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Abstract

Making Reversible Transformers Accurate, Efficient, and Fast

by

Tyler Zhu

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Jitendra Malik, Chair

The increasing prevalence of a unified architecture for machine learning, i.e. the transformer,
raises an important question: can a single architecture really do it all? Simultaneously, the
growing size of datasets and deep learning models has made faster and memory-efficient
training crucial. One recently proposed line of work is reversible networks, which leverage
reversible transformations to perfectly reconstruct inputs from outputs while requiring very
minimal changes to existing architectures. In this work, we present an in-depth analysis of
reversible transformers and demonstrate that they can be more accurate, efficient, and fast
than their vanilla counterparts. We introduce a new method of reversible backpropagation
which is faster and scales better with memory than previous techniques, and also demonstrate
new results which show that reversible transformers transfer better to downstream visual
tasks.
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Chapter 1

Introduction

The field of deep learning has made great strides in recent years on the back of large-scale
models. In particular, the transformer [29] has become the de facto architecture for many fields,
and has been shown to be effective on a wide variety of tasks, such as image recognition [9],
language modeling [3], and speech recognition [1]. Given the ubiquity of the transformer,
it is natural to wonder if a single architecture really can do it all. Many recent works
have proposed significant modifications to the transformer to improve certain properties.
For example, many works in language have tried to improve the effiency of attention like
Linformer [30], Performer [6], and Sinkhorn transformer [28], but none of them have been
able to match the vanilla transformer in pure accuracy when put to the test of scale.

In vision, the vision transformer [9] has been shown to be able to exceed the performance
of convolutional neural networks on image recognition tasks, while also being more efficient
and scalable. Hierarchical improvements such as Swin transformer have been proposed to
improve the performance of vision transformers, especially on downstream tasks where better
features will be appreciated [23]. However, recent works have found that vanilla transformers
can be a competitive alternative to these hierarchical approaches for downstream tasks like
object detection [20], suggesting that the pure vanilla transformer may be a more general
architecture than previously thought.

As these models become larger, it becomes equally as important to improve the efficiency
of these models so that they can be deployed in real-world applications. Models need to be
able to run on smaller amounts of compute and run faster. When models are at the huge
scale that they are today, small speedups can lead to large gains over the course of the many
epochs and training weeks that are required to train these models. Many architectures which
aren’t pure transformers tend to trade off efficiency in training time for other properties such
as accuracy or generality.

In this work, we follow the wisdom of keeping things simple and as close to a pure
transformer as possible. We are motivated by memory efficiency to consider a very simple
modification to the transformer architecture which maintains the same FLOPs and parameters,
but requires much less memory to train. As a consequence, we are able to train our models
faster than even plain transformers while maintaining the same accuracy.
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CHAPTER 1. INTRODUCTION 2

To accompish this, we borrow from the literature of generative flow-based methods and
introduce reversible transformations into the transformer architecture, creating a reversible
transformer. Reversible networks have been investigated in the past, especially in vision [13,
25], where they have shown to have great memory savings, and thus runtime speedups. We
improve upon these findings and propose two new advancements for reversible transformers.
The first is a new method for parallelizing reversible backpropagation which is faster and
scales better with memory than previous techniques which we call PaReprop, or Parallelized
Reversible backpropagation. The second is a new investigation into how the features learned
by reversible transformers transfer better than vanilla transformers to downstream visual tasks.
We demonstrate that reversible transformers can be more accurate than vanilla transformers
on image recognition tasks, and that they can transfer better to downstream tasks like object
detection. We hypothesize that this is due to the lossless nature of reversible transformers,
which allows for more information to be preserved in the features.

In these two methods, we not only show how we can make reversible transformers more
fast and efficient, but also how they can be more accurate than vanilla transformers. We
hope that this work will inspire future work to investigate reversible transformers further as a
convincing alternative to transformers that has many desirable properties without sacrificing
efficiency.
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Chapter 2

Background

2.1 Reversible Networks
Reversible architectures are a type of neural network architecture based on NICE [7, 8], which
was an early model for generative flow-based image generation [15, 17]. At its core, NICE
uses a transformation which can perfectly recover its inputs from its outputs by being wired
in a specific manner. This was useful for generative modeling because it allowed for tractable
density estimation, which is a requirement for generative models.

The Reversible Transformation

A reversible transformation T maps inputs I1 and I2 to outputs O1 and O2 in a manner which
may not have an analytical inverse, but can still be inverted. We will utilize intermediate
functions F and G, which are not necessarily invertible.

The reversible transformation is composed of two transformations T1 and T2 in sequence.
The first is defined as

I =
[
I1
I2

]
7−→
T1

[
I2 + F (I1)

I1

]
=

[
O1

O2

]
:= O, (2.1)

which admits an inverse T ′
1 by applying F (·) to I1 to recover I2.

The second transformation is defined as

I =
[
I1
I2

]
7−→
T2

[
I1 +G(I2)

I2

]
=

[
O1

O2

]
:= O, (2.2)

which admits an inverse T ′
2 by applying G(·) to I2 to recover I1. Together, we can compose

these transformations to get T = T2 ◦ T1, resulting in

I =
[
I1
I2

]
7−→
T

[
I1 +G(I2 + F (I1))

I2 + F (I1)

]
=

[
O1

O2

]
:= O (2.3)

DocuSign Envelope ID: FA229751-02A7-467F-803F-60E8E3825E65



CHAPTER 2. BACKGROUND 4

I1

I2

F G

O1

O2

Figure 2.1: Illustration of the Reversible Transformation with arbitrary functions F,G.
See Eq. (2.3) for the mathematical definition.

This process is illustrated in Figure 2.1. It requires one call of F (·) and G(·) to compute
either T or an inverse T ′ = T ′

1 ◦ T ′
2, so both the forward and the backward pass require the

same computational cost. However, a key benefit is that we don’t need either F or G to be
analytically invertible to do this inversion. This transformation is the backbone of much of
the work on reversible networks.

Reversible ResNet [13] is a type of reversible architecture that uses the NICE invertible
transformations to enable memory-efficient image classification. Other researchers have built
upon this idea by proposing improved reversible CNN models using ODE characterizations [4,
19, 26], momentum [19, 26], and several other improvements [14, 11, 2, 27]. Recently,
reversible networks have also been adapted to core NLP tasks in Reformer [18] and to several
core vision tasks in RevViT [25]. Crucially, RevViT [25], under very strict parity constraints
on parameters, FLOPs and activation sizes of the proposed models, shows reversible models
to an equiavalently powerful class of models as vanilla transformer but with the added benefit
of extremely memory-efficient training.

2.2 Reversible Transformers
Reversible Transformers ([18, 25]) are a class of models which are composed of reversible
transformations. The key benefit of this paradigm is that inputs can be recomputed solely
from the outputs, removing the need to store intermediate activations. This allows for the
model to be trained with a smaller memory footprint and enables the use of larger batch
sizes, which can lead to speedups.
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Reversible Vision Transformers

In the case of a Reversible Vision Transformer (RevViT) [25], the model is built out of
reversible blocks which are composed of an attention block for F (·) and an MLP block for
G(·). As all the reversible blocks are connected consecutively, the entire model is reversible.
This means that during our forward pass, we do not need to store any activations. In the
backward pass, we simply need to recompute the activations of the current block using the
output, and then backpropagate to recover our gradients and update our weights. We can
then delete the activations of the current block, and repeat this process for the next block.

Following this setup, RevViT showed that reversible transformers could perform on
par with standard vision transformers, while using significantly less memory. In fact, in
constrained memory settings or for very large models, RevViT offers significant speedups due
to the efficiency unlocked by using larger batch sizes.
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Chapter 3

Fast and Efficient Reversible
Transformers

3.1 Introduction
Reversible vision transformers [25] is one recent result which offers a promising approach to
improving the efficiency of large models by decoupling the memory needed from the depth
by using reversible activations. By doing so, they are able to maintain top performance on
various visual tasks, while also requiring less memory.

The framework of reversible transformations however offers a further tradeoff where for a
tiny amount of additional memory, we can improve our throughput by a signficant amount
using parallelization. This takes advantage of the independence between the recomputations
and gradient updates in the backward pass which allows them to theoretically be computed
simultaneously. From this observation, we introduce a method for parallelizing a reversible
backpropagation which we call PaReprop, or Parallelized Reversible backpropagation. Our
method is general enough to be applied to any reversible architecture, and we demonstrate
this by testing on a wide variety of reversible architectures, hardware, and memory settings,
and show that we can achieve significant speedups in practice. In summary, we make the
following contributions:

1. We propose a novel method for parallelizing reversible backpropagation which is com-
patible with modern auto-differentiation packages like PyTorch.

2. Our method achieves significant speedups across a diverse set of model families, data
modalities, model sizes, and training batch sizes. We increase training throughput for
all of our models while maintaining the same accuracy as the original model, up to 20%
on models which are the least “pure”, i.e. with many extra operations such as shifted
window attention.

3. Using PaReprop scales better on throughput with memory than standard reversible
backpropagation. In particular, PaReprop leads to more favorable memory vs. through-
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CHAPTER 3. FAST AND EFFICIENT REVERSIBLE TRANSFORMERS 7

put trade-offs, i.e. our method can achieve higher throughput at any given threshold of
memory used.

3.2 Parallelized Reversible Backpropagation

We begin with a review of the reversible transformer architecture as proposed in [25]. We
introduce the vanilla memory-efficient reversible training algorithm (Section 3.2) and its
application to training modern transformers. Then, we present PaReprop, our proposed
procedure for speeding up reversible backpropagation with parallelized activation and gradient
computation (Section 3.2).

Reversible Transformers

Reversible Transformers ([12, 25]) are a family of memory-efficient models based on the idea
of the reversible transformations.

We discussed the details of the reversible transformation in Section 2.1. We simply need
the property that they allow us to perfectly recompute any input I from its output O, which
can be used at the granularity of transformer blocks.

This means that during our forward pass, we do not need to store any activations. In the
backward pass, we simply need to recompute the activations of the current block using the
output, and then backpropagate to recover our gradients and update our weights. We can
then delete the activations of the current block, and repeat this process for the next block, as
shown in normal Reversible Backpropagation, or Reprop, in Figure 3.1.

However, the backward pass of block N , i.e. the gradient update, is not needed to
recompute the activations of block N − 1. Therefore, if we can hide the forward pass of block
N − 1 within the backward pass of block N , we can theoretically speedup our computation
on par with that of normal backprop. This is our key insight, which we will now present in
detail.

Parallelizing with Two Streams

Our method’s key contribution is both theoretical and practical. The first is illustrated in
Figure 3.1, where our PaReprop method is able to parallelize the backward pass of a normal
reversible backprop so that it takes nearly the same time as vanilla backprop. We do this by
performing the gradient update for block N at the same time as the activation recomputation
for block N − 1, as there is no dependence once we have the activations for block N .

However, achieving this parallelization is rather tricky. Standard autodifferentation
frameworks like PyTorch use CUDA streams by default to maintain sequential ordering
for GPU operations. Our method extends this by maintaining multiple CUDA streams to
parallelize operations over. However, these streams enforce that forward and backward passes
occur on the same stream, which causes issues if we implement PaReprop naively by keeping
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Backprop
stream0 0 1 2 3 3 2 1 0

Reprop
stream0 0 1 2 3 3 3 2 2 1 1 0 0

PaReprop
stream0 0 1 2 3 3 3 1 1
stream1 2 2 0 0

Forward pass of block xx

Backward pass with gradient updates of block xx

Activation recomputation in reversible backprop of block xx
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Figure 3.1: Parallelized Reversible backpropagation. PaReprop (bottom) parallelizes
the activation re-computation stage of block i−1 (green blocks) with the gradient computation
stage of block i. Note that reversible training drastically alleviates training memory burden
of vanilla networks (top vs. middle rows) but introduce the additional burden of activation re-
computation in the backward pass (see [25]). PaReprop further alleviates this re-computation
burden with parallelization, thereby making reversible architecture a practical choice for deep
transformer training.

DocuSign Envelope ID: FA229751-02A7-467F-803F-60E8E3825E65



CHAPTER 3. FAST AND EFFICIENT REVERSIBLE TRANSFORMERS 9

Figure 3.2: Reversible Swin. [25] introduces the Reversible ViT and MViT architectures.
Following the same principles, we introduce the Reversible Swin architecture and benchmark
all the three reversible architectures with PaReprop. We showcase (a) a typical Reversible
Swin block, as well as (b) a downsample block for processing at multiple hierarchies of scale.

one stream for the activation recomputation and another for the gradient updates. This
necessitates our alternative computation scheme to prevent greater overhead.

Another problem is that PyTorch is unable to free memory efficiently in parallel processes
as there is no asynchronous implementation of CUDA-free yet. Thus, it requires a costly
CUDA-free operation which synchronizes our streams and thus slows our process down
significantly. In practice, it’s most beneficial to run our PaReprop method at anywhere from
33% to 50% of the empirical maximum batch size so that we don’t hit this trap.

Reversible Swin and RoBERTa

In order to demonstrate the generality of our method to other architectures, we propose two
novel reversible architectures based on established models: Swin Transformer and RoBERTa.
Figure 3.2 shows our modifications to the original Swin architecture.

We follow suit with the original reversible ViT authors and choose to keep the Attention
blocks and MLP blocks as our reversible subfunctions. We also demonstrate how we handle
multiscale features in the architecture by utilizing a fusion block (either averaging or a simple
MLP) before the usual patch merging layer. For RoBERTa, we follow similar steps and rewire
the architecture slightly so that our residual connections are free of LayerNorms and thus
can help recompute our activations.
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Figure 3.3: PaReprop Training throughput vs. Batch size across model architectures
and sizes. One s.d. error bars are shown. As mentioned in Section 3.3, all accuracies are the
same as original methods.

3.3 Results
In this section, we present our experimental results of our proposed method, denoted as
PaReprop, in comparison with the original reversible ViT, denoted as Reprop. We analyze
our method over the choice of backbone size (from 5.5M to over 2B parameters), architecture
class (ViT [9], Swin [23] and MViT [9, 10], RoBERTa [22]), data modalities (Vision and NLP),
GPU training memory allocated, input sequence length (for RoBERTa) and batch size. The
primary metric we are concerned with is training throughput (images/sec or sequence/sec),
which is the number of images (or sequences) we can process per second, as our measure of
speed.

We do not modify the underlying algorithm at all but simply propose a faster implemen-
tation, which means our methods achieve the same performance as the original reversible
method, so we focus on analyzing the speedup of our method instead. All of our results are
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Figure 3.4: PaReprop Training Throughput across Sequence length and Batch
Sizes. Comparison of our method on RoBERTa, a language transformer. One s.d. error bars
are shown.

run on a single NVIDIA A100 GPU with 80GB of memory w/ AdamW as our optimizer. Our
results were similar on an NVIDIA RTX 2080 Ti as well as with SGD.

PaReprop Training Throughput is Better

In the first experiment, we compare our PaReprop method with the original Reprop method
used in the original reversible ViT. We compare the top throughput achieved over batch
sizes of {1, 2, 4, . . . , 256, 1024} (as allowed by memory) for each backbone. In these cases,
we run on standard image classification, but our results will hold over any choice of task
(video understanding, etc.). We see that across three different architecture families (ViT,
MViT, Swin) and three choices of model sizes, our method outperforms Reprop, in some
cases drastically.

Vision Transformers show a mostly matched throughput between PaReProp and standard
reversible backpropagation (Figure 3.3, top row). We find that because ReProp can already
utilize a large batch size, the GPU utilization is quite high and the PaReprop kernels are
unable to run in parallel.
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Figure 3.5: PaReprop Memory Vs. Batchsize. Our method, PaReprop , as well as
standard reversible backprop, Reprop, use comparatively much less memory than nonreversible
approaches (Backprop). Our memory increase to achieve our speedups is very minimal
compared to the overall memory savings

Hierarchical Transformers enjoy a much more pronounced benefit with PaReprop such
as, Multiscale Vision Transformer (Figure 3.3, middle row) and Swin Transformer (Figure 3.3,
bottom row). Hierarchical transformers have non homogeneous architectures that allow
PaReprop to hide the recomputation latency. They have several small kernels that can
be parallelized more effectively, which leads to significant speedups of 9.8% on the largest
MViT-H and a 19.3% increase on largest Swin-G, consistently outperforming the standard
reversible backpropagation method (Reprop). This shows that PaReprop provides significant
speedup for models that are more specialized for vision.

NLP Transformers. Finally, we also clearly demonstrate PaReprop gains on the natural
language modality. Reversible models have also successfully been applied to language tasks
such as Reformer. Following [25], we extend RoBERTa [22] to Rev-RoBERTa and provide
throughput benchmarking results on sentiment analysis. Note that as shown in Rev-ViT [25]
using a simple reversible rewiring of the model maintains the original accuracy of the vanilla
model. Figure 3.4 shows our method outperforming the original Reprop by large amounts
across both choices of model size (Base and Large) and sequence lengths (512 and 1024).
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Training GPU Memory Trends

We also investigate the effect of memory on our method (Figure 3.5). Specifically, we compare
the memory used by our method with the original Reprop and the vanilla backprop, and
show that our method is more memory efficient. As shown in the plots, using any kind of
reversible backpropagation offers memory savings of up to almost 3x in some cases, which
allows us to significantly extend the batch sizes that we can use. In these scenarios, using our
parallelized reversible backpropagation requires only an extra fraction of the small amount of
memory being used to maintain parallelization and allows us to achieve higher throughputs.
This finding is consistent across all model architectures we tested, but we illustrate most of
our findings on Swin in Figure 3.5 for simplicity.
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Chapter 4

Accurate Reversible Transformers

4.1 Introduction
While we have primarily explored reversible transformers from an efficiency perspective so
far, the reversible structure also has implications for what kind of features are learned. In the
modern day, to tackle more difficult core vision problems such as segmentation and detection,
we began to use our pretrained models from image classification as initializations for detecting
low-level features. As a result, the features learned by our models during pretraining are
crucial for downstream performance, so models became larger as we used increasingly more
data to train them.

All these findings resulted in the common wisdom that pretrained supervised ImageNet
accuracy was the gold standard for achieving the best performance in most cases. Thus, the
focus of the field began shifting to discovering the best architecture for image classification
which could then be transferred downstream to other core vision problems. However between
all of these architectures, the golden truth that accuracy is the determining factor for
downstream performance still holds true.

Reversible networks, on the other hand, offer a different perspective on this commonly
held belief. Their reversible design allows them to recover inputs perfectly from outputs
during the network, which means that they are lossless during the main network. This leads
us to wonder if this losslessness could lead to more general features that could be used for
downstream tasks.

We explore these threads with a few experiments to understand how reversible vision
transformers can perform differently on downstream transferred tasks. We first ablate
reversible networks on a variety of large synthetic datasets that we generated with CLEVR
[16]. We perform a large suite of experiments to understand how useful the features reversible
networks learn during pretraining are for transferring to different tasks. Then we present
some of our results on object detection with single-scale backbones. These experiments
provide evidence that reversible vision transformers, through their losslessness properties,
produce more transferable features.
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Figure 4.1: An example of a CLEVR picture we would generate. In this example, both
attributes X, a rubber green sphere, and Y , a yellow metal cube, are present.

CLEVR

CLEVR [16] is a synthetic dataset generator using Blender which can generate a scene with
multiple objects with different attributes. Initially proposed for visual reasoning, the high
customizability of CLEVR lends itself easily for testing in a controlled setting. An example
of the dataset is shown in Figure 4.1, where multiple objects of different shapes, colors, sizes,
and material are located throughout a scene. In our case, we use it as a way to control for
the presence of objects which a model may pick up on for identifying features, and seeing how
explicit supervision on those objects affects the downstream performance when transferring.

Object detection

Object detection is one of the most core computer vision tasks present today. While most works
offer different approaches such as region-proposal based detection or single shot detection, all
of them rely on multi-scale backbones, whether they are CNNs or hierarchical transformers
like Swin Transformer ([21, 5, 24]).

Recently, ViTDet [20] uses a plain, non-hierarchical backbone in the plain ViT as a
backbone for obtaining single-scale feature maps, and simply adding feature pyramid networks
on top is enough to obtain competitive results. We use this framework for testing our models
as we want to observe Rev-ViT at its full losslessness, with as many reversible modules as
possible. Multi-scale blocks introduce non-reversible stages, so we refrain from investigating
those architectures.
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Type Examples P(X) P(Y ) Corr(X, Y )

Pretrain 150k 0.51 0.51 0.80
Pretrain 150k 0.49 0.64 0.30
Pretrain 150k 0.56 0.56 -0.02
Transfer 50k 0.00 0.56 n/a

Table 4.1: Details of each of the datasets used in our experiments. Here, the attribute X is
a rubber green sphere, while attribute Y is a metal yellow cube. P(X) is 0 in the transfer
dataset because X should not be present, so we can observe how well other cues are picked
up on.

4.2 CLEVR Evaluation
We first evaluate both reversible and vanilla architectures on synthetic datasets created using
CLEVR [16]. We describe our set up in Section 4.2, then detail our experiments and results
in Section 4.2. In all, we find that reversible models outperform vanilla models across all of
the settings we tested on.

Setup

Our experimental setup is as follows. The goal is to do 0/1 presence classification of if an
object with a desired attribute is present in a scene or not. This will help us understand how
well reversible vision transformers can pick up on other features while primarily being trained
towards its main one.

Datasets We have two styles of datasets: a pretrain dataset (pt) and a transfer dataset
(tf). The pretrain dataset consists of training on the 0/1 objective of if attribute X is present
in a scene (for our cases, X is a rubber green sphere). We especially balance our dataset so
the classes are equal, i.e. about 50/50. In each scene however, there is also an attribute Y
which may or may not be present (in our cases, Y is a metal yellow cube). This is balanced
according to different methods which we will discuss later. The transfer dataset then consists
of entirely new images where the attribute X is never present in any of the scenes, and the
attribute Y is now balanced for.

The purpose of this pretrain dataset is to provide the networks with other objects and
features to pick up on which aren’t explicitly being supervised. Our transfer dataset then
evaluates how useful those other cues were for transfer to the downstream objective.

Training Procedure We first train our networks on the pretrain dataset to learn to detect
the presence of an object with attribute X purely, i.e. without telling our model to look for
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Figure 4.2: RevViT improvement over ViT. RevViT offers significant improvements over
ViT across different correlations of features in our pretrain dataset, as well as over different
amounts of data as depicted by the legend.

attribute Y . Then we observe how well our models transfer to detecting attributes Y with
both the backbones frozen and just tuning the head projections, i.e. a linear probe.

To observe how the presence of attribute Y in pretrain scenes affects our models ability
to transfer later, we also vary the correlation ρ between the indicator variables measuring
presence of attributes X and Y . We generate three datasets of 150k images each with
correlations of around ρ = 0, 0.30, 0.80. This allows us to vary how strong these relationships
are to determine what our models pick up on. More specific details about our datasets are
included in 4.1.

For our model, we used a vanilla ViT with its capacity adjusted in order to be suitable
for the task at hand. Our input images are received at an 80× 80 resolution, and we train on
a standard supervised 2-class classification setup. We set our patch size to be 5, depth to
be 4, number of heads to be 8, and embedding dimension of 256, and dub this ViT to be
ViT-Micro (or ViT-M). During pretraining, we train for 40 epochs at a learning rate of 0.0003
with a single cycle cosine annealing policy using AdamW. We forgo standard augmentations
as we are categorizing based on color and other important texture-based attributes, so they
could potentially change our classes.

Results

We show our primary results in Figure 4.2. First, we pretrain both RevViT and ViT on
the three datasets we created as ourlined in Section 4.2. Then we freeze our models and
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Figure 4.3: RevViT improvement over ViT. Comparison of Rev-ViT on the transfer
dataset over ViT. Reversible architectures show a consistent improvement over vanilla vision
transformers across correlations and data size in the pretraining set.

re-initialize the head in a linear probe. This allows us to fully ablate the performance of the
features found by the model during pretraining and understand its effect.

For our different settings, we vary two parameters. The first is the correlation between
our pretrain attribute X and the transfer attribute Y . A lower correlation will lead to a
lower transfer accuracy, as we expect, while a higher correlation naturally also leads to a
higher transfer accuracy. The second is the size of the pretrain dataset. We vary the fraction
of the dataset used by different amounts in (1

3
, 1
2
, 2
3
, 1).

As we can see, our RevViT architecture performs better overall across each of the settings
and across trends. In Figure 4.3, we more finely break down the amounts by which we
outperform ViT. We observe our largest gains primarily around the 0.3 correlation datasets,
as well as with less examples seen. This suggests that RevViT can perform well with less
data and pick up on useful features more efficiently.

4.3 Detection
We now explore our idea on more complex and core vision tasks, such as object detection
and segmentation. As our backbones are primarily single-scale, we utilize the recent method
outlined in ViTDet [20] to use our plain vision transformers as the backbone for such tasks.

Setup

For our setup, we follow similar settings to the original paper. We use the stated hyper-
parameters by default as well as the implementation provided in detectron2, and only add
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Type Model Size Box AP Mask AP
Base Reversible 29.90 28.00
Base Vanilla 29.00 26.96
Small Reversible 26.69 24.89
Small Vanilla 21.20 19.745

Table 4.2: Reversible backbone features transfer better for object detection. We
use a frozen ImageNet-1k pretrained model as our backbone for ViTDet, and observe how
well the architecture does on top. The amount of parameters and FLOPs used in both is the
same, and ours does better in all settings, and especially on Small models.

the ability to freeze our backbones in order to isolate the effects of the architecture from
pre-training. We initialize from the publicly available ImageNet-1k trained checkpoints for
both ViT and RevViT, which have identical accuracies on the pretraining task, i.e. ImageNet
image classification.

We test all of our results on MS COCO, and measure both the box AP and the mask
AP. As we freeze the entire backbone, we do not add in global propagation or convolutional
propagation for information propagation, nor do we add in window attention as is done in
ViTDet. Finally, our RevViT is also parameter matched with the ViT backbones we use,
and has about the same amount of FLOPs as well.

Results

Our results from frozen backbone training are shown in Table 4.2. We see that overall our
method does better than the baseline approach, especially all the small architecture size. On
base size architectures, we find a 1 mAP increase overall in both box and mask AP, while in
small size architectures we find around 5-5.5 mAP increase there.

These results further suggest that reversible ViTs offer more transferable features especially
on tasks which require complex understanding, especially on larger resolution tasks that also
have more knowledge embedded in them.

4.4 Conclusion
In this section, we explore the possibilities of using reversible architectures as a competitive
alternative for transfer learning. Due to the structure of reversible transformations, they
are inherently more lossless than their vanilla counterparts due to being able to perfectly
reconstruct the inputs from the outputs of the reversible blocks. In particular, we find that in
both our controlled setting of CLEVR, as well as a real world example of object detection, the
features learned by RevViT are better for downstream performance than those of a vanilla
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vision transformer. We hope that this encourages more people to investigate this line of work
and further understand the many hidden benefits of using reversible models.
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Chapter 5

Conclusion

In this work, we described a recent trend of work utilizing reversible transformers. We first
described the core idea of reversible transformers, and then described our work, PaReprop, to
make them faster and more efficient. We introduced a fast parallelized reversible backpropa-
gation algorithm that allows us to alleviate the additional computation burden of reversible
models by parallelizing the activation recomputation in the backward pass with the gradient
calculations itself. This method leads to an up to 20% speedup in training throughput for
some models, and in general speeds up reversible models across a large range of architectures,
domains, and model sizes.

Then we followed this up with a further investigation into the implications of this slight
difference in architecture. Notably, the reversible nature of these models leads to a natural
inquiry as to whether it helps them process large-scale features better and thus more general
representations that could help with downstream tasks. Our initial foray into this found
that reversible models are more accurate than their irreversible counterparts in a carefully
constructed setting measuring feature transfer. This also was replicated when we identified
how these models performed on object detection with a single-scale backbone. We found that
our reversible models outperformed irreversible ones when frozen by up to 5mAP on COCO.
This is a promising result that suggests that reversible models may be able to learn more
general representations that can be used for downstream tasks, but needs more investigation.

We hope that this work will help spur further research into reversible models and their
applications, especially as promising alternatives to the standard use of vanilla transformers.
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