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Abstract
Accelerating Visual Data Exploration via Sampling: A Case Study with Lux
by
Kunal Agarwal
Masters of Science in Electrical Engineering and Computer Science
University of California, Berkeley

Professor Aditya Parameswaran, Chair

Exploratory Data Analysis (EDA) is a necessary and vital part of data science that usually
occurs in computational notebooks with tools such as pandas. One of the most popular tools
for EDA is Lux which visualizes data stored in pandas DataFrames in a dashboard displayed
in a Jupyter Notebook. However, as datasets become larger in size, the computation neces-
sary to compute these visualizations becomes larger as well, slowing down Luz. We consider
the use of sampling to accelerate the computation required for generating visualizations.
We analyzed how Luz performs on large datasets and determined what parts of Lux could
be accelerated using data sampling. We then integrate our sampling method into Lux and
demonstrate a significant speedup while not compromising the quality of the visualizations
produced by Luz.
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Chapter 1

Introduction

It is often difficult and cumbersome for data scientists to draw meaningful insights from large
datasets. They typically explore the dataset via pandas [16], a popular data science library
for manipulating tabular data. This exploration is usually done in a computational note-
book, a popular one being Jupyter [7]. This exploration process, called Exploratory Data
Analysis (EDA), is done by repeatedly issuing pandas commands to transform the data and
visualizing the result. In conjunction with pandas, many different visualization libraries like
matplotlib [5] and altair [17], are used to make sense of data visually to gather insights
and determine subsequent steps.

Unfortunately, these libraries can be complicated and cumbersome to use, with many
different steps and lines of code needed to achieve the desired results. For example, creating
visualizations in a library like matplotlib takes many lines of code, and can be complicated
to manipulate if a small change to the visualization is necessary to continue with EDA.
Luz tries to solve these issues by streamlining much of the EDA process, particularly in
visualizing datasets in a simple way.

What is Lux?

Luz is an always-on visualization recommendation system built as a wrapper over pandas,
so it retains much of the same functionality that pandas offers [10]. Luz both uses pandas
metadata and also generates its own metadata to intelligently generate visualizations that
describe potentially interesting and relevant trends and correlations within the data. Lux
generates these visualizations on the fly and automatically whenever a pandas DataFrame
is printed, helping to narrow the scope of the EDA that the data scientist must conduct.
These visualizations are populated as a widget shown to the user within a Jupyter notebook.

Luz displays many different types of visualizations, from univariate to multivariate visu-
alizations. It displays bar graphs, histograms, scatter plots, heat maps, geographical maps,
line plots, and time series plots. Each of these visualizations are categorized into different
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Figure 1.1: Example of Luz widget display

tabs on the widget, each representing a different analytical action [9]. For example, for a
Correlation action, we may see a bivariate visualization like a scatter plot displaying the
correlation between two features in the dataset. For a Distribution action, we may see a
univariate visualization like a histogram displaying the distribution of a particular attribute.
There are a few default actions that Lux provides, but it is simple for users to design their
own actions as well. We see an example of the display widget that Luz generates in Figure
1.1.

The computation necessary to generate these different visualizations using the data is
quite complex and can be separated into a three key components. The first is computing
metadata. Once Luz is given a dataset, it first computes a variety of statistics and meta-
data to understand the structure of the data to inform future decisions it needs to make.
Some examples include calculating the cardinality, or the data type of each column. Many
of these calculations are expensive and grow as the size of the dataset increases. The second
step is the execute function. The execution engine retrieves all the metadata calculated
in the previous step and uses it to prepare the data for visualization generation. It filters
the data as necessary, and then performs different operations depending on the visualization
type generated. For example, the execution engine will aggregate the data in preparation
for a bar plot, or bin the data in preparation for a histogram. The metadata will come in
handy for these operations. However, the larger the dataset used, the slower it will be to
perform this computation to prepare the data for the visualizations. Finally, the third step
is creating the visualizations. This involves using the prepared data from the execution
engine and building the visualizations in the selected visualization engine (eg. altair or
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Figure 1.2: Diagram of Luz architecture simplified
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matplotlib). The visualizations are built and sent to the front-end to be displayed to the
user. The more data that is used for the visualizations, the longer it will take the generate,
especially for visualizations like scatter plots. [10]. The workflow described can be seen in
Figure 1.2.

For large datasets, to reduce latencies, Luz samples datasets that are over a certain size.
Visualizations are then generated based on this smaller sample. However, this approach still
has problems, which will be evaluated throughout this report as we propose a new approach
to sampling that improves upon the current one.

Research Questions and Contributions

Visualization libraries, like Luz, work well on smaller datasets, but at scale they struggle
to provide interactive results. Visualizations with thousands to millions of data points tend
to take a long time to be generated, defeating the purpose of an ‘always on’ visualization
software like Luz. To help Luz scale, we need to answer the following research questions:

How does Luz scale when run on large datasets, and where are most of the bottlenecks
located? Lux, like most visualization libraries, becomes slower when run on large datasets.
Our objective is to determine where the bottlenecks in the computation are. Once we are
able to identify these areas for improvement, we can determine if sampling or other opti-
mizations would be appropriate.

How can sampling be used effectively in generating visualizations on large datasets? The
data Luzx receives is used in a variety of ways from the computation of metadata to the cal-
culations surrounding potential interestingness of visualization recommendations to sending
data to the front-end. These are all integral aspects of the Lux pipeline and take longer to
complete on larger datasets. Our goal is to determine which areas would benefit from adding
sampling.

How do new sampling strategies provide faster functionality without compromising on the
accuracy and quality of the generated visualizations? While sampling can allow Lux and
other visualization libraries to run on a small subset of the data, this may compromise the
quality of the visualizations in that they may not reflect true relationships in the data. It is
important to note if the additional sampling creates inaccurate representations of the data,
which would make the new sampling strategy pointless.

How does our experience in using sampling to optimize an EDA tool like Lux provide
lessons for other EDA tools? There are many EDA tools beyond Luz that also suffer similar
constraints around large datasets. We provide a framework based on our experience that
can guide others in adding sampling to their EDA tools without compromising the utility of
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the tool itself.

Our contributions are as follows:

e We survey previous work in the area of generating approximate visualizations from
sampled data. (Chapter 2)

e We analyze how Luz does on large datasets, and where primary bottlenecks lie. (Chap-
ter 3)

e We build a new method of sampling with Lux that encourages sampling of important

metadata used in the computation of visualizations to speed up computation. (Chapter
4)

e We analyze how the new method affects the speed of computing the visualizations as
well as ensuring whether the accuracy and fidelity of the visualizations generated were
up to par. (Chapter 5)

e We surveyed other visualization methods and their sampling strategies to create a
framework for incorporating sampling in an EDA system in general. (Chapter 6)



Chapter 2
Related Work

The field of Approximate Query Processing (AQP), targets returning approximate results
by using samples collected either offline or online [4]. Some recent work focuses on giving
users the ability to control the approximation for their query. There isn’t a perfect solution
to AQP, but the user should be able to decide for themselves the tradeoff between speed and
accuracy of the query [1]. For example, with the use of sampling to provide AQP, the users
can specify exactly the method of sampling to be used that best fits their needs.

Narrowing down the scope of use of AQP, we focus on approximating queries that gener-
ate visualizations. One example use of AQP is in SeeDB [14], which partially automates the
task of finding visualizations that shows high deviation for a given query. SeeDB samples
the query output data as well as the original data to speedup the overall workflow and also
uses sampling to prune uninteresting visualizations.

Sampling can help to speed up query processing, but allowing the user to understand
the potential loss of accuracy in visualization is just as important. One example of an AQP
that visualizes the confidence intervals that result from sampling is Pangloss [12]. Pangloss
allows users to understand the difference in visualization results between the sampled and
non-sampled versions.

While Pangloss and SeeDB use sampling to generate visualizations, there are other uses
of sampling for the purposes of EDA. Another example of previous work in utilizing sam-
pling to improve visualization recommendation is FastMatch [11]. FastMatch uses adaptive
sampling methods to retrieve histogram visualizations from a large set of possible candidate
histograms that are closest to a user specified target distribution. As we discuss in this
thesis, Lux also employs sampling as part of its visualization recommendation system.



Chapter 3

Benchmarking Lux on Large Datasets

In this chapter, we describe the processes we use to benchmark Lux across different exper-
iments measuring various scalability-centric metrics and discuss insights gained from these
experiments. Throughout this process, we gained valuable knowledge on where certain bot-
tlenecks may exist within the current framework that are amplified on larger datasets.

All experiments run in this chapter and throughout this paper were run on a 2021 Mac-
book Pro with an Apple M1 Pro chip and 32GB of memory and 10 cores.

Data

We use two real world datasets for our experiments. The first is an Airbnb dataset, which
contains many different rental listings on the popular app Airbnb [2]. The dataset contains
16 columns and about 49,000 rows. For this dataset we duplicated the data to create a
dataset that contains 10 million data points that we can use for experiments. The second
dataset used is the Communities dataset, which contains information about the community
surrounding UC Irvine [6]. This dataset contains 128 columns and about 2,000 rows. Again,
for this dataset we duplicated the data to create a dataset that contains 1 million data points
for experiments.

3.1 (General Scalability Benchmarking

The first experiment we ran was to measure how different parts of Luz scaled as the number
of data points grew. The computation underlying Lux can be divided into a number of
different components:

e t meta: time for computing the metadata



CHAPTER 3. BENCHMARKING LUX ON LARGE DATASETS 8

Num Pts tmeta t.recs t.render t_lst_print t_2nd print t_total
50000 0.31 2.08 1.05 0.004 0.004 3.448
86975 0.50 0.37 0.79 0.004 0.004 1.668
151293 0.87 0.49 0.63 0.004 0.004 1.998
263175 1.61 0.68 0.81 0.004 0.004 3.108
457795 2.93 1.16 0.94 0.004 0.004 5.038
796336 5.13 1.60 1.26 0.004 0.004 7.998
1385231 8.29 2.80 1.24 0.006 0.005 12.341

2409614 15.96 4.97 2.43 0.004 0.004 23.368
4191534 27.36 7.75 3.00 0.004 0.004 38.118
7291189 46.12  12.64 3.71 0.004 0.004 62.478

Table 3.1: Subset of full dataset for Figures 3.1 and 3.2. All time is in seconds

e t_recs: time for computing and generating the visualization recommendations

e t_render: time for renderer (e.g., matplotlib, altair) to build the visualization in
the backend

t_meta represents the time it takes to compute metadata, which includes calculating
important information about the dataset like the cardinality of each column, the unique
values in each column, and more. It also uses this information to determine what type of
data each column represents (e.g, temporal, numerical, or geographic). t_recs is the time it
takes to compute and generate the visualization recommendations. This involves generating
many different types of visualizations and calculating an interestingness score for each one to
determine which ones should be displayed to the user [10]. Finally, t_render is the amount
of time it takes for the renderer (e.g, matplotlib or altair) to build the actual visualization
in the backend so that it can be sent to the front end in the notebook. t_render provides
a good representation of the runtime on the front-end, since after the visualizations are
rendered, it takes very little time to print the visualizations in the front end. We’ve tracked
this time to print as t_1st_print. We print the widget twice to ensure there aren’t any
discrepancies between the two prints due to caching optimizations within Luz. The time it
takes to print a second time is tracked as t_2nd _print.

Experiment 1: Airbnb Dataset

The first experiment we run is in calculating the above metrics on increasing samples of
a dataset on a logarithmic scale. Since Lux natively uses sampling in its computation as
mentioned in Chapter 1, we turn off any sampling that Lux does in order to truly test how
Luz scales in computation on large datasets. The number of points in each run is selected
from between 5,000 data points and 10 million data points where each run represents a value



CHAPTER 3. BENCHMARKING LUX ON LARGE DATASETS

Figure 3.1: Experiment 1: Total Time

Figure 3.2: Experiment 1: Computation Time Breakdown
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Num Pts tmeta t.recs t.render t_lst_print t_2nd print t_total
5000 0.08 39.08 3.01 0.026 0.025 42.221
8538 0.09 41.44 3.10 0.028 0.028 44.686
14582 0.15 45.92 3.35 0.034 0.033 49.487
24903 0.19 49.71 3.95 0.040 0.039 53.929
42528 0.29 56.30 4.18 0.067 0.052 60.889
72628 0.445  46.32 5.88 0.088 0.068 52.801
124031 0.73 55.89 7.79 0.146 0.102 64.658
211816 1.39 70.65 11.41 0.420 0.154 84.02
361732 2.14 88.18 17.54 0.614 0.230 108.704
617753 3.50  171.56 31.25 1.988 0.415 208.713

Table 3.2: Subset of full dataset for Figures 3.3 and 3.4. All time is in seconds

equidistant to each other on a logarithmic scale. Figure 3.1 shows the total time it takes to
fully run Luxz on the dataset provided. We notice that as the number of datapoints in our
dataset increases, represented by the x-axis, the time in seconds it takes to fully run Lux
on the dataset, represented by the y-axis, increases dramatically. In Figure 3.2, we see the
data used in Figure 3.1 broken down into the components described earlier. t meta takes
the longest amount of time and grows the fastest with the size of the dataset in comparison
to the other metrics. The detailed data for these figures can be found in Table 3.1.

Overall, we notice that the time it takes to calculate the metadata is the most compared
to the other metrics, and that difference widens as the size of the dataset increases. This is
clearly where much of the slowdown comes from. When looking at the t_recs, we see that
there is also a noticeable increase in the computation time as the dataset size increases, but
not as much. The rendering time and the printing time stay largely constant.

Experiment 2: Communities Dataset

We run the same experiment on the Communities dataset. This dataset has a large number
of columns, so we’re interested to see how the benchmarking test changes with the differing
structure of this dataset. As in the previous experiment, we switch off any sampling that
Luz does to test how Luz scales in computation on large datasets. The number of points
in each run is selected from between 5,000 data points and 1 million data points where each
run represents a value equidistant to each other on a logarithmic scale. Figure 3.3 shows the
total time it takes to fully run Luz on the dataset provided. We notice that as the number
of datapoints in our dataset increases, represented by the x-axis, the time in seconds it takes
to fully run Lux on the dataset, represented by the y-axis, increases dramatically. In Figure
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Figure 3.3: Experiment 2: Total Time

Figure 3.4: Experiment 2: Computation Time Breakdown

11



CHAPTER 3. BENCHMARKING LUX ON LARGE DATASETS 12

3.4, we see the data used in Figure 3.3 broken down into the components described earlier.
t_recs takes the longest amount of time and grows the fastest with the size of the dataset
in comparison to the other metrics. Any spikes seen in the experiment are due to noise in
running the experiments. The detailed data for these figures can be found in Table 3.2.

Since the Communities dataset has a large number of columns, the time it takes to create
visualizations (t_recs) is much larger than the other measured areas of Lux, as we see in
Figure 3.4. There are a lot more potential visualizations under consideration for recom-
mendation, and thus there is more computation required. In general, just like the Airbnb
dataset, the computation time increases as the size of the dataset increases, as we see in
Figure 3.3. The rendering time also increases with the size of the dataset, but the metadata
computation time and the printing time are miniscule compared to the other parts of Luz,
and stay relatively the same as the size of the dataset increases.

Key Takeaways: These experiments show us how the size of the dataset can massively
impact the speed at which Luxz can properly function. We also note the specific areas of
Lux that capture most of the computation time. Those are the areas we want to focus on in
our efforts to scale Luz for larger datasets. We also note the major differences between the
Airbnb and Communities benchmarking: for the Airbnb dataset, with fewer columns, most
of the time is taken calculating the metadata and for the Communities dataset, with many
columns, the metadata computation time is small compared to the time taken to generate
the recommendations. We aim to use sampling to solve both of these issues.
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Chapter 4

New Sampling Method

In this chapter, we discuss how sampling works currently in Lux. We also introduce a new
way to further optimize Lux by using additional sampling throughout Luz.

4.1 Sampling In Luzx

We take a detailed look at the system architecture of Luz in Figure 4.1 and how sampling
plays a role in each component.

Computing Metadata

First, the metadata is computed on the full dataset. As we saw in our benchmarking on the
Airbnb dataset, the computation time for the metadata increased along with the size of the
data. This is due to the fact that the calculations grow in complexity with the size of the
dataset, such as calculating the cardinality of the dataset, or inspecting the dtype of each
value in a column to find the correct data type for further calculations.

Execution Engine (execute)

The execute function is also called on the data, but makes use of the metadata calculated
in the previous step to grab all the relevant data and metadata needed for the creation of
a visualization. If the data is large, then Luz will collect only a sample of the full dataset
for the visualization. Since the sample is not large, generating the visualization and sending
the data to the front-end doesn’t require a large amount of time which speeds up the visu-
alization process. It’s important to note that the actual DataFrame is never edited in any
way, it’s just the data used in the visualizations would be a sample of the full dataset.
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Figure 4.1: Diagram of Lux architecture utilizing old sampling method
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Figure 4.2: Example of sampling warning in the Lux user interface

The execute component will generate many different types of visualizations that are
the result of aggregating and binning the data in various ways, and to generate the more
interesting or salient visualization that best describes the data, it must use the metadata
computed previously.

Create Visualizations (create vis)

Finally, once the execute component has determined which visualizations to generate and
has collected the necessary data for each visualization, the visualization will finally be gen-
erated and sent to the front-end. If the data is too large and needs to be sampled, then
there will be a flag letting the user know that the visualizations are based on sampled data
instead of the full dataset, as seen in Figure 4.2.

Key Takeaway: The current system architecture of Luz generates visualizations on
sampled data. This sampling currently in the architecture helps address the issue seen when
benchmarking the Communities dataset, where the recommendation generation takes up a
majority of the computation time. However, for datasets like the Airbnb dataset, a large
amount of computation in the form of metadata computation is necessary to generate these
visualizations. This forms a bottleneck in the architecture. Adding sampling to metadata
computation as well would speed up Luz as a whole. This is bolstered by the benchmark on
the Airbnb dataset where we notice a significant portion of the total compute time is being
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Figure 4.3: Example of sampling configurations in practice

taken to calculate the metadata, which grows with the size of the dataset. By calculating
the metadata based on a sampled of the data, we can see a significant speedup.

4.2 Sampling Configuration

As we consider using sampling to cut down computation on large datasets, the question
arises as to what we consider to be a dataset large enough for sampling to be needed. We
allow the user to determine this using user-settable configuration parameters. The user can
set a certain number of rows that they deem to indicate a ‘large’ Dataframe, and Lux will
incorporate sampling for any DataFrames larger than this threshold. That is, sampling is
not used if the dataset is smaller than this value. This configuration places the decisions in
the hands of the user regarding whether they want to wait longer for more accurate visualiza-
tions, or if they’re satisfied with approximate visualizations that are available immediately.
There are other user configuration parameters that can be used to speed up or slow down
Luz in exchange for accuracy. The user may completely switch off sampling, or disallow the
Luz from using heatmaps as a replacement for scatter plots for large DataFrames. The user
can also set the size of the heatmap bins.

We see an example of these configurations in use in Figure 4.3. By default, Luz keeps
the sampling threshold at 100,000 rows with sampling switched on. Heatmaps are also used
by default for datasets with more than 5,000 rows. Lux defaults to a bin size of 40 x 40 for
the heatmaps. Future versions of Luz may allow users to control bin size as well.

Key Takeaway: While it is important to be able to scale Lux to larger datasets, it is
also important to understand the need for flexibility for the user. Ultimately, the user decides
the best use of Luz for their purposes, and so it is important to provide this flexibility to the
user to let them change how the different optimizations and sampling strategies are used.

4.3 New Sampling Method

As we saw with the current sampling strategy for Luz in Section 4.1 and in the previous
benchmarking in Chapter 3, there is a bottleneck in the Luz architecture. The computation
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done by Lux to compute the metadata for the dataset is necessary for any future compu-
tation and visualization generation, but is done on the full dataset. This slows down the
overall computation time for Lux for larger datasets. We propose computing metadata over
a sample of the dataset, sampled without replacement, rather than the full dataset to speed
up computation across the board.

New Changes

Originally, Luz would sample the data before pulling the data for the different visualizations
it wanted to generate. Now, this sampling is pushed back to before the metadata is computed.
We use the same sampling method Lux currently uses, which samples a specified number of
rows without replacement from the dataset.

As we see in the diagram in Figure 4.4, the sampling is pushed to the beginning of all
computation within Luz, so most of the computation is done on sampled data. If you com-
pare this diagram to Figure 4.1, we see only a portion of the total computation is operated
on sampled data.

The sampled data is now used for all of the computation of the metadata used throughout
Luz including calculating the cardinality of each column, finding the unique values in each
column, and other important features about the data used in generating the visualizations.
The sampled data is then saved and used later for generating visualizations in the execute
function.

Future Work

While this implementation is a major improvement to Lux’s efficiency, there are still many
other improvements that can be made.

One idea would be to lazily render the visualizations in the front end. A large portion of
the computation time is spent sending the data to the front end. If the visualizations could
be loaded in as they are generated, this can provide the best visualizations right away while
less optimal options are loaded in only a few seconds later.

Another option would be to utilize parallel computation to analyze parts of the dataset
and generate visualizations all in parallel. Incorporating libraries like modin [15] or ray [13]
to parallelize some of the tasks that are done would provide a tremendous speedup.
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Figure 4.4: Diagram of Lux architecture utilizing the new sampling method
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Chapter 5

Benchmarking the New Sampling
Strategy

Next, we wanted to assess the benefits of the new sampling scheme in Luz. We run a number
of different experiments comparing the old version of Lux with the new version that includes
the addition of metadata being calculated on sampled data instead of the full dataset.

5.1 Benchmarking Old vs New Sampling Strategy

The first experiment we run is benchmarking both the old sampling strategy and the new
one by comparing the computation time for various different sampling thresholds. To get
an accurate comparison, we generate a categorical dataset and a numerical dataset and run
Luz on each dataset for many different sampling thresholds.

For the categorical dataset, we generate a dataset with 10 columns and 1 million rows.
Each column has an increasing cardinality with the first column being a column with only
one value. We use faker [3] to generate the data with values being generated at random,
making it a categorical dataset. We run Luz on this dataset using both the old sampling
method and the new one which involves using sampling on metadata calculation. We increase
the sampling threshold starting at 10,000 in intervals of 10,000 up to the size of the dataset
itself (1 million). The results are seen in Figures 5.1-5.4, where the sampling threshold is
represented by the x-axis and the time, in seconds, is represented by the y-axis. Each figure
represents a different metric tracked, represented by the y-axis. In Figure 5.1, we track the
time it takes to fully run Lux on the dataset with different sampling thresholds. In Figure
5.2, we measure the time it takes to compute the metadata. In Figure 5.3, we track the time
it takes to run the executor engine. Finally, in Figure 5.4, we track the time it takes to cre-
ate the visualizations. Each of these charts compare the time taken to run the old sampling
method (yellow) with the new sampling method (blue). The detailed data for these figures
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Figure 5.1: Old vs New Sampling Strategy on Categorical Data: Total Time

Figure 5.2: Old vs New Sampling Strategy on Categorical Data: Metadata Computation
Time
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Figure 5.3: Old vs New Sampling Strategy on Categorical Data: Execute Time

Figure 5.4: Old vs New Sampling Strategy on Categorical Data: create_vis Time
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Sampling Threshold create vis maintain metadata display execute Total

10000 1.031 1.295 0.085 0.288 3.105
110000 0.902 1.281 0.071 0.362 2.824
210000 0.883 1.274 0.072 0.42 2.868
310000 0.903 1.279 0.071 0.508 297
410000 0.904 1.294 0.075 0.562 3.056
510000 0.917 1.299 0.076 0.64 3.161
610000 0.888 1.264 0.076 0.686 3.134
710000 0.964 1.366 0.073 0.836 3.459
810000 0.885 1.249 0.073 0.823 3.253
910000 0.886 1.25 0.073 0.907 3.334

Table 5.1: Subset of full dataset for the old sampling method for Figures 5.1 through 5.4.
All time is in seconds.

Sampling Threshold create vis maintain metadata display execute Total
10000 1.092 1.043 0.086 0.265 2.891
110000 0.895 1.045 0.07 0.319 2.548
210000 0.905 1.095 0.071 0.373 2.661
310000 0.894 1.131 0.07 0.442 2.745
410000 0.915 1.205 0.071 0.511 2.927
510000 0.916 1.252 0.073 0.554 3.015
610000 0.911 1.293 0.07 0.602 3.09
710000 0.88 1.332 0.07 0.664 3.162
810000 0.88 1.388 0.07 0.719 3.275
910000 0.885 1.418 0.07 0.771 3.363

Table 5.2: Subset of full dataset for the new sampling method for Figures 5.1 through 5.4.
All time is in seconds.
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Sampling Threshold create vis maintain metadata display execute Total

10000 5.414 0.798 0.109 0.32 14.765
110000 6.034 0.778 0.109 0.505  15.288
210000 5.993 0.847 0.11 0.501  15.087
310000 6.437 0.9 0.109 0.509  15.655
410000 6.295 0.913 0.116 0.686  16.043
510000 5.979 0.893 0.11 0.836  16.007
610000 5.837 0.833 0.109 0.848  15.951
710000 5.99 0.899 0.111 0.721  15.803
810000 5.823 0.857 0.11 0.999 15.95
910000 6.22 0.923 0.114 0.946  16.067

Table 5.3: Subset of full dataset for the old sampling method for Figures 5.5 through 5.8.
All time is in seconds.

can be found in Tables 5.1 and 5.2.

As we can see in Figure 5.1, the old sampling method is slower overall for all sampling
thresholds when compared to the new sampling method. As the sampling threshold moves
farther away from the size of the dataset, the speedup increases as well. Figure 5.2 shows
that while the old sampling method has a constant expensive computational cost for com-
puting the metadata, the new sampling method’s metadata computation time increases with
the size of the sample. The executor engine sees significant speedup with the new sampling
method, as seen in Figure 5.3. Finally, in Figure 5.4, we see that the sampling method
doesn’t change the time it takes the create the visualizations.

For the numerical dataset, we generate a dataset with 10 columns and 1 million rows.
Half of the columns have integer values and the other half have float values. We run Luz
on this dataset using both the old sampling method and the new one which involves using
sampling on metadata calculations. The results are seen in Figures 5.5-5.8 and Tables 5.3-
5.4. The results are seen in Figures 5.5-5.8, where the sampling threshold is represented
by the x-axis and the time, in seconds, is represented by the y-axis. Each figure represents
a different metric tracked, represented by the y-axis. In Figure 5.5, we track the time it
takes to fully run Luz on the dataset with different sampling thresholds. In Figure 5.6, we
measure the time it takes to compute the metadata. In Figure 5.7, we track the time it takes
to run the executor engine. Finally, in Figure 5.8, we track the time it takes to create the
visualizations. Each of these charts compare the time taken to run the old sampling method
(yellow) with the new sampling method (blue). The detailed data for these figures can be
found in Tables 5.3 and 5.4.
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Figure 5.5: Old vs New Sampling Strategy on Numerical Data: Total Time

Figure 5.6: Old vs New Sampling Strategy on Numerical Data: Metadata Computation
Time
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Figure 5.7: Old vs New Sampling Strategy on Numerical Data: Execute Time

Figure 5.8: Old vs New Sampling Strategy on Numerical Data: create vis Time
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Sampling Threshold create vis maintain metadata display execute Total

10000 5.706 0.142 0.117 0.294  14.751
110000 6.109 0.195 0.112 0.374  14.439
210000 6.037 0.267 0.107 0.469  14.606
310000 6.18 0.384 0.109 0.428  14.575
410000 6.113 0.433 0.112 0.498  14.732
510000 6.105 0.53 0.111 0.502  14.921
610000 6.085 0.64 0.112 0.568  15.117
710000 6.076 0.772 0.112 0.624  15.119
810000 6.159 0.875 0.116 0.575 15.57
910000 6.206 0.989 0.113 0.672  15.599

Table 5.4: Subset of full dataset for the new sampling method for Figures 5.5 through 5.8.
All time is in seconds.

As we can see in Figure 5.5, the old sampling method is slower overall for all sampling
methods when compared to the new sampling method, just like with the categorical dataset.
Figure 5.6 shows that while the old sampling method has a constant expensive computational
cost for computing the metadata, the new sampling method’s metadata computation time
increases with the size of the sample. The executor engine sees significant speedup with the
new sampling method, as seen in Figure 5.7. Finally, in Figure 5.8, we see that the sampling
method doesn’t change the time it takes the create the visualizations.

5.2 Fidelity of Visualizations (GGenerated

The previous experiments showed that sampling allows results to be generated faster. Next,
we want to assess if these visualizations have high fidelity when used by data scientists in a
real world context. For this experiment, we test the fidelity of the visualizations generated
using the Airbnb and Communities datasets.

For the Airbnb dataset, we run Luz on the 1 million size dataset we generated with the
default sampling threshold being 100,000. In Figure 5.9 and Figure 5.10, we see the visual-
izations generated for two different categories of visualizations (Correlation and Occurrence)
using the old sampling method which doesn’t sample to calculate the metadata. It takes
around 9.44 seconds to generate the visualizations with the old sampling method.

We then take a look at the visualizations generated by the new sampling method (Figure
5.11 and Figure 5.12). It takes around 9.03 seconds to generate the visualizations with the
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Figure 5.9: Correlation Visualizations for Airbnb Dataset using the old sampling method

Figure 5.10: Occurrence Visualizations for Airbnb Dataset using the old sampling method
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Figure 5.11: Correlation Visualizations for Airbnb Dataset using the new sampling method

Figure 5.12: Occurrence Visualizations for Airbnb Dataset using the new sampling method

new sampling method.

When comparing the visualizations among all categories, we see the new sampling method
makes no meaningful changes to the visualizations generated. The ordering of the visual-
izations stays mostly the same and the information the generated visualizations conveys is
the same. As we can see in Figures 5.9 to 5.12, the top three visualizations for each of the
categories shown (Correlation and Occurence) are effectively the same and convey the same
information. We can conclude that the new sampling method has no impact on the actual
fidelity of the visualizations generated and no information is lost from using approximated
metadata rather than fully accurately calculated metadata.
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Figure 5.13: Correlation Visualizations for Communities Dataset using the old sampling
method

Figure 5.14: Occurrence Visualizations for Communities Dataset using the old sampling
method

We run the same experiment on the Communities dataset, specifically the generated
dataset with 1 million data points. Again, we use the default sampling threshold of 100,000
to simulate how a typical data scientist may utilize Lux.

For the old sampling method, we see the visualizations generated for the Correlation and
Occurrence categories in Figures 5.13 and 5.14. It took around 61.57 seconds to generate
the visualizations with the old sampling method.
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Figure 5.15: Correlation Visualizations for Communities Dataset using the new sampling
method

Figure 5.16: Occurrence Visualizations for Communities Dataset using the new sampling
method

We then take a look at the visualizations generated by the new sampling method, seen
in Figure 5.15 and Figure 5.16. It took around 57.74 seconds to generate the visualizations
with the new sampling method.

Just like with the Airbnb dataset, when comparing the visualizations among all cate-
gories, we see the new sampling method makes no meaningful changes to the visualizations
generated. The ordering of the visualizations stays mostly the same and the information the
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generated visualizations conveys is the same. As we can see in Figures 5.13 to 5.16, we see
the top three visualizations generated for both the categories shown are effectively the same.
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Chapter 6

Incorporating Sampling Beyond Lux

Through our work on making Luz more efficient, we learned the usefulness of sampling as
a strategy for efficient computation for the purposes of ‘always on’ EDA software. As new
EDA tools are developed and introduced, we propose some guidelines on how to use sampling
to make these tools more efficient.

6.1 Design Principles for Incorporating Sampling

When designing an EDA system, there are a few principles that we recommend following to
incorporate sampling into the software.

Fidelity of the Analysis

As sampling is added to an EDA system, any analysis done on the data is no longer fully accu-
rate, it is merely an approximation. The sampling should be done in a way that is as random
as possible in order to maintain as accurate a representation of the full dataset. The analy-
sis resulting from sampled data that is outputted from the EDA system should convey the
same or similar information as analysis that results from the full dataset. In Lux this came
in the form of generated recommended visualizations, and while the visualizations weren’t
exactly the same as those generated for a full dataset, they were similar enough that the
information conveyed by the data was the same. As we saw in Chapter 5, the visualizations
generated were very similar between the old sampling method and the new sampling method.

Transparency of Sampling

It is important for the user to know if the EDA system they’re using is employing sampling
methods to generate approximate analyses. Otherwise the user may take away conclusions



CHAPTER 6. INCORPORATING SAMPLING BEYOND LUX 33

from the system that they believe to be true regarding the entire dataset, when in fact it’s
derived from a random sample of the data. Having a warning label, similar to what Lux uses
in Figure 4.2, is a viable solution to keeping the use of sampling transparent to the user.

In addition to transparency when sampling is occurring, it is important to never change
the data the user gives to the system with sampled data. The EDA system should continue
to act as if it is operating on the full dataset, but generate analyses based on the sampled
data. This allows the user to continue to analyze their full dataset alongside looking at the
generated visualizations which provide a good approximation to their data.

User Configurable Sampling Settings

While an EDA system may correctly choose sampling methods to be the best way to make
their software more efficient, users may want to conduct their analysis on the entire dataset,
even if it comes at the cost of inefficient computation. It is important for the user to be
able to easily switch off sampling within the structure of the software itself. The user should
also be able to adjust the extent to which sampling is used. For example, in Lux, we make
it very simple for the user to adjust the threshold for the size of the dataset wherein sam-
pling would begin (effectively setting the maximum size for dataset that Luz will compute
analysis on, and sampling the dataset if it is bigger than that threshold). The user has full
autonomy over that threshold, and they can get more accurate results by increasing that
threshold at the cost of slower computation. Kwon et. al. discuss the importance of user
driven sampling methods, mentioning that “users may want to steer the sampling process
by explicitly specifying sampling characteristics or criteria” [8]. The EDA system can have
a default setting for sampling strategies, but an effective EDA system should allow the user
to adjust sampling settings to better fits their needs.

Pre-computation of Sampled Data

Sampling itself can be an expensive process, as it requires a full pass through the data to
truly achieve a random sample of the data. It is important that in any EDA system that
utilizes sampling that the sampling of the data itself is only done once. All further calcu-
lations should be then computed using the saved sampled data, rather than continuously
sampling the data. This would defeat the purpose of using sampling as there wouldn’t be
any measurable speedup in the computation. Lux does this particularly well, as the sampled
data is saved as an attribute in the LuxDataFrame which represents the full dataset. Any
further computation, from metadata calculations to visualization generation then uses this
sampled attribute.
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6.2 Applications of Sampling

While sampling seems to be a foolproof method to speed up any EDA system, it’s important
to understand where sampling is useful and where it should be avoided.

Approximations

Sampling inherently creates an approximation of the data at a cost of the size of the data it-
self. Therefore, the developer should be aware how this may affect their results. Oftentimes,
depending on how the analysis is conducted by the EDA system, sampling can have a ma-
jor impact on the results. In fact, even different samples may produce vastly different results.

It’s also important to recognize that approximate results due to sampling may produce
more desirable results. For example, a multivariate quantitative correlation plot may be
difficult to read with too many points. However, taking a sample of the data may produce
a far cleaner plot that is simpler to read.

Efficiency

As was discussed earlier in the paper, having an EDA system operate on a smaller sampled
dataset rather than the full dataset can improve the efficiency of the system. However, it is
also important to note that if much of the computation is not done in terms of the data, but
is happening elsewhere in the system, then sampling may not provide a speedup that makes
the drop in accuracy of the resulting analysis worthwhile. For example, in Luz, if the time
it takes to build the dashboard skeleton in the front-end took much longer than it currently
does, any gains in speed from sampling would not be useful. Instead, efforts should be made
to speed-up the building of the dashboard skeleton, which has nothing to do with the dataset
itself.
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Chapter 7

Conclusion

To make exploratory data analysis more efficient on large datasets we look to sampling as
a form of approximating the data to provide fast analysis results. We examined Lux which
already incorporates sampling in parts of its architecture and determined how we could
incorporate additional sampling to provide reliable analysis quickly to the user. By sampling
the metadata computed to assist with further calculations necessary for the generation of
visualizations, we were able to make Lux more efficient on large datasets. As we saw in
the experiments we ran in Chapter 5, there was a significant speedup in Lux when utilizing
the new sampling method. Using what we learned from this process, we constructed some
guiding principles to aid future developers as they incorporate sampling into their own EDA
systems.
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