Active Reinforcement Learning for Robust Building
Control

Austin Jang

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-101
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-101.html

May 11, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Thank you to my advisor Costas Spanos for guiding me through this whole
process. Thank you to all the friends who supported me in this really rough
year, especially Jennifer Zhou, who made sure | didn't skip too many
meals. And finally, | would never have gotten here without my friend Dr.
Lucas Spangher, who introduced me to RAISE Lab and research in RL and
energy in general.

Active Reinforcement Learning for Robust Building Control

by

Doseok Jang

A thesis submitted in partial satisfaction of the
requirements for the degree of
Master of Science
in
Electrical Engineering and Computer Science

in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Costas Spanos, Chair
Professor Avideh Zakhor

Spring 2023

Active Reinforcement Learning for
Robust Building Control

Doseok Jang

Research Project
Submitted to the Department of Electrical Engineering and Com-
puter Sciences, University of California at Berkeley, in partial sat-

isfaction of the requirements for the degree of Master of Science,
Plan Il

Approval for the Report and Comprehensive Examination:

Committee

Professor Costas Spanos
Research Advisor

5/11/2023

(Date)

* Kk ok ok ok ok ok

Professor Avideh Zaﬁlor
Second Reader

t;/l)(/ 2%

(Date)

avz
Pencil

Active Reinforcement Learning for Robust Building Control

Copyright 2023
by
Doseok Jang

Abstract
Active Reinforcement Learning for Robust Building Control
by
Doseok Jang
Master of Science in Electrical Engineering and Computer Science
University of California, Berkeley

Professor Costas Spanos, Chair

Reinforcement learning (RL) is a powerful tool for optimal control that has found
great success in Atari games, the game of Go, robotic control, and building optimiza-
tion. RL is also very brittle; RL agents often overfit to their training environment and
fail to generalize to new settings. Unsupervised environment design (UED) has been
proposed as a solution to this problem, in which the agent trains in environments
that have been specially selected to help it learn. However, previous UED algorithms
focus on trying to train an RL agent that generalizes across a large distribution of
environments. This is not desirable when we wish to prioritize performance in one
environment over others. For example, we will be examining the setting of robust RL
building control, where we wish to train an RL agent that prioritizes performing well
in normal weather while still being robust to extreme weather conditions. We demon-
strate a novel UED algorithm, ActiveRL, that uses uncertainty-aware neural network
architectures to generate new training environments at the edge of the RL agent’s
ability while being able to prioritize performance in a desired base environment. We
show that ActiveRL is able to outperform state-of-the-art UED algorithms in min-
imizing energy usage while maximizing occupant comfort in the setting of building
control.

To my parents.

i

Contents

Contents ii
List of Figures iv
List of Tables vi
1 Introduction 1
1.1 Overview of HVAC Setpoint Control 1
1.2 Overview of Uncertainty Estimation in Deep Learning 3
1.3 Related Work and Gaps, 3
1.4 Contributions 5
1.5 Roadmap 5)
2 An Overview of Deep Reinforcement Learning 7
2.1 Overview e 7
2.2 Markov Decision Processes 8
2.3 Classical Reinforcement Learning 8
2.4 Deep Reinforcement Learning 9
3 Active Reinforcement Learning 11
3.1 Overview 11
3.2 Proximal Policy Optimization 11
3.3 Uncertainty Estimation 13
3.4 Generating Environmentso 14
3.5 Prioritized Level Replay 16
4 Experiments to Assess Robustness of ActiveRL to Extreme Weather
Conditions 20
4.1 Overview 20
4.2 Sinergym Environment for Simulating HVAC Control in Buildings . . 21

4.3 Evaluating ActiveRL’s Robustness to Extreme Weather Events 27

4.4 Evaluating ActiveRL’s Generalization to US Weather Conditions . . .
4.5 Evaluating ActiveRL’s Generalization from Sim2Real
4.6 Ablations Exploring Components of ActiveRL

5 ActiveRL Experimental Results

51 Overview.

5.2 ActiveRL is Robust to Extreme Weather Events
5.3 ActiveRL Generalizes to US Weather Conditions
5.4 ActiveRL Generalizes from Simulation to Reality (Sim2Real)
5.5 Ablations Exploring Components of ActiveRL

6 Conclusion and Future Work

6.1 Conclusion.

6.2 Limitations and Future Work

6.3 Roadmap to Deployment

Bibliography

iii

28
30
30

32
32
32
33
36
39

41
41
41
42

44

List of Figures

2.1

3.1

4.1

5.1

0.2

Flow of information in a typical RL setup, taken from [63]

An illustration of ActiveRL and ActivePLR. A. The overall flow of data in
the ActiveRL training procedure. B. The ActiveRL environment selection
process. C. How ActiveRL can be integrated into the PLR framework to
select environments through ActivePLR.

The Sinergym environment. A. A breakdown of the Sinergym environ-
ment. A simulated building sends sensor data as observations to an RL
agent, which responds with HVAC setpoints as actions, and is rewarded
according to energy use and thermal comfort. B. We conduct three exper-
iments using the Sinergym environment: evaluating our agents in hand-
crafted extreme weather conditions, in a Sinergym simulation with higher
fidelity than during training to simulate the Sim2Real jump, and in real-
istic weather conditions sampled from across the US.

Performance of each algorithm on training an RL HVAC agent, tested on
various weather patterns. ActiveRL and ActivePLR outperform all base-
lines. We report the standard error of the mean over 5 trials for each
result. A. Average reward achieved by each algorithm on the base en-
vironment ¢, throughout training. B. Average reward achieved by each
algorithm averaged over all 6 environments throughout training. C. Av-
erage reward achieved by each algorithm in each of the 5 extreme weather
environments throughout training. Note that none of the algorithms were
trained on these specific extreme weather environments.
Improvement in reward achieved by using ActiveRL instead of each base-
line, on 120 randomly sampled weather patterns from across the US. A
higher number here indicates that ActiveRL performs well in compari-
son to that baseline. On the other hand, a higher number indicates the
baseline performs poorly. Lo

v

2.3

5.4

Results of Sim2Real experiments. All error bars represent the standard
error of the mean over 5 trials. A. Each controller is trained on a building
simulation with d¢ = lhour and evaluated on a simulation with higher
fidelity dt = 0.25hours for the base environment configuration ¢y and
five handcrafted extreme weather scenarios. The rightmost bars show the
average performance of each algorithm over all 6 scenarios. B. The average
drop in reward over all environments when evaluating in the higher fidelity
simulation compared to evaluation in the lower fidelity simulation. Lower
is better here.o
Ablation A. We explore how the 7 regularization parameter affects the
performance of ActiveRL. Higher values of v mean that ActiveRL is forced
to propose training environment configurations ¢ that are close to the
base environment ¢y. The left graph shows the average reward obtained
throughout training on the base environment ¢q. The right graph shows
the reward averaged over ¢y and the 5 extreme weather environments.
ActiveRL seems quite sensitive to v. B. Similarly, we explore how the 7
learning rate parameter affects ActiveRL. 7 is the learning rate used by
ActiveRL to conduct gradient descent on ¢. Higher values of n means a
coarser-grained search for the ¢ that maximizes the agent’s uncertainty.
ActiveRL seems insensitive to 7 once it gets small enough (< 0.1).

40

List of Tables

4.1 Bounds for Sinergym environment configuration variables
4.2 Relevant hyperparameters L.
4.3 Hyperparameter sweep ranges ooe e

vi

vil

Acknowledgments

Thank you to my advisor Costas Spanos for guiding me through this whole process.
Thank you to all the friends who supported me in this really rough year, especially
Jennifer Zhou, who made sure I didn’t skip too many meals. And finally, I would
never have gotten here without my friend Dr. Lucas Spangher, who introduced me
to RAISE Lab and research in RL and energy in general.

Chapter 1

Introduction

Reinforcement learning (RL) is a powerful tool that has found great success in solving
complex, sequential decision-making tasks like the game of Go [61], Atari games [49],
StarCraft [58], and many others. However, RL agents often overfit to their training
environment and fail to generalize to new environments. This is a serious issue in tasks
where we expect the environment not to stay static; when there is some distribution
shift between the training environment and the test environment. For example, we
will be exploring the use of RL in building control, where the agent is often trained to
optimize performance in normal weather conditions, but fails when tested in extreme
weather conditions. The overall goal of this project is to use uncertainty
to select training environments such that the resulting trained RL agent
is robust to uncommon but dangerous scenarios in the test environment
without sacrificing overall performance, through applications to RL HVAC
control.

1.1 Overview of HVAC Setpoint Control

One application of robust RL that we will focus on is the use of RL for building
control in response to weather conditions and occupant schedules. With the advent
of the Internet of Things and 21st century modernization, buildings now have a
glut of sensory information that can be tapped into to maximize occupant comfort
and increase energy efficiency. Smart buildings can be equipped with sensors to
detect things like temperature, airflow, humidity, occupancy, light, and energy usage
[28]. Because buildings account for 40% of primary energy consumption, 73% of
electricity usage, and 40% of greenhouse gas emissions in the US [1], all this new
sensor data represents a valuable opportunity to reduce human energy consumption
in the transition to a sustainable future.

CHAPTER 1. INTRODUCTION 2

At the same time, smart buildings also offer the opportunity to provide more
comfortable conditions for occupants. Although humans spend over 90% of their time
in buildings, studies have shown that only 40% of commercial building occupants are
satisfied with their thermal conditions [25]. Smarter building control can directly
impact the comfort and productivity of building occupants.

There are several avenues through which buildings can be automatically con-
trolled, such as heating, ventilation, and air conditioning (HVAC) units, energy stor-
age systems, plug-in electric vehicles, photovoltaic power sources, and lights [24].
Within the 40% of energy consumption that buildings are responsible for, almost a
third is HVAC [68], so that is the avenue of control that we will focus on in this
project.

Traditionally, HVAC setpoint control has been approached through model-predictive
control (MPC, [2, 36]) or a heuristic rule-based-controller (RBC, [46]). MPC is gen-
erally not scalable to high dimensional input or output spaces compared to RL, and
is only as good as the model it is based on. RBCs are brittle and inflexible compared
to RL algorithms; for example, an RBC deployed in an office building with a rule
to always turn off the HVAC systems at night would fail to produce a comfortable
environment in the event that someone works late. A data-driven approach, however,
would eventually learn to turn the HVAC systems back on if there is an occupant
late at night in order to maximize their thermal comfort.

Recently, RL-based HVAC setpoint control has grown in popularity. [57] used a
specially formulated Q-learning algorithm to control HVAC setpoints in the presence
of unseen disturbances. [42, 37| demonstrated how using RL and meta-RL could be
used to train an RL HVAC agent that could quickly adapt to different buildings. In
terms of trying to train an RL agent that is robust to different weather patterns, [75]
demonstrated an RL HVAC controller beating a RBC baseline in several simulated
buildings and climates. However, they noted that the RL controller is not robust
to changes in indoor air temperature setpoint schedules, and needed special reward-
shaping to deal with varying weather conditions.

As climate change continues, we will experience more droughts and heat waves,
stronger and more intense hurricanes, general rising temperatures, and more frequent
cold snaps[45]. All of these extreme weather events likely represent a tiny portion
of the training data, but are the time when building controls must work the hardest
to ensure safe, comfortable conditions for occupants. For example, an RL controller
that was not prepared for these scenarios may raise the heat during a heat wave, or
lower it during a cold snap, which are both unacceptable for occupant comfort.

There are an infinite number of these kinds of extreme scenarios, such that it is
impossible for an engineer to enumerate them all. Thus there is a need for methods
to automatically discover realistic extreme scenarios that the RL agent needs more
data about.

CHAPTER 1. INTRODUCTION 3

1.2 Overview of Uncertainty Estimation in Deep
Learning

At the same time, the need to understand where a neural network based model’s
predictions are suboptimal in applications such as medicine, self-driving, and any-
thing safety-critical, has spurred research into methods to accurately estimate the
uncertainty of neural networks. By having a measure of the model’s uncertainty,
we can tell when to trust the model or disregard its output. In this paper, we use
the model’s uncertainty as a signal to identify what scenarios that our RL HVAC
agent needs more data about. There are several ways in which one might quantify
the uncertainty of a neural network. [22] showed how to use Monte-Carlo dropout
to leverage a regularization technique that is often already incorporated in deep neu-
ral net training to estimate the uncertainty of a deep model by posing the training
process as an approximation to training a deep Gaussian Process. [38] demonstrated
how one could train multiple versions of the same model as an ensemble, and esti-
mate the uncertainty of the ensemble by looking at its variance. Using a Bayesian
neural network architecture also allows uncertainty estimation [66]. We use Monte
Carlo dropout in this paper primarily because training Bayesian neural networks is
significantly slower and more computationally demanding, and dropout is simpler to
implement than a bootstrapped ensemble.

1.3 Related Work and Gaps

Uncertainty-Driven RL Exploration

Neural network uncertainty has been used before to facilitate exploration of RL al-
gorithms [72, 47], so that they collect data that helps them generalize over more
environments. For example, [52] takes uncertainty into account by estimating a dis-
tribution on Q values instead of a point estimate and using this to drive efficient
exploration in the face of uncertainty. One of the most popular approaches is to
provide an uncertainty-based exploration bonus to the) function to encourage ex-
ploration [39, 51, 9]. However, exploration is not enough to ensure robustness in
environments where agents’ actions are not enough to get to any state in the MDP.
An RL HVAC control system cannot take actions to ”explore” what would happen
if there was a heat wave because its actions do not control important aspects of the
state like outdoor weather.

CHAPTER 1. INTRODUCTION 4

Active Learning

The process of automatically selecting what data to sample is sometimes called active
learning, or optimal experiment design. These algorithms were designed to identify
experimental parameters that could generally provide as much information about
the search space as possible. However, most of them were designed for supervised
learning. For example, [13, 21] attempt to find regions of uncertainty in the data dis-
tribution by looking at misclassification rates and output entropy. [44] uses conformal
prediction to quantify the similarity of new data points to their dataset. EVOP [43]
uses the sequential simplex method in order to identify experiment configurations
that can maximize information gain. [6] use random exploration to identify new,
promising data samples. Some of these concepts are already in use in many RL algo-
rithms; for example, the RL algorithm we use in this paper PPO [60], is incentivized
to explore new data samples via random exploration and increasing the output action
distribution entropy.

Unsupervised Environment Design (UED)

However, the setting we are going to explore is slightly different than active learning,
in that we are not directly selecting data points to sample, but selecting the environ-
ment parameters that impact which data points will emerge as the RL agent explores
the environment. This is a more helpful problem setting in RL as RL algorithms
work best with on-policy data that is collected by having the RL agent explore the
environment, instead of just labeling sets of data samples with a ”correct” action. In
order to explore how to change environment parameters to investigate generalization
of RL algorithms across diverse settings [56, 11, 12|, Procedural Content Genera-
tion (PCG) environments have emerged as a promising category of challenges. These
environments are procedurally generated according to some chosen configuration pa-
rameters via some Unsupervised Environment Design (UED, [17]) algorithm, which
constructs an implicit curriculum of training environments at the edge of the RL
agent’s capabilities. For example, [53] and [17] find adversarial but feasible envi-
ronment configurations with high regret to help the agent generalize. [32] re-sample
previously seen environments based on their 1-step TD error: a metric of the learn-
ing potential of those environments. These algorithms focus on training an RL agent
that performs well across a distribution of similar tasks. This may be undesirable
in scenarios where the test environment is significantly different from the training
distribution of environments that the UED algorithm provides. For example, if we
are training an RL HVAC agent for a building in Arizona, our first priority is for the
agent to perform well in the normal weather for Arizona, and our second priority is
for it to be robust to different weather events that may arise due to climate change.

CHAPTER 1. INTRODUCTION 3

It is also possible that unrestricted UED may result in training environments that are
completely unrealistic, for example simulating the RL building control problem for
a building on the sun. Furthermore, none of them take advantage of the continuous
nature of some environment configuration variables to optimize them via gradient
descent.

1.4 Contributions

We present a novel uncertainty-based, gradient-based algorithm for UED in building
control called ActiveRL. To the best of our knowledge, this is the first time neural
network uncertainty has been incorporated into the problem of UED; most current
works focus on some form of regret. To the best of our knowledge, this is also the first
time environment configuration variables have been directly optimized under gradient
descent rather than through some evolutionary process [53], resampling procedure
[32], or training a separate teacher network to select new environments [17].

We demonstrate how ActiveRL trains RL HVAC controllers that are (1) more
performant overall, (2) more robust to handcrafted extreme weather conditions, (3)
more robust to a larger variety of more realistic weather conditions sampled from
across the US, and (4) more robust to the Sim2Real transfer than the current state-
of-the-art in UED. (1), (2), and (3) are important contributions that make RL HVAC
control more effective at ensuring that the indoor environments we spend 90% of our
time in are comfortable, while still reducing energy consumption. (4) shows that it is
realistic to train an RL agent in simulation like we do here with ActiveRL and deploy
it in the real world, with only a slight performance drop compared to other methods.

In this project, we propose a new UED algorithm that, with some
reasonable assumptions on the structure of the environment, leverages
uncertainty-aware neural networks to train an RL agent that is robust to
extreme weather conditions without sacrificing overall performance.

1.5 Roadmap

We will first give a primer on the field of reinforcement learning in chapter 2 discussing
the underlying framework of Markov Decision Processes, classical RL algorithms, and
deep RL algorithms. We will then describe the methods of our paper in chapter 3,
where we will describe all the different components of our novel ActiveRL algorithm.
In chapter 4, we will provide a description of three different experiments we run in
order to assess whether ActiveRL is successfully able to train an RL HVAC controller
that is robust to extreme weather patterns and can handle the Sim2Real jump. In

CHAPTER 1. INTRODUCTION 6

chapter 5 we will show the results of those experiments. Finally, we will conclude
with a discussion of future work and limitations in chapter 6.

Chapter 2

An Overview of Deep
Reinforcement Learning

2.1 Overview

Before we dive into describing our new algorithm, we would first like to provide a
technical description of reinforcement learning, its terminologies, and the types of
problems it seeks to solve. We will first discuss the general class of problems that
RL algorithms seek to solve, then describe some classical RL algorithms that will
lead into a discussion of modern deep RL techniques using neural network function
approximators.

Figure 2.1: Flow of information in a typical RL setup, taken from [63]

CHAPTER 2. AN OVERVIEW OF DEEP REINFORCEMENT LEARNING 8

2.2 Markov Decision Processes

RL algorithms generally attempt to solve sequential decision-making problems in the
form of Markov Decision Processes (MDPs) [63]

M=(SAR,P,S) (2.1)

that are composed of a state space S C R", action space A C R™, reward function
R :S x A — R, transition probability matrix P : § x A x §, and a probability
distribution over initial states Sy € S.

An initial state is first sampled from Sy. At each timestep, an action a € A can be
taken in response to the observed state s € S, and a reward R (s, a) is computed based
on those states and actions. Given the current state s and action a, the next state
s’ is sampled from the probability distribution P(s,a). In order to make decisions
in this space, we define a policy 7 : R® — R™ that maps states to actions, such
that a = m(s). The overall goal of RL is to identify a policy 7 so as to maximize an
objective function J: the expected discounted sum of rewards:

T
J=Epars | D 7 Risear = m(s)) (2.2)
t=0

Here, ~ is a discount factor that forces m to care more about rewards that arrive
sooner rather than later.

2.3 Classical Reinforcement Learning

If |S| and |A| are small enough, then the MDP can be easily solved through classical
RL algorithms such as value iteration or policy iteration.

In order to describe value iteration and policy iteration, we will first define the
value function V' : § — R as a measure of the expected discounted sum of rewards,
given that the agent is at a certain state s, and the Q function @ : § x A — R which
computes the same expected discount sum of rewards, but given that the agent is at
a certain state s and has taken a certain action a.

Q(s,a) =Ep, Z’yt “R(s¢,a; = w(8¢))|S0 = 8, a0 = a] (2.3)
Vi(s) =Ep Zyt “R(st,ar = w(st))|s0 = 3] (2.4)

CHAPTER 2. AN OVERVIEW OF DEEP REINFORCEMENT LEARNING 9

In order to estimate the value function of the optimal policy, one can start with
arbitrary) and V tables and iteratively estimate

Q*(s,a) = R(s,a) +~ Z VEL(S) (2.5)
s'~P(s'|s,a)
Vk(s) = max,(Q(s,a)) (2.6)

for iterations k = 1... K, and take the optimal policy m = argmax,(Q(s, a)).

Alternatively, one could optimize the policy directly instead of trying to estimate
the optimal value function by using policy iteration. The policy is initialized as
some random policy and is then iteratively refined by first evaluating the policy —
computing V;(s) and Q. (s, a) for all states s € S and actions ain.A — and then setting
7(s) for each state to a = argmaz,Q(s,a’). Calculating V,(s) and Q(s,a) is done
in the same manner as in value iteration, except V*(s) = E.(Q*(s, a))

2.4 Deep Reinforcement Learning

Policy iteration and value iteration can be efficiently computed using dynamic pro-
gramming for small state spaces and actions, but becomes intractable for large S and
A. They also require knowledge of the transition probability matrix P which is not
feasible for many real-world RL problems. In practice, RL practitioners will train
neural networks to approximate @y, Vp, and/or 7y, where § are the parameters of the
neural network.

No matter what the neural network is attempting to predict, neural networks
need data to make predictions. In RL, this data is usually collected by deploying the
policy 7 (which is either directly 7y or derived from Q) into the MDP, and collecting
tuples of the form (s;, a;, Syy1, ri41) of the states, actions, and rewards that the
agent observed in the MDP. We denote a full trajectory [(so, ao, $1,71), - .. (S7_1, a7 —
1, s7,77)] as 7. Additionally, we will denote R(7) = 31_y 7" - R(ss, ar = 7(s1)).-

RL methods that only estimate 7y are often referred to as policy-gradient methods.
The most common approach to using a neural network to represent a policy is to
have it output a probability distribution over actions. With a discrete action space,
this is as simple as just outputting a probability for each of the possible actions.
With a continuous action space, it is common to parameterize the output of the
neural network as the mean and standard deviation of a Normal distribution [26] from
which the action is sampled. The most basic variation of policy-gradient methods
is REINFORCE [70], which updates the policy to maximize the following objective
function:

CHAPTER 2. AN OVERVIEW OF DEEP REINFORCEMENT LEARNING 10

Jpa = R(71)log(me(asls:)) (2.7)

GW = (97r - UVQWJ (28)
where 7 is the learning rate. This directly attempts to optimize the expected reward
under the policy my. Similarly to policy iteration, we optimize our policy 7 after
evaluating its value through trajectories 7.

Deep Q-learning methods [27, 67] only approximate the @ function, usually op-
timizing the mean squared error loss between (Jy and some estimate of the Q value
taken from data. Say we roll out a trajectory 7 and collect tuples (s,a,s’,). Then
we can compute the loss Ly as follows:

Qtarget =r+v m§X Q@(Slv a/) (29>

LQ = (Q@ - Qtarget)2 (210)

The neural network)y can then be optimized through standard gradient descent
methods to minimize Lg.

QQ = QQ - T]VQQLQ (211)
Just like value iteration, deep Q learning estimates the value of each state and
action, and given (g, we can extract a policy mg(s) = argmaz,Qa(s, a’).
Similarly, Vj can be trained to approximate the value function by reformulating
the target:

‘/target =7+ 7%(8/) (212)
LV = (‘/9 - ‘/target)Z (213)
QV = (9V — nVQVLV (214)

Value networks Vp,, are often trained together with a policy network 7y, in actor-
critic methods like Advantage Actor Critic (A2C) [48] and Proximal Policy Optimiza-
tion (PPO) [60], the RL algorithm we use in this paper. Vj,. is often used to reduce
the variance in policy network updates by estimating the advantage function

A(s,0) = Eopeioa [R(5,0) + oy ()] = Vay (5) 215)
For example, A2C directly substitutes A in for R(7) to compute its objective:

Jaoc = A(s,a)log(my_(s,a)) (2.16)
We will go into detail about PPO in section 3.2.

11

Chapter 3

Active Reinforcement Learning

3.1 Overview

Our overall goal is to train RL agents that are robust to conditions that may not
appear frequently in their training distribution. For example, an RL agent trained
to manage a building’s HVAC controls should still perform reasonably when it en-
counters weather patterns that are underrepresented in its training data. In order to
do this, we will present an uncertainty-based active learning algorithm that identifies
which environments may have the highest learning potential.

First, we will describe the general framework of RL, then the RL algorithm we
use in our experiments, then the method by which we estimate the uncertainty of the
RL agent, followed by a novel approach to using that uncertainty to generate envi-
ronment configurations that maximize learning. Finally, we will describe Prioritized
Level Replay (PLR, [32]), the state-of-the-art baseline against which we compare our
algorithm, and explore how our approach can be integrated into the PLR framework.

3.2 Proximal Policy Optimization

The RL algorithm we use in this paper is Proximal Policy Optimization (PPO)[60]
due to its performance and ease of use. It has become the default algorithm for many
use cases. For example, it is the default algorithm for OpenAl. In the building control
setting, many works [8, 5, 74] have used PPO for HVAC control. Although we focus
on PPO in this paper for these reasons, our algorithm should easily extend to any
actor-critic RL algorithm.

PPO trains two neural networks: a policy network mp_ : R®™ — R™ that maps
states s € R" to actions a € R™, and a critic network Vjp, : R® — R that maps states
s to values. The latter approximates the value function V (s).

CHAPTER 3. ACTIVE REINFORCEMENT LEARNING 12

Resettable

Environment is reset with Environment

the chosen configuration T Collect Rollouts

Environment
Selection

Uncertainty-Aware NN
Actor Critic Agent

Repeat m times c) 8

@(,D»][«

Environment Uncertainty-Aware Add Constraints

|
|
Selection 1 Agent's Critic
| UCBmI_f:_t? Constrained |
3 neertainty Objective i
1 i I
-] -I — .’f —_—] |
- LR Ory1 = P — NV 0 !
~
- "-} a Gradient Ascent to Maximize Uncertainty ,’
i S A I A - o O S i W s S S i -

Environment

Selection

Figure 3.1: An illustration of ActiveRL and ActivePLR. A. The overall flow of data
in the ActiveRL training procedure. B. The ActiveRL environment selection process.

C. How ActiveRL can be integrated into the PLR framework to select environments
through ActivePLR.

CHAPTER 3. ACTIVE REINFORCEMENT LEARNING 13

The actor is trained by first interacting with the environment and collecting data
about the states it observed s;, actions it took a;, and rewards it received r;. The
actor is then updated through gradient descent to optimize the surrogate objective
function

J = Byfmin(z(0) Ap, clip(z(0), 1 — e, 1+) A, (3.1)
where At = 515 + (’7/\)(515_1,_1 + -+ (,y/\)(T—t+1)5T_1 (32)
6t =71+ ’YV(SH-I) — V(St) (33)

2(6) = 220 (3.4

014 (at|8t)
2z is the ratio of the probability of the action a; under the current policy to its prob-
ability under the policy that originally collected the data, and A, is an estimate of
the advantage Q(s,a) — V(s) obtained using generalized advantage estimation [59].
The minimization of this surrogate objective enables the use of multiple gradient up-
dates per data sample, allowing PPO to enjoy higher sample efficiency than previous
on-policy algorithms.

The critic network is trained to approximate the value function V(s), and its
outputs are used to compute A, to train the actor above. The critic is updated
through gradient descent to minimize the loss:

V;farget =7+ ’7‘/9(8/> (35>
L = (Vi(s) — Viarger)? (3.6)

3.3 Uncertainty Estimation

In order to estimate the uncertainty of our RL agent, we use Monte Carlo Dropout
[22]. Dropout is a common regularization technique for deep neural networks [62]
to avoid overfitting, in which nodes in the neural network are set to zero (”dropped
out”) at random. Traditionally, nodes are only dropped out at training time, and
dropout is not conducted at inference time. [22] introduced Monte Carlo Dropout, in
which dropout is also used at inference time to generate multiple predictions for an
individual input. The variance in these predictions is then used as a measure of the
model’s uncertainty. We use Monte Carlo Dropout as opposed to other methods of
estimating neural network uncertainty like bootstrapped ensembles [38] or Bayesian
neural networks [66] because Bayesian neural networks are difficult and computation-
ally expensive to train, and Monte Carlo Dropout is easier to implement and cheaper
to train than bootstrapped ensembles while still providing good quantifications of
uncertainty.

CHAPTER 3. ACTIVE REINFORCEMENT LEARNING 14

Formally, suppose that we have a neural network fy : R® — R™ that maps n-
dimensional input vectors to m-dimensional output vectors. f is parameterized by a
set of [weight matrices 6 = VVZ-|§:1, where W; € RWi-1xN:) denotes the weight matrix
for layer ¢ of the neural network, and N; denotes the number of neurons in that layer.
Let us denote the dropout operation by d, such that d,(#) : R¥ — R is a stochastic
operation that sets each column in each W; in 6 to 0 with probability p. We can then

define the uncertainty L for an input z € R" as:

L(z,0) = Var(fq,e)(z)) (3.7)

Empirically, we can estimate this as

L(z,0) = éz fa,0)(@)" fa,0)() = E(fap0) () "Efa,0) () (3.8)

Essentially, we conduct C' independent stochastic forward passes through the
model with dropout at inference time, and use the sample variance of the outputs as
our uncertainty metric.

To estimate the uncertainty of our RL agent, we estimate the uncertainty of the
critic network, similar to other works [3, 71].

3.4 Generating Environments

One key assumption we make in the design of this algorithm is that, during train-
ing, we are interacting with a Procedural Content Generation (PCG) environment
[56]. A PCG environment is one that can take on different algorithmically created
configurations at the beginning of each training episode; for example, a PCG physics
simulation environment might be able to take on different gravity constants, friction
values, etc. .

We also assume that at least some of the PCG environment configuration variables
are continuous, and changeable.

In order to generate new environments at the frontier of the agent’s uncertainty,
we will backpropagate gradients from the uncertainty back to the state variable and
do gradient descent. This will allow us to find the state at which the agent is most
uncertain, and generate a new PCG environment that allows the agent to interact
with the world at that state.

Formally, assume that we have a PCG environment FE with some parameters
¢ € R* that are part of the agent’s initial state space S. That is, the state s, € R”
can be divided into ¢ and 35 := sp\¢ € R"*. We can define an objective function

CHAPTER 3. ACTIVE REINFORCEMENT LEARNING 15

that tries to maximize the uncertainty of the RL agent:

O(¢i, s0,0) = —L([9,%50], 0) (3.9)

where [] is the concatenation operator and L computes our uncertainty estimate. We
can then update ¢:

Giy1 = @i — NV 4,0(¢, S0,0) (3.10)

We call this procedure Active Reinforcement Learning (ActiveRL), as it is an
active learning method that seeks to identify what data would be most useful for the
RL agent.

Trying to identify parameters ¢ by attempting to maximize uncertainty can often
lead to unrealistic parameters that are outside of the test distribution, and not as
useful for learning. Thus, we integrate both hard constraints and soft constraints on
the ¢ generation process in ActiveRL. The hard constraints are useful when one is
trying to train an RL agent that generalizes over a certain region of the ¢ space, and
the soft constraints are useful when one is trying to train an RL agent that emphasizes
performance near a particular ¢g, which is still robust to different values of ¢.

The hard constraints constrain the search space within some lower and upper
limits specified by the user for ¢ using the extragradient [35] method. Suppose we
have a lower bound constraint ¢ > b for some b € R¥ and an upper bound constraint
¢ < a for some a € R*. Then we can express the Lagrangian as

L(¢, 80,0, A, 1) = O(, 50,0) + Z Ai(bi — &) + ZM(@ —a;) (3.11)

Now we can express the extragradient update. First, define the joint variable
w= (¢, \, u). We omit sg and @ from w and the parameters to £ as they will be kept
constant throughout the optimization process. Then, the extragradient optimization
process can be described as:

F(w) = [VyL(w), —ViL(w) — V,L(w)]" (3.12)
Wer1/2 = Polwe — nF(wy)] (3.13)
wir1 = Polwe — nF (wig1/2)] (3.14)

where Pq|-] is the projection onto the constraint set. Throughout this paper, we will
use the implementation of ExtragradientAdam from [23], which adjusts the learning
rate 1 for each parameter according to the Adam algorithm [34]. This constrained
optimization approach ensures that ¢ will stay within the specified bounds a and b,
helping to avoid unrealistic values of ¢.

In the setting where one is trying to train an RL agent that emphasizes per-
formance near a particular ¢y, which is still robust to different values of ¢, hard

CHAPTER 3. ACTIVE REINFORCEMENT LEARNING 16

constraints are not enough as they provide no guarantee that states near ¢ will be
sampled. Thus we can introduce a soft constraint to the objective function that seeks
to minimize the Euclidean distance from ¢ to ¢q.

O(¢i, 50,0) = —L([¢,50], 0) +7[|(d — ¢o)|l2 (3.15)

where v weights how much the soft constraint should be emphasized.
Pseudocode for ActiveRL can be found in section 3.4, and an illustration can be
found in fig. 3.1.

Algorithm 1 ActiveRL

1. procedure ACTIVERL(0, sg, N, T, 7,7, a,b,p)

2: > 0: policy parameters > sg: initial state to seed environment generation © T:
number of iterations to run PPO > n: number of iterations to optimize ¢ > n:
Learning rate for optimizing ¢ > v: Weight on soft constraint > a: Lower bounds
of ¢ > b: Upper bounds of ¢ > p: Probability of sampling in the default
environment ¢

3: ¢o < ExtractPhi(sg)

4: for t=0 to T do

5: for i=0 to N do

6: ¢ < ExtractPhi(sy)

7: O «+ —UncertaintyEstimate(fy, so) + 79 ¢
8: ¢ < ExtragradientUpdate(¢, O)

9: so = Concatenate([¢, Sq])

10: end for

11: 7 <— PPOCollect Trajectories(Ey)

12: 6 < PPOUpdate(r,0)

13: end for
14: Return 0
15: end procedure

3.5 Prioritized Level Replay

Prioritized Level Replay (PLR, [32]) is a state-of-the-art algorithm in the domain
of optimizing RL agents to generalize across PCG environments. PLR is a general
framework for selectively sampling training levels ! in environments with procedu-

In our case, a ”level” is just an environment configuration ¢. We use the term "level” in
describing PLR to be consistent with the original paper [32].

CHAPTER 3. ACTIVE REINFORCEMENT LEARNING 17

Algorithm 2 ActivePLR

1:
2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

procedure ACTIVEPLR(0, s, N,T,n,v,a,b,p)

> #: policy parameters > sg: initial state to seed environment generation > T:
number of iterations to run PPO > n: number of iterations to optimize ¢ © n:
Learning rate for optimizing ¢ > v: Weight on soft constraint > a: Lower bounds
of ¢ > b: Upper bounds of ¢ > p: Probability of sampling in the default
environment ¢y > ¢: Global episode counter > Ajeen: Visited levels > S: Global

level scores > C: Global level timestamps (when they were last sampled)
¢ <+ ExtractPhi(sg)
c—c+1

for t=0 to T do
Sample replay decision d ~ Pp

if d == 1 then
Sample ¢ ~ (1 - p) ’ P5(¢|Aseem S) +p- PC(¢|Aseem Ca C)
else

for i=0 to N do
¢ < ExtractPhi(sg)
O + —UncertaintyEstimate(fy, so) + 70 ¢o
¢ + ExtragradientUpdate(¢, O)
sp = Concatenate([¢, o))
end for
end if
Define new index i < | S| + 1
Add qbz A QS to Aseen
Add initial value S; =0 to S and C; =0 to C
7 <— CollectTrajectories(Ey)
Update score S; +— PPOValueLoss(7, 6) and timestamp C; < ¢
6 < PPOUpdate(r,0)
end for
Return 6
end procedure

CHAPTER 3. ACTIVE REINFORCEMENT LEARNING 18

rally generated content. The key idea is to prioritize levels (environment configura-
tions) with higher estimated learning potential when revisited in the future, thereby
adapting the sampling of training levels and improving both sample efficiency and
generalization performance.

To estimate the learning potential of a level, PLR utilizes the average magnitude
of the GAE loss over latest trajectory over that level, which is equivalent to the L1
loss of the value estimator of PPO. The value loss provides an effective measure of the
discrepancy between the agent’s current and target values, which can be used to esti-
mate the potential for future learning. [32] pose the ”Value Correction Hypothesis”:
the larger the value loss, the higher the learning potential of a given level.

In PLR, the sampling procedure is guided by the estimated learning potential of
each level. Levels with higher value loss are prioritized, inducing an emergent curricu-
lum of increasingly difficult levels. When deciding what environment configuration
to train on, PLR first samples d ~ Pp, to decide whether to sample a new level
from the training distribution A, or pick one from the replay buffer Ageen. [32]

parameterized Pp as a Bernoulli distribution with probability p = ||/[\‘:ee“‘ Since we
consider the setting where ¢ is continuous, A, is infinite. Thus we parameterize

Aseen
the denominator as a hyperparameter Nppg, so p = | [Ascen|

The probability of each level in the replay buffer bemg sampled is determined by
two components:
h(S;)'/#
> h(S;)P

where S; is the L1 value loss, h(S;) = 1/rank(S;) is a prioritization function, rank(.S;)
is the rank of S; among all the scores of levels in the replay buffer in descending order,

and
C — Cz
chec c—Gj

where ¢ is the count of total episodes sampled so far during training, and C; is the
episode count at which level ¢ was last used. Ps is a probability distribution that
places higher weight on levels with higher value loss. P¢ places higher weight on levels
that have not been seen in a while, whose recorded value loss may be less accurate.
Thus the final probability distribution over the replay buffer is

PS(li|Aseena) (316)

PC(lilAseau Ca C) = (317>

Preplay = (1 - P) . PS(li|Aseena S) + P PC(li|Aseena C, C) (318)

If we do not sample a new level from the replay buffer, we sample a new one from
the training distribution. We consider two possibilities for this sampling procedure:
sampling uniformly at random from the set of all possible training environments,
and selecting a training environment that maximizes uncertainty via ActiveRL. We

CHAPTER 3. ACTIVE REINFORCEMENT LEARNING 19

will refer to PLR with the former approach as just PLR, and the latter approach as

ActivePLR.
Pseudocode for ActiveRL can be found in section 3.4, and an illustration can be

found in fig. 3.1.

20

Chapter 4

Experiments to Assess Robustness
of ActiveRL to Extreme Weather
Conditions

4.1 Overview

In order to assess the efficacy of ActiveRL in training an RL agent that is robust to
extreme weather patterns, we conduct three experiments. These experiments use the
OpenAl Gym [7] environment Sinergym [33], which provides a testbed for RL HVAC
control agents and allows us to control the different weather conditions that those
agents experience. Our first experiment tests whether or not the ActiveRL agent is
robust to extreme weather patterns by evaluating its performances in different hand-
crafted extreme weather scenarios. Since these handcrafted environments may not
be necessarily representative of real weather patterns, we will also assess the perfor-
mance of the ActiveRL agent in controlling the HVAC for a building experiencing 120
different real weather patterns sampled from across the US in the second experiment.
Finally, because our method and RL in general rely heavily on training in simulation,
we evaluate whether the ActiveRL agent trained in simulation still performs well in
the "real world” (which we simulate with a higher fidelity simulation).

In this chapter, we will first describe the Sinergym environment, then go into
detail about the three experiments that we ran. The first experiment assesses each
HVAC control agent on handcrafted extreme environments. The second experiment
assesses each HVAC control agent on 120 different realistic weather patterns sampled
from across the US. Finally, the third experiment assesses how well the HVAC control
agents that were trained in the Sinergym simulation fare in the real world (approx-
imated by a more accurate Sinergym simulation). A visual illustration of Sinergym

CHAPTER 4. EXPERIMENTS TO ASSESS ROBUSTNESS OF ACTIVERL TO
EXTREME WEATHER CONDITIONS 21

and the three experiments are shown in fig. 4.1.

4.2 Sinergym Environment for Simulating HVAC
Control in Buildings

In order to test whether or not ActiveRL gives rise to more robust RL agents, we
apply it to a realistic application: RL for heating, ventilation, and air conditioning
(HVAC) control in the face of extreme weather events. There exists a rich body of
work on the use of RL for HVAC control [73, 41, 16, 55], and it has high potential
to help save energy while enhancing resident comfort at the same time. These RL
systems take into account features of the world around them, such as the indoor
and outdoor temperature, humidity, occupant count, etc. in order to control HVAC
systems. However, as climate change continues, the frequency of extreme weather
events and unusual weather conditions [31] will increase. Thus, it is imperative that
we ensure our RL systems are robust to states that may have been uncommon in
their training distribution, such as extreme droughts, storms, or cold snaps.

General Description

We use a modified version of the Sinergym [33] OpenAl Gym [7] environment to
simulate buildings in different weather conditions. The environment utilizes the En-
ergyPlus [14] building energy simulation engine to model the dynamics of building
systems, including HVAC, lighting, and other energy-consuming components in re-
sponse to simulated occupants and weather. We use the ”5Zone” building provided
with Sinergym, which is a 463.6m? single-story building equipped with a DX cooling
coil and gas heating coils that is divided into 5 zones (1 indoor and 4 outdoor).

The action space in the Sinergym environment is a continuous, multi-dimensional
vector, denoted as A C R™, where m is the number of action variables. The action
space defines the set of control decisions that can be made to influence the building’s
performance. For the 5Zone building, we use a two-dimensional action space, where
the agent can control the heating and cooling setpoints for the HVAC systems.

We use a reward function that encourages the agent to find policies that both
maximize occupant comfort and minimize energy use. To quantify occupant comfort,
we use the Fanger Percentage of People Dissatisfied (PPD, [20]) metric predicted by
EnergyPlus. Energy use is just the total HVAC electricity demand rate throughout
the whole building in Watts. The reward can be formulated as:

Rt = —pP* >\E * Pt - (]- - P) * AP * PPDt *]]-(occupancyt>0) * I]-PPDt>20 (4]->

CHAPTER 4. EXPERIMENTS TO ASSESS ROBUSTNESS OF ACTIVERL TO
EXTREME WEATHER CONDITIONS 22

where p is a hyperparameter that controls how much to weight comfort against energy
use, P, is the electricity demand rate, Ag and Ap are scaling factors that ensure that
the PPD units (%) are comparable to the power units (W), Liccupancy, > 0) is an
indicator variable that ensures the agent is not penalized for uncomfortable conditions
when there are no occupants, and 1ppp,~2o ensures the agent is not penalized if the
PPD is below the ASHRAE comfort threshold of 20% [4]. For our experiments, we
use Ag = 0.0001, A\p = 0.1, p=0.5.

The state space in the Sinergym environment is a continuous, multi-dimensional
representation of the building’s current conditions, capturing various aspects of its
performance. The state space is denoted as & C R", where n is the number of state
variables. Since we are using the ”5Zone” building, the state space is 20 dimensional,
and includes:

1. Indoor air temperature (°C) for each thermal zone,
2. Relative humidity (%) for each thermal zone,

3. Outdoor air temperature® (°C),

4. Outdoor relative humidity* (%),

5. Zone thermal comfort clothing value,

6. Zone thermal comfort,

Current HVAC setpoints,

o N

Wind speed* and direction®,

9. Facility total HVAC electricity demand rate,
10. Solar irradiance® (W /m?),
11. Occupancy count, and

12. The current date (year, month, day, hour)

Environment Configuration Parameters that Change
Weather Patterns in Sinergym
In order to simulate the outdoor weather, Sinergym takes as input a file that con-

tains hourly measurements of each of the outdoor weather variables denoted with a
*7 above, as well as several others. Originally, Sinergym added noise to the measured

CHAPTER 4. EXPERIMENTS TO ASSESS ROBUSTNESS OF ACTIVERL TO
EXTREME WEATHER CONDITIONS 23

outdoor temperature through an Ornstein-Uhlenbeck (OU, [19]) process, to help pre-
vent overfitting the RL agent to the static weather pattern. We modified Sinergym
so that it could add this noise to the other weather variables denoted with a '* as
well. An OU process has three parameters: o, u, and 7. If we have a noise vector x;,
then

Tpp1 = xp + dt * (—(xp — p)/7) + 0 * \/gZ (4.2)

where Z ~ Normal(0,1). so o controls the magnitude of the noise that is added, p
is the average value of the noise, and 7 determines how quickly the noise reverts to
the mean. Notably, if we have a recorded weather variable w;, then adding the noise
results in Mean,, ,,, = Mean,, + p. For each of our 5 weather variables, we estimate
realistic values for o and 7 by doing linear regression of the difference between that
weather variable and its moving average. That is, if we assume our recorded weather
variable w; was generated via adding noise generated through an OU process, then we
can generate measurements z; = w; — MA(w;), where MA is the moving average. By
applying linear regression onto the generated x;’s, we can estimate values of ¢ and 7
that will generate weather with a similar amount of noise to real weather conditions.
A detailed description of this linear regression process is detailed in section 4.4.
Since we have reasonable values for o and 7 for each weather variable, we have 5
remaining parameters that can be used to customize the configuration of Sinergym:
the u offset parameters for each weather variable. Thus the ¢ for Sinergym that
we will be varying to attempt to train a robust RL agent, is the 5 dimensional
vector < iy, fta, U3, [, fi5 >. Essentially, we will be changing the average outdoor
temperature, relative humidity, wind speed, wind direction, and solar irradiance over
the course of the building simulation. Varying the environment configuration ¢ € R?
enables us to collect training data from different outdoor weather conditions.

Baseline Algorithms for HVAC Control

We will compare ActiveRL against several baseline algorithms to assess its efficacy in
comparison to other HVAC control and PCG environment contol algorithms. First,
we will discuss RL-based baselines like PPO, domain-randomization with PPO, and
PLR with PPO. Then we will discuss some simple Non-RL baselines like a random
controller and a heuristic, rule-based controller.

RL Baselines

Our most basic RL baseline is a PPO agent composed of a standard neural network
with two layers, each with 256 neurons, using dropout and ReLU activations, that is
trained on only ¢y.

CHAPTER 4. EXPERIMENTS TO ASSESS ROBUSTNESS OF ACTIVERL TO
EXTREME WEATHER CONDITIONS 24

A Energy Plus Simulated Building

r: Thermal Comfort +
Energy Use

a,: HVAC
Setpoints 0,: Sensor

Readings

Figure 4.1: The Sinergym environment. A. A breakdown of the Sinergym environ-
ment. A simulated building sends sensor data as observations to an RL agent, which
responds with HVAC setpoints as actions, and is rewarded according to energy use and
thermal comfort. B. We conduct three experiments using the Sinergym environment:
evaluating our agents in handcrafted extreme weather conditions, in a Sinergym sim-
ulation with higher fidelity than during training to simulate the Sim2Real jump, and
in realistic weather conditions sampled from across the US.

CHAPTER 4. EXPERIMENTS TO ASSESS ROBUSTNESS OF ACTIVERL TO
EXTREME WEATHER CONDITIONS 25

The most common method of training agents that generalize across PCG environ-
ments is domain randomization, where environment configurations are just selected
uniformly at random. This method is frequently used to ensure that agents trained
in simulation can effectively transfer from simulation to the real world [10, 65, 64].
In the buildings domain, [30, 18] used domain randomization to train an RL energy
pricing agent that would be robust to the Sim2Real transfer. In our setting: we have
some lower bounds a € R® and upper bounds b € R® for each variable, described in
table 4.1. We simply sample a ¢ ~ Uniform(a,b).

Our last RL-based baseline, PLR, is described in section 3.5.

Non-RL Baselines

In addition to the Domain Randomization, RL, and PLR baselines, we also use a
simple rule-based controller (RBC) based on the one that is provided with Sinergym
as a baseline, and a random controller.

The random controller simply outputs a cooling setpoint at random a[0] ~ Uni form(22.5,30.0)
and a random heating setpoint a[l] ~ Uniform(15,22.5). The specific values are
taken from Sinergym.

The RBC sets the heating setpoint to 26°C' and the cooling setpoint to 29°C’
during the summer. During the winter, it sets heating to 20°C' and cooling to 23.5°C.
This part of the RBC is the same as the RBC provided by Sinergym, and generally
follows the philosophy of setting the desired temperature range higher in the summer
and lower in the winter to minimize energy consumption, since it is more difficult to
cool the building during the summer due to high outdoor temperatures, and difficult
to heat the building during the winter due to low temperatures.

We added an additional rule that if no occupants are detected in the building,
the RBC sets heating to 0°C' and cooling to 50°C’; this is a wide enough range that
the HVAC system is essentially turned off during these times. We added this new
occupancy-based rule for the sake of a fair comparison with a realistic RBC because
we included occupancy information in the reward.

Implementation Details

Unless specified otherwise, all the experiments we run are simulated with a timestep
dt of 1 hour. That is, EnergyPlus simulates the building dynamics with a timestep
of 1 hour, and the RL agent gets to change the temperature setpoints each hour.
In section 5.4 we will explore how we estimate the Sim2Real gap by increasing the
EnergyPlus simulation fidelity by decreasing its timestep length dt to 0.25hours during
evaluation.

CHAPTER 4. EXPERIMENTS TO ASSESS ROBUSTNESS OF ACTIVERL TO
EXTREME WEATHER CONDITIONS 26

For ActiveRL, ActivePLR, Domain Randomization, and PLR, we bound our
search to between the lower and upper bounds for each of the environment con-
figuration variables provided by Sinergym. We provide a table of these bounds in
table 4.1.

We pick the base weather configuration ¢ to be one of Sinergym’s default weather
patterns. This weather pattern is based on a Typical Meteorological Year (TMY)
recording of hourly meteorological data that spans 1 year (8760 hours) of weather
from Davis-Monthan, Arizona. We believed that an RL controller trained in this hot,
dry environment would likely have problems adapting to extreme weather events like
cold snaps that we could help solve with ActiveRL. More details about the TMY
data can be found section 4.4.

For all experiments except for the US weather experiment described in section 4.4,
we run each algorithm over 5 random seeds. In section 4.4 we use the random seeds
which got the median average reward for each algorithm in the handcrafted extreme
weather evaluation described in section 4.3 due to computational constraints.

Table 4.1: Bounds for Sinergym environment configuration variables

Weather Variable Lower Bound Upper Bound
Outdoor Air

Temperature (°C) —aL T
O ity () : 100
Outdoor(Iz\;lsr;d Speed 0.0 23.1

Diroetion (). ! 360
Direct Solar 0 1033

Radiation Rate (W)

INote that all other algorithms share these hyperparameters

2We use the default parameters from [32] for the PLR part of ActivePLR because our hyper-
parameter sweep showed that none of the PLR-specific hyperparameters made much of a difference
for ActivePLR. Other hyperparameters are the same as ActiveRL

CHAPTER 4. EXPERIMENTS TO ASSESS ROBUSTNESS OF ACTIVERL TO
EXTREME WEATHER CONDITIONS 27

Table 4.2: Relevant hyperparameters

Algorithm Hyperparameters
Ir=0.00005, clip_param= 0.3,
PPO ! discount_factor= 0.8, pgropoutr = 0.1,

of inner SGD steps= 40

V= O5a n= OOL Pdropout = 017
N=91,C=10

PLR p =0.045, p = 0.0015, Nprg = 10
ActivePLR 2 p=0.1,3=0.1, Npp g = 100

ActiveRL

4.3 Evaluating ActiveRL’s Robustness to
Extreme Weather Events

In order to evaluate how robust agents trained by each algorithm are to extreme
weather events, we evaluate the agent as it trains in a suite of 5 different extreme
weather environments, parameterized by 5 different ¢ weather configurations. The
agent is trained on a mix of the base environment ¢y, and automatically generated
environments, depending on the algorithm. It is then evaluated in the following
environments:

e ¢; simulates an extremely hot and dry drought
e ¢, simulates a wet and windy storm

e ¢3 simulates a humid heatwave

e ¢, simulates a cold snap

e ¢5 simulates erratic weather

Our hypothesis is that using uncertainty to identify new environments
to collect data from will allow us to train RL agents that are more robust
to extreme weather conditions.

In order to find hyperparameters that worked well for each method, we first con-
ducted a hyperparameter sweep over parameters for PPO, such as the clipping thresh-
old, number of internal update steps, and learning rate. We then conducted a hy-
perparameter sweep for each of the different UED algorithms. The sweep ranges are

CHAPTER 4. EXPERIMENTS TO ASSESS ROBUSTNESS OF ACTIVERL TO
EXTREME WEATHER CONDITIONS 28

detailed in table 4.3, and the final values in table 4.2. A detailed exploration of how
hyperparameters interact with ActiveRL can be found in section 5.5.

Table 4.3: Hyperparameter sweep ranges

Algorithm Hyperparameters included in Sweep

Ire {0.0005, 0.00005, 0.000005},
clip_parame {0.1,0.2,0.3},

3
PPO discount_factore {0.8,0.9,0.99}, # of inner
SGD stepse 20, 30, 40
. v € {0,0.0005,0.005,0.05,0.5}, n € [e719 1],
ActiveRL Daropout € {0.1,0.25,0.5}, N € [1,100]
pele 1), el 1],
PLR Nprr € {10, 50,100,200}
v € {0,0.0005,0.005,0.05,0.5}, n € [e71°,1],
ActivePLR Paropout € {0.1,0.25,0.5}, N € [1,100],

p€Eled 1], Bele?d,
Nprg € {10,50,100,200}

4.4 FEvaluating ActiveRL’s Generalization to US
Weather Conditions

Since we handcrafted the extreme weather environments in section 4.3, it is possible
that these environments are unrealistic. In order to properly assess the viability of
our RL HVAC controller in a range of different weather scenarios, we constructed
a dataset of 120 randomly sampled, recorded weather patterns from across the US.
We deployed the HVAC controller for ActiveRL and each baseline in a building that
simulated each of those 120 weather patterns.

To construct the dataset of 120 weather patterns, we first scraped the EnergyPlus
weather data website? to get recorded weather patterns from across the US. These
were Typical Meteorological Year (TMY) weather patterns [69] from NREL, which
contain hourly meteorological information® from specific weather stations over the

3Note that all other algorithms share these hyperparameters
“https://energyplus.net /weather
Se.g. temperature, humidity, wind, etc.

CHAPTER 4. EXPERIMENTS TO ASSESS ROBUSTNESS OF ACTIVERL TO
EXTREME WEATHER CONDITIONS 29

course of 1 year (8760 hours). This meteorological information is specially collated
from multiple historical recordings of the weather data in that location to present the
range of weather phenomena that typically occur there, while still keeping to annual
averages that are consistent with long term averages for that location. TMY weather
data is used often for building simulations.

After we obtained a dataset of historical weather data recordings, we converted
them into a realistic dataset of environment configuration parameters ¢. We modeled
each weather variable in each weather pattern as a variation generated by an OU
process(eq. (4.2)) from the corresponding weather variable in the base environment
configuration ¢¢. Formally, let us suppose we have some recorded weather variable
y € R87%0 corresponding to the value of that weather variable for each hour in a year.
We also have a recording corresponding to the base environment ¢, y° € R37%Y. Since
Sinergym takes the parameters of an OU process as its environment configuration,
we model the difference z; = y; — y? as having been generated from an OU process,
like in eq. (4.2). We rearrange the terms in eq. (4.2) as

dt dt 2
ZEH_l:(l—?) t‘l—’u——FO' \/:Z (43)

Tiy1 = My +b+FE (44)

where m = (1 — %), b = Tt, and £ = o * \/gZ. We can then run linear regression

to find what parameters m and b estimate x;,; from x while minimizing the error
term E. Once we have estimated m and b with linear regression, we can compute

the residual error £ = x;,1 — ma; — b and compute the standard deviation of E as

2 . Var(E)

an estimate for o x \/7 Finally, we can estimate 7 = s =7 0 =
T 1-m dt 2

We then repeat this process for each of the 120 US Weather patterns, for each of the
5 weather variables that compose the environment configuration: outdoor humidity,
air temperature, wind speed, wind direction, and solar irradiance. Thus we have a
dataset® X € R!29%5%3 of environment configurations” that Sinergym can take in and
simulate.

Our hypothesis is that by conducting an uncertainty-driven environ-
ment exploration that is constrained to realistic environments, ActiveRL
will be able to generalize to different weather patterns across the US better

6The final 3 dimension comes from the fact that we have 3 variables u, o, T for the OU process
for each weather variable

"Note that the environment configuration variables that go into ActiveRL, PLR, or Domain
Randomization ¢ € R? are a subset of the full R°*3 environment configuration that can be provided
to Sinergym, as ¢ only contains the offset parameters pu.

CHAPTER 4. EXPERIMENTS TO ASSESS ROBUSTNESS OF ACTIVERL TO
EXTREME WEATHER CONDITIONS 30

than the baseline methods. In particular, our hypothesis for Domain Random-
ization and PLR is that they will end up training the RL algorithm to focus on
performing well in unrealistic environments, and cause performance to degrade on
this set of more realistic environments.

4.5 FEvaluating ActiveRL’s Generalization from
Sim2Real

One flaw in this work and UED algorithms in general is that a simulator is required
to train the model in different environments. Thus it is important to ask whether or
not the RL policies trained in simulation can be extended to the real world.

In order to test this, we evaluated each RL algorithm in each of the 6 environ-
ments by running the EnergyPlus simulator at a higher fidelity than the agents were
trained on, thus simulating the ”Sim2Real” jump. The agents were trained on a sim-
ulator operating at a granularity of dt = lhour per timestep, and we evaluate on a
granularity of dt = 0.25hours per timestep. During evaluation, each of the RL agents’
actions are simply repeated four times so that it still takes an action every hour.

The Sim2Real problem occurs because modeling errors in the low fidelity training
simulation will cause the vanilla RL agent to learn a policy based on inaccurate en-
vironment dynamics. When the RL agent is deployed in the "real world” or a higher
fidelity simulation, it will make control errors that compound to cause the agent
to take actions that will take it out of state space supported by the training data
distribution, which will cause further performance degradation. Our hypothesis is
that by increasing the state space supported by the training data distribu-
tion, ActiveRL will help the agent be more robust to compounding errors
caused by the Sim2Real jump.

4.6 Ablations Exploring Components of
ActiveRL

It is common in machine learning papers to provide an idea of how important each
component of one’s method is to its overall performance by performing ”ablation”
experiments. These ablation experiments remove or modify components or hyperpa-
rameters in the algorithm in order to better understand how those components and
hyperparameters affect the overall performance.

In order to further understand the driving factors behind the performance of
ActiveRL, we conducted two ablation experiments. First, we explored the impact of

CHAPTER 4. EXPERIMENTS TO ASSESS ROBUSTNESS OF ACTIVERL TO
EXTREME WEATHER CONDITIONS 31

the ~ soft constraint term. Second, we explored the impact of the learning rate 1 on
the performance of ActiveRL.

Constraints

First, we explore the necessity of constraining ActiveRL from generating environment
configurations ¢ that are too far away from ¢q. v shows up in eq. (3.15), as a coefficient
that regulates how much the distance of the generated environment configuration ¢
from the base environment ¢, contributes to the objective function of ActiveRL. As
~ increases, the algorithm is encouraged to generate values of ¢ that are closer to
¢o. We varied v between four different values {0, 0.005, 0.05, 0.5} while keeping the
other hyperparameters the same as our other experiments to better understand how
the algorithm performs under different constraint strengths.

Our hypothesis with this experiment was that there would be a tradeoff
between performance in the extreme environments, and performance in
the base environment ¢, that would be modulated by ~.

Learning Rate

The learning rate 1 determines the step-size used by the Adam optimizer when Ac-
tiveRL is conducting gradient descent on ¢. The smaller 7 is, the more fine-grained
the search for an uncertain environment configuration becomes. We mainly explore
this hyperparameter to assess how sensitive ActiveRL is to the user’s choice of n; if
there are many values of 1 that yield optimal performance, then ActiveRL becomes
much easier to use for other problems. We varied n between five different values
{0.0001,0.001,0.01,0.1, 1.0} while keeping the other hyperparameters the same as
our other experiments.

Our hypothesis for this experiment was that there would be some op-
timal value of n that yielded the best performance by striking the perfect
balance between being large enough to avoid local minima, and being small
enough to actually converge.

32

Chapter 5

ActiveRL Experimental Results

5.1 Overview

In this chapter, we will present the results of the experiments described in chapter 4.

First, we will discuss how well the ActiveRL agent performs in HVAC control
on handcrafted extreme environments. Then we will assess its performance on 120
different realistic weather patterns sampled from across the US. Finally, we will esti-
mate the performance that actually deploying an ActiveRL trained HVAC controller
on the real world might have. Finally, we will explore what effect that different
hyperparameters have on ActiveRL.

5.2 ActiveRL is Robust to Extreme Weather
Events

In order to evaluate how robust agents trained by each algorithm are to extreme
weather events, we evaluate the agent over the course of the training process, in
a suite of 5 different extreme weather environments, parameterized by 5 different
¢ weather configurations. The agent is trained on either the base environment ¢
(vanilla RL) or automatically generated environments (Domain Randomization, PLR,
ActiveRL, ActivePLR), depending on the algorithm. It is then evaluated in the
following environments:

¢ simulates an extremely hot and dry drought, ¢, simulates a wet and windy
storm, ¢3 simulates a humid heatwave, ¢, simulates a cold snap, and ¢5 simulates
erratic weather.

Our hypothesis is that using uncertainty to identify regions of the state
space to collect data from will allow us to train RL agents that are more

CHAPTER 5. ACTIVERL EXPERIMENTAL RESULTS 33

robust to extreme weather conditions.

Visualizations of the performance of each algorithm in each environment can be
seen in fig. 5.1.

Surprisingly, Domain randomization and PLR did not have significant improve-
ments over the vanilla RL algorithm. By the end of training, domain randomization
and PLR achieved 9% higher reward than the RBC on the base environment ¢q after
3M timesteps of training. However, the vanilla RL policy had a 9% improvement over
the domain randomization and PLR policies with ¢g. Over the 5 extreme weather
environments, domain randomization only did about as well as the RBC. This may
mean that the environments generated using domain randomization were too unre-
alistic to be useful for learning how to perform in extreme weather conditions. Over
the extreme weather conditions, PLR did beat domain randomization and the RBC,
but still performed worse than the vanilla RL policy. This suggests that, because
PLR uses domain randomization to sample new environments, it still suffers from
generating unrealistic environments. However, its prioritized environment resam-
pling procedure helps it generalize across all environments better than naive domain
randomization, even though it is resampling from unrealistic environments.

We found that training the HVAC controller with ActiveRL resulted in agents
that performed better in both the extreme environments and the base environment.
Generally, ActiveRL and ActivePLR performed similarly. In three out of the five ex-
treme environments, the hot drought, cold and windy, and cold snap environments,
ActiveRL performed significantly better than all other baselines and performed com-
petitively in the remaining two environments. In the base environment, ActiveRL
and ActivePLR provide a 9% improvement over vanilla RL, and a 24% improvement
over RBC. Over all 6 environments, it provides a 3% improvement over vanilla RL.
The fact that ActiveRL significantly outperforms all baselines indicates that there
is considerable value in seeking out realistic new training environments that maxi-
mize an agent’s uncertainty rather than choosing environments at random or merely
replaying old ones.

5.3 ActiveRL Generalizes to US Weather
Conditions

Although the ActiveRL agent seems to perform well in these handcrafted extreme
weather conditions, it is possible that these environments are unrealistic. In order
to properly assess the viability of our RL HVAC controller in a range of different
weather scenarios, we deployed the HVAC controller for ActiveRL and each baseline
in a building that simulated each of those 120 different weather patterns sampled

CHAPTER 5. ACTIVERL EXPERIMENTAL RESULTS 34

LY TP
= I-Z'-LR A~ /\"‘_/ s
v

/ RBC -1.00
Domain Randomization 2

—— Active-PLR g
Active-RL 2

— — RL -1.05

—— Random

0 1 2 3 0 1 2 3
Timesteps 1e6 Timesteps et

-1.75

Timesteps . Timesteps 1e8 Timesteps o

(o)
o

Figure 5.1: Performance of each algorithm on training an RL HVAC agent, tested
on various weather patterns. ActiveRL and ActivePLR outperform all baselines.
We report the standard error of the mean over 5 trials for each result. A. Average
reward achieved by each algorithm on the base environment ¢ throughout training.
B. Average reward achieved by each algorithm averaged over all 6 environments
throughout training. C. Average reward achieved by each algorithm in each of the 5
extreme weather environments throughout training. Note that none of the algorithms
were trained on these specific extreme weather environments.

CHAPTER 5. ACTIVERL EXPERIMENTAL RESULTS 35

30 1 | 29.11

24.065

%]
o
L
l
|

£13.984

=
o
I

fn.ﬁ-

over Baseline (%)

E5.044
1752

T T T T T
Random RL PLR REBC Active-PLR Domain
Randomization

ActiveRL Reward Improvement

Baseline

Figure 5.2: Improvement in reward achieved by using ActiveRL instead of each base-
line, on 120 randomly sampled weather patterns from across the US. A higher number
here indicates that ActiveRL performs well in comparison to that baseline. On the
other hand, a higher number indicates the baseline performs poorly.

CHAPTER 5. ACTIVERL EXPERIMENTAL RESULTS 36

from across the US.

On all 120 environments, ActiveRL achieves a higher reward than every baseline,
showing that our uncertainty-driven UED approach can train an RL HVAC agent
that is more robust to realistic extreme weather patterns than any of our baselines.
Since ActiveRL outperforms all the baselines on every environment, we visualize how
much better the reward achieved by ActiveRL is relative to each baseline in each of
the 120 different weather patterns in fig. 5.2. The median improvement of ActiveRL
over the RBC is 24%. Over vanilla RL, it is 5%.

Interestingly, there is a very small improvement using ActiveRL over ActivePLR;
this, combined with the similar performance between ActiveRL and ActivePLR from
section 5.2 suggests that ActiveRL and ActivePLR have very similar behavior. One
possible reason is that there may be some attractive local (or global) optimum that
both algorithms fall into, resulting in them appearing to have similar performance.
Another possible reason is that since PLR tries to sample environment configurations
that result in high value loss, and ActiveRL tries to sample environment configu-
rations that result in high value uncertainty, PLR and ActiveRL actually optimize
for very similar objectives. Thus ActiveRL and ActivePLR end up having similar
behavior, at least with respect to their responses to weather. One advantage that
ActiveRL has in optimizing for uncertainty rather than value loss is that it can be
used to identify novel environments to learn from rather than having to sample from
old ones, or worry about the staleness of the value loss estimates of the environments
in the replay buffer.

There is a significant difference between both Domain Randomization and PLR,
and vanilla RL. Both UED methods seem to perform poorly compared to vanilla RL.
This seems to indicate that randomly sampling environment configuration param-
eters results in environments that are very unrealistic, causing poor generalization
performance compared to the vanilla RL algorithm or ActiveRL. Although PLR has
the ability to control what environments in its replay buffer are sampled, its replay
buffer is still populated through the same uniform random sampling process as used
in Domain Randomization, resulting in training on unrealistic environments.

5.4 ActiveRL Generalizes from Simulation to
Reality (Sim2Real)

One flaw in this work and UED algorithms in general is that a simulator is required
to train the model in different environments. Thus it is important to ask whether
or not the RL policies trained in simulation can be extended to the real world. In
order to test this, we evaluated each RL algorithm in each of the 6 environments by

CHAPTER 5. ACTIVERL EXPERIMENTAL RESULTS 37

running the EnergyPlus simulator at a higher fidelity than the agents were trained
on, thus simulating the ”Sim2Real” jump. The agents were trained on a simulator
operating at a granularity of 1 hour per timestep, and we evaluate on a granularity
of 15 minutes per timestep. During evaluation, each of the RL agents’ actions are
simply repeated four times so that it still takes an action every hour. Essentially, all
the RL agents are evaluated in a simulation that is four times more realistic than the
one that they were trained on.

An illustration of the performances of each algorithm on each of the 6 handcrafted
environments from section 5.2 are shown in fig. 5.3.

When the agents are transferred from the simulation to our surrogate for the real
world, we see that there is a significant performance drop across all algorithms. In
particular, regular RL achieves a reward that is 8.5% lower on average across the
6 handcrafted environments when evaluated on the higher fidelity simulation. We
see that Domain Randomization and PLR have smaller relative drops of about 7%.
However, since the 7% is relative to the performance of Domain Randomization and
PLR in the original low fidelity simulation, vanilla RL still performs better in terms
of absolute reward over the six environments, as can be seen in fig. 5.3.A.

Random and RBC have very small or no relative performance degradation, which
is to be expected because they are not data-driven models. They still perform the
worst in terms of absolute reward.

ActiveRL and ActivePLR, however, achieve both smaller relative drops in perfor-
mance and higher absolute reward across all the different extreme weather scenarios.
ActiveRL has only a 6.1% relative drop in reward while ActivePLR has only a 3.1%
relative drop. These are promising results that indicate that these algorithms would
still perform well if deployed in the real world after being trained in simulation. Fur-
thermore, these algorithms result in agents that are more robust to the Sim2Real
transfer than other methods.

We found that ActivePLR actually makes the agent more robust to the Sim2Real
transfer than ActiveRL, which is a surprising result since ActivePLR did not appear
to be significantly different from ActiveRL in the previous two experiments. It is
possible that there is some attractive local optimum in the HVAC control task in the
low fidelity simulation that both ActivePLR and ActiveRL fall into, resulting in them
having similar performance in the experiments described in section 5.2 and section 5.3.
Once they are evaluated in the higher fidelity simulation however, this local optimum
may not exist anymore, resulting in the more robust method, ActivePLR, shining
through. As for why ActivePLR seems to be more robust, perhaps the recorded value
loss that PLR and ActivePLR use is a stronger signal than the value uncertainty than
ActiveRL uses since the value loss is obtained by actually collecting data while the
value uncertainty is estimated using only the model weights through the Monte Carlo
Dropout process.

CHAPTER 5. ACTIVERL EXPERIMENTAL RESULTS 38

0.0,
-0.5 = -
=
= =
3
< —1.0 2
]
o
o
o B PLR
< B RBC
-15 Domain Randomization
I Active-PLR
Active-RL
s RL -
—2.01 W= Random
Base Dry+Hot Wet+Windy Wet+Hot Dry+Cold Erratic Average
8.563
7.176 T‘i:?g
7.5
6.118
L]
2~
@ R
E c 5.0+
o o
ts
&3
o ® 3.135
20
e}
TA 1.659
=2 5
&
0.532
0.0
PLR RBC Domain Active-PLR Active-RL RL Random

Randomization

Figure 5.3: Results of Sim2Real experiments. All error bars represent the standard
error of the mean over 5 trials. A. Each controller is trained on a building simulation
with dt = lhour and evaluated on a simulation with higher fidelity d¢ = 0.25hours
for the base environment configuration ¢y and five handcrafted extreme weather sce-
narios. The rightmost bars show the average performance of each algorithm over all
6 scenarios. B. The average drop in reward over all environments when evaluating in
the higher fidelity simulation compared to evaluation in the lower fidelity simulation.
Lower is better here.

CHAPTER 5. ACTIVERL EXPERIMENTAL RESULTS 39

5.5 Ablations Exploring Components of
ActiveRL

In order to assess what factors contribute to the performance of ActiveRL, we ran
some ablation experiments described in detail in section 4.6 that show how ActiveRL
changes as certain hyperparameters change. We look at the v hyperparameter that
controls the strength of the soft constraint on ActiveRL’s environment design process,
and the n parameter that controls the step-size of the optimization procedure used
to generate new environments. The results of changing these two parameters can be
seen in fig. 5.4, where panel A corresponds to testing different values of v and panel
B corresponds to different values of 7.

Contrary to our original hypothesis that there would be some tradeoff between
realism and robustness modulated by v, we actually found that having a relatively
high value of v contributes to good performance in both the base environment and
the extreme environments. There was a clear pattern that larger values of v cor-
related well with better performance. This may be because ActiveRL will generate
more unrealistic environment configurations ¢ with weaker regularization that are
not similar enough to ¢ and the extreme environments to aid performance in those
settings.

We found that smaller values of 1 helped performance across all environments,
but decreasing it below 0.001 did not change the agent’s learning trajectory at all. It
is possible that having a large n results in an unstable gradient descent process which
is unable to successfully find a ¢ that maximizes the agent’s uncertainty.

CHAPTER 5. ACTIVERL EXPERIMENTAL RESULTS 40

A
-1.00
T e 4 '
g ‘; 4
7] 1F]
o o I'V/ o
st | A
0 1 2 3
Timesteps 1e8
B P
—-0.35 —-0.975
—1.000
o
5 —0.40 -1.025
H
o
—1.050
—0.45
—-1.075
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
Timesteps ¥ Timesteps 16

Figure 5.4: Ablation A. We explore how the v regularization parameter affects
the performance of ActiveRL. Higher values of v mean that ActiveRL is forced to
propose training environment configurations ¢ that are close to the base environment
¢o. The left graph shows the average reward obtained throughout training on the
base environment ¢y. The right graph shows the reward averaged over ¢y and the 5
extreme weather environments. ActiveRL seems quite sensitive to . B. Similarly,
we explore how the 7 learning rate parameter affects ActiveRL. 7 is the learning rate
used by ActiveRL to conduct gradient descent on ¢. Higher values of 7 means a
coarser-grained search for the ¢ that maximizes the agent’s uncertainty. ActiveRL
seems insensitive to 7 once it gets small enough (< 0.1).

41

Chapter 6

Conclusion and Future Work

6.1 Conclusion

We explored the utility of a novel uncertainty-driven, gradient based algorithm called
ActiveRL for unsupervised environment design in the context of training RL building
control agents that are robust to climate change. We found that incorporating un-
certainty into UED through ActiveRL led to HVAC controllers that better optimized
thermal comfort and energy usage, even in extreme weather scenarios that were never
in the training distribution. Our experiments showed that other UED algorithms per-
form poorly when generating new environment configurations for weather patterns
because they may output unrealistic weather patterns that do not help the RL agent
perform well in more realistic weather scenarios. These results held true for 120 dif-
ferent unseen, realistic weather scenarios sampled from across the US. Furthermore,
we showed that ActiveRL and its variant ActivePLR would have a much smaller
degradation in performance when transferring from the simulated domain to the real
world compared to other techniques, making them a practical option for training
robust RL HVAC agents that are ready for real deployment.

6.2 Limitations and Future Work

One limitation of ActiveRL is that it requires the environment configuration variables
to be continuous in order to conduct gradient descent. This could be mitigated
by applying dequantization techniques [15] that transform categorical variables into
continuous variables. By intelligently adding noise to one-hot categorical variables,
one can transform a categorical variable into a continuous one, through techniques
like uniform dequantization or variational dequantization [29]. The inputs to the
neural network RL agent then, will be continuous, so we can identify an environment

CHAPTER 6. CONCLUSION AND FUTURE WORK 42

configuration ¢ that maximizes uncertainty for that agent. We can then re-quantize
the continuous values of ¢ into a discrete representation we can feed into the simulator.

Another limitation of our work, and work that optimizes PCG environments in
general is that they rely heavily on simulations. We conducted some simulated exper-
iments to assess whether or not the policies learned in simulation can be transferred
to the real world in section 5.4, but ideally we would test this out in a real building.
There are probably many ways that real building HVAC control is different from
simulated HVAC control, even if we have Sinergym simulate the building with high
fidelity.

One limitation in the context of real-world deployment, is that we assume that
no sensors are ever faulty or noisy in our simulation. In the real world, this would
not be the case, as sensors often fail or become less accurate over time. A future
project could explore whether or not an uncertainty-driven approach could identify
which sensors that the agent is most reliant on and drop those in order to increase
robustness to faulty sensors. Building an RL agent that is robust to sensor failures
would greatly increase the viability of RL HVAC control in smart buildings.

6.3 Roadmap to Deployment

To close, we would like to give a brief description of the steps one might take to
deploy an RL HVAC controller like this into the real world.

The first step is to find or build some simulator ! that is reasonably accurate for
building control. One commonly used simulator is EnergyPlus [14]. Next, one would
identify how to transform this into an OpenAl Gym environment [7], as this is the
API that most RL libraries use to collect data from their simulated environments.
EnergyPlus has a Gym wrapper called Sinergym [33] that we use extensively in this
paper.

One should then identify what aspects of the building configuration can be changed
at the start of each simulation; these are the variables that ActiveRL (or other UED
algorithm) would attempt to optimize over to train a more robust RL agent. Then
the next step would be to actually train the RL agent in simulation using ActiveRL,
most likely employing some RL library like Stable Baselines[54] or RLLib [40].

After training the RL agent using ActiveRL in simulation, it is time to attempt
to deploy it in the real world. First one should fit their desired smart building
with sensors for indoor and outdoor temperature, occupancy, humidity, wind, etc;
everything that was included in the state space of the RL agent in the simulation.

'Note that one could also collect offline building control data from a real building and train the
RL agent using offline reinforcement learning techniques. However, this is only feasible if you have
access to a real building’s data.

CHAPTER 6. CONCLUSION AND FUTURE WORK 43

Then they should ensure that all the sensors and the HVAC systems can communicate
with some central server using, for example, the BACnet protocol [50]. This central
server can then host the trained RL agent, which will take in the sensor data as input
and send HVAC setpoints out through BACnet to the HVAC systems in the smart
building.

While the RL agent is deployed in the building, one should store all of the sensor
data, energy usage, and HVAC setpoint actions that the RL agent interacts with.
After enough data has been collected, one can update the RL agent using PPO on
that data, so that the RL agent can learn to take better actions in the real world,
and adapt to trends like climate change making regions warmer or cooler.

44

Bibliography

[10]

[11]

US Energy Information Administration. Annual Energy Outlook 2020. Govern-
ment Printing Office, 2011.

Abdul Afram and Farrokh Janabi-Sharifi. “Theory and applications of HVAC
control systems — A review of model predictive control (MPC)”. In: Building
and Environment 72 (2014), pp. 343-355.

Gaon An et al. “Uncertainty-based offline reinforcement learning with diver-
sified g-ensemble”. In: Advances in neural information processing systems 34
(2021), pp. 7436-7447.

ASHRAE ANSI and M Ashrae. “Standard 55—thermal environmental condi-
tions for human occupancy”. In: Amer. Soc. Heat, Refrigerat. Air Condition.
Eng 1451992 (2017).

Donald Azuatalam et al. “Reinforcement learning for whole-building HVAC
control and demand response”. In: Energy and AI 2 (2020), p. 100020.

Djallel Bouneffouf. “Exponentiated gradient exploration for active learning”.
In: Computers 5.1 (2016), p. 1.

Greg Brockman et al. “Openai gym. arXiv”. In: arXiv preprint arXiv:1606.01540
10 (2016).

Bingqing Chen, Zicheng Cai, and Mario Bergés. “Gnu-rl: A precocial reinforce-
ment learning solution for building hvac control using a differentiable mpc pol-
icy”. In: Proceedings of the 6th ACM international conference on systems for
energy-efficient buildings, cities, and transportation. 2019, pp. 316-325.

Richard Y Chen et al. “Ucb exploration via g-ensembles”. In: arXiv preprint
arXiv:1706.01502 (2017).

Xiaoyu Chen et al. “Understanding domain randomization for sim-to-real trans-
fer”. In: arXiv preprint arXiv:2110.03239 (2021).

Maxime Chevalier-Boisvert et al. “Babyai: A platform to study the sample
efficiency of grounded language learning”. In: arXww preprint arXiv:1810.08272
(2018).

BIBLIOGRAPHY 45

[12]

[13]
[14]

[15]

[19]
[20]

[21]

[22]

23]

Karl Cobbe et al. “Leveraging procedural generation to benchmark reinforce-
ment learning”. In: International conference on machine learning. PMLR. 2020,
pp. 2048-2056.

David Cohn, Les Atlas, and Richard Ladner. “Improving generalization with
active learning”. In: Machine learning 15 (1994), pp. 201-221.

Drury B Crawley et al. “EnergyPlus: creating a new-generation building energy
simulation program”. In: Energy and buildings 33.4 (2001), pp. 319-331.

Hari Prasanna Das and Costas J Spanos. “Improved dequantization and nor-
malization methods for tabular data pre-processing in smart buildings”. In:
Proceedings of the 9th ACM International Conference on Systems for Energy-
Efficient Buildings, Cities, and Transportation. 2022, pp. 168-177.

Xiangtian Deng, Yi Zhang, and He Qi. “Towards optimal HVAC control in non-
stationary building environments combining active change detection and deep
reinforcement learning”. In: Building and Environment (2022).

Michael Dennis et al. “Emergent complexity and zero-shot transfer via unsu-
pervised environment design”. In: Advances in neural information processing
systems 33 (2020), pp. 13049-13061.

Davy Didden et al. “Sample efficient reinforcement learning with domain ran-
domization for automated demand response in low-voltage grids”. In: IFEFE
Journal of Emerging and Selected Topics in Industrial Electronics 3.4 (2021),
pp. 891-900.

Joseph L Doob. “The Brownian movement and stochastic equations”. In: An-
nals of Mathematics (1942), pp. 351-369.

Poul O Fanger. “Calculation of thermal comfort: introduction of a basic comfort
equation”. In: ASHRAFE Trans, Part II 73 (1967), pp. 1114-1.

Bruno Faria et al. “The Joint Role of Batch Size and Query Strategy in Ac-
tive Learning-Based Prediction-A Case Study in the Heart Attack Domain”.
In: Progress in Artificial Intelligence: 21st EPIA Conference on Artificial Intel-
ligence, EPIA 2022, Lisbon, Portugal, August 31-September 2, 2022, Proceed-
ings. Springer. 2022, pp. 464-475.

Yarin Gal and Zoubin Ghahramani. “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning”. In: international conference
on machine learning. PMLR. 2016, pp. 1050-1059.

Jose Gallego-Posada and Juan Ramirez. Cooper: a toolkit for Lagrangian-based
constrained optimization. https://github.com/cooper-org/cooper. 2022.

BIBLIOGRAPHY 46

[24]

[25]
[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

Kai Gong et al. “Comprehensive review of modeling, structure, and integration
techniques of smart buildings in the cyber-physical-social system”. In: Frontiers
in Energy (2022), pp. 1-21.

Lindsay T Graham, Thomas Parkinson, and Stefano Schiavon. “Lessons learned
from 20 years of CBE’s occupant surveys”. In: Buildings and Cities 2.1 (2021).

Vijaykumar Gullapalli. “A stochastic reinforcement learning algorithm for learn-
ing real-valued functions”. In: Neural networks 3.6 (1990), pp. 671-692.

HADO van Hasselt, ARTHUR Guez, and DAVID Silver. “Deep Reinforce-
ment Learning with Double Q-learning. arXiv e-prints”. In: arXiv preprint
arXiv:1509.06461 (2015).

Hasan Hayat et al. “The state-of-the-art of sensors and environmental monitor-
ing technologies in buildings”. In: Sensors 19.17 (2019), p. 3648.

Jonathan Ho et al. “Flow++: Improving flow-based generative models with
variational dequantization and architecture design”. In: International Confer-
ence on Machine Learning. PMLR. 2019, pp. 2722-2730.

Doseok Jang et al. “Offline-online reinforcement learning for energy pricing in
office demand response: lowering energy and data costs”. In: Proceedings of the
S8th ACM International Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation. 2021, pp. 131-139.

Safieh Javadinejad et al. “Climate change management strategies to handle and
cope with extreme weather and climate events”. In: 2020.

Minqi Jiang, Edward Grefenstette, and Tim Rocktaschel. “Prioritized level re-
play”. In: International Conference on Machine Learning. PMLR. 2021, pp. 4940—
4950.

Javier Jiménez-Raboso et al. “Sinergym: A Building Simulation and Control
Framework for Training Reinforcement Learning Agents”. In: Proceedings of the
S8th ACM International Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation. New York, NY, USA: Association for Computing
Machinery, 2021, pp. 319-323. 1SBN: 9781450391146. poI: 10.1145/3486611.
3488729. URL: https://doi.org/10.1145/3486611.3488729.

Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980 (2014).

Galina M Korpelevich. “The extragradient method for finding saddle points
and other problems”. In: Matecon 12 (1976), pp. 7T47-756.

BIBLIOGRAPHY 47

[36]

[37]

[38]

[39]

Xiao Kou et al. “Model-Based and Data-Driven HVAC Control Strategies for
Residential Demand Response”. In: IEEE Open Access Journal of Power and
Energy 8 (2021), pp. 186-197.

Kuldeep R. Kurte et al. “Evaluating the Adaptability of Reinforcement Learn-
ing Based HVAC Control for Residential Houses”. In: Sustainability (2020).

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple
and scalable predictive uncertainty estimation using deep ensembles”. In: Ad-
vances in neural information processing systems 30 (2017).

Kimin Lee et al. “Sunrise: A simple unified framework for ensemble learning in
deep reinforcement learning”. In: International Conference on Machine Learn-
ing. PMLR. 2021, pp. 6131-6141.

Eric Liang et al. “Rllib: Abstractions for distributed reinforcement learning.
arxiv e-prints, page”. In: arXiv preprint arXiv:1712.09381 (2017).

Xiangfei Liu et al. “A multi-step predictive deep reinforcement learning algo-
rithm for HVAC control systems in smart buildings”. In: Energy (2022).

Xiaoqi Liu. “Exploration of Intelligent HVAC Operation Strategies for Office
Buildings”. PhD thesis. Purdue University Graduate School, 2020.

Donald P Lynch. EVOP design of experiments. Tech. rep. Citeseer, 2003.

Lazaro Emilio Makili, Jesus A Vega Sanchez, and Sebastian Dormido-Canto.
“Active learning using conformal predictors: application to image classifica-
tion”. In: Fusion Science and Technology 62.2 (2012), pp. 347-355.

Valérie Masson-Delmotte et al. “Climate change 2021: the physical science ba-
sis”. In: Contribution of working group I to the sixth assessment report of the
intergovernmental panel on climate change 2 (2021).

Edward Henry Mathews et al. “HVAC control strategies to enhance comfort
and minimise energy usage”. In: Energy and Buildings 33 (2001), pp. 853-863.

Alberto Maria Metelli, Amarildo Likmeta, and Marcello Restelli. “Propagating
uncertainty in reinforcement learning via wasserstein barycenters”. In: Advances
in Neural Information Processing Systems 32 (2019).

Volodymyr Mnih et al. “Asynchronous methods for deep reinforcement learn-
ing”. In: International conference on machine learning. PMLR. 2016, pp. 1928—
1937.

Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”. In:
arXiv preprint arXiv:1812.5602 (2013).

H Michael Newman. Bacnet: the global standard for building automation and
control networks. Momentum Press, 2013.

BIBLIOGRAPHY 48

[51] Brendan O’Donoghue et al. “The uncertainty bellman equation and explo-
ration”. In: International Conference on Machine Learning. 2018, pp. 3836—
3845.

[52] Tan Osband et al. “Deep exploration via bootstrapped DQN”. In: Advances in
neural information processing systems 29 (2016).

[53] Jack Parker-Holder et al. “Evolving curricula with regret-based environment de-
sign”. In: International Conference on Machine Learning. PMLR. 2022, pp. 17473~
17498.

[54] Antonin Raffin et al. “Stable-baselines3: Reliable reinforcement learning im-
plementations”. In: The Journal of Machine Learning Research 22.1 (2021),
pp. 12348-12355.

[55] Naren Srivaths Raman et al. “Reinforcement learning for control of building
HVAC systems”. In: 2020 American Control Conference (ACC). IEEE. 2020,
pp. 2326-2332.

[56] Sebastian Risi and Julian Togelius. “Increasing generality in machine learning
through procedural content generation”. In: Nature Machine Intelligence 2.8
(2020), pp. 428-436.

[57] Syed Ali Asad Rizvi and Amanda J Pertzborn. “Experimental Results of a
Disturbance Compensating Q-learning Controller for HVAC Systems”. In: 2022
American Control Conference (ACC). IEEE. 2022, pp. 3353-3353.

[58] Mikayel Samvelyan et al. “The starcraft multi-agent challenge”. In: arXiv preprint
arXiv:1902.04043 (2019).

[59] John Schulman et al. “High-dimensional continuous control using generalized
advantage estimation”. In: arXiv preprint arXiv:1506.02438 (2015).

[60] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv
preprint arXiv:1707.06347 (2017).

[61] David Silver et al. “Mastering the game of go without human knowledge”. In:
nature 550.7676 (2017), pp. 354-359.

[62] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks
from overfitting”. In: The journal of machine learning research 15.1 (2014),
pp. 1929-1958.

[63] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-
tion. MIT press, 2018.

[64] Josh Tobin et al. “Domain randomization for transferring deep neural networks
from simulation to the real world”. In: 2017 IEEE/RSJ international conference
on intelligent robots and systems (IROS). IEEE. 2017, pp. 23-30.

BIBLIOGRAPHY 49

[65]

[66]

Quan Vuong et al. “How to pick the domain randomization parameters for
sim-to-real transfer of reinforcement learning policies?” In: (2019).

Peng Wang et al. “Bayesian neural networks uncertainty quantification with
cubature rules”. In: 2020 International Joint Conference on Neural Networks
(IJCNN). IEEE. 2020, pp. 1-7.

Christopher JCH Watkins and Peter Dayan. “Q-learning”. In: Machine learning
8 (1992), pp. 279-292.

AP Wembhoff and MV Frank. “Predictions of energy savings in HVAC systems
by lumped models”. In: Energy and Buildings 42.10 (2010), pp. 1807-1814.

Stephen Wilcox and William Marion. Users manual for tmy3 data sets (revised).
Tech. rep. National Renewable Energy Lab.(NREL), Golden, CO (United States),
2008.

RJ Willianms. “Toward a theory of reinforcement-learning connectionist sys-
tems”. In: Technical Report (1988).

Yue Wu et al. “Uncertainty weighted actor-critic for offline reinforcement learn-
ing”. In: arXiv preprint arXiw:2105.08140 (2021).

Tianpei Yang et al. “Exploration in deep reinforcement learning: a comprehen-
sive survey”. In: arXiv preprint arXiv:2109.06668 (2021).

Liang Yu et al. “Multi-Agent Deep Reinforcement Learning for HVAC Control
in Commercial Buildings”. In: IEEE Transactions on Smart Grid 12 (2020),
pp- 407-419.

Xiangyu Zhang et al. “Grid-interactive multi-zone building control using rein-
forcement learning with global-local policy search”. In: 2021 American Control
Conference (ACC). IEEE. 2021, pp. 4155-4162.

Zhiang Zhang. “A Reinforcement Learning Approach for Whole Building En-
ergy Model Assisted HVAC Supervisory Control”. In: 2019.

