
Efficient Visualization Recommendation under

Updates

Todd Yu
Aditya Parameswaran, Ed.
Dixin Tang, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-116

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-116.html

May 11, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I'd like to thank Dr. Dixin Tang for his unwavering mentorship and support
in this work, as well as Professor Aditya Parameswaran for his insightful
guidance and patience, and Devin Petersohn and Rehan Durrani for their
support and nurturing. These figures have been instrumental in my journey
as an undergraduate and M.S. student, and I would not have found
research nearly as enjoyable or meaningful without them. Truly, from the
bottom of my heart, I thank you for helping me grow.

I'd like to also thank EPIC Data Lab and RISE/Sky Lab for providing
resources such as compute credits and lab space.

Efficient Visualization Recommendation under Updates
by Todd Yu

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Aditya Parameswaran
Research Advisor

(Date)

* * * * * * *

Dr. Dixin Tang
Second Reader

(Date)

05/11/2023

AParamene

E�cient Visualization Recommendation under Updates

by

Todd Yu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Master’s of Science

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Aditya Parameswaran, Chair
Dr. Dixin Tang

Spring 2023

E�cient Visualization Recommendation under Updates

Copyright 2023
by

Todd Yu

1

Abstract

E�cient Visualization Recommendation under Updates

by

Todd Yu

Master’s of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Aditya Parameswaran, Chair

Visualization Recommendation (VisRec) systems are popular for generating visualizations
with limited e↵ort during the Exploratory Data Analysis (EDA) process. However, com-
puting visualization recommendations can be slow. A high proportion of computation time
involves calculating ranking scores (i.e., statistical utility metrics based on underlying data)
for a wide range of possible visualizations. In this work, our goal is to incrementally main-
tain VisRec ranking scores in EDA workflows under data updates. Updates to data are
common, thanks to user-driven data cleaning or transformation steps, as well as external
data updates. Our primary challenges stem from analyzing a wide range of VisRec systems
and their ranking scores, as well as covering a broad set of data updates, to identify how
to maintain updates to scores incrementally. We must also determine, upon updates, when
to incrementally maintain ranking scores and when to recompute them from scratch. We
first review an existing taxonomy of common VisRec categories, known as analytical actions,
then decompose all visualization ranking scores into a minimal set of five core aggregates per
column. We then propose a system to maintain these aggregates incrementally by presenting
five core operators for tabular data that compose to make up a wide variety of common EDA
data transformations, and then showing how we can e�ciently update our ranking scores for
these operations. We also propose a cost model to determine when to incrementally update
ranking scores, and when to recompute scores from scratch. We implement our approach in
Lux, a popular open-source VisRec system for pandas dataframes, and show how our system
scales. We demonstrate the e�cacy of our cost model by showing that for datasets with
many columns and thus many ranking scores, our system is faster or equivalent to naive
recomputation upon updates.

i

To my mother, who believed in me first.

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Visual Recommendation Systems . 1
1.2 The Challenges with Updates . 3
1.3 Research Goals and Contributions . 4
1.4 Related Work . 6

2 Overview of Approach 7
2.1 Defining Ranking Score Aggregates and Core Operators 8
2.2 E�ciently Maintaining Ranking Scores . 8

3 VisRec System Ranking Scores 9
3.1 VisRec System Taxonomy Overview . 9
3.2 Defining Existing Ranking Scores and Aggregates 11
3.3 Decomposing Ranking Scores . 17
3.4 Limitations . 18

4 Maintaining VisRec Ranking Score Aggregates 19
4.1 Tabular Data Operations and Maintaining VisRec Scores 19
4.2 Cost Model for Updates . 23
4.3 Limitations . 26

5 Implementation and Performance Evaluation 27
5.1 Implementation in Lux . 27
5.2 Dataframe Use Case Examples . 28
5.3 Evaluation . 28

6 Conclusion and Future Work 31

iii

6.1 Conclusion . 31
6.2 Future Work . 31

Bibliography 33

iv

List of Figures

1.1 A taxonomy of common visual recommendation analytical actions, created by
Lee et al. [14]. The final analytical action categories are to the right, highlighted
in blue. 2

1.2 Diagram of Exploratory Data Analysis (EDA) Workflow with a VisRec system,
where a data scientist repeatedly invokes the system after each step. 3

1.3 Example of Lux, a VisRec system, operating in a Jupyter Notebook Environment.
The “college” dataset is rapidly ingested into a dataframe and then profiled and
visualized with Lux in an eager fashion and in quick succession, with little to no
user code. 5

2.1 Illustrating our proposed approach for incrementally maintaining ranking scores.
Common EDA operations can be composed of core tabular data operators, each of
which e�ciently update a set of core ranking score aggregates. These aggregates
are used to e�ciently derive common VisRec ranking scores. 7

4.1 Existing VisRec systems such as Lux [15] and AutoViz [3] compute ranking scores
upon visualization, but recompute ranking scores from scratch upon updates, as
shown in Figure 4.1. 20

4.2 A dataframe, an example of a tabular data model, with row and column labels.
A dataframe with N rows and M columns will have N ·M cells in “Array of Data”. 21

4.3 We incrementally maintain VisRec ranking score aggregates upon data updates,
instead of fully recomputing statistics from scratch as seen in Figure 4.1. 22

4.4 A representation graph displaying quantitative column X. X is modeled as a
source, with directed edges to its aggregates

P
i Xi,

P
i X

2
i , |X|, and

P
i XiYi, as

well as its downstream, filtered column XF . Note that Y , an additional column,
and XF also have their own dependencies (aggregates to maintain), modeled as
additional connected nodes. 24

v

5.1 Within the Airbnb dataset, we apply a fixed number of 10000 operations (5000
row deletes and 5000 row additions), while fixing the number of columns (16)
and increasing the number of rows from 250,000 to 2 million. Updating ranking
scores takes a fixed amount of time regardless of number of rows. However, for
smaller datasets, full recomputation is faster. We demonstrate in the next section
that when the number of columns in a dataset increases (and thus the number of
possible visualizations and ranking scores increases), our strategy becomes much
more e↵ective. 29

5.2 We compare e�cacy of the incremental aggregate update strategy versus full
statistic/ranking score recomputation in Lux on the Crime Data dataset (2000
rows, 128 columns), varying the number of row additions and deletes from 6.25%
of the number of rows (125 rows) to 150% of the number of rows (3000 rows). We
see that for row operations up to 100% of the number of rows (2000 rows), in-
crementally updating aggregates is preferred. For any more updates, full ranking
score recomputation from scratch is faster, as demonstrated by our cost model. . 30

vi

List of Tables

3.1 Decomposing ranking scores for Data Variable (Column) X and (optional) ex-
ternal column Y into their respective aggregates. The columns of the table are
listed as follows: sum of X, sum of Y , sum of X’s squared elements, sum of Y ’s
squared elements, inner product of X and Y , cardinality of X. �X = VX is values
over an aggregate over X, XF represents filtered values, and Vflat represents the
flat uniform distribution based on cardinality. 17

3.2 Aggregates to maintain for Column X and external Column Y 18

vii

Acknowledgments

I’d like to thank Dr. Dixin Tang for his unwavering mentorship and support in this work, as
well as Professor Aditya Parameswaran for his insightful guidance and patience, and Devin
Petersohn and Rehan Durrani for their support and nurturing. These figures have been
instrumental in my journey as an undergraduate and M.S. student, and I would not have
found research nearly as enjoyable or meaningful without them. Truly, from the bottom of
my heart, I thank you for helping me grow.

I’d like to also thank EPIC Data Lab and RISE/Sky Lab for providing resources such as
compute credits and lab space.

1

Chapter 1

Introduction

1.1 Visual Recommendation Systems

1.1.1 Introduction to Visual Recommendation (VisRec) Systems

The modern Exploratory Data Analysis (EDA) process consists of an iterative process of
asking questions, visualizing data, and performing data processing and transformation oper-
ations. Data visualization is a core component of the EDA process; it allows data scientists
to ask thoughtful questions and reason about data, as well as examine underlying trends and
patterns.

Visual Recommendation (VisRec) systems have evolved to aid the visual data analytics
process by not only drastically reducing tedious e↵ort in processing and inspecting data, but
also suggesting insightful visual encodings or potentially interesting visualizations. VisRec
systems serve a variety of functions: automatically processing and visualizing data, recom-
mending visualizations, and allowing users to easily specify and materialize a collection of
visualizations. Many VisRec systems such as Lux, SeeDB, AutoViz, and DIVE [15, 29,
25, 33, 32, 3, 13, 11] also o↵er low-code/no-code interfaces, making them extremely versa-
tile. Some systems are mixed-initiative [25, 15, 32, 27], supporting both user specifications
and automatically suggesting interesting visualizations. Others are entirely automatic [30].
Many operate on tabular data models, organized into columns for data fields and rows for
individual data entries [15, 3, 29, 25, 11].

1.1.2 Recommendation Categories and Analytical Actions

Visual recommendations generated by a VisRec system can be grouped into categories based
on specific analytical actions corresponding to various forms of exploration: unit operations
that can be performed by the user during the analysis process. Examples of analytical actions
include visualizing distributions of various columns or plotting correlation between two data
variables of interest [14, 12, 23]. Lee et al. formalized a taxonomy of common analytical
action-based recommendation categories for data-based VisRec systems (systems that use

CHAPTER 1. INTRODUCTION 2

Figure 1.1: A taxonomy of common visual recommendation analytical actions, created by
Lee et al. [14]. The final analytical action categories are to the right, highlighted in blue.

statistical properties of the underlying data to identify visualization recommendations) [14],
shown in Figure 1.1. Actions are first grouped into operational and characteristic categories:
operational actions correspond to those that are user-invoked (such as adding a filter or
additional data variable to the current view), while characteristic actions reveal characteristic
patterns in data such as correlations. Actions are further broken down into whether they are
context-dependent–if they depend on the current view/visualization–or context-independent
otherwise. While the VisRec design space is extremely vast and constantly evolving, we
use Lee et al.’s taxonomy, synthesized via a thorough review of papers on this space, to
systematically enumerate many common data-based VisRec system actions and use cases
for the challenges outlined in the following sections. We elaborate on other categorization
frameworks, as well as justify our decision to use Lee et al.’s taxonomy, in the Related Work
section of this chapter and Chapter 2.

1.1.3 Visualization Generation and Ranking

VisRec systems [25, 33, 32, 29, 31, 13, 15, 11] often use ranking scores to measure the value
of a visualization to the end user, also known as “interestingness” [14]. Ranking scores can
be assigned for visualizations within a particular action category, or for visualizations across
action categories. Examples of interestingness scores include distance metrics (Euclidean
distance, Earth mover’s distance, or Jenson-Shannon Divergence), correlation, skewness,
separability, and more. For instance, analysts may be more interested in bar charts that are
heavily skewed, or scatterplots that exhibit high degrees of correlation. These visualizations
should therefore be ranked higher in priority by VisRec systems to be displayed to the user.
We define a set of ranking scores for commonly-occurring basic visualization types including

CHAPTER 1. INTRODUCTION 3

bar charts, histograms, line charts, and scatterplots in Chapter 3, and show how to maintain
them e�ciently with respect to updates in Chapter 4.

1.2 The Challenges with Updates

Figure 1.2: Diagram of Exploratory Data Analysis (EDA) Workflow with a VisRec system,
where a data scientist repeatedly invokes the system after each step.

1.2.1 VisRec Systems within the EDA Process

Users visualize, clean, and explore data iteratively during the EDA process. VisRec systems
are iteratively invoked as data is repeatedly cleaned, processed and transformed, then re-
visualized; this process is illustrated in Figure 1.2. As an example, a data scientist may
visualize data, then clean data by imputing (filling) null values or applying a filter to specific
rows, and then re-visualize the data, as one step of the EDA process.

Repeated invocation of VisRec systems is often a computationally expensive but impor-
tant step in deriving data insights with maximum utility. However, VisRec systems are not
optimized for computation under repeated data updates in the EDA process [15, 29, 13, 3];
they naively recompute results after data updates are performed. Much of the computation
time comes from computing visualization ranking scores (statistical measures of e↵ective-
ness) for candidate visualizations. And in many cases, small data modifications may
lead to expensive full recomputation across a large dataset.

CHAPTER 1. INTRODUCTION 4

As a case study, Agarwal et al. [1] profiled Lux, a VisRec system for dataframes with
4.5k GitHub stars as of March 2023. Agarwal et al. found that Lux’s full computation
cycle can take over 30 seconds on “tall” datasets of approximately 4 million rows and
16 columns, and over 200 seconds on “wide” datasets of 128 columns and 500,000 rows.
Agarwal’s detailed profiling identifies statistics and metadata collection as being the
primary bottleneck for runtime, with costs for collecting statistics per column and
ranking visualizations based on “interestingness” (ranking score) dominating over 70% of
the computation time in both examples. Lee et al.’s user study on Lux [15] reported 12/16
participants being most interested in improving Lux’s latency on large datasets out of any
suggested future revisions, even though users also reported Lux dramatically speeding up
the EDA process overall (by almost two-fold for some participants).

Existing VisRec systems focus on computing statistics and metadata [3, 15, 11], but
no methods we are aware of emphasize maintaining these statistics/metadata, specifically
ranking scores, under data updates. We aim to speed up computation in VisRec
systems by e�ciently maintaining ranking scores under data updates.

1.2.2 Many types of VisRec Systems and Data Updates

Many VisRec systems exist [3, 11, 15, 29, 13, 33, 32, 27, 25], and each has a variety of visu-
alization objectives and possible actions. The space of possible visualizations and associated
ranking scores is vast. We use Lee et al.’s VisRec system taxonomy to map the VisRec sys-
tem design space and focus our attention on common VisRec system actions/visualizations.
In addition, the space of possible data updates is extremely broad. Our challenge is to
consider a variety of recommendation categories and updates. We limit our scope
to tabular data models (employed by many VisRec systems [15, 3, 13, 33, 29, 27, 25]), and
propose a set of five core operators that update tabular data in Chapter 3. We provide an
overview of our strategy in Chapter 2.

In addition, another key challenge stems from determining when to maintain ranking
scores under data updates, and when to recompute ranking scores from scratch. We develop
a cost model in Chapter 4 to estimate when our strategy of maintaining ranking sores will
be computationally cheaper than fully recomputing ranking scores from scratch.

1.3 Research Goals and Contributions

We aim to reduce user-facing latency in VisRec systems under data updates. To
address the challenges mentioned above, we must cover a wide range of VisRec systems and
their ranking scores, as well as cover a broad set of data updates. We must also determine,
upon specific data updates, when to incrementally maintain ranking scores, and when full
recomputation is more e�cient. We outline our approach in greater detail in Chapter 2. We
achieve this goal by proposing an approach to incrementally maintain VisRec ranking

CHAPTER 1. INTRODUCTION 5

Figure 1.3: Example of Lux, a VisRec system, operating in a Jupyter Notebook Environment.
The “college” dataset is rapidly ingested into a dataframe and then profiled and visualized
with Lux in an eager fashion and in quick succession, with little to no user code.

scores across data updates for a wide variety of common VisRec visualization-
s/actions and data updates in order to avoid costly recomputation.

Our contributions are as follows:

• We define a set of ranking scores commonly used in many VisRec systems that can
all be decomposed into aggregates, which in turn can be e�ciently maintained with
respect to data updates, and cover every data-based analytical action in Lee et al.’s
taxonomy. (Chapter 3)

• We decompose and consolidate these ranking scores into a set of five core
aggregates. We also outline challenges and limitations posed by maintaining these
scores and associated aggregates. (Chapter 3)

• We propose a set of five core data operators that cover common data updates
across tabular data, as well as provide methods to maintain the five core aggregates
with respect to these operators. We present a cost model for estimating whether
to incrementally maintain ranking score aggregates or recompute ranking scores from
scratch upon a batch of updates. (Chapter 4)

• We implement our system in Lux and evaluate our system’s performance, namely time
taken to maintain ranking scores during updates. We show our system scales well
with dataset size, as well as demonstrate the e�cacy of our cost model by showing our
system is as fast or faster than naive full recomputation of ranking scores for
datasets with many ranking scores. (Chapter 5)

CHAPTER 1. INTRODUCTION 6

1.4 Related Work

Early VisRec systems [19, 18, 28] used user-identified data fields, coupled with perceptual
rules-of-thumb, to generate and recommend visual encodings for visualizations. Further
mixed-initiative systems [25, 33, 32, 29, 31, 13, 15, 11] provided an enhanced set of user-
facing capabilities such as high-level query languages or visualization specifications for a
space of potential visualizations, coupled with data-based recommendations. Our work fo-
cuses on covering common statistics for data-based recommendation systems: systems that
recommend visualizations based on data composition or statistical properties, otherwise
known as bottom-up data-driven inquiries [16]. Prior work by Graefe et al. classifies a set
of su�cient summary statistics for relational databases, as well as methods for e�ciently
computing them [8]. However, our work focuses on VisRec systems specifically, as well as
maintaining statistics with respect to updates.

To e↵ectively capture a wide range of common statistics for data-based recommendations,
we analyze and decompose the VisRec system analytical action categories created by Lee
et al.’s VisRec taxonomy [14]. Other taxonomies for visual analytics recommendations (not
necessarily VisRec systems specifically) exist: Kaur et al. [12] outline statistical “data-
characteristics oriented” strategies directly employed by the same VisRec systems already
covered by Lee et al.’s taxonomy, such as [13, 31, 29, 11, 33, 32, 15, 13]. Seo et al. [23]
present a statistical framework for methods ranking visualizations within high-dimensional
datasets: the framework specifies similar methods of ranking visualizations to Lee et al.’s
taxonomy. For example, histograms/bar charts are ranked through calculating normality and
uniformity of distribution, and scatterplots via Spearman’s correlation, which match Lee et
al.’s taxonomy. And Lee et al.’s taxonomy covers all VisRec categories and visualization types
that Seo et al.’s framework outlines. However, no prior work we are aware of exhaustively
consolidates a list of common VisRec system ranking scores and methods into a set of
aggregates to maintain during updates.

Prior work has attempted to speed up general EDA workloads in a computational note-
book environment via statistic collection [24] and lazy evaluation [34]. In addition, methods
for e�cient statistic computation and maintenance in tabular data exist, such as partition
recomputation [26, 35]. However, no prior work we are aware of focuses on incremental
maintenance of statistics/metadata in a VisRec context specifically, or across data-specific
updates in iterative EDA workflows. Lux, a VisRec system [15, 17], computes statistics
and ranking scores lazily (upon user invocation) and caches them, but invalidates its entire
cache upon any updates. Our work, in contrast, focuses on maintenance and not collection,
through a variety of online incremental algorithms and e�cient data structures.

7

Chapter 2

Overview of Approach

Figure 2.1: Illustrating our proposed approach for incrementally maintaining ranking scores.
Common EDA operations can be composed of core tabular data operators, each of which
e�ciently update a set of core ranking score aggregates. These aggregates are used to
e�ciently derive common VisRec ranking scores.

CHAPTER 2. OVERVIEW OF APPROACH 8

2.1 Defining Ranking Score Aggregates and Core
Operators

As mentioned previously, our challenge is to cover a range of VisRec systems and ranking
scores, as well as a range of data updates. To address the first issue, we use Lee et al.’s VisRec
taxonomy to map and understand the design space of common visualization and analytical
actions in VisRec systems, as well as choose a feasible set of ranking scores that covers
all categories within the taxonomy. In Chapter 3, we define each ranking score choice, as
well as decompose each score into their constituent aggregates (e.g., cardinality computation
or sums). We see that we are able to decompose the range of scores into five core
aggregates that need to be maintained.

The second part of our challenge stems from the wide range of possible data updates
during EDA. We constrain our data to tabular formats, and present a set of core tabular
data operators (primitives) that can be composed to make up various data updates in
Chapter 4. We also show how each of these core operators e�ciently update the five core
aggregates mentioned earlier.

2.2 E�ciently Maintaining Ranking Scores

Our goal is to incrementally maintain ranking scores with respect to common EDA data
updates. These EDA data updates can be composed of our core tabular data operators, each
of which, in turn, incrementally update our core ranking score aggregates. These aggregates
can be used to e�ciently derive VisRec ranking scores. Figure 2.1 illustrates this flow. We
also present a cost model to estimate when it is computationally cheaper to incrementally
update aggregates or to recompute ranking scores/statistics from scratch, thus maintaining
ranking scores as fast as or faster than full ranking score recomputation from scratch.

9

Chapter 3

VisRec System Ranking Scores

Computing ranking scores for VisRec Systems is costly. We summarize a set of ranking
scores that covers many visualization and analytical action types, including all categories
listed in Lee et al.’s [14] analytical action categories, and decompose them into a set of core
aggregates, to significantly reduce the e↵ort needed to maintain the entire set of scores. We
only need to maintain the set of core aggregates with respect to updates, to maintain the
entire set of scores.

While Lee et al. does not exhaustively enumerate all possible analytical types, they map
the design space of common recommendation categories for operational and characteristic
analytical actions in many VisRec systems [29, 25, 32, 31, 15, 33, 11, 13, 19, 13, 31] as well
as other visual analytics taxonomies [23, 22, 12]. We also address the taxonomy’s limitations
in the “Challenges and Limitations” section of this chapter.

3.1 VisRec System Taxonomy Overview

3.1.1 Analytical Actions Overview

Lee et al.’s taxonomy (Figure 1.1) outlines ten major analytical action categories drawing
from Online Analytical Processing (OLAP) [9], separated into two major action categories:
operational and characteristic actions. Operational actions are invoked by the user (such as
adding a filter or additional category/data variable to the current view), while characteristic
actions reveal underlying data qualities such as distribution or correlation. Actions are fur-
ther grouped into context-dependent if they depend on a current view (a currently displayed
visualization), or context-independent otherwise.

Operational actions must be context dependent, as they apply data-oriented operations
on the currently displayed visualization. The operational action categories are as follows:

• Enhance: add an additional dimension or attribute to the current view. For example,
if a user selects attribute X, enhance may show attributes X and Y .

CHAPTER 3. VISREC SYSTEM RANKING SCORES 10

• Filter (add and swap): Add or swap filter F onto the current selection. If a user
selects attributes X and Y, adding a new filter F will display visualizations with at-
tributes X and Y, and filter F applied. Users are able to swap filter F with another
filter F 0.

• Generalize (attribute): remove a dimension or attribute from the current view. If a
user selects attributes X and Y, generalize may show visualizations with only attribute
X.

• Generalize (value): remove a filter from the current view. If a user selects attributes
X and Y with filter F , generalize will display visualizations involving X and Y, without
F .

• Pivot: show possible visualizations if one attribute within the current view is replaced
by another attribute. If a user selects attributes X and Y, pivot will display visualiza-
tions involving X and another attribute Y

0
, or another attribute X

0 and Y.

Meanwhile, characteristic actions reveal visual and statistical characteristics of data;
they can be both context-dependent and context-independent. The characteristic action
categories are listed below:

• Correlation: highlight relationships between two quantitative fields or columns via
scatterplots

• Distribution: display univariate distributions within the dataset; quantitative fields
may be displayed as a histogram, while categorical/qualitative data may be displayed
as a bar chart aggregating over a categorical/qualitative field, with the default measure
being COUNT.

• Similarity/Di↵erence: display data patterns or characteristics that are visually sim-
ilar/di↵erent from the current view.

3.1.2 Ranking Scores Overview

VisRec systems are able to generate and search through many visualizations, with some
visualizations being more valuable to end-users than others. In many VisRec Systems,
visualizations are ranked by a ranking score, or “interestingness objective” [14, 29, 15, 31, 33,
32, 19, 13, 11]. Ranking visualizations by score increases the utility of displayed visualizations
for end users, and also allows VisRec systems to prune computation (only materialize the
top k highest ranking visualizations) [15, 29]. We consider commonly occurring visualization
types in VisRec systems, such as histograms, bar charts, line charts, colored and uncolored
scatterplots. Visualizations can be ranked based on visualization type or user intent: users
may be more interested in histograms that are more skewed or scatterplots with high degrees
of correlation, or in visualizations similar to the current visualization displayed.

CHAPTER 3. VISREC SYSTEM RANKING SCORES 11

Within Lee et al.’s taxonomy (and others such as [23, 12]), visualizations within the
characteristic analytical action categories are ranked separately within each action cate-
gory: visualizations in the Distribution category are commonly ranked based on skewness,
while Correlation visualizations are ranked based on monotonicity between two quantita-
tive variables. Visualizations within the Similarity/Di↵erence actions are ranked based
on deviation (via distance metric such as Euclidean distance) from the current visualization
displayed. These ranking metrics aim to represent important or noticeable characteristics
expressed by visualizations within the characteristic action categories.

Meanwhile, Lee et al. state that ranking scores for operational analytical actions are
based on data characteristics determined by the target visualization type (e.g. bar chart,
histogram) of the recommended visualizations [14], intended to identify visualizations that
are unexpected or particularly insightful for their category. As an example, users may be
more interested in histograms that are more skewed, or scatterplots that display high degrees
of correlation. Histograms and bar/line charts without a filter are ranked by unevenness,
or non-uniformity, while histograms and bar/line charts with a filter are ranked based on
deviation between filtered and unfiltered views. Uncolored scatterplots are ranked by mutual
information (e.g., Spearman’s correlation), while colored scatterplots are ranked by class or
category separability [4].

3.2 Defining Existing Ranking Scores and Aggregates

We define and justify mathematical ranking metrics for each analytical action category in
Lee et al.’s taxonomy in the following section. We also present necessary constituents (ag-
gregates) for ranking scores, and synthesize these aggregates into a minimal set to maintain
with respect to updates. Again, Lee et al.’s taxonomy and these ranking scores do not cover
a comprehensive set of all possible visualization and analytical action types, but rather
synthesize common visualization and analytical action categories.

3.2.1 Characteristic Actions

As mentioned in the previous section, characteristic action visualizations are ranked within
each individual action category, and are designed to capture statistical visual characteristics
such as correlation or skew. We define a ranking score and its associated aggregates for each
characteristic action in the following section.

3.2.1.1 Correlation

Correlation between two quantitative columns can be ranked by monotonicity or similar
measures, as seen in [15, 23, 31, 11, 19, 29]. Monotonicity can be measured by the square
of the Spearman Correlation Coe�cient. We choose Spearman over other correlation
measures such as Pearson and Kendall due not only to its ability to capture monotonic rela-
tionships, but also its ability to be incrementally computed and maintained. The Spearman

CHAPTER 3. VISREC SYSTEM RANKING SCORES 12

Correlation Coe�cient can be calculated between two quantitative columns X and Y of
length n (where Xi and Yi denote a single element at index i):

Spearman(X, Y) =
Pn

i=1(Xi�X)(Yi�Y)pPn
i=1(Xi�X)2

pPn
i=1(Yi�Y)2

where X = 1
n

Pn
i Xi, and Y = 1

n

Pn
i Yi.

We can rewrite the formula into a one-pass formula using terms derived from Welford’s
online variance algorithm [6] and the original formula:

Spearman(X, Y) =
n
Pn

i=1XiYi �
Pn

i=1 Xi

Pn
i=1 Yip

n
Pn

i=1X
2
i � (

Pn
i=1 Xi)2

p
n
Pn

i=1 Y
2
i � (

Pn
i=1 Yi)2

(3.1)

=
(
Pn

i=1XiYi)� nXYq
(
Pn

i=1X
2
i)� nX

2
q
(
Pn

i=1 Y
2
i)� nY

2
(3.2)

Let X̂ =
Pn

i=1 Xi, Ŷ =
Pn

i=1 Yi, a =
Pn

i=1X
2
i , b =

Pn
i=1 Y

2
i , c =

Pn
i=1 XiYi. These will

be the aggregates we accumulate to compute Spearman(X, Y) e�ciently. We see we can
rewrite Spearman(X, Y) from Equation 3.2 as:

Spearman(X, Y) =
(
Pn

i=1XiYi)� nXYq
(
Pn

i=1X
2
i)� nX

2
q
(
Pn

i=1 Y
2
i)� nY

2
(3.3)

=
c� X̂Ŷ

nq
a� X̂2

n

q
b� Ŷ 2

n

(3.4)

We see that to compute Spearman(X, Y), and maintain it in constant time with respect
to updates to X and Y , we can accumulate n and the following five terms:

P
i Xi,P

i Yi,
P

i X
2
i ,

P
i Y

2
i ,

P
i XiYi. These are the same as X̂, Ŷ , a, b, and c from Equation 3.4.

3.2.1.2 Distribution (Quantitative)

Visualizations within the distribution category for quantitative data variables are typically
represented as histograms [15, 29, 13, 23, 11]. A quantitative column X of length n’s
histogram is commonly ranked against other histograms in the same category based on

skewness, defined as X
3

�3
X
, where X denotes mean and �

2
X denotes variance. Much work

already exists on computing and storing mean and variance in an online fashion [6]. We can
derive �

3
X from �

2
X through exponentiation. Recall that we calculate mean and variance as

follows:

CHAPTER 3. VISREC SYSTEM RANKING SCORES 13

X =
1

n

nX

i=1

Xi (3.5)

�
2
X =

Pn
i=1(Xi �X)2

n
=

Pn
i=1 X

2
i

n
�X

2
(3.6)

Let a =
P

i Xi, b =
P

i X
2
i . We can rewrite mean and variance as:

X =
a

n
(3.7)

�
2
X =

Pn
i=1(Xi �X)2

n
=

b

n
� (

a

n
)2 (3.8)

We see that we can accumulate and maintain n,
P

i Xi (i.e., a), and
P

i X
2
i (i.e.,

b), where Xi denotes a single element of X at index i, to maintain mean and variance, and
therefore skewness.

3.2.1.3 Distribution (Qualitative/Categorical)

Visualizations within the distribution action for non-quantitative (categorical) data are typ-
ically displayed as bar charts, with a chosen aggregate such as COUNT or AVG over the
categorical field [15, 17, 23, 29, 32, 11]. For example, in a dataset with countries as categor-
ical data, users may be interested in a bar chart displaying average population per country,
or even the number (count) of each country represented in the data. These bar charts can
be ranked by unevenness, or non-uniformity. Many measures of non-uniformity exist, but
one of the simplest that follows our theme of maintaining column sums (see Correlation,
Distribution actions) is Euclidean distance between normalized bar chart values and a flat
distribution.

Formally, for categorical column X, we can construct aggregate values vector V by ag-
gregating over X, and measure L2(V, Vflat), where Vflat denotes the flat uniform distribution
based on |V |, where |V | denotes cardinality of V . In other words, each entry of Vflat is

1
|V | .

Note that V can be normalized by dividing each value by
P

Vi upon calculation. Cardinality
can be optionally used to weight ranking scores further, as done in VisRec systems such as
Lux [15]. Let X = V , Y = Vflat, both of length n. Xi denotes the i’th entry of X. Recall
the Euclidean distance formula:

L2(X, Y) =
Pn

i=1(Xi � Yi)2 =
Pn

i=1(X
2
i � 2 ·XiYi + Y

2
i)

Recall that Y = Vflat, which means Yi =
1
|V | for all i. Then, the formula becomes

L2(X, Y) = L2(V, Vflat) =
Pn

i=1 V
2
i � 2

|V |
Pn

i=1 Vi +
n

|V |2

CHAPTER 3. VISREC SYSTEM RANKING SCORES 14

As before, let a =
Pn

i=1 Vi, b =
Pn

i=1 V
2
i , and c = |V |. We can rewrite L2(V, Vflat) as:

L2(V, Vflat) = b� 2
ca+

n
c2

Therefore, upon updates to X, to maintain L2(V, Vflat), we must maintain V ’s aggre-
gate values (i.e., V itself), as well as

Pn
i=1 Vi,

Pn
i=1 V

2
i , and |V | (i.e., a, b, and c in the

example above).

3.2.1.4 Similarity/Di↵erence

When considering a Similarity/Di↵erence analytical action, VisRec systems tend to measure
similarity/di↵erence between a given distribution and a candidate distribution. Similari-
ty/di↵erence between two distributions can be measured using a variety of techniques: Earth
Mover’s Distance, Euclidean Distance, Kullback-Leibler Divergence (K-L divergence), and
Jenson-Shannon Distance are a few of the many that have been explored in VisRec systems
[29, 15, 33, 32, 11]. For simplicity, and to further our strategy of maintaining forms of data
sums, we elect to use Euclidean Distance. Formally, for a candidate distribution of values
Y constructed via the Distribution action, and given distribution (i.e. current view) X, we
can measure similarity/di↵erence via L2(X, Y) between measure values of each distribution.
Note that some data interpolation may be necessary to fix the number of data points to a
constant when computing L2(X, Y); interpolation is out of scope for this work, as it incurs
additional complexity that makes it di�cult to maintain scores.

Recall from the previous section the formula for L2(X, Y):

L2(X, Y) =
nX

i=1

(Xi � Yi)
2 (3.9)

=
nX

i=1

(X2
i � 2 ·XiYi + Y

2
i) (3.10)

=
nX

i=1

X
2
i � 2

nX

i=1

XiYi +
nX

i=1

Y
2
i (3.11)

As before, let a =
P

i X
2
i , b =

P
i XiYi, and c =

P
i Y

2
i . We can rewrite Equation 3.11

as:

L2(X, Y) = a� 2b+ c

To maintain L2(X, Y), we must maintain candidate distribution values Y (i.e.,
Y itself), as well as

P
i X

2
i ,

P
i XiYi, and

P
i Y

2
i .

CHAPTER 3. VISREC SYSTEM RANKING SCORES 15

3.2.2 Analytical Actions

Analytical action visualizations are typically ranked based on visualization type (e.g., colored
scatterplot, bar chart); as mentioned in previous sections, ranking scores are designed to
reveal unexpected or insightful visual characteristics.

3.2.2.1 Bar Charts, Histograms without Filter

Bar charts without a filter are described in the “Distribution (Qualitative/Categorical)”
Action category above. Histograms without a filter are described in “Distribution (Quanti-
tative)”.

3.2.2.2 Bar Charts, Histograms with Filter

Bar Charts and Histograms with a filter, however, are ranked based on deviation (distance)
between filtered and unfiltered values [14, 15, 25]. For example, a user may choose to filter a
distribution by a specific country (e.g., given average SAT scores, filter scores for the United
States only). Again, many distance metrics such as Earth Mover’s Distance and Jenson-
Shannon Distance exist in VisRec Systems [29, 19], but we choose Euclidean distance for
simplicity and to accentuate our strategy of maintaining forms of data sums.

Formally, for column X and filter F , we can rank filtered view Y = XF by computing
L2(X, Y) between filtered and unfiltered values. We can define filtered view Y = XF as
column X filled with 0 everywhere filter F is false, and the original values of X where filter
F is true. Maintaining L2(X, Y) is achieved through exactly the same strategy used for
the Similarity/Di↵erence action above, except the candidate distribution is replaced by
filtered values Y = XF . To maintain L2(X, Y) , we must again maintain Y = XF (the
filtered values vector) itself,

P
i X

2
i ,

P
i Y

2
i , and

P
i YiXi.

3.2.2.3 Uncolored Scatterplots

Uncolored Scatterplots are more valuable if they display a high degree of dependence between
two measures, which can be measured by heuristics such as mutual information or Spearman’s
correlation [4, 23]. We choose to compute and maintain Spearman’s correlation, as it is
already in use to compute monotonicity for the Correlation action described in previous
sections. Recall that monotonicity is computed via the square of the Spearman’s
correlation. The aggregates to maintain are the same as the Correlation action, where
we already maintain Spearman’s correlation.

3.2.2.4 Colored Scatterplots

Colored scatterplots are ranked based on separability, that is, if the colors for each category
distinctly separate the data points on the scatterplot. There exists many di↵erent mea-
sures of separability [22, 7, 23, 4]. Depending on the separability measure, decomposing

CHAPTER 3. VISREC SYSTEM RANKING SCORES 16

and e�ciently maintaining the necessary heuristic with respect to updates may be di�cult,
especially for complex multidimensional class separability measures. For the scope of this
work, we elect to use the e�ciently-maintainable measure of per-class mean and variance, to
e�ciently compute separability measures such as the Fisher Criterion [7]. For two classes x1

and x2, we can compute the Fisher Criterion between classes as (x1�x2)2

�2
1+�2

2
, where x1 denotes

mean of class x1 and �
2
1 denotes variance of class x1. Then, to quickly compute the Fisher

Criterion between any two classes, we can maintain mean and variance per class; maintaining
mean and variance are already discussed in the Distribution (Quantitative) section.

CHAPTER 3. VISREC SYSTEM RANKING SCORES 17

3.3 Decomposing Ranking Scores

Ranking Score for Column X

and additional Column Y

P
i Xi

P
i Yi

P
i X

2
i

P
i Y

2
i

P
i Xi · Yi |X|

Correlation: Spearman(X, Y)2 1

Skewness: µ3
X/�

3
X

Monotonicity: Spearman(X, Y)
Separability: Class Mean/Variance
Similarity: L2(X, Y), Y = Given
Distribution (Current View)

Deviation: L2(X, Y), Y = Filter F
applied on X (known as XF)

2

Unevenness: L2(X, Y), X = �X (or
VX), Y = Vflat

Table 3.1: Decomposing ranking scores for Data Variable (Column) X and (optional) ex-
ternal column Y into their respective aggregates. The columns of the table are listed as
follows: sum of X, sum of Y , sum of X’s squared elements, sum of Y ’s squared elements,
inner product of X and Y , cardinality of X. �X = VX is values over an aggregate over
X, XF represents filtered values, and Vflat represents the flat uniform distribution based on
cardinality.

Table 3.1 shows the ranking scores for column X decomposed into their respective ag-
gregates. The columns of the table are listed as follows: sum of X, sum of Y , sum of X’s
squared elements, sum of Y ’s squared elements, inner product of X and Y , cardinality of
X. �X = VX is values over an aggregate over X, XF represents filtered values, and Vflat rep-
resents the flat uniform distribution based on cardinality. Note that correlation, skewness,
and monotonicity are only defined for quantitative data variables, while similarity, deviation,
and unevenness cover both qualitative (categorical) and quantitative data.

We see that to maintain ranking scores for Column X and additional Column Y , we can
maintain the following core set of aggregates:

1. Downstream columns such as aggregate values VX = �X and filtered column XF

2.
P

i Xi

3.
P

i X
2
i

4.
P

i XiYi for external column Y

1Y represents another quantitative column
2Y represents filtered column XF

CHAPTER 3. VISREC SYSTEM RANKING SCORES 18

5. |X| (cardinality of X)

Table 3.2 presents these five core aggregates.
Note that additional column Y and downstream columns such as aggregate values VX also

have their own sets of aggregates to maintain from aggregates 2, 3, 4, and 5. For example,
for filtered columns, we must maintain a sum of their elements squared and pairwise sum
between filtered and unfiltered columns. For colored scatterplots, where separability is the
ranking score criterion, each aggregate is maintained per class. Given that column pre-
processing (filters, aggregate values computation) is complete, each of the ranking scores
can be computed in constant or O(1) time using these aggregates. Our goal becomes to
e�ciently maintain these aggregates with respect to updates, to maintain ranking
scores.

Downstream columns such as aggregate
values VX = �X and filtered column XF

P
i Xi

P
i X

2
i

P
i XiYi |X|

Table 3.2: Aggregates to maintain for Column X and external Column Y .

3.4 Limitations

As discussed previously, maintaining distribution values aggregated over categorical data
can be di�cult depending on the method of aggregation. We discuss e�cient maintenance
of aggregated distribution values further in Chapter 3. In addition, a variety of other more-
complex ranking scores exist for each visualization type, such as increasing complex sepa-
rability measures [22]. Visualization types can be extremely complex. Our work seeks to
cover common visualization types (e.g., 3D geographical charts or multi-dimension visualiza-
tions) and analytical actions found in VisRec systems (that can be e�ciently maintained),
and covering increasingly complex ranking heuristics and visualization types is left to future
work.

19

Chapter 4

Maintaining VisRec Ranking Score
Aggregates

Recall, our goal is to e�ciently maintain VisRec ranking scores with respect to updates.
Existing VisRec systems such as Lux [15] and AutoViz [3] compute statistics and ranking
scores upon visualization, but recompute statistics and ranking scores from scratch upon
any data updates, as shown in Figure 4.1. In the previous section, we enumerated five core
aggregates to maintain with respect to updates in order to maintain our ranking scores. To
better serve VisRec systems with a tabular data model specifically, we briefly discuss data-
dependent operations (that modify ranking scores) for tabular data specifically, and present
a set of primitive operations that cover tabular data updates (despite the sheer number of
operators in modern tabular data formats such as dataframes [21]). We map our primitive
operations to e�cient updates of the five core aggregates. We then propose a cost model for
determining when to incrementally update the ranking score aggregates (and thus maintain
ranking scores for visualizations) or to recompute ranking scores entirely upon a batch of
data updates.

4.1 Tabular Data Operations and Maintaining VisRec
Scores

4.1.1 Data and Metadata Operations

Data tables are organized into rows and columns (with a “cell” being a row, column entry)
as seen in Figure 4.2, and contain a wide breadth of operations for both data (such as
relational-style joins, projection, selection) and metadata (modifying column labels, indices,
row labels, etc.) [21, 24]. Columns can span non-numeric and numeric types, as well as
predefined, lazily-induced, or dynamic types. For the scope of this work, we consider data-
dependent operators that modify data and not metadata such as column type or row label.
We leave direct analysis of large-scale transformations such as transpose or relational-style

CHAPTER 4. MAINTAINING VISREC RANKING SCORE AGGREGATES 20

Figure 4.1: Existing VisRec systems such as Lux [15] and AutoViz [3] compute ranking scores
upon visualization, but recompute ranking scores from scratch upon updates, as shown in
Figure 4.1.

joins for future work; however, some of these transformations can be composed of the core
operators described in the next section.

4.1.2 Core Primitive Tabular Data Operators for Maintaining
VisRec Scores

We consider the following data operations that directly modify tabular data:

1. Adding a column

2. Removing a column

3. Adding a row

4. Removing a row

5. Editing a specific cell

CHAPTER 4. MAINTAINING VISREC RANKING SCORE AGGREGATES 21

Figure 4.2: A dataframe, an example of a tabular data model, with row and column labels.
A dataframe with N rows and M columns will have N ·M cells in “Array of Data”.

These core operations can be composed to capture data (not necessarily metadata) up-
dates, and thus serve as our primitive units of operation for maintaining ranking scores.
Many common EDA operations, such as cleaning data by dropping rows, filling or imputing
missing values, deriving new columns, and exploding individual cells can be composed using
these core tabular data operations.

We describe the process of maintaining ranking scores when applying these core opera-
tions in the following section.

4.1.3 Maintaining Aggregates with Respect to Updates

We proceed under the assumption that VisRec system statistics and visualizations are com-
puted/generated per column for a tabular dataset, as seen in current systems such as Lux
and AutoViz [15, 17, 3]. Recall from Chapter 2 that our five aggregates to compute and
maintain for column X and external column Y consist of the following:

1. Downstream columns such as aggregate values VX = �X and filtered column XF

2.
P

i Xi

3.
P

i X
2
i

4.
P

i XiYi for external column Y

5. |X| (cardinality of X)

CHAPTER 4. MAINTAINING VISREC RANKING SCORE AGGREGATES 22

Figure 4.3: We incrementally maintain VisRec ranking score aggregates upon data updates,
instead of fully recomputing statistics from scratch as seen in Figure 4.1.

Assuming statistics are generated per column (as done in VisRec systems such as [15, 3,
29, 13, 32]), adding a column requires complete computation of the five aggregates above
(while computing and ranking possible visualizations and additional columns such as filters),
while removing a column merely removes the five aggregates for the removed column entirely,
as well as and associated downstream columns. Computing aggregates for an added column
can be done lazily upon the next VisRec system invocation, while deleting a column incurs
little overhead when deleting aggregates. However, row operations require iterating
over columns and applying an add or delete element operation to the aggregates
for each column. Editing any random cell involves deleting and then adding an element
to the corresponding aggregates for the cell’s column. Figure 4.3 illustrates our proposed
scheme. We enumerate processes for adding elements to and removing elements from each
aggregate in Table 3.2 below.

4.1.3.1 Maintaining Downstream Columns for Column X

We describe maintaining the first column of Table 3.2: downstream columns such as ag-
gregate values VX = �X and filtered column XF . For this work, it is assumed downstream

CHAPTER 4. MAINTAINING VISREC RANKING SCORE AGGREGATES 23

columns such as aggregate values Vx can be maintained e�ciently; this is possible for boolean-
filtered columns (each element addition/removal passes through an additional filter check)
and common aggregate values such as COUNT and AVERAGE. COUNT can be e�ciently
maintained with respect to element additions and deletes by mapping each distinct column
category/value to its count via an in-memory hash table, while AVERAGE can be main-
tained by maintaining a sum and count for each column category/value. However, this is
harder for aggregate values such as MIN and MAX due to memory or runtime constraints.
Maintaining these harder aggregate values is out of scope for this work.

4.1.3.2 Maintaining Sums for Column X

To maintain the second, third, and fourth columns of Table 3.2, we must accumulate and
maintain sums in memory. These sums are

P
i Xi,

P
i X

2
i , and

P
i XiYi for external column

Y . Element removal involves subtracting the removed element from each sum, while element
additions require adding the new element to each sum. Upon updates to column X, the
fourth column of Table 3.2 (pairwise sum

P
i XiYi for external column Y) can be updated

by querying row information from column Y (adding a row means adding an element from
both columns X and Y to the aggregate, deleting a cell on row j means subtracting Xj · Yj

from the aggregate, where Xj denotes the j’th element of column X), and applying the
corresponding updates to

P
i XiYi accordingly.

4.1.3.3 Maintaining Cardinality

We maintain the fifth column of Table 3.2, cardinality or |X|, using existing techniques.
Much previous work has been done on maintaining cardinality information in a variety of
data systems [10]. In many cases, cardinality can be maintained through by mapping unique
elements to their value counts (same as maintaining the COUNT value aggregate in the
previous section) as done in [15], or through data structures such as a bloom histogram in
memory-intensive use cases at scale. Element removal involves decrementing the element’s
value count (and removing the element when its value count is zero), while element addition
involves incrementing an existing value count or inserting a new unique value with a single
value count. Cardinality is derived from the number of unique values (keys in the hash table
or bloom histogram).

4.2 Cost Model for Updates

As mentioned earlier, large-scale data transformations such as adding many rows can be
expressed in terms of our core tabular data operations. We present a cost model to, upon
updates, determine whether to recompute aggregates entirely from scratch or incrementally
update existing aggregates in a step-by-step fashion by applying the individual data operators
and their corresponding aggregate modifications mentioned earlier. Our cost model does not
consider system factors such as memory limits and CPU/cores and contains little query

CHAPTER 4. MAINTAINING VISREC RANKING SCORE AGGREGATES 24

Figure 4.4: A representation graph displaying quantitative column X. X is modeled as a
source, with directed edges to its aggregates

P
i Xi,

P
i X

2
i , |X|, and

P
i XiYi, as well as

its downstream, filtered column XF . Note that Y , an additional column, and XF also have
their own dependencies (aggregates to maintain), modeled as additional connected nodes.

CHAPTER 4. MAINTAINING VISREC RANKING SCORE AGGREGATES 25

planning/estimation factors. Improving the cost model is an area for future research work
that we address in the Limitations section.

4.2.1 Modeling Column Relationships and Aggregates

To model cost and scope of required updates when updating a column, we model our stored
aggregates using a graph. Edges in the graph will represent necessary updates and serve as
the basis for our cost model. Each vertex or node represents a column or aggregate.

We construct a directed-acyclic graph (DAG), with dataset columns represented as
sources and associated aggregates as sinks. Directed edges capture dependencies and are
drawn between column and associated aggregates or downstream columns. Downstream
columns also have associated aggregates to maintain. For instance, to model quantitative
column X with filter F (and thus downstream column XF , represented a filtered version
of X), we create sink nodes for

P
i Xi,

P
i X

2
i , |X|, and

P
i XiYi, where Y is an external

column, and create a directed edge between X and these four nodes. Note that Y also has
an edge to the node representing

P
i XiYi. We also create an edge between X and a node

representing downstream column XF , as well as create edges between XF and its associated
aggregates. Figure 4.4 illustrates the graph model capturing column-aggregate relationships.

4.2.2 Incremental Updates versus Full Recomputation

In our graph representation, each edge represents a necessary update whenever its parent
receives an update. Thus, the cost for updating the aggregates associated with column X

a single time is the number of edges reachable from column X’s source node (and can be
derived via traversal). Denoting the number of edges reachable from column X as EX , then
the cost for k updates to column X is k · EX . Removing a column incurs no cost in our
model, since it requires the minimal overhead of merely removing a source and its reachable
descendant nodes. Adding a column requires determining necessary aggregates/downstream
derived columns, and then adding the necessary source and dependency nodes, as well as
the cost for computing the aggregates/dependencies for that column.

Then, because adding or removing a row incurs an update to every column in the data,
the cost for adding or removing a row becomes the number of edges in the graph (due to the
fact that each column and thus source is updated), which can be denoted as E. Editing a
cell in column X, as described earlier, incurs cost EX .

Given a tabular dataset D with N rows, the cost to recompute all ranking score statis-
tics/aggregates from scratch can be roughly similar in computation to adding N individual
rows, and thus can be modeled as N · E (number of rows multiplied by total number of
dependency edges). And the cost for computing statistics/aggregates for a single column X,
made up of N rows, can be modeled EX ·N . Thus, for any given batch of row/column/cell
updates (e.g. adding many rows, editing cells, removing a column), if the cost of all apply-
ing all updates in the batch incrementally exceeds the cost of full recomputation
(N ·E), we apply all updates and then compute aggregates/statistics from scratch.

CHAPTER 4. MAINTAINING VISREC RANKING SCORE AGGREGATES 26

Otherwise, we can apply our updates and maintain our aggregates/statistics in-
crementally (step-by-step) using strategies we outlined in “Maintaining Aggregates with
Respect to Updates.”

4.3 Limitations

4.3.1 Tabular Data Operations

Our core operators (adding/removing columns, adding/removing rows, editing cells) do not
explicitly cover large scale transformations such as group by aggregation or joins. While
relational databases contain much work on query estimation and planning, other popular
EDA tools such as dataframes in computational notebooks have a wide, expressive API.
Much work is to be done in the areas of dataframe and VisRec-specific query estimation and
optimization [21, 34, 24], as well as statistic collection. And our five core data-modifying
operators do not cover metadata transformations such as transposing tables. These are
directions for future work.

4.3.2 Cost Model Limitations

Our cost model does not consider system parameters such as cache size, memory, and CPU
factors. It also assumes that updating downstream derived columns such as aggregated values
over a categorical column or filtered columns is relatively similar to updating aggregates
such as sums, and treats these updates as having the same cost. The model only loosely
considers the number of rows or columns in the dataset, which could be a crucial factor in
the computation time for ranking scores; more columns in the dataset means more ranking
scores to maintain, whereas more rows means each individual ranking score takes longer
to compute. Future work could weight edges by cost accordingly, or develop an even more
fine-grained cost model that accounts for more complexity in collecting and updating dataset
statistics such as system factors or file format. In addition, our cost model does not consider
the shape of the dataset. Datasets with many columns have many possible visualizations
and thus many ranking scores to maintain. Datasets with fewer columns have fewer ranking
scores, and full recomputation may be faster than incremental update maintenance for these
datasets.

27

Chapter 5

Implementation and Performance
Evaluation

We implement our proposed method for maintaining VisRec system ranking scores in Lux,
a VisRec system for pandas dataframes. Then we discuss use case examples of how common
data science operations such as cleaning data can be composed of our core tabular data
operations, and why they are ine�cient in Lux. We show how the number of columns and
number of rows a↵ects computation time for performing our core operations and incremental
updates. We then evaluate the performance of our strategy by measuring total wall-clock
time (user-facing latency) for maintaining ranking scores against naively recomputing statis-
tics/ranking scores from scratch, and also demonstrate the e�cacy of our cost model.

5.1 Implementation in Lux

Lux is an open-source VisRec system with 4.5k GitHub stars as of March 2023 [17, 15].
Lux’s core computation involves collecting statistics and metadata per dataframe column,
then generating possible visualizations and computing ranking scores for each possible vi-
sualization, then materializing each visualization up to a specified number of visualizations
(to enable early pruning of visualization generation). It caches these ranked visualizations,
along with their respective ranking scores, but invalidates its entire cache upon any
data-modification to the dataframe and recomputes all visualizations/ranking scores from
scratch.

Lux explicitly implements all the analytical actions and their respective ranking
scores in Lee et al.’s VisRec taxonomy [14], as well as various other specific scores such
a Chi-square test for independence. We implement storing the five core aggregates (three
sums, cardinality, and downstream derived columns such as filtered columns) per column in
Lux, as well as the core tabular data operators for adding and deleting a row and as editing a
cell, along with their respective updates to the five aggregates accordingly. Deleting columns
and adding columns are built-in to Lux dataframes, and upon column addition/deletion the

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE EVALUATION 28

five core aggregates are computed/removed accordingly. These specifications are exactly as
described in Chapter 3.

5.2 Dataframe Use Case Examples

Our evaluation benchmarks consist of testing our core operators from Chapter 4, specifically
adding and deleting rows, and editing cells. These three operations can compose many com-
mon EDA data updates such as imputing missing data (editing many cells), dropping missing
data (dropping rows), filtering rows (dropping rows), and transforming rows (dropping then
adding rows or editing cells).

5.3 Evaluation

5.3.1 Datasets and Experiment Setup

We evaluate our implementation on an AWS EC2 t3.xlarge instance with 4 cores and 16 GB
of main memory, which is similar to modern laptops that EDA workloads in computational
notebooks are run on. We run Python 3.7.16 with Lux-API version 0.5.1, and use the Python
time library to performance benchmark. We measure user-facing latency (wall-clock time)
taken to compute ranking scores in Lux.

We test how our implementation scales with respect to datasets with many rows and
datasets with many columns. We use the Airbnb dataset [20] with 16 columns and about
50000 rows, and duplicate rows up to 2 million. We also use the UCI Crime and Communities
dataset [2], with up to 128 columns and about 2000 rows. These datasets cover over 95%
of the datasets in the UCI repository [5] and were used by the original Lux authors to
benchmark Lux’s performance [15].

5.3.2 Scaling with respect to Rows

Using the Airbnb dataset, we apply a fixed number of 10000 operations (5000 row deletes and
5000 row additions from random rows sampled from the original dataset), while fixing the
number of columns (16) and increasing the number of rows from 250,000 to 2 million. Note
that adding and deleting a row is equivalent in our implementation to editing 16 (number of
columns in the original dataset) individual cells, and the two can be interchanged in terms
of computation cost. We measure the overall time taken to maintain ranking scores.
We also separately measure the time necessary to recompute ranking scores from scratch for
our baseline for comparison. Figure 5.1 demonstrates this.

We see that increasing the number of rows does not significantly increase the computation
time of our fixed number of 10000 data operations. This is because each data operation (add
or delete rows, or equivalently edit cell) applies updates to a fixed number of aggregates,
because there are a fixed number of ranking scores per column. However, for smaller datasets,

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE EVALUATION 29

Figure 5.1: Within the Airbnb dataset, we apply a fixed number of 10000 operations (5000
row deletes and 5000 row additions), while fixing the number of columns (16) and increasing
the number of rows from 250,000 to 2 million. Updating ranking scores takes a fixed amount
of time regardless of number of rows. However, for smaller datasets, full recomputation is
faster. We demonstrate in the next section that when the number of columns in a dataset
increases (and thus the number of possible visualizations and ranking scores increases), our
strategy becomes much more e↵ective.

full recomputation is faster. This is because the AirBnb dataset does not have many columns,
it does not have as many possible visualizations as datasets with many columns (and thus
does not have as many ranking scores to compute/maintain). However, we demonstrate
in the next section that when the number of columns in a dataset increases (and thus the
number of possible visualizations and ranking scores increases), our strategy becomes much
more e↵ective.

5.3.3 Evaluation against Full Recomputation

Next, we evaluate the overall performance of our strategy on the UCI Crime and Communi-
ties dataset [2], with 128 columns and 2000 rows. We compare performance to Lux’s existing
method of recomputing statistics and ranking scores from scratch. We perform and bench-
mark a variable number of incrementalized data update operations, varying the number of
row additions and deletes from 6.25% of the number of rows (125 rows) to 150% of the
number of rows (3000 rows). Again, note that adding and deleting a row is equivalent in
our implementation to editing 128 (number of columns) individual cells (i.e. adding a row is
equivalent to editing 64 cells, or half the number of columns, because an edit involves both an

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE EVALUATION 30

Figure 5.2: We compare e�cacy of the incremental aggregate update strategy versus full
statistic/ranking score recomputation in Lux on the Crime Data dataset (2000 rows, 128
columns), varying the number of row additions and deletes from 6.25% of the number of rows
(125 rows) to 150% of the number of rows (3000 rows). We see that for row operations up to
100% of the number of rows (2000 rows), incrementally updating aggregates is preferred. For
any more updates, full ranking score recomputation from scratch is faster, as demonstrated
by our cost model.

element addition and deletion). We compare the latency of applying these incrementalized
data operations and their respective aggregate updates to the process of full statistic/ranking
score recomputation, shown in Figure 5.2. We see that for row operations up to 100% of the
number of rows (2000 rows), incrementally updating aggregates is preferred. For any more
updates, full ranking score recomputation from scratch is faster.

We see that the assumptions of our cost model are largely correct for datasets with many
columns and thus large number of ranking scores: full recomputation is preferred when the
number of row operations exceeds the number of rows in the dataset. In our cost model,
recall that, given an aggregate dependency graph with E edges, k row updates costs k · E,
while full recomputation for a dataset with N rows costs E ·N . So in the case where k > N

(more row operations than 100% of number of dataset rows), full recomputation is preferred.
In short, for datasets with many columns and thus many ranking scores, our cost-based

approach is either as fast or faster than full recomputation when maintaining
ranking scores under data updates.

31

Chapter 6

Conclusion and Future Work

6.1 Conclusion

We propose a system for maintaining VisRec ranking scores under data updates in EDA
workflows, for many common VisRec system analytical actions. We first survey ranking
scores for a wide variety common of visualization types and analytical actions, and then
provide a core set of five aggregates to compute and maintain per column, to compute the
entire set of scores e�ciently. We then provide five core tabular data operators (primitives)
that can be composed to cover a wide variety of data modifications, and show how they
update the five core aggregates incrementally and e�ciently. We provide a cost model for
updates, and present a strategy for determining when to recompute ranking scores from
scratch or when to incrementally (step-by-step) update the five core aggregates for each
operator. We implement our system in Lux, a popular open-source VisRec system and show
how our system scales, as well as demonstrate the e�cacy of our cost model by showing our
system for maintaining ranking scores is as fast or faster than naive full recomputation of
ranking scores under updates.

6.2 Future Work

VisRec systems are constantly evolving. Our approach characterizes a wide variety of com-
mon visualization types and analytical actions, and provides reasonable choices for ranking
scores able to be maintained e�ciently with respect to updates. However, new VisRec sys-
tems may implement analytical actions or visualization types, or ranking scores that are not
covered by our system or are di�cult to e�ciently maintain.

In addition, as mentioned in [21, 34], the area of query planning and optimization for
VisRec systems and EDA tools such as computational notebooks is being actively researched.
Although our five core data update operators do compose to encompass many large-scale
transformations such as joins, they do not necessarily do so in an optimized manner. Greater
refinement on tabular data transformation coverage and optimization, as well as refining our

CHAPTER 6. CONCLUSION AND FUTURE WORK 32

cost model based on system parameters, is grounds for future research. And techniques
utilizing further resources such as multiple cores or background statistic collection during
periods of computational notebook inactivity could provide further speedups, as explored in
[34, 24].

33

Bibliography

[1] Kunal Agarwal. “Accelerating Visual Data Exploration via Sampling: A Case Study
with Lux”. In: Technical Report No. UCB/EECS-2022-80 (2022). url: http://www2.
eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-80.html.

[2] Analyzing UCI Crime and Communities Dataset. https://www.kaggle.com/code/
kkanda/analyzing-uci-crime-and-communities-dataset/data?select=crimedata.
csv.

[3] AutoViML. AutoViz. https : / / github . com / AutoViML / AutoViz. Version 0.5.1.
Oct. 26, 2022.

[4] Tuan Nhon Dang and Leland Wilkinson. “ScagExplorer: Exploring Scatterplots by
Their Scagnostics”. In: 2014 IEEE Pacific Visualization Symposium. 2014, pp. 73–80.
doi: 10.1109/PacificVis.2014.42.

[5] Dheeru Dua and Casey Gra↵. UCI Machine Learning Repository. http://archive.
ics.uci.edu/ml. 2017. url: http://archive.ics.uci.edu/ml.

[6] Andrey A. Efanov, Sergey A. Ivliev, and Alexey G. Shagraev. “Welford’s algorithm
for weighted statistics”. In: 2021 3rd International Youth Conference on Radio Elec-
tronics, Electrical and Power Engineering (REEPE). 2021, pp. 1–5. doi: 10.1109/
REEPE51337.2021.9387973.

[7] Keinosuke Fukunaga. “Chapter 5 - PARAMETER ESTIMATION”. In: Introduction to
Statistical Pattern Recognition (Second Edition). Ed. by Keinosuke Fukunaga. Second
Edition. Boston: Academic Press, 1990, pp. 181–253. isbn: 978-0-08-047865-4. doi:
https://doi.org/10.1016/B978-0-08-047865-4.50011-9. url: https://www.
sciencedirect.com/science/article/pii/B9780080478654500119.

[8] Goetz Graefe, Usama M. Fayyad, and Surajit Chaudhuri. “On the E�cient Gathering
of Su�cient Statistics for Classification from Large SQL Databases”. In: Knowledge
Discovery and Data Mining. 1998.

[9] J. Gray et al. “Data cube: a relational aggregation operator generalizing GROUP-
BY, CROSS-TAB, and SUB-TOTALS”. In: Proceedings of the Twelfth International
Conference on Data Engineering. 1996, pp. 152–159. doi: 10 . 1109 / ICDE . 1996 .
492099.

BIBLIOGRAPHY 34

[10] Hazar Harmouch and Felix Naumann. “Cardinality Estimation: An Experimental Sur-
vey”. In: Proc. VLDB Endow. 11.4 (Dec. 2017), pp. 499–512. issn: 2150-8097. doi:
10.1145/3186728.3164145. url: https://doi.org/10.1145/3186728.3164145.

[11] Kevin Hu, Diana Orghian, and César Hidalgo. “DIVE: A Mixed-Initiative System
Supporting Integrated Data Exploration Workflows”. In: Proceedings of the Workshop
on Human-In-the-Loop Data Analytics. HILDA’18. Houston, TX, USA: Association for
Computing Machinery, 2018. isbn: 9781450358279. doi: 10.1145/3209900.3209910.
url: https://doi.org/10.1145/3209900.3209910.

[12] Pawandeep Kaur and Michael Owonibi. “A Review on Visualization Recommendation
Strategies”. In: Feb. 2017. doi: 10.5220/0006175002660273.

[13] Alicia Key et al. “VizDeck: Self-Organizing Dashboards for Visual Analytics”. In: Pro-
ceedings of the 2012 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’12. Scottsdale, Arizona, USA: Association for Computing Machinery, 2012,
pp. 681–684. isbn: 9781450312479. doi: 10.1145/2213836.2213931. url: https:
//doi.org/10.1145/2213836.2213931.

[14] D. Lee et al. “Deconstructing Categorization in Visualization Recommendation: A Tax-
onomy and Comparative Study”. In: IEEE Transactions on Visualization & Computer
Graphics 28.12 (Dec. 2022), pp. 4225–4239. issn: 1941-0506. doi: 10.1109/TVCG.
2021.3085751.

[15] Doris Jung-Lin Lee et al. “Lux: Always-on Visualization Recommendations for Ex-
ploratory DataframeWorkflows”. In: Proceedings of the VLDB Endowment 15.3 (2022),
pp. 727–738. doi: https://dl.acm.org/doi/10.14778/3494124.3494151.

[16] Doris Jung-Lin Lee et al. “You can’t always sketch what you want: Understanding
Sensemaking in Visual Query Systems”. In: IEEE Transactions on Visualization and
Computer Graphics 26.1 (2020), pp. 1267–1277. doi: 10.1109/TVCG.2019.2934666.

[17] lux-org. Lux. https://github.com/lux-org/lux. Version 0.5.1. Oct. 26, 2022.

[18] Jock Mackinlay. “Automating the Design of Graphical Presentations of Relational
Information”. In: ACM Trans. Graph. 5.2 (Apr. 1986), pp. 110–141. issn: 0730-0301.
doi: 10.1145/22949.22950. url: https://doi.org/10.1145/22949.22950.

[19] Jock Mackinlay, Pat Hanrahan, and Chris Stolte. “Show Me: Automatic Presentation
for Visual Analysis”. In: IEEE Transactions on Visualization and Computer Graphics
13.6 (2007), pp. 1137–1144. doi: 10.1109/TVCG.2007.70594.

[20] New York City Airbnb Open Data. https://www.kaggle.com/datasets/dgomonov/
new-york-city-airbnb-open-data.

[21] Devin Petersohn et al. “Towards Scalable Dataframe Systems”. In: Proceedings of the
VLDB Endowment 13.11 (2033-2046), pp. 727–738. doi: https://doi.org/10.
14778/3407790.3407807.

BIBLIOGRAPHY 35

[22] M. Sedlmair et al. “A Taxonomy of Visual Cluster Separation Factors”. In: Computer
Graphics Forum 31.3pt4 (2012), pp. 1335–1344. doi: https://doi.org/10.1111/j.
1467-8659.2012.03125.x. eprint: https://onlinelibrary.wiley.com/doi/pdf/
10.1111/j.1467-8659.2012.03125.x. url: https://onlinelibrary.wiley.com/
doi/abs/10.1111/j.1467-8659.2012.03125.x.

[23] Jinwook Seo and B. Shneiderman. “A Rank-by-Feature Framework for Unsupervised
Multidimensional Data Exploration Using Low Dimensional Projections”. In: IEEE
Symposium on Information Visualization. 2004, pp. 65–72. doi: 10.1109/INFVIS.
2004.3.

[24] Jonathan Shi and Connor McMahon. “Leveraging User Think Time to Enable Query
Optimizations”. In: (2021). url: https://people.eecs.berkeley.edu/~kubitron/
courses/cs262a-F21/projects/reports/project4_report.pdf.

[25] Tarique Siddiqui et al. “E↵ortless Data Exploration with Zenvisage: An Expressive
and Interactive Visual Analytics System”. In: Proc. VLDB Endow. 10.4 (Nov. 2016),
pp. 457–468. issn: 2150-8097. doi: 10.14778/3025111.3025126. url: https://doi.
org/10.14778/3025111.3025126.

[26] Phanwadee Sinthong et al. “DQDF: Data-Quality-Aware Dataframes”. In: Proc. VLDB
Endow. 15.4 (Dec. 2021), pp. 949–957. issn: 2150-8097. doi: 10.14778/3503585.
3503602. url: https://doi.org/10.14778/3503585.3503602.

[27] C. Stolte, D. Tang, and P. Hanrahan. “Polaris: a system for query, analysis, and visu-
alization of multidimensional relational databases”. In: IEEE Transactions on Visual-
ization and Computer Graphics 8.1 (2002), pp. 52–65. doi: 10.1109/2945.981851.

[28] Chris Stolte, Diane Tang, and Pat Hanrahan. “Polaris: A System for Query, Analysis,
and Visualization of Multidimensional Relational Databases”. In: IEEE Trans. Vis.
Comput. Graph. 8 (2002), pp. 52–65.

[29] Manasi Vartak et al. “SeeDB: E�cient Data-Driven Visualization Recommendations
to Support Visual Analytics”. In: Proc. VLDB Endow. 8.13 (Sept. 2015), pp. 2182–
2193. issn: 2150-8097. doi: 10.14778/2831360.2831371. url: https://doi.org/
10.14778/2831360.2831371.

[30] Manasi Vartak et al. “Towards visualization recommendation systems”. In: Acm Sig-
mod Record 45.4 (2017), pp. 34–39.

[31] Kanit Wongsuphasawat et al. “Towards a General-Purpose Query Language for Visu-
alization Recommendation”. In: Proceedings of the Workshop on Human-In-the-Loop
Data Analytics. HILDA ’16. San Francisco, California: Association for Computing Ma-
chinery, 2016. isbn: 9781450342070. doi: 10.1145/2939502.2939506. url: https:
//doi.org/10.1145/2939502.2939506.

BIBLIOGRAPHY 36

[32] Kanit Wongsuphasawat et al. “Voyager 2: Augmenting Visual Analysis with Partial
View Specifications”. In: Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems. CHI ’17. Denver, Colorado, USA: Association for Computing Ma-
chinery, 2017, pp. 2648–2659. isbn: 9781450346559. doi: 10.1145/3025453.3025768.
url: https://doi.org/10.1145/3025453.3025768.

[33] Kanit Wongsuphasawat et al. “Voyager: Exploratory Analysis via Faceted Browsing of
Visualization Recommendations”. In: IEEE Transactions on Visualization and Com-
puter Graphics 22.1 (2016), pp. 649–658. doi: 10.1109/TVCG.2015.2467191.

[34] Doris Xin et al. “Enhancing the Interactivity of Dataframe Queries by Leveraging
Think Time”. In: IEEE Data Eng. Bull. 44.1 (2021), pp. 66–78. url: http://sites.
computer.org/debull/A21mar/p66.pdf.

[35] Matei Zaharia et al. “Spark: Cluster computing with working sets.” In: HotCloud
10.10-10 (2010), p. 95.

