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Abstract

Algorithms for Robust Linear Models against Strong Adversarial Corruptions

A survey of algorithms in Robust Linear Models under the Strong-Contamination
Model

by

Yimeng Wang

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Prasad Raghavendra, Chair

Professor Jacob Steinhardt

In real-world data science and machine learning, data are inevitably imperfect. Data contamination
comes in many sources. It may come from human errors which can be avoided with more caution.
However, it may also come from sources such as systematic measurement errors and adversarial data
poisoning that are hard to avoid and even detect. Consequently, there is a need for methods that
can perform certain tasks in statistics despite this difficulty. Formally speaking, we want to design
efficient algorithms that can provide provable guarantees for learning problems under certain models
of contamination.

In the article, we examine some important techniques in the recent development of efficient algo-
rithms for robust statistics, namely filtering-based methods and sum-of-squares techniques. Specifi-
cally, we will focus on the problem of learning linear models (including linear regression, generalized
linear models etc.) under the strong contamination model. We will fully present and analyze the con-
ditions and consequences of SEVER [DKK+19] and the sum-of-squares-based algorithm for robust
linear regression in [KKM20]. SEVER is meta-algorithm that takes in a well-conditioned base learner
and output a outlier-robust version of the base learners. The [KKM20] robust linear regression al-
gorithm is an elegant and simple application of sum-of-squares techniques for robust regressions in
general including l1, l2 and polynomial regression. Both algorithms have O(

√
ϵ)-dependence in error

on the fraction of outlier ϵ. We will present and prove the theoretical guarantees of these algorithms
which shed lights on future directions in which the error dependence and the required assumptions
can be improved.
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1 Introduction

1.1 Motivation
Real-world data modeling is difficult, as any data scientist and machine learning practitioner would
tell you. Various of factors contribute to this hardness. The modeling part is hard. In real-
word applications, we only have limited knowledge of the underlying data distribution. There are
numerous models one can choose to employ. How does one choose a model? Ideally, with years of
expertise in machine learning and domain-specific knowledge, one would expect to choose the "best
model." However, it is ambiguous what the "best" model means as there are various definitions of
"goodness" and this definition may change depending on the question one intends to solve. Machine
learning practitioners face trade-offs in the sense that optimizing one aspect of the model typically
means sacrificing some other aspects. For instance, the time-accuracy trade-off in deep-learning and
the cost-performance trade-off for individuals or small groups training large models without much
computing power and the famous bias-variance trade-off in statistics.

Getting good data is hard. It is time-consuming and expensive to collect data. Natural scientists
require expensive pieces of equipment to observe and collect data. Social science researchers have to
carefully design experiments in order to obtain useful data. However, even these costly procedures,
we are not guaranteed to have good data to work with.

One example of undesirable data to work with is biological data such as DNA sequencing and
expression data. Mislabeling and measurement errors occur frequently which can create systematic
outliers [NRF02, JLM08] and it requires painstaking manual effort to remove the outliers. See Figure
1.1 [Li19] for such an example.

Figure 1: The observed gene expression data (on the left) is a mixture of various heterogeneous gene
expression data (on the right). Independently and Identically distributed samples are not realistic to obtain
because of cost and technology constraints.

Another example commonly known as data-poisoning, comes from computer security. An attacker
may hack into the server and maliciously erase or alter certain fractions of the data. In cyber-
security, hackers may create fake accounts to insert fake data into the dataset. Other common
examples include communication through noisy and adversarial channels, heterogeneous financial
data, etc. These examples exemplify cases in which data corruptions cannot be avoided. We need
methods to account for these corruptions.

One important thing to notice is that the outliers in the two examples above are not random.
Instead, in both of the examples, the outliers are systematic errors that can be purely adversarial,
difficult to anticipate and hard to model. This motivates the following important question: Can
we design algorithms that can recover important information (mean, moments, etc.) about the true
underlying data distribution despite the presence of certain fraction of arbitrary (and potentially ad-
versarial) outliers?

In literature, researchers refer to this line of research as robust statistics. Let us consider an
example of a robust vs non-robust quantity in one-dimension. In an introduction-level statistics
class, one is usually presented with to concepts: mean and median. While mean and median are
measures of central tendency of a given distribution, they behave rather differently when the dataset
is susceptible to potential corruptions. Mean is not robust to corruptions in the sense that even the
presence of a single outlier can arbitrarily shift the mean. On the other hand, median is more robust
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to corruptions because it is a location measure which is stable under corruptions that do not add /
delete points at the tails of the distribution. We say that median is a robust estimate of mean in
one-dimension. We will define what exactly it means to be a "robust estimate" later. See the nice
introduction in [Ste21] for more details of this.

Given that median is a robust estimate of mean in one-dimension, a natural question to ask
is: Can we extend median to higher dimensions as a robust estimate of mean for high-dimensional
data? Sadly, the answer is no. Inference and estimation in high-dimensions are difficult in general
[Wai19, Ver18] as most naive extension of low-dimension estimators do not perform well in high
dimensions. The coordinate-wise median approach which is a naive extension of median to high
dimensions but its error grows at a rate of

√
d where d is the dimension of the data.

One approach that works well in one-dimension is to remove points that are far from the sample
median, i.e. remove the lower and upper quantiles of the observed data. However, in high dimen-
sions, this does not perform well. To see this, let’s consider the following example in [Ste21]. Suppose
we observe i.i.d samples xi, ..., xn ∈ Rd from the true underlying distribution p∗ = N (µ, I). Our
goal is to estimate the unknown parameter µ. In this case, the distance ∥xi − µ∥2 is concentrated
around

√
d with high probability. Hence, if the corrupted points lie at roughly

√
d from µ, they are

indistinguishable from the in-distribution points based on this removal procedure using l2 distance.
See Figure 1.1 [Ste21]. This suggests that these outliers can shift shift the mean by Θ(ϵ

√
d) where ϵ

is the fraction of corrupted points. Consequently, this approach suffers an error on the order of
√
d

which is meaningless in high dimensions. With more sophisticated approaches, we can obtain much
better guarantees in high dimensions. See [CDG18, CDGS20] for some recent advances in robust
mean estimation.

Figure 2: The outliers can lie at a distance of
√
d without being detected. See [Ste21].

Another challenge robust statistics faces in general is the need for distributional assumptions. For
example, one is not able to conclude that points are outliers if they are far from the sample mean
if the samples are drawn from a heavy-tail distribution. In other words, our characterization of
outliers should depend on the properties of the true underlying distribution.

To summarize, robust statistics is inherently a difficult task because of challenges including but
not limited to the following:

1. Distributional assumptions. One needs appropriate distributional assumptions for problems in
robust statistics. An excess of assumptions may yield results that are not applicable to other
circumstances. On the other hand, a lack of assumptions may make the problem too difficult,
i.e, information theoretically impossible.

2. Powerful adversaries. In this field of study, we are generally interested in worst-case scenarios
rather than average-case scenarios. In average-case robustness, one requires the errors to satisfy
certain distributions for robust guarantees to be meaningful [Ste21], while our goal in robust
statistics is to provide algorithms and provable guarantees to handle unanticipated attacks
from malicious and possibly omnipotent adversaries.

3. High dimensional data. As explained above, some algorithms that work well in low-dimensions
do not naively extend to provide good performance guarantees in high dimensions. See [Wai19]
for a detailed exposition of high-dimensional statistics in general. To cope with this, we need
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algorithms that has error bounds that do not rely on the dimension d so that it scales well in
high dimension.

Our goal is to design computationally efficient algorithms that can address these challenges.

1.2 Robust Statistics
In this section, we revisit some earlier attempts to deal with the challenges above in robust statistics
literature. Learning in the presence of outliers has been studied in the community since the pioneer-
ing work of Tukey in the 1960s [Tuk60]. Classical works in robust statistics focus more on optimality
in terms of the minimax risk of robust estimation in some basic settings. See [Ham86, HR11] for
technical details of some traditional approaches in this area of study. Also, see [Mor07] for a sum-
mary of early discoveries and contributions.

Some popular methods in the area include RANSAC [FB87], minimum covariance determinant
[RD99], removal procedure based on k-nearest neighbors [BKNS00] and Hubernizing the loss func-
tion [Owe07]. Despite the popularity, these methods either break down in high dimensions or require
strong distributional assumptions on the data so that the outliers are easily detectable from the in-
distribution points.

Another issue of traditional methods in robust statistic is the lack of attention on the compu-
tational aspect of learning. Computational efficiency of estimators was not the main focus in early
days of robust statistics. Little attention was paid to the computational aspect of the estimators and
some basic computational questions were not well-understood until recently. As an example, let’s
consider the Tukey median estimator [Tuk75]. Earlier studies have shown good theoretical guaran-
tees of the estimator. See for instance [ZJS20]. In particular, it is known that the Tukey median is
a sample-efficient robust mean estimator for spherical Gaussian distributions [DK19]. However, it is
NP-Hard to compute in general [JP78] and the approximation accuracy of the proposed heuristics
degrades in high dimensions. Hardt and Moitra showed that estimators for robust subspace recovery
are inefficient[HM13] while Bernholt proved that robust estimators including LMS, LQS, LTS are
hard to compute [Ber06].

Motivated by these unsolved mysteries, recent work in theoretical computer science has devel-
oped computationally efficient robust estimators for classical problems including regression [BJK15,
SBS17, BJKK18], linear classification [KLS09, PAL17] and mean and covariance estimation [DKK+16,
LRV16]. One influential recent work is by Diakonikolas, Kamath, Kane et al. [DKK+19] in which
they introduce a new meta-algorithm that take in a base learner and harden the learner to be resis-
tant to outliers. Another highlight in recent years that is of particular interest to us is the work by
Klivans, Kothari and Meka [KKM20]. They gave the first polynomial-time algorithm for performing
linear or polynomial regression resilient to adversarial corruptions in both examples and labels using
a simple and delicate sum-of-squares proof.

The reason we specifically mentioned these two works [DKK+19, KKM20] is that they represent
two different yet important methods in recent development in robust statistics. In [DKK+19], Di-
akonikolas et al. presented a meta-algorithm whose main component includes a filtering subroutine.
The idea of a filtering is relatively intuitive. Since our dataset has been corrupted, we will just
remove bad points from the dataset until all points are reasonably good. As simple as it might sound,
this approach needs to be carefully carried out. How do we determine which points are "bad?"
We need a score to quantify the "badness" of each point and remove those that have high scores.
There are various ways of defining this. See the survey by Diakonikolas and Kane [DK19]. Some
examples include but are not limited to l2 distance from the sample mean, projection along the
principal components of the sample covariance matrix and projection along the top singular vector
of the sample gradient matrix of the loss functions [DKK+19]. The performance of filtering-based
algorithms depends heavily on choice of the score function. We will investigate into the details and
subtleties of filtering-based approaches in the following sections.

In [KKM20], Klivans et al. gave an efficient algorithm for robust linear regression using sum-of-
squares methods. Since the pioneering work of [BKS14], sum-of-squares methods have been widely
studied for designing efficient algorithms for learning problems. The high-level idea is to give a low-
degree sum-of-squares proof (will define this later) of certain statements (e.g. low-error guarantees
for linear regression, unique identifiability of parameters for parameter recovery problems). Then by
the "duality" of sum-of-squares proofs and pseudo-distributions, output a pseudo-distribution that
can be used to output a solution. This sum-of-squares based approach for learning problems relies
heavily on the convexity of the empirical loss function and the crucial fact that the l2 loss function
is a polynomial. How to apply sum-of-squares methods to learning problems with non-convex and
non-polynomial loss functions (e.g. logistic regression) is still an open problem.
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1.3 Outline of the paper
The main focus of this paper is on linear models. This includes linear regression and generalized
linear models including logistic regression. When introducing the Filtering method, we will focus on
robust mean estimation for simplicity and clarity. In section 2, we will go over some preliminaries
needed for our exposition. We will give formal definitions of common noise models and the statistical
problems we are interested in. In section 3, we will go over the fundamentals of the Filtering method
which is widely used in the robust statistics community. In section 4, we introduce SEVER algorithm
[DKK+19] as an important example of the filtering method in recent years. In section 5, we cover
the fundamentals of sum-of-squares method and in section 6, we see how sum-of-squares methods
can be applied to give an efficient algorithm for robust linear regression. We conclude in section 7
with summaries of results and some open problems in this area.
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2 Preliminaries
In this section, we state the notations we are going to use in the rest of the paper. We will then
provide definitions of various contamination models that are common in robust statistic literature.

2.1 Notation
Throughout this paper, we will use capital letters to denote distributions, e.g. P . We will use either
lower case or upper case letters to denote random variables depending on the context. We use the
notation x ∼ X to denote that x is a sample draw from distribution X. Let x1, ..., xn ∼i.i.d X to
denote n independent and identically distributed samples from distribution X.

We use P [E] to denote the probability of the event E. The expected value and variance /
covariance of a random variable X are denoted as E[X] and Var(X)/ Cov(X) respectively. Let S
be a finite set. Then we use µS and ΣS to denote the sample mean and sample covariance of the set
S respectively.

For a vector v ∈ Rd, we let ∥v∥2 to denote its l2 norm. We use ∥v∥∞ and ∥v∥1 to denote the l∞
and l1 norm respectively. Let X be a random variable. Then we use the notation ∥X∥k to denote
the k-norm ∥X∥k = E[Xk]1/k. Given a matrix A, let tr(A) be its trace. Let ∥A∥2 and ∥A∥op to
denote the operator norm of A. We will use these two notations interchangably throughout this
paper. We use ∥A∥F to denote the Frobenius norm of A.

We will be using the standard asymptotic notations O(·),Ω(·),Θ(·) to denote sample complexities
and running time of our algorithms. We will also be using Õ(·) notation hides logarithmic factors
in its argument.

We will use ϵ-corrupted and η-corrupted interchangably when denoting corrupted samples under
the strong contamination model. Specifically, we will be using ϵ-corrupted in the first half of this
paper when we will be talking about filtering-based methods. In the second half, we will generally
using the phrase η-corrupted. The reason for this is that we want to follow the notations in the two
main subjects of our discussion, namely [DKK+19] and [KKM20].

2.2 Contamination model
In Huber’s contamination model, proposed by Huber in [Hub64], the adversary is oblivious to inliners
and can only add outliers. Formally, this contamination model is defined as:

Definition 2.1. (Huber’s contamination model) Suppose X ∼ P∗ where P∗ is the true underlying
distribution of the random variable X. Let η ∈ (0, 1/2) be a constant. Then under Huber’s contam-
ination model (or the η-contamination model), samples x1, ..., xn are drawn from the distribution

P = (1− η)P∗ + ηN

where N is an adversarily chosen noise distribution.

In this paper [Hub64], he proposed a robust location estimator that achieve its minimax optimality
under Huber’s contamination model [CGR17]. Moreover, his work suggests that an optimial estima-
tor under Huber’s contamination model must achieve statistical efficiency and resistant to outliers
at the same time. Another interesting model of contamination is the TV-distance corruption model.

Definition 2.2. (TV-distance corruption model). Suppose X ∼ P∗ where P∗ is the true underlying
distribution of the random variable X. Let P ′ be another distribution that is at most η away from P∗

in TV distance, i.e, dTV(P ′,P∗) ≤ η. Then under TV-distance corruption model, samples x1, ..., xn

are drawn from P∗.

where given two probability distributions p, q defined on the same σ-algebra F on subsets of the
sample space Ω, the total-variation (TV) distance is given by dTV(p, q) = supA∈F |p(A)−q(A)|. This
noise model is more functional in nature and has been widely studied in the statistics community.
See lecture notes of Steinhardt for some recent results in robust statistics under this noise model
[Ste21]. Notice that TV-distance corruption model is strictly strong than Huber’s contamination
model. The model we are interested in is stronger than both of the models above and is referred to
as the strong contamination model.

Definition 2.3. (Strong contamination model). Let η ∈ (0, 1/2) be a constant parameter and let
D be a distribution family over Rd. Given samples X1, ..., Xn ∼ X for some unknown distribution
X ∈ D, the adversary is allow to inspect all samples, remove up to ηn of then and replace the
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removed samples with arbitrary points. This modified set of n points is then given as input to a
machine learner.

Without any specification, we refer to a set of samples as η-corrupted if they are generated through
the strong contamination model. Note that in some sense the Strong contamination model is the
strongest possible adversary provided one can only remove up to ϵ-fraction of the points. This is
true since the adversary can make arbitrary modifications after inspecting all samples. Intuitively,
this adversary can create the worst case scenarios for our estimation and learning tasks.
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3 Filtering
In this section, we will focus on the filtering method that is commonly used in robust statistics. The
intuition of the method is quite clear: given some estimation task, we want to remove the bad points
that can adversarially affect our task and ensure that remaining points are reasonably good. We will
provide some basic notions needed for the filtering method. Then, we will go over several filtering
methods following the exposition in the survey by Diakonikolas and Kane [DK19].

3.1 Preliminaries
For simplicity, we will be focusing only on the Robust Mean Estimation problem: given an η-
corrupted set of samples (under the strong contamination model) from a well-behaved distribution
with mean µ, we want to output a vector µ̂ that is close to µ in certain distance metric ∥ ·∥. In some
sense, robust mean estimation is the simplest task in robust statistics. However, even for this task,
it is information-theoretically impossible to devise an algorithm without making any distributional
assumptions.

To see this, consider the following example from [DK19]. Let D = {Dx, x ∈ R} where Dx is a
distribution over R such that x ∈ R is the only point with positive mass, i.e. P (Dx = x) = η > 0
such that E[Dx] = x. In other words, Dx can be regarded as a mixture of a point-mass and any
other arbitrary continuous distributions such that the mean of the mixture is x. For the task of
mean estimation, given a η-corrupted sample of n points under the strong contamination model,
the adversary can erase all points from the point mass and replace them with arbitrary points on
the real line. In this case, all information about the mean is lost and it is information theoretically
impossible to recover the mean in this case.

As a result, we need some distributional assumptions in order to make the task even possible.
Some common assumptions include parametric families (e.g., D can be the family of isotropic Gaus-
sian distributions), moment boundedness assumptions (e.g. bounded covariance, bounded higher mo-
ments or hypercontractivity) and concentration assumptions (e.g. sub-gaussian or sub-exponential
tails).

Another important observation is that in contrast to the uncorrupted setting, in strong con-
tamination model, it is not possible to obtain statistically consistent estimators. By "statistically
consistent," we mean that the error of our estimator does not go to zero as sample size n → ∞.
Typically, there is an information-theoretic lower bound on the minumum attainable error that de-
pends on the level of corruption η and the structural properties of the underlying distribution family
[DK19].

As a concrete example of the difficulty of robust mean estimation, let’s consider the high-
dimensional isotropic Gaussian family.

Fact 3.1. For any d ≥ 1, any robust estimator for the mean of X = N (µ, I) in Rd must have an
l2-error of Ω(η), even in Huber’s contamination model.

To see why this is true, let’s consider the following example. Let X = N (µ, I) and X ′ = N (µ′, I)
such that ∥µ1 − µ3∥2 = Θ(η). In Huber’s contamination model, which is weaker than the strong
contamination model, the adversary can construct two noise distributions N1 and N2 over Rd such
that

Y = (1− η)N (µ, I) + ηN1 = (1− η)N (µ′, I) + ηN2.

It is easy to see that such N1, N2 exists. Hence, under any of the level-η corruption model we
introduced in section 2, the best a robust estimator can do is to learn that the samples are from
Y but it cannot tell whether it comes from X or X ′. In fact, if the corruption level is at least the
TV-distance between X and X ′, then no robust estimators can distinguish between X and X ′. For
this TV-distance bound on Gaussian families, see [DMR22].

If the target distribution X is allowed to come from a wider class, then the situation is even worse.
Suppose X comes from a class of distribution with sub-gaussian tails with identity covariance, then
the information theoretical lower bound of the l2-error for robust mean estimation is Ω(ϵ

√
log(1/ϵ));

and for the class of distributions with covariance Σ bounded by σ2I, the l2-error is Ω(σ
√
ϵ).

As stated in section 1, another difficulty in robust statistics (and statistics in general), is high-
dimensionality. Some natural generalizations of low-degree robust estimators do not work well in
high-dimensions in that they suffer a loss that scales with the dimension d. As an example, in
one-dimension, median is a robust estimator of mean. Specifically, the median µ̂ of a multiset of
size n = Ω(log(1/δ)/ϵ2) of η-corrupted samples from a one-dimensional Gaussian N (µ, 1) satisfies
|µ̂−µ| < η with probability at least 1−δ. One natural generalization of the one-dimensional median
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to high dimensions in the coordinate-wise median. As the name suggests, the estimator µ̂ ∈ Rd is
given by (µ̂)i = median({X(i)

j }nj=1) where i ∈ [d] and X
(i)
j is the projection of Xj along the canonical

basis vector ei. This generalization incurs a l2-loss of Ω(ϵ
√
d). Another natural generalization of the

one-dimensional median is via the geometric median, i.e. the point x∗ that minimizes
∑

i ∥x(i)−x∗∥2.
Unfortunately, this approach again suffers a loss of Ω(ϵ

√
d) the η-fraction of the adversarial points

are added all off from the mean in the same direction.
A more sophisticated generalization of one-dimensional median is the Tukey median [Tuk75]. It

relies on the observation that taking the median of any univariate projection of the input points
gives us an approximation to the projected mean. With this observation, we can then output an
estimator µ̂ that minimizes the error over the worst direction. It can be shown that this estimator µ̂
can obtain a l2-error of O(ϵ) with high probability. In other words, via these univariate projections,
we can reduce the problem of high-dimensional mean estimation to the problem of one-dimensional
mean estimation. However, while this method achieves the optimal error bound, it is computa-
tionally infeasible to compute such an estimator as it requires computing and combining univariate
projections along infinite many directions. This has been shown to be an NP-Hard problem.

Another possible generalization of is the median-of-means framework that is commonly used in
heavy-tail statistics literature. In one-dimension, this method can be described as: given n i.i.d sam-
ples from distribution X, randomly group them into [n/k] groups, compute the mean within each
group and then output the median of the k grouped means. In one-dimension, this estimator is sam-
ple efficient and requires minimal assumptions on the underlying distribution X, i.e. only bounded
variance. Cherapanamjeri, Hopkins et al. apply this idea with sum-of-squares proofs to obtain a
sample-efficient algorithm for high-dimensional estimation problems whose underlying distribution
is heavy-tailed [CHK+19]. This high-dimensional generalization uses the following definition of me-
dian: for points X1, ..., Xk ∈ Rd and r > 0, x ∈ Rd is an r-median if for every uni-direction u, we
have | ⟨Xi, u⟩ − ⟨x, u⟩ | ≤ r for at least 1/2 + ϵ fraction of X1, ..., Xn for some small ϵ > 0. Based on
our searches, we have found any results involving this estimator in robust statistics. It is unclear to
us how this estimator performs for robust mean estimation. This is an potential open problem.

Below, we state a computationally inefficient algorithm that gives the optimal guarantee based
on the idea of Tukey median.

Proposition 3.2. There exists an algorithm that, on input an ϵ-corrupted set of samples from
X = N (µX , I) of size n = Ω((d + log(1/τ))/ϵ2) running in poly(n, 2d) time, and outputs µ̂ ∈ Rd

such that with probability at least 1− ϵ, it holds that ∥µ̂− µX∥2 = O(ϵ).

Note that this algorithm is not feasible in practice as it runs in poly(n, 2d). The algorithm to
establish this proposition proceeds by using a one-dimensional robust estimator to estimate ν · µ
for a set of 2O(d) unit vectors ν ∈ Rd and then combine these estimates (by solving a large linear
program) to obtain an accurate estimate of µ.

We have seen that natural generalizations of one-dimensional robust estimators suffer either from
an Euclidean error that scales with

√
d or computationally inefficiency. Some other methods are

needed to devise computationally efficient algorithms for high-dimensional problems.

3.2 Filtering
In this section, we go over the Filtering approach for devising computationally efficient algorithms
for robust statistics. For simplicity, we will be mainly focusing on the problem of robust mean
estimation of Gaussian families.

3.2.1 Key insight

One challenge in high dimension is that it is difficult to identify corrupted points from the uncor-
rupted ones. As illustrated in Figure 1.1, for a centered isotropic Gaussian, the uncorrupted points
are concentrated around the sphere Sd−1(

√
d) = {x ∈ Rd| ∥x∥2 =

√
d}. Hence, the adversary can

points at a distance of
√
d from the mean without being detected while shifting the mean by η

√
d

in random directions. Our task seems hopeless since it is information-theoretically impossible to
detect remove these points. However, do we really need to identify and remove all corrupted points?

The answer is no. As stated in [DK19], we only need to identify and remove outliers that are
"consequential," i.e., the ones that can significantly impact our estimates of the mean.

Let’s assume with out generality that there are no extreme outliers (as these can be removed via
pre-processing). Now, if we have two outliers one at

√
d · u and one at −

√
d · u for some unit vector

u, then the effect of these two outliers on mean estimation will be canceled. Hence, the only way
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that the empirical mean can be far from the true mean is if there is a "conspiracy" of many outliers,
all producing errors in approximately the same direction. Consequently, our task of detecting all
outliers can be reduced to detecting such consequential outliers.

In order to convert the aforementioned insight into a computationally efficient algorithm, we need
the following observation. Let T be an η-corrupted set of points drawn from N (µ, I). Then based
on the observation above, the consequential outliers that significantly move the empirical mean µ̂
must move it in some direction. Formally speaking, there exists some unit vector v such that the
projection v · (µ− µ̂) is large in magnitude. In particular, if an η-fraction of corrupted points in T
move the sample average of v · (UT − µ) where UT is the uniform distribution on T by more than δ
(δ should be thought of as small, but substantially larger than η), then on average these corrupted
points x must have v · (x− µ) at least δ/η [DK19]. In this case, these corrupted points will have a
contribution of at least ϵ ·(δ/ϵ)2 = δ2/ϵ to the variance of v ·UT . This observation allows us to devise
a computationally efficient algorithm. Specifically, by computing the top eigenvector of the sample
covariance matrix, we will be able to know if there exists a unit vector v such that the variance of
v · UT is particularly large.

This allows us to obtain a general framework of an efficient algorithm. Starting with an η-
corrupted sample T of distribution X such that E[X] = µ and Cov(X) = Σ, under the strong
contamination model. Let ΣT be the sample covariance matrix. We then proceed as:

1. Find the eigenvector v∗ with the largest eigenvalue λ∗.

2. Compare λ∗ with λ the value it should be (in the absence of outliers)

• If λ∗ ≈ λ, then there are not any consequential outliers and the empirical mean is close
to the true mean. In this case, we return the sample mean as our output.

• If λ∗ >> λ, we have obtained a particular direction v∗ along which the projections of the
outliers behave significantly differently from the inliers. In this case, we compute a score
for each points and remove points with high scores and go through the procedure again.

In the last case, we perform some outlier-removal procedure based on some score function along
the direction v∗. This removal procedure and the design of the function is rather subtle and relies
heavily on our distributional assumptions of the data. Notice that this general framework does
not only work for robust mean estimation. For problems such as robust covariance estimation and
robust linear regression, a similar procedure can be obtained for the purpose of outlier removal. The
difference is that in these problems, we often consider some variants of the sample covariance matrix
and might have a more sophisticated outlier removal procedure. See [DKK+16, And08].

In order for the aforementioned framework to work as desired, we also need the inliers to behave
reasonably well. Since otherwise, after the removal procedure we will end up with either a small set
of samples or a set of samples that behave essentially like the outliers. To this end, we need some
conditions on the "good" set of points.

3.3 Stability
Let S be a set of n i.i.d. samples from X. We say that these sample points are "good." Given S, an
adversary then inspect all the good points and select up to an η-fraction of points in S and replace
them with arbitrary points to obtain an η-corrupted sample T which is given as an input to the
algorithm. Note that |S ∩ T |/|S| ≥ 1− η. As suggested above, in order to establish the correctness
of the algorithm, we need to show that with high probability over the choice of the good points S, the
algorithm is able to output an accurate estimate of the true mean regardless of how the adversary
made those corruptions.

To this end, we need to impose a stability condition on the good set. Specifically, we require
the uniform distribution over the good points to be similar to the true distribution in terms of
moments and potentially tail bounds. We also want to make sure these similarities carry on with
high probability in any subset of S of size ≥ (1−η)n. In particular, we have the following definition.

Definition 3.3. (Stability) Fix some 0 < ϵ < 1/2 and δ ≥ ϵ. We say that a finite set S ⊆ Rd is
(ϵ, δ)−stable (with respect to a distribution X) if for every unit vector v ∈ Rd and every S′ ⊆ S with
|S′| ≥ (1− ϵ)|S|, the following conditions hold:

1.
∣∣∣ 1
|S′|

′∑
x∈S

v · (x− µ)
∣∣∣ ≤ δ
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2.
∣∣∣ 1
|S′|

′∑
x∈S

(v · (x− µ))2 − 1
∣∣∣ ≤ δ2/ϵ.

In words, the definition formalizes our intuition that a small fraction of points (≤ ηn) cannot
change the mean and variance along any direction v by a lot. This stability condition on the good
set is necessary and used in every known robust mean estimation algorithm. The condition depends
heavily on the underlying distribution X. In order for the algorithm to be meaningful, we need
this stability condition for a large class of distributions. Fortunately, this is true as stated in the
following proposition.

Proposition 3.4. A set of i.i.d. samples from an identity covariance sub-gaussian distribution of
size Ω(d/ϵ2) is (ϵ, O(ϵ

√
log(1/ϵ)))-stable with high probability.

For a proof sketch of the proposition, see [DK19]. In fact, we do not need the sub-gaussian
assumption but instead requires only a boundedness assumption on the covariance matrix in order
for stability to hold. Specifically,

Proposition 3.5. A set of i.i.d. samples from a distribution with covariance Σ ⪯ I of size Ω̃(d/ϵ)
is (ϵ, O(

√
ϵ))-stable with high probability.

One useful fact is that analogous bound can be proved for distributions with identity covariance
and bounded higher central moments. For instance, if distribution X has identity covariance and its
k-th central moment is boounded from above by a constant, one can show that a set of Ω(d/ϵ2−2/k)
samples is (ϵ, O(ϵ1−1/k))-stable with high probability.

It remains show that this stability condition suffices for our purpose. Specifically, we want to
show that any η-corruption T of a stable set S of samples and bounded sample covariance has the
following guarantee: the sample mean of T is a good approximation of the true mean. We have the
following lemma.

Lemma 3.6. (Certificate for empirical mean) Let S be an (ϵ, δ)-stable set with respect to a distribu-
tion X, for some δ ≥ ϵ > 0. Let T be an ϵ-corrupted version of S. Let µT and ΣT be the empirical
mean and covariance of T . If the largest eigenvalue of ΣT is at most 1 + λ, for some λ ≥ 0, then
∥µT − µX∥2 ≤ O(δ +

√
ϵλ).

Proof. Let S′ = S ∩ T and T ′ = T\S′, i.e. S′ is the set of samples that remain uncorrupted after
an adversarial corruption and T ′ is the set of samples set have been corrupted by the adversary.
Without loss of generality, we may assume that |S′| = (1 − ϵ)|S| and |T ′| = ϵ|S| (if this is not
satisfied, we can replace S′ with a subset of it if necessary). Use µS′ , µT ′ ,ΣS′ ,ΣT ′ to denote the
empirical mean and sample covariance matrices of S′ and T ′ respectively. It is easy to show that
the following relation holds:

ΣT = (1− ϵ)ΣS′ + ϵΣT ′ + ϵ(1− ϵ)(µS′ − µT ′)(µS′ − µT ′)T .

Let λT be the maximum eigenvalue of ΣT and v be the unit vector in the direction of µS′ −µT ′ . By
the functional definition of maximum eigenvalue, we have,

1 + λT ≥ max
u∈Sd−1

uTΣTu ≥ vTΣT v

= (1− ϵ)vTΣS′v + ϵvTΣT ′v + ϵ(1− ϵ)vT (µS′ − µT ′)(µS′ − µT ′)T v

≥ (1− ϵ)(1− δ2/ϵ) + ϵ(1− ϵ)∥µS′ − µT ′∥22
≥ 1−O(δ2/ϵ) + (ϵ/2)∥µS′ − µT ′∥22,

were the second last inequality comes from the fact that ΣT ′ is positive semi-definite and the second
stability condition of the set S′. By rearranging, we obtain that ∥µS′ − µT ′∥2 = O(δ/ϵ +

√
λ/ϵ).

Using the fact that µT = (1− ϵ)µS′ + ϵµT ′ , we have

∥µT − µX∥2 = ∥(1− ϵ)µS′ + ϵµT ′∥2
= ∥µS′ − µX + ϵ(µT ′ − µS′)∥2
≤ ∥µS′ − µX∥2 + ∥ϵ(µT ′ − µS′)∥2
= O(δ) + ϵ ·O(δ/ϵ+

√
λ/ϵ)

= O(δ +
√
λϵ)

where the inequality comes from triangle inequality, the first stability condition and the bound on
∥µS′ − µT ′∥2 we obtained above.
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This is a nice result as it tells us that under the stability condition , given such a set T with
bounded covariance, we can use the sample mean of T as an good approximation of the true mean
µX . However, we are not always guaranteed the set T has this nice property. To deal with this, we
will need a generalization of the above lemma.

Lemma 3.7. Let S be an (ϵ, δ)-stable set with respect to a distribution X, for some δ ≥ ϵ > 0 with
|S| > 1/ϵ. Let W be a probability distribution that differs from US, the uniform distribution over S,
by at most ϵ in total variation distance. Let µW and ΣW be the mean and covariance of W . If the
largest eigenvalue of ΣW is at most 1 + λ for some λ ≥ 0, then ∥µW − µX∥2 ≤ O(δ +

√
ϵλ).

By letting W be the uniform distribution over T we obtain lemma 3.6. With this generalized
lemma, we can now clarify our goal of our outlier removal procedure. Given an ϵ-corrupted sample
T , we want to find a distribution W over T such that ΣW has no large eigenvalues. Moreover, we
need to ensure that this distribution W is close in TV-distance to the uniform distribution µS . In
this case, W (x) quantifies the strength of our belief that x ∈ T is an inlier. Now our goal becomes
relatively clear: we want to efficiently find such a W . To formalize this as an optimization problem,
we need the following definition of the space we are optimizing over.

Definition 3.8. Let S be a (3ϵ, δ)-stable set with respect to X and let T be an ϵ-corrupted version
of S. We define Cϵ(T ) to be the set of distributions W over T such that W (x) ≤ 1/(|T |(1− ϵ)) for
all x ∈ T , i.e.,

Cϵ(T ) =
{
W ∈ P(T )| W (x) ≤ 1

|T |(1− ϵ)
∀x ∈ T

}
.

When the context is clear, we will use that notation C instead of Cϵ(T ).

Notice that for any distribution W in C, we have dTV (W,US) ≤ 3ϵ. To see this, note that

dTV (W,US) =
∑
x∈T

max{W (x)− US(x), 0}

=
∑

x∈S∩T

max{W (x)− 1/|T |, 0}+
∑

x∈T\S

W (x)

≤
∑

x∈S∩T

ϵ

|T |(1− ϵ)
+
∑

x∈T\S

1

|T |(1− ϵ)

≤ |T |
( ϵ

|T |(1− ϵ)

)
+ ϵ|T |

( 1

|T |(1− ϵ)

)
=

2ϵ

1− ϵ
≤ 3ϵ

where the last inequality holds for ϵ ≤ 1/3. This suggests that if we can find a W ∈ Cϵ(T ) such that
ΣW has no large eigenvalues, then µW is a good approximation of µX by the lemma above. On the
other hand, we know this constrained optimization problem does indeed have a solution: simply let
W be the uniform distribution over S ∩ T . In this case, by the stability condition, we have that its
largest eigenvalue is at most 1 + δ2/ϵ and we will then obtain an l2 error of O(δ).

By the discussions above, we now know that it suffices to find any distribution W ∈ C such
that ΣW has no large eigenvalues. To efficiently solve this problem, there are two basic algorithmic
techniques that can be applied.

1. The Unknown Convex Programming Method. This algorithm is based on the observation that
C is a convex set and finding a point in C with bounded covariance is almost a convex program.
It is not exactly a convex program because given any fixed v ∈ Rd, the variance of v ·W is not
a convex function of W where v ·W denote distribution of W projected onto the direction of
v. However, if W has variance significantly larger than 1+ δ2/ϵ in some direction, there exists
an efficient algorithm that construct a hyperplane separating W from US∩T , i.e., the uniform
distribution over S ∩ T . This method is a direct application of the discussions we have had so
far. But as it relies heavily on the ellipsoid algorithm, it is slow (although polynomial time).
We will not go over details of this method in this paper. Interested readers can refer to [DK19]
for a detailed discussion of this method.

2. Filtering. This method is at the heart of our later discussions. Filtering is an iterative out-
lier removal method that is typically a lot faster as it relies primarily on spectral techniques.
Specifically, based on our discussion above, if ΣW does not have a large eigenvalue, then µW
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is close to µX and we can simply output µW as our estimate. On the other hand, if ΣW has
an extremely large eigenvalue, then this suggests that there exists some direction v such that
Var[v ·W ] is substantially larger than what it should be (when the samples are not corrupted).
This can happen if and only if W assigns high probability mass to points x in T\S such that
the projection v ·x is far from the true mean v ·µ. As a result, we can perform a outlier removal
procedure by removing points that have extreme values of v · x.

One thing to notice is that it is difficult to ensure that only outliers are removed. How-
ever, with some careful design, one can ensure that more outliers are removed than inliers
which guarantee enough good samples that will be used to calculate our final output. On a
high-level, the filtering algorithm framework is described as: given a W such that ΣW has large
eigenvalues, one filtering step gives a new distribution W ′ ∈ C that is closer to US∩T than W
was. Repeat this process until the current W has no large eigenvalues. We then output µW

as our final estimate. In the next few sections, we will discuss various concrete realizations of
the filtering algorithm. In particular, while a filtering step removes points that are far from
the projected mean along some direction v, there are several different ways to quantify this
notion of closeness which might have different guarantees depending on the true underlying
distribution.

3.4 Filtering
In this section, we introduce some concrete realizations of the filtering framework. Specifically, we
will be going over basic filtering, randomized filtering and universal filtering which builds on top of
each other. Although in the discussion above we let W be any general distributions over T , in
most cases, it suffices to consider only the uniform distribution over some set of points. Hence, the
common goal of all of the variants of the filtering algorithms below is to remove outliers in the set
T so that we are making progress towards US∩T which is alternatively denoted as W ∗.

3.4.1 Basic Filtering

We first present a filtering algorithm which yields optimal error bound for distributions with identity
covariance (or more generally, known covariance) distributions whose univariate projections satisfy
appropriate tail bounds. Diakonikolas and Kane refer to this algorithm as basic filtering. For sim-
plicity, we will be discussing this algorithm in the context of Gaussian distributions. This algorithm
can be easily extended to distributions with weaker concentrations. For example, one can show
this algorithm yields the optimal error bound on sub-gaussian, sub-exponential and even inverse
polynomial concentrations (most non-heavy-tailed distributions) with some proper adjustments.

As suggested above, in addition to stability condition, we also need a concentration condition
defined below.

Definition 3.9. A set S ⊂ Rd is tail-bound-good (with respect to X = N (µX , I) if for any unit
vector v, and any t > 0, we have

Px∼µS
[|v · (x− µX)| > 2t+ 2] ≤ e−t2/2.

where µS is the uniform distribution over S.

One can show that this condition hold with high probability if S consists of i.i.d. random samples
from X of a sufficiently large polynomial size. See [DKK+16] for a proof of this statement. The
reason we need this extra condition on tail probability is that we want to ensure we remove more
outliers than inliers after one filtering step. Formally, we have the following lemma.

Lemma 3.10. Let ϵ > 0 be a sufficiently small constant. Let S ⊂ Rd be both (2ϵ, δ)-stable and
tail-bound-good with respect to X = N (µX , I) with δ = cϵ

√
log(1/ϵ) for c > 0 a sufficiently large

constant. Let T ⊂ Rd be such that |T ∩ S| ≥ (1 − ϵ)max(|T |, |S|) and assume we are given a unit
vector v ∈ Rd such that Var[v · T ] > 1 + 2δ2/ϵ. Then there exists a polynomial time algorithm that
returns a set R ⊂ T satisfying |R ∩ S| < |R|/3.

Notice that this lemma suffices for our purpose. Replacing T with T ′ = T\R, we obtain a less
noise sample T ′. More importantly, the inliners we removed by setting T ′ = T\R is less than the
number of outliers as |R ∩ S| < |R|/3. Let A∆B denote the symmetric difference between A and
B. Then it is easy to see that |S∆T ′| < |S∆T |. This make sure that the condition |T ∩ S| ≥
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(1− ϵ)max(|T |, |S|) is still satisfied by replacing T with T ′ and thus we can continue to apply this
algorithm until T = T ′ or when we are left with a set of small variance.

The high-level idea of the proof is to create the set R by removing points based on the tail
bound. There are some technical but non-educational details in the proof. We will omit the proof
here. Interested readers can refer to the proof of Lemma 2.11 in [DK19]. One thing to notice is
that the algorithm is purely deterministic as it remove points based on violations of the tail-bound
condition satisfied by the inliers. The complete filtering algorithm does the following:

1. Compute Cov[T ] and its largest eigenvalue ν.

2. If ν ≤ 1 + λ, output µT .

3. If ν > 1 + λ, remove points based on the basic filtering procedure and repeat.

However, this deterministic algorithm fails in certain regimes. As a concrete example, it fails if the
only assumption we impose on the true distribution is boundedness of the covariance matrix. To
overcome this problem, the power of randomness is needed.

3.4.2 Randomized Filtering

In randomized filtering, we remove points based a probability proportional to the non-negative
function f(x). In particular, suppose there exists some non-negative function f defined on S ∪ T
such that

∑
x∈T f(x) ≥ 2

∑
x∈S f(x) where S is the set of uncorrupted points and T is an ϵ-corruption

of S. In this case, we can devise a randomized filtering scheme by simply removing points randomly
based on the probability that is proportional to f(x) over S ∪ T . By the property of f , we are
guaranteed, in expectation, to remove more outlier than inliers.

Let Rt be the set of points that were removed in the t-th iteration of the randomized filtering
algorithm. One key ingredient in the analysis of this algorithm is the quantity Et = |Rt ∩ S| −
|Rt ∩ (T\S)|, i.e. the difference between the number of removed inliners and the number of removed
outliers. This algorithm satisfies the desirable property that during the process of this randomized
filtering algorithm, the sequence (Et) is a sub-martingale. Using this, one can show that this
algorithm satisfies the desirable properties. Specifically, we have the following theorem.

Theorem 3.11. Let S ⊂ Rd be a (6δ, ϵ)-stable set (with respect to some distribution X with bounded
covariance) and T be an ϵ-corrupted version of S. Suppose that given any T ′ ⊆ T with |T ′ ∩
S| ≥ (1 − 6ϵ)|S| for which Cov[T ′] has an eigenvalue bigger than 1 + λ, for some λ > 0, there
is an efficient algorithm that computes a non-zero function f : T ′ → R+ such that

∑
x∈T ′ f(x) ≥

2
∑

x∈T ′∩S f(x). Then there exists a polynomial time randomized algorithm that computes a vector
µ̂ that with probability at least 2/3, it holds that ∥µ̂− µX∥2 = O(δ

√
ϵλ).

Notice that here we only requires the underlying distribution X to have bounded covariance. The
algorithm is given below.

Algorithm 1 Randomized filtering algorithm

1. Compute Cov[T ] and its largest eigenvalue ν.

2. If ν ≤ 1 + λ, output µT .

3. Else

• Compute f as guaranteed in the theorem statement.

• Remove each x ∈ T with probability f(x)/maxx∈T f(x) and return to Step 1 with the
new set T .

We first notice that during each iteration of the algorithm, at least one points is removed as the
point argmaxx∈T f(x) is removed with probability one. Therefore, the runtime of the algorithm is
at most |T |. For correctness, we will show the following claim.

Claim 3.12. At each iteration of the algorithm, with probability at least 2/3, we have that

|S ∩ T | ≥ (1− 6ϵ)|S|.

Assuming this claim, Lemma 3.6 implies our desired final. bound. It remains to prove the above
claim.
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Proof. (of Claim) Let’s consider the sequence of random variables d(T ) = |S∆T | = |S\T | + |T\S|
across iterations of the algorithm. Notice that initially we have d(T ) = 2ϵ|S| and it is lower bounded
by 0. At each stage of the algorithm, it is decremented by Et where Et is (#inliers removed -
#outliers removed). Moreover, we have that

E[Et] =
∑

x∈S\T

−
∑

x∈T\S

f(x) = 2
∑

x∈S∩T

−
∑
x∈T

f(x) ≤ 0.

This suggests that (d(t)) is a sub-martingale until we reach a point where |S ∩ T | ≤ (1 − 6ϵ)|S|.
However, if we set a stopping time at the first occasion where this condition fails, we note that the
expectation of d(T ) is at most 2ϵ|S|. Since it is also non-negative, we can then apply Markov’s
inequality and deduce that

P (d(T ) ≥ 2ϵ|S|) ≤ E[d(T )]

2ϵ|S|
≤ 1

3
.

In other words, with probability at least 2/3, it is never more than 6ϵ|S|. Therefore, we know that
|S ∩ T | ≥ (1− 6ϵ)|S| throughout the algorithm. The inequality |T ′ ∩ S| ≥ (1− 6ϵ)|S| will continue
to hold throughout our algorithm which will eventually yielding such a set with the variance of T ′

bounded. Then by Lemma 3.6, we can output µT ′ and this will be a good estimate of the true mean
µX .

After we have gone through the analysis of the algorithm, there is still one aspect of the al-
gorithm that is uncertain. We only specified that each point x ∈ T is removed with probability
f(x)/maxx∈T f(x). But we have not specified whether each point is removed independently or not.
In fact, there are several different methods of this point removal procedure which have different
practical implications despite having similar theoretical guarantees. Here we give some natural ways
of doing point removal.

• Randomized Thresholding: A concrete implementation of the outlier removal procedure does
the following: it generates a number y uniformly randomly from the interval y ∈ [0,maxx∈T f(x)]
and then remove all points x ∈ T such that f(x) ≥ y. This approach is the practical and the
easiest to apply in many settings. After generating y, we can just iterate through all the points
and compare with this threshold value. Notice that in this case, the removal of point xi is not
independent of the removal of point xj for i ̸= j as their respectively probabilities of being
removed depend on this common threshold y.

• Independent Removal: Each point x ∈ T is removed independently with probability f(x)/maxx∈T f(x).
This scheme has the advantage of reducing the variance in d(t). A careful analysis of this
removal procedure involving random walk allows one to reduce the failure probability to
exp(−Ω(ϵ|S|)).

• Deterministic Reweighting: In this procedure, each point is assigned a weight in [0, 1] and
we will consider the weighted means and covariances. Instead of removing a point, we will
decrement a fraction of the weight of a point x proportional to f(x). In some sense, this
is similar to the multiplicative weights algorithms in Theoretical Computer Science. This
reweighting scheme ensures that the appropriate weighted version of d(T ) is non-increasing
which implies the correctness of the algorithm.

While these point-removal schemes have similar theoretical guarantees, they behave rather differently
in practice. When dealing with real datasets, deterministic reweighting is generally much slower than
the other two methods. In summary, we would prefer randomized methods to non-random ones for
point-removal in practice. For a in-depth discussion of this topic and some practical results, see
[DK19, DKK+19].

3.4.3 Universal Filtering

Lastly, in this subsection, we show how we can use randomized filtering to obtain an universal filters
that work requiring only the stability condition. We will work towards a proof of the following
theorem.

Theorem 3.13. Let S be a (3ϵ, δ)-stable set with respect to a distribution X and let T be an ϵ-
corrupted version of S. Then there exists a polynomial time algorithm which given T returns µ̂ such
that ∥µ̂− µX∥2 = O(δ).
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To prove this theorem, we need an efficient algorithm that achieves the desired task. To this end,
we will be using the following proposition.

Proposition 3.14. Let S ⊂ Rd be an (ϵ, δ)-stable set for ϵ, δ > 0 sufficiently small constants and δ
at least a sufficiently large multiple of ϵ. Let T be an ϵ-corrupted version of S. Suppose that Cov[T ]
has largest eigenvalue 1+λ > 1+8δ2/ϵ. Then there exists a computationally efficient algorithm that
on input ϵ, δ, T , computes a non-zero function f : T → R+ satisfying

∑
x∈T f(x) ≥ 2

∑
x∈S∩T f(x).

If we can obtain such a function f , then we can apply randomized filtering to obtain an sample
T ′. We can then output T ′ as our estimator. By Theorem 3.11, we can then conclude our proof of
Theorem 3.13.

Proof. (of proposition) We want to construct a function f satisfying the desired properties. To
construct such a function, our first step is to compute the sample mean µT and the top (unit)
eigenvector v of Cov[T ]. For all x ∈ T , define the function g as g(x) = (v · (x − µT ))

2. Let L be
the set of ϵ · |T | elements of T on which g(x) is largest. We define f to be f(x) = 0 for x /∈ L and
f(x) = g(x) for x ∈ L. Notice that∑

x∈T

g(x) = |T |Var[v · T ] = |T |(1 + λ).

Moreover, for any S′ ⊆ S with |S′| ≥ (1− 2ϵ)|S|, we have that∑
x∈S′

g(x) = |S′|(Var[v · S′] + (v · (µT − µS′))2). (1)

By the second stability condition, we have that |Var[v · S′] − 1| ≤ δ2/ϵ. By the first stability
condition and Lemma 3.6, we have

∥µT − µS′∥2 ≤ ∥µT − µX∥2 + ∥µX − µS′∥2 = O(δ +
√
ϵλ).

On the other hand, we know that λ ≥ 8δ2/ϵ by assumption. Together with the bounds above, this
suggests that

∑
x∈T\S g(x) ≥ (2/3)|S|λ. Moreover, since |L| ≥ |T\S| and g takes its largest values

on points x ∈ L, we have that∑
x∈T

f(x) =
∑
x∈L

g(x) ≥
∑

x∈T\S

g(x) ≥ (16/3)|S|δ2/ϵ.

Applying this to equation 1 with S′ = S and S′ = S\L, we have∑
x∈S∩T

f(x) =
∑

x∈S∩L

g(x) =
∑
x∈S

g(x)−
∑

x∈S\L

g(x)

= |S|(1± δ2/ϵ+O(δ2 + ϵλ))− |S\L|(1± δ2/ϵ+O(δ2 + ϵλ))

≤ 2|S|δ2/ϵ+ |S|O(δ2 + ϵλ).

where the latter quantity is at most (1/2)
∑

x∈T f(x) when δ and ϵ/δ are sufficiently small constants.
This completes the proof of the proposition.

3.5 Robust Mean Estimation Algorithm
In this section, we present formal statements of the robust mean estimation algorithm in [DKK+17].
These statements are results of the filtering techniques we covered in this section. We will not be
going over the proofs in this paper. See [DKK+17] for details of the proofs and some experimental
results. We have the following theorems for robust mean estimation in the sub-gaussian setting and
bounded covariance setting respectively.

Theorem 3.15. Let G be a sub-gaussian distribution on Rd with parameter ν = Θ(1), mean µG,
covariance I, and ϵ > 0. Let S be an ϵ-corrupted set of samples from G of size Ω((d/ϵ2)poly log(d/ϵ)).
There exists an efficient algorithm that, on input S and ϵ > 0, returns a mean vector µ̂ so that with
high probability at least 9/10 we have ∥µ̂− µG∥2 = O(ϵ

√
log(1/ϵ)).

Theorem 3.16. Let P be a distribution on Rd with unknown mean vector µP and unknown co-
variance matrix ΣP ⪯ σ2I. Let S be an ϵ-corrupted set of samples from P of size Θ((d/ϵ) log d).
There exists an efficient algorithm that, on input S and ϵ > 0, with probability 9/10 outputs µ̂ with
∥µ̂− µP ∥2 ≤ O(σ

√
ϵ).
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We can also apply filtering techniques to robustly estimate the covariance of a Gaussian distribution
as stated in the following theorem.

Theorem 3.17. Let G ∼ N (0,Σ) be a Gaussian in d dimensions, and let ϵ > 0. Let S be an ϵ-
corrupted set of samples from G of size Ω((d2/ϵ2)poly log(d/ϵ)). There exists an efficient algorithm
that, given S and ϵ, returns the parameters of a Gaussian distribution G′ ∼ N (0, Σ̂) so that with
probability at least 9/10, it holds that ∥I − Σ−1/2Σ̂Σ−1/2∥F = O(ϵ log(1/ϵ)).

19



4 SEVER algorithm
Having introduced some filtering techniques, in this section, we will go over a recent highlight in the
robust statistics community which exploits filtering algorithms. Specifically, we will introduce and
analyze the SEVER algorithm proposed in [DKK+19]. In contrast to the robust mean estimation
algorithm we introduced in the last section, SEVER is a meta-algorithm that works for a variety
of learning tasks. The way it works is that it takes in a base learner (e.g. least squares, stochastic
gradient descent etc.) and outputs a version of the base learner that is robust to outliers. Moreover,
it is an efficient algorithm that scales well with the dimension since it only requires computing the top
singular vector of a certain n × d matrix where n is the number of samples and d is the dimension
of the samples beyond running the base learner itself. SEVER algorithm has the following nice
properties.

• Robust: it can handle arbitrary outliers with only a small increase in error, even in high
dimensions.

• General: it can be applied to most common learning problems including regression and
classification, and handles non-convex models such as neural networks.

• Practical: the algorithm can be implemented with standard machine learning libraries.

Figure 3: Outline of the SEVER algorithm. Adapted from Figure 1 of [DKK+19].

On a high level, the algorithm is illustrated in the figure above (see Figure 4). Given data (X,Y ) ∈
Rn×d×Rn, we first use our base learner to fit a model to the data. The fitted model has some fitted
parameter which we denote as w. We then compute the gradients of the loss function on the fitted
parameter w for all points (x, y) ∈ (X,Y ) and obtain an n× d centered gradient matrix. The next
is to compute the top singular vector v and project the n centered gradients we obtained onto this
direction v. We use the magnitude of the projections as our scores and then perform some point
removal procedure based on this score and re-run the algorithm until some end condition has been
reached.

Despite the simplicity of the algorithm, some details of the algorithm are quite subtle and we
will treat them carefully in the following sections. More importantly, as long as the true underlying
distribution is not too heavy-tailed, SEVER is provably robust to outliers and the algorithm works
well on real datasets. In the following sections, we will go over some preliminaries needed for the
algorithm. Then, we will present the algorithm and carefully analyze it. Lastly, we will analyze its
performance for generalized linear models and specifically, logistic regression.

4.1 Preliminaries
As described in the high-level outline of the algorithm, the main objects we will be working with are
loss functions and their gradients. For the sake of clarity, we will restate the statistical model and
the noise model in the context of data functions instead of data points. The characterizations are
completely equivalent and we will use the data functions representation simply because it is easier
to work with in our setting.

We consider the following formalization of a learning problem. Suppose there is some true un-
derlying distribution p∗ over functions f : H → R where H is the space of possible parameters. Our
goal is to find a parameter w∗ ∈ H that minimizes the risk f̄(w) := Ef∼p∗ [f(w)] given a training set
of data functions f1:n = {f1, ..., fn}. To better understand this formalization, let’s consider a few
examples.

For l2 linear regression with no regularizations, the traditional data points formalization specifies
that given training data points (x1, y1), ..., (xn, yn), our goal is to output a linear function w∗ ∈ H
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such that E(x,y)∼D[(1/2)(y −w · x)2] is minimized at w∗ among all points in H where D is the true
underlying distribution of (x, y). An equivalent formalization in the language of data functions is
the following: given data functions {f1, ..., fn} where fi(w) =

1
2 (w · xi − yi)

2, output a parameter
w∗ ∈ H such that Ef∼p∗ [f ] is minimized at w∗ among all points in H. It is easy to see this two
formalizations are exactly equivalent.

For different learning problems, we have different data functions {f1, ..., fn}. In the case of sup-
port vector machines (SVM) with hinge loss, we have f(w) = max{0, 1− y(w · x)}. We can see how
this formalization is easily to adaptable to various statistical problems as long as we know the loss
function f . We will be using the standard l2 linear regression model as a running example for the
theoretical part of this section.

We also need a formal definition of the strong contamination model in the data function formal-
ization.

Definition 4.1. (ϵ-contamination model) Given ϵ > 0 and a distribution p∗ over functions f : H →
R, data is generated as follows: first we generate n clean (uncorrupted) samples f1, ..., fn drawn
from p∗. Then an adversary is allowed to inspect the samples and replace up to ϵn of the points with
arbitrary samples. The resulting set of samples is then fed into the algorithm. We will call such a
set of samples ϵ-corrupted (with respect to p∗).

As suggested in Figure 4, we need a base learner which we denote as L for our algorithm. It takes in
functions f1, ..., fn and outputs a parameter w ∈ H. In order for the algorithm to work as desired,
we want w to be an approximate minimizer of the empirical loss function (1/n)

∑n
i=1 fi(w). To this

end, we need to define some terms to capture this approximation notion formally.

Definition 4.2. (γ-approximate critical point) Given a function f : H → R, we say w ∈ H is a
γ-approximate critical point of f such that for all unit vectors v where w + δv ∈ H for arbitrarily
small positive δ, we have that v · ∇f(w) ≥ −γ.

This condition mandates that the value of f cannot be decreased much by changing the input w
locally, while staying in the domain. When H = Rd, this notion of approximate critical points
reduces to the notion of approximate stationary point (i.e, a point where the gradient is small in
magnitude). With this notion in mind, we can now define the desired properties we want from our
base learner.

Definition 4.3. (γ-approximate learner) A learning algorithm L is called γ-approximate if, for any
functions f1, ..., fn : H → R each bounded below on a closed domain H, the output w = L(f1:n) of L
is a γ-approximate critical point of f(x) = (1/n)

∑n
i=1 fi(x),

In other words, L always finds an approximate critical point of the empirical learning objective. To
see how this definition is appropriate, we notice that many common algorithms satisfy this property.
For instance, for standard l2 linear regression, gradient descent satisfies this property. Another
possibly more straightforward approach is to set the gradient of the empirical objective to 0 and
solve for w. While this is not a computationally efficient approach for many problems, the output
of this method certainly satisfies the desired property.

4.2 Algorithm
Given a black-box base learner L, the main component of the algorithm is the outlier removal
procedure based on gradients at the output parameters. Similar to the high-level idea behind the
filtering methods covered in the last section, we want to remove consequential outliers that has
a large effect on the learned parameters. For this to be true, we want to identify outliers whose
gradients are:

1. Systematically pointing in a specific direction.

2. Large in magnitude.

We can detect such points via Singular Value Decomposition (SVD). Specifically, if both 1 and 2
hold, then the outliers should be responsible for a large singular value in the matrix of gradients,
which allows us to detect and remove them. We now state our algorithm.

There are a couple of different methods when carrying out the final procedure in practice. We
discussed some methods in the randomized filtering section. For in detail discussions of the perfor-
mances of these methods in practice, see [DKK+19].

For concreteness, let’s see how SEVER algorithm works for the problem of standard l2 linear
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Algorithm 2 SEVER algorithm
Input: Sample functions f1, ..., fn : H → R, bounded below on a closed domain H, a γ-approximate
learner L, and parameter σ ∈ R+.
Initialize: S ← {1, ..., n}.
repeat

1. w ← L({fi}i∈S), i.e., Run approximate learners on points in S.

2. Let ∇̂ = 1
|S|
∑

i∈S ∇fi(w), i.e, Compute the average gradient.

3. Let G = [∇fi(w)− ∇̂]i∈S be the |S| × d matrix of centered gradients.

4. Compute v, the top right singular vector of G.

5. Compute the vector τ ∈ R|S| of outlier scores defined via τi = ((∇fi(w)− ∇̂) · v)2.

6. S′ ← S.

7. S ← FILTER(S′, τ, σ), i.e. remove some i’s with the largest scores τi from S; see Algorithm 3.

until S = S′.
Return w.

Algorithm 3 Filter(S, τ, σ)
Input: Set S ⊆ [n], vector τ of outlier scores, and parameter σ ∈ R+.

1. If
∑

i τi ≤ c · σ for some constant c > 1, return S, i.e., we only filter out points if the variance
is larger than an appropriately chosen threshold.

2. Draw T from the uniform distribution on [0,maxi τi].

3. Return {i ∈ S : τi < T}.

regression. Suppose the base learner is a linear solver that solves the equation xi(yi − w · xi), i.e.
the equation we obtain by setting the gradient equal to 0, and outputs a solution ŵ. With this, we
then compute the average gradient ∇̂ = (1/n)

∑n
i=1 xi(ŵ · xi − yi) with which we can compute the

centered gradient matrix G whose jth row is given by Gj = xj(ŵ · xj − yj)− ∇̂. We then compute
the top right singular vector of G which we denote as v and project the centered gradients onto this
direction. Having done so, we will then obtain a score τj = (Gj · v)2 for each data point. We can
then feed those points into Algorithm 3 to randomly remove a fraction of points based on the scores
and a pre-determined threshold sigma. We repeat this procedure until no points are being removed
in the fiterling step.

With appropriate conditions on the underlying distribution over the function class, we obtain
the following theoretical guarantee.

Theorem 4.4. Suppose that functions f1, ..., fn, f̄ : H → R are bounded below on a closed domain
H. Suppose also that they satisfy the following deterministic regularity conditions: there exists a set
Igood ⊆ [n] with |Igood| ≥ (1− ϵ)n and σ > 0 such that

1. CovIgood [∇fi(w)] ⪯ σ2I, ∀w ∈ H.

2. ∥∇f̂(w)−∇f̄(w)∥2 ≤ σ
√
ϵ, ∀w ∈ H

where f̂ := (1/|Igood|)
∑

i∈Igood
fi and f̄(w) = Ef∼p∗ [f(w)]. Then our algorithm SEVER applied

to f1, ..., fn, σ returns a point w ∈ H such that, with probability at least 9/10, is a (γ + O(σ
√
ϵ))-

approximate critical point of f̄ .

In words, the first condition states that there exists some good set of samples such that the covariance
matrix of the gradients over this set is bounded above. The second condition states that the average
gradient over this good set is not far from gradient under the true distribution. One important
observation that the error does not depend on the dimension d. This ensures that we have our
desired robustness even in high dimensions.

22



The nest step is to show that these desirable regularity conditions hold with high probability for
some natural distributions.

Proposition 4.5. Let H ⊂ Rd be a closed bounded set with diameter at most r. Let p∗ be a
distribution over functions f : H → R and f̄ = Ef∼p∗ [f ]. Suppose that for each w ∈ H and
unit vector v we have Ef∼p∗ [(v · (∇f(w) − ∇f̄(w)))2] ≤ σ2. Under appropriate Lipschitz and
smoothness assumptions, for n = Ω(d log(r/(σ2ϵ))/(σ2ϵ)), an ϵ-corrupted set of functions drawn
i.i.d from p∗, f1, ..., fn with high probability satisfy the regularity conditions.

One nice thing about the algorithm is that it does not require any regularity conditions on the
functions f1, ..., fn. As stated in Theorem 4.4, we are guaranteed to find a approximate critical
point. Can we hope to better for convex functions? The answer is yes, we can find a approximate
global minimum.

Corollary 4.6. Suppose f1, ..., fn : H → R satisfy the regularity conditions stated in Theorem 4.4
and that H is convex with l2-radius r. Then, with probability at least 9/10, the output of SEVER
satisfies the following:

1. If f̄ is convex, the algorithm finds a w ∈ H such that f̄(w)− f̄(w∗) = O((σ
√
ϵ+ γ)r).

2. If f̄ is ξ-strongly convex, the algorithm finds a w ∈ H such that f̄(w)−f̄(w∗) = O((ϵσ2+γ2)/ξ).

4.3 Main idea
Before jumping directly to the proof of Theorem 4.4, we give an overview of SEVER and compare
it with a projective gradient method which achieves the same theoretical guarantees. At the heart,
SEVER is a gradient based algorithm with better runtime at the expense of a stronger assumption.
We start with a high-level description of the problem and examine possible general strategies.

For simplicity, let’s assume the true distribution p∗ is supported over a convex set of convex
functions. Specifically, f1, ..., fn : H → R and f̄ = Ef∼p∗ [f ] are convex. Let f̂ = (1/n)

∑n
i=1 fi (also

convex). Suppose all the data points are faithful and uncorrupted, we can then apply our favorite
convex optimization algorithm to the objective function f̂ . We can thus obtain a approximate min-
imizer of f̂ , which by large sample theory, is also an approximate minimizer of f̂ .

However, this strategy does not exactly apply in our case as our data is ϵ-corrupted. The main
reason is that a single adversarially corrupted sample can substantially changes the location of the
minimum for f̂ . Consequently, a good approximation for the minimum of f̂ is no longer a good ap-
proximation of f̄ . To overcome this issue, we would like to have an algorithm that can approximate
a minimizer of f̄ without necessarily giving a minimizer of f̂ in the first place. One possible solution
to resolve this is the (projective) gradient descent method.

4.3.1 Projective Gradient Descent method

Suppose we are given a set of uncorrupted sample f1, ..., fn : H → R. Let f̄ = Ef∼p∗ [f ] and f̂ =
(1/n)

∑n
i=1 fi. Then in order to recover the optimal w∗ ∈ H, one popular algorithm we can employ

is projective gradient descent. In each iteration, we simply calculate the gradient (1/n)
∑n

i=1∇fi(w)
and update w using the projective gradient update:

w ← PH

(
w − η

(
1

n

n∑
i=1

∇fi(w)

))

where η > 0 is the step-size and PH : Rd → H is the projection onto H under some distance metric.
We then repeat this process until we are not making any progress. Then by some standard argument
of projective gradient descent, we obtain an output that is a good approximation of a critical point
of f̂ .

We can use this approach to devise an algorithm for ϵ-corrupted samples. If we can ensure in
each iteration, the gradient we use in the update procedure is close to the gradient of f̄ , then the
output of the projective gradient descent method is a good approximation of the minimizer of f̄ .
The question now becomes: how can we find such good approximations of ∇f̄(w)?

To this end, the key observation is that approximating the gradient of f̄ at a given point, given
access to an ϵ-corrupted set of samples, can be reduced to a robust mean estimation problem. Then,
we can use any robust mean estimation algorithm as a black-box, output a good approximation of
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∇f̄(w) under some mild assumptions. Assuming that the covariance matrix of ∇f(w) for f ∼ p∗ is
bounded, we can then perform gradient descent and compute an approximate minimum for f̄ .

We will state without proof some key results of this gradient descent algorithm. Compared with
SEVER, this algorithm is slower but it also requires a weaker assumption. Specifically, this algorithm
only requires that for each w ∈ H there exists a set of good functions rather than the existence of a
single good set that works simultaneously for all w.

Assumption 4.7. Fix 0 < ϵ < 1/2 and parameter σ ∈ R+. For each w ∈ H, there exists an
unknown set Igood ⊆ [n] with |Igood| ≥ (1− ϵ)n "good" functions {fi}i∈Igood such that∥∥∥ E

Igood
[(∇fi(w)−∇f̄(w))(∇fi(w)−∇f̄(w))T ]

∥∥∥
2
≤ σ2

and
∥∇f̂(w)−∇f̄(w)∥2 ≤ σ

√
ϵ

where f̂ = (1/|Igood|)
∑

i∈Igood
fi.

We will be using the result on robust mean estimation in [DKK+17, SCV17]. Specifically, we have
the following theorem.

Theorem 4.8. Let µ ∈ Rd and a collection of points xi ∈ Rd, i ∈ [n] and σ > 0. Suppose that there
exists Igood ⊆ [n] with |Igood| ≥ (1− ϵ)n satisfying the following:

1. 1
|Igood|

∑
i∈Igood

(xi − µ)(xi − µ)T ⪯ σ2I.

2.
∥∥∥ 1
|Igood|

∑
i∈Igood

(xi − µ)
∥∥∥
2
≤ σ
√
ϵ.

Then if ϵ < ϵ0 for some universal constant ϵ0, there is an efficient algorithm A which outputs an
estimate µ̂ ∈ Rd such that ∥µ̂− µ∥2 = O(σ

√
ϵ).

With this algorithm A as a black-box, we have the following theorem.

Theorem 4.9. For functions f1, ..., fn : H → R, bounded below on a closed domain H, suppose
Assumption 4.7 is satisfied with parameters ϵ, σ > 0. Then there exists an efficient algorithm that
finds an O(σ

√
ϵ)-approximate critical point of f̄ .

Proof. (of Theorem 4.9) Applying AlgorithmA to {∇fi(w)}, we can find an approximation to∇f̄(w)
with error O(σ

√
ϵ). By standard results in optimization theory, we know that projective gradient

algorithm can run efficiently even with approximate gradients. This can then be used to find our
estimate with the desired error bound.

In summary, the projective gradient descent approach first robustly estimates the projected
gradient ∇f̄(w) using an robust mean estimation algorithm as a black-box in each iteration and
then perform the gradient update.

4.3.2 SEVER

Now we describe the main idea behind SEVER. SEVER does not use robust mean estimation as a
black-box. In contrast, we take advantage of the performance guarantees of our filtering algorithm.
As we shall see in the analysis later, the main idea of the analysis is as follows: when we apply our
filtering algorithm, we want the following conditions to hold:

1. When FILTER is still removing points, it removes more bad points than good points.

2. When FILTER is not removing points any more, it has reached a point such that the average
gradient over the good samples is close to the gradient of f̄

3. When the algorithm terminates, we have sufficiently many samples.

If these conditions hold, since the base learner is assumed to output a γ-approximate critical point
of the empirical average of the remaining functions, by condition 2 above, we would obtain a γ-
approximate critical point of f̄ . By large sample theory, since we have sufficiently many samples,
this approximation is sound.

Notice the assumption that the base learner is an γ-approximate learner is important. It makes
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sure that before we run the FILTER procedure, we always have reached a approximate critical point
of f̂ . Thus, in contrast to the projective gradient descent approach, SEVER only calls the robust
mean estimation routine each time the algorithm reaches an approximate critical point of f̂ . One
of the main reason we prefer this approach is that an iteration of the filter subroutine (Algorithm
3) is more expensive than an iteration of gradient descent. Consequently, it is advantageous to run
many steps of gradient descent in between of consecutive runs of the filter subroutine. The speed
of SEVER can be further improved if use stochastic gradient descent instead of regular gradient
descent.

4.3.3 SEVER and Projective gradient method in practice

One major conceptual difference between SEVER and the projective gradient method is that SEVER
works with a black-box non-robust learner and requires the filter algorithm used in robust mean
estimation. Unlike SEVER, the projective gradient method works with a black-box robust mean
estimation algorithm and then plugs into the (approximate) stochastic gradient descent method.
These two algorithms have similar theoretical runtime guarantees.

However, in practical implementations, SEVER is preferred for several reasons [DKK+19]. First,
in practice we find that in practice, Sever often only requires a constant number of runs of the
base black-box learner, and so incurs only a constant factor overhead. In contrast, the algorithm
presented in this section requires at least linear time per iteration of SGD, since it needs to run a
robust mean estimation algorithm on the entire dataset (and the total number of iterations needed
is comparable). In contrast, SGD typically runs in constant time per iteration, so this presents a
major bottleneck for scalability.

Second, SEVER gives us more freedom when it comes to the choice of base learners. We can
then use problem-specific libraries to experiment with various kinds of base learners. On the other
hand, projective gradient method does not give us this freedom as there are not many choices for
black-box robust mean estimation methods.

4.4 Analysis of SEVER
4.4.1 Proof of main theorem

In this section, we give a full analysis of SEVER algorithm. Specifically, we will give a proof of
Theorem 4.4. To this end, let’s restate the theorem and the necessary assumptions below.

Assumption 4.10. (Deterministic Regularity Conditions) Fix 0 < ϵ < 1/2. There exists an
unknown set Igood ⊆ [n] with |Igood| ≥ (1 − ϵ)n of "good" functions {fi}i∈Igood and parameters
σ0, σ1 ∈ R+ such that:∥∥∥ E

Igood
[(∇fi(w)−∇f̄(w))(∇fi(w)−∇f̄(w))T ]

∥∥∥
2
≤ (σ0 + σ1∥w∗ − w∥2)2, ∀w ∈ H.

and
∥∇f̂(w)−∇f̄(w)∥2 ≤ (σ0 + σ1∥w∗ − w∥2)

√
ϵ, ∀w ∈ H

where f̂ = (1/|Igood|)
∑

i∈Igood
fi.

Comparing the assumption above with Assumption 4.7, one would notice that despite the same
assumptions, Assumption 4.10 requires them to hold for a good set uniformly for all points w ∈ H.
In contrast, 4.7 only requires such a set Igood(w) exists for all points w ∈ H and Igood(w) need not
be the same as Igood(w

′) for w ̸= w′.

Theorem 4.11. Suppose that the functions f1, ..., fn, f̄ : H → R are bounded below, and that
Assumption 4.10 is satisfied. Let σ := σ0 + σ1∥w∗ − w∥2. Then SEVER applied to f1, ..., fn, σ
returns a point w ∈ H that, with high probability at least 9/10, is a (γ + O(σ

√
ϵ))-approximate

critical point of f̄ .

In order to give a formal proof of Theorem 4.11, we require the following lemmas. We mentioned
these in the last section. First, we want to make sure that each time we run the filter, if it outputs
a S′ such that |S′| < |S|, then it must remove more bad samples than good samples. Second, if
FILTER outputs a S′ such that |S| = |S′|, then it must suggest that we have sufficiently many
points and that the average gradient over the good set has to be close to the gradient of f̄ at the
current output w. To formalize these requirements, we have the following lemmas.
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Lemma 4.12. If the samples satisfy the first condition in Assumption 4.10, and if |S| ≥ 2n/3, then
let S′ be the output of FILTER(S, τ, σ), we have that

E[|Igood ∩ (S\S′)|] ≤ E[|([n]\Igood) ∩ (S\S′)|].

Here, |Igood ∩ (S\S′)| is the number of good points being removed and |([n]\Igood) ∩ (S\S′)| is
the number of bad points being removed.

Lemma 4.13. If the samples satisfy Assumption 4.10, FILTER(S, τ, σ) = S, and n − |S| ≤ 11ϵn,
then ∥∥∥∇f̄(w)− 1

|Igood|
∑
i∈S

∇fi(w)
∥∥∥
2
≤ O(σ

√
ϵ).

Assuming these two lemmas, we now give a proof of Theorem 4.11.

Proof. (of Theorem 4.11) We first notice that the algorithm must terminate in n steps as during
each iteration of the algorithm, we either stop or remove at least one point.

It remains to prove correctness. To see this, note that Lemma 4.12 states that in expecta-
tion, FILTER removes more points from S\Igood than from Igood. In particular, this suggests that
|([n]\Igood)∩S|+ |Igood\S| is a supermartingale. Since its initial size is at most ϵn, with probability
at least 9/10, it never exceeds 10ϵn and therefore at the end of the algorithm, we have that

n− |S| ≤ ϵn+ |Igood\S| ≤ 11ϵn.

This allows us to use Lemma 4.13 to finish the proof, using the fact that w is a γ-approximate
critical point of (1/|Igood|)

∑
i∈S ∇fi(w).

4.4.2 Proof of lemmas

We now finish the proof of the main theorem by proving Lemma 4.12 and Lemma 4.13.

Proof. (of Lemma 4.12) Let Sgood = S ∩ Igood and Sbad = S\Igood. We want to show that in expec-
tations, more points are removed from Sbad than in Sgood. This is trivially true if FILTER(S, τ, σ).
Thus, we can assume without loss of generality that Ei∈S [τi] ≥ 12σ.

Notice that the expected number of points thrown out of Sgood and Sbad are proportional to∑
i∈Sgood

τi and
∑

i∈Sbad
τi respectively. Therefore, it suffices to show that

∑
i∈Sbad

τi ≥
∑

i∈Sgood
τi.

To this end, notice that since Covi∈Igood [∇fi(w)] ⪯ σ2I, we have

Cov
i∈Sgood

[v · ∇fi(w)] ≤
3

2
Cov
i∈Igood

[v · ∇fi(w)]

=
3

2
· vT Cov

i∈Igood
[∇fi(w)]v

≤ 2σ2

where the first inequality follows from the assumption that |S| ≥ 2n/3. Let µgood = Ei∈good[v ·
∇fi(w)] and µ = Ei∈S [v · ∇fi(w)]. Note that

E
i∈Sgood

[τi] = Cov
i∈Sgood

[v · ∇fi(w)] + (µ− µgood)
2 ≤ 2σ2 + (µ− µgood)

2.

We now split into two cases. Firstly, if (µ − µgood)
2 ≤ 4σ2, then Ei∈Sgood [τi] ≤ 6σ2 ≤ Ei∈S [τi]/2.

Thus, we have
∑

i∈Sbad
τi ≥

∑
i∈Sgood

τi.
On the other hand, if (µ − µgood)

2 ≥ 4σ2, we let µbad = Ei∈Sbad [v · ∇fi(w)]. Note that |µ −
µbad| · |Sbad| = |µ− µgood| · |Sgood|. We then have that

E
i∈Sbad

[τi] ≥ (µ− µbad)
2

≥ (µ− µbad)
2
( |Sgood|
|Sbad|

)2
≥ 2
( |Sgood|
|Sbad|

)
(µ− µbad)

2

≥
( |Sgood|
|Sbad|

)
E

i∈Sgood
[τi].

Therefore, we have that
∑

i∈Sbad
τi ≥

∑
i∈Sgood

τi. This conclude the proof.
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Lastly, we give a proof of Lemma 4.13.

Proof. (of Lemma 4.13) To prove the lemma, it suffices to prove that

δ :=
∥∥∥∑

i∈S

(∇fi(w)−∇f̄(w))
∥∥∥
2
= O(nσ

√
ϵ).

By the triangle inequality, we have∥∥∥∑
i∈S

(∇fi(w)−∇f̄(w))
∥∥∥
2
≤
∥∥∥ ∑

i∈Igood

(∇fi(w)−∇f̄(w))
∥∥∥
2
+
∥∥∥ ∑

i∈(Igood\S)

(∇fi(w)−∇f̄(w))
∥∥∥
2

+
∥∥∥ ∑

i∈(S\Igood)

(∇fi(w)−∇f̄(w))
∥∥∥
2

=
∥∥∥ ∑

i∈(Igood\S)

(∇fi(w)−∇f̄(w))
∥∥∥
2
+
∥∥∥ ∑

i∈(S\Igood)

(∇fi(w)−∇f̄(w))
∥∥∥
2

+O(n
√
σ2ϵ)

where the last line comes from the regularity assumption on the good set Igood. We first analyze∥∥∥ ∑
i∈(Igood\S)

(∇fi(w)−∇f̄(w))
∥∥∥
2
.

By the functional representation of | · |2, we have that∥∥∥ ∑
i∈(Igood\S)

(∇fi(w)−∇f̄(w))
∥∥∥
2
= sup

v∈Sd−1

∑
i∈(Igood\S)

v · (∇fi(w)−∇f̄(w)).

Note that by assumption, we have∑
i∈(Igood\S)

v · (∇fi(w)−∇f̄(w))2 = O(nσ2).

Since |Igood\S| = O(nϵ), by Cauchy-Schwarz inequality, we have∑
i∈(Igood\S)

v · (∇fi(w)−∇f̄(w)) = O(
√
(nσ2)(nϵ)) = O(nσ

√
ϵ).

as desired. On the other hand, we have∑
i∈S

v · (∇fi(w)−∇f̄(w))2 =
∑
i∈S

v · (∇fi(w)−∇f̂(w))2 + δ2 = O(nσ2) + δ2

(or otherwise our filter would have removed elements). Since |S\Igood| = O(nϵ), we have similarly
that ∥∥∥ ∑

i∈(S\Igood)

(∇fi(w)−∇f̄(w))
∥∥∥
2
= O(nσ

√
ϵ+ δ

√
nϵ).

Combining these together, we can then conclude that

δ = O(nσ
√
ϵ)

as desired.

4.5 Application in Logistic Regression
In this section, we will see how we can apply SEVER to some learning problems. For an application
of SEVER to linear regression, see appendix E.1 of [DKK+19]. Our main focus here is generalized
linear models and specifically, logistic regression. As we shall see in the later part of this paper,
the non-polynomial nature of the loss function in generalized linear models raises some seemingly
insurmountable barriers for sum-of-squares methods. We will examine what kind of theoretical
guarantees SEVER can give us on these problems.
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4.6 SEVER on Generalized Liner Models
Let’s formalize our definition of a generalized linear model through the lenses of data functions.

Definition 4.14. Let H ⊆ Rd and Y be an arbitrary set. Let Dxy be a distribution over H × Y.
For each Y ∈ Y, let σY : R → R be a convex function. The generalized linear model (GLM)
over H × Y with distribution Dxy and link function σY is the function: f̄ : Rd → R defined by
f̄(w) = EX,Y [fX,Y (w)], where

fX,Y (w) := σY (w ·X).

A sample from this GLM is given by fX,Y (w) where (X,Y ) ∼ Dxy.

For support vector machines (SVM), the loss function is given by fi((w, (x, y))) = L(w, (xi, yi)) =
max{0, 1− y(w · x)}. In the case of logistic regression, we have fi((w, (x, y))) = L(w, (xi, yi)) where
L(w, (xi, yi)) is given as

L(w, (xi, yi)) =
1 + y

2
ln
( 1

ϕ(w · x)

)
+

1− y

2
ln
( 1

ϕ(−w · x)

)
where ϕ(t) = 1/(1 + e−t). We can formalize this loss function f(x,y)(w) using maximum likelihood
argument as in [Din21].

Our goal in GLMS is to approximately minimize f̄ given ϵ-corrupted samples from Dxy. Through-
out this section, we assume that H is contained in the ball of radius r around 0, i.e. H ⊆ B(0, r).
Let w∗ = argminw∈H f̄(w) be a minimizer of f̄ in H.

One challenge in GLMs is that it is unclear how to demonstrate that Assumption 4.10 holds after
taking polynomially many samples from GLM. To rectify this, we show give a different deterministic
regularity condition under which we can show SEVER succeeds. We will show that this condition
holds after taking polynomially many samples from a GLM. This alternative deterministic regularity
condition is stated below.

Assumption 4.15. Fix 0 < ϵ < 1/2. There exists an unknown set Igood ⊆ [n] with |Igood| ≥ (1−ϵ)n
of "good" functions {fi}i∈Igood and parameters σ0, σ2 ∈ R+ such that the following conditions hold
simultaneously:

•
∥∥∥EIgood [(∇fi(w)−∇f̄(w))(∇fi(w)−∇f̄(w))T ]

∥∥∥
2
≤ σ2

0 , ∀w ∈ H.

• ∥∇f̂(w∗)−∇f̄(w∗)∥2 ≤ σ0
√
ϵ.

• |f̂(w)− f̄(w)| ≤ σ2
√
ϵ for all w ∈ H.

where f̂ = (1/|Igood)|
∑

i∈Igood
fi.

Comparing this with Assumption 4.10, we notice that the first two conditions here are looser than the
conditions in Assumption 4.10. To see this, notice that if we assume the conditions in in Assumption
4.10, we can obtain the first two conditions here by setting σ1 = 0 and σ0 as it is. More importantly,
both of the assumptions in Assumption 4.10 are required to hold for all w ∈ H while here we only
require the conditions to hold for w = w∗. The last condition here states that the sample average
is close to the true function f∗. This is not a strong restriction as it easily follows from standard
concentration results when n is large. One intuitive reason of why need these somewhat relaxed
conditions, is that although convex, the loss functions in a generalized linear model typically take
in complicated forms which make it hard to certify uniform closeness of gradients and convariances
with polynomially many samples.

With the modified regularity conditions for GLMs, we now have the following theorem.

Theorem 4.16. For functions f1, ..., fn : H → R, suppose that Assumption 4.15 holds and that H
is convex. Then, for some universal constants ϵ0, there is an algorithm which, with probability at
least 9/10, finds a w ∈ H such that

f̄(w)− f̄(w∗) = r(γ +O(σ0

√
ϵ)) +O(σ2

√
ϵ).

If the link functions are ξ-strongly convex, the algorithm finds a w ∈ H such that

f̄(w)− f̄(w∗) = 2
(γ +O(σ0

√
ϵ))2

ξ
+O(σ2

√
ϵ).
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Towards a proof of the theorem, we need the following lemma.

Lemma 4.17. Let f1, ..., fn satisfy Assumption 4.15. Then with probability at least 9/10, SEVER
applied to f1, ..., fn, σ0 returns a point w ∈ H which is a (γ + O(σ0

√
ϵ))-approximate critical point

of f̂ .

We will omit the proof of the lemma here. The proof is a simple condition checking and apply
Theorem 4.11. Given Lemma 4.17, we can now give a proof of Theorem 4.16.

Proof. (of Theorem 4.16) Let w ∈ H be the output of SEVER. By Assumption 4.15, we know that
f̂(w∗) ≥ f̄(w∗) − σ2

√
ϵ and moreover, it is a γ + σ0

√
ϵ-approximate critical point of f̂ by Lemma

4.17.
By the convexity of the link functions, we know that their empirical average f̂ is also convex.

Hence, by Corollary 4.6, we know that f̂(w) − f̂(w∗) ≤ r(γ + O(σ0
√
ϵ)). By the last condition of

Assumption 4.15, we can then conclude that

f̄(w)− f̄(w∗) ≤ r(γ +O(σ0

√
ϵ)) +O(σ2

√
ϵ)

as desired. The bound for strongly convex functions follow from the exact same argument using the
strongly-convex part of Corollary 4.6.

Lastly, we will state without proof the following proposition which states that Assumption 4.15 holds
with high probability in GLMs with mild assumptions.

Proposition 4.18. Let H ⊆ Rd and let Y be an arbitrary set. Let f1, ..., fn be obtained by picking
fi i.i.d. at random from a GLM f̄ over H× Y with distribution Dxy and link functions σY , where

n = Ω
(d log(dr/ϵ)

ϵ

)
.

Suppose more over that the following conditions all hold:

1. EX∼Dxy
[XXT ] ⪯ I.

2. |σ′
Y (t)| ≤ 1 for all Y ∈ Y and t ∈ R.

3. |σY (0)| ≤ 1 for all Y ∈ Y.

Then with probability at least 9/10 over the original set of samples, there is a set of (1− ϵ)n of the
fi that satisfy Assumption 4.15 on H with σ0 = 2, σ1 = 0 and σ2 = 1 + r.

Interested readers can find a formal proof of the statement in Section C.2 of [DKK+19].

4.7 SEVER for Logistic Regression
In this section, we demonstrate how we can apply SEVER to the problem of logistic regression as
a special case of GLMS. In logistic regression, we are given (Xi, Yi) ∈ Rd × {±1} for i ∈ [n] which
are drawn from some distribution Dxy. Our goal is to model the probability of a point belonging to
either the class +1 or the class −1. To this end, logistic regressions model the y = 1 with probability
ϕ(w ·x) and y = −1 with probability ϕ(−w ·x) where ϕ(t) = 1/(1+e−t). We define the loss function
via the log-likelihood. Let fi(w, (xi, yi)) = L(w, (xi, yi)). We have

L(w, (xi, yi)) =
1 + y

2
ln
( 1

ϕ(w · x)

)
+

1− y

2
ln
( 1

ϕ(−w · x)

)
=

1

2
(− ln(ϕ(w · x)ϕ(−w · x))− y(w · x)).

The gradient of this function is given by

∇L(w, (x, y)) = 1

2
(ϕ(w · x)− ϕ(−w · x)− y)x.

Our goal is to find a ŵ that approximately minimizes the objective function

f̄(w) = E
(X,Y )∼Dxy

[L(w, (X,Y ))].

For our results to work for logistic regression, we need the following assumptions.
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Assumption 4.19. Given the model for logistic regression as described above, we assume the fol-
lowing conditions hold:

• EX∼Dx
[XXT ] ⪯ I.

• Dx is ϵ1/4
√
log(1/ϵ)-anticoncentrated.

With this assumption, we then have the following theorem.

Theorem 4.20. Let ϵ > 0, and let Dxy be a distribution over pairs (X,Y ), where the marginal
distribution Dx satisfies Assumption 4.19. Then there exists an algorithm that with probability 9/10,
given O(d log(d/ϵ)/ϵ) many ϵ-noisy samples from Dxy, returns a ŵ such that for any optimal solution
w∗, we have

E
(X,Y )∼Dxy

[L(ŵ, (X,Y ))] ≤ E
(X,Y )∼Dxy

[L(w∗, (X,Y ))] +O(ϵ1/4
√
log(1/ϵ)).

The main idea is to make some restrictions so that we can apply our results for generalized linear
models. To this end, we will restrict our search over w to H, a ball of radius r = ϵ−1/4

√
log(1/ϵ).

As we will see, this restriction comes at a cost of at most O(ϵ1/4
√
log(1/ϵ)) in our algorithm’s

loss. In this restricted search space, we can then argue that the problem satisfies the conditions of
Proposition 4.18. This allows to say that with polynomially-many samples, we can obtain a set of
functions {fi}ni=1 satisfying the conditions of Assumption 4.15, enabling us to invoke Theorem 4.16
and finish the proof.

To start, we will show that there is a w′ ∈ H with loss close to w∗ due to the anti-concentration
assumption.

Lemma 4.21. Let w′ be a rescaling of w∗ such that ∥w′∥2 ≤ ϵ−1/4
√

ln(1/ϵ). Then we have

E
(X,Y )∼Dxy

[L(w′, (X,Y ))] ≤ E
(X,Y )∼Dxy

[L(w∗, (X,Y ))] +O(ϵ1/4
√
ln(1/ϵ)).

Proof. (of lemma) We will be using the following fact about ϕ(t) = 1/(1 + e−t):

|t| ≤ − ln(ϕ(t)ϕ(−t)) ≤ |t|+ 3 exp(−t).

One can see a proof of this fact in Claim E.13 of [DKK+19]. Notice that we always have |w′ · x| −
y(w′ · x) ≤ |w∗ · x| − y(w∗ · x). To see this, we do a case analysis on y. Notice we always have
sign(w′ · x) = sign(w∗ · x) since w′ is a scaled version of w∗. When y = sign(w′ · x) = sign(w∗ · x),
both sides of the inequalities are 0. When y = −sign(w′ · x) = −sign(w∗ · x), then the inequality
becomes 2|w′ · x| ≤ 2|w∗ · x|, which holds since ∥w′∥2 ≤ ∥w∗∥2. Combining this with the fact above,
we have

− ln(ϕ(w′ · x)ϕ(−w′ · x))− y(w′ · x)− 3 exp(−3|w′ · x|) ≤ |w′ · x| − y(w′ · x)
≤ |w∗ · x| − y(w∗ · x)
≤ − ln(ϕ(w∗ · x)ϕ(−w∗ · x))− y(w∗ · x)

where the first and last inequality comes from the fact above and the second inequality is a result
of our case analysis. Equivalently, we have that for any y ∈ {±1}, the following result:

L(w′, (X,Y )) ≤ L(w∗, (X,Y )) + 3 exp(−3|w′ · x|).

Therefore, if |w′ · x| ≤ (1/3) ln(1/ϵ), then L(w′, (X,Y )) ≤ L(w∗, (X,Y )) + 3/2. If |w′ · x| ≥
(1/3) ln(1/ϵ), then L(w′, (X,Y )) ≤ L(w∗, (X,Y )) + (3/2)ϵ. On the other hand, since ∥w′∥2 ≤
ϵ−1/4

√
ln(1/ϵ) and Dx is ϵ1/4

√
ln(1/ϵ)-anticoncentrated, we have that

PDx

[
|w′ · x| ≤ 1

3
ln(1/ϵ)

]
≤ O(ϵ1/4

√
ln(1/ϵ)).

With this, we can then conclude that

E
(X,Y )∼Dxy

[L(w′, (X,Y ))] ≤ E
(X,Y )∼Dxy

[L(w∗, (X,Y ))] +O(ϵ1/4
√
ln(1/ϵ))

as desired.

Now we are ready to a proof of our main theorem (Theorem 4.20).
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Proof. (of Theorem 4.20) We show that we can apply the general framework for Generalized Linear
Models for our problem. In particular, we want to show the conditions of Proposition 4.18 are
satisfied by our logistic model. The link function is given by σy(t) = (1/2)(− ln(ϕ(t)ϕ(−t) − yt),
giving us the loss function L(w, (x, y)) = σy(w · x). Let H = B2(r) = {x ∈ Rd| ∥x∥2 ≤ r} where
r = ϵ−1/4

√
ln(1/ϵ).

Condition 1 is satisfied by our assumption in Assumption 4.19. For y ∈ {−1,+1}, we have
σ′
y(t) = (1/2)(ϕ(t)− ϕ(−t)− y), giving us |σ′

y(t)| ≤ 1 for all t and y, satisfying Condition 2. Lastly,
we have σy(0) = ln 2 < 1 for all y, satisfying Condition 3. Therefore, by Proposition 4.18, if we
have O(d log(dr/ϵ)/ϵ) ϵ-corrupted samples, then the conditions in Assumption 4.15 are satisfied with
σ0 = 2, σ1 = 0 and σ2 = 1 + ϵ−1/4

√
ln(1/ϵ) with probability at least 9/10.

Now by Theorem 4.16, since the loss function is convex, we can obtain a vector ŵ such that

f̄(ŵ)− f̄(w∗′
) = O((σ0r + σ1r

2 + σ2)
√
ϵ) = O(ϵ1/4

√
ln(1/ϵ)).

where w∗′
is the minimizer of f̄ on H. As a result, we conclude that

f̄(ŵ) ≤ f̄(w∗′
) +O(ϵ1/4

√
ln(1/ϵ))

≤ f̄(w
′
) +O(ϵ1/4

√
ln(1/ϵ))

≤ f̄(w∗) +O(ϵ1/4
√
ln(1/ϵ))

where the second inequality follows since w∗′
is the minimizer of f̄ on H and the third inequality

comes from Lemma 4.21.
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5 Sum of Squares proofs and optimization
So far we have been talking about filtering-based method in robust statistics. We now switch gears
to another set of tools that have been popular in the robust statistics community in recent years.
Specifically, the methods we are going to cover make crucial use of sum-of-squares techniques in
which the key element is that the existence of a low-degree sum-of-squares proof of certain state-
ments implies the existence of an efficient algorithm. We will define what a low-degree sum-of-squares
means and how that implies an efficient algorithm.

Compared with filtering-based approaches, sum-of-squares based methods provide a general
recipe for parameter recovery and learning problems. In some sense, sum-of-squares methods are like
programming in that you are manipulating the polynomials at hand to give a low-degree proof of the
statement you want to prove. In many concrete examples, sum-of-squares based methods are nearly
optimal. However, sum-of-squares-based methods have issues as well. First, for learning problems, it
crucially relies on the convexity and the polynomial structure of the loss function. Hence, it can be
applied to problems like l1 and l2 regressions but it is not known how it can be adapted to problems
with non-polynomial loss functions, for instance, logistic regression. So in this sense, sum-of-squares
methods do not give enough "coverage" for learning problems.

Another issue is its practicality. Unlike SEVER and the projective gradient descent algorithm
which can be easily implemented using standard libraries in machine learning, sum-of-squares-based
algorithms require solving a large semi-definite program and as far as our searches went, the best
known existing package can only handle low moment tensors in a small number of variates, which
deem it infeasible for practical purposes yet.

Nevertheless, the method itself is elegant and has near-optimal performances for many learning
problems. It is also extremely exciting and interesting to see how a "proof" can be converted into an
efficient algorithm. We will introduce the basics in sum-of-squares methods, use the one-dimensional
Gaussian mixture model as a simple example and in the next section, we will see how we can use
sum-of-squares to obtain an efficient algorithm for robust linear regression.

In this section, we define pseudo-distributions and sum-of-squares proofs. We will present a few
important conclusions that will be used throughout this article. We will follow the exposition in
[KKM20]. For a more systematic study of sum-of-squares proofs, see [BS16]. The proofs of the
propositions below can be found in the appendix in [MSS16].

Let x = (x1, ..., xn) be a tuple of n indeterminates. Let R[x] be the ring of polynomials with coef-
ficients in R and indeterminates in x1, ..., xn. We say that a polynomial p ∈ R[x] is a sum-of-squares
(sos) if there are polynomials q1, ..., qr ∈ R[x] such that p = q21 + ...+ q2r .

5.1 Pseudo-distributions
As the name suggests, pseudo-distributions are generalizations of probability distributions. Consider
a probability distribution p with finite support, i.e., |supp(p)| < ∞. Then we must have that∑

p(x) = 1 and p(x) ≥ 0 for all x ∈ supp(x). For pseudo-distributions with finite support, we can
similarly describe it using its mass function. However, we relax the condition that the mass function
has to be non-negative over the support. Instead, we only require that a pseudo-distribution passes
certain low-degree non-negativity tests.

Specifically, we say a finitely-supported function D : Rn → R is a level-l pseudo-distribution if∑
x∈supp(D) D(x) = 1 and

∑
x∈supp(D) D(x)f(x)2 ≥ 0 for every polynomial f of degree at most l/2.

It is easy to see that every level-∞ pseudo-distribution satisfies D(x) ≥ 0 for all x ∈ supp(x) and is
thus a probability distribution. We define the pseudo-expectation of a function f on Rd with respect
to a pseudo-distribution D, denoted as ẼD(x)f(x), as

ẼD(x)f(x) =
∑

x∈supp(x)

D(x)f(x).

Consider monomials of (x1, ..., xn) which can be expressed as xe1
1 xe2

m2
...xen

n where ei ≥ 0 ∀i. with
pseudo-expectation ẼD(x)f(x)[xm1

xm2
...xml

]. The degree-l moment tensor of a pseudo-distribution
D is given by the tensor ED(x)(1, x1, ..., xn)

⊗l whose entries are exactly the pseudo-expectations of
all the monomials in (1, x1, ..., xn) with degree at most l. The set of all degree-l moment tensors of
probability distributions is a convex set. Similarly, the set of all degree-l moment tensors of degree
d pseudo-distributions is also convex.

One important desirable property of pseudo-distributions is the existence of an efficient separation
oracle for this convex set of degree-l moment tensors while for probability distributions, such a
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separation oracle does not exist. In particular, there is a separation oracle running in time nO(l) for
the convex set of the degree-l moment tensors of all level-l pseudo-distributions.

Fact 5.1. [Las01, Nes00, Par00, Sho87] For any n, l ∈ N, there exists a nO(l)-time weak separation
oracle for the following set:

{ẼD(x)(1, x1, ..., xn)
⊗l | degree-l pseudo-distribution D over Rn}.

The oracle is an application of the ellipsoid method. Interested readers can find the exact oracle in
[GLS81]. The equivalence of weak separation and optimization (see [GLS81] and this proposition
allows us to efficiently optimize over pseudo-distributions (approximately i.e., some rounding proce-
dures needed to convert the output to a solution). In literature, this algorithm is often referred to
as the sum-of-squares algorithm. One important feature of this algorithm is that it not only works
for general pseudo-distributions, it can also be adapted to work for constrained pseudo-distributions.

Definition 5.2. (Constrained pseudo-distributions). Let D be a level-l pseudo-distribution over Rn.
Let A = {f1 ≥ 0, ..., fm ≥ 0} be a system of m polynomial inequality constraints. We say that D

satisfies the system of constraints A at degree r, denoted D r A, if for every S ⊆ [m] and every
sum-of-squares polynomial h with deg h+

∑
i∈S

max{deg fi, r} ≤ l,

ẼDh ·
∏
i∈S

fi ≥ 0.

We write D |= A (without specifying the degree) if D
0
A holds. Let p be a polynomial with degree

deg p ≤ ∞. Let c(p) ∈ Rdeg p denote the vector of coefficients of p in the monomial basis. Define
the norm of p as ∥p∥ = ∥c(p)∥2, i.e., the Euclidean norm of coefficient vector. We say that D r A
approximately if the above inequalities are satisfied up to an error of ϵ = 2−nl · ∥h∥ ·

∏
i∈S ∥fi∥. In

other words, ẼDh ·
∏
i∈S

fi ≥ −ϵ. Notice that the choice of Euclidean norm is not important (i.e., can

be l1, l∞ and other norms) since the error of choosing a different norm can be absorbed in to the
2−nl

factor by equivalence of norms. If D is a discrete probability distribution, then we have D |= A
if and only if D is supported on solutions to the constraints A.

We say that a system A of polynomial constraints is explicitly bounded if it contains a constraint
of the form {∥x∥2 ≤ M}. As a consequence of Proposition 5.1 and [GLS81], we have the following
result,

Fact 5.3. (Efficient Optimization over Pseudo-distributions). There exists an (n + m)O(l)-time
algorithm that, given any explicitly bounded and satisfiable system A of m polynomial constraints in
n variables, outputs a level-l pseudo-distribution that satisfies A approximately.

Here we assume the bit-complexity of the constraints in A is (n + m)O(1). We will be using the
following properties of pseudo-distributions frequently.

Fact 5.4. (Pseudo-distribution Cauchy-Schwarz inequality) If µ̃ is a degree r pseudo-distribution
and f, g are polynomials of degree at most r/2 then(

Ẽµ̃fg
)2
≤
(
Ẽµ̃f

2
)(

Ẽµ̃g
2).

Fact 5.5 (Pseudo-distribution Hölder’s inequality). Let f, g be sum-of-squares polynomials. Let
p, q be positive integers so that 1/p + 1/q = 1. Then for any pseudo-distribution µ̃ of degree r ≥
pq · deg(f) · deg(g), we have:

(Ẽµ̃[f · g]pq) ≤ Ẽ[fp]q · Ẽ[gq]p

In particular, for all even integers k ≥ 2, and polynomial f with deg(f) · k ≤ r,

(Ẽµ̃[f ])
k ≤ Ẽµ̃[f

k].

5.2 Sum-of-squares proofs
The dual concept of pseudo-distribution is the concept of sum-of-squares proofs.
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Definition 5.6. Let f1, ..., fr and g be multivariate polynomials in x. A sum-of-squares proof that the
constraints A = {f1 ≥ 0, ..., fr ≥ 0} imply the constraint g consists of (sum-of-squares) polynomials
(pS)S⊆∈[m] such that

g =
∑

S⊆[m]

pS ·
∏
i∈S

fi.

It is easy to see that a sum-of-squares proof certifies that g ≥ 0. We say that this proof has degree
l if for every set S ⊆ [m], the polynomial pS

∏
i∈S fi has degree at most l. If there is a degree l

sum-of-squares proof that A = {fi ≥ 0|i ≤ r} implies {g ≥ 0}, we write:

A l {g ≥ 0}.

Sum-of-squares proofs extend naturally to polynomial systems that involve equalities of the form
{pi = 0} via the following equivalence: pi = 0 ⇐⇒ pi ≥ 0 and − pi ≥ 0. Let Pn denote the set of
all polynomials on n variables with real coefficients. For all polynomials f, g : Rn → R and for all
functions F,G,H ∈ F where F = {F : Rn → Rm|(F (x))i = pi(x), pi ∈ Pn}, i.e., each coordinate of
the output of the function is a polynomial of the input. Then we have the following rules:

• Addition:
A ⊢ {f ≥ 0, g ≥ 0}
A ⊢ {f + g ≥ 0}

• Multiplication:
A l {f ≥ 0},A ⊢l′ {g ≥ 0}
A

l+l′
{f · g ≥ 0}

• Transitivity:
A l B,B l′

C
A

l+l′
C

• Substitution:
{F ≥ 0} l {G ≥ 0}

{F (H) ≥ 0
l·deg(H)

G(H) ≥ 0}
.

where A
B means that "A implies B." We also have the following fact,

Fact 5.7. For polynomial systems A,B and polynomials p, q, if A l {p ≥ 0} and B
l′
{q ≥ 0},

then we have:
A ∪ B

max(l,l′)
{p(x) + q(x) ≥ 0}

and
A ∪ B

l,l′
{p(x)q(x) ≥ 0}.

Intuitively, sum-of-squares proofs can be a proof system for statements involving polynomial in-
equalities. It is indeed true that low-degree sum-of-squares proofs are sound and complete if we take
low-level pseudo-distributions as models. This allows us to deduce properties of pseudo-distributions
that satisfy certain constraints via sum-of-squares proofs.

Fact 5.8. (Soundness) If D r A for a level-l pseudo-distribution D and there exists a sum-of-squares
proof A

r′
B, then D

r′(r+1)
B.

If the pseudo-distribution D satisfies A approximately, then we still have the soundness of sum-of-
squares proof provided we have an upper bound on the bit-complexity of the sum-of-squares A

r′
B.

The bit-complexity of all sum-of-squares proofs in our arguments will be nO(l) which allows to talk
about approximate satisfiability of a polynomial system A based on the above fact.

In addition to soundness, we also have completeness.

Fact 5.9. (Completeness) Suppose d ≥ r′ ≥ r and A is a collection of polynomial constraints with
degree at most r and A {

∑n
i=1 x

2
i ≤ B} for some finite B. Let {g ≥ 0} be a polynomial constraint.

If every degree-d pseudo-distribution that satisfies D |= A also satisfies D
r′
{g ≥ 0}, then for every

ϵ > 0, there is a sum-of-squares proof A d {g ≥ −ϵ}.
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We will also be using the following sum-of-squares version of Hölder’s inequality.

Fact 5.10. (Sum-of-squares Hölder’s inequality) Let f1, ..., fn and g1, ..., gn be sum-of-squares poly-
nomials over Rd. Let p, q be positive integers such that 1/p+ 1/q = 1. Then,

pq
f1,...,fn,g1,...,gn

{( 1
n

n∑
i=1

figi

)pq
≤
( 1
n

n∑
i=1

fp
i

)q( 1
n

n∑
i=1

gpi

)q}
.

where x
d A denotes that there exists a degree d sum-of-squares proof of the polynomial system A in

terms of the variable x. We also have the following facts.

Fact 5.11. (Sum-of-squares triangle inequality) Let x, y be indeterminates (possibly sum-of-squares
polynomials). Let t be a power of 2. Then

t (a+ b)t ≤ 2t−1(at + bt).

Fact 5.12. For any sum-of-squares polynomials f1, ..., fn, we have

k

f1,f2,...,fn
{( n∑

i=1

fi
)k ≤ nk

( n∑
i=1

aki
)}

.

5.3 Application: Mixture of Gaussians
In this section, we give an example of sum-of-squares methods in statistics. In particular, we will
give a sum-of-squares proof of one key statement which leads to an efficient algorithm for the mixture
of Gaussians problem.

Let µ1, ..., µk be k vectors in Rd such that ∥µi − µj∥2 ≥ ∆ for all i, j ∈ [k] such that i ̸= j.
Consider the following spherical Gaussian distributions p1, ..., pk where pk = N (µk, I). Suppose we
observe n i.i.d samples x1, ..., xn ∈ Rd each drawn by selecting j ∼ [k] uniformly and then drawing
Xi ∼ N (µj , I). Let S1, ..., Sk be the induced partition of [n] such that i ∈ Sj if sample xi was drawn
from N (µj , I). Our goal is to output a partition {T1, ..., Tk} of [n], each of size n/k, such that

|Si ∩ Ti| ≥ (1− δ) · n
k

for each i ∈ [k] and some small parameter δ > 0 up to relabelings of the clusters. One recent result
on this problem has been proved in three independent works.

Theorem 5.13. [HL17, KS17, DKS17] For arbitrarily large t ∈ N, there is an algorithm requiring
n = dO(t)kO(1) samples from the equidistributed mixture of Gaussians model running in time nO(t)

that outputs a partition T1, ..., Tk of [n] into k partitions each of size N = n/k such that the following
holds with high probability for some universal constant C,

|Si ∩ Ti|
N

≥ 1− k10 ·
(C√t

∆

)t
.

where equidistributed means that we have exactly n/k samples form each Gaussian in the mixture.
We will not be going through the exact proof of the theorem. Interested readers can refer to
[HL17, KS17, DKS17] or the nice blog posts by Sam Hopkins [Hop18]. In the remainder of this
section, we will for simplicity assume that d = 1, i.e. xi ∈ R for all i ∈ [n]. Towards the proof of
Theorem 5.13, a low-degree sum-of-squares proof of the following lemma is needed.

Lemma 5.14. Let S, S′ ⊆ R such that |S| = |S′| = N . Let X, X ′ be uniform samplers from S and
S′ respectively. Let µ = E[X] and µ′ = E[X ′]. Suppose X,X ′ satisfies the t-th moment bound

E |X − µ|t ≤ 2 · tt/2 and E |X ′ − µ′|t ≤ 2 · tt/2.

Then we have
|µ− µ′| ≤ 4

√
t ·
( |S ∩ S′|

N

)−1/t

.

As the current statement of the lemma stands, it is hard to give a sum-of-squares of proofs because
of the exponents in the conclusion. However, if we are able to give a low-degree sum-of-squares proof
of an equivalent statement of the lemma above, then we able to output a pseudo-distribution p̃ by
Fact 5.3 and soundness of sum-of-squares proof (Fact 5.8). We can then use it to give an efficient
algorithm for the problem and thus prove Theorem 5.13. To this end, let’s consider the following
almost equivalent statement of Lemma 5.14.
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Lemma 5.15. Let X1, ..., Xn ∈ R. Let S ⊆ [n] such that |S| = N . Denote its mean to be
µS = Ei∼S [Xi]. Let t be a power of 2. Suppose S satisfies

E
i∼S
|Xi − µS |t ≤ 2 · tt/2. (2)

Let w1, ..., wn be indeterminates. Let A be the following set of equations and inequalities.

w2
i = wi for i ∈ [n] (3)

∑
i∈[n]

wi = N (4)

1

N

∑
i∈[n]

wi · (Xi − µ)t ≤ 2 · tt/2. (5)

Then
A

O(t)

( |S ∩ T |
N

)t
· (µ− µS)

t ≤ 2O(t) · tt/2 ·
( |S ∩ T |

N

)t−1

.

where |S∩T |(w) =
∑
i∈S

wi. Notice the differences between the two lemmas: (a) The inequality in the

conclusion of Lemma 5.15 is raised to the t-th power. (b) The inequality in the conclusion of Lemma
5.15 has an extra factor of |S ∩ T |/N on both sides. The first difference is easy to understand
since we want all exponents to be positive integers in order to give a sum-of-squares proof. The
second difference is more subtle and we will need it for our purpose. Interested readers can refer to
[Hop18, HL17].

In the statement of Lemma 5.15, we introduced the indeterminates {wi}ni=1. The way to think
about these indeterminates is that they are indicators of membership in the set. In other words,
suppose we know exactly which points belong to the set S, then wi = 1 if Xi ∈ S and wi = 0
if Xi /∈ S. However, we do not possess this information. Hence, the set of constraints A can be
regarded as a relaxed version of this set of membership constraints.

To see this, (3) is equivalent to saying wi = 1 or wi = 0, i.e, each point either belongs to the set
S or not. (4) together with (3) suggests that there are exactly N points in {Xi}ni=1 that belong to
the set S. Notice that if we knew exactly which points belong to S, (4) would become

∑
i∈S wi = N .

This is why we say A is a relaxation. Lastly, (5) is simply (2) with intermediates. We will be using
the same idea again in the next section when we talk about sum-of-squares methods for robust linear
regression.

It is easy to see that A is explicitly bounded. In order to apply Fact 5.3, we in addition need
that A is satisfiable. This is indeed true if we let wi = 1 for points that belong to S and wi = 0
otherwise. Now we are ready to give a sum-of-squares proof of Lemma 5.15. We follow the steps
outlined in [Hop18].

Proof. (of Lemma 5.15) First, notice that

|S ∩ T |t · (µ− µS)
t =

(∑
i∈S

wi

)t
· (µ− µS)

t =
(∑

i∈S

wi[(µ−Xi)− (µS −Xi)]
)t
.

Then, by sum-of-squares Hölder’s inequality, we have

A
O(t)

(∑
i∈S

wi[(µ−Xi)− (µS −Xi)]
)t
≤
(∑

i∈S

wi

)t−1

·
∑
i∈S

wi[(µ−Xi)− (µS −Xi)]
t.

Substituting w2
i − wi = 0 into the inequality above, we have

A
O(t)

(∑
i∈S

wi[(µ−Xi)− (µS −Xi)]
)t
≤
(∑

i∈S

w2
i

)t−1

·
∑
i∈S

w2
i [(µ−Xi)− (µS −Xi)]

t.

Now notice that the polynomial
∑

i∈S w2
i

)t−1

is a sum-of-squares polynomial. Applying the sum-
of-squares triangle inequality (Fact 5.11) with a = µ−Xi and b = −(µS −Xi), we obtain

A
O(t)

(∑
i∈S

wi[(µ−Xi)− (µS −Xi)]
)t
≤ 2t

(∑
i∈S

w2
i

)t−1

·
∑
i∈S

w2
i (µ−Xi)

t + w2
i (µS −Xi)

t.
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Adding the sum-of-squares 2t(
∑

i∈S wi)
t−1 ·

∑
i/∈S w2

i (µ−Xi)
t + w2

i (µS −Xi)
t gives us

A
O(t)

(∑
i∈S

wi[(µ−Xi)− (µS −Xi)]
)t
≤ 2t

(∑
i∈S

w2
i

)t−1

·
∑
i∈[n]

w2
i (µ−Xi)

t + w2
i (µS −Xi)

t.

Using the equation w2
i − wi = 0, we can get a degree-2 sum-of-squares proof of the fact w2

i ≤ 1.
Substituting these into the inequality, we get

A
O(t)

(∑
i∈S

wi[(µ−Xi)− (µS −Xi)]
)t
≤ 2t

(∑
i∈S

w2
i

)t−1

·
∑
i∈[n]

wi(µ−Xi)
t + (µS −Xi)

t.

Since Ei∈S(µS −Xi)
t ≤ 2 · tt/2 and A

O(t)

∑
i∈[n]

wi(Xi − µ)t ≤ 2 · tt/2 ·N , we have

A
O(t)

(∑
i∈S

wi[(µ−Xi)− (µS −Xi)]
)t
≤ 2O(t) ·

(∑
i∈S

w2
i

)t−1

· tt/2 ·N.

Finally, using w2
i − wi = 0 and dividing both sides of the inequality by N t, we conclude that

A
O(t)

(∑
i∈S

wi

N
[(µ−Xi)− (µS −Xi)]

)t
≤ 2O(t) ·

(∑
i∈S w2

i

N

)t−1

· tt/2

A
O(t)

( |S ∩ T |
N

)t
· (µ− µS)

t ≤ 2O(t) · tt/2 ·
( |S ∩ T |

N

)t−1

.

With an sum-of-squares proof of Lemma 5.15, one is in good position to prove Theorem 5.13. See
[Hop18, HL17] for details of the reminder of the proof.
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6 Robust Linear Regression via Sum-of-squares
In this section, we present the sum-of-squares based algorithm for robust linear regression by Klivans,
Kothari and Meka [KKM20]. Concretely, we will describe the robust certifiability condition needed
for the method. We will describe the algorithm and analyze its performance.

6.1 Setup
For a real-valued random variable X and integer k ≥ 0, we let ∥X∥k = E[Xk]1/k. Given a dis-
tribution D over Rd × R and a vector l ∈ Rd, define errD(l) = E(x,y)∼D[(⟨l, x⟩ − y)2] and let
opt(D) = minl∈Rd errD(l). In the classical setting of unregularized linear regression, we are given
access to n i.i.d samples (xi, yi) from a distribution D over Rd × R and our goal is to find a linear
function l that minimizes errD(l). By definition, we always have errD(l) ≥ opt(D).

In outlier-robust linear regression, our goal is similar except that the samples we observe are
not fully faithful in the sense that up to an η-fraction of the samples may be arbitrarily corrupted.
The model of corruption we are considering is the strong contamination model 2.3. For the purpose
of clarity, we will revisit the definition here and state it in a version specifically for robust linear
regression.

Definition 6.1. (η-Corrupted samples). Let D be a distribution over Rd ×R. A set U ⊂ Rd ×R is
said to be an η-corrupted training set drawn from D if is formed in the following fashion: generate
a set X of i.i.d samples from D and arbitrarily modify any η fraction to produce U .

The adversary can modify up to an η-fraction of the samples however they want after inspecting all
the inliners X as long as |U ∩ X|/|X| ≥ 1 − η. With this model of corruption, our goal in robust
linear regression is: given access to an η-corrupted training set U from D, find a linear function
f = ⟨·, l⟩ for some l ∈ Rd such that the error errD(l) under the true distribution D is as close to
opt(D) as possible.

In the classical unregularized least-squares setting where the labels yi are bounded. The least-
squares estimator is consistent in the realizable-case. Specifically, let D be a distribution over
Rd× [−1, 1]. Note here the condition yi ∈ [−1, 1] is not important as long as the labels are bounded.
Let {(xi, yi)}ni=1 be i.i.d samples from D. Let l̂ = argminl∈Rd(1/n)

∑n
i=1(yi − ⟨l, xi⟩)2 be the least-

squares estimator. Then we have the following guarantees (see [GKKW02]),

errD(l̂) ≤
O(d)

n
+ 8 · argmin

l
errD(l).

In particular, in the realizable case where there is a true linear function l∗ such that yi = ⟨l∗, xi⟩
for all i ∈ [n], then errD(l̂) decays at a rate of 1/n and goes to 0 as n→∞ without any additional
distributional assumption on D. A natural question to ask is: Can we obtain a consistent estimator
for robust linear regression in the realizable case?

The answer is no. As stated in section 1, one of the difficulties in robust statistics is the need
for distributional assumptions even for certain task to be possible. In our case of robust linear
regression, a counterexample is given in the proof of Lemma 6.1 in [KKM20] which suggests that
without any distributional assumption, even in the realizable case, errD(l) is lower bounded by some
universal constant c.

Hence, some distributional assumptions on D are needed in order for a consistent estimator in
the realizable case to exist. To this end, we impose the hypercontrativity assumption on D.

Definition 6.2. (Hypercontractivity) For a function f : Rd → R, We say a distribution D on Rd is
(C, k)-hypercontractive if for all r ≤ k/2, we have

E
x∼D

[⟨x, l⟩2r] ≤
(
C(r) E

x∼D
[⟨x, l⟩2]

)r
.

In other words, the 2r-th moment of ⟨x, l⟩ is controlled by the r-th power of the second moment
up to a constant factor. In addition, we say that D is certifiably (C, k)-hypercontractive if there
is a degree-k sum-of-squares proof of the above inequality. Notice that the above condition is
invariant under affine transformations. It is also not restrictive in a sense that many common, well-
studied distributions such as Gaussians, affine transformations of log-concave distributions, uniform
distributions over Boolean hypercubes and product distribution of bounded random variables all
satisfy this condition [KKM20]. Now we are ready to state the main theorem in this section.
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Theorem 6.3. Let D be a distribution on Rd× [−M,M ] and DX be its marginal distribution which
is certifiably (C, 4)-hypercontractive. Let the optimal solution l∗ = argminl errD(l) have polynomial-
bit complexity. Then for all ϵ > 0 and η < c/C2 for a universal constant c > 0, there exists an
algorithm A with run-time poly(d, 1/η, 1/ϵ,M) that given a polynomial-size η-corrupted training set
U , outputs a linear function l such that with probability at least 1− ϵ,

errD(l) ≤ (1 +O(
√
η)) · opt(D) +O(

√
η) E

(x,y)∼D
[(y − ⟨l∗, x⟩)4]1/2 + ϵ.

Notice that if there exists a true linear functional l∗ such that yi = ⟨l∗, xi⟩ then algorithm A has
guarantee errD(l) ≤ ϵ. This suggests that the error approaches 0 at a polynomial rate. If we have a
higher level of hypercontractivity, then we will have improved bound:

errD(l) < (1 +O(C)η1−2/k)optB(D) +O(C)η1−2/k
(
E
D
(y − ⟨l∗, x⟩)k

)2/k
+ ϵ

where D is assumed to be (C, k)-hypercontractive. We will work towards a proof of this improved
bound. Theorem 6.3 follows naturally by setting k = 4.

6.2 High-level idea
Let X = {(xi, yi)}ni=1 be a set of uncorrupted samples from the underlying distribution D and
U = {(u1, v1)}ni=1 be an η-corruption of X. Let D̂ be the empirical distribution of the uncorrputed
dataset, i.e, the uniform distribution over X. If given U , we can find a linear function l̂ that has low
error on D̂, then l will also have a low error on D with high probability by a standard generalization
argument.

Robust Certifiability Lemma. Assuming we have unlimited computation power, then one
reasonable thing to do is to do a brute force search over all subsets T of U such that |T | ≥ (1−η)|U|,
fit a linear function over all such subsets T and output the one that has the smallest error on T .
Since the uncorrupted set of points X\(X ∩ U) must be a subset of some T , we naturally expect
that the output of such brute-force procedures has low error bounds over D̂. However, this is not
always the case. We need a "robust certifiability lemma" which make it sufficient to find a subset T
of size ≥ (1− η)n and a linear function l such that the least squares error of l over T is small.

Relaxation. With the robust certifiability lemma, it suffices to find a set T and linear functional
l described above. However, this problem is a non-convex quadratic optimization problem and having
an efficient algorithm for this problem is thus difficult. To overcome this issue, we introduce variables
w1, ..., wn just as we did in the Gaussian mixture model in section 5.3. If we assume (x, y) ∼ D and D
is hypercontractive, then with high probability the empirical distribution D̂ is also hypercontractive.
Using this fact, we can adopt the following strategy: use U to find a subset T ′ of samples of size
≥ (1− η)n and a linear function l such that:

1. l has small loss over T ′.

2. The empirical distribution D′ over T ′ is close to D̂.

To achieve this goal, we consider the following optimization program:

min
w,l,X′

1

n

n∑
i=1

(y′i − ⟨l, x′
i⟩) subject to

A =



w2
i = wi ∀i ∈ [n]
n∑

i=1

wi = (1− η) · n

wi · (ui − x′
i) = 0 ∀i ∈ [n]

wi · (vi − y′i) = 0 ∀i ∈ [n]

Similar as in section 5.3, the optimization problem above is a relaxation of the original problem
and it is clearly satifiable since we can simply let wi = 1 if the i-th sample is uncorrupted and
wi = 0 otherwise. With our robust certifiability lemma (we will specify this in the next section),
any solution to the relaxed optimization problem satisfies

errD′(l) ≤ (1 +O(
√
η)) · errD′(l) +O(

√
η). (6)
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Still, this problem is a quadratic optimization problem and is NP-Hard to optimize in general.
However, we do not need to exactly solve the system. It suffices to output a distribution or a
pseudodistribution.

Pseudo-expectation and sum-of-squares proof. Let µ be a distribution over (w, l,X ′) that
satisfies A. Since equation 6 is satisfied for all solutions to the optimization problem, then we have

E
µ
[errD̂(l)] ≤ (1 +O(

√
η))optµ +O(

√
η).

By convexity of the square loss, we have

errD̂(Eµ [l]) ≤ E
µ
[errD̂(l)] ≤ (1 +O(

√
η))optµ +O(

√
η). (7)

Consequently, if we can output a distribution-like object µ̃ that satisfies inequality 7 above, then
we can simply output Eµ̃[l] as our desired output. The object we are considering here are pseudo-
distributions introduced in section 5. Specifically, if we can obtain a low-degree sum-of-squares
proof of equation 6, then based on 5.3, we can efficiently compute a pseudo-distribution under
which equation 6 is satisfied. Finally, we can then output Ẽµ̃[l] as our final output with the desired
guarantees. In the following sections we will work towards proofs of the two important intermediate
steps:

1. The inequality 6 which is the conclusion of the robust certifiability lemma.

2. A low-degree sum-of-squares proof of inequality 7.

6.3 Robust Certifiability
In this section, we give a formal statement and a proof of the robust certifiability lemma. The lemma
states the following.

Lemma 6.4. (Robust Certifiability for l2 Regression) Let D,D′ be distributions on Rd×R such that
∥D − D′∥TV ≤ ϵ and the marginal distribution Dx of D on x is k-certifiably C-hypercontractive for
some C : [k] → R+ and for some even integer k ≥ 4. Then for any l, l∗ ∈ Rd and any η such that
2C(k/2)η1−2/k < 0.9, we have:

errD(l) ≤ (1 +O(C(k/2))η1−2/k) · errD′(l) +O(C(k/2))η1−2/k ·
(
E
D
[y − ⟨l∗, x⟩]k

)2/k
.

For the purpose of robust linear regression, it is helpful to think of D to be the uniform distribution
over the uncorrupted samples X and think of D′ as the distribution on the samples that serve as
"good" samples, i.e. the certificates.

Proof. Fix some vector l ∈ Rd. Let G be a coupling between D,D′. In other words, G is a joint
distribution on (x, y) such that the marginal on (x′, y′) is D′ and the marginal on (x, y) is D. In
addition, G satisfies the following condition: PG1{(x, y) = (x′, y′)} = 1− η.

Let ((x, y), (x′, y′)) ∼ G and write 1 = 1{(x, y) = (x′, y′)} + 1{(x, y) ̸= (x′, y′)}. We obtain the
following:

E
D
[(y − ⟨l, x⟩)2] = E

G
[1{(x, y) = (x′, y′)}(y − ⟨l, x⟩)2] +E

G
[1{(x, y) ̸= (x′, y′)}(y − ⟨l, x⟩)2]

= E
G
[1{(x, y) = (x′, y′)}(y′ − ⟨l, x′⟩)2] +E

G
[1{(x, y) ̸= (x′, y′)}(y − ⟨l, x⟩)2]

≤ errD′(l) +
(
E
G
[1{(x, y) ̸= (x′, y′)}k/(k−2)]

)1−2/k(
E
D
[(y − ⟨l, x⟩)k]

)2/k
≤ errD′(l) + η1−2/k ·

(
E[(y − ⟨l, x⟩)k]

)2/k
.

(8)

where the second inequality substitutes in the condition (x, y) = (x′, y′) in the first term. The first
inequality comes from Hölder’s inequality and the fact that

E
G
[1{(x, y) = (x′, y′)}(y − ⟨l, x⟩)2] ≤ E

D′
(y − ⟨l, x⟩)2 = errD′(l).

To bound ∥y − ⟨l, x⟩∥k, we apply Minkowski’s inequality and get

∥y − ⟨l, x⟩∥k ≤ ∥y − ⟨l∗, x⟩∥k + ∥y − ⟨l − l∗, x⟩∥k.
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On the other hand, by the hypercontractivity of DX , we get

∥⟨l − l∗, x⟩∥k ≤
√
C(k/2) · ∥⟨l − l∗, x⟩∥2.

In addition, by the triangle inequality, we have

∥⟨l − l∗, x⟩∥2 ≤ ∥y − ⟨l∗, x⟩∥2 + ∥y − ⟨l, x⟩∥2
≤ ∥y − ⟨l∗, x⟩∥k + ∥y − ⟨l, x⟩∥2

Combining the inequalities above, we obtain

∥y − ⟨l, x⟩∥k ≤ (1 +
√
C(k/2))∥y − ⟨l, x⟩∥k +

√
C(k/2)∥y − ⟨l, x⟩∥2.

Now we can apply the standard inequality (a+ b)2 ≤ 2a2+2b2 and the fact that 2(1+
√
C(k/2))2 ≤

8C(k/2) and deduce that

∥y − ⟨l, x⟩∥2k ≤ 8C(k/2)∥y − ⟨l∗, x⟩∥2k + 2C(k/2)errD.

Substituting this upper bound into inequality 8, we have the following

errD ≤ errD′ + 8η1−2/kC(k/2) · ∥y − ⟨l∗, x⟩∥2k + 2η1−2/kC(k/2)errD.

Observe that 1/(1−2η1−2/kC(k/2)) ≤ 1+O(C(k/2))η1−2/k. Using this observation and rearranging
the inequality, we obtain our final conclusion

errD(l) ≤ (1 +O(C(k/2))η1−2/k) · errD′(l) +O(C(k/2))η1−2/k ·
(
E
D
[y − ⟨l∗, x⟩]k

)2/k
.

If instead of assuming hypercontractivity of linear functions, we assume hypercontractivity of poly-
nomials, then we would obtain a similar generalization result for robust polynomial regressions. See
Appendix A of [KKM20] for the exact statements.

6.4 Algorithm
Now we are ready to formally given the algorithm for robust linear regression. Let D denote the
uncorrupted distribution on Rd × R and Dx denote the marginal distribution on x. Let X =
{(xi, yi)}ni=1 denote the set of i.i.d uncorrupted samples from D. For the purpose of our generalization
argument, we will assume that all linear functions wer are considering have big complexity upper
bounded by B. Let opt(D) denote the optimum least squares error of any linear function of bit
complexity B on D.

Let D̂ denote the uniform distribution over the uncorrupted samples X. Similar as above, we
write opt(D̂) as the optimum least squares error of any linear function with bit complexity bounded
by B with respect to D̂. We will write U = {(ui, vi)}ni=1 to denote an η-corruption of X under the
strong contamination model. Note that our algorithm does not have access to X,D, D̂. It only has
access to U . Lastly, given l ∈ Rd, we define the truncated linear function as

lM (x) =

{
⟨l, x⟩ if |⟨l, x⟩| ≤M

sign(⟨l, x⟩) ·M otherwise.

Note that this truncated linear function is only used for generalization purposes as are often used
even for regression without corruptions. As introduced in the earlier sections, in order to apply
sum-of-squares techniques, we need to introduce variables w1, ..., wn for each sample which serve as
variables that we are optimizing over in the relaxed optimization problem. Intuitively, in the ideal
case, wi = 0 if the i-th sample if not corrupted and 0 otherwise. In this case, we can exactly identify
the uncorrupted samples, fit a least-squares model and output a linear function that has low error
over D by the robust certifiability lemma. As a relaxation of this condition, the following set of
constraints in w′

is, l, x
′
i denoted as PU,η must be satisfied:

PU,η =



n∑
i=1

wi = (1− η)n

w2
i = wi ∀i ∈ [n].

wi · (ui − x′
i) = 0 ∀i ∈ [n].

wi · (vi − y′i) = 0 ∀i ∈ [n].
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Notice that for the last two constraints, if wi = 1, we have ui = x′
i and ui ̸= x′

i if wi = 0. This
corresponds to our desired behavior as wi is intended to denote candidacy of the i-th point in the
uncorrupted set. Now we are ready to describe the algorithm.

Algorithm 4 Algorithm for Robust l2 Linear Regression via sum-of-squares
Given:

• η: A bound of the fraction of adversarial corruptions.

• U : An η-corruption of a labeled sample X of size n sampled from a (C, k)-certifiably hyper-
contractive distribution D.

Operation:

• Find a level-k pseudo-distribution µ̃ that satisfies PU,η and minimizes

Ẽµ̃

[( 1
n

n∑
i=1

(y′i − ⟨l, x′
i⟩)2
)k/2]

.

Denote this optimum value as optalg. Let ôptSOS be a positive real number such that ôptSOS =

opt2/kalg .

• Output l̂ = Ẽµ̃l.

We now state the main theorem in this section.

Theorem 6.5. Let D be a distribution on Rd× [−M,M ] for some positive real number M such that
the marginal on Rd is (C, k)-certifiably hypercontractive distribution. Let optB(D) = minl ED[(y −
⟨l, x⟩)2] where the minimum is taken over all l ∈ Rd with bounded bit complexity B. Let l∗ be such
a minimizer.

Fix any even k ≥ 4 and any ϵ > 0. Let X be an i.i.d. sample from D of size n ≥ n0 =
poly(dk, B,M, 1/ϵ). Then, with probability at least 1 − ϵ over the distribution of X, given any η-
corruption U of X and η as input, there is a polynomial time algorithm (Algorithm 4) that outputs
a l ∈ Rd such that for C = C(k/2),

errD(lM ) < (1 +O(C)η1−2/k)optB(D) +O(C)η1−2/k
(
E
D
[(y − ⟨l∗, x⟩)k]

)2/k
+ ϵ.

As mentioned above, the bounded-label assumption and the bounded-bit-complexity are present
mainly to obtain generalization results for linear regression. By setting k = 4, we obtain Theorem
6.3.

6.5 Analysis of algorithm
In this section, we give a proof of the main theorem (Theorem 6.5). As explained in section 6.2, the
proof is divided into main components. In part (1), we will show that the output of the optimization
problem has low-error (optimization error) guarantees over the empirical distribution. In part (2),
we will show that the model generalizes well in a sense that a low-error bound over the empirical
distribution D̂ implies a low-error bound over the true distribution D. Specifically, we will work
towards proofs of the following two lemmas. Let ôptk = (1/n)

∑n
i=1((yi−⟨l∗, x⟩)k)2/k and optk(D) =

E(x,y)∼D[(y − ⟨l∗, x⟩)k]2/k. Then, we have

Lemma 6.6. (Bounding the optimization error) Under the assumptions of Theorem 6.5, with prob-
ability at least 1− ϵ, we have

errD̂(l̂) ≤ (1 + C(k/2)η1−2/k) · ôptSOS +O(C(k/2)) · η1−2/k · ôptk.

Lemma 6.7. (Bounding the generalization error) Under the assumptions of Theorem 6.5, with
probability at least 1− ϵ, we have

1. ôptSOS ≤ opt(D) + ϵ.
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2. errD(l̂M ) ≤ errD̂(l̂) + ϵ.

Before we give a proof of these two lemmas, let’s see how we can prove Theorem 6.5 assuming they
are true. To this end, we need one more lemma.

Lemma 6.8. For every distribution D on Rd ×R such that ν = ED(y − ⟨l∗, x⟩)k <∞, there exists
a distribution F such that ∥D −F∥TV ≤ η and (y− ⟨l∗, x⟩)k is absolutely bounded in the support of
F by ν/η.

Proof. (of Lemma 6.8) Set F = D|(y − ⟨l∗, x⟩)k ≤ ν/η). It is easy to check that F satisfies the
desired properties.

Notice that an η-corrupted sample of D can be regarded as an 2η-corrupted sample of F . Thus, we
can use Hoefdding bound for concentration to show the convergence of the expectation of (y−⟨l∗, x⟩)k
since (y−⟨l∗, x⟩)k is bounded in F . With this in hand, we are now ready to give a proof of Theorem
6.5.

Proof. (of Theorem 6.5) Recall that X is a set of i.i.d samples from D of size n and D̂ is the empirical
distribution over X. Let ν = ED(y − ⟨l∗, x⟩)k < ∞. Then by Lemma 6.8, (y − ⟨l∗, x⟩)k < ∞
is absolutely bounded in F which allows us to apply Hoeffding’s bound. We have that if n ≥
ν log(1/δ)/ηϵ2, then with probability at least 1− ϵ, the following holds

ôptk = E
D̂
[(y − ⟨l∗, x⟩)k] ≤ E

D
(y − ⟨l∗, x⟩)k + ϵ = optk + ϵ.

Now, by the inequality above and Lemma 6.7, 6.6, we have that with probability at least 1−O(ϵ),

errD(lM ) ≤ (1 +O(C)η1−2/k) · opt(D) +O(C)η1−2/k · optk +O(Cϵ).

The theorem now follows with a proper choice of ϵ.

6.5.1 Bounding the optimization error

In this section, we give a proof of Lemma 6.6. The high-level idea is to give a sum-of-squares proof
of the error bound implied by the robust certifiability lemma 6.4. Having this, we would obtain
a pseudo-distribution µ̃ over the variables of interest via sum-of-squares optimization. Then by
convexity of l2-loss, we can conclude the lemma with the output Ẽµ̃[l]. In particular, let (w, l,X ′)

satisfy the inequalities PU,η. Then applying Lemma 6.4 to D̂ and the uniform distribution over X ′,
we have

errD̂(l) ≤ (1 + cCη1−2/k)
( 1
n

n∑
i=1

(y′i − ⟨l, x′
i⟩)2
)
+ cCη1−2/k · ôptk

for some universal constant c > 0. In order to give a sum-of-squares proof of the statements, we need
to rewrite this in terms of polynomials of (w, l,X ′). To this end, for simplicity, let err(w, l,X ′) =
(1/n)

∑n
i=1(y

′
i − ⟨l, x′

i⟩)2. Then we can rewrite the inequality above as

(errD̂(l)− err(w, l,X ′))k/2 ≤ ηk/2−1 · 2Θ(k)Ckerr(w, l,X ′)k/2 + ηk/2−1 · 2Θ(k)Ck · ôpt
k/2

k .

We will give a sum-of-squares of this inequality using the polynomial system PU,η. By the sum-of-
squares optimization algorithm, we can output a pseudo-distribution µ̃ that satisfies the inequality
above. After some rearranging and simplification, we arrive at the following inequalities satisfied by
µ̃,

Ẽ[errD̂(l)] ≤ (1 + cCη1−2/k) · ôptSOS + cCη1−2/kôptk.

Finally, by convexity of the l2 loss and Fact 5.12, we can then conclude that

errD̂(Ẽµ̃[l]) ≤ Ẽµ̃[errD̃(l)] ≤ (1 + cCη1−2/k) · ôptSOS + cCη1−2/kôptk,

and hence finishing the proof.
Here we present the main component of this line of arguments, namely the sum-of-squares proof

of the error bound. Interested readers can refer to section 5.2.1 for how to formally conclude Lemma
6.6 using the lemma below.
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Lemma 6.9. (SOS proof of Robust Certifiability of Regression Hypothesis) Let X be a collection of
n labels in Rd×R such that D̂, the uniform distribution on x1, ..., xn is k-certifiably hypercontractive
and all the labels y1, ..., yn are bounded in [−M,M ]. Let U be an η-corruption of X. Let (w, l,X ′)
satisfy the set of constraints PU,η. Let errD̂(l) be the quadratic polynomial E(x,y)∼D̂(y − ⟨l, x⟩)2 in
vector-valued variable l. Let err(w, l,X ′) be the polynomial (1/n)

∑n
i=1(y

′
i−⟨l, x′

i⟩)2 in vector-valued
variables w, l, x′

1, ..., x
′
n.

Then for any l∗ ∈ Rd of big complexity at most B < poly(n, dk), C = C(k/2) and any η such
that 100Cη1−2/k < 0.9,

PU,η k

l
(errD̂(l)− err(w, l,X ′))k/2 ≤ ηk/2−12Θ(k)Ckerr(w, l,X ′)k/2+

ηk/2−12Θ(k)Ck
( 1
n

n∑
i=1

(yi − ⟨l∗, xi⟩)k
)

(9)

Proof. Let w′ ∈ {0, 1}n be given by w′
i = wi if and only if the ith sample is uncorrupted in U and 0

otherwise. Let D′ denote the empirical distribution weighted by w′. Notice that
∑

i w
′
i ≥ (1− 2η)n.

Therefore, we have

2
w′ { 1

n

∑
i

(1− w′
i)

2 ≤ 2η
}
.

Let errw′(l) = (1/n)
∑n

i=1 w
′
i(vi − ⟨l, ui⟩)2. Then we have:

4

w′,l
errD̂(l) =

1

n

n∑
i=1

w′
i(yi − ⟨l, xi⟩)2 +

1

n

n∑
i=1

(1− w′
i)(yi − ⟨l, xi⟩)2

On the other hand, we also have

4

w,l 1

n

n∑
i=1

w′
i(yi − ⟨l, xi⟩)2 ≤

n∑
i=1

(y′i − ⟨l, x′
i⟩)2 = errD′(l).

Using these two observations together with sum-of-squares Hölder’s inequality, we have

k

w,l
(errD̂ − errD′(l))k/2 =

( 1
n

n∑
i=1

w′
i(yi − ⟨l, xi⟩)2 +

1

n

n∑
i=1

(1− w′
i)(yi − ⟨l, xi⟩)2 − errD′(l)

)k/2
≤
( 1
n

n∑
i=1

(1− w′
i)(yi − ⟨l, xi⟩)2

)k/2
≤
( 1
n

n∑
i=1

(1− w′
i)
)k/2−1( 1

n

n∑
i=1

(yi − ⟨l, xi⟩)k
)

≤ 2k/2−1ηk/2−1
( 1
n

n∑
i=1

(yi − ⟨l, xi⟩)k
)

(10)
where the first inequality uses the two observations, the second inequality comes from sum-of-squares
Hölder’s inequality and the last inequality results from the fact that

∑
i w

′
i ≥ (1 − 2η)n. Now, by

the sum-of-squares triangle inequality, we have

k

l
{( 1

n

n∑
i=1

(yi − ⟨l, xi⟩)k
)
≤ 2k

( 1
n

n∑
i=1

(yi − ⟨l∗, xi⟩)k
)
+ 2k

( 1
n

n∑
i=1

(⟨l − l∗, xi⟩)k
)}

. (11)

By certifiably hypercontractivity of the marginal distribution Dx, we have

k

l
{( 1

n

n∑
i=1

(⟨l − l∗, xi⟩)k
)
≤ C(k)k/2

( 1
n

n∑
i=1

(⟨l − l∗, xi⟩)2
)k/2}

.

Applying sum-of-squares triangle inequality again, we have

k

l
( 1
n

n∑
i=1

(⟨l − l∗, xi⟩)2
)k/2

≤ 2k/2
( 1
n

n∑
i=1

(yi − ⟨l, xi⟩)2
)k/2

+ 2k/2
( 1
n

n∑
i=1

(yi − ⟨l∗, xi⟩)2
)k/2

.
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Again, by sum-of-squares Hölder’s inequality, we have

k

l
{( 1

n

n∑
i=1

(yi − ⟨l∗, xi⟩)2
)k/2

≤ 1

n

n∑
i=1

(yi − ⟨l∗, xi⟩)k
}
.

Combining this with 11, we obtain

k

l
{( 1

n

n∑
i=1

(yi − ⟨l∗, xi⟩)k
)
≤ O(C(k/2))k

( 1
n

n∑
i=1

(yi − ⟨l∗, xi⟩)2
)
+

O(C(k/2))k
( 1
n

n∑
i=1

(yi − ⟨l, xi⟩)2
)k/2}

. (12)

Substituting this into 10, we have

k

l
(errD̂(l)− errD′(l))k/2 ≤ ηk/2−1 ·O(C(k/2))k(errD̂(l))

k/2

+ ηk/2−1 ·O(C(k/2))k
( 1
n

n∑
i=1

(yi − ⟨l∗, xi⟩)k
)
. (13)

With the following alternate form of the sum-of-squares triangle inequality in hand δkak ≤ (2δ)k(a−
b)k + (2δ)kbk for any a, b and even k, applying this inequality with a = errD̂(l), b = errD′(l) and
δ = ηk/2−1 ·O(C(k/2))k and rearranging, we get

k

l
(1− δ)(errD̂(l)− errD′(l))k/2 ≤ ηk/2−1 ·O(C(k/2))k(errD′(l))k/2

+ ηk/2−1 ·O(C(k/2))k
( 1
n

n∑
i=1

(yi − ⟨l∗, xi⟩)k
)
. (14)

For δ < 0.9, this suggests

k

l
(errD̂(l)− errD′(l))k/2 ≤ ηk/2−1 ·O(C(k/2))k(errD′(l))k/2

+ ηk/2−1 ·O(C(k/2))k
( 1
n

n∑
i=1

(yi − ⟨l∗, xi⟩)k
)
. (15)

This concludes the proof of Lemma 6.9.

6.5.2 Bounding the generalization error

In this section, we give a proof of the first part of Lemma 6.7. The second part follows from standard
generalization bound which we will not go over here. As a reminder, we are trying to prove that
ôptSOS ≤ opt(D) + ϵ.

Proof. Suppose l∗ is a linear function of bit complexity bounded by B that achieves the optimum
least squares regression error on D. We first show that ôptSOS ≤ errD̂(l

∗) by giving a feasible
pseudo-distribution that achieves this property. Let µ̃ be supported on the set of (w, l∗, X ′) such
that wi = 1 if (xi, yi) = (ui, vi) and 0 otherwise and (x′

i, y
′
i) = (xi, yi) for all i ∈ [n]. In other

words, wi = 0 if an only if the i-th sample is uncorrupted. It is easy to see that µ̃ satisfies the set
of polynomial constraints PU,η. Moreover, we have

ôpt
k/2

SOS ≤ Ẽµ̃[err(w, l,X)k/2] =
( 1
n

n∑
i=1

(yi − ⟨l∗, xi⟩)2
)k/2

= errD̂(l
∗)k/2.

This suggests that ôptSOS ≤ errD̂(l
∗). The next step is to show that errD̂(l

∗) is sufficiently close
to errD(l∗) for n large enough. Consider the random variable Z = (y − ⟨l∗, x⟩)2 where (x, y) ∼ D.
Notice that errD̂(l

∗) = (1/n)Z and E[errD(l∗)] = opt(D). The second moment of Z is given by

E[Z2] = E[(y − ⟨l∗, x⟩)4] ≤ 2E[y4] + 2E[⟨l∗, x⟩4] ≤ 2M4 + 2C2(E[⟨l∗, x⟩2])2,

where the last inequality comes from the boundedness assumption on the labels yi and hypercon-
tractivity of x. On the other hand

E[⟨l∗, x⟩2]) ≤ 2E[(y − ⟨l∗, x⟩)2] + 2E[y2] ≤ 2opt(D) + 2M2 ≤ 4M2.
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The last inequality comes from the fact that opt(D) ≤M2. This is true since the 0 function satisfies
that opt(D) ≤ E[(yi − ⟨0, x⟩)2] ≤ M2. Substitute this into the second moment bound above, we
know that E[Z2] = O(M4). By Chebyshev’s inequality, we know that if we have n ≥ n0 independent
samples where n0 = O(1/ϵ3) ·M4, then

P
[∥∥∥ 1

n

n∑
i=1

Zi −E[Zi]
∥∥∥ ≥ ϵ

]
≤ ϵ.

Hence, we can then conclude that errD̂(l
∗) ≤ opt(D) + ϵ with probability at least 1− ϵ. The lemma

then follows.

6.6 Robust algorithm for L1 regression
In this section, we state without proof the algorithm for robust l1 regression. Interested readers
can find proofs of the statements in Section 5.3 of [KKM20]. First, we need the following robust
certifiability lemma for l1 regression.

Lemma 6.10. (Robust certifiability for l1 regression) Let D,D′ be two distributions on Rd×R with
marginals D,D′ on Rd respectively. Suppose ∥D−D′∥TV ≤ η and that the ratio of the largest to the
smallest eigenvalue of the 2nd moment matrix of D is at most κ. Then for any l, l∗ ∈ Rd such that
∥l∗∥2 ≥ ∥l∥2, we have

E
D
|⟨l, x⟩ − y| ≤ E

D′
|⟨l, x⟩ − y|+ 2κ1/2η1/2

√
E
D
y2 + 2κ1/2η1/2 ·

√
E
D
(y − ⟨l∗, x⟩)2.

Similar as in the l2 regression case, we need to give a low-degree sum-of-squares proof of the certifi-
ability result. To this end, we need our variables wi’s to satisfy the following polynomial system.

AU,η,Q =



∑n
i=1 wi = (1− η) · n

w2
i = wi ∀i ∈ [n]

wi · (ui − x′
i) = 0 ∀i ∈ [n]

wi · (vi − y′i) = 0 ∀i ∈ [n]

τ ′i ≥ (y′i − ⟨l, x′
i⟩) ∀i ∈ [n]

τ ′i ≥ −(y′i − ⟨l, x′
i⟩) ∀i ∈ [n]

∥l∥22 ≤ Q2

where the conditions on τ ′i serves as constraints that enforce the absolute value in l1 regression and
the last condition ensures the l2 norm of l is bounded. Now we are ready to state the algorithm for
robust l1 regression.

Algorithm 5 Algorithm for Robust l1 Regression via sum-of-squares
Given: An η-corruption U of a labeled sample X of size n from an arbitrary distribution D. Q, the
Euclidean norm of the best fitting l1 regression hypothesis for D.
Operation:

1. Find a level-4 pseudo-distribution µ̃ that satisfies AU,η,Q and minimizes ((1/n)
∑n

i=1 τi)
2.

2. Return l̂ = Ẽµ̃l.

The algorithm has the following guarantee.

Theorem 6.11. Let D be an arbitrary distribution on Rd × Y for Y ⊆ [−M,M ] for a positive
real M . Let κ be the ratio of the maximum to the minimum eigenvalue of the covariance matrix
of D, the marginal of D on x. Let opt(D) be the minimum of ED |y − ⟨l, x⟩| over all l that has
bit complexity bounded by B. Let l∗ be any such minimizer and η > 0 be an upper bound on the
fraction of corruptions. For any ϵ > 0, let X be an i.i.d. sample from D of size n ≥ n0 for some
n0 = O(1/ϵ2) · (M2∥l∗∥42 + d log(d)∥Σ∥/η).

Then, with probability at least 1− ϵ over the draw of the sample X, given any η-corruption U of
X and η as input, Algorithm 5 outputs a function f : Rd → R such that:

E
(x,y)∼D

|y − f(x)| < opt(D) +O(
√
κη)
(√

E
D
y2 +

√
(E
D
(y − ⟨l∗, x⟩)2)

)
+ ϵ.
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One thing to notice is that both of the algorithms rely heavily on the fact the loss function can be
written as some polynomial of the variables. In order for the algorithms to work intended, we also
require the convexity of the loss function in order to pull the pseudo-expectation operator inside. As
a result, whether this sum-of-squares based algorithm can be adapted to solve problems that has a
either non-polynomial or non-convex loss function is still unknown.

One example of such problem is logistic regression which is a special example of generalized
linear model. In this case, loss function is the cross-entropy loss which takes the form of l(θ) =
−y log(θTx)+(1−y) log(1−θTx) where θ ∈ Rd is the predicted linear function. This loss function is
convex but is not a polynomial of the input parameter θ. Hence, we cannot directly apply our sum-
of-squares-based algorithm to this case. Some possible solutions include low-order Taylor expansions
and a different choice of loss function. These are interesting problems to consider.

47



7 Conclusion
In this paper, we examined two techniques that have played important roles in recent progresses
in the field of robust statistics. Filtering approaches are more intuitive than sum-of-squares-based
methods. It is applicable to a wider range of problems at the expense of the requirement for
stronger assumptions. On the other hand, sum-of-squares methods make use of a general framework
that can be employed to problems with polynomial and convex loss functions. It does not require
strong assumptions on the underlying distribution and can achieve near-optimal bounds in many
cases. However, it relies heavily on the polynomial and the convexity properties of the loss function,
making it hard to adapt to problems such as logistic regression. Below we post some potentially
interesting open questions in this area.

• Can we improve SEVER so that it requires weaker assumptions on the data?

• Both SEVER and sum-of-squares robust linear regression method has sub-optimal dependence
on the corruption constant η, namely O(

√
ϵ). Is it possible to achieve O(η)-dependence on the

corruption level?

• Can we adapt sum-of-squares methods to problems with non-polynomial loss functions?

• Can we apply filtering-based methods to nonparametric regression for certain structured func-
tion classes (e.g. monotone, Lipschitz, piece-wise)?

• Can we give some theoretical guarantees of SEVER on single-layer or two-layer neural net-
works?
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