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Abstract

Autonomous Learning for Industrial Manipulation:
Enhancing Grasping and Insertion Tasks through Scalable Data Collection

by

Letian Fu

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Ken Goldberg, Chair

Grasping and insertion represent two fundamental skills for robots, garnering significant
interest within the robotics community due to their widespread applications in fields such
as manufacturing, logistics, maintenance, and repair. Although numerous studies have
demonstrated success in both tasks, several challenges persist. For instance, general-purpose,
learning-based grasping systems often struggle to identify optimal grasps for novel, out-of-
distribution industrial components, necessitating manual predefinition by humans. Likewise,
many learning-based insertion algorithms require extensive demonstrations from human
teleoperators and assume fixed grasp poses with minimal rotation, limiting their adaptability.
Addressing these limitations, we study the problem of grasp identification and industrial
insertion through two different learning-based approaches that can directly operate the
physical robot with minimal human interventions, both of which achieved better performance
than baselines in their respective tasks.
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Chapter 1

Introduction

Grasping and insertion are two fundamental skills that robots should acquire and are of great
interest to the robotics community. These skills have applications in various settings, such
as manufacturing and assembly, logistics and warehousing, and maintenance and repair. In
the past, people leveraged geometry-based reasoning and modified the end-effector or the
controller of the robot to make them more adaptable to these tasks [17, 65, 51, 68, 28]. In
recent literature, robotics researchers strive to create general-purpose algorithms through
various learning-based methods. Although many works have demonstrated successful results
in both robotics tasks, numerous challenges remain. For example, while general-purpose,
learning-based grasping systems [63, 57, 79, 67, 56, 55] can successfully grasp everyday objects,
they struggle to find a good grasp on newly designed, out-of-distribution industrial parts [14].
In most cases, people must manually predefine a grasp for the robot to identify, which may
not be the optimal grasp. Various learning-based insertion algorithms can generalize to
different parts and plugs [72, 91, 71, 54, 74, 75, 86]; however, they often require numerous
demonstrations provided by human teleoperators and assume a fixed grasp pose of the part
with minimal rotation. In both settings, a more scalable method is needed to enhance
productivity.

A common challenge in both settings is that learning-based systems require data. While
many attempts have been made to gather ImageNet-scale robotics data [20, 89, 16, 58, 32],
the diversity of robot morphology, robot applications, and the need for humans to provide
task-specific demonstrations or motion primitives hinder the scalability of these systems.
Although leveraging simulation to generate training data and transferring the policy trained
in simulation directly onto the physical robot is a viable approach, the simulation-to-real
(Sim2Real) gap remains prevalent in many settings where physical robot data is still needed
to bridge this gap. Consequently, the pertinent question is how to create robotics data
in a scalable manner, enabling robotics algorithms to efficiently learn or adapt to specific
downstream tasks.

In chapter 3, we tackle the problem of how to efficiently adapt a general-purpose grasping
system autonomously to grasp objects that it is not proficient in grasping directly on a
physical robot with little to no human supervision. We present LEGS: Learned Efficient
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Grasp Set [24]. In this work that appeared in the IEEE International Conference on Robotics
and Automation (ICRA) 2022, we extended recent work on Exploratory Grasping, which
has formalized the problem of systematically exploring grasps on these adversarial objects
and explored a multi-armed bandit model for identifying high-quality grasps on each object’s
stable pose. However, prior formulations are still limited to exploring a small number of grasps
on each object. We present Learned Efficient Grasp Sets (LEGS), an algorithm that efficiently
explores thousands of possible grasps by maintaining small active sets of promising grasps
and determining when it can stop exploring the object with high confidence. Experiments
suggest that LEGS can identify a high-quality grasp more efficiently than prior algorithms
which do not use active sets. In simulation experiments, we measure the gap between the
success probability of the best grasp identified by LEGS, baselines, and the most-robust grasp
(verified ground truth). After 3000 exploration steps, LEGS outperforms baseline algorithms
on 10/14 and 25/39 objects on the Dex-Net Adversarial and EGAD! datasets respectively. To
demonstrate the effectiveness of our algorithm, we create a self-supervised physical grasping
system where the robot explore candidate grasps with minimal human intervention (roughly 1
per every 100 grasps). We then evaluate LEGS on the physical setup; trials on 3 challenging
objects suggest that LEGS converges to high-performing grasps significantly faster than
baselines.

In chapter 4 of the thesis, we address the issue of how to safely learn industrial insertion
tasks directly on a physical robot with minimal human supervision. Learning an industrial
insertion policy in real is challenging as the collision between the parts and the environment
can cause slippage or breakage of the part. In this work [25] that will appear in ICRA 2023,
we present a safe self-supervised method to learn a visuo-tactile insertion policy that is robust
to grasp pose variations. The method reduces human input and collisions between the part
and the receptacle. The method divides the insertion task into two phases. In the first align
phase, a tactile-based grasp pose estimation model is learned to align the insertion part with
the receptacle. In the second insert phase, a vision-based policy is learned to guide the part
into the receptacle. The robot uses force-torque sensing to achieve a safe self-supervised data
collection pipeline. Physical experiments on the USB insertion task from the NIST Assembly
Taskboard suggest that the resulting policies can achieve 45/45 insertion successes on 45
different initial grasp poses, improving on two baselines: (1) a behavior cloning agent trained
on 50 human insertion demonstrations (1/45) and (2) an online RL policy (TD3) trained in
real (0/45).
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Chapter 2

Related Works

2.1 Universal Grasping Algorithms

Recent robotic grasping algorithms generalize to a wide range of objects [42]. Open-loop
algorithms synthesize grasps and predict their quality based on the geometry of the object,
and then plan and execute a motion to attempt a high-quality grasp without feedback [46,
56, 67, 55, 57]. Closed-loop grasp planners that use vision-based gripper servoing [63, 79] and
RL [36, 37] have also been popular in prior work. LEGS is designed to leverage priors from
these universal grasping algorithms to efficiently learn a robust grasp policy for a specific,
difficult-to-grasp object [62, 80]. We use priors from Dex-Net 4.0 [57], a general grasp planner
that learns a grasp-quality estimator from a large dataset of 3D object models in simulation
and then uses this estimator to sample and evaluate the quality of grasps in physical trials.

2.2 Multi-Armed Bandits

Prior work on multi-armed bandits [73] has studied settings where the number of actions is
large compared to the number of timesteps allocated for exploration [77, 81, 34, 3, 84, 31, 10].
One popular algorithmic framework for this setting is called best arm identification, where the
goal is to adaptively reject a set of arms from consideration when there is high confidence that
they are suboptimal [2, 38, 9]. LEGS builds on these ideas, by adaptively filtering actions
from an active set by maintaining confidence bounds on the reward corresponding to each
action. This mechanism makes it possible to efficiently perform best arm identification across
multiple bandits problems, where each bandit problem represents a distinct stable pose of an
object. LEGS can quickly converge to high-quality grasps on problems with thousands of
grasps per stable pose.
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2.3 Exploratory Grasping

Universal grasping algorithms often struggle with certain objects [80, 62]. Danielczuk et al.
[14] show that grasping algorithms such as Dex-Net [57] are difficult to fine-tune online on
such objects, and propose Exploratory Grasping, a problem formulation where the objective
is to perform rapid online adaptation to grasp specific, unknown objects. To achieve this,
prior works sample a fixed set of grasps on specific object stable poses and apply multi-armed
bandit algorithms to rapidly identify high-performing candidates [45, 53, 21, 47]. Danielczuk
et al. [14] extend these ideas with BORGES, which explores grasps across all object stable
poses by using Thompson sampling and a learned Dex-Net prior [47]. However, BORGES can
often overlook high-quality grasps since it restricts exploration to a small initial set of grasps.
To address this issue, LEGS begins with a large set of grasp candidates and adaptively curates
sets of promising grasps by adding and removing grasp candidates during exploration. By
doing this, LEGS is able to converge to better long-term performance than BORGES (which
uses a small fixed set of grasps), while also learning to robustly grasp an object faster than
baselines that seek to directly explore large sets of grasp candidates.

2.4 Industrial Insertion

Industrial insertion has been central in robotics for 50 years. It is challenging due to occlusions
brought by the robot gripper, grasp uncertainty from the process of acquiring the part and
its collision with the environment, the fragility of the parts, and the precision required
in controlling the robot for insertion. Early work approached this problem using CAD
information to infer desired assembly sequences [17] and generating designs of part feeders
based on object geometry [65]. Other work approached the problem from an algorithmic
design perspective, with a focus on developing motion planning strategies for peg insertion [52,
68].

Recently, learning-based methods have shown success on this task. This includes learning
insertion policies with a physical robot via Sim2Real transfer [35], online adaptation with
meta-learning [72, 91], reinforcement learning [71, 54], self-supervised data collection with
impedance control [74], accurate state estimation [86], or decomposing the insertion algorithm
into a residual policy that relies on conventional feedback control [35]. These approaches
assume that the parts are grasped with a fixed pose. To overcome this assumption, Wen
et al. [86] perform accurate pose estimation and motion tracking with a high-precision depth
camera and use a behavioral cloning algorithm to insert the part. Spector and Castro [74]
and Spector, Tchuiev, and Castro [75] require contact between the part and the environment
to occur during data collection, a process that is expensive and often impractical for fragile
parts. In comparison, we use inexpensive tactile sensors and a safe self-supervised data
collection procedure that does not require such contact.
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2.5 Tactile Sensing for Industrial Insertion

Grasped parts are often visually occluded by the gripper. Tactile feedback can be an
alternative sensing modality for grasp pose estimation. Recent work uses tactile images
from vision-based tactile sensors such as GelSight [90] and DIGIT [44] to estimate the pose
of grasped objects. Li et al. [48] use Gelsight sensors, BRISK features and RANSAC to
estimate grasp pose. Gelsight produces high-quality 3D tactile images and can determine
depth imprint, which improves feature detection by isolating the object from the background.
DIGIT, a more affordable tactile sensor, provides a 2D RGB image but not the light incident
direction (to generate the depth image). Kelestemur, Platt, and Padir [39] generates tactile
image data in simulation for pose estimation of bottle caps but simulating contact and
physical interaction between tactile sensors and objects with more intricate geometry is still
challenging [83]. In this work, we collect a dataset of tactile images in real for the USB
connector with different grasp poses to train a tactile-based policy for grasp pose estimation.

2.6 Multi-Modal Learning for Robotics Manipulation

Most prior work on tight tolerance insertion tasks [86, 23, 48, 22] leverages a single modality,
such as vision, tactile, or force-torque, limiting the accuracy of the system due to occlusion,
perspective effect, and sensory inaccuracy. Multi-modal systems have been explored to
improve the robustness of automated insertion. Spector and Castro [74] and Spector, Tchuiev,
and Castro [75] use RGB cameras and a force-torque sensor for learning contact and impedance
control. Chaudhury et al. [11] couple vision and tactile data to perform localization and pose
estimation, and demonstrate that vision helps with disambiguating tactile signals for objects
without distinctive features. Ichiwara et al. [33] leverage tactile and vision for deformable
bag manipulation by performing auto-regressive prediction. Hansen et al. [29] use a contact-
gated tactile, vision and proprioceptive observation to train reinforcement learning policies.
Okumura, Nishio, and Taniguchi [66] also tackle the problem of grasp pose uncertainty for
insertion by using Newtonian Variational Autoencoders to combine camera observations
and tactile images. They demonstrate results for USB insertion accounting for grasp pose
uncertainty in one translation direction. In this work, we separate the insertion problem into
an alignment phase and an insertion phase, decoupling vision and tactile inputs and also
present a novel safe self-supervised approach to data collection. We are able to handle both
grasps pose rotation and translation uncertainty for the USB insertion task.
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Chapter 3

LEGS: Learning Efficient Grasp Sets
for Exploratory Grasping

3.1 Introduction

Recent advances in deep learning have enabled the development of universal grasping systems
that can robustly grasp a wide variety of objects [63, 57, 79, 67, 56, 55]. However, these
systems can still struggle to grasp objects with adversarial [62, 80] geometries or which
are significantly out of distribution from the objects seen during training. This problem
is common in many industrial settings, in which newly manufactured machine parts for
custom applications may look very different from the objects in the datasets typically used
for training universal grasping systems.

Recently, bandit-style algorithms have been used to augment general-purpose grasping
policies by rapidly adapting them to specific objects [45, 53, 21, 47]. Recently, Danielczuk
et al. [14] introduced Exploratory Grasping, where a robot learns to grasp novel objects
through online exploration of grasps and stable poses. Their algorithm, Bandits for Online
Rapid Grasp Exploration Strategy (BORGES), learns robust pose-specific grasping policies.
However, BORGES limits exploration to a fixed set of 100 grasps per stable pose, possibly to
overlooking other high-quality grasps.

In this work, we extend Danielczuk et al. [14] to explore thousands of grasps per stable
pose. Considering grasp sets of this scale increases the likelihood of converging to a robust
grasp, but also makes efficient exploration challenging. To address this challenge, we propose
Learned Efficient Grasp Sets (LEGS), which adaptively curates an active set of promising
grasps rather than restricting exploration to a small fixed subset. The key insight is to
use a combination of priors from a universal grasping system and online trials to maintain
confidence bounds on grasp-success probabilities. LEGS uses these bounds to (1) update the
grasps in its active set and (2) decide when to stop exploring.

This paper makes the following contributions: (1) a novel adaptive multi-armed bandits
algorithm that curates a small set of high-performing grasps by actively removing and
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Figure 3.1: Top: LEGS in Physical Experiments: LEGS repeatedly attempts grasps on an
object, and if the grasps are successful, it re-drops the object into a new stable pose. Bottom:
LEGS Active Set Evolution: LEGS works by adaptively curating a small active set of promising
grasps out of a large reservoir of grasp candidates (left). As exploration progresses, LEGS refines its
active set (shown in bolded red/green) to contain higher quality grasps (right).

resampling grasps based on performance bounds and a novel termination condition that
enables a robot to predict (with high confidence) when it reaches a desired level of performance;
(2) a self-supervised physical grasping system where a robot explores candidate grasps with
minimal human intervention (roughly 1 in every 100 grasp attempts); (3) simulation and
physical experiments suggesting that LEGS can identify higher quality grasps within a fixed
time horizon than prior algorithms which do not learn an active set.

3.2 Problem Statement

Overview: Given a difficult-to-grasp polyhedral object of unknown geometry that rests on a
planar surface and is viewed by an overhead depth camera, we seek to learn to successfully
grasp the object in all of its stable poses.

Problem Setup: Given a polyhedral object o, let N be its number of stable poses. Each
stable pose s ∈ {1, 2, . . . N} is associated with a landing probability λs, which indicates the
probability of the object landing in pose s when released from sufficient height in a randomized
orientation [27, 60]. Following Danielczuk et al. [14], we model our problem as a finite-horizon
Markov Decision Process M = (S,A, T, R,H). We let S be the set of equivalence classes of
distinguishable stable poses of the object and A be the set of all possible grasps on the object.
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Thus, A =
⋃N
s∈S As, where As are the grasps available at a stable pose s. Given a grasp action

a in stable pose s, the transition function T : S ×A× S → [0, 1] determines the probability
distribution over next stable poses. The reward function R : S ×A → {0, 1} is binary: a
grasp is successful and R(s, a) = 1 if the grasped object does not fall from the gripper after it
is lifted, and R(s, a) = 0 otherwise. Let psa = E[R(s, a)] be the expected success probability
of grasp a on stable pose s. We define a grasping policy as: π : S ×A→ [0, 1], where π(a|s)
denotes the probability of selecting grasp a in pose s. We denote the finite horizon of the
MDP as H. The robot initially does not know any of the stable poses or the number of
stable poses N . If a grasp is successful, the robot randomizes the orientation of the object in
the gripper, drops the object so that the next stable pose s′ is determined by the landing
probabilities {λs}Ns=1, and records the observed stable pose s′.

We represent the actions, As, at each stable pose s as candidate grasps sampled on the
object. We use the same method as Mahler et al. [57] to sample antipodal grasps on each
stable pose. We do not make any assumptions on the grasping modality, so in practice these
grasps can be sampled from various different grasp planners, including parallel-jaw or suction
grasp planners. We denote the number of possible grasps for pose s as Ks = |As| and the
total number of grasps over all states as K =

∑
s∈S Ks.

An important difference between our problem setting and prior work [14] is that we
consider settings in which K is large (> 1000) and thus is of the same order of magnitude as
the exploration horizon, H. This significantly exacerbates exploration challenges, since there
is not enough time to fully explore each grasp, motivating the key innovations in LEGS.

Assumptions: In this work, we assume access to the following: (1) a grasp sampler
which accepts as input a depth map and outputs a set of candidate grasp configurations on
the surface of the depth map with associated robustness values; (2) a robot/gripper that
can either execute these grasps or detect that they are in collision; (3) sufficient information
in the camera image to detect whether the object stable pose changes; (4) an evaluation
function to detect whether a grasp is successful. We note that these assumptions are satisfied
by the system we build to instantiate LEGS in practice. In addition, we make the following
assumptions about object’s interaction with the environment: (5) if a grasp is unsuccessful,
the object either remains in the same stable pose or topples into another stable pose; and (6)
there exists a grasp with non-zero success probability on each stable pose. These last two
assumptions are consistent with [14].

Metrics: We define the optimality gap, ∆π as

∆π = Es∈S

[
p∗s − psπ(s)

]
=

∑
s∈S

λs ·
(
p∗s − psπ(s)

)
, (3.2.1)

where p∗s = maxa∈As E[R(s, a)] and psπ(s)
= E[R(s, π(s))]. In simulation, we can evaluate

the ground-truth grasp-success probability for a given grasp with robust quasi-static grasp
wrench space analysis [85]. We thus approximate p∗s by sampling a large number of grasps on
each stable pose. Intuitively, the optimality gap ∆π measures the expected difference, across
all stable poses, between the optimal policy, which selects the best available grasp, and the
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policy π. In physical experiments, the optimality gap cannot be computed so we report the
grasp-success rate of the learned policy π.

The objective is to find a policy that minimizes the optimality gap for a given object
within H grasp attempts. Denoting a policy learned after H grasp attempts by πH , the
objective is to identify π∗

H such that:

π∗
H = argmin

πH
∆πH . (3.2.2)

3.3 Learned Efficient Grasp Sets

We propose Learned Efficient Grasp Sets (LEGS), a multi-arm bandits algorithm that uses
confidence bounds on grasp-success probability to maintain a small active set of candidate
grasps. LEGS starts with an estimate of the prior success probabilities for all grasps in a
large reservoir of possible grasps, and updates their grasp-success probabilities based on
online grasp trials using Thompson sampling as in Danielczuk et al. [14]. However, unlike
BORGES, LEGS uses the priors and online grasp trials to construct confidence bounds on
the grasp-success probabilities for each grasp (Section 20).

LEGS is summarized in Algorithm 2. Once LEGS visits a stable pose s, it checks whether
it has visited s (line 4). In Sec. 3.5, we describe how to recognize stable poses in the physical
setup. If the stable pose s has never been visited (line 5), LEGS adds the stable pose to
the set of visited stable poses Ŝ (line 6) and initializes an active set of candidate grasps, Ãs,
along with the parameters of a Beta distribution associated with each grasp in the active set
(lines 7-8). We rank the grasps in the reservoir by their estimated grasp success probabilities
under the Grasp Quality Convolutional Neural Network (GQ-CNN) from Dex-Net 4.0 [57]
and select the k = 100 grasps with the highest values. In each iteration, LEGS executes the
grasp with the highest sampled value from the posterior (lines 9-11), observes the outcome
(line 12), and updates the posterior distribution [70] (lines 13-16). In conjunction, LEGS also
constructs confidence bounds on each of the success probabilities of each grasp (Section 20).
Every n iterations, it uses these confidence bounds to identify and remove the grasps with
low robustness (Section 20) (line 18), and replaces them with newly sampled grasps where
grasps are ranked by their estimated grasp success probabilities under GQ-CNN (lines 19-20).

Constructing Confidence Bounds on Robustness

To determine which grasps to remove from the active set, LEGS constructs upper and lower
confidence bounds on grasp robustness. We model the success probability of grasp i via
Xi ∼ Beta(αi, βi), and empirically select a confidence threshold δ. Then the percent-point
function PPF(Xi, δ), the inverse of the cumulative distribution function FXi

(x), returns the
value x such that FXi

(x) = δ. The (1− δ)-lower and -upper confidence bounds for Xi are
Xi,ℓ = PPF(Xi, δ) and Xi,u = PPF(Xi, 1− δ), respectively. As a grasp is sampled more often,
the interval [Xi,ℓ, Xi,u] tightens to reflect increased certainty in the robustness of the grasp.
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Algorithm 1: Learned Efficient Grasp Sets (LEGS)

1 Input: object o, grasp sampler fθ, resample interval n, number of active grasps k

2 Initialize the set of visited stable poses Ŝ = ∅
3 for t = 1, 2, . . . do
4 Recognize the current stable pose s

5 if s /∈ Ŝ then

6 Ŝ ← Ŝ ∪ {s}
7 Use fθ to sample k grasps as the active set Ãs

8 Set αi and βi based on prior for all i ∈ Ãs

9 foreach grasp i ∈ Ãs do
10 sample ϕi ∼ Beta(αi + 1, βi + 1)
11 Execute grasp i = argmaxj∈Ãs

ϕj
12 Observe reward r = R(s, i)
13 if r = 1 then
14 αi ← αi + 1
15 else
16 βi ← βi + 1
17 if t ≡ 0 (mod n) then

18 Remove the grasps in B = Bℓ ∪ Bγ from Ãs (see equations (3.3.1) and (3.3.2))
19 Sample |B| new grasps using fθ
20 For each new grasp j = 1, . . . |B|, set αj, βj using prior from fθ and add new

grasp to Ãs

Posterior Dependent Grasp Removal

LEGS avoids over-exploring less robust grasps by identifying and removing grasps from
the active set that are highly likely to be either (1) inferior to another grasp in the active
set (locally suboptimal) or (2) below a desired global grasp success probability threshold
(globally suboptimal). Let the highest lower confidence bound across all active grasps be:
X∗
ℓ = maxi∈Ãs

Xi,ℓ. We define the set of locally suboptimal grasps as the set of grasps for
which their (1− δ)-confidence upper bound is worse than the (1− δ)-confidence lower bound
for the best grasp in the active set:

Bℓ = {i : Xi,u < X∗
ℓ }. (3.3.1)

Thus, Bℓ represents the set of grasps that are likely to be inferior to the best known grasp
in the active set. However, in the early stages of exploration, we may not yet have sampled
a high-performing grasp and Bℓ may be empty. In these cases, we still desire to remove
and resample grasps that, with high-confidence, are clearly low performing. Thus, given a
minimum performance threshold γ ∈ [0, 1], we define the set of globally suboptimal grasps in
the active set (denoted Bγ): grasps which have been sampled, but are likely to have success
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probability less than γ. We define Bγ as

Bγ = {i : Xi,u < γ}. (3.3.2)

We denote the set of attempted grasps in the active set as P , and let the index of the currently
known best grasp be i∗. The full set of grasps removed by LEGS is constructed by taking
the union of the above sets: B = (Bℓ ∪ Bγ) ∩ P \ {i∗}. This allows LEGS to remove grasps
which are unlikely to outperform the best known grasp in the current active set.

Early Stopping

Rather than setting the exploration horizon H to a fixed value, we can set a performance
threshold and let LEGS stop exploring once it has high confidence that it has achieved
the desired threshold. This early stopping condition allows LEGS to efficiently allocate
exploration time by only continuing to explore objects that it cannot yet robustly grasp.

Given a user-specified, minimum performance threshold ρmin ∈ [0, 1], we want to detect
when, with high likelihood, the true performance of LEGS is above this threshold. More
formally, given a confidence parameter δstop ∈ [0, 1], we want to calculate a (1 − δstop)-
confidence lower bound, denoted by pℓ, on the true expected performance of the grasping

policy π, i.e., we want to find pℓ such that Pr
(
pℓ ≤ Es∈S[psπ(s)

]
)
≥ 1− δstop. Then, the robot

can stop exploring when pℓ ≥ ρmin.
We cannot directly compute Es∈S [psπ(s)

] since we do not know the true stable pose
distribution S. Thus, we take a Bayesian approach where we approximate pℓ by sampling
likely values of Es∈S[psπ(s)

] given the observed data and then by taking the δstop-percentile
of these samples [6, 7]. First, for each observed stable pose, s, we estimate the expected
performance of the best grasp as p̂∗s = maxi∈As

αi

αi+βi
, where αi and βi are the parameters of

the Beta posterior distribution over the success probability of grasp i. To reason about the
performance of LEGS, we must account for uncertainty over the stable pose distribution,
parametrized by the drop probabilities λ1, . . . , λN . However, N is unknown. Thus, we model
our belief over drop probabilities using a Dirichlet posterior distribution over N̂ + 1 drop
probabilities, where N̂ is the number of observed stable poses and the +1 allocates probability
mass to unobserved stable poses.

Assuming a uniform Dirichlet prior, we take the empirical drop counts c1, . . . , cN̂ for

N̂ observed stable poses, and sample from the posterior distribution over stable pose drop

probabilities, Pr({λs}N̂+1
s=1 | c1, . . . , cN̂ , 0). Due to conjugacy [18], the desired posterior

distribution is also a Dirichlet distribution with parameters (α1 = c1 + 1, . . . , αN̂ = cN̂ +

1, αN̂+1 = 1). Given a sample, {λ′
s}N̂+1
s=1 , from the above Dirichlet posterior, we transform it

into a sample from the posterior over expected grasp robustness: p′π =
∑N̂

s=1 p̂
∗
s · λ′

s. where
we conservatively assume that the robot will fail to grasp the object in any unseen poses. We
calculate a (1− δstop)-confidence lower bound on the overall grasp robustness by finding the
δstop percentile, p̂ℓ = PPF(p′π, δstop), using M samples of p′π.
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3.4 Simulation Experiments

Experimental Setup

We first evaluate LEGS in Exploratory Grasping with a variety of adversarial objects in
simulation. Same as in Danielczuk et al. [14], we consider 14 Dex-Net 2.0 Adversarial
objects [56] and all 39 EGAD! Adversarial evaluation objects [62]. We use Dex-Net 4.0 [57]
to sample a large reservoir of K = 2000 grasps for each stable pose. We also use GQ-CNN to
set the Beta prior for LEGS following the method from [47, 14]. Using the method outlined
in Section 4.3, we update the active grasp set after every n = 100 timesteps and use δ = 0.05
for constructing grasp confidence intervals with upper confidence threshold γ = 0.2. All
experiments use a time horizon of H = 3000. We run 10 trials of each algorithm with 10
rollouts per trial, where each trial involves sampling a different reservoir of grasps, and each
rollout for a trial involves running a grasp exploration algorithm.

Baselines

We compare LEGS against five baseline algorithms: Dex-Net, Tabular Q-Learning (TQL),
BORGES (Ks = 100), BORGES (Ks = 2000), and LEGS (-AS). Dex-Net greedily chooses
the best grasp evaluated by Dex-Net 4.0 [57] for each stable pose and does not do any online
exploration. BORGES (Ks = 100) leverages a prior calculated by GQ-CNN to seed grasp
success probability estimates, and then performs Thompson Sampling for each encountered
stable pose to explore an initial active set of 100 grasps sampled on each of the poses. While
BORGES (Ks = 100) is provided with the same initial active set as LEGS, unlike LEGS,
BORGES (Ks = 100) does not update its set over time. However, different from [14], it is not
guaranteed that there will exist successful grasps on all stable poses when Ks = 100. This
implies that BORGES (Ks = 100) may not be able to transit between stable poses. The
Ks = 100 Upper Bound refers to the optimality gap if on each stable pose, the best grasp in
the active set is selected. BORGES (Ks = 2000) is identical to BORGES (Ks = 100), but
instead directly explores the full reservoir of Ks = 2000 sampled grasps. TQL implements
tabular Q-learning on the full reservoir of Ks = 2000 sampled grasps where each pose is a
separate state s and each action a is a grasp on that pose and a Q-table Q[s, a] is constructed
to keep track of the corresponding 1-step Q-values. The values in the Q-table are initialized
using the GQ-CNN prior and actions are chosen based on an ϵ-greedy policy [76] with ϵ = 0.1.
Finally, LEGS (-AS) is not provided with an initial active set, but instead operates on the
full reservoir of Ks = 2000 grasps and uses the posterior dependent removal procedure in
Section 20 to remove grasps from the reservoir.

Experimental Results

We first study aggregated results of LEGS and baselines over objects in the Dex-Net Ad-
versarial and EGAD! evaluation datasets in Table 3.1. We find that LEGS performs better
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Dataset Dex-Net TQL
BORGES
(Ks = 100)

Ks = 100
Upper Bound

BORGES
(Ks = 2000)

LEGS (-AS) LEGS

Dex-Net 0.56± 0.07 0.23± 0.08 0.13± 0.07 0.08± 0.04 0.04± 0.03 0.22± 0.06 0.04± 0.03

EGAD! 0.59± 0.03 0.32± 0.04 0.25± 0.04 0.13± 0.03 0.17± 0.03 0.28± 0.04 0.14± 0.03

Table 3.1: Grasping in Simulation Aggregated Results: We show the optimality gap (mean ±
standard error) achieved by LEGS and baselines after H = 3000 steps of exploration averaged over
the objects in the Dex-Net Adversarial and EGAD! evaluation datasets. LEGS achieves a lower
optimality gap than all baselines, indicating that LEGS is able to discover new high-performing
grasps.

Figure 3.2: Simulated Grasping Experiments Case Study: We report the performance of
LEGS and baselines on four specific objects to investigate how object properties affect performance.
For each object, we include a 3D rendering of the object and the number N of stable poses (left), a
histogram of the ground truth grasp success probabilities over 2000 sampled grasps (middle), and
learning curves (right).

than or equal to the baseline algorithms on 10 out of 14 objects in the Dex-Net Adversarial
dataset, and on 25 out of 39 objects in the EGAD! evaluation dataset. In comparison, the
best performing baseline algorithm, BORGES (Ks = 2000), only performs at least as well as
rest of the algorithms on 5 out of 14 Dex-Net Adversarial objects and 14 out of 39 EGAD!
evaluation dataset. On all of these objects we find that Dex-Net, which is not updated
online, has high optimality gap, motivating online grasp exploration. The improvement for
LEGS over LEGS (-AS) and BORGES (Ks = 2000) indicates the increased efficiency of
restricting exploration to a small active set, while the gap between LEGS and BORGES
(Ks = 100) indicates the importance of updating this active set over time to prune poor
performing grasps while discovering new, high-quality grasps outside of the initial active
set. BORGES (Ks = 100) cannot outperform the success rate of the best grasp in its initial
set (Ks = 100 upper bound). By contrast, LEGS, retains the efficiency of only exploring
a small set of grasps while also being able to adapt this set over time to obtain successful
grasps on difficult-to-grasp stable poses and reach a lower optimality gap. TQL learns much
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more slowly than BORGES because it fails to leverage the structure in the grasp exploration
problem and does not learn separate policies for each stable pose.

In Figure 3.2, we study LEGS and baselines on specific objects. We show two objects
(Climbing Hold and C3) where LEGS converges faster to high performing grasps than prior
algorithms and two objects (F6 and Turbine Housing) where LEGS does not outperform all
baselines. We find that when high performing grasps are abundant, LEGS may converge to
suboptimal grasps. However, when there are only few successful grasps, LEGS can converge
to good grasps much faster than baselines. If high quality grasps are already in the active
set, LEGS can rapidly distinguish them from other grasps. If the active set does not contain
successful grasps, LEGS can quickly replace bad grasps in the active set.

Early Stopping Results

Next, we study the accuracy and effectiveness of the early stopping criterion (Section 20).
We test the proposed high-confidence performance bound across all objects in the Dex-Net
Adversarial object set (individual results per object are reported in the supplement). We
check whether LEGS has reached the stopping condition every 100 grasps for a horizon of
H = 3000 total grasp attempts and use δstop = 0.05, resulting in a 95%-confidence lower
bound p̂ℓ. We sample M = 3000 samples to estimate p̂ℓ.

We first test how often the predicted bound is a true lower bound on performance. We
find that, on average, across all Dex-Net Adversarial objects, our empirical lower bound is a
95.8%-accurate lower bound on the true performance over the true stable pose distribution.
Thus, p̂ℓ forms an empirically valid (1 − δstop)-confidence lower bound. We next test the
tightness of our lower bound. On average, the difference between the true performance of
LEGS and our empirical lower bound is only 2.97%. These results suggest that our lower
bound is highly accurate and tight enough to provide a practical signal for when the robot
can safely stop exploring.

We next study, in simulation, the use our high-confidence bounds on performance for
early stopping. As described in Section 20, given a user-specified, minimum performance
threshold, ρmin, the robot stops exploring when the lower confidence bound p̂ℓ is greater than
ρmin. When the robot chooses to stop exploring the object, we evaluate the ground truth
performance of the learned policy and evaluate whether the true performance is also above
the threshold ρmin. We evaluate a wide range of thresholds and plot the results in Figure 3.3.
Results suggest that we can achieve highly accurate early stopping, allowing the robot to
accurately terminate exploration well before the full horizon of 3000 steps.

3.5 Physical Experiments

In this section, we discuss our experimental setup for physical experiments, the methods we
used to enable intervention-free grasp exploration on a physical robot and results evaluating
the performance of LEGS and BORGES (Ks = 2000) across 3 physical objects.
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Figure 3.3: Early Stopping Threshold Sensitivity: We evaluate early stopping over the
Dex-Net Adversarial object set in simulation with a range of stopping thresholds, ρmin. We use a
95%-confidence lower bound on expected grasp robustness. Left: We plot the accuracy averaged
over all objects and find that our empirical lower bound (Section 3.4) is highly accurate across all
stopping thresholds, ρmin. Right: We plot the number of steps before stopping, averaged across all
objects. Intuitively, the required exploration time increases with higher performance thresholds.
Importantly, the average number of steps before stopping is much lower than the 3000-step horizon.

Experimental Setup

To deploy exploratory grasping algorithms on a physical robot, we modify the perception
system introduced in Danielczuk et al. [14] to sample grasps and identify changes in the object
stable pose. We capture a depth image of the object from an overhead camera, deproject it
into a point cloud using the known camera intrinsics, demean the point cloud, and apply 3600
evenly spaced rotations to the point cloud around the camera’s optical axis. We measure the
chamfer distance between the rotated point clouds with previously cached point clouds and
find the pair of point clouds that serves as the closest match. As in Danielczuk et al. [14], if
at least 80% of the points are less than 0.02mm away from the closest points in the cached
point cloud, we classify the two point clouds as belonging to the same stable pose. If none of
the cached point clouds satisfies this condition, the point cloud is cached and treated as a
new stable pose. If there exists a matching point cloud, we further align the translation and
rotation of the point cloud via iterative closest point [12].

Upon discovery of a new stable pose, we use Dex-Net 4.0 [57] to sample, evaluate, and
cache grasps in the grasp reservoir. Thus, LEGS can explore grasps on objects with unknown
geometries and unknown numbers of stable poses.
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Figure 3.4: Physical Experiments Results: We compare LEGS with BORGES (Ks = 2000) on
three objects (Bar Clamp, Pawn, and Pipe Connector) from the Dex-Net Adversarial Dataset [56]
in physical experiments. All physical experiments are completed within 3 hours. LEGS significantly
outperforms BORGES (Ks = 2000) on Bar Clamp and Pawn, with minor improvement on Pipe
Connector.

Self-Supervised Exploratory Grasping with LEGS

Danielczuk et al. [14] find that re-dropping the object during experiments often cause it to
fall out of the workspace, requiring extensive human effort to reset the object. To enable the
robot to collect grasp data without human intervention, we introduce strategies to prevent
the object from toppling out of the workspace while maintaining access to a wide variety of
grasps. We drop the object within a bowl (Fig.4.1), where the object’s rebound height is
lower than the rim of the bowl. The bowl allows the object to stay in the visible range of the
overhead camera. However, the bowl’s rim can be an obstacle to grasps. We introduce two
autonomous reset behaviors to address this: (1) we center the object above the bowl before
dropping the object, ad (2) when the object topples near the boundary, the robot pushes the
object towards the center of the bowl to improve grasp access [15].

Experimental Results

Figure 3.4 shows learning curves from physical experiments comparing LEGS with BORGES
(Ks = 2000) on three challenging objects from the Dex-Net Adversarial Dataset [56]. We run
3 trials with 1 rollout per trial for each object. We find that on 2 out of the 3 objects, LEGS
is able to outperform BORGES (Ks = 2000) and identify high-performing grasps within a
few hundred timesteps of online exploration.



CHAPTER 3. LEGS: LEARNING EFFICIENT GRASP SETS FOR EXPLORATORY
GRASPING 17

3.6 Discussion

We present Learned Efficient Grasp Sets, an algorithm which efficiently explores large sets of
grasps by adaptively constructing a small active set of promising grasps. Experiments suggest
that LEGS identifies high-performing grasps more efficiently than baseline algorithms across
53 objects in simulation experiments and on three challenging objects in physical trials. We
also propose a novel early stopping condition by computing a high-confidence lower bound on
the expected grasp performance. Simulation results suggest that this high-confidence lower
bound is highly accurate and tight. In future work, we will analyze LEGS to determine how
the quality of the Dex-Net prior and the distribution over grasp success probabilities affect
its convergence rate. Moreover, we will search for possible ways for LEGS to generalize across
different stable poses and objects.
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Chapter 4

Safe Self-Supervised Learning in Real
of Visuo-Tactile Feedback Policies for
Industrial Insertion

4.1 Introduction

Industrial assembly [59] is a precise manipulation task requiring contact between parts. Part
feeding, peg insertion and object reorientation (three sub-tasks of industrial assembly) have
been extensively studied [51, 52, 28, 65, 59]. Early work considers the mechanical design
aspect [65, 52] and motion planning aspect [51, 28, 68]. Through Computer Aided Design
(CAD), the order of part assembly can be predetermined in simulation with precise pose
information [17], allowing robots to plan the necessary actions to assemble the design [43].
Learning-based approaches recently have shown promise on industrial insertion tasks [86] on
the NIST taskboard [40], a standard benchmark that represents common industrial insertion
tasks with parts that have complex geometries [49]. However, applying learning-based
methods for industrial insertion remains challenging due to the requirement for frequent
human inputs during learning [54] or high-precision sensors for collecting training data [86].
There is also a need for a safe training and data collection method for learning insertion tasks
since parts are prone to breakage.

Another challenge in an industrial insertion task is that the precise grasp pose is often
unknown due to variations in kitting and feeding of parts as they arrive for assembly. As the
grasped part is often occluded by the gripper visually, grasp pose estimation is better achieved
when using tactile sensing [66]. While recent work has shown improvement in simulation
accuracy for industrial insertion [64] and successes in Sim2Real transfer for tactile-based
insertion tasks [39, 82], the simulation of soft contacts between tactile sensors and objects
with complex geometries remains an open problem [83], and often can not transfer to real
because the object models are not publicly available. In this work, we present a novel method
to safely learn visuo-tactile feedback policies in real for industrial insertion tasks under grasp
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Figure 4.1: Overview of the learned two-phase insertion policy: the red arrows indicating the robot
actions given by the policies. (A) The robot grasps the part at an initial pose. (B) The tactile
guided policy πtac estimates the grasp pose using the tactile image and aligns the z-axis of the part
with the insertion axis. (C) A vision-guided policy πvis is used to insert the part. (D) The part is
inserted successfully into the receptacle.

pose uncertainties, with inexpensive off-the-shelf sensors. Our approach draws on tactile
and visual feedback to deal with the grasp pose uncertainty and force-torque sensing for a
self-supervised training procedure that is safe, minimizing damage during the training phase.
We divide the insertion task into two phases (as shown in Fig. 4.1):

• An initial Align phase where a tactile-based policy πtac estimates the grasp pose. The
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robot reorients and aligns the part with the insertion axis of the receptacle.

• A second Insert phase where an RGB image-based policy πvis guides the robot to insert
the part.

A significant challenge in learning tactile feedback policies in real for industrial insertion
is the frequent slippage of the part that occurs due to collision with the environment and the
smooth surface of the tactile sensor gel pad. This makes RL methods difficult to succeed
without human intervention or an automatic reset mechanism to detect and correct slippage.
In this work, we develop a self-supervised data collection pipeline that avoids collision between
the part and its environment, by recognizing that the insertion operation is reversible only
from certain target insertion poses – i.e. starting from such poses, the part can be repeatedly
unplugged from and inserted into the receptacle. Prior to data collection, a human free-drives
the robot to provide one approximate target pose where the part is inserted. The robot
refines this target pose to find such a reversible pose by minimizing the grasping force-torque,
which helps minimize collisions during data collection, resulting in a safer training process
that is unlikely to damage the insertion part and receptacle.

This paper contributes:

1. A safe self-supervised data collection pipeline with force-torque sensing in real for
insertion, designed to minimize contact force for data collection.

2. A two-phase policy learned from the collected data including a tactile-based alignment
policy for orienting the part and an RGB image-based insertion policy;

3. Experimental results suggest that the policy achieves 45/45 successes on USB connector
insertion, outperforming two baseline methods (1/45 and 0/45).

4.2 Problem Statement

Overview

We consider a part insertion task using a 7-DoF robot, equipped with a parallel-jaw gripper
with a tactile sensor mounted on one jaw. The end-effector has a wrist-mounted RGB camera,
and the robot provides reliable force-torque readings at the end-effector. The objective is to
learn a policy that can robustly insert the part into the receptacle with an unknown part’s
pose within the gripper, while minimizing human inputs and part-receptacle collisions during
training. Fig. 4.2 shows the experiment setup and the coordinate frames.

Assumptions

We make the following assumptions:

1. A human provides one top-down grasp pose of the part inserted in the receptacle.
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Figure 4.2: Experiment setup and coordinate system. The x, y, z axes are labeled by red, green,
blue respectively. We label the gripper frame, part frame, human-provided target pose frame, and
robot frame as FG, Fp, Fh, FR respectively. The insertion direction is defined as the z-axis of Fh.
When the part is inserted, Fh = Fp.

2. The robot can accurately measure force and torque either with an external sensor or
internal current sensing;

3. An experiment begins with the part pre-grasped by the robot gripper with the part
grasp pose within a range relative to the human-provided pose.

4. During data collection, the robot operates in a rectangular collision-free configuration
space above the receptacle.

Problem Setup

Given a tight-fitting receptacle for the part to be inserted into (Fig. 4.2), we find the target
insertion pose TR,h of the part (grasped at an unknown pose) from one human-provided
imperfect demonstration. At any time step t, we have access to the RGB observation oρ(t)
from the wrist-mounted camera, the RGB tactile image oψ(t) from the DIGIT tactile sensor,

and reliable force f⃗(t) and torque τ(t) readings from the robot. Since we know the insertion
axis, we parameterize the action space with 4 degrees of freedom: gripper translation in the
robot frame and gripper y-axis rotation.
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4.3 Method

Hardware

We design a novel parallel jaw gripper mount to accommodate the DIGIT tactile sensor [44]
and camera mount (Fig. 4.2, 4.3). The elastomer gel on the DIGIT sensor deforms, causing
torque applied to the part. This torque and the force applied from the receptacle to the part
during insertion often produce undesired slippage and rotation. Therefore, we develop an
asymmetric mounting setup where we mount the DIGIT sensor on one jaw with reinforcement
to prevent outward bending, while keeping the other jaw flat. We apply sandpaper on the
surface of the non-tactile gripper, increasing the friction to reduce slippage. We find that we
can predict the part’s grasp pose of a USB connector using a single DIGIT sensor.

Self-Supervised Data Collection

One Human Provided Imperfect Target Pose

The target pose TR,h is provided by a human free-driving the robot with a pre-grasped part to
insert it in the receptacle from top down. Since this target pose may not have a perfect axis
alignment with the receptacle, the system performs a z-axis alignment of the target pose. To
account for the change in grasp center after axis alignment, we refine TR,h by finding a target
pose that minimizes gripper force-torque using a grid search through a set of translations
and rotations {T∆}. Formally, we find

T̃R,h = argmin
T̃R,h∈{T∆·TR,h}

∥∥∥f⃗(T̃R,h)∥∥∥+
∥∥∥τ(T̃R,h)∥∥∥ . (4.3.1)

Here f⃗(T̃R,h) and τ(T̃R,h) denote the 3-DoF force and torque vectors respectively when the
gripper is at T̃R,h. Intuitively, this objective minimizes the external force applied on the part
when being unplugged, increasing the likelihood of the insertion process being reversible.
Practically, we perform grid sampling over 5 values of x ∈ [-1, 1]mm, 5 values of y ∈ [-1, 1]mm
and 4 values of γ ∈ [- π

180
, π
180

]rad (x, y, γ are in Fh, refer to Fig. 4.2). The pose with minimum

gripper external force-torque is recorded as the refined demonstration pose T̃R,h, and we have
Fh = FG at T̃R,h.

A cascaded impedance controller, implemented within the robot’s real-time control loop,
allows fine-grained force control. In case of a force violation, our system calculates a trajectory
to a safe state within a single control cycle. After refinement of the target pose, we search
for the minimum offset zmin for the part to be unplugged from the receptacle. Finding the
minimum height helps to determine the boundary for data collection and allows the pipeline
to collect more data closer to the receptacle while reducing collisions. Iteratively, the robot
moves the gripper by −∆z in FG. We then move the gripper by ∆x (in the FG frame) and

measure f⃗x (x-component of the gripper force in the FG frame). If f⃗x ≤ η, we register the total
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(a) Parallel Jaw Gripper (b) Camera Mount

Figure 4.3: CAD models for the parallel jaw grippers and camera mount.

upward distance traveled as the minimum height zmin for removal of the part. Empirically,
we find setting ∆x = ∆z =1mm, and η = 3.5N works well.

Data Collection for Alignment

The part remains inserted throughout data collection. We explore grasp pose variations in
3-DoF (x, z translation and y-axis rotation β) in FG (Fig. 4.2). We perform uniform random
sampling over the range [−3, 3]mm, [−8,−2]mm, [− π

15
, π

15
]rad for x, z, β, with 5, 10 and 20

samples respectively. The robot closes the gripper with a force of 70N at each of the sampled
poses and records the pair of tactile image readings and x, z, β. To account for the noise in
the DIGIT tactile sensor, we take a median filter over 5 consecutively captured tactile images.
We collect 2000 data points in 120 minutes.

Data Collection for Insertion

Upon completing the tactile image collection phase, we collect robot poses and RGB images
for training the insertion policy for different grasps. We perform grid sampling with 5 samples
each of x, z, β in FG within the same range as in the previous stage, resulting in a total
of 125 grasps. To account for the difference between the sampled grasp g and T̃R,h, we
perform minimum force-torque refinement on the sampled grasp to calculate the grasp-specific
target pose T̃R,h(g). T̃R,h(g) translated by an offset of zmin gives us the unplugged part pose
Tunplug(g).

For each grasp g, we collect image data for the visuoservo policy by moving the gripper to
sampled points on a grid above the target pose. In particular, we uniformly sample 5 values
each of x ∈ [−5, 5]mm, y ∈ [−5, 5]mm and z ∈ [−5, 0]mm in FR with respect to Tunplug(g),
resulting in 125 different translations for the gripper. For each translation, we collect one
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data point that does not contain additional rotation and sample two gripper y-axis rotation
conditioned on z to avoid collision. Specifically, given a height z, the two rotations are
sampled from the uniform distribution z

5
·U [− π

15
, 0]rad and z

5
·U [0, π

15
]rad. These rotated data

points provide the system with additional data for camera pose variation with respect to the
target pose, which leads to a balanced dataset with 375 distinct gripper poses. Each data
point is composed of the gripper pose (translated and rotated away from the target pose) and
the corresponding RGB image observation at that pose. Upon visiting all 375 gripper poses
for a given grasp, the robot moves to Tunplug(g), performs a vertical movement to T̃R,h(g),
and opens the gripper jaws, thereby resetting the part in the receptacle. The system repeats
this data collection process for all 125 grasps without human supervision.

Learning to Insert

While human demonstrations usually serve as “expert policies” for industrial insertion tasks,
the self-supervised data collection pipeline allows us to collect ground truth actions at scale.
This allows us to formulate two supervised-learning problems based on Sec. 4.3 and Sec. 4.3.

Alignment Policy

We use the data collected from Sec. 4.3 to train an alignment policy πtac that, given the
tactile image, outputs the desired displacement of the gripper Tp,G to align the part with the
receptacle (Fig. 4.1.B). We augment the tactile images by randomly jittering the brightness
and contrast over the range U [0.7, 1.3].

Insertion Policy

We use data collected from Sec. 4.3 to train a visuoservo insertion policy πvis taking normalized
camera observation, gripper y-axis rotation β and x, y translations in Fh as inputs, and predict
the action: desired translation ∆x,∆y and rotation ∆β in FR (Fig. 4.1.C). We augment camera
observations by randomly jittering the brightness and contrast over the range U [0.7, 1.3].

We use RegNet 3.2GF [69] as the backbone for both policies. For the alignment policy, we
replace the last layer of RegNet with a linear layer with 3 outputs. For the insertion policy,
we concatenate the robot’s pose with the latent vector of the image and replace the last layer
with a linear layer with 3 outputs. For both networks, we use a batch size of 64, a learning
rate of 1e-3, and a learning rate decay of 0.99 for every 100 gradient steps. We pick the mean
squared error as the loss function and use the Adam optimizer [41].

Execution of Insertion

To avoid catastrophic failure (i.e. collision between the part and the surrounding environment
or moving out of the training set distribution), we deliberately formulate the visuoservo policy
to only control x, y-axis translation but not z-axis translation since the insertion direction is
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Figure 4.4: Data collection for alignment (Top) and insertion policies (Bottom). Data collection for
the Alignment policy starts with the part inserted into the receptacle (Top (A)). The robot then
samples and records different grasp poses and the corresponding tactile images (Top (B)). Data
collection for the Insertion policy starts with a sampled refined grasp (Bottom (A)) and unplugs
the part to apply sampled transformations (Bottom (B)). Then the robot inserts the part (Bottom
(C)) and starts the next round of data collection with a different grasp pose.

already aligned with the z-axis by the Align policy. The formulation is detailed in Algorithm
2. The execution procedure starts by inferring the grasp pose from the tactile image via
πtac (line 2). The system then performs the insertion axis alignment of the part with the
receptacle (line 3). We measure the z-direction force based on the gripper force-torque sensor
(line 12). We then calculate rotation and translation based on the camera observation via
πvis (line 5, 10) and execute the corresponding actions (line 8) until the action has a norm
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Algorithm 2: Policy Execution Procedure

1 Input: Tactile Image oρ(t), Camera Image oψ(t), tactile based grasp pose estimation

network πtac, and visuoservo insertion policy πvis, Target Pose T̃R,h, Minimum
Wrench Height zmin, action norm threshold ϵ, z direction step size dz

2 Tp,G = πtac(oρ(t))

3 Move gripper to T̃R,hTp,G + 2zmin

4 attempts = 0
5 (∆x,∆y,∆β) = πvis(oψ(t), TR,G(t))
6 while True do
7 while ∥[∆x,∆y]∥ > ϵ and attempts < H do
8 Move gripper by (∆x,∆y)
9 attempts = attempts + 1

10 (∆x,∆y,∆β) = πvis(oψ(t), TR,G(t))

11 Translate gripper in insertion direction by dz
12 Measure gripper force-torque in z-axis as Fz
13 if Fz > 15N or attempts ≥ H then
14 Terminate

smaller than ϵ (line 7). Note that the rotation prediction from the Insertion Policy is not
used, because the part is aligned with the insertion axis by the Alignment Policy. When
the action converges, we lower the gripper in the z direction by a step size of dz (line 11)
and continue to query πvis until the force constraint is satisfied or the number of attempts
exceeds the horizon H (line 13-14). We empirically set dz = 1.5mm. Empirically, we find
setting the action norm ϵ = 0.0005, dz = 1.5mm and H = 200 works well, as the force-based
termination condition is usually triggered first for a successful or unsuccessful insertion.

4.4 Experiments

Experiment Setup
We focus on the USB insertion task on the NIST taskboard. We use a 7-DoF Franka Emika
robot with a parallel gripper, where one DIGIT tactile sensor is mounted on the inside of
one of the fingers. An Intel RealSense camera is mounted offset from the gripper (Fig. 4.3).
To control the Cartesian position of the Franka robot, a time-optimal trajectory respecting
velocity, acceleration, and jerk constraints is applied to the policy’s positional output [4]. We
use grid sampling to obtain 5 values of β ranging from [− π

20
, π
20
]rad, 3 translations in x and z

from the range [−3, 3]mm and [−6,−2]mm in Fh, resulting in a test set of 45 different grasp
configurations that lie in the training distribution of the algorithms.
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Experimental Procedure
At the beginning of each test experiment, the USB connector (part) is pre-grasped by the
robot with a grasp pose selected from the test set and located at a position with a z-axis
translation of 2zmin relative to Fh. At this starting pose, the gripper is aligned vertically
down while the USB connector is misaligned with the receptacle in both translation and
rotation as in Fig. 4.1(A). The robot first executes the Align policy to estimate the part grasp
pose and aligns it with the insertion direction of the receptacle as in Fig. 4.1(B). It then uses
the Insert policy to visuoservo and inserts the part into the receptacle as in Fig. 4.1(C-D).
The robot then resets to the next grasp by releasing the part, re-grasping it, raising it to a
start pose as outlined above, and executing the Align and Insert policies for this new grasp.
It steps through all the test grasp poses using the same procedure.

An experiment terminates if the gripper frame (FG) force in the z direction f⃗z(t) exceeds
15N. An experiment trial is considered successful if the gripper is within 5mm of the target
pose in H = 200 iterations, upon which we also visually inspect whether the insertion is
successful. In this set of experiments, the refined human-provided target pose T̃R,h is provided
as an input to the policies. In Sec. 4.4, we perform ablation studies on noisy target poses.

Comparison

The method is designed with two objectives: (1) minimizing human intervention so that
ideally no human needs to be involved in data collection or training of the policy, and (2)
minimizing collision among the robot, the part, and the environment. We compare our
approach with two baseline learning methods described below with the same environment
setup (using the same grippers and camera mount).

Twin Delayed Deep Deterministic Policy Gradient(TD3)

An off-policy, online reinforcement learning policy [26] that learns the end-to-end part insertion.
This baseline satisfies objective (1) but violates objective (2) — i.e. it is incapable of avoiding
collisions among the robot, the part, and the environment. We simplify the problem to a
fixed, axis-aligned grasp pose and restrict the action space to translations only, so that the
policy only have to learn insertion instead of both alignment and insertion. The learned
policy runs with a frequency of 10Hz. Since the policy outputs Cartesian position changes,
we controls the Cartesian velocity of the robot, which is equivalent to Cartesian position
changes per time step. Due to the part’s axis-alignment with the receptacle, the policy’s
input can be restricted to the (low-dimensional) robot pose, velocity, and the force-torque at
frame FG. We use the default TD3 implementation of Ray RLLib [61]. If the force applied on
the gripper exceeds 15N, the episode terminates and the robot resets to a safe starting pose.
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Imitation learning (IL)

Imitation learning from 50 human demonstrations of insertion trained with behavior cloning.
Each human demonstration starts with a randomly sampled grasp pose as in Sec. 4.3.
This baseline algorithm violates objective (1) but satisfies objective (2), where the human
demonstrator selects actions that minimize collision between the part and the environment.
It takes about 30 minutes to provide all these human demonstrations.

Algorithms IL TD3 Proposed Approach
Success/Total 1/45 0/45 45/45

Table 4.1: Results suggest that (1) the IL trained on 50 human demonstrations is insufficient for
training an accurate part pose estimation model, and (2) frequent slippage and rotations of the USB
caused by collisions with the receptacle lead to failure in training TD3. Our approach outperforms
both baseline policies.

Results

The results are summarized in Table. 4.1. The imitation learning agent (IL) is only able to
perform a single successful insertion out of the 45 grasp poses. Intuitively, 50 different grasp
configurations from human demonstrations are not sufficient for training an accurate part
pose estimation model; additionally, for different grasp poses, at the same gripper pose, two
different human demonstrations may exist. The multi-modality in the distribution of target
insertion poses contributes to the failure of the IL policy. Training the TD3 policy in the
physical environment led to divergent results in all 5 training trials we attempted. In all
cases, the part collides with the receptacle, leading to a drastic change in the grasp pose.
This cannot be corrected directly since there is no reset procedure that can systematically
recover the gripper to its original state without human supervision. Our approach succeeds
for every single grasp pose tested. Empirically, we find that the part rotation and translation
predicted from tactile images are fairly accurate (refer to Table. 4.2).

x (mm) z (mm) β (rad)
Mean Error 8.97e-2 1.46e-1 5.59e-3
Standard Deviation 4.89e-3 6.62e-2 4.89e-3

Table 4.2: Mean and standard deviation of the error in predicting part pose (x, z, β) by the tactile-
based alignment policy on the test set of 45 grasps.
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Setup Trial 1 Trial 2 Trial 3 Mean±Standard Error
ZA 0/125 0/125 0/125 0.0±0.0%

ZAWF 125/125 125/125 34/125 75.7±19.8%
ZAWFG 125/125 125/125 125/125 100.0±0.0%

Table 4.3: Comparing data collection success rate. We measure the number of successful insertions
until failure for 125 different grasps configurations. We compare Human Demonstration with axis
alignment (ZA), Single Minimum Force-Torque Refinement (ZAWF), and Minimum Force-Torque
Refinement for all grasps (ZAWFG). We report the mean success rate and the standard error for
three distinct human-provided target poses.

Ablation Studies

Effects of Leveraging Force-Torque Sensing in Data Collection

We compare the completion rate of the data collection process for insertion with or without
grasp pose refinement. We consider the following three different methods for refining the
target pose gained from the human demonstration TR,h: 1) ZA: apply z-axis alignment on
TR,h, 2) ZAWF: perform minimum force-torque refinement only once for TR,h after z-axis
alignment (this step is only performed for the first grasp and the results reused for all
grasps) and 3) ZAWFG: perform z-axis alignment for TR,h and apply minimum force-torque
refinement separately for each grasp.

At the beginning of each experiment, a human provides TR,h by free-driving the robot
with one pre-grasped part to insert the part. A total of 125 different grasp poses are sampled.
For each grasp pose Th,G, we calculate the grasp pose in robot frame by TR,G = T̃R,hTh,G
with T̃R,h determined by one of the three methods ZA, ZAWF or ZAWFG. The robot
grasps the part with the pose TR,G, lifts the part, and tries to re-insert the part. If insertion
is successful, the robot executes the next grasp otherwise the experiment terminates. We
report total number of successful insertions before termination (Table. 4.3). We repeat the
experiment three times for each method with different human demonstrations.

After applying z-axis alignment for the human-provided target pose (ZA), the insertion
fails as the center of the grasp is not aligned with the center of the receptacle. ZAWF
addresses this issue by using minimum pose refinement, and can perform successful insertions.
However, since the pose refinement is specific to the human demonstration, the refinement is
not sufficiently granular, leading to failures when the new grasp configuration has a large
y-axis rotation. ZAWFG performs pose refinement for each of the grasps, resulting in
consistent insertion performance. ZAWFG needs to wait for the force measurements to
settle and thus takes longer to execute.

Exploring Utility of Tactile and Vision Information

We perform study the relative benefits of using tactile and vision for insertion tasks. We test
3 different approaches: (1) A Tactile Only approach (2) A Vision Only approach trained
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Algorithm Tactile Only Vision Only (No Rot) Tactile + Vision (No Rot)
Success/Total 21/45 8/45 40/45

Table 4.4: Ablation study with noisy target poses comparing single-phase Tactile Only, modified
Vision Only, and a Combined two-phase approach leveraging tactile and visual information.

using a limited amount of the camera observation data and (3) a Combined Approach. This
ablation study differs from our earlier experiments by injecting a uniformly sampled noise in
the range ±1mm into the target pose’s x, y translation to imitate imprecise knowledge of the
target pose.

The Tactile Only approach attempts the entire insertion task in a single phase using the
tactile information to align the USB connector with the receptacle and then move straight
down to insert it. For the purpose of this study, we train a new Vision Only model using a
third of the collected camera observation data set that have no additional gripper rotation.
This mimics a mono-view visuoservo model for receptacle localization and top-down insertion.
We modify the insertion motion from Sec. 4.3 so the model only uses camera observation and
the y-axis rotation of the gripper, and it only outputs translation in x and y based on the
same regression objective as in Alg. 4.3. The combined approach sequences a Tactile Only
approach in an Align phase with the modified Vision Only approach in an Insert phase. We
perform experiments with the three different approaches with the same test set as in Sec. 4.4
and report results in Table 4.4.

With noisy target pose, the Tactile Only model succeeds only 21/45 times since the model
does not estimate the target receptacle state. Since the Vision Only model is constrained to
translation actions and is trained on a limited set of data that does not include additional
gripper rotation, it inserts the part when the grasps do not have any rotation (8/9 successes)
but fails otherwise (for a total of 8/45 successes). A separate Vision Only model trained
with all the data is similarly unsuccessful (11/45 successes), indicating the importance of
the ability to correct for grasp pose variation using tactile data. The combination of the two
models outperforms either model by leveraging the part rotation prediction (using tactile)
and implicitly estimating the environment state (using visual information), suggesting that
tactile and vision observation jointly reduce the uncertainties in the insertion problem.

4.5 Discussions

Limitations

Despite promising results, this method has not been tested for generalization to other types
of assembly tasks, objects with more complex geometries, or objects that are larger than the
tactile sensor. Parts made of different materials may require distinct maximal forces; the grid
search for finetuning the insertion pose lengthens the data collection process. The robot must
also unplug the part, which can pose a challenge as some parts are designed to be difficult to
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remove (i.e. an Ethernet connector). This work did not measure the time required for data
collection.

Future Work

Future research can improve the time required for collecting data. In summary, we present
a safe, self-supervised method for learning a visuotactile insertion policy in real industrial
settings with unknown grasp poses. We achieve this by using force-torque sensing to refine
human-demonstrated target poses and constructing a two-phase approach to insertion that
separates the task into alignment and insertion based on tactile and visual feedback.
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Chapter 5

Reflections

In the aforementioned works, we explored two specific robotic manipulation tasks: grasping
and insertion. In particular, for robots to perform well in these settings using a learning-based
framework, a significant obstacle is the source of data for the learning algorithms. Both
works approached this problem from an automation standpoint by examining the repeatable
properties of the tasks. In the grasping setting, to achieve continuous grasp data collection,
we modified the robot learning environment by introducing boundaries and utilized heuristics
such as linear pushing policies and random dropping to allow the robot to explore different
stable poses of the object. In the insertion setting, to autonomously collect plug insertion
data, we observed that the process of part insertion must be invertible – a good trajectory for
unplugging the part can be inverted to create a good trajectory for inserting the plug. This
insight led us to use force torque as a measure for ranking different end-effector poses when
the part is inserted, which forms the backbone of our scalable autonomous data collection
pipeline for insertion.

However, automating these two seemingly simple tasks remains challenging, and a signifi-
cant amount of manual tuning is required before the process runs smoothly. For example,
in [24], one might question the optimal height for dropping the object, the appropriate speed
for the robot to push the object so that it is centered within the workspace, and the ideal
location for placing the bowl to ensure it falls entirely within the reachable workspace. In [25],
hours of tuning have gone into determining the force threshold for the minimal force-torque
search to identify the optimal insertion pose, finding the angle at which the camera should
be pointed at the gripper, and designing the end-effector such that it minimizes slip during
insertion while also reducing the likelihood of breaking the part in case of insertion failure.

While the two methods above offer valuable insights into scalable approaches for gathering
physical data in grasping and part insertion tasks, most robotics applications continue to
operate in low-data environments, relying heavily on human demonstrations. Long-horizon
tasks demand that robots master not just a single skill, but a multitude of primitive abilities,
necessitating a larger dataset than what is currently accessible. Furthermore, we consistently
face the challenge of ”Moravec’s paradox,” where tasks considered simple by humans, such as
cutting vegetables, wiping surfaces, and screwing bolts, are not only challenging for robots to
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do but also lack scalable methods for robots to learn them effectively.
Over the past year, we have observed initial attempts at scaling robotic data and reaping

the benefits of such scaling. Recent methods based on supervised or reinforcement learning,
such as RT1 [5], Palm-SayCan [1], and PaLM-E [19], utilize large-scale human teleoperation
demonstrations to produce language-conditioned behaviors. This enables the generation of
downstream robot policies that either select from an array of RL expert policies or directly
generate actions based on language conditioning. Inspired by the recent success of self-
supervised representation learning in the vision and language communities [78, 30, 8], an
alternative approach involves pretraining a neural network on robotics data for improved
downstream adaptability. Recent studies [88, 50, 87] have shown that this pretraining
scheme enhances robot trajectory modeling capabilities and adaptability for downstream
control policies. However, structured exploration for collecting pretraining data remains
challenging. I surmise that a favorable approach would be to leverage numerous expert
policies (e.g., DexNet [56] for grasping) currently available in various domains to generate
training data in regions where task resetting is straightforward. Moreover, recent work
has demonstrated success in utilizing energy-based models to train robot policies with few
human demonstrations [13]. It may be possible to train a handful of policies from human
demonstrations, which can then collect more data within their environments to learn specific
skills, and a set of dual policies for learning and executing actions that can reset the state,
so that the data collection can progress without human interventions. With increased data
scale, we can distill these policies into a single policy capable of leveraging multiple skills to
complete downstream tasks.

However, before addressing these questions or exploring these methods, creating a gen-
eralizable robot dataset is difficult, and sharing it across labs may prove challenging. For
instance, operating a Franka Emika robot for a single afternoon with a three-camera setup can
generate up to 4TB of data. Thus, it is crucial to find a generalizable input and control output
representation that can be applied to various robot modalities and shared across research
labs. Additionally, identifying the appropriate pretraining scheme using these representations
is essential.

As preliminary objectives for my PhD journey, I aim to tackle the following problems:
1) identifying a suitable input-output representation for robot learning that can be shared
among robots with different morphologies, 2) developing a structured and efficient method
for generating robotic data at scale, and 3) investigating the possibility of creating emergent
robot behavior by merging different robot policies. I hope to make progress in addressing
some of these challenges during my studies.

I am grateful that, over the past two and a half years, AUTOLAB has offered me invaluable
hands-on experience and lessons in integrating learning-based algorithms with physical robotic
systems, creating 3D designs, and more importantly designing experiments and delivering
clear and well-motivated presentations. I would like to express my appreciation once again
to Professor Goldberg, collaborators, and friends for giving me this opportunity. I eagerly
anticipate applying what I’ve learned in my future research, fostering collaborations, and
forging new friendships during my PhD at Berkeley in the coming years.
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[2] Jean-Yves Audibert, Sébastien Bubeck, and Remi Munos. “Best Arm Identification
in Multi-Armed Bandits”. In: COLT 2010 - The 23rd Conference on Learning Theory
(Nov. 2010), pp. 41–53.

[3] Donald Berry et al. “Bandit Problems With Infinitely Many Arms”. In: The Annals of
Statistics 25 (Oct. 1997). doi: 10.1214/aos/1069362389.
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