like those in
Varshney et al. [79] help continue to improve efficiency at the current rate.

Trade-off between sending and processing

While the energy efficiency of wireless radios is improving, the energy efficiency of processors
is improving as well. More fined-grained power gating, lower power volatile and non-volatile
memory, and subthreshold technology has significantly lowered the active power of commer-
cially available low-power processors in recent years [88, 89]. To compare the rate of wireless
radio efficiency improvements to that of low-power processors we calculate the number of
processor cycles that could be performed per bit of information transmitted a 10 m distance
as a function of time, taking the most efficient commercial processor and radio available in a
given year, as shown in Figure 3.2.

We see that over time, and especially in the last 5 years, processor efficiency improvements
have outpaced radio efficiency improvements. This seems particularly tied to the release of
subthreshold technologies commercially [41, 88, 89], but, as can be seen in Appendix A, other
manufacturers who do not rely on subthreshold technology are also significantly improving
low-power processor efficiency. Additionally, this does not consider the hardware accelerators
or improved ALUs which can perform more complex instructions in fewer cycles that are now
included in low power processors [61, 62].

The relative rates of improvement, however, do not provide a sense of whether it is
advantageous to send data or process that data locally for specific applications. This depends
not only on the relative energy efficiencies of the wireless radio and processor, but also the
algorithmic efficiency for the specific processing that needs to be applied to the data. An
algorithm that requires more cycles for each unit input data will be relatively less efficient to
execute locally. The trade-off will also depend on the data compression rate of an algorithm.
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Figure 3.2: The number of MCU cycles that can be performed per bit of data transmitted a
10 m distance at a unit energy over time. A point is plotted in every year that a more efficient
processor or radio technology was released commercially. Energy per bit required for a 10 m
transmission is calculated using the energy per bit per meter metric presented in Figure 3.1,
and processor energy per cycle metrics are from published datasheets. We see that energy
efficiency improvements in low-power processors have recently significantly outpaced energy
improvements in wireless communication. This makes more local computation more energy
efficiency if it filters or ultimately reduces the amount of data that must be transmitted.
Complete data used to generate this figure can be found in Appendix A.

For processing that is used to perform event detection, this is directly proportional to the
fraction of events that are detected, while compressing data like an image only lowers the
amount of data sent by the compression ratio.

To understand this trade-off for real algorithms, we find performance metrics for commonly
used signal processing techniques, JPEG compression algorithms, and newer machine learning
inference models, and use those to ground the comparison between executing those algorithms
locally or sending the input data to the cloud. The results are shown in Table 3.2. Although
we cannot exhaustively catalog the algorithms used for every application, nor can we anticipate
the application trade-offs of sending data to the cloud compared to filtering it locally, the
analysis is still revealing. For instance, micro machine learning models have lower accuracy
on low-power processors than larger models that can be run on more resourceful machines [90,
91], and the importance of this accuracy difference will depend on the specific use-case. Still,
we hope these examples can inform the magnitude of this trade-off given current radio and
processor energy efficiencies.
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Wireless Technology
Algorithm Cycles Data Size BLE 802.15.4 WiFi LoRa 2G 3G LTE LTE-M NB-IoT Bharadia [82]d

Filter 4 4B 1.2K 7.6K 363 500K 1M 52K 60K 111K 327K 1.7
RFFT 32x1024 [92] 88K 4 kB 56 354 17 19.7K 45K 2.4K 2.8K 5.2K 15K 0.08
CFFT 32x1024 [92] 139 K 4 kB 35 223 11 12.4K 28K 1.5K 1.8K 3.3K 9.6K 0.05
FIR Filter 80 Tap [92] 257 80B 1.5K 9.5K 453 528K 1.2M 65K 75K 139K 407K 2.11
RMS Voltagea 12K 8 kB 800 5K 242 282K 646K 35K 40K 74.4K 218K 1.13
JPEG Compression [93]c 18.3M 147 kB 9.9 63 3.0 3.5K 7.9K 428 496 916 2.7K 0.01
VWW+MobileNetV2 [90]c 18.4M 48 kB 3.2 20 0.97 1.1K 2.6K 139 161 299 874 0.005
VWW+MobileNetV2 [90]c 53M 147 kB 3.4 22 1.03 1.2K 2.7K 148 172 317 929 0.005
VWW+TFLite [90, 91]c 4.8M 48 kB 12.3 77 3.68 4.3K 9.8K 529 613 1.1K 3.3K 0.02
DNN HotWord [94]bc 3.3M 48 kB 17.5 110 5.26 6.1K 14K 755 876 1.6K 4.7K 0.02
CNN HotWord [94]bc 78M 48 kB 0.7 4.6 0.22 258 591 32 37 68 199 0.001
a Assumes a 4K, 16 bit multiply-accumulates that take 3 cycles each, two loads, and single cycle multiply accumulate instruction.
b Assumes the running 50, 16x1024 FFTs on one second of 24 kHz, 16 bit audio to create feature vectors as input to DNN and CNN in line with [94].
c Actual processor power may be higher by 2-3x for high memory applications. Benchmarks are usually performed with a subset of memory banks active.
d Uses 0.015 nJ/bit presented in Appendix A. Range limited to 7m.

Table 3.2: The energy ratio of transmitting the input data over the specified wireless technology and performing the task
locally. Numbers greater than 1 are more efficient to perform locally. The processor is assumed to an ARM Cortex M4
with an FPU running at 20 µA/MHz and 3.3 V, which is efficient, but not state-of-the-art among modern MCUs such as
those listed in Appendix A. Energy to transmit the data uses the lowest energy per bit presented in Table 3.1. This is
favorable to transmitting the data as it is often only achieved in during large batch transmissions and doesn’t fully
account for scheduling overhead [74]. We see that even for the most computationally intensive published algorithms,
such as neutral networks designed to classify images and detect audio wake words on resource-constrained processors, it
is still more energy efficient to perform the task locally on all active radios except for the most intensive algorithms
using the most energy efficient radio technologies. The results for Bharadia et al. [82] are in simulation only and have a
range limited to 7 m, but represent the potential for future passive radio technologies to shift this trade-off if simulations
results are upheld in practice.
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We see that for nearly all combinations of algorithms and wireless technologies it is many
orders of magnitude more efficient to perform the processing locally compared to offloading
the data and performing the same processing in the cloud. The only exceptions are the
algorithms which take the most cycles for a given amount of input data paired with the
lowest power wireless communication technologies, and for the simulated passive WiFi radio
presented by Bharadia et al. [82]. The clear and lasting efficiency advantages of local execution
supports the need for a system that can enable easier and more dynamic applications for
resource-constrained embedded systems.

Latency and Cost Advantages

While sensor designers may be primarily energy constrained, the decision of whether to
transmit or process data also impacts latency and sometimes the cost of a system. The
optimal decision for both of these considerations is application-specific, but considering
common scenarios makes it clear that local processing is often advantageous.

Latency

Latency can be considered similarly to energy with the efficiency improvement directly
resulting from the ratio between communication throughput and the speed of the processor on
the sensor. Common embedded processors run from 64-192 MHz (see Appendix A. From table
Table 3.1 we can see that common low-power wireless protocols such as BLE and 802.15.4
range from 250 kbps to 2 Mbps, higher throughput protocols such as WiFi and cellular range
from 1 Mbps to 72 Mbps, and long-range, low-power protocols range from 1 kbps to 350 kbps.
Considering a 128MHz processor, the processor may be able to only perform 1-2 cycles for
every bit of information transmitted by the fastest protocols, but can perform 120 cycles
per bit for common protocols like BLE and up to 120,000 for the slowest protocols. The
similarity between cycles per bit transmitted at a unit energy and cycles per bit transmitted
in a unit of time means the efficiency of applications presented in Table 3.2 will be similar
to the efficiency trade-off in the time domain, with many applications performing at lower
latency if the processing is performed locally and only the result is transmitted.

Cost

Cost will only be a factor if the wireless communication technology being used charges per unit
data transmitted. This is most often the case with cellular technologies, but other schemes
have been proposed such as paying for mobile phone-based backhaul, and user-deployed
networks such as Helium [95–97]. Cellular pricing varies significantly with user-centric plans
providing data for less than 1 cent USD per MB [98] and plans designed for global sensor
networks charging as much as $0.70 USD per MB [99].

In table Table 3.3, we consider several applications including person counting, audio
keyword detection, and power grid monitoring, and show the cost of transmitting the full data
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Monthly
Application Type Data Cost ($0.01/MB) Cost ($0.25/MB)
Person countinga continuous 650 MB $6.50 $162.50
Audio keywordb continuous 82 GB $820 $20.5 K
Grid monitoringc continuous 21 GB $210 $5.3 K
Person countinga triggeredd 108 MB $1.08 $27.09
Audio keywordb triggerede 1.7 GB $17 $425
Grid monitoringc triggeredf 4.8 MB $0.05 $1.2
Person countinga localg 276 kB $ 0.01 $0.25
Audio keywordb localh 640 B $0.01 $0.25
Grid monitoringc locali 640 B $0.01 $0.25
a Assumes 224x224x3B images sent every 10 minutes. b Assumes a 256 kbps audio
stream. c Assumes a voltage wave sampled at 4 kHz. d Triggered for 4 hours per
day. e Triggered for 30 minutes per day. f 2 second slice triggered 10 times per day.
g One 64 B packet with counts sent per 10 minutes. h Ten 64 B packet with keyword
sent per day. i Ten 64B identified anomalies sent per day.

Table 3.3: The monthly cost of sending sensor data over the cellular network with varying
degrees of local processing. Often streaming continuous data is untenable, but anomaly
detection or local summarization can reduce data usage and the subsequent cellular cost to a
reasonable amount. Cellular costs are based on common costs for both consumer and IoT
cellular plans [98, 99]

stream compared to sending summarized or filtered data at two data costs. Local filtering
and summarization is often critical to keeping cost in check when using cellular backhaul,
especially when many sensors are deployed. As shown in Table 3.3, deploying applications
without at least some local filtering on cellular networks is often untenable, and the need
to tailor and modify the local filtering post-deployment calls for a system to facilitate the
deployment of these applications.

3.2 Opportunity
The increase in efficiency and decrease in cost afforded by local data processing would give
applications access to much more data than can currently be collected and analyzed in
the cloud. Much of this data would be traditional sensors sampled at higher rates than
we use them for in traditional applications. We see that many applications are enabled
by sampling these sensors at higher rates and fingerprinting and finding patterns in their
transient responses to events or in side-effects to other nearby physical phenomena.

Laput et al. shows that even a single sensor node with access to much higher sample
rate data from a host of sensors can enable a wide range of classification tasks throughout a
room [100]. They note that the three highest sample rate sensors—accelerometer, microphone,
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and EMI—are also the most relied upon for classification. While Laput et al. uses a single,
wall-powered sensor for this task, increased sensor density enabled by local processing would
very likely improve classification accuracy.

Several papers including Gambiroža et al. and Zhang et al. show that more intensive
processing on the transient responses of gas concentration sensors can improve accuracy,
reduce measurement time, and make the sensors more resilient to confounding factors such
as humidity compared to taking the steady-state response without processing [101, 102].
Burgués et al. show that the transient response of gas sensors can be used to estimate gas
source distance even without wind measurements [103]. Local processing could enable even
the more intensive processing chains such as the small LSTM model proposed by Gambiroža
et all to be run on resource-constrained sensors.

Power grid sensors such as µPMUs have the ability to detect many types of grid faults,
and, despite being powered, require significant cloud infrastructure and network costs to
collect and store their data [104, 105]. Local processing has the potentially to significantly
reduce the cost and increase the density of such sensor deployments leading to a better
understanding of the power grid.

We know about the value of the data powering these applications because researchers
have explicitly collected high frequency data about them, but this is not always possible.
Applications in which phenomena occur in hard to reach places, or are distributed among
many sensing points fundamentally can only be sensed by resource-constrained sensors. We
often do not and cannot know the value of the data coming from these places a priori. As
exciting as more dynamic and easier to deploy local data processing is for enabling the broader
and more dense deployment of the applications listed above, it is arguably even more exciting
for the applications yet to be discovered.

Unsupervised learning techniques running locally on sensors could tag abnormal events
without transmitting the full data streams that are sensed. Federated learning could be
optimized to minimize the energy of transmitting weights across the network link rather than
to reduce training time or latency, allowing for the learning of not just a local but global view
of abnormality or event classification [106, 107]. All of these enabled applications rely upon
easing the burden to write, deploy, and iterate the software running locally on distributed
sensor networks.

3.3 Reliability
Local computation on resource constrained devices, and application frameworks which support
the scheduling and placement of distributed applications within a local network, lessens the
network span and the subsequent likelihood of failure due to the network. This is especially
important in deployment scenarios with sparse or intermittent network connectivity, but
networking reliability even in common home deployment scenarios is worse than one might
expect.
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Bischof et al. show that according FCC datasets many providers only achieve 99% uptime,
or 864 s of downtime per day, of network reliability with a 10% packet loss threshold [108].
This can be especially frustrating for local sensor-control loops where IoT device actuation
is hampered by poor connectivity. Additionally, most power outages correspond to internet
outages in areas with cable broadband. A study of smart home users found that 34%
reported frustration with a smart home device due to a power or network outage [109]. These
infrastructure outages do not include the potential outages of the cloud services on which
resource-constrained devices that service as data forward may rely. Indeed many users noted
that they experienced smart home device down time during a lengthy AWS outage [110].
Even in non-control scenarios, network down-time causes issues in data collection if local
processing is not possible. Embedded devices often have limited storage, so if events are not
processed and summarized locally, data may not be transmitted after the network is restored.
A system which can deploy parts of an application locally in a reliability-conscious manner
could eliminate these drawbakcs.

Beyond just network reliability, the ability to dynamically schedule devices to perform
different tasks through a overarching programming framework could be used to more broadly
support application reliability. Just as cloud processing frameworks like Apache spark
reschedule lagging or failed tasks [111], sensing frameworks could reschedule sensing tasks
from sensors that have run out of energy or processing tasks that were deployed to local
gateways. This dynamic and re-taskable view of the sensor network could not be achieved by
static data forwards.

3.4 Privacy
Even if distributed sensors could collect and stream raw data back from the cloud its unclear
whether they should. Privacy is one of the top concerns of users in smart home systems [109,
112] with particular worry being focused on sensors such as microphones and cameras [113].
The ability to locally process or otherwise decimate data from these rich but invasive sensors
may enable applications which would otherwise be untenable due to privacy concerns. Sensors
could even be built with hardware limitations to constrain the amount of data that could be
exported wirelessly.

If sensors do not process data locally, applications could still be deployed to process data
within a user’s home network or administrative domain without needing to offload data
to cloud. This would be enabled by a distributed programming framework which includes
resource-constrained sensors and other local computers. More generally, having the ability to
dynamically decide where code is executed can enable us to choose where data is processed
based on privacy concerns. This offers more granular control than a binary decision about
whether data is too sensitive to be sent to or stored by a third-party server.
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Chapter 4

The Landscape of Utility Sensing

Closely related influential work for enabling utility sensing for resource-constrained sensor
networks draws on several threads of research. The distributed sensing community has long
realized the difficulty of deploying and programming sensor networks. Some solutions attempt
to ease programming with frameworks for programming sensors as individual nodes or as a
collective (referred to as macroprogramming). Other solutions aim to amortize the cost of
deployment and maintenance by enabling multiple parties to share a resource-constrained
sensor or by enabling a single user to deploy multiple, isolated tasks. Both of these approaches
recognized the performance, reliability, and privacy advantages of pushing more compute
onto the sensor, but they have not been combined together, with frameworks for sensor
network macroprogramming targetting a specific problem or application domain and sensor
multiprogramming focusing on easing the challenge of writing programs for individual sensors
rather than for an entire network.

At the other extreme, and largely simultaneously, similar problems as those being experi-
enced by the distributed sensing community were being tackled by cloud computing researcher.
In this setting, large numbers of commodity machines needed to coordinate to perform a
range of computing tasks, and these machines needed to be shared among many developers
using them for distinct purposes to amortize the capital and operational costs of the machines.
Computing frameworks were developed that were easier to use than the most comparable
high performance computing frameworks that came before them [111, 114]. New isolation
techniques allowed for finer-grained sharing of resources such as memory, compute, and
networking [115]. Of course this community had the advantage of a standardized and capable
operating system on which to build, and they didn’t need deal with platform heterogeneity,
unique scheduling difficulties, or resource constraints common in distributed sensor networks.
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Name Key Idea Resource-
constrained

Multi-
programming

Macro-
programming

General-
purpose

TinyOS [123] An embedded OS with lim-
ited dynamic value dissem-
ination capability.

✓ ✓

Maté [118] A sensor network-specific
virtual machine language
and runtime.

✓ ✓

Impala [124] A sensor network-specific
application framework and
runtime for running multi-
ple, dynamically loadable
programs on a sensor node.

✓ ✓

SOS [125]a An embedded operating
with dynamically loaded,
cooperatively scheduled
modules.

✓ - ✓

SensorWare [126] A sensor network-specific
language and extendable,
multi-programmable run-
time.

✓ ✓

Darjeeling [119] A Java virtual machine for
microcontrollers

✓ ✓ ✓

Tock [53] Embedded OS that enables
multiprogramming and a
true separation between
user space and kernel space
with hardware memory pro-
tection.

✓ ✓ ✓

WASM [127] Web Assembly. A language
and VM bytecode format
with compile-time bounded
memory access.

✓ ✓

WAMR [117] A WASM runtime target-
ting microcontrollers with
limited memory.

✓ ✓ ✓

eWASM [128] A WASM runtime and
paired ahead-of-time
compiler enabling better
fault isolation for resource-
constrained devices.

✓ ✓ ✓

Micropython [129] A Python runtime for mi-
crocontrollers.

✓ ✓
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Name Key Idea Resource-
constrained

Multi-
programming

Macro-
programming

General-
purpose

DFuse [130] A programming framework
and API for dataflow pro-
gramming and an algo-
rithm for scheduling these
tasks based on energy avail-
ability.

✓ ✓

Kairos [131] A macroprogramming
framework and complemen-
tary sensor node runtime
for sensor network-specific
tasks.

✓ ✓

TinyDB [121] Query Sensors as a dis-
tributed database with ex-
tended SQL.

✓ ✓ ✓

Regiment [120] A macroprogramming
framework and language
for processing spatio-
temporal sensor data
streams.

✓ ✓

Ravel [122] A programming framework
and language for compil-
ing and distributing a high-
level application between
cloud, gateway, and sensor
components.

✓ ✓

YARN [132]b A resource manager and
scheduler for cloud com-
puting frameworks like
Hadoop’s MapReduce

✓ ✓

Kubernetes [133]b A container orchestration
framework, scheduler, and
associated resource man-
ager for deploying micro-
services on cloud comput-
ing clusters.

✓ ✓

Mesos [134] A resource manager that
enables multiple comput-
ing frameworks to share a
computing cluster

✓ ✓ ✓

Hypriot [135] Enables containerization
on less-resourceful unix de-
vices.

✓ ✓
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Name Key Idea Resource-
constrained

Multi-
programming

Macro-
programming

General-
purpose

DDFlow [136] A Visual program language
and runtime which dynam-
ically distributes dataflow
tasks among edge devices.

✓ ✓

ENORM [137] A resource manager for
scheduling computing
tasks on nearby unix-based
compute nodes to reduce
networking latency and
overall traffic.

✓ ✓

ParaDrop [138] A resource manager and
container orchestration
framework for wireless
access points.

✓ ✓

AWS Green-
grass [139]c

An IoT device manager and
distributed application run-
time.

✓ ✓

Azure IoT
Edge [140]

An IoT device manager and
edge container orchestra-
tion framework.

✓ ✓

a While technically multi-programmable, the lack of isolation between modules limits its utility.
b These can execute general purpose code, but tie the user to a single computing framework or orchestra-
tion interface. One could build a general framework on top of these. c Both Azure and Greengrass core
runtimes extends into the local network but not onto resource-constrained devices, which are statically
programmed data forwarders.

Table 4.1: An overview of related work on utility sensing covering select projects from re-
search on resource-constrained networked sensors, cloud computing, and edge/fog computing.
More focus is given to projects which enable the programming and management of resource-
constrained devices. The number of programming frameworks, schedulers, and container
orchestration frameworks targetting unix-based edge devices is too great to enumerate here;
while the ideas in these papers may be helpful, they do not enable their applications to extend
to resource-constrained devices [116]. We see that research targetting resource-constrained
devices generally does not offer all three of multiprogramming, macroprogramming, and a
general-purpose compute framework. Many are either underlying technologies which can
enable general-purpose multiprogramming on a single device [53, 117–119], or macroprogram-
ming frameworks which are limited to executed an application-specific task [120–122]. Cloud
computing frameworks and resource manager enable general-purpose multiprogramming and
macro-programming but rely on underlying containerization and virtualization technologies
which are not available on resource-constrained embedded devices.
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More recently the edge and fog computing efforts have split the difference between these
two approaches. Some efforts have adapted solutions built for cloud computing to run in
more distributed networks and proposed scheduling and placement solutions that are unique
to edge computing. They have also proposed some solutions to the issue of heterogeneity,
as their target machines cannot be assumed to have relatively standardized resources or
performance. These solutions, however, largely ignore resource-constrained sensors, still
requiring enough compute and memory to run a Unix-based operating system so that they
can take advantage of the languages, interpreters, and isolation mechanisms that are common
in the cloud. We use this chapter to summarize and describe each of these efforts, highlighting
their contributions to achieving the vision resource-constrained utility sensing, and noting
where they fall short.

4.1 Resource-Constrained Multiprogramming
The early days of sensor networks witnessed a push to make them more capable and more
dynamic. Operating systems like TinyOS were built to abstract the intricacies of specific
hardware, and new languages and node programming models were developed to make real-time
and interrupt-driven code easier to write and more fault tolerant [123]. Those early operating
systems, and indeed most deeply embedded operating systems today [141–143], existed as
library operating systems which compile with the application into a single binary. Despite
functioning much like an operating system from the point of view of the programmer, they did
not provide the isolation and fault tolerance required to execute multiple, mutually-distrustful
applications or even execute a core process, such as a terminal, which could restart a crashing
program or receive updates. Low-power and resource-constrained processors then, and still
today, lack virtual memory which is traditionally used for process isolation, making it very
difficult to build a fully-fledged, Unix-like operating system [61]. Meanwhile, software-based
techniques like software fault isolation (SFI) required binary rewriting, which could not be
guaranteed on heavily resource-constrained hardware [144].

In response to this issue, and to solve the co-occurring problems of highly bandwidth
constrained network links and energy constrained sensors, researchers developed light-weight,
sensor-specific virtual machine (VM) languages and runtimes. These runtimes could receive
much smaller byte code and then interpret, execute, and isolate their failures in software.
Maté pushed this forward as a way to isolate failures and reduce the size of code updates [118].
Later sensor VMs such as Impala and SensorWare explicitly supported the execution of
multiple programs in their runtimes [124, 126], while SOS supported the dynamic loading and
execution of modules by its VM, although these modules were assumed to be cooperative [125].
All of these virtual machine languages were largely sensor-specific and were proposed both as
virtual machine instruction sets and as a programming model rather than as intermediary
targets for higher-level or more general languages. Their simplicity and specificity reduced
the size of the VM byte code and made the runtime less resource-intensive and easier to
implement, but these properties also limited the generality, portability of these systems.
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To increase the generality of these solutions while keeping the benefits of a virtual
machine, runtimes and interpreters for common byte code formats and high-level languages
were implemented. There have been several Java Virtual Machine (JVM) implementations
targetting resource-constrained processors [119, 145, 146], projects such as MicroPython
to interpret Python on embedded systems [129], as well as interpreters for Lua and other
languages [147]. Unfortunately, very few of these runtimes are still maintained, and the ones
that are maintained use a significant portion of the processor’s resources for the runtime itself.
These VMs do not save energy or provide a better sensor programming model like the sensor-
specific languages and runtimes, and while they may technically enable multiprogramming
and fault isolation, this was never their explicit purpose, and it may not have been possible
to run many programs given the runtime’s own outsized resource footprint.

Since these early embedded VMs and operating systems, we’ve seen two major develop-
ments. The first development is the emergence of hardware memory protection units (MPUs)
in microcontrollers [61]. While not as robust as virtual memory for memory isolation, MPUs
can be configured to isolate multiple applications without significant software overhead. Tock
uses the MPU to create an embedded OS that functions more like a traditional operating sys-
tem, with a separately loadable kernel, a syscall boundary, and multiple, isolated applications,
but without relying on virtual memory [53].

The second development is that the speed, memory, and efficiency of low-power micro-
controllers has increased significantly over time as shown in Appendix A. In fact, low-power
microcontrollers are now on par with the PDP-11 mainframes used to build the original
Unix system, which had 144 kB of RAM and 1 MB of disk [148]. This increase in processing
power could now enable VMs, such as resource-constrained JVMs, to run without consuming
significant portions of a processor’s resources. Recently, there have been efforts to make
WebAssembly (WASM), an assembly language and bytecode format originally designed to
execute efficient, portable, isolated program in the browser [127], run on resource-constrained
microcontrollers. Several runtimes including WAMR, WASM3, and eWASM exist to execute
WASM bytecode through interpretation, just-in-time compilation, or ahead-of-time compi-
lation on resource-constrained systems [117, 128, 149]. WASM runtimes are particularly
appealing because with a trusted WASM bytecode compiler, memory safety can be guaranteed
with much lower software overhead than a traditional VM, or the bytecode can be compiled
to the target architecture ahead-of-time for near-native performance [149].

The ability to multi-program individual sensor nodes is crucial to the development of
sensing as a shared utility. It is the foundation for the execution of programs by mutually-
distrustful parties, the deployment of multiple programs by the same user for testing and
development, and even the reliable iteration of a single program to ensure there is a computing
base to receive an iteration on failure. Multiprogramming alone, however, is insufficient as it
does not abstract the programming of multiple nodes away from the user, nor does it provide
a system for dividing the available resources, only isolating the resources once divisions have
been made. Without a system to enable dynamic program deployment and resource sharing,
multiprogramming capabilities may not be utilized, as its often unnecessary for a single user
to build and run multiple programs at the time of deployment.
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4.2 Macroprogramming
It is difficult to program a distributed system by individually programming each piece of
the system. Instead, we create computing frameworks which provide a unified programming
model that facilitates the decomposition and distribution of the individual pieces throughout
the system. This is true for the web, where we have built frameworks to distribute code
between the client and server, and true for big data processing where we build frameworks
to distribute parallel computing tasks. The same is true of distributed sensing systems for
which programs are either distributed throughout a network of sensors or partitioned across
a sensor network and the cloud.

The difficulty of programming a full network of sensors by writing code for the individual
nodes was quickly realized and frameworks were created to program the nodes collectively;
these frameworks were called macroprogramming. Early macroprogramming frameworks
like Regiment, Kairos, and DFuse enabled users to specify a query, objective, or data-flow
in a high-level programming language, then parsed and distributed programs throughout
the sensor network [120, 130, 131]. These systems primarily focused on the processing
within the sensor network itself as opposed to processing distributed between the sensor
network and servers or cloud computers with more resources. DFuse proposed energy-
aware scheduling, while Regiment focused on the spatio-temporal aspects of in-network
processing [120, 130]. Ravel proposed a domain-specific language which enabled a compiler to
automatically decompose a program between the sensor, a local gateway, and the cloud [122].
All of these macroprogramming systems enabled a single instance of the distributed program
to run within the sensor network rather than allowing for multiprogramming. While at the
time of their writing these macroprogramming systems could have used one of the existing
sensor-specific virtual machines, this did not occur. Understandably, the combination of
macroprogramming and multiprogramming requires that at the time of program distribution,
the programming framework be aware of the available resources on each node and then use
that information for scheduling. Unfortunately such a capability never materialized in the
multiprogramming solutions nor in the macroprogramming frameworks.

TinyDB enables multiprogramming and macroprogramming by allowing queries to be
specified in an extended version of SQL and then sent, parsed and distributed in a sensor
network [121]. Multiple queries could be run simultaneously. TinyDB also implements other
database-like optimizations, optimizing sensor power by batching sampling events, automati-
cally pushing local filters to the sensor node, and not sampling sensors that cannot impact
the results of the query. TinyDB enables multiprogramming through a query prioritization
service that combines data in a data stream together through averaging or drops data that
does not impact the resulting value of the data stream. If it still cannot keep up with the
number of requested queries, low priority results are dropped. TinyDB also proposed potential
optimizations such as combining queries with redundant data [121].

We believe TinyDB gets closest to enabling sensing as a shared utility, but fails in one
key regard—it limits the programmer to using its narrow, SQL-like programming language.
All of the macroprogramming frameworks discussed have a similar flaw, prescribing their
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programming model as the only way in which to program the sensor network. We note this
limitation in the “general-purpose“ column of Table 4.1. In practice, the requirements of
a programming model are as diverse as the applications they serve, and it is unlikely one
programming model or language can serve all of these needs. SQL may work very well for
writing exploratory queries or returning periodic aggregations, but hinder complex signal
processing or stateful filtering. The sensor-gateway-cloud architecture proposed by Ravel may
work well for home automation, but does not enable on-sensor, in-network processing. We
believe that this lack of generality, expressiveness and extensibility, combined with the lack of
processing power and memory available at the time these frameworks were created, explain
why these earlier efforts have not seen broad adoption or maintenance. Moving forward, we
hope that the ideas from these earlier macroprogramming frameworks can be adapted and
can coexist simultaneously for sensing as a shared utility, even on the same node or network.

4.3 Utility Computing in the Cloud
The modern cloud is the best representation we have of utility computing. At a datacenter-
scale, machines are run and partitioned among many customers, and the cost of running the
machines is amortized across these customers. Individual customers can program clusters of
these machines using programming frameworks and container orchestration systems which
handle the distribution and scheduling of tasks as well as the monitoring and restarting of
these tasks on failure.

These cloud programming and container orchestration systems consist of several key
components. At the core is a pool or cluster of machines with some resource isolation
mechanism, whether full virtualization or something lighter-weight like containerization or
Linux cgroups [150, 151]. These machines run a local monitoring program to communicate
their state, configuration, and available resources to a central cluster manager, which may
run on a single machine or group of machines running some consensus protocol. Users then
submit tasks to this cluster manager, either directly by specifying individual binaries and their
dependencies, or through a framework which parses high-level application code and submits
one or more jobs to the cluster manager on behalf of the user. Finally a scheduler, either
executed by the cluster or by the framework, places tasks onto individual nodes based on
their resources and the cluster manager completes the execution of these tasks and monitors
their state.

This high level architecture is consistent across the earliest cluster management systems
such as Google’s Borg [150], later adaptations of these cluster managers like Omega and
Kubernetes [133, 152], application-specific frameworks and resource managers like Hadoop’s
MapReduce and YARN [132], and other resource managers like Apache Mesos [134]. Often
complementary services are also run on the cluster to aid in programming like a distributed
file system [153]. There are, however, several key differences in how a user or framework
interacts with each of these cluster managers.
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Borg and Kubernetes both allow jobs to be deployed with a set of configuration files which
specify environment settings, networking requirements, failure semantics, and scheduling needs
within the cluster. The cluster manager is responsible for applying this configuration state
and using an internal scheduler to place tasks such that they satisfy the configuration [133,
150]. Because the configuration files specify a state, the their controllers will also try to
maintain that state, restarting jobs on failure, automatically rescheduling tasks upon node
failure, and even preempting and moving tasks to meet the needs of higher priority jobs. This
gives a user little control over task scheduling intricacies and lends these cluster managers
to long-running container orchestration workloads as opposed to faster-paced, interactive
workloads. YARN is similar in that it is intended to only work with one computing framework,
Hadoop’s MapReduce, and includes a scheduler in the resource manager which knows how to
schedule MapReduce jobs [132]. The tight coupling of these frameworks to their programming
models is why we do not consider them “general-purpose“ in Table 4.1, although dynamic
configurations could certainly be applied by a framework rather than a user in Kubernetes or
Borg to make them more general-purpose.

Mesos goes to the other extreme, providing basic resource management, task distribution,
and isolation, but provides no scheduling or task monitoring facilities [134]. Instead it is
expected for computing frameworks to query the current resources of the cluster and the states
of their currently running tasks, and use this information to submit new tasks or task restarts
along with their placement information to Mesos through the Mesos API. This was intended
to allow for multiple non-cooperative frameworks, each with their own scheduling constraints,
to share a cluster. Frameworks that use Mesos are therefore necessarily programmatic, as
users cannot easily express full scheduling decisions or directly monitor the tasks that they
submit.

While all of these systems directly enable utility computing, as shown in Table 4.1, none
of them can operate on resource-constrained sensors. All expect isolation mechanisms that
depend on virtual machines, containerization, or Linux cgroups. The components of their
resource managers which run locally on each node are often too resource-intensive to execute
under memory and CPU constraints, and they all expect the cluster to be deployed within
the same subnet, which is not possible in most sensor network deployments.

More fundamentally, these cluster managers target almost exclusively compute, memory,
disk, and networking resources, and make scheduling decisions based only on the availability
of these resources and on data locality within the cluster [134]. The resources they manage
are largely uniform, and a unit of CPU or memory is comparable to other nodes in the cluster.
A cluster manager for sensor networks must also manage sensors and actuators as available
resources and make scheduling decisions based on their capabilities and other metadata such
as physical location. Furthermore, sensor nodes, gateways, and cloud machines that could be
part of a sensor network cluster have vastly different capabilities by orders of magnitude, so
a scheduling algorithm would need to be aware of this heterogeneity of CPU and network
performance when making scheduling decisions.
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Non-standard Device Management in the Cloud

With the recent rise of GPUs, neural-networking accelerators, and FPGAs in datacenters,
cluster managers have started to enable scheduling based on the presence of devices beyond
CPU, memory, networking, and disk. This is similar to the need for a sensor network cluster
manager to view sensors and actuators as resources. Kubernetes supports a device plugin
which allows for each node to register devices by vendor and type with the Kubernetes node
manager (kubelet) [154], and Mesos’s resource types in principle allow the registration of any
resource, and only limits the types of resources by convention. These capabilities are limited,
but can serve as a basis for incorporating sensors as resources in a managed cluster of sensors.

4.4 Resource Management and Programming
Frameworks for the Edge and Fog

Many projects have pushed to form clusters of computers outside of cloud settings, including
projects which attempt provide computing as a shared utility in “edge“ and “fog“ contexts.
Volunteer Edge Computing systems enable the distribution of computation for a shared
goal across wide-area networks of computers, addressing challenges in resource monitoring,
management, and task scheduling [155, 156]. These efforts were eventually extended to mobile
phones as they rose in ubiquity. FemtoClouds and Serendipity both focus on in-network
compute and localized clouds for clusters of phones, enabling phones to offload compute to
other nearby phones with more available resources [157, 158], where as Maui proposed a
programming framework for the automatic distribution of code between phones and other
machines for phone resource optimization [159]. These projects share the goal of creating
clusters out of physically distributed, mobile, and somewhat more resource constrained
machines, and their proposals for scheduling and networking contribute to the goal of sensing
as a shared utility, but none of these systems directly target highly resource-constrained or
non-unix-based systems.

The rise of smart homes, the IoT, and generally the presence of programmable gateways
and computers in the local network has led to a dramatic increase in interest in fog and
edge computing in recent years. We should note that, somewhat paradoxically, “edge“ in this
case does not refer to the most resource-constrained nodes at the end of a network graphs,
but instead the gateways, access points, base stations, and other programmable in-network
devices that are the last hop before the most resource-constrained devices. This field of
work claims similar advantages as those discussed in Chapter 3—by placing compute in the
network on these local gateways, latency can be reduced, reliability can be increased, and
privacy can be better preserved. We see that underlying technologies such as containerization
and other isolation mechanisms are being adapted to run on the architectures and processors
commonly found on these devices [135, 160, 161].

Multiple resource managers and distributed programming systems have been proposed to
facilitate the programming and scheduling of code on these edge and fog devices. Most of these
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architectures are quite similar to those used to manage and program cloud-based resources.
ENORM proposes a resource manager for gateway-class devices that can enable local devices
such as phones to offload compute to the gateways [137]. ParaDrop similarly proposes a
resource manager and Kubernetes-like configuration-based programming framework that
allows services to be deployed on access points inside of containers [138]. Other projects,
such as DDFlow, focus on the programming model, and schedule dataflow tasks throughout
the network of devices [136]. The work in this space is quite extensive, and often algorithmic,
focusing on the optimization of scheduling algorithms for specific constraint scenarios. Hong
et al. provide a good overview and taxonomy of these efforts [116]. Finally, Amazon
AWS GreenGrass and Microsoft Azure IoT provide similar solutions, extending container
orchestration and function-as-a-service architectures to local Unix-class gateways. These
gateways can receive data from local sensors and process the received data [139, 140].

Unfortunately, none of these systems target or can support resource-constrained sensors,
and all of them regard such devices as static data forwarders. The misappropriation of the
word “edge” to a class of devices that are not actually at the edge-most connected computing
devices in the network suggest that perceived lack of capability and programmability of these
resource-constrained devices. While the algorithms developed to schedule under constraints
more similar to a resource-constrained sensor network could help, and the programming
models to program these gateway-class devices are relevant to programming models for
sensors, none of these systems offer a functional codebase upon which to construct sensing as
a shared utility.
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Chapter 5

Resource Management for
Resource-Constrained Sensors

After reflection upon failing to sufficiently enable sensing as a shared utility in the Signpost
platform, as discussed in Section 2.7, it was clear that achieving the goal of utility sensing
requires three key abstractions: (1) Multi-tenancy not only in hardware but also in software
because it de-risks code iteration by ensuring a reliable computing base, enables simultaneous
testing and development, and amortizes the hardware, deployment, and maintenance cost
among multiple users or applications; (2) Macroprogramming frameworks abstract the
intricacies of writing and deploying distributed applications, which are fundamental to sensor
networks, and (3) Generality, or the ability for multiple programming models or frameworks to
coexist, which is critical to meeting the needs of multiple applications or a single application
moving through its life-cycle from discovery, to testing, to production.

While alluded to in Chapter 4, we now briefly discuss the interdependence of multipro-
gramming, macroprogramming, and generality, as it relates to resource-constrained sensors.
In Section 4.1, we see that the ability to multiprogram resource-constrained sensors has been
present for nearly two decades, however these solutions did not enjoy broad adoption or
experience long-term maintenance. We propose that it is because without macroprogramming
and generality, there is no clear advantage to multiprogramming sensors. Consider early
multiprogramming systems for mainframes or even desktops; in both of these scenarios there
was at least one person, and often many people for every computer. To take advantage of
the multiprogramming systems, multiple users would connect and submit programs to the
computer. Even in the desktop space where the ratio of users to computers is more balanced,
users can manually control multiple tasks for the computer. In a sensor network, it’s simply
not feasibly to engage with multiprogramming through direct interaction with each sensor,
as there are too many. The only way to take advantage of multiprogramming is through the
leverage offered by a macroprogramming tool.

From the other perspective, macroprogramming is much less useful, and nearly impossible,
without multiprogramming. First, because multiprogramming is the foundation for reliable
code updates, and the interactivity that is theoretically enabled by macroprogramming largely
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comes from the ability rapidly iterate and test new ideas across an entire network of sensors.
It is not something one would risk if it could render hard-to-reach sensors inoperable. Second,
because the ability to take advantage of generality and multiple macroprogramming frame-
works depends on deployed sensors continuing to be useful during testing and iteration, which
requires multiprogramming. Beyond the inherent difficulties of maintaining an engineering
project that starts as a research project, it may be that neither the multiprogramming nor
the macroprogramming solutions in Chapter 4 continue to exist because they were not built
together, and there was never a reason for their convergence.

To enable all three of these functions simultaneously, we look to solutions which enable
utility computing in the modern cloud, cataloged in Section 4.3. At the core of each of the
solutions is a resource manager. The resource manager coordinates multiprogramming by
working with node-level isolation mechanisms to distribute, start, and restart tasks that
are limited to specific resources. In the cloud these are often containers, but that is not
fundamental to the resource manager itself. The resource manager enables programming
frameworks to macroprogram clusters of computers by providing an interface for tasks
to be started on multiple nodes with these resources constraints. Differing degrees of
generality in programming frameworks are enabled depending on the specific resource-manager
implementation and how it distributes resources and handles task execution requests.

Adapting existing Resource Managers

When we set out to implement a resource manager for resource-constrained sensors, the first
consideration was whether an existing resource manager, such as Kubernetes, YARN, or
Mesos could be adapted to collect resource information and distribute tasks to a cluster
of sensors [132–134]. These resource managers consist of two parts: the resource manager
central controller which centralizes and assigns resources and the resource manager agent,
which runs on every node, collecting information about the available resources, launching
tasks upon request, and updating the central on the status of running tasks. We started
by evaluating whether the resource manager agent could run directly on a sensor node, and
we quickly discovered, as shown in Table 5.1, that this is not feasible due to the memory
constraints of our target processors.

Resource Manager Average Memory Utilization
Mesos Agent 6 MB
Kubernetes Kubelet 2MB
YARN NodeManager 194MB

Table 5.1: Memory usage of existing resource manager agent processes. We see that existing
resource managers can’t be used directly on sensor nodes at least in part due to their memory
footprint, which well exceeds the less than 128 kB of RAM available on resource-constrained
sensors.
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We then considered the possibility of rewriting the resource manager agent to use an
existing resource management protocol. This was possible but had some significant short-
comings. All existing resource managers which we explored were designed to run within a
subnet rather than over a wide-area network. Additionally, their networking protocols are
not suitable for resource-constrained sensors. A proxy that translates between protocols and
makes the resource manager available outside of the subnet could address these issues.

However, the core problem with existing resource managers is that the types of tasks they
are able to distribute and manage are not easily extensible, nor are the types of resources.
A resource manager for a cluster of sensors will need to be able to distribute tasks that
are not containers, as containers depend on Linux Cgroups, and forking and modifying
the central cluster manager was overkill and deemed untenable. We therefore sought to
design and implement our own resource manager that could distribute tasks among more
resourceful servers and gateways, and resource-constrained sensors. We call this resource
manager EdgeRM, and we describe it’s design in the remainder of this chapter.

5.1 Design
The design and overall architecture of EdgeRM is similar to the resource managers used in
cloud settings, especially Apache Mesos [134]. The high-level architecture is presented in
Figure 5.1. Agent processes run on each node, whether that node is a resource-constrained
sensor, a server, or a gateway-class Linux device. These agent processes monitor the available
resources of the nodes and advertise that information to the resource manager’s central
controller. The agent is responsible for interfacing with the central to expose and maintain an
updated list of available resources, as well as accept and launch tasks. Application frameworks
then request from the EdgeRM central manager the list of available nodes and resources, and
submit tasks to nodes by responding with requests to use those resource for specific tasks.
These tasks are forwarded to the nodes’ agents, which launch and monitor the tasks. The
frameworks can request additional resources or check on the status of a running task.

While this architecture is similar to resource managers that have been developed in the past,
each component of EdgeRM was engineered to be suitable for a cluster of resource-constrained
sensors. We discuss these considerations in the remainder of this section.

Scheduling

One key distinction between the resource managers discussed in Section 4.3 was the placement
of the scheduler within the architecture of the system. Container orchestration systems like
Kubernetes and Borg, and single-purpose systems like YARN, tend to integrate the scheduler
into the resource manager, taking hints from applications about node placement or “affinity”
but ultimately mapping tasks to nodes based on the available resources. Mesos, on the
other hand, takes the opposite approach expecting the application framework to perform all
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Figure 5.1: EdgeRM Architecture. EdgeRM agents send available resources to a central
to be offered to multiple frameworks with their own independent schedulers. Compared
to cloud-targeted resource managers, EdgeRM includes support for WASM runtimes, adds
extended resource types, and uses communication protocols designed for resource-constrained
agents with attached sensors.

scheduling based on the available resources. To meet our goal of generality, we take the latter
approach with EdgeRM, as can be seen in Figure 5.1.

While EdgeRM could meet its goal of generality while allowing multiple application
frameworks to submit tasks through an integrated scheduler, in practice, given the diversity of
resource-constrained sensing applications, it is difficult to imagine creating a unified scheduler
that can respond to the needs of all applications. This is because in a sensing scenario, the
schedule itself may change due to the data reported by a sensor. Consider, for instance, a
sensor changes rooms and needs to load a new application in response to this mobility, or an
application framework that withholds an analysis task until a rare event occurs. It seems
untenable to create a representation that allows the application framework to express its
scheduling needs in these scenarios. Also, due to the diversity of data transport protocols
for resource-constrained sensors, a resource manager should remain in the control plane,
managing only those resources described in Section 5.1, and not data returned by the sensors.
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To enable this flexibility, just like Mesos, EdgeRM sends out “offers” of a subset of the
available resources to application frameworks, and frameworks respond with pairings of tasks
and the resource which they can use. This approach stands in contrast to frameworks that
submit a list of tasks and resources. A framework in EdgeRM processes the full set of these
requests with its own scheduler.

Resource Definition and Types

A resource manager is primarily used to facilitate scheduling decisions by one or more
schedulers. In the cloud, the information used to make scheduling decisions is the information
tracked by the resource manager. For example, scheduling decisions are primarily made based
on a machine’s CPU, memory, and data locality, all of which is inherently tracked by the
resource manager.

As we extend to sensors placed throughout a physical environment, this no longer holds.
While schedulers still need to make decisions based on CPU and memory, they also need to
make scheduling decisions based on location, network topology, and physical events. This
raises the question—is this type of meta information a resource, and is it the resource
manager’s role to aggregate this information for a scheduler?

We argue that such metadata should not be handled by the resource manager because
collecting this information often requires precious resources, and it is impossible to know a
priori which types of metadata a given scheduler may need or the rate at which that metadata
should be collected. Further, as discussed in Section 5.1, it is not practical to collect this
information given the diversity of protocols through which data is reported.

Therefore, EdgeRM supports: (1) Resources, which are physical devices that are isolated
by and accessed through the resource manager’s execution environment, and (2) Attributes,
which are static device properties that do not change through the deployment of a device.
These are the same categories used by Mesos, but their definitions require clarification.

Resources

EdgeRM initially used Mesos’ resource types: scalar, text, range, and set, and we found these
to be sufficient for both traditional resource types like CPU, memory, and networking ports,
as well as previously unconsidered resource types that are important for embedded systems,
such as energy [134]. These resource types, however, assume that a task understands the
methods by which these resource may be accessed, and it also assumes that these resources
must be strictly isolated between tasks. Neither of these assumptions hold for sensor devices
which must be accessed through EdgeRM.

Devices

To facilitate sensor devices, we introduce a new resource type “device.” Similar to other
resource types, device types have a name, but they also have a handle by which they can
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RPi with Camera Server Embedded Sensor
Resources:
Scalar: CPU - 1.0
Scalar: Memory - 4GB
Scalar: Disk - 8GB
Range: Ports-3000-3005
Device: Camera /dev/vchi

shareable- True
API - raspistill

Resources:
Scalar: CPU - 4.0
Scalar: Memory - 8GB
Scalar: Disk - 100GB
Range: Ports-3000-4000

Resources:
Scalar: CPU - 1.0
Scalar: Memory - 50KB
Scalar: Disk - 100KB
Scalar: Power - 1 mW
Device: Accelerometer - acc1

shareable - True
API - WASIv1
config - [1g, 2g, 4g]
maxSampleRate - 4000
rateDivisor - 2

Device: Humidity - hum1
shareable - True
API - WASIv1
config - [heat_on, heat_off]
maxSampleRate - 5

Attributes:
Text: OS - debian-armv7l
Set: Executors - [Docker]
Text: ID - picam01

Attributes:
Text: OS - debian-amd64
Set: Executors - [Docker]
Text: Domain: pub.com
Text: ID - server1

Attributes:
Text: OS - zephyr
Set: Executors - [WASM]
Text: ID - sensor01

Table 5.2: Resources and attributes in a EdgeRM deployment. All devices list common
resource types such as CPU and memory, however resources such as devices, domain names,
and the available power are unique to a wide area sensor deployment. Device resource
types have extended properties that correspond to their non-traditional resource usage. The
shareability field indicates the ability for multiple applications to sue the device, the API
field indicates the API through which devices are accessed, the config field indicates mutually
exclusive configuration sets a device may be placed in and sample rate fields enable EdgeRM
to make offers of specific sample rates for sensors while still enabling the sensor to be shared.

be uniquely referenced, a flag to indicate whether or not they can be shared, and a field to
indicate an API by which the device can be accessed. These fields are necessary to handle
device heterogeneity and enable schedulers to ship tasks that align with the supported sensor
access API. Devices may also note a set of possible mutually exclusive configurations they can
accept and two sensor specific fields about sample rates. For the configuration field, once a
configuration has been offered and a task issued within a specific configuration, all subsequent
offers are restricted to match the claimed configuration. This configuration setting may be
overly restrictive, as a configuration could successfully change over time without conflict, but
it is simple and ensures isolation between applications.

The two sample rate fields—a max sample rate and sample rate divisor—are basic
provisions to enable the EdgeRM central to reason about the way data can be shared within
the device hardware. This is to contend with the fact that often sensors may be sampled
at a continuous rate, but once that rate is chosen, there are a finite but large set of other
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sample rates compatible with that rate. For instance, a sensor sampled at 10 Hz could support
sampling at 5Hz by providing every other sample to the lower rate application or 20Hz by
doubling the sampling rate and providing every other sample to the original application, but
not 3 Hz as it is not divisible by the original rate. We simplify this finite but large set down
to two fields, a max rate and a divisor, where valid sample rates are any factor or multiple of
the divisor below the maximum rate. Applications may request a sensor device with sample
rates up to the maximum rate specified by the device, and the EdgeRM central will adjust
the divisor field to indicate the new possible rates. Devices may preemptively set the divisor
to prevent requests of poorly compatible rates such as large prime numbers. These fields are
optional and primarily necessary for applications which need to sample at a higher rate than
would be possible using software sampling within their given CPU allocation.

Attributes

Attributes are system constants which do not change throughout a device deployment. We
commonly implement attributes specifying a unique device ID, the architecture and OS of a
device, the executors supported by the device, and the public IP or domain name of a device
if one is present. These attributes are critical to making scheduling decisions. For instance,
many tasks can only be scheduled on machines that are publicly reachable because they need
to collect sensor readings from a wide range of devices behind NATs. Example platforms and
their EdgeRM resources are shown in Table 5.2.

Networking and Communication

Resources and attributes are coordinated through the EdgeRM messaging protocol. Table 5.3
provides an overview of the messaging API. Unlike other resource managers that establish
and maintain bi-directional communication between entities, EdgeRM opts for a client-server
communication model that is initiated by the agent or framework. The reasons for this are
two-fold: first, the overhead involved in establishing and maintaining long-lived persistent
connections on resource-constrained agents is impractical. Second, these clusters are often
comprised of devices spanning wide-area networks and devices located behind NATs. As a
result, only the central is assumed to expose a public network address; thus the central serves
as the centralized endpoint connecting the cluster components. Agents that are publicly
accessible can include their endpoint information as an attribute within the resource manager.
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Message Type From → To Fields Actions Taken
Ping Agent → Central AgentID*, PingRate*, Resources, Attributes, TaskStatus Register Agent, Update Agent State
Pong Central → Agent Ack*, TaskInfo Run or Kill Task if Requested

RequestOffers Framework → Central — Collect Offers
ResourceOffers Central → Framework OfferID*, Array{AgentID*, Resources*} —

RunTask Framework → Central OfferID*, AgentID*, TaskInfo* Queue Task for Agent
TaskStatus Central → Framework Ack*, TaskStatus* —

SubMessage Types — Fields —
Resources — Array{ResourceName*,ResourceType*,ResourceValue*} —
Attributes — Array{AttributeName*,AttributeType*,AttributeValue*} —
TaskInfo — TaskID*, TaskContainer*, TaskEnvironment, TaskResources* —

TaskStatus — Array{TaskID*, TaskState*, ErrorMessage} —

Table 5.3: EdgeRM messaging protocol. An overview of the messages between different components in EdgeRM and
their fields, with sub-messages separated for clarity. Required fields are marked with *. All messages are client-initiated,
where the Agent and Framework act as clients, and the central is the server. The central then responds, piggybacking
information onto the response. This allows agents to control their energy usage at the cost of higher latency for task
execution, and it allows for agents and frameworks to communicate with the central from behind a NAT. Many fields
are left optional so that agents can further limit communication to strictly what is necessary to keep their resources and
task states up to date. Currently HTTP, CoAP, and WebSockets are supported the communication protocol, however
any client-server protocol could be used.
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EdgeRM also operates over additional networking protocols compared to other resource
managers. Currently EdgeRM exposes HTTP, CoAP, and WebSocket endpoints. This serves
devices with a variety of capabilities and operating systems. The EdgeRM central can
be expanded to handle additional networking protocols as the protocols used by resource-
constrained devices change over time. The downside of this client-server model and protocols
is of course that tasks cannot be started asynchronously or at a rate higher than the rate at
which the agent contacts the central. We propose and have implemented rate adaptation to
enable rapidly-deployed tasks, but task requests will still need to wait until the next scheduled
agent ping to start this process.

Messaging Protocol

The EdgeRM messaging protocol is divided into three parts:

Resource Aggregation. Each agent connects to the cluster via a Ping issued to the central.
The ping contains agent details, resource information, device attributes, current availability,
and task status. The central aggregates the information from agents within the cluster to
maintain an updated view of the resource pool. If an agent does not ping the central within
its specified window, the central does not consider its resources available, but to accommodate
resource-constrained devices the central imposes no requirements on the rate at which an
agent pings.

Resource Offering. Frameworks that seek to deploy tasks over the resource pool issue a
RequestOffers message to the central. The central replies with ResourceOffers containing
a subset of the current available resources based on the resource offering policy, which is
configurable by the system administrator. Each offer is associated with an expiration, at
which point unclaimed resources are made available for subsequent framework offer requests.

Task Scheduling. A framework can claim an offered resource by issuing one or more RunTask
messages specifying a task to deploy on resources contained within the offer. Included in this
message are configurations and environment variables necessary to launch the task on the
specified agent. The central forwards the task request to the chosen agents on their next ping
by attaching a RunTask message to the pong response. Frameworks can monitor tasks via a
ping request that collects TaskStatus updates, and can issue requests to kill running tasks.
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Interface Functionality

configureDevice(deviceID, config) Set a device’s config to one of the
possible config options.

getSample(deviceID, value*) Synchronously sample sensor data.

getSampleAsync(deviceID, callback(value)) Asynchronously sample sensor data.

getSamplePeriodic(deviceID, periodMs, callback(value)) Periodically sample sensor data.

getSampleBuffer(deviceID, periodUs, buf*, len, callback(buf*)) Read sensor values into a buffer of
set length at the specified sample
rate.

getSampleBufferContinuous(deviceID, periodsUs, buf1*, buf2*, len, callback(buf*)) Repeatedly read sensor values into
buffers of set length at the speci-
fied sample rate, switching between
buffers.

getSampleWhen(deviceID, condition, threshold, callback(value)) Call callback when the device re-
turns a value meeting the condi-
tion (greater than or less than) and
threshold.

stopSampling(deviceID) Stops any continuous sampling.

Table 5.4: WebAssembly Sensor Interface. While a standardized WASM interface for sensors is under development [162],
we develop our own interface to balance the needs of both low-power sensing and high-sample rate sensing. The
above interface allows applications to use few resources when waiting on a sensor to meet a certain value with the
getSampleWhen API call. This enables the runtime to push thresholds into hardware and sleep if possible, conserving
resources. The interface also enables sensors to perform high rate sampling of signals such as an accelerator or audio
interface with the the double-buffered getSampleBufferContinuous call. These calls are inserted into the WAMR runtime,
and the resources, sample rates, and configurations they consume are checked against the task’s allocated resources
before execution. Time handling calls which take runtime resources are allocated to the task’s CPU utilization.
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Isolation and Execution Environments

A key requirement of EdgeRM is a general execution environment and runtime suitable to the
resource-constrained and low-power processors driving sensors. Linux-class machines in an
edge environment may also benefit from low latency and low overhead task execution compared
to relatively heavier-weight containers. To this end, EdgeRM adopts WebAssembly [163], a
portable instruction format initially designed for secure and sandboxed computation in browser
environments with near-native performance, that has also recently received attention as a
suitable intermediary representation for embedded device applications [128]. Specifically, we
include the WebAssembly Micro Runtime (WAMR) in the embedded agent [117]. Embedded
agents that run WAMR can receive and launch arbitrary tasks compiled to WebAssembly.
When augmented with a suitable sensor access interface, WebAssembly enables general and
isolated computing.

To ensure the WASM runtime effectively isolates and switches between tasks, the runtime
periodically preempts and switches tasks, ensuring no task runs longer than its allocation
within an agent-implemented time slice. All access to hardware, networking, and sensors is
mediated through an API in which memory bounds can be checked before performing any
action. This API closely mirrors the WASI API with additional methods for sensor access
and networking [162]. Time spent in the runtime on task-specific functionality is deducted
from the task’s CPU allocation. The API is designed such that memory used in a call resides
within a task’s memory region. Networking resources are tracked by monitoring the number
of packets sent. EdgeRM could also adopt additional isolation mechanisms and execution
environments. For instance, the distribution of Tock binaries would be a suitable, although
less portable option [53]. We need to implement all of the additional usage monitoring and
isolation mechanisms in each new execution environment however, which takes non-trivial
development time and effort. The agent is capable of running WASM tasks in any environment
with a suitable networking stack and threading library.

For non-resource-constrained machines, EdgeRM also allows the execution of containers.
This is especially practical for long-running tasks such as databases or data receivers, for
which containers often already exist. The agent uses existing isolation mechanism present in
the Docker container runtime to isolate container resources.

Sensor Interface

Unlike Docker containers, where access to system resources is available through a well-defined
POSIX interface, WebAssembly enforces a sandbox that constrains applications to structured
control flow within a pre-allocated linear memory region. Any sort of external resource,
such as filesystem access, is provided by explicitly granting functions to a WebAssembly
module. While this design is well-suited to a resource management abstraction, the actively
developed and in-progress WebAssembly System Interface is still developing an interface for
sensors [162].
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We also note that the the virtualization and isolation of shareable hardware like a sensor
is significantly different than a resource such as CPU, memory, disk or networking. Unlike
CPU and networking the amount of access is not a sufficient isolation mechanism because
the timing of access to sensors is critically important for an application. Unlike memory and
disk, sensors cannot be partitioned into regions in which tasks receive full control over their
section.

To support portable sensor access for WebAssembly tasks across the resource cluster, we
propose a system interface for sensor access in WASM and create a custom virtualization
layer which attempts to serve all calls made to the sensor interface. When loading a module
that requires sensor resources, the runtime explicitly grants the sensor API to the executing
task, and each access to that API is validated by the runtime before a platform-specific
implementation of the API function is called.

The sensor access API is summarized in Table 5.4. Sensors are defined by a set of
capabilities, which refer to the raw underlying sensors (e.g. temperature), and set of possible
configurations. Tasks may change the configuration of a sensor for which it has access if that
configuration was granted at the time of task issues by EdgeRM. Tasks can call the API with
specific sampling parameters so long as those parameters are within the sampling constraints
that were granted to the task. A full description of how EdgeRM handles sampling constrains
is discussed in Section 5.1.

To virtualize sensor access, the EdgeRM agent reads the set of requests for a sensor and
attempts to merge them into a cohesive sampling strategy. In practice, the agent configures
the sensor for highest sampling rate currently being requested and subsamples the sensor
data for lower sample rates. For single-sample APIs such as getSample and getSampleAsync,
the sampling layer either initiates a single sample or returns the most recent sample from
continuous sampling. The addition of the getSampleWhen API was critical to allow sensors
to push interrupt-driven sampling into the sensor peripherals and sleep the processor to save
power, although it should be noted that often multiple thresholds cannot always be combined.
Other extensions to this API are planned, such as the ability to continuously sample a sensor,
but only return to process those samples when an external condition is met.

This proposed sensor access API is not the only API supported by EdgeRM, and each
EdgeRM agent specifies the API by which a device is accessed, however standardization of
sensor access will improve task portability. The features of this API such as the ability to
interleave high-rate samples and push simple filters into hardware will be critical to a more
standard sensor access API.

Resource Offering and Fairness

When multiple frameworks are sharing a cluster of resources, usually some policy is applied
to ensure that those resources are fairly allocated among frameworks. Mesos uses dominant
resource fairness (DRF), which extends min-max fairness from a single resource type to
multiple resource types [134, 164]. DRF makes assumptions about resource type and cluster
usage that do not hold for clusters of resource-constrained sensors. First, it assumes that
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the quantity of a resource is representative of its value across the cluster of resource. For
example, it assumes that 1 CPU on a sensor node is equivalent to 1 CPU on a cloud server.
This is clearly not true as many tasks may be strictly associated with a specific sensor or
gateway within the network. Second, the way that resources are offered using DRF in other
resource managers assumes that tasks are relatively short lived, and that as frameworks leave
or join, their resources can then be redistributed according to the new DRF allocation. This
is not true in sensor networks, and a newly joining framework could be indefinitely starved of
resources. Lastly, DRF assumes that resource allocation values can be summed and compared,
which may not be true for sensor resources or configurations.

We implement several modifications to the most straightforward DRF algorithm to handle
these cases. To better handle the distribution of tasks across nodes, we pool resources based
on whether a node has device-type resources or not. That is, CPU on a node without devices
is counted as a separate resource from CPU on a node with devices and the same goes
for memory and other resource types. This is an imperfect heuristic, but it does make the
resources on sensor nodes distinct and more comparable to one another during resource
distribution. When a framework puts a device into an exclusive state, or uses a non-shareable
device, we also assume that the framework has used either all the resources on that node,
or its proportion of the resources on the node if it is still being shared. This disincentivizes
frameworks from using devices in a way that cannot be shared by other frameworks because
all resources for the exclusively configured device are counted towards the dominant resource
share for the framework.

To address the issue of long running tasks that cause resource starvation for newly-joined
frameworks, we propose two policies. The first, more aggressive, policy with higher utilization
kills tasks and offers new resources upon a new framework joining. This allows higher
utilization of the cluster, but creates unexpected failures on reallocation. It also allows
joining frameworks to forceably terminate the tasks of other frameworks, which is a poor
incentive. The second policy implements a greedy pseudo-framework to reserve resources on
the cluster. When a new framework joins, these reservations are released and the reservations
of the pseudo-framework take a smaller amount of the cluster. This policy balances early
frameworks which receive more of the available resources with long-running tasks, while still
allowing new frameworks some resources when they join.

EdgeRM enables other properties to be configured to control resource allocation and
fairness. At deployment, some frameworks can be granted preemptive priority on a cluster.
Frameworks may also be given weighting as described in the original DRF algorithm [164].
We also note that while EdgeRM currently does not have the notion of a user, and a user could
sway the DRF algorithm simply by creating multiple frameworks, the same DRF algorithms
could be applied to users between frameworks if users authenticate to the EdgeRM central
and resources were associated with users rather than frameworks. This authentication layer
is planned as future work.
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Fault Tolerance

A fault tolerant central is critical to system reliability, as both frameworks and agents rely on
the central coordinate resources offering and task execution. We designed the central to be
able to reconstruct its complete state from the pings it receives from agents and framework
schedulers. As such, recovery from a failed central simply requires that connected frameworks
and agents redirect requests to a backup or standby central, and the DRF algorithm converges
as more information is received. Fault tolerance is achieved by running backup centrals in
standby mode. A standby central registered with the current central is added to a configuration
disseminated to frameworks and agents with a total central ordering. Upon failure, the first
standby central is promoted. Requests issued to any standby central are redirected to the
current central. To lower latency for state reconstruction multiple centrals could also be run
and coordinated through a consensus protocol.

5.2 Implementation
A POSIX-based agent implementation is written in Python which uses Docker as its container
runtime and WAMR as its WebAssembly runtime. Embedded agents are implemented for the
Zephyr OS [141] and the Particle [165] embedded platform. Both of these systems use WAMR
to execute WebAssembly modules. The embedded agent is currently capable of executing
seven simultaneous WebAssembly tasks. This number is limited by both memory and the
footprint of a WAMR WebAssembly runtime, which uses excess memory due to memory
alignment requirements that could be mitigated through engineering effort. The EdgeRM
central is implemented in Python along with a small local database to track system state.

Porting the edge agent to a new platform requires the implementation of a timer, malloc,
free, thread creation, UDP send and receive, and functions to access the sensors which are
callable from WebAssembly modules. Implementations are encouraged but not required
to implement part of a standard system interface for WebAssembly modules. This stan-
dardizes sensor access and other common functionality such as timing and networking in
WebAssembly [162]. While this functionality is not always present on embedded platforms, it
is supported by most embedded operating systems. More advanced parts of the edge agent,
such as double-buffered sampling and high sample rates may take greater implementation
effort, such as the implementation of DMA transfers from a sensor to the sample buffer
provided by a task. We note that this implementation effort would naturally be required
for any application that needs such a high sample rate and is not purely a requirement of
EdgeRM. We implement several frameworks for EdgeRM. These frameworks and their
associated libraries are discussed in Chapter 6.
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Figure 5.2: Utilization of the edge cluster (top) and a single sensor (bottom) by three
programming frameworks over a ten minute period. Multiple users deploy jobs to the edge
cluster through three programming frameworks using EdgeRM. These three frameworks are
capable of multiplexing the cluster and can deploy tasks on both sensor and server nodes
simultaneously. The mediation of resources through EdgeRM enables multi-tenancy on
constrained, embedded devices that are traditionally singe-purpose.

5.3 Scalability and Overhead
Our evaluation begins by demonstrating the multi-tenancy enabled by EdgeRM and showing a
snapshot the cluster’s utilization (§5.3) when tasked by multiple frameworks. We then perform
an overhead analysis of the EdgeRM agent implementations (§5.3) and the WebAssembly
execution environment (§5.3). The evaluation depends on the use of several frameworks which
use EdgeRM. More discussion of these frameworks can be found in Chapter 6.

EdgeRM Cluster Utilization

To demonstrate the multi-tenancy enabled by EdgeRM we collect the share of the cluster CPU
used by three frameworks as multiple users use the cluster. This 10 minute snapshot is shown
in Figure 5.2. We see that multiple frameworks and users are able to share the cluster and its
resources, with short-running tasks such as those generated by the Sensor Sample and Filter
framework creating spikes in utilization. We also see the CPU utilization of a single sensor,
seeing that tasks from both the Sensor Sample and Filter framework and the MapReduce
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Figure 5.3: Compute and power overhead of the EdgeRM agent, plotted as a function of
agent ping interval. As the ping interval is increased, overhead falls proportionately. On the
embedded agent (evaluated on an NRF52840 MCU) ping intervals greater than 1 s have CPU
utilization below 5 %, and ping intervals greater than 100 s have a power consumption of less
than 34 µW. A bounded exponential back-off on ping interval maintain interactivity while
decreasing power.

framework are executing simultaneously. When resources are not available for more tasks,
the frameworks may direct tasks to other sensor nodes as appropriate. The execution of
multiple simultaneous tasks, and specifically the dynamic deployment of simultaneous tasks
from multiple programming frameworks onto a resource-constrained embedded node would
not be possible without EdgeRM. We note the use of MapReduce primarily for illustrative
purposes.

Agent Memory and Code Size

The memory footprint and code size of the EdgeRM agent implementations are presented
in Table 5.5. The Python agent implementation was profiled on a Raspberry Pi 3B+,
corresponding to a 2.4% memory footprint overhead [166]. The embedded agent was profiled
on an NRF52840 MCU. The resoruce manager implementation with the WARM runtime use
65 kB of code space and 2.6 kB of SRAM. An additional 22.3 kB of SRAM is needed for every
task executed on the embedded agent no matter the task size (and more is required of the
task itself uses more memory). This relatively high per-task overhead is primarily due to the
minimum memory region of 16 kB needed to execute a task in WAMR, however we expect
this could be significantly decreased with a more optimized implementation. The remainder
of the code and RAM are used by networking and OS libraries that the EdgeRM agent uses,
but would also be required by most embedded applications.

While the overhead introduced by EdgeRM on an embedded device is not insignificant,
it nevertheless falls within the practical range of modern microcontrollers, especially when
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Code Segment Text (B) Data (B) BSS (B)
Total 317,918 3,748 90,460
OpentThread (Net) 149,116 — 38,087
Agent Library 15,764 — 1,401
WAMR Runtime 51,564 — 1,250
WASM Task (min. ea.) — — 22,269

(a) embedded agent

Memory Usage (MB)
Python Agent 22.8

(b) python agent

Table 5.5: Memory and code footprints of the EdgeRM agent implementations. The embedded
agent flash and RAM utilization are decomposed into constituent components. A significant
portion of Flash and RAM utilization is due to the networking stack and the underlying
OS, which would also be required by a monolithic firmware. Remaining unused memory is
available to store and execute WASM tasks. The minimum memory for each task is 22,269
Bytes, which includes all task state, thread stack and heap, and the minimum 16,384B
required to execute a WASM module.

considering the computational benefits enabled by integrating an EdgeRM agent into a
computing cluster. On the NRF52840, which has 256 kB of SRAM, we are able to execute
seven simultaneous WASM tasks, and we expect this number to increase with more optimized
WASM runtime implementations and ever-growing MCU memory sizes.

Agent CPU and Power Usage

Compute and power overhead of the EdgeRM agent is directly proportional to the frequency
at which an agent pings the central. Figure 5.3 presents the average compute utilization and
power consumption as the interval between successive agent pings is increased. The standard
agent compute utilization was profiled on a Raspberry Pi 3B+, while the embedded agent
compute utilization and power consumption were profiled on an NRF52840 MCU connected to
an OpenThread 802.15.4 network. Most of the CPU utilization and power draw is attributable
to the networking operations required to ping the central. For powered embedded devices, a
ping rate of greater than 1 s keep CPU utilization below 5 %; for energy-constrained devices, a
ping rate of 10 s draws 340µW and a ping rate of 100 s draws 34µW. To conserve energy while
still enabling fast iteration during interactive periods embedded agents can exponentially
back-off their ping rate.
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Figure 5.4: Latency overhead of accessing on-board sensors through WASM.Sensors are
accessed a number of times using a WebAssembly task with the WASM sensor interface and
access time is compared to directly accessing the sensor with through the underlying platform.
WebAssembly introduces less than 5% latency overhead.

WebAssembly Overhead

The overhead analysis of the WebAssembly execution environment is decomposed into a (1)
sensor access latency overhead and a (2) compute overhead analysis. The former is encountered
when tasks are issued to collect sensor data, while the latter indicates the overhead required to
sandbox execution of pure compute tasks with the WebAssembly interpreter. Device memory
consumed by the runtime is included in the memory footprint presented in Table 5.5.

Sensor access latency

Figure 5.4 presents a latency overhead analysis of the WebAssembly runtime and sensor
interface with respect to native implementations. Latency was profiled by fetching temperature
values from a BME280 sensor a varying number of times to indicate (1) the fixed startup cost
of loading the WAMR runtime, and (2) the marginal overhead of individual sensor accesses,
with respect to native.

The startup cost of booting the WebAssembly runtime is on the order of hundreds of
microseconds, indicating a less than 10% overhead with respect to a sensor access. Once
loaded, an individual WebAssembly sensor task access has a latency overhead of 5% with
respect to the latency required by the underlying platform SDK. We also note that this
latency is only present through the direct sensor sample API describe in Table 5.4. API calls
which prompt the runtime periodically call the WASM module with sensor results would note
incur this overhead.
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WebAssembly compute overhead

The current implementation of the EdgeRM agent uses the WAMR runtime in interpreter
mode, directly interpreting WASM bytecode. Currently WAMR reports that interpreted
WebAssembly runs 11-16x slower than native code for common benchmarks such as Coremark
and Fibonacci [149, 167]. We soon hope to integrate ahead-of-time compilation and execution,
which runs at 85-95% of native speed, as a service so that EdgeRM can better support
computationally intensive tasks. EdgeRM could transparently compile WebAssembly to a
target architecture if the architecture attribute is present.

5.4 Other Considerations
As an early system we envision EdgeRM and systems like it will continue to evolve. To be
a fully functioning resource manager for resource-constrained devices, EdgeRM would need
several additional developments which we discuss here.

Naming and standardization

For frameworks to effectively schedule tasks on nodes, the nodes and frameworks must agree
on resource types and the names of resources. Interestingly, as long the resource is of a
type that EdgeRM understands how to fairly distribute, EdgeRM is agnostic to and not
prescriptive about the exact names of the resources themselves. This lassez-faire strategy
starts to break down with the device resource as discussed in Section 5.1. In the device
resource, specific fields in the resource definition such as maxSampleRate are used to ensure
fairness during resource offering because fairness cannot be ensured by simply splitting a
quantity of the available resource, and some standardization of this kind is likely necessary
for the portability of frameworks between clusters of different node types. Ultimately naming
and the standardization of names in a system must be solved organically or through a formal
standardization process.

Energy Resources and Metering

One key resource of resource-constrained devices is their energy, and as a resource manager,
allocating slices of energy, or more likely average power over some period time, would be
necessary to ensure the fair splitting of resources among frameworks and applications. Most
likely, this energy resource allocation would be consumed far before a CPU allocation was
consumed if a device is energy-constrained. Unfortunately the effective metering of energy is
difficult on many resource-constrained sensors. On some systems, such as Signpost, hardware
is included to directly meter power and energy consumption. Metering may also become more
common with approaches such as counting the energy quanta used by a common switching
regulator [168, 169] Both of these methods would lend themselves well to EdgeRM, and the
EdgeRM agent could be extended to advertise a maximum allowable average power draw,
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then meter usage on a fix time interval, cutting off tasks that use above their allocation. This
is identical to the energy allocation policy promoted by Signpost and shown in Figure 2.7,
except isolation is being performed in software.

We also note, however, that energy usage is a consequence of other metered resources. A
combination of CPU, networking, and sensor operations could in principle be modeled to
stay within a fixed power budget. This limitation could even be placed a priori by EdgeRM
if the power draw of each component could be expressed to EdgeRM and subsequently to the
frameworks by EdgeRM. This approach has drawbacks however. It would require a sensor
designer to deeply understand the power draw of each part of the design before the node could
become part of an EdgeRM cluster. It would also required the resource manager to more
deeply understand the specific resources for each node, exacerbating the naming problem
described in Section 5.4. A mix of these two models could also be implemented where the
sensor designer coarsely understands the power draw of each component and isolates energy
usage based on other resource consumption, but does not convey these resource dependencies
to EdgeRM. This mixed approach would allow energy to be effectively isolated with out
metering hardware, but would require the framework to test or discover the amount of energy
used by each of its tasks over time, similar to the performance profiling discussed in Chapter 6.
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Chapter 6

Application Frameworks for Utility
Sensing

.
While the resource manager serves as the core of the cluster, application frameworks

enable users to perform tasks on and collect data from resource-constrained sensors. These
frameworks define a programming model, receive programs from one or more users in this
model, and parse and distribute tasks to sensor nodes, gateways, and servers that are part of
the cluster to achieve the application’s goal. Without effective and easy-to-use application
frameworks, we it would be difficult to achieve the vision of utility sensing.

One consequence of the EdgeRM design, and particularly the decision to not perform or
assist with scheduling, is that the application frameworks using EdgeRM will be quite complex.
Like their cloud counterparts, they will be responsible for the scheduling of tasks to nodes
with sufficient resources. Unlike their cloud counterparts, they are also burdened with the
additional scheduling requirements that are specific to distributed and resource-constrained
sensor networks. Optimal scheduling decisions could be made based on the location and
metadata associated with a sensor, on data returned by a sensor or other sensors in the
network, on the amount of energy available to nodes, on the network topology and likelihood
of link failure, and on the performance of specific nodes for specific tasks, among other things.

Application frameworks also have the opportunity to perform a number of optimizations
to make the applications they support more capable or efficient. For instance, a sensor query
framework could combine tasks from multiple queries that request the same data. Data
that is known not to impact the query need not be sampled at all. These optimization
are crucial, especially under energy constraints, and many have been proposed by prior
macroprogramming frameworks such as TinyDB and DFuse [121, 130]. In this chapter we
start by discussing an end-to-end workflow of an example framework. We then propose
solutions to enable the easier building of frameworks for EdgeRM in Section 6.2 and present
example frameworks we have built using EdgeRM in Section 6.3.
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Figure 6.1: A step-by-step workflow of using EdgeRM through the Sensor MapReduce framework (§6.3). (1) A user
submits map and reduce jobs to the application framework; (2) The framework’s interpreter wraps user code in boilerplate
communication code and compiles it into WASM modules and docker containers. (3) These tasks are sent to framework’s
scheduler, (4) which uses the EdgeRM scheduling library to fetch available resources, plan task placement, and configure
tasks (i.e. with source and destination addresses). Active scheduling techniques such as agent profiling are used to assist
placement (§6.2). (5) Tasks are issued to the EdgeRM central, (6) and forwarded to EdgeRM Agents to execute.
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6.1 End-to-End Workflow
To provide a more grounded basis of discussion for the parts of an application framework, we
start by walking through the steps of a simple sensor streaming MapReduce framework which
sends “map” tasks to sensor nodes and then “reduces” their data on a publicly accessible
cloud server that is part of the cluster. We go into deeper discussion of the framework itself
in Section 6.3, and use this section primarily to illustrate the architecture of a framework.
A flow diagram of this framework is presented in Figure 6.1. Because EdgeRM supports
multiple frameworks, the exact details of each framework will differ, but Figure 6.1 provides
one example of how a framework may function.

A framework user begins by writing map and reduce functions and issuing the MapReduce
job via a command line interface. In this case, the MapReduce framework begins execution
upon job submission, but future frameworks could run persistently and accept jobs over
an API. After receiving a job, the framework constructs map and reduce tasks that are
suitable for running in the EdgeRM cluster. The map function is inserted into a baseline map
program which handles sensor sampling and results generation from the map function, and
the resulting code is compiled into a WebAssembly module via clang/LLVM. The stubs for
the WASM system interface are compiled into the module, and the resulting WASM module
will only run in a WASM runtime with a matching system interface. Some parts of the map
module, such as the destination IP address and port, are left configurable via environment
variables which can be set at the time of task issuance The reduce function is wrapped with
baseline communication code to receive data from the map function, sort the reduce keys,
execute the map function, and host results that can be fetched by the framework. It is then
built into a small container. Currently this framework can parse map programs written in C,
and reduce programs written in JavaScript, but this is not a requirement.

After the final container and WASM module are built, they are sent to the MapReduce
scheduler. The scheduler uses an assistive library which we present in Section 6.2 to interact
with EdgeRM. The scheduler starts by requesting offers from EdgeRM and filtering those
offers for resources that meet the required tasks. First the scheduler searches for for a
publicly-accessible node that can run a container for the reduce task. When the scheduler
receives an offer for such a node, it issues this task requesting a fixed amount of memory,
CPU, and a network port, waits for confirmation from EdgeRM that the task is running, and
notes its address and port. The scheduler then continuously requests offers from EdgeRM for
nodes that have the specified sensor resource, can support the specified sample rate, and have
sufficient memory to execute the map function. Upon receiving a sufficient offer, it issues
the map task to the sensor with environment variables specifying the address and port of
the reduce container. The MapReduce framework continuously monitors the cluster for new
nodes with sufficient resources for the map task, restarting and re-issuing tasks that fail. The
framework also queries the reduce container for results, presenting them to the user. We
note that no data from the MapReduce framework flows through EdgeRM, EdgeRM only
facilitates the scheduling and execution of tasks and the allocation of resources such that the
MapReduce framework can setup independent data flows.
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6.2 Framework Components and Meta-Frameworks
Because the building of frameworks and schedulers for distributed and resource-constrained
context could be burdensome, we seek to provide tools and guidance for the components of
an application framework that may be common or generally useful across frameworks. These
components aim to provide support for the more difficult parts of using EdgeRM and writing
applications for distributed sensors including handling heterogeneity between devices in the
cluster and collecting information useful for scheduling beyond simple resource sufficiency.
We also provide practical support for interacting with EdgeRM such that framework builders
do not need to re-implement basic interaction flows.

Framework Support Library

We start with a framework support library. This currently exists as a Python library, but
could be extended to other languages. The library assists with requesting resource offers,
filtering offers based on task requirements, and issuing one or more task execution requests on
the provided resource offer. The library also helps frameworks monitor and collect information
on already running or recently stopped tasks, including error or termination statuses. Because
frameworks exists as clients in a client-server model, the library can be run from anywhere
that can access the EdgeRM central for the cluster.

Active Scheduling

As mentioned in Section 5.1 scheduling decisions in edge environments are often not strictly
made due to resource availability, but also due to a devices’ physical location, the network
topology, events sensed by other devices, and many other possible optimizations. Additionally,
in a cluster of heterogeneous devices, the capabilities of a unit of resources are necessarily also
heterogeneous (i.e. 1 microcontroller CPU is not equivalent to 1 server CPU, and network
links have very different capacity and delay).

To address this problem we propose active scheduling. Active scheduling is the process of
a framework scheduling meta-tasks that are not designed directly to serve any one application,
but which can be used to inform the scheduling decisions for all applications sent to the
framework. By scheduling meta-tasks, frameworks can discover dynamic information about
nodes and their environment without the requiring that information be actively advertised
by nodes or collected by EdgeRM. Placing this burden on the framework rather than
EdgeRM is architecturally advantageous because EdgeRM could never enumerate the full
set of information that is useful for all schedulers, and the preemptive collection of such
information by nodes could use unnecessary resources. The downsides of pushing this task
onto the frameworks are framework complexity, and the inability to share information collected
through active scheduling between frameworks, although we discuss a potential solution to
both of these issues below. There are several high-level classes of active scheduling that we
have, and an overview of these use cases is presented in Figure 6.2.
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Context Monitoring

A framework may only want to schedule a task on a node in specific scenarios. For mobile
nodes, this could be when they enter a specific location, or for very rare events, a framework
may only schedule a task after the event has happened occurred. Frameworks may also collect
information about the underlying distribution of sensor data to understand which nodes are
contributing most to the data stream and which can be excluded without greatly impacting
the results. These scheduling scenarios can be achieved by deploying small active scheduling
tasks to monitor or query the context of nodes in the network without deploying the full
task on all nodes. This optimization would allow frameworks to save valuable resources, by
waiting to deploy a full task until the condition or context for that task has been met. Context
monitoring tasks may also be shared among multiple applications served by a framework to
further save resources.

Networking and Failure Domains

One key piece of scheduling information in distributed sensor networks is the network topology
and the potential failure models of a network. This information is necessary to get some of
the benefits of local computation discussed in Section 3.3. While some of this information
could be annotated in the attributes or metadata of static devices using a home or network
name, a more reliable and more dynamic approach would be to automatically discover the
network topology. A framework could deploy an active scheduling task to perform a scan
of the local network, or test the pairwise reachability and network routes between nodes to
ensure adequate connectivity for the task at hand.

Performance Profiling

To help handle device heterogeneity, we propose the use of active scheduling to probe the
performance and resource utilization of running specific tasks on a specific node. This could
be used to discover and update the capacity of a network link, the speed of a processor, or the
energy utilization of sampling a specific sensor. Especially as the amount of local computation
grows, an understanding of the latency or energy of running a specific task, such as a machine
learning model, will be critical to knowing not only if the task can meet application demands,
but also whether a task can reasonably be run within resource constraints. While a framework
can analyze the number of instructions necessary to execute a specific code path, it will not
know if those instructions can be executed within a given CPU allocation without some
notion of a CPUs performance. Active scheduling enables frameworks to solve this problem
independently of EdgeRM.

Metadata

The last type of information that frameworks and their schedulers need to make scheduling
decisions, and that applications need to perform processing and aggregation tasks, is metadata.
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Figure 6.2: Use cases for active scheduling in EdgeRM. (Left) Location and context monitoring
tasks can be used to optimize the deployment of larger or more resource intensive tasks
pausing their deployment until a condition is met such as the location of a device changing or
a sensor returning a specific data value. (Center) Performance profiling enables to frameworks
to measure processor performance, network throughput, or other dynamic agent qualities.
This allows for schedulers to understand the relative performance of nodes in the case of
great node heterogeneity. (Right) Network topology detection can help schedulers place tasks
within local networks such that they keep operating in cases of wide-area network failure
or to preserve the privacy of local data. All active scheduling allows schedulers to adapt to
the resource-constrained sensing context by allowing them to collect information necessary
to assist with scheduling that cannot be known or is difficult to annotate at the time of
deployment.

Metadata exists in the space between information that could be annotated in attributes or
collected by active scheduling. Often metadata is created at the time of sensor deployment,
such as noting the home, room, location or other information about the data that a sensor
is collecting. Because EdgeRM only manages resources, and because metadata may not be
known by the device itself, frameworks are responsible for collecting it, making scheduling
decisions based on it, and merging it with sensor data streams as appropriate.

While not prescriptive as a part of EdgeRM, we propose using EdgeRM device attributes
as a layer of indirection for metadata storage that is external. Specifically, at the time
of programming, a device could be configured with an external metadata storage location
and format. Upon deployment, this metadata storage could be updated with the device’s
information. We implement this layer of indirection using a JDBC URI [170], which specifies
the location and credentials of metadata about a sensor. A framework can then collect
this metadata for the specified device ID and use that information for scheduling or for
merging with application data. This metadata system is implemented in the the framework
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support library described in Section 6.2. We make no attempt to specify the type or format
of metadata as many studies have been undertaken about metadata standardization [171].
However we note that some standardization will be necessary for frameworks to properly
interpret the metadata, even if a layer of indirection is in place.

Long-running Tasks and Orchestration

In most example frameworks built for EdgeRM we find that some tasks are long-running (i.e.
servers, databases, messaging brokers) and some tasks are more ephemeral (sensing, filtering,
processing). As many other projects such as Kubernetes and the work leading to its creation
have discovered, long running tasks have their own needs for monitoring, restarting upon
failure, auto-scaling, and log aggregation. We do not hope that it is necessary that framework
builders recreate these features to support what has become a common application paradigm.

To solve this problem we propose that either as part of the framework support library, or
as a separate framework, frameworks can launch long-running tasks which are monitored and
restarted as necessary. We have considered implementing some subset of the Kubernetes API
specification to support the notion of long-running deployments. To effectively monitor these
tasks, however, either the framework itself or a separate monitoring process or framework
would need to be similarly reliable. This pushes us to consider the idea of several core
meta-frameworks, both to implement long-running tasks as well as other common components
among application frameworks.

Meta-Frameworks

There is a decision to be made between allowing all of these components to exist as part of a
library that can be imported and used by a specific framework, or as a standalone program,
executed as a meta-framework with tasks submitted to it by other application frameworks.
The former architecture is advantageous for fairness of resource allocation, as resources
are more easily attributable to the executing framework. However, as meta-frameworks,
these services could more easily distribute the resource burden of active scheduling across
any framework using the service, and they could be designed to be long-running such that
the reliability burden of application frameworks is lessened. As meta-frameworks, these
services may be architecturally separate from EdgeRM, but become de facto components of
an EdgeRM deployment. Currently many of these services exist as part of the framework
support library but in the future they may be deployed as standalone programs alongside
EdgeRM; this separation between components still gives frameworks the freedom to deploy
their own tasks to assist with scheduling and monitoring.
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6.3 Framework Implementations
We implement several application frameworks which use EdgeRM to program clusters of
resource-constrained sensors, local gateways, and cloud servers. These frameworks use the
framework support library as well as several of the components described in Section 6.2.
While these frameworks are not being proposed as ideal programming models for distributed,
resource-constrained sensor networks, they demonstrate key abstractions of utility sensing,
including multiple users sharing the resources of the cluster to perform distinct tasks. We
implement a simple sensor sampling and filtering framework, the MapReduce framework
described in Section 6.1, a basic SQL framework, and we port an existing edge computing
framework, DDFLow to use EdgeRM.

Sensor Sampling and Filtering Framework

The sensor sampling framework allows users to specify the sensor to sample, the sampling
rate, and several optional filters, and then issues tasks to sample the sensor for several minutes
before exiting. It consists of a container which runs a CoAP server to receive and host
client-specific sensor results and a WebAssembly task which samples, filters, and forwards
data to the CoAP server. If the selected sensor is a camera, an optional argument allows for
image classification via a Docker container implementation using YOLOv3 [172].

A visual web interface provides users with a view of all devices and tasks within the
EdgeRM cluster, allowing them to select a sensor and issue a request. The framework is
written statelessly; upon user request, the framework searches for an existing CoAP server
container, and, if one is not already executing, starts one on a publicly-accessible node. Once
these infrastructure tasks are running, the framework searches for the device-of-interest within
the resource offer. The sensor fetch task is then issued using EdgeRM with environment
variables to specify the sensor, sample rate, filters, and CoAP server address. This generic
framework has been used by dozens of users simultaneously.

This framework demonstrates both the multiprogramming of resource-constrained sensors
and the ability of a single framework to collect and serve data to multiple distinct clients.
It also demonstrates the network profiling component by attempting to schedule the image
classification locally if the camera sensor is chosen.

Streaming SQL

As an extension of the sensor sampling and filtering framework, we implement a very simple
streaming SQL front-end that supports SELECT and WHERE statements. Rather than
deploying a query parser on the sensor as with TinyDB, the framework parses these SQL
statements and translates them into the same tasks used in the sensor sample and filter
framework. This framework could be extended to support join operations and many of the
same optimization described in TinyDB [121]. This was possible and easy to implement
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because the WASM runtime and its underlying virtualization layer is enforcing isolation,
rather than a local SQL query parser.

Sensor MapReduce

As initially described in Section 6.1 and illustrated in Figure 6.1, we have developed a
stream MapReduce framework targeting resource-constrained sensors. Users can develop map
functions which can be deployed on all sensors or specific sensors based on metadata filters.
The output of these map functions is forwarded to a reduce function which can aggregate
and publish the resulting data. A utility also displays the results of the reduce function on
the user’s terminal.

Map tasks are compiled and issued as WASM modules, while reducers are issued via
Docker containers. The MapReduce framework continuously monitors the cluster to adjust
deployed tasks based on the available resources, such as a newly registered sensor device,
with support for killing and/or re-issuing MapReduce jobs. The framework leverages Active
Scheduling principles incorporated into the EdgeRM scheduling library, including network
profiling information, to schedule Reduce tasks to the nearest available and accessible server
endpoint.

Porting an Edge Computing Framework

Retargeting existing edge computing systems to EdgeRM enables immediate benefits including
isolation and multi-framework tenancy. With some modifications, retargeting may even be
able to support the extension of programming frameworks for gateway-class machines to
include resource-constrained sensors. To this end, we ported the DDFlow system to EdgeRM
to validate the practicality and ease of doing so [136].

DDFlow allows developers to declaratively construct edge computing applications as
directed dataflow graphs of microservice tasks to be distributed across a computing cluster.
As is commonly the case in this setting, the intended target devices are gateways, wireless
access points, and other near-edge devices. Porting the (1) client interface and (2) device
webserver to a container allows deployment using the EdgeRM abstraction over the same suite
of devices. This method of porting allowed much of DDFlow to remain untouched including
its original scheduler because multiple DDFlow tasks where deployed with its container (a
single EdgeRM task). The full porting effort was accomplished in 279 lines of code and about
a day of development effort.

Given the natural decomposition of distributed applications into containers [137, 138,
161], porting edge computing systems to EdgeRM is a straightforward process. Given the
growth of languages which can be compiled into WASM modules, we also hope that many of
these applications can be easily extended to resource-constrained sensors by compiling their
existing tasks into WASM modules and issuing those tasks to nodes that only support the
WASM runtime.
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6.4 Reflection on Building and Using Application
Frameworks for EdgeRM

We did not perform user studies on the ease of programming resource constrained sensors
using these application frameworks, nor did we have multiple sets of developers port their
programming frameworks to or develop new programming frameworks for EdgeRM. In lieu
of this attempt at quantitative evidence, we provide our perspective on the experience of
both building frameworks for EdgeRM and using these frameworks to collect sensor data.

The first and most bold conclusion of our experience is that EdgeRM significantly eased
the deployment of code to resource-constrained sensors. This was especially highlighted during
the development of base code for the frameworks and the development of complex map tasks
for the MapReduce framework. New code could be deployed confidently and without the need
to check for errors because the EdgeRM agent and its WASM runtime would isolate failures.
Code could be iterated on quickly because when it failed. EdgeRM reports the reason that a
task failed, either by collecting the program’s exit message directly or reporting an internal
error such as the use of too many resources or making an invalid call to the runtime, easing
rapid iteration. When the new task was deployed, it was distributed quickly to the sensor
nodes because the WASM modules are small compared to a code update for the entire sensor,
often fitting in one or two packets, and all sensors in the network attempt to execute the code
immediately (if selected) meaning errors are caught quickly. Moreover, multiple developers
could be iterating on their frameworks and deploying code to these sensors simultaneously.

In describing this experience it’s somewhat difficult to pinpoint the difference between this
and past methods of deploying code, however it clearly sits at the intersection of confidence,
interactivity, and direct feedback. No other general-purpose programming method for sensor
nodes has all of these qualities. This is in no small part due to the effort of developing,
iterating on, and debugging the EdgeRM agent code itself. However, once that is built,
deploying code to a cluster of sensors does start to mimic the feeling of deploying data
analysis code in PySpark or infrastructure in Kubernetes. The programming models need
fine tuning, but one can create working code quickly because code can be quickly iterated on
with confidence; it “feels like” utility sensing.

The second conclusion is that the components describe in Section 6.2 need more iteration
and development, and need higher level abstractions. Abstractions like “will this WASM
module run on this sensor” and “make sure this task runs indefinitely or is rescheduled with
these minimum resources until I request it is killed.” While the frameworks we built work
well, especially the stateless frameworks such as the SQL query parser and sensor sampling
framework, and the tasks they deploy feel robust and iterable, the frameworks themselves
are infrastructure for the applications, and developing reliable infrastructure is difficult.
Long-running frameworks could themselves be monitored, restarted, or launch themselves in
EdgeRM with a long-running state controller; basic basic schedulers for EdgeRM frameworks
could be made modular so that they can be shared among multiple frameworks, only to
be modified where necessary for a specific application. We will leave these improvements
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to future work, along with the porting of past macroprogramming frameworks discussed
in Chapter 4 to use EdgeRM. Porting these frameworks and developing new ones will be
significantly easier with the existence of a reliable resource management abstraction that
works under resource-constraints.
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Chapter 7

Conclusion

We began this work with the goal of making distributed, resource-constrained sensor networks
easier to deploy and program by people who were steeped in the art and science of embedded
systems engineering. This led us to create Signpost, which lowered the barrier to building
and deploying new sensors, but did not alleviate the burden of writing sensing applications or
collecting data from the sensors themselves. To fully enable the vision of easy-to-use sensing,
the sensors themselves, and not just the hardware platform they rely on, needs to be robust
infrastructure suitable for sharing.

Between the development of Signpost and the writing of this dissertation, several key
technology advancements have enabled the creation of such a robust platform and abstraction.
The low-power processors found on most of these sensors have become larger, faster, and
more efficient, and they are now on par with with the processors that ran the mainframes
used to build the first multiprogramming operating systems. Technologies such as WASM
and hardware memory protection enabled multiprogramming and more robust resource
isolation, even under severe memory constraints. Using these technologies, we are now able
to organize resource-constrained sensors into a cluster of sensor resources that can be shared
and programmed just like modern cloud computing clusters. By adopting the techniques of
past programming models for sensors, we are able to build application frameworks specifically
suited to programming clusters of sensors.

Still, there is work to be done to ensure the full vision is realized. Isolation mechanisms
for low-power processors and new operating systems and runtimes which leverage them
will continue to make sensor multiprogramming more efficient. Standardized sensor access
interfaces and metadata naming will be required for distributed sensor applications to be
as portable as containers in the cloud. Already-common data processing systems and the
languages they use should be extended to fluidly incorporate sensors into their existing
computing clusters. We expect that ongoing research will address some of these problems
in time, and engineering effort will be necessary to integrate these solutions and make the
systems proposed here usable by a broader audience.

While programming a sensor cluster is not as easy as writing a few lines of data analysis
in a high-level dataflow language, this resource management abstraction provides a basis on
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which such programming frameworks can be quickly developed, evaluated, and improved.
It allows the sensors to be used as a shared utility, and we believe this is a necessary step
towards giving future city planners, environmental scientists, and economists direct and
efficient access to data which can help them discover and adapt to our ever-changing world.
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Appendix A

Radio and Processor Energy Datasets

The following datasets were used to draw conclusions about the trade-off between local
computation and offloading data to the cloud. See https://github.com/adkinsjd/radio-
processor-dataset for a digital version.

https://github.com/adkinsjd/radio-processor-dataset
https://github.com/adkinsjd/radio-processor-dataset
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Table A.1: Power consumption and efficiency of commercial wireless radios focusing on low-power and particularly
efficient or commonly used models over the last 25 years. When multiple transmission powers or data rates were
available the most efficient were chosen. Link budget calculated with the receive sensitivity at a standard 1% packet
error rate. Efficiency may be slightly higher by pairing transmitters with more sensitive receivers available in a given
year. Distance is calculated using the Hata Model for all radios to aid in comparability, however this introduces error at
higher frequencies and in indoor settings [78].

Name Year Standard Data
Rate

TX
Power
(dBm)

TX
Power

Draw (mW)

Energy
per bit
(nJ)

Band
Link

Budget
(dBm)

Est.
Range
(m)

Efficiency
(pJ/b/meter)

UBI206 [69] 2022 WiFi 6 Mbps 6 20 3.3 2.4GHz 97 69 48.3
UBI206 [69] 2022 WiFi 54 Mbps 6 20 3.3 2.4 GHz 77 6.8 53.7
nRF5340 [173] 2021 BLE 1Mbps 0 13.9 13.9 2.4 GHz 97.5 73 190
DA16200 [174] 2020 WiFi 1 Mbps 9.5 255 255 2.4 GHz 109 275 927
DA16200 [174] 2020 WiFi 6 Mbps 8 255 42.5 2.4 GHz 99 87 489
DA16200 [174] 2020 WiFi 54 Mbps 14 630 11.6 2.4 GHz 90 31 376
DA1469 [65] 2020 BLE 1 Mbps 0 9 9 2.4 GHz 97 69 130
Apollo4 [67] 2020 BLE 1 Mbps 0 15.6 15.6 2.4 GHz 95 55 284
DA14683 [175] 2019 BLE 1Mbps 0 10.3 10.3 2.4 GHz 94.5 52 198
Apollo3 [176] 2018 BLE 1 Mbps 0 15.6 15.6 2.4GHz 95 55 284
CC2652 [68] 2018 802.15.4 250 kbps 0 18.9 75.6 2.4 GHz 100 97 779
CC2652 [68] 2018 BLE 1Mbps 0 18.9 18.9 2.4 GHz 97 69 274
nRF52840 [66] 2017 802.15.4 250 kbps 0 15.9 63.6 2.4 GHz 100 97 256
nRF52840 [66] 2017 BLE 1Mbps 0 15.9 15.9 2.4 GHz 96 61 261
Apollo2 [177] 2017 BLE 1 Mbps 0 15.6 15.6 2.4GHz 95 55 284
ESP32 [70] 2017 WiFi 6Mbps 19.5 840 140 2.4 GHz 112.5 411 341
ESP32 [70] 2017 WiFi 54Mbps 16 540 10 2.4GHz 87 22 455
SX1262 [71] 2017 LoRa 980 bps 14 76.5 78,000 868 MHz 143 39,000 2009
SX1262 [71] 2017 LoRa 21,900 bps 14 76.5 3,500 868 MHz 131 9,700 358
DA14585 [178] 2016 BLE 1Mbps 0 10.2 10.2 2.4 GHz 93 44 232
CC2650 [179] 2016 802.15.4 250 kbps 0 18.3 73.2 2.4 GHz 100 97 755
CC2650 [179] 2016 BLE 1 Mbps 0 18.3 18.3 2.4 GHz 97 69 265
SX1276 [72] 2016 N/A 1,200 bps 7 66 55,000 868MHz 130 8,300 6,600
SX1276 [72] 2016 N/A 250 kbps 7 66 264 868 MHz 104 414 638
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Name Year Standard Data
Rate

TX
Power
(dBm)

TX
Power

Draw (mW)

Energy
per bit
(nJ)

Band
Link

Budget
(dBm)

Est.
Range
(m)

Efficiency
(pJ/b/meter)

SX1276 [72] 2016 LoRa 980 bps 7 66 67,000 868MHz 139 23,000 2896
SX1276 [72] 2016 LoRa 12,500 bps 7 66 5280 868MHz 126 5,200 1014
LTC5800 [180] 2015 802.15.4 250 kbps 0 16.2 64.8 2.4 GHz 93 44 1473
DA14580 [181] 2015 BLE 1Mbps 0 10.3 10.3 2.4 GHz 93 44 234
nRF51822 [43] 2012 BLE 1Mbps 0 39 39 2.4 GHz 93 44 886
CC2538 [182] 2012 802.15.4 250 kbps 0 72 288 2.4 GHz 97 69 4174
AT86RF233 [183] 2012 802.15.4 250 kbps 0 34.4 141.6 2.4 GHz 101 109 1299
AT86RF233 [183] 2012 802.15.4 250 kbps 0 34.4 141.6 2.4 GHz 101 109 1299
CC2520 [184] 2007 802.15.4 250 kbps 0 77.4 309.6 2.4 GHz 98 77 4021
AT86RF230 [42] 2006 802.15.4 250 kbps 0 43.5 174 2.4 GHz 101 109 1596
CC1101 [185] 2005 N/A 250 kbps 0 47.1 188.4 915 MHz 95 147 1282
CC1101 [185] 2005 N/A 500 kbps 0 47.1 94.2 915MHz 90 83 1135
CC2420 [186] 2003 802.15.4 250 kbps 0 52.2 208.8 2.4 GHz 95 5 3796
CC1000 [187] 2002 N/A 2400 bps 0 34.8 14,500 915 MHz 110 825 17,500
TR1000 [188] 1998 N/A 115 kbps 0 36 312.5 915 MHz 97 185 1689
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Table A.2: Power consumption and efficiency of research radios focusing on low-power and particularly efficient examples.
Priority is given to searching for standards-compliant radios. Research falls broadly into two categories: (1) fabricated
radios that optimize the circuitry to make traditional active radio transmitters and receivers more efficient and (2) new
communication topologies such as passive and back-scatter radios. For both, link budget is calculated with the receive
sensitivity at a standard 1% packet error rate. Distance is calculated using the Hata Model for all radios to aid in
comparability, however this introduces error at higher frequencies and in indoor settings [78]. When receive sensitivity
is not available (such as when research is focused on transmitter optimization) a receive sensitivity is used from the
most recent past year. In back-scatter radios packet error rates are often not available, and in these cases distance is
taken directly from the communication distances used in the paper’s evaluation. It’s particularly difficult to compare
the efficiency of a passive radio to that of an active radio. Often small changes to the methodology of the back-scatter
radio may greatly change the results. Still, we feel it is important to attempt comparison so that dramatic shifts in the
efficiency of wireless communication can be anticipated. Note that some marked efficiencies are estimated efficiency only
and may not reflect results of a fabricated chip.

Name Year Standard Data
Rate

TX
Power
(dBm)

TX
Power

Draw (mW)

Energy
per bit
(nJ)

Band
Link

Budget
(dBm)

Est.
Range
(m)

Efficiency
(pJ/b/meter)

Varshney et al. [79]a 2022 N/A 50 kbps - 0.1 2 868MHz - 500 4
Varshney et al. [79]a 2022 N/A 100 kbps - 0.1 1 868MHz - 105 10
Varshney et al. [87]a 2019 N/A 1,000 bps - 0.057 57 868MHz - 18 3167
Varshney et al. [87]a 2019 N/A 2,900 bps - 0.057 20 2.4GHz - 15 1311
Abdellaty et al. [189] 2019 BLE 1Mbps -10 2.2 2.2 2.4 GHz 85 17 128
Sharifzadeh et al. [190] 2018 BLE 1Mbps -0 4.5 4.5 2.4GHz 95 55 82
Pérez-Penichet et al. [81]a 2018 802.15.4 250 kbps - 0.361 66 2.4 GHz - 2.5 576
Chuo et al. [191] 2017 N/A 30.3 kbps -26.1 2 66 915 MHz 93.9 129 512
Talla et al. [85]a 2017 LoRa 200 bps - 0.009 47 915MHz - 100 12
Talla et al. [85]a 2017 LoRa 8 kbps - 0.009 1.18 915 MHz - 100 200
Y. Zhang et al. [192] 2017 N/A 750 kbps -10 1.9 2.53 2.4 GHz 88 24 105
Kuo et al. [193] 2017 BLE 1 Mbps 0 3.7 3.7 2.4GHz 95 55 67
Kellog et al. [83]a 2016 WiFi 1 Mbps - 0.015 0.015 2.4 GHz - 7.6 2
Liu et al. [194] 2015 BLE 1 Mbps 1 4.2 4.2 2.4 GHz 95 55 76
Liu et al. [194] 2015 N/A 2 Mbps 1 4.2 2.1 2.4 GHz 95 55 38
Bharadia et al. [82]a 2015 N/A 100 kbps - - 0.014 2.4 GHz - 7 2
Bharadia et al. [82]a 2015 N/A 5Mbps - - 0.009 2.4 GHz - 1 9
P. Zhang et al. [80]a 2015 N/A 200 kbps - 0.077 0.39 915 MHz - 2.8 139
Kellog et al. [84]a 2014 N/A 10 kbps - 0.009 0.9 2.4GHz - 2.5 360
Siligaris et al. [195] 2013 N/A 500 Mbps - 0.025 0.05 60 GHz - 0.022 2273
Chakraborty et al. [196] 2013 BLE 1 Mbps 0 10.5 10.5 2.4 GHz 100 97 108
Liu et al. [197] 2013 BLE 1 Mbps 0 5.4 5.4 2.4 GHz 98 77 70
Liu et al. [197] 2013 N/A 2 Mbps 0 5.4 2.7 2.4 GHz 96 61 44
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Name Year Standard Data
Rate

TX
Power
(dBm)

TX
Power

Draw (mW)

Energy
per bit
(nJ)

Band
Link

Budget
(dBm)

Est.
Range
(m)

Efficiency
(pJ/b/meter)

Wong et al. [198] 2012 BLE 1Mbps 0 8.9 8.9 2.4GHz 94 49 182
Crepaldi et al. [199] 2011 N/A 1 Mbps -14 0.253 0.25 3.5 GHz 48 1 250
Ayers et al. [200] 2010 N/A 1 Mbps -5.2 1.5 1.5 2.4GHz 80.8 11 136
Retz et al. [201] 2009 802.15.4 250 kbps 3 38.4 129.6 2.4 GHz 104 154 842
Kluge et al. [202] 2006 802.15.4 250 kbps 3 28.6 113.1 2.4 GHz 104 154 734
Nguyen et al. [203] 2006 802.15.4 250 kbps 0 5.4 21.6 2.4 GHz 101 109 198

a Passive or back-scatter radio.



APPENDIX A. RADIO AND PROCESSOR ENERGY DATASETS 107

Name Manufacturer Year Architecture Frequency
(MHz)

Efficiency
(µA/MHz)

STM32U5 [204] ST Micro 2022 ARM Cortex M33 160 19
Appollo 4 Plus [205] Ambiq Micro 2022 ARM Cortex M4 192 4
Apollo 4 [206] Ambiq Micro 2022 ARM Cortex M4 192 3
nRF5340 [173] Nordic Semiconductor 2021 ARM Cortex M33 128 55
Apollo 3 [176] Ambiq Micro 2018 ARM Cortex M4 96 6
SiFive FE310 [207] SiFive 2017 RISC5 320 500
Apollo 2 [208] Ambiq Micro 2017 ARM Cortex M4 48 13
nRF52840 [66] Nordic Semiconductor 2017 ARM Cortex M4 64 56
STM32L4 [209] ST Micro 2016 ARM Cortex M4 80 39
Apollo 1 [41] Ambiq Micro 2016 ARM Cortex M4 24 35
DA1468x [175] Dialog Semiconductor 2016 ARM Cortex M0 96 64
CC2650 [179] Texas Instruments 2015 ARM Cortex M3 48 61
MSP430FR59 [210] Texas Instruments 2014 MSP430 16 100
nRF51822 [43] Nordic Semiconductor 2012 ARM Cortex M0 32 150
SAM4L [211] Atmel Corporation 2012 ARM Cortex M4 48 90
CC2538 [182] Texas Instruments 2012 ARM Cortex M3 32 406
STM32F101 [212] ST Micro 2007 ARM Cortex M3 36 358
LM3S101 [213] Texas Instruments 2006 ARM Cortex M3 20 2250
MSP430F2012 [214] Texas Instruments 2005 MSP430 16 220
MSP430F16 [40] Texas Instruments 2004 MSP430 8 600
ATMEGA128L [215] Atmel Corporation 2001 AVR 8 1375
ATMEGA128 [215] Atmel Corporation 2001 AVR 16 2375
ATMEGA163L [216] Atmel Corporation 2000 AVR 4 1250
ATMEGA163 [216] Atmel Corporation 2000 AVR 8 1875
AT90S8525 [217] Atmel Corporation 1998 AVR 8 1250

Table A.3: Processing frequency and energy efficiency of common and particularly performant
embedded processors. Clearly not all processors are captured, but an attempt was made to find
and include processors that pushed the optimal efficiency forward in a given year and include
new processors of a specific architecture, such as early ARM Cortex M and RISC5 processors.
Efficiency is reported for the most efficient mode of each processor from each processor’s
datasheet. Efficiencies are reported at 3.3V. Not all efficiency measurement methodologies
are comparable, with some manufacturers disabling flash or running insignificant code to
improve efficiency. An attempt was made to include efficiency of some not insignificant code
running from flash, however this was not always possible and these changes in methodology
could decrease the efficiency of some processors by a as much as factor of 2-3x.
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