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Abstract

Learned Token Pruning for Efficient Transformer Inference

by

Sehoon Kim

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Kurt Keutzer, Chair

Efficient deployment of transformer models in practice is challenging due to their inference
cost including memory footprint, latency, and power consumption, which scales quadratically
with input sequence length. To address this, we present a novel token reduction method
dubbed Learned Token Pruning (LTP) which adaptively removes unimportant tokens as an
input sequence passes through transformer layers. In particular, LTP prunes tokens with an
attention score below a threshold, whose value is learned for each layer during training. Our
threshold-based method allows the length of the pruned sequence to vary adaptively based
on the input sequence, and avoids algorithmically expensive operations such as top-k token
selection. We extensively test the performance of LTP on GLUE and SQuAD tasks and
show that our method outperforms the prior state-of-the-art token pruning methods by up to
∼2.5% higher accuracy with the same amount of FLOPs. In particular, LTP achieves up to
2.1× FLOPs reduction with less than 1% accuracy drop, which results in up to 1.9× and 2.0×
throughput improvement on Intel Haswell CPUs and NVIDIA V100 GPUs. Furthermore, we
demonstrate that LTP is more robust than prior methods to variations in input sequence
lengths.
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Chapter 1

Introduction

Transformer-based deep neural network architectures [45], such as BERT [7] and RoBERTa [28],
achieve state-of-the-art results in Natural Language Processing (NLP) tasks such as sentence
classification and question answering. However, efficiently deploying these models is increas-
ingly challenging due to their large size, the need for real-time inference, and the limited
energy, compute, and memory resources available. The heart of a transformer layer is the
multi-head self-attention mechanism, where each token in the input sequence attends to every
other token to compute a new representation of the sequence. Because all tokens attend to
each others, the computation complexity of the self-attention mechanism is quadratic with
respect to the input sequence length; thus the ability to apply transformer models to long
input sequences becomes limited.

Pruning is a popular technique to reduce the size of neural networks and the amount of
computation required. Unstructured pruning allows arbitrary patterns of sparsification for
parameters and feature maps and can, in theory, produce significant computational savings
while preserving accuracy. However, commodity DNN accelerators cannot efficiently exploit
unstructured sparsity patterns. Thus, structured pruning methods are typically preferred in
practice due to their relative ease of deployment to hardware.

Multi-head self-attention provides several possibilities for structured pruning; for example,
head pruning [30, 46] decreases the size of the model by removing unneeded heads in each
transformer layer. Another orthogonal approach that we consider in this thesis is token
pruning, which reduces computation by progressively removing unimportant tokens in the
sequence during inference. For NLP tasks such as sentence classification, token pruning is an
attractive approach to consider as it exploits the intuitive observation that not all tokens
(i.e., words) in an input sentence are necessarily required to make a successful inference.

There are two main classes of token pruning methods. In the first class, methods like
PoWER-BERT [13] and Length-Adaptive Transformer (LAT) [21] search for a single token
pruning configuration (i.e., sequence length for each layer) for an entire dataset. In other
words, they prune all input sequences to the same length. However, input sequence lengths
can vary greatly within tasks and between training and validation sets as in Figure 1.1, and
thus applying a single pruning configuration to all input sequences can potentially under-prune
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(a) QQP (b) SST-2

(c) STS-B

Figure 1.1: Distributions of processed input sequence lengths from datasets for representative
tasks in the GLUE benchmark: (a) QQP (b) SST-2; (c) STS-B. The training set is in orange
and the validation set is in blue. The dashed and solid vertical lines indicate the 99th
percentile value for the training and validation sets, respectively.

shorter sequences or over-prune longer sequences.
In the other class, the token pruning method adjusts the configuration based on the

input sequence. SpAtten [49] uses a pruning configuration proportional to input sentence
length; however, it does not adjust the proportion of pruned tokens based on the content
of the input sequence. The recently published TR-BERT [54] uses reinforcement learning
(RL) to find a policy network that dynamically reduces the number of tokens based on the
length and content of the input sequence; however, it requires additional costly training for
convergence of the RL-based method. Additionally, all of these prior methods rely in part
on selecting the k most significant tokens during inference or training. This selection can
be computationally expensive without the development of specialized hardware, such as the
top-k engine introduced in SpAtten [49].

To this end, we propose a learned threshold -based token pruning method which adapts
to the length and content of individual examples and avoids the use of top-k operations. In
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particular, our contributions are as follows:

• We propose Learned Token Pruning (LTP), a threshold-based token pruning method, which
only needs a simple threshold operation to detect unimportant tokens. In addition, LTP
fully automates the search for optimal pruning configurations by introducing a differentiable
soft binarized mask that allows training the correct thresholds for different layers and tasks.
(Section 3.3)

• We apply LTP to RoBERTa and evaluate its performance on GLUE and SQuAD tasks. We
show LTP achieves up to 2.10× FLOPs reduction with less than 1% accuracy degradation,
which results in up to 1.93× and 1.97× throughput improvement on NVIDIA V100 GPU
and Intel Haswell CPU, respectively, as compared to the unpruned FP16 baseline. We also
show that LTP outperforms SpAtten and LAT in most cases, achieving additional FLOPs
reduction for the same drop in accuracy. (Section 4.2 and 4.5)

• We show that LTP is highly robust against sentence length variations. LTP exhibits
consistently better accuracy over different sentence length distributions, achieving up to
16.4% accuracy gap from LAT. (Section 4.3)
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Chapter 2

Related Work

2.1 Efficient Transformers
Multiple different approaches have been proposed to improve speed and diminish memory
footprint of transformers. These can be broadly categorized as follows: (i) efficient architecture
design [25, 5, 23, 50, 16, 47, 44, 19, 57, 35]; (ii) knowledge distillation [42, 18, 43, 38, 41]; (iii)
quantization [2, 56, 39, 10, 55, 58, 1, 22]; and (iv) pruning. Here, we focus only on pruning
and briefly discuss the related work.

2.2 Transformer Pruning
Pruning methods can be categorized into unstructured pruning and structured pruning. For
unstructured pruning, the lottery-ticket hypothesis [11] has been explored for transformers
in [31, 4]. Recently, [59] leverages pruning as an effective way to fine-tune transformers on
downstream tasks. [37] proposes movement pruning, which achieves significant performance
improvements versus prior magnitude-based methods by considering the weights modification
during fine-tuning. However, it is often quite difficult to efficiently deploy unstructured
sparsity on commodity neural accelerators for meaningful speedup.

For this reason, a number of structured pruning methods have been introduced to remove
structured sets of parameters. [30, 46] drop attention heads in multi-head attention layers, and
[36, 9] prunes entire transformer layers. [51] structurally prunes weight matrices via low-rank
factorization, and [20, 27] attempt to jointly prune attention heads and filters of weight
matrices. [29, 15] dynamically determines structured pruning ratios during inference. Recent
block pruning schemes chunk weight matrices into multiple blocks and prune them based on
group Lasso optimization [26], adaptive regularization [53], and movement pruning [24]. All
of these methods correspond to weight pruning, where model parameters (i.e., weights) are
pruned.

Recently, there has been work on pruning input sentences to transformers, rather than
model parameters. This is referred to as token pruning, where less important tokens are
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progressively removed during inference. PoWER-BERT [13], one of the earliest works,
proposes to directly learn token pruning configurations. LAT [21] extends this idea by
introducing LengthDrop, a procedure in which a model is trained with different token pruning
configurations, followed by an evolutionary search. This method has an advantage that the
former training procedure need not be repeated for different pruning ratios of the same model.
While these methods have shown a large computation reduction on various NLP downstream
tasks, they fix a single token pruning configuration for the entire dataset. That is, they prune
all input sequences to the same length. However, as shown in Figure 1.1, input sequence
lengths vary greatly within a task. As a consequence, fixing a single pruning configuration can
under-prune shorter sequences so as to retain sufficient tokens for processing longer sequences
or, conversely, over-prune longer sequences to remove sufficient tokens to efficiently process
shorter sequences. More importantly, a single pruning configuration lacks robustness against
input sequence length variations, where input sentences at inference time are longer than
those in the training dataset [32].

In contrast, SpAtten [49] circumvents this issue by assigning a pruning configuration
proportional to the input sequence length. While this allows pruning more tokens from
longer sequences and fewer tokens from shorter ones, it is not adaptive to individual input
sequences as it assigns the same configuration to all sequences with the same length regardless
of their contents. In addition, the pruning configurations are determined heuristically and
thus can result in a suboptimal solution. Recently, TR-BERT [54] proposes to learn a RL
policy network to apply adaptive pruning configurations for each input sequence. However,
as noted by the authors, the problem has a large search spaces which can be hard for RL
to solve. This issue is mitigated by heuristics involving imitation learning and sampling of
action sequences, which significantly increases the cost of training. Importantly, all of the
aforementioned token pruning methods depend partially or entirely on top-k operation for
selecting the k most important tokens during inference or training. This operation can be
costly without specialized hardware support, as discussed in [49]. LTP, on the other hand, is
based on a fully learnable threshold-based pruning strategy. Therefore, it is (i) adaptive to
both input length and content, (ii) robust to sentence length variations, (iii) computationally
efficient, and (iv) easy to deploy.
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Chapter 3

Methodology

3.1 Background
BERT [7] consists of multiple transformer encoder layers [45] stacked up together. A basic
transformer encoder layer consists of a multi-head attention (MHA) block followed by a
point-wise feed-forward (FFN) block, with residual connections around each. Specifically,
an MHA consists of Nh independently parameterized heads. An attention head h in layer
l is parameterized by W

(h,l)
k , W

(h,l)
q , W

(h,l)
v ∈ Rdh×d, W(h,l)

o ∈ Rd×dh , where dh is typically
set to d/Nh and d is the feature dimension. We drop the superscript l for simplicity in the
following formula. The MHA measures the pairwise importance of each token on every other
token in the input:

MHA(x) =
Nh∑
h=1

Att
W

(h)
k,q,v,o

(x), (3.1)

where x ∈ Rd×n is the input sequence with the sequence length n, and AttWk,q,v,o
is:

AttWk,q,v,o
(x) = Wo

n∑
i=1

Wvxisoftmax(
xTWT

q Wkxi√
d

), (3.2)

xMHA = LN
(
AttWk,q,v,o

(x) + x
)
, (3.3)

where Eq. 3.3 is the residual connection and the follow up LayerNorm (LN). The output of
the MHA is then fed into the FFN block which applies two feed-forward layers to this input:

FFN(xMHA) = σ
(
W2(W1xMHA + b1)

)
+ b2, (3.4)

xout = LN
(
FFN(xMHA) + xMHA

)
, (3.5)

where W1,W2, b1 and b2 are the FFN parameters, and σ is the activation function (typically
GELU for BERT).
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This is the best restaurant, and I will be returning for another meal.

This is the best restaurant, and I will be returning for another meal.  

This is the best restaurant, and I will be returning for another meal.

This is the best restaurant, and I will be returning for another meal.

Layer 1   

Layer 4

Layer 8

Layer 12

Positive SentimentClassification

15 tokens

11 tokens

4 tokens

2 tokens

Figure 3.1: (Left) Schematic of token pruning for a sentiment analysis task. Unimportant
tokens are pruned as the input sequence passes through the layers. (Right) An example of
attention probability in a single head where a more important token receives more attention
from other tokens. Thus each token’s importance score is computed by taking the average
attention probability it receives, which is computed by taking the column mean of the
attention probability.

3.2 Threshold Token Pruning
Let us denote the attention probability of head h between token xi and xj as A(h,l):

A(h,l)(xi, xj) = softmax(
xTWT

q Wkx√
d

)(i,j) ∈ R. (3.6)

The cost of computational complexity for computing the attention matrix is O(d2n+ n2d),
which quadratically scales with sequence length. As such, the attention operation becomes a
bottleneck when applied to long sequences. To address this, we apply token pruning which
removes unimportant tokens as the input passes through the transformer layers to reduce the
sequence length n for later blocks. This is schematically shown in Figure 3.1 (Left).

For token pruning, we must define a metric to determine unimportant tokens. Following [13,
49, 21], we define the importance score of token xi in layer l as:

s(l)(xi) =
1

Nh

1

n

Nh∑
h=1

n∑
j=1

A(h,l)(xi, xj). (3.7)

Intuitively, the attention probability A(h,l)(xi, xj) is interpreted as the normalized amount
that all the other tokens xj attend to token xi. Token xi is thus considered important if it
receives more attention from all tokens across all heads, which directly leads us to equation 3.7.
The procedure for computing importance scores from attention probabilities is illustrated in
Figure 3.1 (Right).
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Figure 3.2: Different pruning strategies for threshold-based token pruning methods. (Left)
Hard pruning uses a binary hard mask to select tokens to be pruned. (Right) Soft pruning
replaces the binary mask with a differentiable soft mask.

In [13, 49, 21], tokens are ranked by importance score and pruned using a top-k selection
strategy. Specially, token xi is pruned at layer l if its important score s(l)(xi) is smaller
than the k-largest values of the important score from all the tokens. However, finding the
k-largest values of the importance score is computationally inefficient without specialized
hardware [49]; we provide empirical results showing this in Section 4.7. Instead, we introduce a
new threshold-based token pruning approach in which a token is pruned only if its importance
score is below a threshold denoted by θ(l) ∈ R. Specifically, we define a pruning strategy by
imposing a binary mask M (l)(·) : {1, . . . , n} → {0, 1} which indicates whether a token should
be kept or pruned:

M (l)(xi) =

{
1 if s(l)(xi) > θ(l),

0 otherwise.
(3.8)

Note that this operation only requires a simple comparison operator without any expensive
top-k calculation. Once a token is pruned, it is excluded from calculations in all succeeding
layers, thereby gradually reducing computation complexity towards the output layers.

3.3 Learnable Threshold for Token Pruning

A key concern with the method above is how to determine the threshold values for each
layer. Not only do threshold values change for different layers, they also vary between different
tasks. We address this by making the thresholds (i.e., θ in Eq. 3.8) learnable. However, there
are several challenges to consider. First, due to the binary nature of M there is no gradient
flow for pruned tokens. Second, the M operator is non-differentiable which prevents gradient
flow into the thresholds. To address these challenges, we use a soft pruning scheme that
simulates the original hard pruning while still propagating gradients to the thresholds as
shown in Figure 3.2.
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Algorithm 1 Three-step Training Procedure for Learnable Threshold Token Pruning
Input: M: model finetuned on target downstream task

Step 1: Apply soft mask to M
and train both the thresholds and model parameters ▷ Soft Pruning

Step 2: Binarize the mask and fix the thresholds
Step 3: Finetune the model parameters ▷ Hard Pruning

Soft Pruning Scheme. In the soft pruning scheme, we replace the non-differentiable
mask M (l) with a differentiable soft mask using the sigmoid operation σ:

M̃ (l)(xi) = σ

(
s(l)(xi)− θ(l)

T

)
, (3.9)

where T is temperature, and θ(l) is the learnable threshold value for layer l. With sufficiently
small temperature T , M̃ (l)(xi) will closely approximate the hard masking M (l)(xi) in Eq. 3.8.
In addition, instead of selecting tokens to be pruned or kept based on the hard mask of Eq. 3.8,
we multiply the soft mask to the output activation of layer l. That is,

x̃(l)
out = M̃ (l)(x(l)) · x(l)

out (3.10)

= M̃ (l)(x(l)) · LN(FFN(x(l)
MHA) + x(l)

MHA), (3.11)

where x(l)
MHA is the output activation of MHA in layer l. If the importance score of token xi is

below the threshold by a large margin, its layer output activation nears zero and thus it has
little impact on the succeeding layer. Also, because the token gets a zero importance score in
the succeeding layer, i.e., s(l+1)(xi) = 0, it is likely to be pruned again. Therefore, the soft
pruning scheme is nearly identical in behavior to hard pruning, yet its differentiable form
allows for backpropagation and gradient-based optimizations to make θ learnable. After (i)
jointly training model parameters and thresholds on downstream tasks with the soft pruning
scheme, (ii) we fix the thresholds and binarize the soft mask, and (iii) perform a follow-up
fine-tuning of the model parameters. The pseudo-code for this three-step algorithm is given
in Algorithm 1. Intuitively, the magnitude of gradient dM̃ (l)(xi)/dθ

(l) is maximized when the
importance score s(l)(xi) is close enough to the threshold θ(l) and becomes near zero elsewhere.
Therefore, the threshold can be trained only based on the tokens that are about to be pruned
or retained.

Regularization. It is not possible to learn θ without regularization, as the optimizer
generally gets a better loss value if all tokens are present. As such, we add a regularization
term to penalize the network if tokens are left unpruned. This is achieved by imposing an L1
loss on the masking operator M̃ :

Lnew = L+ λLreg where Lreg =
1

L

L∑
l=1

||M̃ (l)(x)||1. (3.12)
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Here, L is the original loss function (e.g., cross-entropy loss), and λ is the regularization
parameter. Larger values of λ result in higher pruning ratios. This regularization operator
induces an additional gradient to the threshold:

dLreg

dθ(l)
=

1

dθ(l)
||M̃ (l)(x)||1 =

n∑
i=1

dM̃ (l)(xi)

dθ(l)
(3.13)

If there are more tokens near the threshold, then the gradient dLreg/dθ
(l) is larger. As a

result, the threshold is pushed to a larger value, which prunes more tokens near the threshold
boundary.
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Chapter 4

Experiments

4.1 Experiment Setup
We implemented LTP on RoBERTabase [28] using HuggingFace’s repo1 and tested on (English)
GLUE tasks [48] and SQuAD 2.0 [33]. For GLUE tasks [48], we use 6 tasks for evaluation
including sentence similarity (QQP [17], MRPC [8], STS-B [3]), sentiment classification (SST-
2 [40]), textual entailment (RTE [6]) and natural language inference (MNLI [52], QNLI [34]).
For evaluating the results, we measure classification accuracy and F1 score for MRPC and
QQP, Pearson Correlation and Spearman Correlation for STS-B, and classification accuracy
for the remaining tasks on validation sets. For the tasks with multiple metrics (i.e., MRPC,
QQP, STS-B), we report their average. For SQuAD 2.0 [33], which is a question and answering
task, we measure F1 score for evaluating the results.

As mentioned in Section 3.3, the training procedure of LTP soft pruning followed by
hard pruning. For soft pruning, we train both the model parameters and the thresholds on
downstream tasks for 1 to 10 epochs, depending on the dataset size. We find it effective to
initialize the thresholds with linearly rising values as described in 4.4 with a fixed threshold of
the final layer. We search the optimal temperature T in a search space of {1, 2, 5, 10, 20}e-4
and vary λ from 0.001 to 0.4 to control the number of tokens to be pruned (and thus the
FLOPs) for all experiments. We then fix the thresholds and perform an additional training
with the hard pruning to fine-tune the model parameters only. More detailed hyperparameter
settings are listed in Table 4.1 for GLUE and SQuAD 2.0.

We also compare LTP with the current state-of-the-art token pruning methods of SpAt-
ten [49] and LAT [21] following the implementation details in their papers. SpAtten is trained
based on the implementation details in the paper: the first three layers retain all tokens and
the remaining layers are assigned with linearly decaying token retain ratio until it reaches the
final token retain ratio at the last layer. We vary the final token retain ratio from 1.0 to -1.0
(prune all tokens for non-positive retain ratios) to control the FLOPs of SpAtten. For both
LTP and SpAtten, we use learning rate of {0.5, 1, 2}e-5, except for the soft pruning stage of

1https://github.com/huggingface/transformers/
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Table 4.1: Detailed hyperparameters for LTP training.

Stage Hyperparam GLUE SQuAD 2.0

Soft
pruning

epochs 1 - 10 1
learning rate 2e-5 2e-5

T {1, 2, 5, 10, 20}e-4 {1, 10}e-4
λ 0.001 - 0.2 0.001 - 0.4

initial final threshold 0.01 0.003

Hard epochs 10 5
pruning lr {0.5, 1, 2}e-5 {0.5, 1, 2}e-5

LTP where we use 2e-5. We follow the optimizer setting in RoBERTa [28] and use batch
size of 64 for all experiments. LAT is trained using the same hyperparameter and optimizer
setting in the paper except for the length drop probabilities: for more extensive search on
more aggressive pruning configurations, we used 0.25, 0.3, 0.35, and 0.4 for the length drop
probability instead of 0.2 in the original setting.

We use PyTorch 1.8 throughout all experiments. For CPU inference speed experiments,
we use an Intel Haswell CPU with 3.75GB memory of Google Cloud Platform. For GPU
inference speed experiments, we use an AWS p3.2xlarge instance that has a NVIDIA V100
GPU with CUDA 11.1.

An important issue in previous work [13, 21] is that all input sequences for a specific
task are padded to the nearest power of 2 from the 99th percentile of the sequence lengths,
and then the pruned performance is compared with the padded baseline. This results in
exaggerated performance gain over the baseline. For instance, in [13], inputs from the SST-2
dataset are padded to 64, while its average sentence length is 26 (cf. Figure 1.1). With this
approach, one can achieve roughly 2.5× speedup by just removing padding. As such, we
avoid any extra padding of input sequences and all speedups and throughputs we report are
compared with the unpadded baselines.

4.2 Performance Evaluation
Table 4.2 lists the accuracy and GFLOPs for LTP. We select a model for each downstream
task that achieves the smallest GFLOPs while constraining the accuracy degradation from
the baseline (RoBERTabase) to be at most 1%. Using our method, sequence lengths in each
layer can vary across different input sentences. Therefore, we report the averaged GFLOPs
of processing all input sentences in the development set. As shown in the table, our method
achieves speedup of 1.96× on average and up to 2.10× within 1% accuracy degradation.

Figure 4.1 plots the accuracy of LTP (blue lines) as well as the prior pruning methods
(red lines for SpAtten and orange lines for LAT) with different FLOPs on GLUE tasks. LTP
consistently outperforms SpAtten for all tasks with up to ~2% higher accuracy under the
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Figure 4.1: Performance of different pruning methods on GLUE tasks for different token
pruning methods across different relative FLOPs, i.e., normalized FLOPs with respect to
the the baseline model. Manual threshold assigns linearly raising threshold values for each
layer instead of learning them. The performance of the baseline model without token pruning
(RoBERTabase) and the model with 1% performance drop (RoBERTabase - 1%) are dotted in
horizontal lines for comparison.

Table 4.2: Detailed performance and efficiency comparison of LTP applied to RoBERTabase.

Task Accuracy Metric GFLOPs Speedup

RoBERTa LTP RoBERTa LTP LTP

MNLI-m 87.53 86.53 6.83 3.64 1.88×
MNLI-mm 87.36 86.37 7.15 3.63 1.97×

QQP 90.39 89.69 5.31 2.53 2.10×
QNLI 92.86 91.98 8.94 4.77 1.87×
SST-2 94.27 93.46 4.45 2.13 2.09×
STS-B 90.89 90.03 5.53 2.84 1.95×
MRPC 92.14 91.59 9.33 4.44 2.10×
RTE 77.98 77.98 11.38 6.30 1.81×

SQuAD 2.0 83.04 82.25 32.12 16.99 1.89×

same amount of FLOPs. Compared with LAT, LTP outperforms for all tasks except for
QQP with up to ~2.5% higher accuracy for the same target FLOPs. For QQP alone, LTP
achieves at most ~0.2% lower accuracy than LTP.

An important observation is that for SST-2 and STS-B where LTP (ours) outperforms
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Table 4.3: Quantiles (Q1/Q2/Q3) and KL divergence of sentence lengths of training and
evaluation datasets for GLUE tasks. KL divergence are measured after binning the sentence
lengths into 20 bins for RTE, MRPC, and STS-B and 50 bins for the others.

Task Quantiles (train) Quantiles (eval) KL Div.

MNLI-m 27/38/50 26/37/50 0.0055
MNLI-mm 27/38/50 29/39/51 0.0042

QQP 23/28/36 23/28/36 0.0006
QNLI 39/48/59 39/49/61 0.0092
SST-2 7/11/19 18/25/33 1.2250
STS-B 20/24/32 21/29/41 0.0925
MRPC 45/54/63 45/54/64 0.0033
RTE 44/57/86 42/54/78 0.0261

LAT with large margins, the sequence length varies greatly from the training dataset to the
evaluation dataset as can be seen from the large KL-divergence in Table 4.3 and Figure 1.1 (b,
c). On the other hand, for QQP, the only dataset that LAT slightly outperforms LTP (ours),
the sequence length distribution of the training dataset is almost identical to that of the
evaluation dataset as can be seen from the small KL-divergence in Table 4.3 and Figure 3.1
(a). This observation supports our claim in Section 1 and 2: LTP is robust to sequence length
variations as it does not fix the pruning configuration unlike other methods using a single
pruning configuration regardless of the input sequence length. This is important in practice
because the sequence lengths during inference do not always follow the sequence length
distribution of the training dataset as in SST-2 and STS-B. We make a further discussion
in Section 4.3.

For SQuAD 2.0, we have similar results to GLUE. As can be seen in Table 4.2 and
Figure 4.2 (Left), we obtain nearly identical F1 score to baseline at 0.58 relative FLOPs,
and 1.89× speedup with less than 1% drop of F1 score. The SQuAD 2.0 dataset is divided
into two subsets: the subset of examples where the answer to the question is included in the
context text, and the subset that has no answer. In Figure 4.2 (Right), we further plot the
results on each subset of the dataset (black and red for the one with and without answers,
respectively). We see that the F1 score decreases for the subset with answers and increases
for the subset without answers as we decrease the relative FLOPs. This is to be expected as
the question answering head will predict no answer if the start and end points of the answer
within the context cannot be determined due to high token pruning ratios. Thus, a careful
setting of λ in Eq. 3.12 is necessary to balance the accuracy between the two subsets.

At last, we also highlight that LTP has an additional gain over the prior top-k based
approaches by avoiding computationally inefficient top-k operations as further discussed
in Section 4.7.
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Figure 4.2: (Left) Performance of LTP on SQuAD 2.0 across different relative FLOPs with
respect to the the baseline model on the full validation set. (Right) Performance of LTP on
the subsets of the validation set, one with answers (Has Ans, black) and the other without
(No Ans, red). The performance of the baseline model without token pruning (RoBERTabase)
and the model with 1% performance drop (RoBERTabase - 1%) are dotted in horizontal lines
for comparison.

4.3 Robustness to Sequence Length Variation
In Section 4.2, we claim that LTP is more robust against sequence length variations from
training time to evaluation time. Here, we make a more systematic analysis on this. Ideally,
performance should be independent of sequence length. To quantitatively test the robustness
of pruning methods against sequence length variations, we train LTP and LAT on QNLI and
QQP, but only using the training examples whose sequence lengths are below the median
length of the evaluation dataset. We then evaluate the resulting models using the evaluation
examples with sequence lengths (i) below the median (~Q2), (ii) between the median and the
third quantile (Q2~Q3), and (iii) above the third quantile (Q3~) of the evaluation dataset.
To make a fair comparison, we choose models from LTP and LAT that require similar FLOPs
on ~Q2.

The results are listed in Table 4.4. LTP consistently achieves better accuracy and FLOPs
over different sequence lengths, even with those that are significantly longer than the training
sequences. On the contrary, LAT shows significant accuracy degradation as longer sequences
are over-pruned, which can be seen from the significant FLOPs reduction. In particular, LTP
outperforms LAT by up to 16.44% and 9.20% on QNLI and QQP for the Q3~ evaluation
dataset.

4.4 Ablation Studies
Instead of learning thresholds, we can set them manually. Because manually searching over the
exponential search space is intractable, we add a constraint to the search space by assigning
linearly rising threshold values for each layer, similar to how SpAtten [49] assigns the token
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Table 4.4: LTP and LAT trained with the sequences shorter than the median length, and
evaluated with the sequences shorther than the median (~Q2), between the median and the
third quantile (Q2~Q3), and longer than the third quantile (Q3~) of the evaluation dataset.
FLOPs are relative FLOPs (%) with respect to RoBERTabase.

Task QNLI QQP
~Q2 Q2~Q3 Q3~ ~Q2 Q2~Q3 Q3~

LTP Acc. 91.21 90.02 91.81 89.42 89.51 91.37
(ours) FLOPs 55.89 55.60 56.02 55.18 56.29 58.01

LAT Acc. 90.87 86.12 75.37 89.20 87.27 82.17
FLOPs 56.21 46.55 35.89 55.17 46.61 34.14

Diff. Acc. +0.34 +3.90 +16.44 +0.22 +2.24 +9.20

retain ratios: given the threshold of the final layer θ(L), the threshold for layer l is set as
θ(L)l/L. We plot the accuracy and FLOPs of the manual threshold approach in Figure 4.1
as black lines. While this approach exhibits decent results on all downstream tasks, the
learned thresholds consistently outperform the manual thresholds under the same FLOPs.
This provides empirical evidence for the effectiveness of our threshold learning method.

4.5 Direct Throughput Measurement on Hardware
We directly measure throughputs on real hardware by deploying LTP on a NVIDIA V100
GPU and a Intel Haswell CPU. For inference, we completely remove the pruned tokens
and rearrange the retained tokens into a blank-free sequence to have a latency gain. One
consequence of adaptive pruning, however, is that each sequence will end up with a different
pruning pattern and sequence length. As such, a naive hardware implementation of batched
inference may require padding all the sequences in a batch to ensure that they all have the
same length (i.e., the maximum sequence length in the batch), which results in a significant
portion of computation being wasted to process padding tokens. To avoid this, we use
NVIDIA’s Faster Transformer2 for GPU implementation that requires large batch sizes.
This framework dynamically removes and inserts padding tokens during inference so that
most of the transformer operations effectively skip processing padding tokens. This enables
fast inference even with irregular pruning lengths of individual sequences. For the CPU
implementation, we find naive batching (i.e., padding sequences to the maximum sentence
length) enough for good throughput.

The measured throughput results are shown in Figure 4.3 for different batch sizes. For
all experiments, relative throughput is evaluated 3 times on the randomly shuffled datasets.

2https://github.com/NVIDIA/FasterTransformer
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Figure 4.3: Relative throughput of LTP with respect to the baseline without token pruning
(RoBERTabase) with different batch sizes on Intel Haswell CPU and NVIDIA V100 GPU.
The performance of RoBERTabase are dotted in horizontal lines.

Figure 4.4: Accuracy and relative BOPs of the FP16 baselines and INT8 LTP models on
QQP and SST-2 datasets. Note that FP16 unpruned RoBERTabase is used as the baseline.
Thus, INT8 quantization of the models translates to 4× reduction in relative BOPs.

LTP achieves up to ∼1.9× and ∼2.0× thoughput improvement for QNLI and QQP on both
CPU and GPU, as compared to the baseline. This is similar to the theoretical speedup
inferred from the FLOPs reduction reported in Table 4.2. Importantly, the speedup of LTP
increases with larger batch sizes on both CPU and GPU, proving effectiveness of LTP on
batched cases.

4.6 LTP with Quantization and Knowledge Distillation
Here, we show that our token-level pruning method is compatible with other compression
methods. In particular, we perform compression experiments by combining LTP with
quantization and knowledge distillation [14] together. For quantization, we use the static
uniform symmetric integer quantization method [12], which is easy to deploy in commodity
hardware with minimal run-time overhead. All the model parameters are quantized to 8-bit
integers, except for those of the embedding layer whose bit-width does not affect the inference
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Figure 4.5: Wall-clock latency comparison between top-k operation and threshold operation
on an Intel Haswell CPU for different sequence length across various token retain ratios. Note
that the latency of a threshold operation is independent of sequence length.

speed. Afterwards, we apply knowledge distillation that helps recover accuracy for high
compression ratios. We set the baseline RoBERTabase model as the teacher and the quantized
LTP model as the student. We then distill knowledge from the teacher model into the student
model through a knowledge distillation loss that matches the output logits of the classification
layer and the output representations of the embedding layer in the teacher model to the
counterparts in the student model. The training objective is a convex combination of the
original loss and the knowledge distillation loss. As shown in Figure 4.4, we achieve up to
10× reduction in bit operations (BOPs) with less than 2% accuracy degradation as compared
to FP16 RoBERTabase by combining quantization and knowledge distillation. The results
empirically show the effectiveness of LTP with other compression methods.

4.7 Discussions

Computation Efficiency Comparison

Here we compare the efficiency of top-k versus threshold operation. To do this, we use a
batch size of 32 and average the latency over 1000 independent runs. For each sequence
length, we test over five different token retain ratios from 10% to 50% (e.g., 10% token retain
ratio is the case where we select top-k 10% of tokens from the input sequence).

With the above setting, we directly measure the latency of these two operations on an
Intel Haswell CPU, and report the results in Figure 4.5. For top-k operation, there is a
noticeable increase in latency when token retain ratios and sequence lengths become larger
whereas this is not an issue for our threshold pruning method as it only requires a comparison
operation. More importantly, top-k operation incurs a huge latency overhead that is up
to 7.4× and 33.4× slower than threshold operation for sequence length of 128 and 1024,
respectively.3

3The inefficiency of top-k is also further confirmed by [49], where they report only 1.1× speedup for
GPT-2 without the top-k hardware engine that they developed.
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(a) SST-2 (b) MNLI-m

Figure 4.6: Sample trajectories of pruned sequence length as the sequences are passed through
model layers. For LTP, 20 samples were evenly selected from the sets after sorting by initial
sequence length. (a) SST-2. (b) MNLI-m. The mean sequence length for LTP is shown by a
black dotted line, and the LAT baseline is shown by a black dashed line. Parameters were
selected so as to provide a 1% drop in accuracy from baseline for both methods.

Example Sequence Length Trajectories

Figure 4.6 shows how the pruned sequence length decreases for input sequences of varying
lengths. For LAT, the token pruning configuration is fixed for all sequences in the dataset.
In LTP, token pruning can be more or less aggressive depending on the sequence content
and the number of important tokens in the sequence. On average, LTP calculates 25.86%
fewer tokens per layer than LAT for MNLI-m and 12.08% fewer tokens for SST-2. For both
LTP and LAT, the model has been trained to produce a 1% drop in accuracy compared to
baseline.

Unbiased Token Pruning for Various Sequence Length

Figure 4.7 shows the distributions of initial sequence lengths for sequences that are correctly
classified and for sequences that are not. We see that for multiple tasks, there is no significant
correlation between the length of the sequence and the accuracy of the pruned models.
Importantly, this suggests that our method is not biased towards being more accurate on
longer or shorter sequences.

Comparison with TR-BERT on GLUE

Unlike LAT and SpAtten, TR-BERT [54] does not report results on the GLUE benchmark
tasks described in the paper. We attempted to run TR-BERT on the GLUE tasks using the
TR-BERT repo4, but were unable to get the algorithm to converge to a high accuracy, despite
varying the learning rate between 1e-6 and 1e-3 and the value of α, the parameter that defines
the length penalty, over the search space of {0.01, 0.05, 0.1, 0.5, 1, 2, 5}. We also varied the

4https://github.com/thunlp/TR-BERT
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(a) SST2

(b) MNLI-m

Figure 4.7: Histogram of pruned sequence length (x-axis) as the input sequence is processed
through different transformer blocks. y-axis shows the relative count of sentences with
the particular sequence length in x-axis. Green denotes input sequences that are correctly
classified, and red denotes incorrect classifications.

number of training epochs based on the number of examples in each task’s training set. The
authors of TR-BERT note the convergence difficulties of RL learning while describing the
algorithm in their paper.
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Chapter 5

Conclusions

In this thesis, we present Learned Token Pruning (LTP), a fully automated token pruning
framework for transformers. LTP only requires comparison of token importance scores with
threshold values to determine unimportant tokens, thus adding minimal complexity over the
original transformer inference. Importantly, the threshold values are learned for each layer
during training through a differentiable soft binarized mask that enables backpropagation of
gradients to the threshold values. Compared to the state-of-the-art token pruning methods,
LTP outperforms by up to ~2.5% accuracy with the same amount of FLOPs. Extensive
experiments on GLUE and SQuAD show the effectiveness of LTP, as it achieves up to
2.10× FLOPs reduction over the baseline model within only 1% of accuracy degradation.
Our preliminary (and not highly optimized) implementation shows up to 1.9× and 2.0×
throughput improvement on an Intel Haswell CPU and an NVIDIA V100 GPU. Furthermore,
LTP exhibits significantly better robustness and consistency over different input sequence
lengths.
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