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Abstract

The success of deep learning in computational biology has been largely
limited to prediction problems, such as protein structure prediction and
gene expression prediction. Nevertheless, these successes serve as a testament
to the ability of deep neural networks to extract useful insights from datasets
of biological sequences, and this has recently motivated research into the
applications of deep learning for biological sequence design problems. In
this paper, we tackle two important synthetic biology problems: (1) the
problem of designing promoter sequences that are differentially expressed
and (2) the inverse-protein folding problem of recovering protein sequences
from three-dimensional structure. We identify both problems as black-
box computational design problems, and we adapt conservative objective
models (COMs), a data-driven offline model-based optimization (MBO)
technique that has been used successfully on a wide range of design problems,
to design biological sequences in these settings. On both problems, we
demonstrate that our approach significantly outperforms standard offline
MBO techniques.

1 Introduction

Deep neural networks have been used extensively to predict important properties of biological
sequences, such as fitness, structure, and expression, with a high degree of accuracy (Jumper
et al., 2021; Baek et al., 2021; Avsec et al., 2021; Gligorijevic et al., 2019; Rives et al., 2019;
Agarwal and Shendure, 2020). However, these models have rarely been employed effectively
on the task of designing novel sequences.

The problem of designing biological sequences can be framed as a black-box computational
design problem, given that the true objective function is unknown and expensive to query
(Trabucco et al., 2021a). Data-driven model-based optimization (MBO), also known as model-
guided exploration, is an established approach to solving this class of problems (Sinai and
Kelsic, 2020; Hie and Yang, 2022; Brookes et al., 2019; Liao et al., 2019; Gómez-Bombarelli
et al., 2018; Fannjiang and Listgarten, 2020; Kumar and Levine, 2019). However, the
standard approach which optimizes designs against a learned proxy model of the ground
truth objective is susceptible to producing out-of-distribution, invalid designs that “fool” the
proxy model into outputting a high value (Trabucco et al., 2021b; Kumar and Levine, 2019;
Zhu et al., 2016). This is especially true in the setting of biological sequence design where
valid designs lie on a narrow manifold in a high-dimensional design space and where the
learned proxy model is an overparameterized deep neural network.

Conservative objective models (COMs) have been shown to successfully address the afore-
mentioned distribution shift problem (Trabucco et al., 2021b). These models mitigate
overestimation errors in the learned proxy model by sampling adversarial inputs and pe-
nalizing the predictions on these inputs during training. While COMs have been effective
on a wide array of problems, we adapt them to produce general design algorithms for two
synthetic biology problems. We experiment with various modifications to the standard
COMs procedure, and we use novel optimizers for adversarial sampling and design.
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In this paper, we successfully apply our approach to two important biological sequence
design problems: (1) the problem of designing promoter sequences that are differentially-
expressed and (2) the problem of recovering protein sequences from structure. The first
problem is critically important for gene therapy, which delivers therapeutic genetic cargo
to disease-associated cells and tissue. In order to effectively target specific cells while
mitigating side effects in other cells, the genetic cargo must be precisely expressed (Sayed
et al., 2022; Shirley et al., 2020; Reddy et al., 2023). This is predominantly achieved via a
regulatory DNA sequence called a promoter. However, only a handful of cell type-specific
promoters are currently known. Consequently, a method for reliably designing novel promoter
sequences with specific expression patterns would be tremendously impactful for therapeutic
applications (Reddy et al., 2023). The second problem is a well-known inverse protein-folding
problem. For proteins which fold into well-defined structures, Anfinsen’s thermodynamic
hypothesis of folding states that their folded shapes are determined through their primary
sequence. This motivates the inverse protein-folding problem, which aims to recover the
lowest-energy amino acid sequence that fits a desired structure.

For both problems, we demonstrate that our approach leads to significant improvements in
design performance and that COMs-based design algorithms are a promising approach to
biological sequence design.

2 Background

First, we begin by exploring what makes a design problem a black-box computational design
problem and gaining a high-level understanding of offline model based optimization (MBO)
and its distribution shift problem. Then, we provide an overview of conservative objective
models (COMs), a successful new approach to tackling the distribution shift problem and
significantly improving performance of offline MBO in a wide range of computational design
problems.

2.1 Black-Box Computational Design

The problem of using deep learning to design proteins or genes is part of a more general class
of problems known as black-box computational design problems. The universal characteristic
of these problems is that they involve generating optimal designs where the objective function
and constraints are unknown. Mathematically, we want to find the optimal design, x, that
maximizes some unknown objective function, f(x):

argmax
x

f(x) (1)

Examples of black-box computational design problems include optimizing robot morphologies,
biological sequences, computer chips, neural network architectures, or superconducting
materials.

2.2 Offline Model-Based Optimization (MBO)

A promising approach to solving black-box optimization problems is data-driven MBO, where
a proxy model of the unknown objective function is learned from empirically collected data
and used to guide the design procedure (Snoek et al., 2012; Brookes et al., 2019; Kumar and
Levine, 2019; Trabucco et al., 2021b).

In order to model the true objective function with high fidelity, it is often critical to actively
collect additional data during the training procedure (Snoek et al., 2012). However, in
many design problems, including the one of biological sequence design, active real-world
data collection is expensive (e.g. requires synthesizing proteins in a wet lab) or dangerous
(e.g. when optimizing over aircraft designs), and reliable simulations are infeasible. Thus,
we focus instead on the more practical setting of offline MBO, where we are given a static
dataset of designs and cannot make any queries to the ground truth (Kumar and Levine,
2019; Trabucco et al., 2021a;b).
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Figure 1: A typical offline MBO workflow (Trabucco et al., 2021a). We are given

a static dataset of designs, which we use to learn a proxy model, f̂θ, of the true objective.
Then, our design procedure is guided by the learned proxy model.

In essence, when we use offline MBO to solve black-box optimization problems, we are trying
to solve the optimization problem in equation (1) with two key assumptions:

1. Black-box assumption: f(x) is an unknown function

2. Offline assumption: f(x) is expensive to query

The general offline MBO workflow is illustrated in Figure 1.

While online exploration is possible when it comes to biological sequence design, focusing on
the offline setting enables us to develop techniques that are considerably cheaper and faster.
Furthermore, the problem of offline MBO is more accessible as it is a purely data-driven
problem which enables practitioners without access to wet lab facilities to engage in research
(Kolli et al., 2022).

2.3 MBO’s Distribution Shift Problem

The most basic approach to offline, data-driven model-based optimization involves the
following steps (Trabucco et al., 2021b):

1. We have a static dataset D of input designs and their corresponding objective values:

{(x1, y1), . . . , (xN , yN )}

We assume this paired data was generated from a true, unknown objective function,
y = f(x).

2. Using the dataset D, we learn a proxy model f̂θ of the unknown objective function
f via supervised regression.

3. Finally, we find an optimal generated design x∗, by optimizing some data point

x0 ∈ D against the learned model f̂θ. For example, we could use T gradient
ascent/descent steps on the learned function:

xk+1 ← xk + α∇xf̂θ(x)|x=xk
, for k ∈ [0, T − 1]
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The above approach generally does not perform well in high-dimensional input spaces, where
the space of valid input designs lie on a narrow manifold, because overestimation errors in

the proxy model f̂θ would cause the optimization procedure in step (3) to produce out-of-
distribution, invalid, and low-valued designs (Trabucco et al., 2021b; Kumar and Levine,
2019). Consequently, for the above method to work, it is critical that we ensure that the

proxy model f̂θ does not overestimate the objective value of out-of-distribution points.

Existing approaches to prevent overestimation of out-of-distribution inputs involve generative
modeling, explicit density estimation, the use of ensemble proxy models, or regularization
techniques that incentivize conservatism in regions with limited data. We will focus on the
lattermost technique, which is known as conservative objective models (COMs).

2.4 Conservative Objective Models (COMs)

Conservative objective models (COMs) is a method that learns a proxy model of the ground-
truth objective that is conservative in regions with limited data (Trabucco et al., 2021b).
More specifically, with COMs, we learn a model that lower bounds the actual value of the
ground-truth objective on out-of-distribution inputs. Thus, COMs directly addresses the
distribution shift problem in MBO by ensuring that our proxy model does not overestimate
the objective value of out-of-distribution designs.

With COMs, we modify step (2) in the standard MBO procedure described in Section 2.3.

Rather than training the proxy model f̂θ using vanilla supervised regression, we train it via
a regularized supervised regression procedure (Trabucco et al., 2021b):

1. Initialize f̂θ. Pick α and an optimizer.

2. For each training step:

(a) Sample (x0, y) ∼ D.

(b) Using your optimizer of choice, optimize x0 in order to obtain your adversarial
sample xadv. For example, if your optimizer performed T gradient ascent steps
with learning rate η, your optimization procedure would be:

xk+1 ← xk + η∇xf̂θ(x)|x=xk
, for k ∈ [0, T − 1]

and xadv = xT .

(c) Minimize L(θ;α) with respect to θ.

L(θ;α) = (f̂θ(x0)− y)2 + α(f̂θ(xadv)− f̂θ(x0))

θ ← θ − λ∇θL(θ;α)

At each training step, we sample an adversarial design xadv by optimizing the input x0

sampled from the training dataset. Conceptually, this adversarial input is a potentially

invalid, out-of-distribution input that appears promising under the learned model f̂θ.

Next, we update the model parameters θ to minimize a loss function that is a linear
combination of both the standard supervised regression loss and a COMs regularizer term.

The COMs regularizer term penalizes the value of the proxy model f̂θ on the adversarial
input xadv. In other words, we incentivize the proxy model to be conservative and to avoid
overestimating the objective value of the adversarial input. Note that the COMs regularizer
term also incentivizes maximizing the proxy model’s prediction on the training dataset input,
x0. This ensures that we avoid systematic underestimation even for in-distribution points.

Mathematically, our training objective is given by the following equation, where µ denotes
the distribution of all adversarial inputs found by the optimizer and α is a parameter that
trades off conservatism for prediction performance (Trabucco et al., 2021b):

min
θ

E(x,y)∼D

[
(f̂θ(x)− y)2

]
︸ ︷︷ ︸

:= supervised loss

+α
(
Ex∼µ

[
f̂θ(x)

]
− Ex∼D

[
f̂θ(x)

])
︸ ︷︷ ︸

:= conservative regularizer

. (2)
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Figure 2: Overview of COMs. (Trabucco et al., 2021b) The COMs loss involves three
terms: (a) the standard supervised regression loss, (b) a term that pushes up the model’s
predictions on in-dataset sequences, and (c) a term that pushes down the model’s predictions
on out-of-distribution sequences.

The general COMs approach is illustrated in Figure 2.

Overall, COMs provides us with a robust proxy model that when optimized against reliably
produces high objective-value designs while avoiding producing out-of-distribution, low
objective-value designs. In practice, COMs has outperformed other methods on a wide range
of MBO problems (Trabucco et al., 2021b).

3 Applications

Recent successes in computational biology on supervised prediction tasks, such as protein
structure prediction (Jumper et al., 2021; Baek et al., 2021; Yang et al., 2020), protein function
prediction (Gligorijevic et al., 2019), and gene expression prediction (Avsec et al., 2021;
Agarwal and Shendure, 2020; Reddy et al., 2023), have shown that deep neural networks can
learn informative and complex features that are inaccessible to human domain experts from
datasets of biological sequences. Naturally, this has inspired research into leveraging deep
learning for biological sequence optimization and design. Success in computationally designing
biological sequences can significantly reduce time and cost involved in experimentation and
can accelerate innovation in the development of drugs and therapeutics.

In this paper, we frame biological sequence design as a black-box computational design
problem, and we adapt COMs for and use it to tackle two important synthetic biology
problems: (1) the problem of designing promoter sequences that are differentially-expressed
and (2) the problem of recovering protein sequences from structure.

3.1 Differentially-Expressed Promoter Design

Gene therapy involves the treatment of disease through genetic modification of cells with
missing or defective genetic material. In order to repair disease-associated cells and restore
normal protein function, gene delivery technologies target affected cells with therapeutic
genes, also known as transgenes.

There are two key challenges with current delivery methods: (a) the length of DNA that can
be delivered is limited and (b) delivery methods usually don’t perfectly target the desired
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cell type, which can lead to dangerous side effects if the transgene is expressed in the wrong
cell type (Sayed et al., 2022; Reddy et al., 2023).

Promoter design attempts to solve this problem. A promoter is a regulatory DNA sequence
that determines where and when an adjacent gene is expressed. When designing gene
therapies, promoters are included before the transgene in order to regulate expression. As
described above, in order to design a transgene that effectively treats a disease, it is crucial
that the transgene is compact and that it is only expressed in the target cell types (differential
expression). Thus, effectively designing compact promoter sequences with specific expression
profiles is critical for gene therapy (Reddy et al., 2023).

Recent research has found over 400 cell types in the human body; however, only a handful
of cell type-specific promoters are known (Tabula Sapiens Consortium, 2022). Current
approaches for engineering promoters with cell type specificity relies on domain knowledge
approaches, such as tiling of cis-regulatory elements (CREs) or tandem repeats of transcription
factor (TF) binding motifs (Miao et al., 2000; Nissim et al., 2017; Wu et al., 2019). While
this has worked in some cell types, it is an unreliable and laborious process that can be
significantly accelerated through the use of deep learning models and MBO techniques
(Reddy et al., 2023).

3.2 Protein Sequence Recovery

The protein-folding problem is the problem of determining the three-dimensional atomic
structure of a protein from its amino acid sequence. Protein sequence recovery, or protein
design, is a well-known inverse protein-folding problem. More specifically, a successful protein
design program should be able to recover wild-type protein sequences given their native
backbone structures.

Protein sequences are combinations of 20 amino acid residues. Thus, there are 20100 or
2 × 10130 possible protein sequences of length 100. The vast majority of these sequences
do not have well-defined structures. For proteins which fold into well-defined structures,
Anfinsen’s thermodynamic hypothesis of folding states that their structures are determined
by their primary sequence. This motivates the inverse protein-folding problem, which aims
to recover the lowest-energy amino acid sequence that fits a specific structural topology.
This also extends to the important practical problem of designing de-novo proteins that fit a
desired structure and function.

4 Design Choices & Methods

Applying data-driven offline MBO to any practical design problem requires answering several
key design questions (Kolli et al., 2022):

1. Dataset: What dataset of designs are we going to use? What is the design space?
What is the objective space? The latter questions are important because the design
space and objective space do not necessarily directly correspond to the inputs x and
targets y in the dataset and may involve additional processing.

2. Proxy Model: What proxy model are we going to use? What input will the model
take? What will it output? The latter questions are important because the proxy
model may not directly take in the designs and output the objectives. What model
architecture will we use? What data from the dataset will the proxy model be
trained on?

3. Optimizer: What optimizer will we use for adversarial sampling and the final
design phase? What optimization hyperparameters will we use?

4. Evaluation: How can we assess hyperparameters, model training decisions, and
generated sequences in the absence of wet lab evaluation? If we use oracle models,
what architecture will we use? What data will we use to train the oracle models?
And, how will we ensure that the oracle models are reliable and diverse?
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4.1 Dataset

Promoter Design.

We use the gene expression dataset constructed by Reddy et al. (2023) by experimentally
measuring promoter-driven expression of 20,000 promoters of length 250 base pairs (bp) in 3
immune cell lines: Jurkat, K-562, and THP-1.

The final dataset contains expression measurements for 17,104 promoters of length 250 base
pairs (bp) for which there was adequate experimental data. Out of the 20,000 promoters
whose expression was experimentally measured, approximately 50% of the promoters are
derived from promoters of differentially expressed endogenous genes. Another ∼ 40% are
designed by tiling known and de-novo motifs that were discovered to be enriched in the
promoters of differentially expressed endogenous genes by HOMER (Heinz et al., 2010),
a motif detection tool. The final ∼ 10% are derived from promoters of highly expressed
endogenous genes that are not necessarily differentially expressed (Reddy et al., 2023).

Our design space is the discrete space of all promoters of length 250 base pairs (adenine,
thymine, cytosine, and guanine). The targets y in our dataset are length-3 vectors representing
the expression values in each of the three cell types, Jurkat, K-562, and THP-1. Since we want
to optimize for differentially expressed promoters, we must add an additional transformation
to this target to extract a score that represents the level of differential expression. We
experimented with two such transformations:

1. Linear Combination: the expression in the cell type you want to upregulate expression
in minus the average expression in the cell types you want to downregulate expresion
in. For example, if we want to optimize for differential expression in Jurkat, the
objective we optimize for would be:

y[Jurkat]− 0.5× y[K-562]− 0.5× y[THP-1]

2. Log-Fold Change: the logarithm of the ratio between the expression in the cell type
you want to upregulate expression in and the average expression in the cell types
you want to downregulate expresion in. For example, if we want to optimize for
differential expression in Jurkat, the objective we optimize for would be:

log2

(
y[Jurkat]

0.5× y[K-562] + 0.5× y[THP-1]
)

)
Protein Design.

We use the dataset curated by Yang et al. (2020) consisting of 15,051 protein chains collected
from the Protein Data Bank (PDB). The dataset was constructed by collecting 94,962 X-ray
entries with resolution ≤ 2.5Å (PDB snapshot as of 1 May 2018), extracting all protein
chains with at least 40 residues, and finally removing redundancy at 30% sequence identity
cutoff, resulting in a set of 16,047 protein changes with average length of 250 amino acids.
Multiple sequence alignments (MSAs) were subsequently collected for all of the corresponding
primary sequences using an iterative procedure, and only chains with at least 100 sequence
homologs were included in the final dataset (Yang et al., 2020).

The inputs x in the dataset are MSAs, which are represented as matrices of amino acids
plus one padding character with shape [N,L] where N is the number of sequences in the
MSA and L is the sequence length.

For each input, the targets y in the dataset consists of four tensors that collectively represent
the interresidue geometries (distances and orientations) for all residue pairs (visualized in
Figure 3) (Yang et al., 2020).

1. d (Cβ − Cβ distances): a symmetric three-dimensional tensor of shape [L,L, 37],
where L is the length of the sequences in the MSA and the 37 represents the fact
that the distance range (2 to 20 Å) is binned into 36 equally spaced segments, 0.5 Å
each, plus one bin indicating that residues are not in contact.

7



Figure 3: Representation of the rigid-body transform from one residue to another
using angles and distances (Yang et al., 2020)

2. ω (rotation along the virtual axis connecting the Cβ atoms of the 2 residues): a
symmetric three-dimensional tensor of shape [L,L, 25], where L is the length of the
sequences in the MSA and the 25 represents the fact that the angle range (0◦ to
360◦) is binned into 24 equally spaced segments, 15◦ each, plus one bin indicating
that residues are not in contact.

3. θ (direction of the Cβ atom of one residue in a reference frame centered on the other
residue): an asymmetric three-dimensional tensor of shape [L,L, 25], where L is the
length of the sequences in the MSA and the 25 represents the fact that the angle
range (0◦ to 360◦) is binned into 24 equally spaced segments, 15◦ each, plus one bin
indicating that residues are not in contact.

4. φ (direction of the Cβ atom of one residue in a reference frame centered on the other
residue): an asymmetric three-dimensional tensor of shape [L,L, 13], where L is the
length of the sequences in the MSA and the 13 represents the fact that the angle
range (0◦ to 180◦) is binned into 12 equally spaced segments, 15◦ each, plus one bin
indicating that residues are not in contact.

When it comes to the sequence recovery problem, we will restrict our attention to optimizing
the primary sequence of each MSA, so the design space is the discrete space of proteins of
variable lengths. It is also possible to design entire MSAs, but this is more complex and less
practically useful.

Since we want to design sequences that fold into a desired structure, we add an additional
transformation on top of the dataset targets described above in order to define our objective
function. More specifically, the objective is the negative of the sum of the cross-entropy loss
of the four target tensors with the corresponding interresidue geometry tensors of the desired
structure. Mathematically, if we want to design sequences that fold into a desired structure
represented by interresidue geometry tensors d∗, ω∗, θ∗, φ∗, our objective would be:

−(CrossEntropy(y[d], d∗)
+ CrossEntropy(y[ω], ω∗)

+ CrossEntropy(y[θ], θ∗)

+ CrossEntropy(y[φ], φ∗))

4.2 Proxy Model

Promoter Design.

For the proxy model, we use the model architecture, proposed by Reddy et al. (2023),
consisting of a 4-layer CNN, followed by 5 Transformer layers, and finally followed by three
linear output heads, one for each target cell type. The architecture is illustrated in Figure 4.
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Figure 4: The proxy model architecture for the promoter design problem (Reddy
et al., 2023).

The proxy model receives a promoter sequence as input and outputs a length-3 vector
representing the expression values in each of the three target cell types, Jurkat, K-562, and
THP-1. In other words, the model receives the inputs x from the dataset and outputs
predicted targets ŷ that match the format of the dataset’s targets y.

The proxy model is initially pretrained on existing promoter-driven expression data from
massively parallel reporter assays (MPRAs) in other cell types. This is followed by finetuning
on the promoter expression dataset described in Section 4.1 in the target cell types. It has
been shown that finetuning followed by pretraining improves prediction performance by 6
- 12% in all three target cell types when compared to directly training on the promoter
expression dataset (Reddy et al., 2023).

The proxy model only undergoes COMs training during the finetuning phase.

Protein Design.

For the proxy model, we use a smaller version of the deep residual-convolutional network which
was used successfully in trRosetta, an efficient algorithm for protein structure prediction,
by Yang et al. (2020). The architecture is illustrated in Figure 5. In this paper, we use 31
residual blocks as opposed to 61.

The proxy model is capable of making predictions for MSAs or single protein sequences.
However, the model does not directly receive the MSA or the primary protein sequence.
Instead, the MSA or primary protein sequence undergoes several pre-processing and feature
extraction steps, and in both cases, the output of the pre-processing and the input to
the proxy model is a feature tensor of shape [L,L, 526], where L is the sequence length.
The network applies a sequence of 2D convolutions to this tensor to ultimately predict 4
histograms: 1 distance histogram (d) of shape [L,L, 37] and 3 angle histograms (ω, θ, and
φ) of shapes [L,L, 25], [L,L, 25], and [L,L, 13], respectively.

More specifically, the proxy model first transforms the number of input features down to 64
(2D convolution with filter size 1) and subsequently applies 31 basic residual blocks with
dilations. Each block consists of convolution operations using 64 3 × 3 filters and ELU
activations. Dilations cycle through 1, 2, 3, 8, and 16. Finally, after the last residual block
the network uses 4 heads, one per each objective, which consists of a single 2D convolution
followed by softmax activation (Yang et al., 2020).
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Figure 5: The trRosetta model architecture (Yang et al., 2020).
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Similar to the promoter design problem, the proxy model undergoes two separate phases of
training:

1. The first phase of training follows the protocol used for trRosetta in Yang et al.
(2020). More specifically, the proxy model receives full MSAs as input and outputs
the 4 interresidue geometry histograms (d, ω, θ, and φ). The model is trained to
minimize the sum of the 4 individual categorical cross-entropy losses. The model is
trained for 100 epochs with each epoch running through the whole training set.

2. The second phase of training involves performing COMs training on the proxy model
with the model receiving only primary sequences, as opposed to MSAs, as input.

4.3 Optimizer & Modifications to COMs

When designing a suitable optimizer for COMs, it’s important to note that both promoters
and proteins are in discrete space. Consequently, a naive gradient ascent optimizer will not
work. In this paper, we experimented with three different types of optimizers:

1. Gradient Ascent Optimizer. The general procedure to optimize a sequence x
using the gradient ascent optimizer is:

(a) Pick the number of outer rounds Nouter, the number of inner rounds Ninner,
and a learning rate η.

(b) Let x(0) = x.

(c) For each outer round i in (0, Nouter):

i. Transform x(i) into a one-hot tensor x̃(i).
ii. Perform Ninner gradient ascent steps on x̃(i) in continuous space:

x̃
(i)
k+1 ← x̃

(i)
k + η∇xf̂θ(x)|x=x̃

(i)
k

, for k ∈ [0, Ninner − 1]

iii. Map x̃
(i)
Ninner

back to discrete space, e.g. using an argmax.

iv. Let x(i+1) equal the resulting tensor.

(d) The final design is x(Nouter).

Note that the above procedure is deterministic.

2. Single-Site Mutation Discrete Optimizer. The general procedure to optimize
a sequence x using the single-site mutation discrete optimizer is:

(a) Pick the number of rounds N .

(b) Let x(0) = x.

(c) For each round i in (0, N):

i. Sample a random position in the sequence x(i) and sample a random monomer
(amino acid or nucleotide).

ii. Let x
(i)
mut be the sequence x(i) with the mutation selected in the above step.

iii. Query the proxy model f̂θ with x
(i)
mut and accept the mutation if it improves

the objective value of the sequence. Mathematically, if f̂θ(x
(i)
mut) > f̂θ(x

(i)),

then we let x(i+1) = x
(i)
mut; otherwise, we let x(i+1) = x(i).

Note that this optimizer uses a stochastic procedure.

3. Rate-Based Discrete Optimizer. Rather than selecting a single position in the
sequence to mutate as we do in the single-site mutation discrete optimizer, we use
a “mutation rate” to independently select positions to mutate in the sequence. In
essence, each position in the sequence has a probability of being mutated based on
the rate, and at each step of the optimizer, we could potentially mutate multiple
positions simultaneously. Similar to the single-site mutation discrete optimizer, we
select the mutations randomly, and at each optimization step, we only accept the
new sequence if it performs better than the original sequence according to the proxy
model.
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Figure 6: The complete COMs workflow for the promoter design problem. The
dataset contains pairs of promoter sequences and length-3 vectors containing expression
values for Jurkat, K-562, and THP-1. The design space is the space of promoter sequences,
and the objectives are a linear combination of the length-3 vector of expression values. The
model receives promoter sequences as input and outputs length-3 vectors with predicted
expression values for Jurkat, K-562, and THP-1. Note that the above illustration only
shows adversarial sampling and objective penalization for differential expression in Jurkat;
in practice, we do this procedure three times, once for differential expression in each of the
three cell types.

4. Motif-Insertion Discrete Optimizer. The motif-insertion discrete optimizer
is similar to the single-site mutation discrete optimizer, with the main difference
being that we sample motifs (rather than monomers) from a previously-collected
set of motifs and mutate randomly selected contiguous subsequences (rather than
single-sites) of the promoter or protein we are trying to optimize. For example, for
the promoter design project, we may want to use transcription factor binding motifs.

We can design more complex optimizers that are geared towards specific problem settings
using the four basic optimizers described above as building blocks.

Promoter Design.

For the promoter design problem, during training (for adversarial sampling), our optimizer
interleaves rounds of the gradient ascent optimizer and rounds of a single-site mutation discrete
optimizer. This provides an efficient stochastic optimization procedure that incorporates
gradient information from the proxy model. During the design phase, we experiment with
all four optimization procedures. The actual parameters we used for optimization during the
training phase and the final design generation phase are outlined in Section 5.

The complete COMs promoter design workflow detailing the dataset, the proxy model, and
the optimizer is illustrated in Figure 6.

Additionally, we make a slight modification to the traditional COMs workflow. Rather than
sampling a single adversarial example as illustrated in Figure 6 where we only optimize for
differential expression in Jurkat, we sample three adversarial examples, one for differential
expression in each of the 3 cell types. Consequently, the final COMs regularizer term is an
average of the 3 COMs losses for each cell type. Conceptually, by doing this, we are training
a model that can reliably produce promoters that are differentially expressed in any of the 3
cell types.

Protein Design.

When it comes to the problem of protein sequence recovery, there are two general approaches
to optimization and design: (a) start with a random sequence and optimize, (b) start with a
known protein sequence that is only mutated in a few positions and optimize.
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Figure 7: Overview of protein sequence design using trRosetta as the proxy model
and a simple gradient-based optimizer (Norn et al., 2021).

Furthermore, unlike the standard COMs setting, we can optimize sequences to fold into a
plethora of different structures. In other words, there are a wide range of different objectives
we can optimize for.

In order to accommodate the above features of the protein design problem, we first use
two distinct optimizers, one for “global” adversarial sampling, which starts with a random
sequence and optimizes in order to design a sequence that folds into the desired structure,
and one for “local” adversarial sampling, which starts with a slightly-mutated version of
a known protein sequence and optimizes in order to design a sequence that folds into the
desired structure. The resulting COMs regularizer term is the average of the COMs loss for
the local adversarial sample and the COMs loss for the global adversarial sample. Second,
during each training step, the desired structure we optimize for is just the target structure
we sample from the dataset at that step. This enables us to develop a general proxy model
that can be used to generate protein sequences for any target structure.

A simple gradient-based optimization procedure is illustrated in Figure 7. Our optimizers
are more complex. At a high level, the “global” optimizer procedure consists of rounds of a
gradient ascent optimizer followed by rounds of a single-site mutation discrete optimizer,
and the “local” optimizer is a rate-based discrete optimizer. The actual parameters we use
for both optimizers during the training phase and the final design generation phase depend
on the specific task and are outlined in Section 5.

The complete COMs protein design workflow detailing the dataset, the proxy model, and
the optimizer is illustrated in Figure 8.

4.4 Evaluation

Ideally, biological sequences that are computationally designed should be experimentally
evaluated in the wet lab. However, there are purely-computational methods for evaluating
designs when a wet lab is inaccessible, when we are trying to quickly sanity check algo-
rithms and iterate, or when we want to filter designs to select a batch of the best ones to
experimentally evaluate.

Promoter Design.

For the promoter design problem, we use an ensemble of learned models, which we call
“oracle models”, to evaluate our algorithm and the designs it produces. Our ensemble consists
of 18 oracle models, all of which have the same architecture as the proxy model described in
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Figure 8: The complete COMs workflow for the protein design problem. The
dataset contains pairs of protein sequences and 4 structure histograms (d, ω, θ, φ) that
represent the interresidue geometries. The design space is the space of protein sequences, and
the objective is the negative of the sum of the cross entropy losses of the predicted structure
histograms and the desired structure histograms. The model receives protein sequences as
input and outputs 4 structure histograms with predicted interresidue geometries.

Section 4.2 except that we modify the architecture of the three heads. More specifically, each
head is a fully-connected network, and we try three different values for the number of layers
(2, 4, and 8), three different values for the hidden dimension (512, 1024, and 2048), and
two different activation functions (gelu and tanh). As was the case with the proxy model,
the backbone of all 18 oracle models is initialized with weights from a pretraining phase
which involves training on MPRA data, and the models are subsequently finetuned on the
promoter expression dataset (Reddy et al., 2023).

Tuning of the proxy and oracle models’ architecture, hyperparameters, and training decisions
is done using the validation error on a held-out dataset with the goal of hitting the sweet
spot between overfitting and underfitting. The main validation metrics we use to analyze
prediction performance of the models is the Spearman rank correlation.

Our oracle models have two key desirable properties: (a) the oracle models are diverse as
we can see in Table 1 and (b) the oracle ensemble performs significantly better than the
individual oracle models or the proxy model on the prediction task as we can see in Table 2.

Protein Design.

The unique benefit of the protein sequence recovery task is that evaluation is straightforward
and does not require any additional modeling. We have the wild-type sequence for all the
desired structures we use as targets for design. Consequently, designs that were optimized
for some desired structure are simply evaluated by measuring the sequence identity with its
wild-type sequence. This metric is reported as a percentage and reflects how successful our
algorithm is at recovering the optimal sequence for a provided structure.

5 Tasks & Results

For both the promoter design and protein design problems, we compare performance of
COMs with varying levels of the conservatism parameter α and the standard offline MBO
approach (outlined in Section 2.3), which trains a proxy model using standard supervised
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Data Split Cell Type Average Variance Average MSE Oracle Ensemble MSE

Train THP-1 0.284 0.451 0.167
Train Jurkat 0.573 0.842 0.269
Train K-562 0.577 0.767 0.189

Validation THP-1 0.262 0.661 0.399
Validation Jurkat 0.524 1.428 0.903
Validation K-562 0.464 1.199 0.735

Test THP-1 0.259 0.681 0.422
Test Jurkat 0.508 1.322 0.814
Test K-562 0.462 1.224 0.762

Table 1: Diversity of oracle models. The average variance is the average (across sequences)
of the variance (across the oracle models) in model predictions. The average mean-squared
error (MSE) is the average (across the oracle models) MSE metric. The oracle ensemble
MSE is the MSE achieved by the oracle ensemble. Relative to the MSE’s, the variance
across models is significant, which suggests that there is a good deal of diversity in the oracle
models.

Cell Type Metric Individual Oracle Individual Oracle Oracle Ensemble
(Average) (Best)

THP-1 Spearman Correlation 0.520 0.553 0.562
THP-1 Pearson Correlation 0.585 0.624 0.635
THP-1 MSE 0.681 0.403 0.422

Jurkat Spearman Correlation 0.656 0.676 0.690
Jurkat Pearson Correlation 0.676 0.701 0.716
Jurkat MSE 1.322 0.803 0.814

K-562 Spearman Correlation 0.673 0.694 0.709
K-562 Pearson Correlation 0.670 0.691 0.708
K-562 MSE 1.224 0.825 0.762

Table 2: Prediction performance of the oracle ensemble in comparison to the
individual oracle models. All the above results are computed on a held-out test set. The
“Individual Oracles” columns contains the average and best performance metric across the
individual oracle models. The “Oracle Ensemble” column contains the performance metric
achieved by the ensemble model. The oracle ensemble performs significantly better than
the average of the individual oracles on every cell type and every metric and even performs
better than the best individual oracle on all but two combinations of cell type and metric.

regression, on multiple problem-specific tasks. Note that the standard offline MBO approach
can be viewed as COMs with α equal to zero.

5.1 Promoter Design

Once we train a proxy model on our data using the design algorithm of choice, we use
our optimizer and the proxy model to generate a dataset of designs from the promoter
expression dataset by producing a single design for each promoter in the dataset. In total, we
actually generate three such datasets of designed sequences, one that optimizes for differential
expression in each of the 3 cell types, Jurkat, K-562, and THP-1. We evaluate the designs
using the oracle ensemble model, as described in Section 4.4.

Based on the oracle ensemble’s predictions, we use two different tasks to evaluate the
performance of our design algorithm:

1. The first task measures the ability of the algorithm to optimize the level of differential
expression of any given promoter sequence. We use two performance metrics for this
task: (a) “average improvement”, which gives us that average difference in objective
value (e.g. differential expression in Jurkat) between the designed sequence and
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original sequence in the dataset that we started optimization from and (b) “success
rate”, which gives us the proportion of sequences from the dataset for which our
design algorithm was able to improve the objective value.

2. The second task measures how good the top designed sequences according to the
proxy model actually are. First, we begin by selecting the top N = 128 designs
according to the proxy model’s predicted objective values. Next, we report the 100th
percentile ensemble model predicted objective value as well as the 50th percentile
ensemble model predicted objective value on this set. This evaluation protocol is
reasonable as it is usually followed in many real-world MBO problems, where a set
of designs are produced and the best performing ones are used (Trabucco et al.,
2021a;b).

The optimizer we use to generate adversarial designs during COMs training and to design
the final designs for evaluation uses 5 rounds of optimization, each of which consists of 15
steps of the gradient-ascent optimizer followed by 15 steps of a single-site mutation discrete
optimizer. Furthermore, in our experiments, we use the linear combination function outlined
in Section 4.1 to compute the objective from the length-3 vector of expression values.

We report the performance of 4 COMs models with varying levels of the α hyperparameter
on the first task in Table 3, and we report the performance of the same 4 proxy models on
the second task in Table 4. We can also visualize the level of differential expression in our
designs when compared to the original dataset in the scatter plots in Figure 9.

Cell Type Alpha Average Improvement Success Rate (%)

THP-1 α = 0.0 0.570 98.097
THP-1 α = 0.01 0.552 97.116
THP-1 α = 0.03 0.524 95.072
THP-1 α = 0.1 0.469 91.124

Jurkat α = 0.0 0.414 89.603
Jurkat α = 0.01 0.432 90.431
Jurkat α = 0.03 0.426 88.910
Jurkat α = 0.1 0.382 85.556

K-562 α = 0.0 0.520 88.146
K-562 α = 0.01 0.563 90.090
K-562 α = 0.03 0.649 92.951
K-562 α = 0.1 0.723 95.195

Table 3: Performance of 4 design algorithms on task 1 of the promoter design
problem. The cell type indicates which cell type the designs were optimized to maximize
differential expression in. Note that COMs with α equal to zero is equivalent to the standard
offline MBO approach.

5.2 Protein Design

We evaluate our design algorithm on a small dataset of 11 de-novo protein sequences and
their corresponding structures from PDB. The PDB id’s of the proteins are: 6CZG, 6CZH,
6CZI, 6CZJ, 6D0T, 6DG5, 6DG6, 6MRR, 6MRS, 6MSP, and 6NUK. More specifically, for
each de-novo protein sequence x and its corresponding structure y, we produce two designed
sequences, one for each of the two tasks described below, that are optimized to fold to the
structure y.

We evaluate performance of our design algorithm on two tasks:

1. The first task measures sequence recovery when given a slightly perturbed version
of the protein sequence x̃ and the corresponding target structure y. In this case, we
produce a design by starting optimization at x̃, and we use the “local” optimizer
described in Section 4.3. In our experiments, we produce x̃ from x by independently
mutating positions of x with probability 0.1 and randomly selecting the new amino
acid to insert into the mutated positions.
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Figure 9: Scatter plot of the oracle ensemble’s predictions on the promoters in the original
dataset and the promoters in the three datasets which were designed using the COMs proxy
model with α equal to 0.01. We also plot the oracle ensemble’s predictions on the top 128
designed promoters in each designed dataset according to the proxy model.
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Cell Type Alpha 100th Percentile 50th Percentile

THP-1 α = 0.0 0.786 0.626
THP-1 α = 0.01 0.876 0.606
THP-1 α = 0.03 0.777 0.602
THP-1 α = 0.1 0.820 0.568

Jurkat α = 0.0 1.346 0.856
Jurkat α = 0.01 1.472 0.927
Jurkat α = 0.03 1.462 1.005
Jurkat α = 0.1 1.496 1.031

K-562 α = 0.0 0.992 0.250
K-562 α = 0.01 1.060 0.395
K-562 α = 0.03 1.578 0.506
K-562 α = 0.1 1.517 0.514

Table 4: Performance of 4 design algorithms on task 2 of the promoter design
problem. The cell type indicates which cell type the designs were optimized to maximize
differential expression in. Note that COMs with α equal to zero is equivalent to the standard
offline MBO approach.

2. The second task measures sequence recovery when we are only given the target
structure y. In this case, we produce a design by starting optimization at a random
protein sequence, and we use the “global” optimizer described in Section 4.3.

For both tasks, we measure performance based on what percentage of the original wild-type
protein sequence x we can recover in our design as described in Section 4.4.

In Table 5, we report performance of two proxy models on both tasks: (a) standard fully-
trained trRosetta model with no COMs finetuning (i.e. just phase 1 of the training procedure
described in Section 4.2) and (b) a model with both the standard trRosetta training and
COMs finetuning, using local and global adversarial sampling with α equal to 0.5.

For the COMs proxy model, as described in Section 4.3, we use two optimizers during training,
one that samples “local” adversarial inputs and one that samples “global” adversarial inputs.
The “local” optimizer is a rate-based discrete optimizer that performs 150 rounds with
a“mutation rate” of 5%. The “global” optimizer begins by running the gradient ascent
optimizer with Nouter = 1, Ninner = 100, learning rate η = 1, and unit normalization of
gradients followed with 100 rounds of a rate-based discrete optimizer with a “mutation rate”
of 5%.

Furthermore, on task 1, the “local” optimizer that we use to generate protein sequences is a
rate-based discrete optimizer that performs 200 rounds with a “mutation rate” of 5%. On
task 2, the “global” optimizer that we use to generate designs is a gradient ascent optimizer
with Nouter = 1, Ninner = 300, learning rate η = 2.5, and unit normalization of gradients.

Task Model Sequence Recovery (%)

Task 1: Local Standard trRosetta 49.159
Task 1: Local COMs (α = 0.5) 57.234

Task 2: Global Standard trRosetta 11.807
Task 2: Global COMs (α = 0.5) 15.672

Table 5: Performance of 2 design algorithms on both protein design tasks. The
sequence recovery measurements are averages across 4 trials.

In Figure 10, we visualize some example optimization trajectories, which illustrate the
objective described in Section 4.1 and the sequence recovery rate during each step of
optimization, for task 1. Finally, in Figure 11, we visualize the predicted structure histograms
for a few of the designs generated by the COMs proxy model in task 1 and the corresponding
target structure histograms that the designs were optimized for.
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Figure 10: Example optimization trajectories for the protein design algorithm’s
“local” optimizer.
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Figure 11: Target structure histograms and corresponding predicted structure histograms
for designed sequences from task 1 (start with a slightly-perturbed version of the wildtype
sequence and optimize to fold to the target structure using the “local” optimizer) of the
de-novo proteins with PDB ID’s 6NUK and 6MRR.
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Figure 12: Example optimization trajectories for the protein design algorithm’s
“global” optimizer. The average final sequence recovery for the Standard trRosetta model
in the trial visualized above is 11.678%, and the average final loss was 8.484. The average
final sequence recovery for the COMs model in the trial visualized above is 14.313%, and the
average final loss was 8.116.

In Figure 12, we visualize some example optimization trajectories, which illustrate the
objective described in Section 4.1 and the sequence recovery rate during each step of
optimization, for task 2. Finally, in Figure 13, we visualize the predicted structure histograms
for a few of the designs generated by the COMs proxy model in task 2 and the corresponding
target structure histograms that the designs were optimized for.
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Figure 13: Target structure histograms and corresponding predicted structure histograms
for designed sequences from task 2 (start with a random sequence and optimize to fold to
the target structure using the “global” optimizer) of the de-novo proteins with PDB ID’s
6CZG and 6MRS.

22



6 Discussion & Conclusion

6.1 Promoter Design

As we can see from the results on both task 1 (Figure 3) and task 2 (Figure 4), conservatism
certainly helps. In fact, when we designed promoters for differential expression in K-562, the
most conservative proxy model performed the best on both tasks, and when we designed
promoters for differential expression in Jurkat, COMs models performed better than the
standard offline MBO approach on both tasks. By contrast, when it came to the promoters
designed for differential expression in THP-1, the standard offline MBO approach (i.e.
α = 0.0) seemed to perform better. However, based on the scatter plot visualizations in
Figure 9, there are two possible explanations for this phenomenon that could both be the
topic of future work:

1. The first explanation is that this is an unfortunate consequence of the promoter
expression dataset we used. From a qualitative analysis of the scatter plots, the
dataset appears to lack many examples of promoter sequences that are differentially
expressed in THP-1. This potentially explains why the optimizer ostensibly struggles
to design sequences that simultaneously upregulate expression in THP-1 while
downregulating expression in Jurkat and K-562. The result is that the designed
sequences are all clustered close to the origin. In this case, conservatism will
obviously not help and will only hinder an already-challenging optimization task.
Better datasets with more diverse data may fix this problem.

2. Another potential explanation for this phenomenon is that we need a more powerful
optimizer or a different transformation function that maps from the individual
expression values to the scalar objective used for optimization. In our experiments,
we used the same optimization parameters for differential expression in all 3 cell
types. Better cell-type specific parameter tuning may be necessary.

Overall, however, based on the results in task 1 and task 2, COMs appear to provide better
performance on a wide range of promoter design scenarios. It can be used to effectively
improve any given promoter sequence, as illustrated by task 1, and it can also be used
to reliably generate a batch of high-quality designed promoters from a larger dataset of
promoters, as illustrated in task 2. This can be practically useful in real-world promoter
design.

6.2 Protein Design

As we can see in Table 5, on both task 1 and task 2, sequence recovery performance improves
significantly when we subject the proxy model to additional COMs finetuning. Furthermore,
in Figure 13 and Figure 11, we can see that the designed sequences seem to capture some of
the features of the target structure relatively well, although not perfectly.

An other interesting observation is that the adapted COMs training, which involved optimizing
a different objective function (i.e. optimizing for a different target structure) at each timestep,
provided a proxy model that generalizes to designing sequences for any target structure,
even that of de-novo proteins that the model has never seen before.

Overall, these results suggest that further research into COMs and its applications to the
inverse protein folding problem would be worthwhile.
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