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Abstract 

 
 Many NP-hard combinatorial optimization problems have practical appli-
cations in modern society, from vehicle routing to ASIC place-and-route for digital 
flows. However, traditional synchronous processor-based solutions struggle to keep 
up with the demands imposed by these problems, scaling exponentially with the 
input problem size. The Salahuddin group recently taped out the PASSOv1 proces-
sor, an asynchronous stochastic processor that demonstrates a significant power and 
performance improvement in solving a 100-node max-cut problem over other state-
of-the-art systems. This report provides an analysis of the power, performance, and 
area of the processor’s analog core to facilitate the redesign process for future iter-
ations of the chip. In addition, the report explores a potential lower-power topology 
to be used as a replacement for one of the chip’s subcircuits to reduce the power 
consumption.   
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1 Introduction 
 
1.1 Background 
 

As the complexity of difficult computing problems continues to increase, 
many conventional solutions are struggling to keep up with the data processing de-
mands imposed by such problems. Many problems that have useful applications to 
modern society, such as vehicle routing, are classified as NP-hard, meaning that 
they grow exponentially in computational difficulty with the size of its input. Mod-
ern computing heuristics commonly apply centralized clock-driven approaches that 
evaluate instructions sourced from memory sequentially to solve these NP-hard 
problems, but these approaches don’t effectively take advantage of problem level 
parallelism, scale poorly with input size, and require algorithms designed to be split 
across multiple von-Neumann cores [1]. Recently, the Salahuddin group has exper-
imented with decentralized computing systems that eliminate this bottleneck, the 
latest of which was the “Parallel Asynchronous Stochastic Sampling Optimizer” 
(PASSO), taped out in Global Foundries 14nm in April 2021.  

The PASSO processor is a stochastic, asynchronous processor based on a 
system called the Ising model. The Ising model uses a fabric of binary spins with 
weights for interactions between neighboring spins and optimizes problems by 
finding the minimum energy state for the system. Its fine-grained parallelism leads 
to it being a good candidate for next generation large scale systems, including trav-
eling salesman, max-cut, and integer factorization [2]. There are many past realiza-
tions of Ising machines, such as the oscillator-based machine presented by Wang, 
et al. that was demonstrated with max-cut and half-adder solutions [3]. The PASSO 
chip is fundamentally different from these previous implementations, utilizing 
mixed signal neurons with intrinsic noise integration and stochastic parallel update 
capacity to realize massively parallel asynchronous neuron state updates [1].  

To scale up the problem size that the PASSO processor can solve, the num-
ber of neurons needs to be increased, which increases area and power consumption, 
and their performance needs to be improved. To facilitate the redesign of the sub-
circuits in PASSOv1, the first iteration of the processor, to optimize for these vari-
ables in future iterations, this report details the power, performance, and area anal-
ysis of PASSOv1’s analog core, and explores a new topology for one of its subcir-
cuits to reduce its power consumption. 
 
1.2 Outline 
 

First, this report will describe the design and functionality of the various 
components making up the PASSOv1 processor and break down the area taken by 
each component to determine the primary target for area optimizations in the future. 
Because the analog core’s power consumption and performance depend on the in-
dividual neurons, this report will focus on the power consumption of an individual 
neuron and its subcomponents, and analyze an individual neuron’s performance, 
consisting of the propagation delay of the neuron and the autocorrelation function. 
Lastly, the report explores using a new topology, the “flipped voltage follower” [4], 
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as a replacement for one of the neuron’s subcircuits to reduce its power consump-
tion. 

 
2 PASSOv1 Processor 
 
2.1 Full Processor 
 

The PASSOv1 processor consists of a few main blocks: the main analog 
core, consisting of the main 16x16 fabric of 256 neurons, a small cluster of 4 neu-
rons for testing, SRAM, circuitry for streaming out outputs serially, and I/O cir-
cuitry.  

Before using the processor to solve a particular trained problem of interest, 
the processor first needs to be properly configured. The configuration bits must be 
shifted into the configuration shift registers, which are connected to form a long 
chain for the entire processor. There are 74 configuration bits for each neuron, 7 
bits for each of the 32 trimmable current biases used for biasing the neurons, and 3 
bits that encode the sampling frequency and number of neurons sampled for the 
streamout of the processor, totaling to 19171 configuration bits [1]. 
 To move the outputs of the neurons in the analog core off-chip for data pro-
cessing and analysis, the asynchronous neurons must be sampled with a sampling 
clock. The nominal sampling frequency is 300 MHz, but only 16 neurons can be 
sampled at once at this frequency due to I/O limitations. The 3 bits used to configure 
the sampling of the neurons defines presets of sampling frequency and the number 
of neurons sampled, ranging from 16 neurons at 300MHz to all 256 neurons at 
18.75 MHz, maintaining a constant throughput of 4.8 Gsamples/sec [1]. 
 Since the I/O circuitry limits the speed of the off-chip data transfer, the sam-
pled neuron outputs are first written in burst mode into an SRAM buffer at the 
sampling clock frequency (maintaining the fixed 4.8 Gsamples/sec throughput) [1]. 
The SRAM buffer is then read out at a slower frequency to meet the I/O speed 
specifications (20MHz I/O clock) and serialized. In the case of a 300MHz sampling 
frequency producing 16-bit samples, the SRAM is read at a frequency of 20/16 = 
1.25 MHz [1]. 
 
2.2 Analog Core 
 

The analog core of PASSOv1 is made up of a 16x16 fabric of 256 analog 
neurons, their “synapses” (circuitry used to connect the neuron to other neurons), 
the current bias circuitry for the neurons, and the shift registers used to configure 
the neurons and the biasing circuits, all of which share a VDD of 0.8V. The analog 
neuron, its synapse, and its configuration shift registers are bundled into what this 
report will call an “integrated neuron”. Each integrated neuron is connected to its 
immediate neighbors in a “king’s move” pattern via its synapse. 
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2.3 Current Bias Generation 
 
 The schematic of the constant-gm current bias circuitry is shown in Figure 
1. A 7-bit digitally trimmed resistor is used to configure the current bias with 8 
settings in a one-hot fashion, with the highest current setting of roughly 10 uA cor-
responding to setting only b6 to 1 and the lowest current setting of roughly 2 uA 
corresponding to all bits being set to 0. The bias is mirrored to 16 outputs, one for 
each neuron the bias generator is biasing. As each neuron requires two of these 
biases, there are 32 total current bias generators in the analog core. 

 
Figure 1: Schematic of current bias circuitry 

 
2.4 Mixed Signal Neuron 
 
 The integrated neuron consists of 2 main blocks (excluding the configura-
tion shift registers): the analog neuron and its synapse, or connection circuit. As 
depicted in Figure 2, it implements the function: 𝑃𝑃(𝑣𝑣𝑖𝑖 = 1) = 𝜎𝜎(𝑊𝑊𝑇𝑇ℎ + 𝑏𝑏𝑣𝑣); that 
is, the probability of the integrated neuron outputting a 1 is equal to the sigmoid 
function evaluated at the voltage calculated from the configured weights, config-
ured bias, and inputs from the neighboring integrated neurons. 

 
Figure 2: Block diagram of integrated neuron showing division of operation be-

tween synapse and neuron 
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 The synapse is made of two subcircuits: the digitally synthesized “vecmul” 
(a multiply-accumulate block implementing the binary multiplication of the 
weights with the neighboring integrated neuron inputs and the accumulation with 
the bias), and the 7-bit DAC. To minimize power consumption, the DAC was de-
signed to be a capacitive DAC (capdac), and to reduce the area, the C-2C topology 
was selected. The capdac schematic is shown in Figure 3. 

 
Figure 3: Schematic of the C-2C Capdac 

 
The analog neuron consists of 3 main blocks: noise and amplification, sig-

moid generation, and output digitization. It takes in an analog input voltage from 
its synapse and outputs a binary voltage signal. The neuron was designed to use a 
voltage input to enable the use of a capdac in the synapse and designed to output a 
voltage for easy integration with the vecmul. 
 
2.4.1 Noise and amplification block 
 

The noise and amplification block provides the stochastic nature of the neu-
ron and is made of 2 subcircuits: a noise source, and a noise amplifier. The first 
subcircuit, the noise source, is depicted in Figure 4. The noise source is single-
ended due to observations that when using a differential noise source, the variation 
was so high that it saturated the noise amplifier. Grounding the n-well of the PMOS 
transistor as shown in the schematic was done to increase the noise significantly. 
So long as the substrate voltage is stable, there should not be latchup issues. The 
resulting design is characterized using the noise amplifier as its load and tabulated 
in Table 1. 

 
Figure 4: Schematic of noise source for analog neuron 
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Parameter Value 
Common Mode Vout 643 mV 

Peak to Peak Vout 8.9 mV 
RMS Vout 1.32 mV 

Table 1: Characteristics of noise source for analog neuron 
 
 The second subcircuit, the noise amplifier, is a three-stage single ended am-
plifier with internal resistive feedback. The design goal was to have a relatively 
high speed amplifier with an intended closed loop gain of roughly 200. The first 
stage is a noise buffer, which takes the output of the noise source as its input. Due 
to the output resistance of the buffer playing a role in the closed loop resistive feed-
back of the last two stages of the amplifier, minimizing the Rout was prioritized in 
the design. The design also was required to maintain an output common mode volt-
age of around 400mV (half rail). The “super source follower” topology [5] was 
chosen for this reason, shown in Figure 5. This stage of the amplifier shares the 
same current bias circuit as the next two stages, though the mirrored currents are 
not the same between the noise buffer and next two stages. The design is character-
ized at the lowest current bias setting and tabulated in Table 2. 

 
Figure 5: Schematic of noise buffer for noise amplifier 

 
Parameter Value 

Input Capacitance 2.8578 fF 
RMS Vout 1.996 mV 

Common Mode Vout 378 mV 
Low Frequency Rout 154.5 Ω 
Low Frequency Gain -0.1639 dB 

Table 2: Characteristics of noise buffer for analog neuron 
 
 The remainder of the amplifier is what this report will call the noise OTA, 
a two-stage p-input OTA in resistive feedback, with the feedback resistor R2 and 
the combination of the output resistance of the buffer and input butterfly switch 
forming the feedback. The schematic of the noise OTA is shown in Figure 6a, and 
the schematic of the p-input OTA is shown in Figure 6b. The noise amplifier also 
has a reset-triggered auto-zeroing circuit used to eliminate the effects of the input 
offset voltage resulting from PVT variation. The overall noise amplifier is charac-
terized at the lowest current bias setting and tabulated in Table 3. 
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Figure 6a: Schematic of noise OTA for analog neuron 

 
Figure 6b: Schematic of p-input OTA used for noise OTA 

 
Parameter Value 

Low Frequency Gain 251.48 (48.01 dB) 
Corner Frequency 13.95 MHz 

Output Common Mode 416.443 mV 
Table 3: Characteristics of noise OTA 
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2.4.2 Sigmoid Generation and Output Digitization 
 
 The second block of the analog neuron is the sigmoid generation circuit, 
whose schematic is shown in Figure 7. It consists of 3 stages: a modified CMOS 
Gilbert cell, a circuit to convert from differential to single ended current, and a 
current comparator. It takes in the output of the noise amplifier and the output 
voltage of the synapse’s capdac as input to generate an output whose probability 
of equaling a 1 (with VDD = 0.8V) is specified by the sigmoid function evaluated 
at the capdac output voltage. The bias for this block comes from the second bias 
generation circuit connected to the neuron, so it is separated from the bias of the 
noise amplifier block. The sigmoid function generated by this block is shown in 
Figure 8. 

 
 

Figure 7: Schematic of sigmoid generator for analog neuron 
 

 
Figure 8: Function generated by sigmoid generator 

  
 The output digitization is handled by a chain of three CMOS inverters. Its 
purpose is to ensure the output is a clean binary signal. 
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2.5 Test Cluster 
 
 The test cluster consists of 4 integrated neurons separate from the analog 
core whose outputs can be directly pulled out via the chip’s GPIO pins. Each inte-
grated neuron is connected to the other 3 via its synapse. The test cluster has its 
own current bias generators used to bias the integrated neurons and configuration 
shift register chain used to program the weights, biases, and clamps of these inte-
grated neurons, separate from those in the analog core. Its purpose is to enable 
probing of the integrated neurons’ outputs directly, without them having passed 
through the sampling and streamout circuitry, for verifying the functionality of the 
integrated neurons. 
 
3 Area Analysis of PASSOv1 
 
3.1 Area Breakdown of the Processor 
 

The PASSOv1 processor has a total die area of 2mm x 2mm. Table 4 shows 
the breakdown of the total area among the main blocks of the processor, and Figure 
9 shows the breakdown of the layout of the processor. 
 

Block Area (mm2) % of Total Area 

Analog Core 1.136 28.4% 

Test Cluster 0.0108 0.27% 

SRAM 0.0613 1.53% 

Streamout 0.0192 0.48% 

I/O 0.479 11.98% 

Routing/Fill/Empty 
Space 

2.2937 57.34% 

Total 4.0 100% 

Table 4: Breakdown of die area by component 
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Figure 9: Breakdown of processor layout 

 
Table 5 breaks down the area of the analog core by component. 

 
Block Area (um2) % of Analog Core 

Area 
Integrated Neurons 

(x256) 
540561.92 47.58% 

Current Bias (x32) 11621.12 1.02% 

Routing/Fill/Empty 
Space 

583816.96 51.39% 

Total 1136000 100% 

Table 5: Breakdown of analog core area by component 
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Table 6 breaks down the area taken by the components of the current bias 
circuitry, and Figure 10 shows the breakdown of the layout by component. 
 

Block Area (um2) % of Current Bias Cir-
cuitry Area 

Constant- gm + outputs 114.70 31.58% 

Starter Circuit 47.286 13.02% 

Digital Trim 103.33 28.45% 

Routing/Fill/Empty 
Space 

97.87 26.95% 

Total 363.16 100% 

Table 6: Breakdown of current bias circuitry area by component 

 
Figure 10: Breakdown of current bias generator layout 

 
Table 7 breaks down the total integrated neuron area by component. Figure 

11 breaks down the layout of the integrated neuron by component. Note that the 
breakdown of the area in the table and the layout shown below is for the integrated 
neurons used in the test cluster, not the analog core. The configuration circuitry for 
the analog core is implemented in a distributed manner, rather than being integrated 
with the integrated neuron like it is in the test cluster, making it difficult to obtain 
an estimate of the area it consumes per integrated neuron. So, for the purposes of 
this area analysis, the breakdown of the test cluster integrated neuron is reported 
instead. 
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Component Area (um2) % of Integrated Neu-
ron Area 

Noise Generation 4.956 0.23% 

Noise Buffer 38.44 1.82% 

Noise OTA 159.375 7.55% 

Sigmoid Generation 31.096 1.47% 

Vecmul 345.50 16.36% 

Capdac 976.262 46.23% 

Configuration Cir-
cuitry 

188.55 8.93% 

Output inverters 7.282 0.34% 

Routing/Fill/Empty 
Space 

360.109 17.05% 

Total 2111.57 100% 

Table 7: Breakdown of test cluster integrated neuron area by component 

 
Figure 11: Breakdown of test cluster integrated neuron layout 

 
Table 8 breaks down the area of the capdac, and the breakdown of the layout 

by component is shown in Figure 12. The dummy capacitors were used to form a 
ring around functional capacitors to reduce the layout effects.  
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Block Area (um2) % of Capdac Area 

Capacitors (functional) 
x24 

261.76 26.8% 

Capacitors (dummy) 
x24 

261.76 26.8% 

Driver Circuitry 103.33 9.72% 

Routing/Fill/Empty 
Space 

94.903 36.68% 

Total 976.262 100% 

Table 8: Breakdown of capdac area by component 
 

 
Figure 12: Breakdown of capdac layout 

 
3.2 Area Analysis Conclusions 
 
 With 256 integrated neurons, roughly half of the processor die area is not 
utilized, meaning in terms of area, there is still room to increase the number of 
integrated neurons on the chip by roughly a factor of 2. If an increase beyond that 
is desired, however, the area taken by each integrated neuron must be reduced. 
 The capdac consumes the most area in the integrated neuron; almost half of 
the area taken by the integrated neuron is for the capdac. A quarter of that capdac 
area is non-functional and used for dummies. Thus, the capdac should be the first 
block to target for optimizing and redesigning with area in mind. Part of the reason 
the capdac is so large is due to the size of a single unit capacitor in the DAC; each 
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one is roughly 11 um2, sized to reduce the effect of layout parasitics on the DAC as 
the C-2C capdac topology is quite vulnerable to layout effects.  

One potential improvement that could reduce the area is to switch to a to-
pology that is more resilient to layout parasitics than the C-2C topology, like a 
mixed topology of a C-2C and binary capdac. Such a topology, despite using ca-
pacitors larger than 2C (e.g., 4C), may yield a net decrease in the area if the new 
unit base capacitance C is smaller than the base capacitance used for the original 
C-2C topology. Apart from topology optimizations, changing the dimensions of the 
capdac and some of the other components, like the config circuitry and the vecmul, 
to have the same vertical dimension as the analog neuron would net some area sav-
ings as well, as some empty space that was only populated with fill cells could be 
eliminated (e.g., the space in the top right and bottom right corners of the integrated 
neuron layout). 
  
4 Power Analysis of Integrated Neuron 
 
4.1 Power Analysis Setup 
 
 Two power analysis simulations were run to generate the results. First, the 
power was characterized for a single integrated neuron in isolation; there were no 
other integrated neurons connected to it, so the analog voltage input to the sigmoid 
generator was held at half rail. Any observed switching behavior would just be due 
to the noise generation and amplification within the neuron.  

The second simulation used a 50% duty cycle, 330 MHz square wave input 
to model one of the neighboring integrated neurons. The weight for that “neuron” 
input was set to the maximum value, meaning that toggling that square wave causes 
the vecmul and capdac output to also toggle between 0 and their maximum values, 
resulting in maximal switching.  

For both simulations, since the entire integrated neuron uses the same VDD, 
it is sufficient to compare and measure the currents in place of power. The simula-
tions are run for the prelayout integrated neuron in the TT 25℃ corner, as the cur-
rents are not expected to change by a large margin from prelayout to postlayout, 
and the purpose of this analysis is to observe the breakdown of the power. The 
patterns observed with these results are expected to be present in the postlayout 
results as well, assuming the layout was done properly. 
 
4.2 Power Breakdown of an Isolated Integrated Neuron 
 
 The breakdown of the current consumed by the integrated neuron at the 
lowest current bias setting is tabulated in Table 9, and the current consumed at the 
highest current bias setting is tabulated in Table 10. 
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Block Average Current 
(uA) 

% of Total Aver-
age Current 

Peak Current 
(uA) 

Noise  
Generation 

6.652 5.45% 6.8 

Noise Buffer 19.04 15.59% 22.232 

Noise OTA 25.59 20.96% 28.916 

Sigmoid  
Generator 

26.37 21.60% 35.821 

Output Stage 1.557 1.28% 1303.03 

Vecmul .3467 0.28% 51.909 

Capdac .2143 0.18% 4.061 

Noise Amplifier  
Current Bias 

17.799 14.58% 18.355 

Sigmoid Genera-
tor Current Bias 

17.819 14.59% 18.17 

Config 6.712 5.50% 6.945 

Total 122.1 100% 8067.86 

Table 9: Breakdown of isolated integrated neuron current consumption in the low-
est current bias setting 
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Block Average Current 
(uA) 

% of Total Aver-
age Current 

Peak Current 
(uA) 

Noise  
Generation 

6.652 3.041% 6.8 

Noise Buffer 72.59 33.181% 77.948 

Noise OTA 94.44 43.168% 102.66 

Sigmoid  
Generation 

42.82 19.573% 83.471 

Output Stage 2.269 1.037% 1422.2 

Vecmul 4.515 0.28% 73.739 

Capdac .2143 0.18% 4.061 

Amplifier  
Current Bias 

62.74 14.58% 63.866 

Sigmoid Genera-
tor Current Bias 

62.84 14.59% 63.773 

Config 12.52 5.70% 12.74 

Total 361.6 100% 8331.6 

Table 10: Breakdown of isolated integrated neuron current consumption in the 
highest current bias setting (b6) 

 
4.3 Power Breakdown of an Integrated Neuron with Maximal Switching 
 
 The breakdown of the power consumed by the integrated neuron at the low-
est current bias setting is tabulated in Table 11, and the power consumed at the 
highest current bias setting is tabulated in Table 12. 
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Block Average Current 
(uA) 

% of Total Aver-
age Current 

Peak Current 
(uA) 

Noise  
Generation 

6.313 3.68% 6.314 

Noise Buffer 18.61 9.73% 19.404 

Noise OTA 23.39 12.23% 24.496 

Sigmoid  
Generator 

27.63 14.44% 53.18 

Output Stage 8.271 4.32% 1392.7 

Vecmul 28.65 14.98% 1495.6 

Capdac 35.7 18.66% 3624.5 

Noise Amplifier  
Current Bias 

17.92 9.37% 18.43 

Sigmoid Genera-
tor Current Bias 

18.121 9.47% 18.832 

Config 6.712 3.51% 6.945 

Total 191.317 100% 5817.3 

Table 11: Breakdown of integrated neuron current consumption in the lowest cur-
rent bias setting with maximal switching 
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Block Average Current 
(uA) 

% of Total Aver-
age Current 

Peak Current 
(uA) 

Noise  
Generation 

6.313 1.47% 6.314 

Noise Buffer 74.25 17.25% 77.035 

Noise OTA 94.39 21.93% 102.021 

Sigmoid  
Generation 

70.06 16.28% 168.80 

Output Stage 8.828 2.05% 1416.7 

Vecmul 28.66 6.66% 1497.2 

Capdac 35.0 8.13% 3813.6 

Amplifier  
Current Bias 

63.98 14.86% 65.31 

Sigmoid Genera-
tor Current Bias 

65.12 15.13% 67.38 

Config 12.52 2.91% 12.74 

Total 430.461 100% 6118.1 

Table 12: Breakdown of integrated neuron current consumption in the highest 
current bias setting (b6) with maximal switching 

 
4.4 Power Analysis Conclusions 
 
 As expected in the isolated simulation, the capdac and vecmul contribute 
very little to the total current, as they do not switch at all. Since only the noise 
buffer, noise OTA, and sigmoid generator are affected by the changes in the current 
bias setting, it follows that their contributions toward the total current increase from 
the lowest to the highest bias settings, as the other components consumed roughly 
the same current for both settings. 
 In the maximal switching simulation, the capdac and vecmul contribute sig-
nificantly more to the total current compared to the isolated integrated neuron sim-
ulation, as expected. The frequent switching resulted in rapid charging and dis-
charging the capacitors in the capdac and the effective switching capacitance of the 
vecmul, increasing their power consumption dramatically compared to when they 
did not switch at all. Due to its input voltage from the capdac constantly switching, 
the sigmoid generation block’s current consumption also increased. This simulation 
is an upper bound on the power consumption, as for most normal operations, the 
vecmul and capdac will not be stepping from 0 to their maximum values at a 330 
MHz frequency, but instead take smaller, incremental steps up and down. The 330 
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MHz frequency was derived from the autocorrelation time of the integrated neu-
rons, a rough measure of how quickly an integrated neuron switches. 
 The source of the largest power consumption for the integrated neuron is 
the noise OTA, contributing almost half of the power consumption at the highest 
current bias setting in the isolated neuron simulation. The noise OTA thus presents 
itself as a high priority target for power optimization. Another target for power op-
timizations would be the noise buffer. It consumes roughly a third of the power at 
the highest current bias setting and because it is tied to the same bias generator as 
the OTA, its power consumption increases at higher current settings. For a noise 
buffer, this current consumption may be unnecessary, as the primary purpose of 
having multiple current bias settings was to modify the speed of the neuron. Using 
a fixed bias current for the noise buffer across the bias settings, or at least decou-
pling the buffer from the OTA’s bias generator and tying the noise buffer its own 
biasing circuit, could decrease its power consumption significantly. The super 
source follower could also be replaced with a topology that consumes less power, 
so long as the performance of the integrated neuron is not affected significantly. 
 
5 Performance Analysis of Integrated Neuron 
 
5.1 Autocorrelation Performance Analysis 
 
 The autocorrelation function derived from the output of the integrated neu-
ron is one of the two metrics used to evaluate the performance of the integrated 
neuron. The goal of this analysis is to see if there is a trend in the autocorrelation 
function of an isolated integrated neuron across the different current bias settings 
(which correspond to the integrated neuron’s speed settings, with b6 being the fast-
est) and across prelayout to postlayout. For each speed setting, the autocorrelation 
function and OTA dominant pole was extracted from simulations at the 25℃ TT 
corner that involved setting one of the integrated neuron’s subcomponents to its 
postlayout view while the others were held at prelayout. The vecmul, capdac, and 
the biasing circuits were excluded from this “one-hot” postlayout analysis; they 
were only simulated using their prelayout views. The autocorrelation was then also 
extracted for the full integrated neuron set to prelayout and the full integrated neu-
ron set to postlayout, again excluding the synapse and biasing circuits. The synapse 
and biasing circuits were held at prelayout because changing those components to 
their postlayout views changed the bias points and capdac output voltage, which 
dramatically affected the autocorrelation function. To ensure a fair comparison be-
tween the one-hot postlayout, full prelayout, and full postlayout simulations, the 
biases and capdac output had to be unchanging across the simulations, so the syn-
apse and biasing circuits were simulated using only their prelayout views. 
 After extracting the autocorrelation functions, an exponential of the form 
𝑦𝑦 = 𝐴𝐴𝑒𝑒−𝐾𝐾𝐾𝐾𝐾𝐾 + (1 − 𝐴𝐴) was fit to the function to extract the coefficients, as seen 
from the examples in Figures 13 and 14. The constant offset term of the exponential 
can be set to 1-A because the autocorrelation function is always equal to 1 at 𝛥𝛥𝛥𝛥 =
0 by definition. The resulting coefficients A and K were then tabulated in Tables 
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13a and 13b. The coefficient of interest for this analysis is the K coefficient, as it 
governs how quickly the autocorrelation function decays (and therefore the speed 
of the integrated neuron) and can be used as a measure of how quickly the integrated 
neuron switches. The K coefficient can then be compared to the OTA dominant 
pole to determine if there is a relationship between the OTA’s dominant pole and 
the integrated neuron’s speed. 
 

Speed Set K (s-1) A OTA Domi-
nant Pole 

b6 Full Neuron 
Prelayout 

3.641e08 0.950 50.208 MHz 

Postlayout 
Sigmoid Gen 

3.430e08 0.938 50.006 MHz 

Postlayout 
Noise OTA 

2.817e08 0.929 76.161 MHz 

Postlayout 
Noise Buffer 

3.490e08 0.929 59.250 MHz 

Postlayout 
Noise Gen 

3.293e08 0.914 55.453 MHz 

Full Neuron 
Postlayout 

2.652e08 0.933 77.137 MHz 

b5 Full Neuron 
Prelayout 

2.451e08 0.829 29.085 MHz 

Postlayout 
Sigmoid Gen 

2.282e08 0.909 28.972 MHz 

Postlayout 
Noise OTA 

1.970e08 0.925 28.748 MHz 

Postlayout 
Noise Buffer 

2.178e08 0.905 29.362 MHz 

Postlayout 
Noise Gen 

2.169e08 0.910 28.357 MHz 

Full Neuron 
Postlayout 

1.864e08 0.912 28.647 MHz 

b4 Full Neuron 
Prelayout  

2.031e08 0.928 23.741 MHz 

Postlayout 
Sigmoid Gen 

1.868e08 0.881 23.642 MHz 

Postlayout 
Noise OTA 

1.529e08 0.874 22.420 MHz 

Postlayout 
Noise Buffer 

1.698e08 0.879 24.238 MHz 

Postlayout 
Noise Gen 

1.762e08 0.903 22.937 MHz 

Full Neuron 
Postlayout 

1.479e08 0.900 22.143 MHz 

Table 13a: Performance of integrated neuron at speeds b6-b4  
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Speed Set K (s-1) A Amplifier 
Dominant 

Pole 
b0 Full Neuron 

Prelayout 
1.656e08 0.882 15.810 MHz 

Postlayout 
Sigmoid Gen 

1.065e08 0.836 15.756 MHz 

Postlayout 
Noise OTA 

1.002e08 0.919 14.794 MHz 

Postlayout 
Noise Buffer 

1.063e08 0.789 16.085 MHz 

Postlayout 
Noise Gen 

1.265e08 0.902 15.303 MHz 

Full 
Postlayout 

9.860e07 0.868 14.584 MHz 

slowest Full Neuron 
Prelayout 

1.418e08 0.893 14.864 MHz 

Postlayout 
Sigmoid Gen 

1.068e08 0.846 14.906 MHz 

Postlayout 
Noise OTA 

1.080e08 0.895 14.001 MHz 

Postlayout 
Noise Buffer 

1.012e08 0.783 15.208 MHz 

Postlayout 
Noise Gen 

1.151e08 0.888 14.489 MHz 

Full 
Postlayout 

9.374e07 0.884 13.805 MHz 

Table 13b: Performance of integrated neuron at speeds b0-slowest 

 

 
Figure 13: Autocorrelation functions for b6 speed setting 
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Figure 14: Autocorrelation functions for slowest speed setting 

 
 There are a few clear trends that can be drawn from the data. First, there is 
a decrease in the speed of the integrated neuron when moving from prelayout to 
postlayout simulations, which is expected. Second, the one-hot postlayout simula-
tions also show a decrease in the speed of the integrated neuron for all components, 
indicating that they all contribute to the autocorrelation function in some way. 
 Out of all the components, the noise OTA seems to contribute the most to-
wards the autocorrelation function, as changing it from prelayout to postlayout 
yielded the biggest difference in the value of K for most speeds. Intuitively, this 
makes sense; a slower amplifier should result in a slower integrated neuron. How-
ever, comparing the K values to the amplifier dominant pole does not yield a robust 
trend. While for some speed settings and some components, the K value matches 
2𝜋𝜋 times the amplifier dominant pole with 10% error, there are enough points that 
do not follow any pattern such that no conclusive trend can be drawn. Because of 
this, even the trend of the noise OTA contributing the most towards the autocorre-
lation function may not be statistically significant and could just be due to random 
chance. A larger sample size and better modelling of the system would be necessary 
to draw any definitive conclusions about what affects the autocorrelation and speed 
of the integrated neurons. 
 
5.2 Delay Analysis 
 
 The second metric used to evaluate the performance of the integrated neu-
ron is the component-to-component propagation delay. To get the delay, a square 
wave input was used to model a neighboring integrated neuron, and the weight cor-
responding to that input was set to its maximum value to generate maximal switch-
ing for the vecmul and capdac. The prelayout delays from the inputs of each com-
ponent reaching 50% of their final value to the outputs of each component reaching 
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50% of its final value was measured and averaged across 30 samples. These delays 
were computed across the SS, TT, FF, SF, and FS process corners at 25℃ and 85℃ 
at the slowest and fastest settings for the biasing circuits.  

The results are tabulated in Tables 14-18. Since the noise generation and 
amplifier do not take any external inputs, they are excluded from the delay compu-
tations. The “total” delay refers to the propagation delay from the input to the output 
of the integrated neuron itself (from input of vecmul to output of inverters). The 
critical path of the integrated neuron goes through the vecmul to bit 5 of the vecmul 
output, through the capdac, through the sigmoid generator, and finally through the 
output inverters to reach the output of the integrated neuron. 
 

TT 25℃ 85℃ 
 Slowest Fastest Slowest Fastest 

Total 254.4 ps 209.3 ps 282.1 ps 229.8 ps 
Vecmul 126 ps 125.8 ps 132 ps 132.1 ps 
Capdac 9.006 ps 8.863 ps 8.992 ps 8.967 ps 
Sigmoid 107.3 ps 46.44 ps 94.64 ps 50.03 ps 

Output in-
verters 

11.85 ps 28.03 ps 48.49 ps 39.39 ps 

Table 14: Delay values for each component in the TT process corner 
 

FF 25℃ 85℃ 
 Slowest Fastest Slowest Fastest 

Total 242 ps 199.3 ps 253.2 ps 205.2 ps 
Vecmul 108.3 ps 108.3 ps 111.9 ps 111.9 ps 
Capdac 12.84 ps 12.89 ps 9.843 ps 9.996 ps 
Sigmoid 99.48 ps 45.8 ps 85.13 ps 47.45 ps 

Output in-
verters 

21.13 ps 32.32 ps 46.41 ps 35.88 ps 

Table 15: Propagation delay of each component in the FF process corner 
 

SS 25℃ 85℃ 
 Slowest Fastest Slowest Fastest 

Total 302.3 ps 248.1 ps 296.5 ps 247.9 ps 
Vecmul 151.9 ps 152.4 ps 153.7 ps 153.1 ps 
Capdac 10.1 ps 10.52 ps 8.819 ps 10.89 ps 
Sigmoid 112 ps 48.19 ps 98.58 ps 45.43 ps 

Output in-
verters 

27.22 ps 36.65 ps 36.69 ps 38.03 ps 

Table 16: Propagation delay of each component in the SS process corner 
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SF 25℃ 85℃ 

 Slowest Fastest Slowest Fastest 
Total 250.8 ps 206.3 ps 279.6 ps 221.6 ps 

Vecmul 116.2 ps 116.3 ps 121.3 ps 121.3 ps 
Capdac 14.41 ps 14.57 ps 12.71 ps 12.76 ps 
Sigmoid 115.8 ps 47.43 ps 105.8 ps 47.25 ps 

Output in-
verters 

1.722 ps 28.24 ps 40.07 ps 41.15 ps 

Table 17: Propagation delay of each component in the SF process corner 
 

FS 25℃ 85℃ 
 Slowest Fastest Slowest Fastest 

Total 265.5 ps 234.8 ps 278.5 ps 238.8 ps 
Vecmul 140.1 ps 140.1 ps 143.1 ps 143.5 ps 
Capdac 8.316 ps 8.324 ps 9.416 ps 8.411 ps 
Sigmoid 101 ps 47.99 ps 88.62 ps 47.42 ps 

Output in-
verters 

16.81 ps 38.42 ps 38.03 ps 39.46 ps 

Table 18: Propagation delay of each component in the FS process corner 
 
 As expected, the corner with the shortest delays was the FF process corner, 
and the corner with the longest delays was SS, while the TT, FS, and SF corners 
were all somewhere in the middle. For each corner, the delay at 25℃ was shorter 
than it was at 85℃ as expected, since the mobility decreases at higher temperatures. 
 The longest delay is the vecmul propagation from its input to its output bit 
5. The capdac delay is the shortest delay across the different corners, speeds, and 
temperatures because it overlaps with the vecmul delay; while bit 5 of the vecmul 
is the longest delay, the other bits have already propagated, allowing the capdac 
voltage to change before bit 5 finishes propagating. As the sigmoid generator is tied 
to the current bias, changing the current from the slowest to fastest setting decreases 
the delay of the sigmoid generation block significantly. Based on these figures, the 
primary target for optimizing to reduce the delay is the vecmul. 
 
6 Design Exploration 
 
 Based on the previous analyses, the best block to optimize for area would 
be the capdac, the best block to optimize for power would be the noise OTA or 
buffer, and the best block to optimize for delay performance would be the vecmul. 
 Out of these analyses, the power consumption is the most pressing issue. 
Since there is still unused die area on the processor, and since the propagation de-
lays are significantly shorter than the neuron sampling period, the priority is to min-
imize the power consumption of the integrated neurons to enable the scaling of the 
number of integrated neurons for future processors. With that, this report will dis-
cuss a topology that was explored as a lower-power replacement for the super 
source follower that makes up the noise buffer: the “flipped voltage follower” [4]. 
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6.1 Modified Flipped Voltage Follower (Prelayout) 
 
 The flipped voltage follower, shown in Figure 15, is a topology similar to 
the super source follower (SSF), but the feedback transistor is the same type as the 
input transistor (NFET for n-input, PFET for p-input) [4]. The flipped voltage fol-
lower has a low output resistance of roughly 2/(𝑔𝑔𝑚𝑚1𝑔𝑔𝑚𝑚2𝑟𝑟𝑜𝑜1) [4] and could poten-
tially be a lower power design than the super source follower because it only needs 
a single bias for its single current source. As the super source follower uses two 
current sources, it requires two biases (one PFET, one NFET). To produce NFET 
bias in the current noise buffer design, the input PFET current needs to be mirrored 
onto an extra branch connected to an NFET mirror (see Figure 5), resulting in extra 
current being drawn for that path. The FVF does not need this extra path, and so 
would save that current. 

 
Figure 15: Schematic of basic flipped voltage follower 

 
 A modified n-input version of this flipped voltage follower (FVF), shown 
in Figure 16, was explored as an alternative to the current super source follower 
design. Because of the input and output common mode restrictions (input of 
643mV, output 400mV), to ensure M1 stayed in saturation, M1 needed to have a 
relatively large size, and Vfb needed to be biased at roughly 600mV. M2 needed to 
be sized much smaller than M1 to increase its Vgs (and therefore Vfb) as much as 
possible, but Vfb was not high enough through sizing M2 alone. A diode-connected 
transistor M3 needed to be added between the source of M2 and VSS to forcibly 
push the Vfb node up in voltage. 

 
Figure 16: Schematic of modified flipped voltage follower for noise buffer 

 
 The modified FVF was designed with a length of 160nm, as 160nm length 
devices produced the best analog performance in terms of gm, ro, etc. It takes in a 
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2uA current input and mirrors it to a nominal 10 uA bias current flowing through 
the main transistor stack.  

The plot of the output resistance Rout versus frequency of the modified FVF 
is shown in Figure 17, and for comparison, the plot of Rout versus frequency of the 
SSF is shown in Figure 18. The values of Rout at 1 MHz, 10MHz, 100 MHz, and 1 
GHz for both designs are tabulated in Table 19. 

 
Figure 17: Rout of modified FVF 

 
Figure 18: Rout of SSF 

 
Design Rout @ 1 

MHz  
Rout @ 10 

MHz 
Rout @ 100 

MHz 
Rout @ 1 

GHz 
Modified 

FVF 
205.98 Ω 211.74 Ω 498.75 Ω 1645.23 Ω 

SSF 78.19 Ω 102.83 Ω 672.43 Ω 6538.7 Ω 
Table 19: Comparison of Rout for modified FVF and SSF 
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 As seen from the figures and table, the Rout of the SSF is less than half of 
the Rout of the modified FVF at frequencies below 10 MHz; however, the Rout of 
the SSF increases rapidly after 10 MHz at a faster rate than the Rout for the modified 
FVF does. At 100 MHz and above, the modified FVF has less Rout than the SSF. 
This suggests that the low frequency/DC gain from the noise buffer input to noise 
OTA output will be higher for the SSF, but at higher frequencies it will be higher 
for the modified FVF. Using only the Rout as a metric for comparison does not yield 
an immediate answer for which design yields a higher performance, so other met-
rics must be considered. 
 The gain and phase of the modified FVF transfer function is shown in Fig-
ure 19, while the gain and phase of the SSF transfer function is shown for compar-
ison in Figure 20. Table 20 tabulates the low frequency gain and corner frequency 
of the two designs. These simulations were run with a purely capacitive load. 

 
Figure 19: Gain (red) and phase (yellow) of the modified FVF transfer function 

 
Figure 20: Gain (red) and phase (yellow) of the SSF transfer function 
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Design Low Frequency Gain Corner Frequency 
Modified FVF -0.157 dB 3.015 GHz 

SSF -0.167 dB 1.287 GHz 
Table 20: Comparison of gain for modified FVF and SSF 

  
 The low frequency gains of the two designs are almost identical, while the 
corner frequency of the modified FVF is higher than that of the SSF. The plots 
show that the gain of the modified FVF and SSF both go above unity gain for a 
small frequency range; however, there is still sufficient phase margin for both de-
signs such that stability is not an issue and compensation is not needed. 
 The outputs of the two designs were then connected to the noise OTA, form-
ing the complete noise amplifier, and simulated. Figures 21 (modified FVF) and 22 
(SSF) show the gain of the noise buffer driving the noise OTA as its load, and Table 
21 tabulates that gain evaluated at different frequencies. 

 
Figure 21: Gain (red) and phase (yellow) of loaded modified FVF 
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Figure 22: Gain (red) and phase (yellow) of loaded SSF 

 
Design Loaded Gain 

@ 1 MHz 
Loaded Gain 
@ 10 MHz  

Loaded Gain 
@ 100 MHz 

Loaded Gain 
@ 1 GHz 

Modified 
FVF 

-2.953 dB -2.578 dB -0.959 dB 0.501 dB 

SSF -1.357 dB -1.522 dB -1.598 dB 0.817 dB 
Table 21: Comparison of gain of loaded modified FVF and loaded SSF 

 
 With the noise OTA as its load, the modified FVF gain degrades signifi-
cantly compared to the SSF gain. This is likely due to the difference in the Rout 
between the modified FVF and SSF, as the noise OTA is not a purely capacitive 
load due to the resistive feedback. 

Figures 23 (modified FVF) and 24 (SSF) show the gain and phase of the 
noise amplifier transfer function (from the input of the noise buffer to the output of 
the noise OTA), and Table 22 tabulates that gain evaluated at different frequencies 
as well as the corner frequency. The gain of the noise amplifier transfer function 
will be referred to as amp_gain. 
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Figure 23: Gain (red) and phase (yellow) plot of the transfer function from input 

of modified FVF to output of noise OTA. 

 
Figure 24: Gain (red) and phase (yellow) plot of the transfer function from input 

of SSF to output of noise OTA. 
 

Design Amp_gain @ 
1 MHz 

Amp_gain @ 
10 MHz  

Amp_gain @ 
100 MHz 

Corner Fre-
quency 

Modified 
FVF 

46.719 dB 45.824 dB 32.855 dB 20.328 MHz 

SSF 48.2 dB 46.827 dB 32.437 dB 16.128 MHz 
Table 22: Comparison of amp_gain for the modified FVF and SSF 
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 As expected, the modified FVF amp_gain is lower than that of the SSF de-
sign due to the higher Rout, though it still meets the gain requirements of 200 (46.02 
dB) at 1 MHz. Beyond that frequency, however, the gain drops past the desired 
value, which could harm the integrated neuron’s performance. As the SSF can meet 
the target gain of 200 for a wider range of frequencies, the performance of the in-
tegrated neuron using the SSF is expected to be higher than a integrated neuron 
using the modified FVF. 
 The variation of the Rout, gain, amp_gain, and common mode output voltage 
was characterized and tabulated in Table 23 using a 1000-sample Monte Carlo sim-
ulation, in which only the noise buffer’s transistors were subject to variation. 
 

 Modified FVF SSF 
Parameter Mean Std Dev Mean Std Dev 

Output com-
mon mode 

394.9 mV 9.728 mV 385.3 mV 9.127 mV 

Rout @ 10 
MHz 

199.8 Ω 44.18 Ω 103.7 Ω 7.822 Ω 

Rout @ 100 
MHz 

440.2 Ω 29.6 Ω 676.4 Ω 68.66 Ω 

Rout @ 1 
GHz 

1525 Ω 40.25 Ω 6416 Ω 553.1 Ω 

Gain @ 1 
MHz 

-0.1664 dB 0.02273 dB -0.1701 dB 0.01459 dB 

Gain @ 10 
MHz 

-0.1507 dB 0.02273 dB -0.1677 dB 0.01467 dB 

Gain @ 100 
MHz 

-0.1183 dB 0.02289 dB 0.07309 dB 0.03769 dB 

Gain @ 1 
Ghz 

0.7396 dB 0.07655 dB -6.828 dB 0.9361 dB 

Loaded Gain 
@ 1 MHz 

-3.027 dB 0.1973 dB -1.301 dB 0.102 dB 

Loaded Gain 
@ 10 MHz 

-2.654 dB 0.2223 dB -1.768 dB 0.1398 dB 

Loaded Gain 
@ 100 MHz 

-0.9705 dB 0.1052 dB -2.093 dB 0.2151 dB 

Loaded Gain 
@ 1 Ghz 

0.4695 dB 0.08297 dB -9.248 dB 0.9489 dB 

Amp_gain @ 
1 MHz 

46.59 dB 0.429 dB 47.68 dB 0.4195 dB 

Amp_gain @ 
10 MHz 

45.69 dB 0.3794 dB 45.89 dB 0.4214 dB 

Amp_gain @ 
100 MHz 

32.71 dB 0.5667 dB 30.88 dB 0.5499 dB 

Amp_gain @ 
1 GHz 

11.58 dB 0.6726 dB 0.086 dB 1.4 dB 

Table 23: Variation results from 1000-sample Monte Carlo simulation 
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 The standard deviation in the output common mode is almost the same be-
tween the two designs; at a roughly 10 mV standard deviation, the common mode 
is sufficiently controlled for the integrated neuron. The standard deviation in Rout 
for the SSF remains at roughly 10% of the mean value, whereas the standard devi-
ation in Rout for the modified FVF remained relatively at a constant Rout value. The 
large variation in the low frequency Rout of the modified FVF likely comes from 
the fact that the feedback transistor M2 is extremely small, almost minimally sized, 
so variations in that transistor have a large effect on the characteristics of the design. 
All three gain measurements for the SSF design also showed a trend of the 1 GHz 
values being significantly different from the 1, 10, and 100 MHz values in terms of 
both mean and standard deviation. Apart from these patterns, there aren’t many 
trends that can be drawn from the rest of the data, so in terms of variation, it is 
difficult to determine if one design is better than the other. 

The input capacitance Cin of each noise buffer was characterized using a 
transient simulation. Then, the noise source subcircuit was connected to the input 
of the buffer and a transient noise simulation was run to characterize the RMS of 
the noise signals at the output of each block. The results are compiled in Table 24. 
 

Parameter Modified FVF SSF 
Noise buffer Cin 7.347 fF 1.994 fF 

Noise source out RMS 0.713 mV 1.935 mV 
Noise buffer out RMS 0.890 mV 3.051 mV 
Noise OTA out RMS 97.24 mV 150.559 mV 

Table 24: RMS results from transient noise simulation 
 
 The RMS voltage of the modified FVF design is lower than that of the SSF 
design at every stage. The RMS of the source output has degraded because of the 
large increase in input capacitance compared to the SSF design, which ends up 
loading the noise source. The modified FVF design also has a lower amp_gain than 
the SSF, which contributes to the large discrepancy in the RMS voltage at the noise 
OTA output. 
 In terms of power, the results are tabulated in Table 25 using the isolated 
integrated neuron simulation from the power analysis at the slowest setting. The 
modified FVF design offers a 37.5% reduction in the power consumption. 
 

Design Average Current Peak Current 
Modified FVF 11.92 uA 12.7463 uA 

SSF 19.04 uA 22.232 uA 
Table 25: Power comparisons between modified FVF and SSF designs. 

 
 As a final metric for comparison between the two designs, the autocorrela-
tion functions were extracted, fitted, and tabulated in Table 26. Since the modified 
FVF was decoupled from the bias circuit, its bias current did not change with the 
speed setting. To have a fair point of comparison, a separate autocorrelation func-
tion was extracted from the simulations decoupling the SSF from the bias circuit as 
well. 
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Speed Design K (s-1) A 
b6 Modified FVF 1.057e08 0.847 

Decoupled SSF 2.178e08 0.917 
SSF 3.641e08 0.950 

b5 Modified FVF 9.930e07 0.867 
Decoupled SSF 1.792e08 0.891 

SSF 2.451e08 0.829 
b4 Modified FVF 9.964e07 0.850 

Decoupled SSF 1.711e08 0.887 
SSF 2.031e08 0.928 

b0 Modified FVF 1.113e08 0.924 
Decoupled SSF 1.268e08 0.830 

SSF 1.656e08 0.882 
slowest Modified FVF 1.038e08 0.939 

Decoupled SSF 1.277e08 0.822 
SSF 1.418e08 0.893 

Table 26: Results of autocorrelation function extraction of prelayout designs 
  
 The K coefficient for the modified FVF design was 50% smaller than that 
of the SSF, even after decoupling the SSF from the current bias, indicating that the 
speed of the integrated neuron was cut in half. Much of this can be attributed to the 
reduction in the RMS of the noise OTA output, which in turn is attributed to the 
large input capacitance, higher low-frequency Rout, and lower low-frequency gain 
of the modified FVF design. Using the autocorrelation function, the SSF clearly 
outperforms the modified FVF design. 
 The decoupled SSF also showed worse performance than the coupled SSF 
across all speed settings. Having a trimmable current bias to tune the speed of the 
noise buffer can improve the performance of the integrated neuron at the cost of 
burning some more power. If the power consumption is not a limiting factor, then 
setting the noise buffer to a higher speed setting makes for a simple method to im-
prove the performance of the integrated neuron. 
 
6.2 Prelayout Modified FVF Conclusion 
 
 While the modified FVF decreases the current consumed by the noise buffer 
by 35%, it also cut the speed of the integrated neuron by 50%, and thus is more 
suitable for a lower power implementation, where the priority is power efficiency 
over rather than speed. The decrease in the speed can be attributed mainly to the 
large input capacitance, which increased the load on the noise source and thus de-
creased the RMS voltage of its output, as well as higher output resistance, which 
lowered the gain of the noise amplifier. In terms of Rout, the low frequency re-
sistance matters more than the resistance at higher frequencies, as the SSF had a 
significantly higher resistance at high frequencies beyond 100 MHz but had better 
performance than the modified FVF. The input and output common modes and in-
put noise source were a poor match for this topology; because of those operating 
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conditions, keeping the input transistor in saturation required making it very large, 
while the input noise source required a small load capacitance. 

Although the modified FVF topology is not currently feasible as a replace-
ment, it may be a viable option if the speed of the integrated neuron is not a limiting 
factor for the chip performance. It may turn out that the integrated neuron doesn’t 
need to be as fast and can tolerate a degradation in speed in favor of power savings, 
in which case this topology may be a suitable design. If the requirements for the 
input or output common mode are changed via the redesign of the noise source or 
OTA, this topology become more viable. For that reason, the design was pushed 
through layout and postlayout simulations. 

 
6.3 Modified Flipped Voltage Follower (Postlayout) 
 
 Figure 25 shows the layout of the modified FVF. Its dimensions are 3.36 
um x 10.71 um, resulting in a total area of 35.99 um2.  
  

 
Figure 25: Layout of Modified FVF 

 
The plot of the output resistance Rout versus frequency of the postlayout 

modified FVF is shown in Figure 26, and for comparison, the plot of Rout versus 
frequency of the postlayout SSF is shown in Figure 27. The values of Rout at 1 MHz, 
10MHz, 100 MHz, and 1 GHz for both designs are tabulated in Table 27. 

 
Figure 26: Rout of postlayout modified FVF 
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Figure 27: Rout of postlayout SSF 

 
Design 

(postlayout) 
Rout @ 1 

MHz  
Rout @ 10 

MHz 
Rout @ 100 

MHz 
Rout @ 1 

GHz 
Modified 

FVF 
234.404 Ω 271.035 Ω 1147.46 Ω 2292.76 Ω 

SSF 83.998 Ω 153.06 Ω 1309.7 Ω 5087.8 Ω 
Table 27: Comparison of Rout for postlayout modified FVF and postlayout SSF 

 
 Like in the prelayout trends, the Rout of the postlayout SSF is less than half 
of the Rout of the postlayout modified FVF at frequencies below 10 MHz, but in-
creases rapidly after 10 MHz at a faster rate than the Rout for the modified FVF 
does. At 100 MHz and above, the modified FVF has less Rout than the SSF. Com-
pared to the prelayout versions, the postlayout designs have an increased Rout as 
expected. 
 The gain and phase of the postlayout modified FVF transfer function is 
shown in Figure 28, while the gain and phase of the postlayout SSF transfer func-
tion is shown for comparison in Figure 29. Table 28 tabulates the low frequency 
gain and corner frequency of the two postlayout designs. These simulations were 
run with a purely capacitive load. 
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Figure 28: Gain (red) and phase (yellow) of the postlayout modified FVF transfer 

function 

 
Figure 29: Gain (red) and phase (yellow) of the postlayout SSF transfer function 

 
Design (postlayout) Low Frequency Gain Corner Frequency 

Modified FVF -0.157 dB 2.184 GHz 
SSF -0.162 dB 662.704 MHz 

Table 28: Comparison of gain for postlayout modified FVF and postlayout SSF 
  
 The low frequency gains of the two postlayout designs are almost identical, 
just like in the prelayout simulations. The corner frequencies were also degraded 
compared to prelayout, as expected. The layout parasitics of the modified FVF 
seem to have pushed the zero previously found at 100 GHz in the prelayout simu-
lation to the left, to 10 GHz in the postlayout, which could prove to be a problem 
for the performance of the integrated neuron later. 
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 The outputs of the two designs were then connected to the noise OTA and 
simulated. Figures 30 (postlayout modified FVF) and 31 (postlayout SSF) show the 
gain of the noise buffer driving the noise OTA as its load, and Table 29 tabulates 
that gain evaluated at different frequencies. 

 
Figure 30: Gain (red) and phase (yellow) of loaded postlayout modified FVF 

 
Figure 31: Gain (red) and phase (yellow) of loaded postlayout SSF 

 
Design 

(postlayout) 
Loaded Gain 

@ 1 MHz 
Loaded Gain 
@ 10 MHz  

Loaded Gain 
@ 100 MHz 

Loaded Gain 
@ 1 GHz 

Modified 
FVF 

-3.271 dB -3.290 dB -1.897 dB -0.461 dB 

SSF -1.403 dB -1.981 dB -2.645 dB -9.274 dB 
Table 29: Comparison of gain of loaded postlayout modified FVF and loaded 

postlayout SSF 
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 With the noise OTA as its load, the postlayout modified FVF gain degrades 
significantly compared to the postlayout SSF gain, just like the prelayout simula-
tions. The postlayout gain is also lower than the prelayout gain for both designs, as 
expected. 

Figures 32 (postlayout modified FVF) and 33 (postlayout SSF) show the 
gain and phase of the noise amplifier transfer function, and Table 30 tabulates that 
gain evaluated at different frequencies as well as the corner frequency. 

 
Figure 32: Gain (green) and phase (blue) plot of the transfer function from input 

of postlayout modified FVF to output of noise OTA. 
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Figure 33: Gain (red) and phase (yellow) plot of the transfer function from input 

of postlayout SSF to output of noise OTA. 
 

Design 
(postlayout) 

Amp_gain @ 
1 MHz 

Amp_gain @ 
10 MHz  

Amp_gain @ 
100 MHz 

Corner Fre-
quency 

Modified 
FVF 

46.324 dB 45.080 dB 31.982 dB 17.110 MHz 

SSF 48.089 dB 46.145 dB 31.463 dB 13.952 MHz 
Table 30: Comparison of amp_gain and corner frequency for the postlayout modi-

fied FVF and postlayout SSF 
 

 As expected, the postlayout modified FVF amp_gain is lower than that of 
the postlayout SSF design due to the higher Rout, like what was observed in prelay-
out. Both designs show a slight degradation in the corner frequency when compared 
to the prelayout simulations, as expected. 
 The variation of the Rout, gain, loaded gain, amp_gain, and common mode 
output voltage was characterized and tabulated in Table 31 using a 1000-sample 
Monte Carlo simulation, in which only the noise buffer’s transistors were subject 
to variation. 
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 Postlayout Modified FVF Postlayout SSF 

Parameter Mean Std Dev Mean Std Dev 
Output com-
mon mode 

388.2 mV 9.895 mV 378 mV 9.208 mV 

Rout @ 10 
MHz 

283 Ω 31.09 Ω 154.5 Ω 17.96 Ω 

Rout @ 100 
MHz 

1164 Ω 59.64 Ω 1324 Ω 180.6 Ω 

Rout @ 1 
GHz 

2304 Ω 101.2 Ω 5035 Ω 247.8 Ω 

Gain @ 1 
MHz 

-0.1653 dB 0.01741 dB -0.1639 dB 0.01128 dB 

Gain @ 10 
MHz 

-0.1646 dB 0.01789 dB -0.1606 dB 0.0114 dB 

Gain @ 100 
MHz 

-0.1203 dB 0.05412 dB 0.158 dB 0.0451 dB 

Gain @ 1 
Ghz 

-0.1737 dB 0.1976 dB -8.862 dB 0.8714 dB 

Loaded Gain 
@ 1 MHz 

-3.379 dB 0.3192 dB -1.405 dB 0.0919 dB 

Loaded Gain 
@ 10 MHz 

-3.392 dB 0.2718 dB -1.993 dB 0.1491 dB 

Loaded Gain 
@ 100 MHz 

-1.924 dB 0.2081 dB -2.658 dB 0.2736 dB 

Loaded Gain 
@ 1 Ghz 

-0.523 dB 0.2004 dB -9.28 dB 0.824 dB 

Amp_gain @ 
1 MHz 

46.15 dB 0.6104 dB 48.01 dB 0.4403 dB 

Amp_gain @ 
10 MHz 

44.94 dB 0.5467 dB 46.29 dB 0.4525 dB 

Amp_gain @ 
100 MHz 

31.93 dB 0.4892 dB 31.43 dB 0.5891 dB 

Amp_gain @ 
1 GHz 

10.81 dB 0.6675 dB 2.439 dB 1.259 dB 

Table 31: Variation results from 1000-sample postlayout Monte Carlo simulation 
 
 There are not many trends that can be drawn from this postlayout data, so 
just in terms of variation, it is difficult to determine if one design is better than the 
other. 

The input capacitance Cin of each postlayout noise buffer was characterized 
using a transient simulation. Then, the noise source subcircuit was connected to the 
input of the buffer and a transient noise simulation was run to characterize the rms 
of the noise signals at the output of each block. The results are compiled in Table 
32. 
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Parameter Postlayout Modified 
FVF 

Postlayout SSF 

Noise buffer Cin 10.76 fF 2.8578 fF 
Noise source out RMS 0.5034 mV 1.428 mV 
Noise buffer out RMS 0.5901 mV 1.996 mV 
Noise OTA out RMS 71.190 mV 122.78 mV 

Table 32: RMS results from postlayout transient noise simulation 
 
 Like in the prelayout simulations, the rms voltage of the modified FVF de-
sign is worse than that of the SSF design at every stage. The RMS of the modified 
FVF design has degraded even further with the increased input cap from the layout. 
 The autocorrelation functions were extracted, fitted, and tabulated in Table 
33. Like the prelayout simulations, a separate autocorrelation function was ex-
tracted from the simulations decoupling the SSF from the bias circuit as well. 
 

Speed Design (Postlay-
out) 

K (s-1) A 

b6 Modified FVF 6.503e07 0.913 
Decoupled SSF 2.002e08 0.960 

SSF 2.652e08 0.933 
b5 Modified FVF 6.105e07 0.908 

Decoupled SSF 1.711e08 0.947 
SSF 1.864e08 0.912 

b4 Modified FVF 6.049e07 0.948 
Decoupled SSF 1.602e08 0.960 

SSF 1.479e08 0.900 
b0 Modified FVF 4.665e07 1.026 

Decoupled SSF 1.659e08 0.966 
SSF 9.860e07 0.868 

slowest Modified FVF 5.294e07 1.025 
Decoupled SSF 1.635e08 0.981 

SSF 9.374e07 0.884 
Table 33: Results of autocorrelation function extraction of postlayout designs 

 
The K coefficient for the postlayout modified FVF design was significantly 

smaller than that of the SSF. Even compared to the prelayout modified FVF, the 
speed of the postlayout modified FVF was only 65% of the speed in prelayout. The 
difference is most likely due to the increase in the input capacitance, causing an-
other degradation of the RMS when moving from the prelayout to postlayout mod-
ified FVF, as well as coupling capacitors between the input and the Vfb node of the 
circuit that provide a feedforward path. The layout was made with those coupling 
capacitors in mind, trying to minimize them by increasing the separation of the 
metal lines and moving the Vin line away from the Vfb line; however, there was 
still enough coupling capacitance from the parasitics of the input transistor itself to 
cause the performance to degrade. 
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6.4 Postlayout Modified FVF Conclusion 
 
 As the postlayout modified FVF was only able to achieve 65% of the speed 
of the prelayout design, the layout of the modified FVF needs to be reworked with 
a better understanding of what degrades the performance of the buffer and the inte-
grated neuron. Currently, it is known that the coupling capacitor between the input 
and Vfb node degrades the performance significantly, but there may be other fac-
tors involved too, such as the coupling capacitor between Vout and Vfb, or Vin and 
Vout, etc. It is also difficult to tell if the results are statistically significant without 
more data and knowledge about the autocorrelation function and its relationship 
with the integrated neuron components. Without thoroughly modelling and under-
standing what affects the autocorrelation the most, it will be difficult to redo the 
layout and/or redesign the modified FVF to make the topology more viable. 
 
7 Conclusion and Future Work 
 
 The PASSOv1 processor utilizes a fabric of 256 stochastic integrated neu-
rons to solve NP hard problems such as travelling salesman, integer factorization, 
and max-cut more quickly and efficiently than current state of the art solutions us-
ing compute heuristics with clock-driven approaches. To increase the size of the 
problem the processor can solve and the speed at which it can solve them, the num-
ber of integrated neurons needs to be scaled up, consuming more power and area 
on the chip, and the performance of the chip improved. This report presents an area, 
power, and performance analysis of the PASSOv1 processor’s analog core, detail-
ing the blocks that should be targeted first when trying to reduce power (noise OTA 
or noise buffer), reduce area (capdac), or improve performance (vecmul for delay), 
so that future iterations of the chip can redesign those blocks and be able to scale 
the size of the problem they can compute.  

This report also explored one potential design topology, the FVF, for reduc-
ing the power consumption of the noise buffer subcircuit used in the integrated 
neurons. As with many design tradeoffs, the modified FVF’s speed is lowered for 
a drop in power consumption. There is still potential to use it in the future if that 
cost can be accepted in exchange for power savings. Some of the performance anal-
ysis was inconclusive due to the lack of understanding of the autocorrelation func-
tion generated by the integrated neurons. To determine how to improve integrated 
neuron performance, some further investigation and modelling is warranted in the 
future to identify what in the integrated neuron affects the autocorrelation.  

At the time of the end of this project, the PASSOv1 processor has been 
fabricated and received by the Salahuddin group and is now awaiting packaging so 
that the team can test, validate, and benchmark the processor. This work will con-
tinue to occur beyond the termination of this MS project, and the team has plans for 
next generation chips aiming for more complex systems with even better perfor-
mance. This project offers a promising guide for the redesign process to improve 
upon the power consumption, area consumption, and performance of the PASSOv1 
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so that future iterations of the chip can continue to further accelerate the solving of 
NP-hard problems.  
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